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Abstract 

High speed machining using vertical CNC milling centres continues to be a popular 

approach in a variety of industries including aerospace, automobile, mould and die casting 

etc. Chatter oscillations have significant influence in restricting the metal removal rates of 

the machining process. The cutting process instability or chatter is assessed by prediction 

of frequency response at the tool tip. Present work aims at evaluating the combined effect 

of a spindle-housing and tool holder on the dynamics of cutting tool by considering the 

flexibility of spindle unit supported on bearings. The spindle-tool is analysed by using 

finite element modeling using Timoshenko beam theory. The dynamic characteristics and 

tool-tip frequency responses are obtained without considering the cutting forces. The 

results are compared with receptance coupling approach and using 3D modeling in 

ANSYS. Further experimental modal analysis on the machining spindle of same 

dimensions has revealed the same dynamic modes.  Using the validated FE model of the 

system, the effects of nonlinear bearing contact forces, spindle-tool holder interface 

stiffness, bearing span and axial preload, tool overhang and diameter on the frequency 

response and cutting process stability are studied. Optimal spindle-tool system is designed 

for achieving maximum dynamic stiffness.  

 The analytically stability lobe diagrams are obtained from the real and imaginary 

terms of these frequency responses at the tool tip. Dynamic stability issues in helical end-

milling using the two and three dimensional cutting force models are considered for the 

analysis. The stability boundaries are experimentally verified using the cutting tests on 

both CNC milling spindle and modified drilling tool spindle systems while machining Al-

alloy work pieces. Vibration and sound pressure levels are also employed to assure the 

stability of cutting operations, while surface images are used to identify the chatter marks 

at various combinations of cutting parameters. Dynamic milling model is employed with 

the flexible spindle-tool system by considering several effects including variable tool pitch, 

tool run-out, nonlinear feed forces and process damping. Design and stability studies on 

the modified drill spindle with a custom-designed work table for milling operations 

allowed in understanding several interesting facts about spindle-tool systems. Some 

control strategies including semi-active and active methods are implemented using finite 

element model of the spindle-tool system to minimize the chatter vibration 

levels/maximize the stable depth of cut during cutting operations.  

Keywords: Frequency response; Spindle machine receptances; 3D stability model; 

variable pitch effect; run out effect; semi-active and active control strategies. 
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Chapter-1 

Introduction 

1.1 Overview 

Modern industries focus on high quality machining and automation technology. Quality of 

products and productivity are improved by continuous monitoring of machine tools and 

process. The competitive economic environment has brought new challenges to the 

machining industry. Significantly reductions in machining time, production cost, and 

improvement in overall productivity have become an ultimate requirement. Especially, in 

machining industries, the main objective is to select chatter free cutting conditions with 

lower cutting forces while maintaining the power and torque limits of machine tools and 

other practical constraints of the system. Therefore, right and optimal selection of cutting 

conditions is of great concern for machining industry. In order to satisfy the needs, a system 

must be developed to ensure the optimal selection of cutting conditions as well as the 

design of spindle-tool system with various physical phenomena occurring during 

machining. 

 The condition monitoring strategies have importance in assessing the quality of the 

machining process for improving the overall efficiency of the system. Cutting forces, 

workpiece surface quality, tool vibration levels, sound pressure intensities are some of the 

important process indicators which determine the limits on the cutting conditions, accuracy 

of products, machine tool failures and other information useful for monitoring and 

controlling the machining process. It is well known that productivity reduces due to onset 

of regenerative chatter phenomenon associated with instabilities in cutting operations.  

In machining operations like milling and boring, regenerative chatter instabilities 

hamper the machining continuity and such conditions need to be identified at the beginning 

itself. Out of various factors, spindle design is one of the important issues dictating the 

process stability. For example, a rigid spindle permits higher depths of cuts without violent 

oscillations during machining. However, spindle works in combination with tool and 

holder system, whose flexibility plays an important role in cutting operations.  
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1.2 Vibrations in machine-tool 

Vibration analysis in metal cutting has significance since vibrations may cause loss of 

surface finish of work pieces, shortens tool life, degrades machine tool components and 

produces noise contamination. In addition, the mechanics of the cutting process is also 

affected by the vibrations, changing the contact conditions between the tool and the 

material. During the machining processes, three different types of mechanical vibrations 

can occur due to the lack of dynamic stiffness of one or several elements of the system 

composed by the machine tool, tool holder, cutting tool and the workpiece material [1]. 

These are (i) Free or transient vibrations (ii) Forced vibrations and (iii) Self-excited 

vibrations. In the first case, the vibrations are initiated by an external energy source 

momentarily and thereafter removed. In the absence of non-conservative forces, free 

vibrations sustain themselves and are periodic. The structure will vibrate in its natural 

modes until the damping causes the motion to die out. Forced vibrations occur due to 

external harmonic excitations. The principle source of forced vibrations in milling 

processes is when the cutting edge enters and exits the workpiece. However, forced 

vibrations are also associated with unbalanced bearings or cutting tools, or it can be 

transmitted by other machine tools through the workshop floor. Self-excited vibrations also 

known as chatter, extract the energy to start and grow continuously, as a result of the 

interaction between the cutting tool and the workpiece during the machining process. Such 

a chatter phenomenon is further classified into regenerative and non-regenerative types. 

The regenerative effect is caused by the undulation of successive cuts, where the tool 

removes a wavy surface generated in the previous pass.  Non regenerative vibration is 

maintained by the cutting force fluctuations that are induced by the tool-workpiece relative 

displacement of a periodic nature. 

Free and forced vibrations can be avoided or reduced if the causes of the vibration 

are identified. In this field, a variety of methods and techniques have been developed to 

mitigate their occurrence. However, self-excited vibrations as a result of an unstable 

interaction between the machining forces and the structural deflections cannot be avoided 

.The forces generated when the cutting tool and part come into contact produce significant 

structural deflections. These structural deflections modulate the chip thickness that, in turn, 

changes the machining forces. Regenerative chatter may result in excessive machining 

forces and tool wear, tool failure, and unacceptable surface finish, thus severely decreasing 

operation productivity and part quality, loss of contact and mode coupling effects. When 

chatter occurs, the vibration amplitude will increase continuously until the relative 

displacement between the cutter and workpiece is so large that the cutter will leave the 

workpiece for part of the time. This becomes a nonlinear behavior, which limits the 

vibration amplitude to a finite value. The magnitude of vibration depends on the cutting 
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force characteristics, such as the magnitude and direction of the cutting forces, and the 

tooth passing frequency at which a cutting flute comes in contact with the workpiece. The 

dynamic characteristics of the entire machining system in terms of the natural frequencies 

the damping coefficients and the stiffness of the machine tool structure, also affect the 

vibration magnitudes.   

In comparison with other machining processes, the cutting force characteristics of 

milling process are more complex (see for e.g., [2]). The cutting forces generated during a 

milling process induce dynamic deflections of the workpiece-tool system, which in turn 

modulate the cutting forces. Such self-excited vibrations are mostly caused by two well-

known mechanisms: regeneration and mode-coupling. As described earlier paragraphs, 

regeneration occurs when the cut produced at a current time leaves a wavy surface on the 

material regenerated during subsequent passes of cut. The phase difference between the 

inner and outer waves and the amplitude gain of the system plays a key role in stability of 

cutting process. In mode-coupling approach, even when there is no interaction between the 

undulated surface of workpiece and tool vibration, the tool traces out an elliptic path that 

varies the depth of cut in such a way to intensify the coupled modes of vibration. Self-

excited vibrations may persist in machining operations and require attention. 

In traditional low-speed machining processes, the machining dynamics are not 

considered as a significant issue because spindle speeds and depths of cut are 

conservatively selected. Therefore, the system vibrations are typically small. However, 

with the increased use of high-speed machining and requirements for smaller parts with 

higher tolerances, errors caused by machining dynamics can be significant. The behavior 

of a dynamic system depends on the force input and its dynamic characteristics. In 

operations like milling, the force depends on a combination of user defined parameters and 

the interaction between the tool and the workpiece. Some user defined machining 

parameters include: the axial depth of cut, the radial depth of cut, the feed rate, and the 

spindle speed. In addition to this, selection of the cutting tool affects the machining 

accuracy due to material composition, tool geometry, and coatings all influence the forces 

that are developed between the tool and workpiece. 

In any dynamic system, the time dependent motion, or vibration, is determined by 

the system’s dynamic response and the force input and initial conditions. Especially, in 

milling, the system dynamics includes that of combined machine-tool-holder-workpiece 

system model. The system dynamics are generally expressed as the complex valued ratio 

of the displacement to the input force over a selected frequency range; called frequency 

response function (FRF) and it can be modeled or measured. The FRF is determined at the 

point of interest for example at the free end of the cutting tool, which usually represents 

the most flexible point in the system connecting the tool and workpiece.  
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1.3 Stability issues in machining 

Machining systems involve a machine tool, a cutting tool and holder, and a workpiece and 

work holding devices as structural elements. Depending on their relative rigidity, one or 

more components may dominate the total deformation at the tool-workpiece contact point 

contributing to the form errors and the dynamics of the process which may yield instability. 

Generally, machining centres are composed of a bed, linear and rotary axes, a column, a 

spindle etc., the spindle-holder-tool assembly is usually the most flexible part of the whole 

system due to the slender geometries of these components and multiple interfaces between 

them. In this case, the cutting process forces are the main cause of the structural 

deformations.  

In machining process, stability depends on the phasing of vibrations on each 

successive flute engagement. As the cutter engages with the workpiece, forces are 

generated which cause vibrations. These vibrations, in turn, are imprinted on the workpiece 

surface. If the vibrations are in phase with (i.e., match up to) the surface left by the previous 

tooth engagement, then the chip thickness remains relatively the same. When the vibrations 

satisfy this “in phase” condition, the forces and vibrations in the system persist in a steady 

state or stable condition. On the other hand, if the vibrations from one tooth engagement 

to the next do not match up or are “out of phase”, the chip thickness varies and the force 

amplitude varies. The force variation excites the system dynamics and causes vibrations 

which lead to subsequent changes in the chip thickness. This system is described by using 

a set of time delayed differential equations (one for each force direction in consideration) 

where the time between tooth engagements is the amount of the delay. The phase difference 

between engagements depends on the spindle speed and axial depth of cut acts as the 

feedback system gain. Stability information can be presented in terms of input parameters 

(axial depth, spindle speed and radial depth). Generally at a particular radial depth, a 

stability lobe boundary is predicted in the spindle speed-axial depth domain.  

The stability lobes diagram is a plot that separates stable and unstable machining 

operations for different spindle speeds. Stable cuts occur in the region below the stability 

boundary, while unstable cuts (chatter) occur above the stability boundary. The user can 

select optimum operating conditions for spindle speed and axial depth of cut based on this 

diagram. Stability lobes are functions of the dynamic stiffness at the tool center point 

(TCP), the tool geometry, the radial immersion of tool into material, as well as of the 

material to be machined. Machining operators usually, distinguish between two types of 

chatter (i) structural chatter or machine chatter: which is low frequency chatter, 

recognizable for a low-pitched sound and the chatter is associated with the structural modes 

of the machine. (ii) tool chatter: which appears at higher frequencies and is recognizable 
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for a high-pitched sound, the chatter is associated with the modes of the tool or spindle. 

The type of chatter depends on the cutting frequencies; low cutting frequencies excite 

structural modes and high cutting frequencies excite spindle- tool holder-tool modes. The 

mechanical modeling of the spindle-tool system is a key to estimate the static and dynamic 

behavior of a machine tool. An accurate modeling of this system is very important part in 

predicting stability of cutting process. Detailed description of chatter stability can be found 

in open literature (e.g., [3]). 

1.4 Aim and objectives  

From the last two decades, chatter phenomenon has been extensively studied to 

predict the appropriate machining conditions. In parallel, different methods to counteract 

tool chatter have been developed and are being used in the machining industries. The 

operations such as milling may require a special attention even at normal operating 

conditions with flexible/rigid tool work combinations. In applications such as utilizing a 

drilling machine for milling operations, the spindle design modifications are very 

important to machine the components smoothly.  

The main focus of present work is to design the spindle-tool unit by considering 

various factors affecting the tool-tip frequency response along with stability studies during 

cutting with the use of optimally designed spindle-tool system.  

 The combined dynamics of a spindle-tool unit on the process effectiveness is to be 

presented by considering the flexibility of spindle unit supported on bearings. 

  Frequency response functions at the tool-tip are to be obtained for the spindle-tool 

model using various approaches such as direct finite element method, receptance 

coupling approach and experimental modal analysis.  

 Optimal spindle-tool system parameters are to be obtained for achieving the 

maximum dynamic stiffness and improving the cutting process stability. 

 Cutting process stability is to be validated with the designed spindle by considering 

the practical conditions with the help of time-domain and frequency-domain 

(stability lobe diagrams).  

 Case studies are to be conducted by modifying the design of drill spindle to improve 

the cutting stability while it is used for slot cutting operations as in a three axes 

milling machine.  

 Detailed experimental cutting tests are to be conducted for stability testing by 

measurement of vibration levels, sound pressure intensities and surface images 

using the designed spindles. 



Chapter-1                                                                                                      Introduction 

6 
 

 In improving the stability boundaries, some semi-active and active control 

strategies are to be implemented without changing the major operating variables 

significantly. 

 To develop semi and active control methods for maximizing the stable depth 

of cut and reduction of chatter in online fashion. 

Some of the contributions in the present work are as follows: 

 (i) Development of a generalized approach for dynamic model for the spindle-tool unit 

by accounting practical considerations including joint interface effects, non-linear 

bearing forces etc. 

 (ii) Optimal design of spindle-tool unit for maximizing the dynamic stiffness and 

improving the average stable depth of cut  

 (iii) Design and modifications of drill spindle for milling operations. 

 (iv) Improvise the stability limits by using semi-active and active control techniques.  

Various experimental and numerical studies support the concepts provided in the work. 

1.5 Organization of the thesis 

Thesis is organized into six chapters. In the present chapter, the spindle-tool system and its 

importance in assessment of machining stability has been introduced. 

Chapter-2 deals with the comprehensive literature review related to the current 

work. The various works related to design analysis and control of spindle-tool systems as 

well as their influence on machining process performance are reported. 

Chapter-3 presents the results of theoretical modeling such as finite element 

analysis using Timoshenko beam theory. Further one of most popular coupling techniques 

such as receptance-coupling substructure analysis (RCSA) are highlighted in this section. 

Three dimensional analyses are conducted on the prototype spindle-tool unit in ANSYS 

Workbench. Later parametric studies are carried for the spindle and tool design variables. 

Since one of the purposes of modeling the spindle system is to avoid chatter vibrations 

during machining process, the maximum dynamic stiffness has to be improved. Meta-

heuristic optimization studies are presented in order to show the importance of these 

techniques in the effective design of spindle-tool unit. Further, a modified design approach 

for drilling spindles is illustrated economically for milling operations. 

Chapter-4 describes the role of the dynamic interaction between the spindle system 

and the work piece on the overall performances and presents the generalized dynamics of 

3-axis milling operations. The chatter stability of the milling operations are solved both in 
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frequency and time domains. A detailed comparison of various stability models is also 

presented. Moreover, the analytical zero-order solution available in literature is generalized 

to model stability of end mills with complex geometries. Time domain simulations are 

carried out for different cases of process parameters that affect the cutting force dynamics. 

Chapter-5 deals with the study of active structural methods dedicated to the 

suppression of chatter. A block diagram of the control system is developed. The frequency-

response characteristics are determined from mathematical modeling for the closed-loop 

vibration control system is presented.  

Moreover, chapter-6 summarize the major findings from the research and make the 

recommendations for the future research. 
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Chapter-2 

Literature review 

Enormous literature is available on various issues relating to milling operation. Especially, 

for predicting the role of spindle during the milling operation in-terms of stability, and 

subsequent effects including work piece surface finish and tool wear, several research 

articles appeared over last one decade. Literature in the present work is classified under 

the following headings. 

2.1 Bearing characteristics on the dynamic stability 

The spindle-bearing system is one of the most critical components of the high speed 

spindles, must able to provide high rotational speed and reasonable load capacity. The 

types of bearings that are available for high speed spindles are angular-contact ball 

bearings, roller bearings and taper roller bearings. Angular contact ball bearings are most 

commonly used today in high-speed spindles. This is because angular contact ball bearings 

can provide the required precision, load carrying capacity, and spindle speeds. In addition, 

the costs are low compared to hydrostatic, aerostatic or magnetic bearings. 

Angular contact ball bearings are designed to provide the capabilities to withstand 

external loads from both axial and radial directions when they are properly preloaded. In 

some cases, taper roller bearings are also used because they can offer larger load-carrying 

capacity and higher stiffness than ball bearings. However, taper roller bearings do not 

allow the high speeds required by high speed spindles. In this thesis, angular contact ball 

bearings are studied.  

The dynamics of spindle systems mainly depends on the characteristics of the 

bearings, tool-holder interface, spindle shaft and housing. This review gives an overview 

of previous research findings of the spindle design analysis and their effects of the cutting 

dynamics. The simplest model for angular contact ball bearings is the conventional two-

degrees-of-freedom proposed by Palmgren [4]. This model considers only the axial and 

radial translations of the inner ring relative to the outer ring, which is usually suitable for 

most applications where misalignment and shaft bending effects are insignificant. The 

pioneering work on mathematical models for angular contact ball bearings was proposed 

by Jones [5], who developed a general theory for load-deflection analysis of bearings that 

considered centrifugal force and gyroscopic loading of the rolling elements under high-

speed operation.
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Demul et al. [6] established the dynamic equations in a matrix form that considered 

the centrifugal force but neglected the gyroscopic moment in the bearing. This method 

provides an advantage that the Jacobian matrix of the bearing is derived analytically, 

producing the bearing stiffness. Filiz and Gorur [7] conducted a load-deflection analysis 

of bearings under combined axial and radial loads. This analysis produced a simplified 

model for determining the incremental stiffness in axial and radial directions.  

Houpert [8] and Hernot et al. [9] presented a stiffness matrix form with five degrees 

of freedom. Their model enables using the finite element method for solving the coupled 

problem of the spindle-bearing system, but the centrifugal forces and gyroscopic moments 

are not included. Harris [10] conducted a comprehensive analysis of different aspects of 

bearings, but his model is independent of the spindle and shaft.  

Walford and Stone [11-12] measured stiffness and damping for bearings under 

oscillating conditions. They used two degrees of freedom mathematical model to extract a 

representative stiffness value and found that the levels of damping obtained were 

considerably higher than expected. They concluded that this result was due to interaction 

among the races, housing and shaft.  

Tiwari and Vyas [13] developed a technique for estimating nonlinear stiffness 

parameters for rolling in rotor systems, based on an analysis of the random response signals 

picked up from the bearing caps. The analysis uses a stochastic characteristic of the bearing 

excitation in conjunction with a single degree of freedom model to estimate a 

representative stiffness. Marsh and Yantek [14] presented an experimental method for 

estimating the dynamic stiffness of precision bearings, based on measurements of the 

frequency response functions.  

 Aini et al. [15] carried out experiments to investigate the frequency responses of 

grinding machine tool spindle supported by angular contact ball bearings. Several works 

[16-19] proposed the fundamental theory of bearings for the high speed spindles and 

proposed the recent trends in design of spindles. The main lubrication systems for bearings 

are grease and oil air lubrication. The advantage of grease lubrication is that the rotation 

speed can be quite high without high cost and maintenance.  

However, for advanced high speed spindles, the oil air lubrication system is 

required because of its low viscosity and exhaust system [20-21]. The preload for the 

bearings is also an important issue for high speed spindles. The preload tends to increase 

with the increase of the rotation speed of the spindle, and the over preload causes the 

bearings to break. Therefore, the preload must be applied and adjusted properly, with a 

suitable preload system depending on the spindle specifications. Angular contact ball 

bearings have been widely used in machine tool spindles, and the bearing preload plays an 
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important role on the performance of the spindle. With the development of high speed 

machining, especially for high speed milling, heavy cutting at a low speed and light cutting 

at a high speed are often performed on a single machine tool spindle, thus, high stiffness 

at low speed and low temperature rise at high speed are required.  

Lin et al. [22] presented an integrated model with experimental validation and 

sensitivity analysis for studying various thermo-mechanical-dynamic spindle behaviours 

at high speeds. The bearing preload effects on bearing stiffness, high-speed rotational 

effects, including centrifugal forces and gyroscopic moments on the spindle shaft and, 

subsequently, on overall spindle dynamics are investigated.  

Jiang and Mao [23] investigated the variable preload technology was systematically 

applied to the high-speed spindles. At high-speed range, FEM method was used to analyze 

the temperature distribution of the spindle, and the variable spindle preload was determined 

according to the constraint of temperature rise of bearings.  

Ozturk et al. [24] predicted the spindle speed-dependent dynamic properties at the 

tool tip and errors in-process stability predictions. Effects of bearing preload on the 

stability limits were demonstrated via simulations and cutting tests. Cao et al. [25] 

compared two main types of bearing preloads such as constant and rigid mechanisms using 

a mathematical model as well as with experiments. Timoshenko beam element theory 

coupled with a non-linear model of angular contact ball bearings, the dynamics of the 

spindle shaft, housing, and bearings system was modelled as a non-linear function of 

preload mechanism and amplitude, spindle speed, and external cutting loads. Figure. 2.1 

shows the bearing model employed in this work. 

 

Figure 2.1: Jones’ elastic model of the bearing [25] 

Kim et al. [26] developed statistical models and software’s to numerically simulate 

the rotational precision of spindles running on ball bearings. It was identified that the 

rotational accuracy of the spindle can differ significantly with spinning speed. The impact 

of the bearing preload has an extra significance.  
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Zahedi and Movahhedy [27] extended a widespread model of high speed spindles 

that includes viable models for the mechanical and thermal behaviour of its major 

components such as bearings, shaft and housing. The spindle housing and shaft were 

treated as six-degree-of-freedom Timoshenko beam elements.  

Zivkovic et al. [28] presented the thermo-mechanical model of the spindle with 

angular contact ball bearings. The non-linear change of spindle stiffness under the 

influence of temperature is studied and it is experimentally verified.   

2.2 Spindle design and optimization issues 

A schematic of the spindle-drawbar-bearing assembly of a high-speed milling 

motorized spindle unit is shown in Figure 2.1. The rotor of the spindle is supported by two 

pairs of angular contact ball bearings. To drive this spindle bearing system, an integral 

induction motor is located between the front and rear bearings. A drawbar is mounted 

inside the hollow shaft to change tools. The hollow shaft, the drawbar and the bearings 

constitute a typical double-rotor dynamic system. Labels (1, 5) represents the front and 

rear bearings and (2, 3, 4) represents the spindle, motor rotor and drawbar. 

In an effort to choose the factors that avoid chatter and to attain the better surface 

finish, accurate dynamic models of tool-holder-spindle assembly are required. Such a 

dynamics reflected at tool tip can be acquired by modal testing, but entails a huge number 

of tool-holder arrangements in a manufacturing facility. The measurements are time taking 

and at times, problematic as in the case of micro-end mills. Few studies are reported in 

view of analytical and experimental works related to modelling of the spindle.  

Yang [29] conducted an in-depth analysis of the radial stiffness of machine-tool 

spindles. He concluded that shortening the overhang, and increasing the area moment of 

inertia of the spindle and the stiffness of the front bearing, can enhance the static stiffness 

of spindle systems. The addition of the third bearing may change the dynamics of the 

spindle, depending on the forces and moments exerted on it.  

Ruhl and Booker [30] is one of the earliest researchers to use the finite element 

method for modelling of rotor systems. His model includes translational inertia and 

bending stiffness but neglects rotational inertia, gyroscopic moments, shear deformation, 

and axial load. Nelson [31-32] used the Timoshenko beam theory to establish shape 

functions and formulate system matrices, including the effects of rotary inertia, gyroscopic 

moments, shear deformation, and axial load.  

Jorgensen and Shin [33] used DeMul's bearing model and the Timoshenko beam to 

develop a model for a spindle supported by a pair of angular contact bearings, including 

cutting-load effects. The cutting load is divided into static and dynamic components. The 
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dynamic loads are assumed to provide system excitation due to the dynamic motion of the 

cutting tool. Bossmanns et al. [34] and Lin et al. [35] proposed an integrated thermo-

mechanical dynamic model for a motorized machine-tool spindle, using an empirical 

formula to calculate the stiffness of bearings. However, some constants need to be 

identified in order to use this model.  

Li and Shin [36-37] presented a spindle-bearing model that includes thermal effects 

to predict the bearing stiffness and natural frequencies of the spindle system, using DeMul's 

bearing model. The bearing configuration, however, is limited to several cases and the 

gyroscopic effect is not included. Only the natural frequencies are compared in these 

papers, not the FRF, which is most crucial in predicting the dynamic performance of the 

spindle during cutting.  

Cao and Altintas [38-39] updated the FE model to assist the industrial engineers in 

achieving a reliable model that can accurately represent the dynamic characteristics of 

machine-tool spindle systems. Suzuki et al. [40] presented  a  new  technique  of  

determining  the  transfer  function(TF)  by  utilize  inverse research of the self-excited 

vibrations calculated during an end mill. In their technique a TF could be identified to 

reduce mistakes between numerical analysis and trial results.  

Gagnol et al. [41] outlined the spindle’s modal modifications using a finite element 

model of the high-speed spindle-bearing system, considering the rotor dynamic effects. 

The reliance of these models were then examined and determined with precision. Tandon 

and Rajik khan [42] described the technique to design the geometry for a flat end mill in 

their three-dimensional aspects with regards to surface areas, flutes as helicoidally surfaces 

and the shank as a surface of revolution. 

Rantatalo et al. [43] proposed a method to analyze the lateral vibrations in a milling 

machine spindle by including finite-element modeling magnetic excitation and inductive 

displacement measurements of the spindle response. Cao et al. [44] adapted the finite 

element model to update system dynamic characteristics and achieved the reliable dynamic 

model for the system.  

Tanga and Song [45] designed a new technique which opinions the consequences 

of multiple-mode features of an application, at high excitation frequencies and wider 

ranges of spindle speed. These studies are employed to obtain the stability limits to increase 

the enhanced metal removal rate without chatter.  

Gagnola and Bouzgarrou [46] formulated a highly effective design of high-speed 

spindle-bearing model and it is analyzed with the basic applications of rotor dynamics and 

its design is remodified with the help of experimentation. It is identified that lobe diagrams 
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were altered as of the non-rotational frequency response function (FRF) predictions due to 

changes in dynamic stiffness.  

Bravo et al. [47] analyzed a means for obtaining both the uncertainty zones and 

stability zones in the lobe diagrams, relevant for both the machine tool structure and work 

piece possess the same dynamic behaviour. For machining the thin walls of work piece at 

all the intermediary stages, depend on virtual movement of the cutter and work piece a 

conventional 3-D lobes are employed.  

Wang and Chang [48] employed finite element method for analysis of a spindle 

bearing unit using Rayleigh’s formulation, with exclusive considerations of high speed 

effects in the system.  

Lin and Tu [49] designed a flowchart to signify all the general spindle design 

problems. Sensitivity analysis is carried out for the major eight design factors with the help 

of finite element analysis to examine their control on the frequencies of the system. Jiang 

and Zheng [50] established a coupling model for the power-driven high-speed machine 

tool spindles rests over the bearings using the conventional transfer matrix technique.  The 

bearing model was studied by Jones-Harris theory by incorporating both the effects 

centrifugal force and gyroscopic.  

Hung et al. [51] illustrated the effect of interaction on spindle and machine frame 

on the machining stability using finite element modelling. Belforte [52] presented the rotor 

air bearing system for high speed machining process. Various parametric studies are 

conducted such as clearance and port diameter etc. and are further experimentally verified. 

Chao et al. [53] considered the joint characteristics for modelling the spindle, tool holder, 

bearing system to predict the dynamic behaviour. Further these models are experimentally 

verified. Movahhedy and Mosaddegh [54] included the effect of the gyroscopic moment 

on the spindle dynamics are illustrated.  

Jiang and Zheng [55] considered the drawbar effect on the high speed milling 

motorized was investigated. The centrifugal and gyroscopic moments were established by 

the whole transfer matrix method. Figure 2.2 shows the schematic view of the integrated 

motorized high spindle with multiple bearings at different positions of the spindle. 
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Figure 2.2: Schematic view of the integrated spindle-tool unit [55] 

Ahmed and Atsushi [56] used the displacement sensors to measure the spindle 

stiffness in the radial direction for the precision machining process. A case study was 

investigated for both the small and medium assemblies.  

Wang et al. [57] obtained the optimum process parameters in milling of the titanium 

alloys using the various algorithms. Chi et al. [58] performed the transient thermal analysis 

for the high speed spindle. Thermal models are proposed to investigate the thermal contact 

resistance of the solid joints and bearings. 

 In this thesis, a general method has been developed for systematically 

modelling the bearings, spindle shaft, and housing by including the effects of preload and 

spindle speeds. This method can predict the bearing stiffness, frequency response 

functions, and time history of responses under cutting forces. It can also simulate the 

milling operation to predict the cutting performance and contact forces on bearings. Both 

centrifugal force and gyroscopic effect is included in modelling the spindle shaft. The 

bearings and spindle shaft are systematically coupled. The contact forces on bearing balls 

and the time response of the spindle-bearing system under dynamic cutting forces have 

been studied.  

Computational memory and time involved in modelling and analysis of integrated 

spindle-tool system can be considerably reduced with the use of sub-structural techniques 

such as Component Mode Synthesis (CMS), Receptance-Coupling Substructure Analysis 

(RCSA) etc. Especially, RCSA has several convenient stages for handling the systems such 

as spindle-tool-holder in a modular fashion. In this line, several authors reported the use of 

RCSA for prediction of dynamic characteristics of machine tool-spindle system.  

Park et al. [59] presented a method of assembling known dynamics of the spindle–

tool holder with an analytically modeled end mill using the receptance coupling technique. 

The classical receptance technique is enhanced by proposing a method of identifying the 



Chapter-2                                                                                               Literature review 

 

15 
 

end mill–spindle/tool holder joint dynamics, which include both translational and 

rotational degrees of freedom.  

Schmitz and Duncan [60] proposed the second generation receptance coupling 

substructure analysis (RCSA) method, which was used to predict the tool point response 

for high-speed machining applications. This method divides the spindle-holder-tool 

assembly into three substructures: the spindle-holder base; the extended holder; and the 

tool. The tool and extended holder receptances are modeled, while the spindle-holder base 

subassembly receptances are measured using a “standard” test holder and finite difference 

calculations.  

Movahhedy and Gerami [61] proposed a simple joint model that accounts for 

rotational degrees of freedom (RDOFs) at joints by considering the bending modes. An 

optimization method based on genetic algorithm is employed to find parameters of the joint 

model which shows good agreement and confirmed that the joint model has been 

successful in predicting the tool bending modes.  

Erturk et al. [62] presented an analytical method that used Timoshenko beam theory 

for calculating the tool point FRF of a given combination by using the receptance coupling 

and structural modification methods. The model studied the effects of individual bearing 

and contact parameters on tool point FRF so that better approaches can be found in 

predicting contact parameters from experimental measurements.  

Schmitz et al. [63-65] presented a finite element modeling approach to determine 

the stiffness and damping behavior between the tool and holder in thermal shrink fit 

connections. Once the holder and inserted tool section are connected using the finite 

element analysis-based stiffness and damping values, this subassembly is then rigidly 

coupled to the (measured) spindle–holder base and (modeled) tool. Namazi et al. [66] 

introduced the flexible coupling between the tool-holder-spindle interfaces during the 

coupling. Analytical procedures are adapted to reduce the errors between experimental and 

theoretical approaches. 

 Jun et al. [67] measured the receptance of machine-spindle by Impact testing, the 

Timoshenko beam model was employed to analyze the dynamics of holder and tool shank, 

and the finite element method (FEM) was used to calculate the receptance of the tool’s 

fluted portion. Schmitz [68] described the application of receptance coupling substructure 

analysis (RCSA) to the prediction of torsional and axial, as well as bending, 

receptances. Kumar and  

Schmitz [69] determined spindle-machine dynamics using two different 

approaches such as synthesis and Euler–Bernoulli beam approach. In the former case, a 

direct frequency response measurement of a standard artifact inserted in the test spindle 

http://www.sciencedirect.com/science/article/pii/S0890695505001422?np=y


Chapter-2                                                                                               Literature review 

 

16 
 

was combined with a cross frequency response measurement to calculate the required 

rotational receptances. In the later one, a new approach where the direct frequency response 

measurement is fit using an assumed (fixed-free) form of each mode within the 

measurement bandwidth.  

Zhongqun et al. [70] employed a two -section step beam vibration model was used 

to calculate the direct and cross response of the tool at free-free status. A RCSA method 

was employed to identify the joint properties and couple the tool point FRF of the 

assembly. Ghanatim et al. [71] combined the analytical-experimental sub-structuring 

procedure was proposed to determine the tool point FRFs usable for different holder-tool 

configurations. This approach introduced the contact stiffness and damping in more detail 

with taking into consideration the variations of normal pressure in the tool–holder and 

holder-spindle joints.  

Filiz et al. [72] presented a tool–holder model that incorporates a spectral-

Tchebychev technique with the Timoshenko beam equation to obtain a completely 

parameterized solution. Comparison of the tool–holder model to a three-dimensional finite 

elements solution showed that the dynamic behavior was captured with sufficient accuracy. 

 Zhang et al. [73] utilized the Timoshenko beam model to analyze the dynamics at 

various interfaces of the tool, holder and spindle. The predicted response is verified 

experimentally with various tool overhang lengths. Mehrpouya [74] measured overall 

dynamics at the joints for the rigidly coupled substructures by the numerical FE simulation. 

The inverse receptance coupling (IRC) method and the point-mass joint model were 

applied at the joints to evaluate the modal properties.  

Ganguly and Schmitz [75] applied the particle swarm optimization technique for 

fitting the spindle-machine measurement using a fixed-free Euler–Bernoulli beam model 

for each mode. The performance of the optimization process and RCSA in predicting the 

tool tip frequency response is evaluated at each mode.   

Recently, Albertelli et al. [76] presented an approach which avoids the estimates of 

rotational and moment receptances in order to provide more accuracy to RCSA. 

Mancisidor et al. [77] proposed an approach based on calculation of fixed boundary-

dynamic behaviour of tool to improvise RCSA outcomes.  

Design of spindles using RCSA is still an open problem leading to improvisations 

with additional considerations. The basic formulation considers the spindle-machine as 

fixed-free beam, while tool and holder are considered as free-free beams. Even though a 

rigid machine member is holding the spindle, the dynamics of spindle with reference to the 

housing has considerable effect on the tool tip FRF. In the present thesis, initially the 

spindle system is supported on the angular contact ball bearings and it is analyzed using 1-
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D finite element analysis using Timoshenko beam elements to find the spindle end 

frequency receptances. Tool and holder receptances are obtained analytically and the 

coupled receptances give the frequency response at the tool-tip. The methodology is 

different from conventional fixed-free spindle housing systems analyzed often 

analytically. 

2.3 Cutting force modelling and stability issues 

Milling forces predicted by analytical and semi-analytical methods had been 

extensively used in the past to avoid empirical techniques, which require an abundant 

amount of experimental data.  

In late 1920s, Salomon [80] expressed the specific cutting pressure as an 

exponential function of chip thickness based on the work done with a straight tooth cutter. 

Sabberwal [81] and Koenigsberger [82] used similar exponential specific cutting pressures 

to model milling forces analytically. This model is known as mechanistic model and 

instantaneous force acting at right angles to the chip area is calculated by the product of 

the chip area and the specific cutting pressure (K)  

××= haKF cecuttingfor  

Where K=C*hm is the specific cutting pressure, C and m are constants depending 

on the work-piece material and the milling cutter, (a*h) is the chip area, a is the depth of 

cut and h is the instantaneous uncut chip thickness. This approach has been adopted by 

many researchers in the analysis of milling forces. 

Armarego [83] defined an alternative form of mechanistic modelling by separating 

shear deformation (cutting) from the edge effect (rubbing). Cutting coefficients were 

defined based on the classical oblique model, whereas edge forces were related to rubbing 

of the work material on the flank face of the cutting edge. The linear edge force model 

expresses the cutting force as a function of cutting coefficients, axial depth of cut and chip 

thickness as: 

haKaKF cececuttingfor ××+×=
 

where Ke and Kc are the edge and cutting force coefficients, respectively. In order to 

calculate cutting forces, cutting force coefficients need to be identified for the work 

material. One of the most widely studied models to determine cutting force coefficients is 

the mechanistic approach. In this model, cutting forces are measured while keeping 

immersion constant and varying feed rates. Then, linear regression is applied to fit an 

approximate line to the average of measured cutting forces, which leads to identification 

of the unknown cutting force coefficients. Since geometric properties of a milling cutter 
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such as helix angle, rake angle, relief angle; workpiece material and other variables are all 

embedded in cutting coefficients, identified cutting coefficients become valid only for a 

specific cutter and a workpiece material.  

In an overview study, Smith and Tlusty [84] classified various models of the 

milling process into five groups: 

(1) The Average Rigid Force Static Deflection Model: This model takes material 

removal rate as a basis for calculation of process outputs. Cutting force, static tool 

deflection, torque and power are assumed to be linearly dependant on material removal 

rate. This model is the simplest and the least accurate as there is no simple relationship 

between material removal rate and process out-puts. 

(2) The Instantaneous Rigid Force Model: Force is computed on incremental 

sections of the helical cutting edge and the resultant force is calculated using vectorial sum 

of all incremental forces. In this model, cutter deflection in response to force does not cause 

any change in force. Sabberwal and Koenigsberger [81, 82] presented the first model in 

this group. 

(3) The Instantaneous Rigid Force, Static Deflection Model: This is similar to the 

previous model but static deflection of the tool is also considered under static loading. In 

this model, deflection of the cutter does not influence the uncut chip thickness; hence it 

does not affect the cutting forces. Form errors can be predicted at points where the helical 

flutes generate the finished surface. 

(4) The Instantaneous Force with Static Deflection Feedback Model: The deflection 

of the cutter is computed and its influence on the chip thickness and the force is considered 

by Armarego et al. [86]. 

(5) The Regenerative Force, Dynamic Deflection Model: This is the most accurate 

and complex model of the milling process. The equations of motion are solved in the time 

domain in order to calculate the vibration of the tool. These vibration terms are then used 

to calculate instantaneous dynamic chip thickness, which results in dynamic cutting forces. 

Term "regeneration" is used to emphasize that the effect of previous time steps are taken 

into account. 

Tlusty and Ismail [85] presented the time domain simulation of helical end mills 

by including the structural dynamics of the system. Sutherland and DeVor [86] utilized the 

regeneration model and improved their static model by considering dynamic cutting force 

as a feedback.  

Montgomery and Montgomery [87] and Altintas [88] contributed significantly to the 

prediction of chip formation using the exact kinematics of milling. In their model, surface 
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and cutter locations were divided into small elements so that exact chip thickness was 

calculated by intersecting the tool and the current surface at each time step. Surface and 

cutter locations were calculated using dynamics of workpiece and cutter; therefore, 

nonlinearities such as the tool jumping out of cut and the influence of vibrations could be 

easily incorporated into their general dynamic model. By integrating the process along 

each cutting edge in contact with the workpiece, cutting forces, vibrations, and dimensional 

surface finish were predicted. The geometry of the end-mill cutter employed was shown in 

Figure 2.3. Where D denotes the diameter of the end mill, β is the helix angle of the cutting 

flutes, φp is the pitch angle. 

 

 

Figure 2.3: Geometry of a helical end mill [88] 

Smith and Tlusty [89] used time domain simulation to obtain peak-to-peak force 

ratios, which were later used as a criterion in identification of stability limits. Several 

authors [90-92] simulated the dynamic modelling of milling processes using the 

regeneration technique. Li et al. [93] developed a theoretical model for forces in milling 

based on a predictive machining theory and the mechanics of milling have been developed. 

In the model, the action of a milling cutter is considered as the simultaneous work of a 

number of single-point cutting tools, and milling forces are predicted from input data of 

the workpiece material properties, the cutter parameters and tooth geometry, the cutting 

condition, and the types of milling.  

Li and Liu [94] accounted the instantaneous undeformed chip thickness was 

modeled to include the dynamic modulation caused by the tool vibration. Simulated the 

chatter stability lobes in time-domain and the influences of different spindle speeds on the 

vibration amplitudes of the tool under a fixed chip-load condition was analyzed. Khachan 

and Ismail [95] developed a computer graphics approach for time-domain simulation of 
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chatter in multi-axis milling. The dynamic characteristics at the tool tip as well as the 

regeneration mechanism were accounted for the graphical chatter simulation.  

Altintas et al. [96] presented the frequency and discrete time domain chatter 

stability laws for milling operations in a unified manner. The time periodic dynamics of 

the milling process were modelled by averaging time varying directional factors at cutter 

pitch intervals, the stability lobes were solved directly and analytically.  

Lacerda and Lima [97] analytical method was applied in which the time-varying 

directional dynamic milling forces coefficients were expanded in Fourier series and 

integrated in the width of cut bound by entry and exit angles. The forces in the contact zone 

between cutter and workpiece during the cut are evaluated by an algorithm using a 

mathematical model derived from several experimental tests with a dynamometer located 

between the workpiece and machine table.  

Li and Li [98] developed a predictive milling force model, which represents the 

action of milling cutter by the simultaneous operations of a number of single-point cutting 

tools and predicts the milling forces from the fundamental work piece material properties, 

tool geometry and cutting conditions.  

Li et al [99] considered the cutting action of each slices was modelled as an oblique 

cutting process. The first slice of each tooth, is modelled as oblique cutting with end cutting 

edge effect and tool nose radius effect, whereas the cutting actions of other slices are 

modelled as oblique cutting without end cutting edge effect and tool nose radius effect. A 

windows-based simulation system for the cutting forces in helical end milling was 

developed using the model.  

Chiou et al [100] investigated the influence of the helix angle on the shear stress, 

friction and shear angle. The helix angle effect on the cutting force model was 

experimentally determined and it was shown that the cutting force model could be applied 

for a wide range of cutter helix angles.  

Wan and Zhang [101] systematically studied the cutting force modelling methods 

in peripheral milling process in the presence of cutter run-out. Emphasis was put on how 

to efficiently calibrate the cutting force coefficients and cutter run-out. Mathematical 

derivations and implementation procedures were carried out based on the measured cutting 

force or its harmonics from Fourier transformation.  

Wan et al. [102] proposed a new and simplified method for the calibration of cutting 

force coefficients and cutter run-out parameters for cylindrical end milling using the 

instantaneous cutting forces measured instead of average ones. The calibration procedure 

was derived for a mechanistic cutting force model in which the cutting force coefficients 
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are expressed as the power functions of instantaneous uncut chip thickness (IUCT). Dang 

et al. [103] proposed a novel mechanistic cutting force model for flat end milling. The 

prominent feature of this model lies in that the overall cutting forces contributed by both 

the flank edge and the bottom edge cuttings are simultaneously taken into consideration.  

 Run out is differences or variations in the diameter of a cutting tool at 

certain points along the outside edge while the tool is rotating. When an end mill is in 

rotation it is important that each tooth hits at the exact same spot along the work piece.  If 

one tooth is hitting the work piece more than the others then that tooth is doing the bulk of 

the work.  This will cause the end mill to wear and breakdown more quickly. Therefore, 

tool run-out and its effects is an important area of research within modelling, simulation, 

and control of milling forces. Tool run-out causes tool cutting edges to experience uneven 

forces during milling. Several authors have worked to minimize this effect.  

Li and Li [104] developed the theoretical cutting force model for helical end milling 

with cutter run-out using a predictive machining theory, which predicts cutting forces from 

the input data of workpiece material properties, tool geometry and cutting conditions. 

Cifuentes et al. [105] adapted a procedure based on chip thickness modification by means 

of the fast correction of the tool feed rate. Dynamic feed rate modification was provided 

by superposing the design of a fast feed system driven by a piezo-electric actuator to the 

conventional feed drive of the CNC machine tool. The tool deflection due to run-out effect 

was shown in Figure 2.4. 

 

                                       

Figure 2.4: Tool deflection due to milling forces [105] 

Schmitz et al. [106] investigated the effect of milling cutter teeth run out on surface 

topography, surface location error, and stability in end milling. The effect of run out on 

cutting force and surface finish for proportional and non- proportional tooth spacing was 

isolated by completing experiments on a precision milling machine with 0.1 mm 

positioning repeatability and 0.02 mm spindle error motion.  
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Wang et al. [107] proposed a cutting force prediction algorithm considering the 

influence of cutter vibrations and cutter run-out. The effect of cutter run-out was modelled 

as an extra feed for machining, which produces a cyclic change on the uncut chip thickness. 

Sun and Guo [108] presented a new method to effectively model and predict the 

instantaneous cutting forces in 5-axis milling processes with radial cutter run-out based on 

tool motion analysis.  Identified the run-out parameters from the measured cutting forces 

were proposed, and then the mechanistic method applied to predict the cutting force.  

Taner et al. [109] proposed a generalized cutting force model for the multi-axis 

milling operation. The cutting kinematics are simulated to determine the exact chip 

thickness. Sheng et al. [110] predicted the cutting force coefficients by computing the 

dynamic chip thickness. Taylor’s series was adapted for the simulation to improve the 

efficiency of the solution.  

Olufayo and Hossein [111] accessed the quality of the machined surface by 

monitoring the tool life. Machining parameters are identified online by monitoring using 

the acoustic emission sensor. Sims et al. [112] presented the fuzzy techniques to acquire 

the chatter stability regions. The problem of milling chatter uncertainty is then considered 

within the framework of Ben–Haim’s information-gap theory.  

Ming et al. [113] investigated the critical lobe curve of the milling process by fuzzy 

stability theory. Sigmoid functions are developed to model the fuzzy stability lobe diagram. 

Wan et al. [114] selected the multiple modes for constructing the stability lobe diagrams. 

The lowest envelop method was considered to predict the overall dynamic compliance of 

the system. 

For milling problems, the mechanism of regenerative chatter could not be worked 

by using milling cutters with variable pitch. In case of variable pitch cutters, the phase 

between two waves is not constant for all teeth, thus disturbing the regeneration 

mechanism. Such disturbance reduces the modulation in chip thickness and slows down 

vibrations, which consequently increasing the stability of cutting.  

In this line several authors had studied the impact of variable pitch effect on the 

cutting stability. Altintas et al. [115] formulated the stability of the system, by transforming 

time varying directional cutting constants into time-invariant constants. Constant 

regenerative time delay in uniform cutters was transformed into non-uniform multiple 

regenerative time delay for variable pitch cutters.  

Budak [116-117] improved the stability against chatter by considering the milling 

cutters with non-constant pitch angles. An explicit relation was obtained between the 

stability limit and the pitch variation which leads to a simple equation for determination of 

optimal pitch angles. Jin et al. [118] improved the semi discretization algorithm to predict 

http://www.sciencedirect.com/science/article/pii/S0890695511001350?np=y
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the stability lobes for variable pitch cutters. The shape of the weight distribution function 

was presented and discussed for non-uniform and harmonically varied helix angles. Song 

and Zhao [119] presented the design of structural geometry of variable pitch end mills in 

detail. Based on the analysis of tooth engagement factor, and was expressed to design 

variable pitch end mill with high milling stability.  

Huang [120] predicted the forced vibration in end milling could be reduced by 

using the variable pitches and variable helix angle of the end mill cutter. Further, 

experimental study had conducted on the titanium alloys using different cutters with these 

geometries in both up and down milling process. The different pitch angles of the helical 

end mill cutter was shown in Figure 2.5. 

                        

Figure 2.5: Variable pitch angle of the helical end mill [120] 

 Sellmeier and Denkena [121] investigated both the experimentally and 

theoretically the process stability of an unequally pitched end mill. This influence was 

studied theoretically for a simple one DOF system with respect to the number of teeth, 

different types of alternating and linear tooth pitch variations and the helix angle.  

In this work, a detailed time domain simulation based on the regenerative force - 

dynamic deflection model is used to analyze a milling process with variable cutting 

conditions (spindle speed, feed rate and depth of cut).  Using this time domain simulation, 

the effect of tool tip run-out and variable pitch was studied for different cases to identify 

the allowable permissible limits for the system.   

Material  nonlinearity,  structural  nonlinearities  and  high  order  nonlinear  terms  

in  cutting  forces  are  the  primary  sources  of  nonlinearity included  in  cutting  models. 

Several authors were worked to find the effects of nonlinearity on the cutting forces were 

studied. Hanna and Tobias [122] developed a mathematical theory of nonlinear chatter. In 

this, the structure is represented by an equivalent single degree of freedom system with 

http://manufacturingscience.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=N.+H.+Hanna&q=N.+H.+Hanna
http://manufacturingscience.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=S.+A.+Tobias&q=S.+A.+Tobias
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nonlinear stiffness characteristics and the cutting force by a third degree polynomial of the 

chip thickness. The equivalent model leads to a second order differential equation with 

nonlinear stiffness and nonlinear time delay terms from which the conditions of steady 

state chatter are derived.  

Martínez et al [123] provided the nonlinear techniques to understand phenomenon 

of chatter. Considered a weakly nonlinear model with square and cubic terms in both 

structural stiffness and regenerative terms, to represent self-excited vibrations in 

machining. An approximate solution was derived by using the method of multiple scales. 

Gradisek et al [124] presented the expressions for semi-empirical mechanistic 

identification of specific cutting and edge force coefficients for a general helical end mill 

from milling tests at an arbitrary radial immersion. The expressions were derived for a 

mechanistic force model in which the total cutting force was described as a sum of the 

cutting and edge forces.  

Tsai [125] presented the geometrical analysis of a new three-dimensional force 

model of end milling. The analysis includes description of the relative relationships among 

undeformed chip thickness, rake angle, cutting velocity, shear plane area and chip flow 

angle during peripheral and face milling processes.  

Landers and Ulsoy [126] accounted the force-feed nonlinearity into the model by 

extending the regular chatter analysis technique proposed by Budak and Altintas. The 

analysis provides insight into the feed effect on chatter in machining operations by directly 

including the force-feed nonlinearity in the chatter analysis. The analysis was developed 

for turning and face-milling operations and validated via time domain simulations for both 

operations and by experiments for a face-milling operation.  

Moradi et al .[127] considered the nonlinear  cutting  forces  of  milling  process  

as  a  function of  chip  thickness  with  a  complete third  order  polynomial. An  optimal  

control  strategy  is  developed  for  chatter  suppression  of  the  system  described  through  

non-linear  delay  differential  equations. Khaled et al. [128] presented the mechanistic 

cutting force coefficients for the linear and nonlinear force models of the end milling 

process. By using both the average force and the optimization technique method, the 

cutting force coefficients are determined for the end-milling process.  

During the milling process, chatter can occur at specific combinations of axial 

depth-of-cut and spindle speed. Several studies have been performed since the late1950s 

regarding regenerative chatter,  for example by  Altintas and Budak [129] proposed an 

alternative technique to transform the dynamic milling equations into a time-invariant but 

radial immersion dependent system. Time-varying dynamic cutting force coefficients were 

approximated by their Fourier series components, and the chatter-free axial depth of cuts 
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and spindle speeds are calculated. Gao and Meng [130] examined the chatter isolated 

islands and non-linear responses of a spindle milling system supported by ball bearings. 

The stability trends were then examined for several up-milling and down-milling 

machining processes respectively, with varying machine tool radial immersions.  

Tanga and Song [131] developed a new method which considers the effects of 

multi-mode dynamics of system, at higher excited frequency (i.e. tooth passing frequency) 

and wider spindle speed ranges, and these stability limits in high-speed milling helps in 

selection of  milling parameters for maximum metal removal rate without chatter. Bravo 

et al. [132] studied a method for obtaining the instability or stability lobes, applicable when 

both the machine structure and the machined work piece have similar dynamic behaviours.  

Three dimensional lobe diagrams have been developed based on the relative movement of 

both systems, to cover all the intermediate stages of the machining. 

 Mane et al. [133] considered an integrated spindle–work piece model by coupling 

with a rotor-dynamics-based spindle FEM model. They showed that the dynamic 

behaviour of the coupled system to be greatly dependent on two variables, respectively the 

spindle–work piece relative position and the spindle rotation speed based on this 3D 

stability lobe diagrams are plotted and examined that the specific speed rules which 

optimize the maximum material removal rate without chatter during the machining of the 

flexible workpiece are elaborated.  

Solis et al. [134] a new chatter’s analytical prediction method was combined with 

experimental multi degree-of-freedom systems modal analysis to achieve the objective of 

generating a new method to obtain the stability lobes information for some vibration modes 

that can be used to graph the stability lobes for high-speed milling, and these to help in the 

selection of parameters for chatter free operations.  

Quintana et al. [135] conducted experimental analysis to construct stability lobe 

diagram in which the feed per tooth was maintained as constant. Milling sound analyses of 

frequencies and amplitudes, through FFT of the time-based audio signal, produced good 

results and allowed to obtain an accurate approach to understand milling process 

incidences through vibration occurrence.  

Surmann and Biermann [136] described a geometric model for predicting the 

surface formation resulting from peripheral milling processes when tool vibrations are 

present. They consider a simple geometric algorithm which converts tool vibration 

trajectories into a model of the flank surface and this model can be analyzed to the real 

workpiece.  

Seguy et al. [137] consider the effect of spindle speed variation and it is analyzed 

in the high-speed domain for spindle speeds corresponding to the first flip (period 
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doubling) and to the first Hopf lobes. The optimal amplitudes and frequencies of the speed 

modulations are computed using the semi discretization method. They show that stability 

properties can always be improved by spindle speed variation within the unstable domain 

of the first flip lobe and amplitude also has a greater effect on the stability of the process 

than frequency. Raphael et al. [138] improved the precision of stability lobes and examined 

the importance of the spindle electronic location and speed to organize the precision of the 

stability lobe diagram (SLD).  

Penga et al. [139] studied the influences of the bearing clearance related to the 

chatter stability of milling process were examined by using numerical simulation method. 

The results revealed that the presence of bearing clearance could make the milling process 

easier to enter the status of chatter instability and can shift the chatter frequency. Munoa et 

al. [140] proposed the bifurcation techniques to improve the stability lobe diagram by using 

the multiple modes of chatter frequency. This frequency domain method showed that the 

lobes related to flip bifurcation are a special case of the interaction between modes.  

Liu and Chen [141] presented an integrated model to study the electro-thermo-

mechanical dynamic behavior of motorized spindles. The model accurately predicted the 

dynamic characteristics of motorized spindles, and the sensitivities of the six design 

parameters to the natural frequencies of the spindle system. Kecik et al. [142] developed a 

nonlinear model of high-speed down milling by taking into account the regeneration and 

frictional chatter. Model includes friction force produced between an edge of a tool and a 

workpiece, modeled by nonlinear and non-smooth function and also the time delay effect, 

which was responsible for vibration regeneration.  

Fonga et al. [143] employed an optimal high-speed CNC milling process with high-

dimensional quality, to increase the process versatility, flexibility, and robustness.  Taguchi 

dynamic approach coupled with a proposed ideal function model was developed to 

improve the optimal conditions during the machining process. 

Modelling and optimization of cutting process can be effectively achieved by 

means of intelligent design techniques. In order to achieve a global optimum solution, 

various meta-heuristic algorithms such as genetic algorithms, ant/bee colonies, particle 

swarm simulating approaches are often employed in practice. Optimization studies in 

milling process have been carried-out earlier by several researchers considering various 

process parameters.  

Mounayri et al. [144-145] applied the Radial basis neural network (RBN) for the 

modeling the cutting forces in ball end milling operation. Experiments were conducted to 

train as well as to validate and assessed the performance of the proposed network. Zuperl 

et al. [146] and Briceno et al. [147] applied the neural adaptive control strategy to estimate 
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the cutting forces in end milling process. Simulations and experiments were conducted to 

estimate the efficiency of the neural architecture.  

Palanisamy and Kalidass [148] predicted the surface roughness by using the 

artificial neural networks and regression mathematical methods. Zain et al. [149] utilized 

simulated annealing and genetic algorithms to set the optimal cutting conditions for better 

machining performance. The two techniques were integrated, and validated by the 

experimental studies. Saffar and Razfar [150] presented a model to predict the cutting 

forces in end milling operation and optimized the cutting forces using genetic algorithms 

(GA). Palanisamy et al. [151] developed a mathematical model relating the dynamics of 

machining with material behaviour, and adopted GA to optimize the machining time with 

cutting process parameters and vibration levels of tool.  

Hsieh and Chu [152] developed an optimized tool path in five axis milling machine 

using another heuristic called particle swarm optimization (PSO). Advance and fully 

informed PSO’s are employed to enhance the search capability. Jaberipour and Khorram 

[153] described two New Harmony search (HS) meta-heuristic algorithms for engineering 

optimization problems with continuous design variables. First algorithm, proposed 

harmony search (PHS), introduced a new definition of bandwidth (bw). Second algorithm, 

improving proposed harmony search (IPHS) employed to enhance accuracy and 

convergence rate of PHS algorithm.  

Zareia et al. [154] presented the harmony search (HS) algorithm to figure out the 

possible parameters for face-milling. The best possible value of machining parameters for 

various number of passes for depth of cut, feed and speed was obtained to reduce overall 

fabrication cost.  

In the present work, the parametric data is employed to relate the stable depth of 

cut with geometric parameters using a feed-forward neural network model. The trained 

model generating the average stable depth of cut is employed in conjunction with harmonic 

search optimization scheme to achieve optimum spindle-tool data.  

2.4 Milling process control issues 

The presence of vibrations in machining processes has a negative effect on the 

quality of the machined surfaces. As formerly described these vibrations are sources of 

machine fatigue, tool damage, high cutting edge wear, machine tool damage, wear of 

machine tool components and annoying high noise levels. Spindle is considered one of the 

most crucial machine-tool components especially in high speed machining and its 

performance is often strictly related to the quality and the surface finishing of the machined 

work pieces.  
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Albrecht et al. [155] measured the cutting forces from the displacements of rotating 

spindle shafts. A capacitance displacement sensor is integrated into the spindle and 

measures static and dynamic variations of the gap between the sensor head and the rotating 

spindle shaft under cutting load. Park and Altintas [156] presented a dynamically 

compensated Spindle Integrated Force Sensor (SIFS) system to measure cutting forces. 

Piezo-electric force sensors were integrated into the stationary spindle housing. The 

structural dynamic model between the cutting forces acting on the tool tip and the measured 

forces at the spindle housing was identified.  

Jang and Tarng [157] used a piezoelectric actuator for the active vibration damper 

of cutting tool. The actuator resonance tuned over a wide frequency range by adjusting the 

size of the inertial mass, so that the actuator could provide an extremely large damping 

force to suppress undesired vibration of the cutting tool at the resonance frequency of the 

actuator. Duncan et al. [158] applied the receptance coupling substructure analysis (RCSA) 

to develop the models for a stacked flexure setup and a spindle-holder–tool assembly. 

Dynamic absorber effect was introduced into the model to improve the system dynamic 

stiffness and, therefore, increase the critical stability limit in machining.  

Madoliat et al. [159] proposed a frictional damper so as to enhance structural 

damping leading to the chatter suppression in the slender end-mill tool. Parametric study 

was conducted to find optimum parameters of the damper for the increase of the stability 

limit. Figure 2.6 shows the frictional damper used in the end-mill tool. 

 

Figure 2.6: Geometry of milling tool with damper [159] 

Parus et al. [160] presented an active control system that counteracts the 

development of chatter vibration. The proposed active control system employed a Linear 
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Quadratic Gaussian (LQG) algorithm and piezoelectric actuator to suppress vibration 

during cutting.  

Madoliat et al. [161] proposed a frictional damper for suppression of chatter in 

slender end mill tool. An analytical model including accurate modeling of friction in 

sliding and pre-sliding regions was developed for this damper. Regib et al. [162] presented 

a method for programming spindle speed variation for machine tool chatter suppression 

and it was based on varying the spindle speed for minimum energy input by the cutting 

process. Sulaiman et al. [163] presented an approach to chatter control during end milling 

of titanium alloy Ti-6Al-4V using ferrite permanent magnets to reduce the unwanted 

vibrations. A special fixture was fabricated and mounted on a vertical machining centre 

spindle for holding the permanent magnet bars, used in suppressing the vibration 

amplitudes.  

Monnin et al. [164-165] presented an active system integrated into a spindle unit 

with two different optimal control strategies. In the first strategy, dynamics of the machine 

structure in the controller design was considered which minimizes the influence of cutting 

forces on tool tip deviations. While the other, takes explicitly the process interaction into 

account and attempts to guarantee the stability of the overall closed-loop system for 

specific machining conditions. Graham et al. [166] utilized  the  edge  theorem  and  the  

zero  exclusion  condition,  a  robust  chatter  stability  model,  based  on the  analytical  

chatter  stability  milling  model,  was  developed.  compared  to  the  projected  pseudo  

single  degree  of  freedom  model the reliability  was  improved.   

Moradi et al. [167] designed a tunable vibration absorber (TVA) to suppress 

regenerative chatter in milling of cantilever plates. Under regenerative chatter conditions, 

optimum values of the absorber position and its spring stiffness were found such that the 

plate vibration was minimized. Zhang et al. [168] developed an active model predictive 

control (MPC) method for the milling process such that the chatter-free domain of stable 

operation was substantially enlarged and achieve a higher efficiency.  

Rafal et al. [169] investigated stability of the milling process of titanium alloy 

Ti6242 on the basis of experimental time series of cutting forces. In order to obtain the 

initial point of chatter vibrations, the recurrence quantification analysis and the Hilbert–

Huang transform (HHT) were employed. Wu et al. [170] included the various machine 

tasks like thread milling, weld cutting, and boring operations using the robots. Different 

vibration reduction models are incorporated to improve the stability of the machining 

process. 
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2.5 Summary 

This chapter provides an intensive review on the various integrated spindle-tool 

design variables related to the machining instability. Various numerical modelling 

techniques for the spindle design issues that made progress in the past decades have been 

studied and discussed. Further, the literature review focuses on previous research in the 

area of machining stability, outlining work in the implementation of analytical and time-

domain simulations for stability predictions.  

The following issues are found to be the open areas: 

(a) Design of spindle for stable cutting conditions by selecting several secondary 

parameters including bearing dynamics, interface dynamics, tool effects etc. 

(b) Improvising the stability using new cost-effective control methods which are 

applied to generalized rotor dynamic systems. 

(c) Development of improvised spindle designs for using a machine tool for different 

machining operations. 

The next chapter discusses about the various mathematical models to arrive the tool tip 

response of spindle-tool unit. 
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Chapter-3 

Dynamic Modeling of spindle-tool unit 

The conventional milling spindle system normally has spindle housing carrying spindle 

shaft over the front and rear bearings, a tool holder and tool. The machine tool frame affects 

the dynamic properties of the tool and spindle by improving its stiffness and damping [17]. 

The frame represents a structure with limited stiffness which supports the spindle system. 

Interaction of the machine frame and spindle causes a shift in the spindle natural 

frequencies and frequency responses. The machine frame structure contributes also to an 

increased level of structural damping at the tool end point of the spindle. In practice, the 

frame (housing) is considered as a rigid member and spindle unit dynamics drastically 

influences the cutting process stability. Therefore, design of spindles is of paramount 

importance in the structure. This chapter describes dynamic modeling of spindle-tool unit 

of a standard CNC milling centre using finite element modelling and receptance coupling 

methodology. Various considerations including bearing dynamics, the spindle-tool 

coupling stiffness effects as well as the geometry of the tool on the tool-tip frequency 

responses are explained. 

A typical spindle system consists of tool, tool-holder, spindle shaft, housing, 

bearings, pulleys, sleeves and nuts, and the motor. Figure. 3.1 shows the schematic of a 

vertical milling tool spindle system.   

                                      

Figure 3.1:  Integrated spindle tool unit 

The dynamic stiffness at the tool tip, where the cutting forces are acting, is the sum of the 

stiffness of all the elements of the system, i.e., the tool, the tool-holder, the shaft, the 

bearings, the housing and the mechanical joints between them. Here, the machine part is 
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not included because of its lower natural frequencies. On the other hand, the spindle 

rotation introduces forces that change the stiffness of both the bearings and the shaft, thus 

modifying the dynamic response at the tool tip. The front and rear bearings are often of 

rolling contact type. Ball bearings usually have initial preload. When the spindle does not 

rotate, the contact angle of balls with the inner and outer raceways is defined by the 

geometry and kinematics of the bearing [18]. When the spindle starts rotating, additional 

radial load due to contact of balls with races comes into picture. The centrifugal force 

reduces the initial preload and slightly changes the kinematics of the bearing, varying the 

contact angles and thus decreasing the bearing and spindle stiffness. On the other hand, the 

contact force in the ball-raceway interface varies due to the cutting forces and the thermal 

gradient between the inner and outer raceways of the bearing at high speeds. At the same 

time, a gyroscopic moment acts on the shaft due to the high rotating speed, which splits 

the modal frequencies into forward and backward whirling modes and changes the tool tip 

frequency response [21]. The experimental measurement of the real FRF at the tool tip 

when the spindle runs at high speeds becomes therefore very complex.  

         To avoid lengthy experimental approaches, often modelling of the spindle-tool 

holder-tool system using finite element modelling is preferred. Another way is to employ 

the substructure coupling techniques which allows the dynamics of the spindle and the tool 

to be studied separately and then combined to obtain the system global response. 

Consequently, once the spindle dynamics have been studied theoretically or 

experimentally, it is possible to estimate the response at the tool tip for different tools.  

      The dimensions of the spindle shaft- tool holder-tool are taken approximately of the 

original machine tool. The length of the spindle shaft is taken as 248mm, tool-holder as 

80mm and tool as 60mm. 

3.1 Analytical modeling of spindle system  

Often the tool, tool-holder, spindle shaft and housing are modeled as beams. Pulley and 

nut as treated as rigid disks and the sleeve is considered as a bar. The motor is modelled as 

a rigid mass.  

3.1.1 Modeling of spindle shaft  

A segment of shaft treated as a Timoshenko beam, is shown in Figure 3.2. A Cartesian 

coordinate system named O – xyz is defined on the beam where the x -axis is coinciding 

with the centroidal axis before the beam gets deformed [25]. 



Chapter-3                                                           Dynamic modeling of spindle-tool unit                                                                

33 
 

 

Figure 3.2: Section of the beam 

Kinetic energy for a section of beam of length L is [28]: 

 

    (3.1) 

where I= (1/4)πR4, J= (1/2)πR4  are respectively the cross-sectional and polar moments of 

inertia of circular shaft element, R is the radius of the beam section, A is the cross-sectional 

area,  is the density of the material and  is the rotational speed of the beam. The first 

term is the energy of rotation about the axis x. The second term is the energy of 

translational movement. The third term is the energy of rotation about the axis y and z. The 

last term is the energy contribution from the gyroscopic moment.  

Similarly the potential energy of spindle (shaft) element is given as: 
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          (3.2) 

where ks is shear correction factor.  

The work done by external forces is given by: 
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where qx, qy and qz are distributed load per unit length in directions x, y, and z, respectively. 

and my and mz are distributed moment per unit length about axis y and z, respectively. 

By using Hamilton’s principle [38],  

  0
2

1

  dtWVTI

t

t

                                                                                               (3.4)                                      

(Where  is variational operator), the following equations of motion for the beam are 

obtained 
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where the first equation is the force equilibrium along axis x. The second and third 

equations are the force equilibrium along axis y and z. The fourth and fifth equations are 

the moment equilibrium about axis y and z. 
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 is the axial 

force contributing to the bending deformation. 

3.1.2 Bearing system 

Bearing flexibility plays an important role in the dynamics of spindle-tool unit. A major 

source of nonlinear behavior in a bearing is attributed to the Hertzian contact. The analysis 

of vibrations caused by rolling element bearing gives important information to analyse the 

rotor dynamics of the system. The following assumptions are made in bearing force 

considerations [8]: 

1) The motion of rolling elements, races and the rotor is in the plane of the bearing 

only. 

2) Hertzian theory of elasticity is used for calculating the deformations in the contact. 

The effect of elasto-hydrodynamic lubricated contact is neglected. 
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3) The cage is considered as rigid and there is constant angular separation between 

the rolling elements and hence no contact between them. The angular velocity of 

cage and rolling element can change at the same rate over time. 

4) Only structural damping is assumed to be present in the model and damping of ball 

bearings is neglected. 

5) There is no slipping of balls as they roll on the surface of races. 

6) Effects due to temperature change such as change in viscosity of lubricant, 

deformation of balls and races are neglected.    

7) The lateral moments at the bearing are ignored in comparison with three forces. 

Figure 3.3 shows a simplified ball-bearing model considered for analysis. The contact 

forces arise between balls and race during rotation of the spindle and can be expressed in 

terms of the radial deformation j of jth ball according to [25]: 
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where n= 3

2
  for ball bearing;   n= 

10

3
  for roller bearing  

Here, Fa is axial preload, j is the ball contact angle with outer race and the radial 

deformation of the jth ball is expressed as j = Rvw 
2

0
2

0 . Also, Nb, r and R are 

respectively indicate the number of balls, radii of inner race and outer race and r0 is radial 

clearance. 

 

 

 

 

                                  Figure 3.3: Ball Bearing schematic 
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Further, Cb is interface stiffness which depends on material and radii of curvatures of 

contacting surfaces. The components of radial deformations of the circumferential points 

on balls are given as:  

wo=w+ (r+2rb) cosj ; vo= v+(r+2rb) sinj                   (3.11) 

with 






 


2

)( 0rrR
r b  is ball radius in terms of radial clearance r0 and u and v are time-

varying bending displacement at the bearing node (shaft). The heavy-side function H used 

in eq.(3.10) is defined as 
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                                            (3.12)                               

Also j is angular location of the jth ball, which is given by  

j =ωcage×t +
b

N

π2
(j−1) , j=1,2, ... , Nb                                         (3.13)  

Here, ωcage is the angular velocity of the cage given in terms of speed of rotation   as: 

 rR

r
cage






                                                                                                  (3.14) 

The stiffness behaviour of the spindle supported over the angular contact ball bearings rely 

about the practical loading and the positions of bearing arrangement. Many different 

empirical formulae are available in literature to estimate the static radial stiffness of the 

bearings in terms of number of balls(N), ball diameter(D), axial preload (Fa)and contact 

angle of  ball bearing() and one such useful expression frequently employed is given by 

[48] 

kxx= kyy=1.77236107 (Nb
2.Db)

1/3
3/1

3/1

2

sin

cos
aF




 N/m                                      (3.15) 

3.2 Coupled spindle tool system 

The dynamic behavior of the spindle-holder-tool assembly plays a significant role in 

cutting process stability. The quality of machined surface depends on the frequency 

response function of the spindle system at the tool tip. Flexible connections at the spindle-

holder and holder-tool interfaces also influence the dynamic of spindle unit. The 

interaction between these three components affects the overall dynamic behavior of the 

assembly.  
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3.2.1 Distributed parameter modeling 

The spindle shaft provides motion to the cutting tool. In milling operation, the tool and 

spindle are coupled by a holder (adapter) as shown in Figure 3.4.  

 

 

 

 

Figure 3.4: Simplified spindle-tool unit 

The frequency response function at the tool tip is predicted by the three step continuous 

beam model. The equation of motions for the individual portions of the beam elements 

based on the Timoshenko beam theory is written as follows: 
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For the portion BC (tool-holder) (0x2L2) 
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For the portion AB (spindle shaft) (0x1L1) 
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                   (3.18) 

were y1(x1,t), y2(x2,t) and y3(x3,t) are the transverse displacements for the elemental portions 

CD, BC and AB respectively. Similarly, E, I,, G and   represents the Young’s modulus, 

moment of inertia for the corresponding beam sections, density of the beam material, shear 

modulus and Timoshenko shear coefficient respectively. The approximate solution is 

obtained from the method of separation of variables as: y1=Y1(x1)e
it, y2=Y2(x2)e

it, 

y3=Y3(x3)e
it. Further, at each connecting point, the following boundary conditions are 

applicable [57]. 
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1. For the point D (Free end):  
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2. For the point C: 
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3. For the point B (supported by bearing of stiffness k=kxx) 
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4. For the point A (supported by bearing of stiffness k=kxx) 

01

0

1
1

1
1

1

1

















x

x

yk
x

y
GA 

                                                                

   0 EI 

0x1

1
1

1























x


                                                                         (3.22)                          

The solution obtained by the means of continuous beam model for the spindle-tool 

structure is very ambiguous and takes more time in calculation. Because of these, sub-

structural coupling techniques and finite element modelling are often employed which 

gives tool point FRF with less computational time and desired accuracy. 

3.2.2 Finite element modeling  

The finite element modeling is one of the most effective approaches for reasonably provide 

the relationship between the displacements and forces at a finite number of discrete points 

(called nodes) of a continuous structure [44].  
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By considering the shape functions [N] and [D] according to the following equations.
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Where, [N] and [D] are translational and rotational shape function matrices and are given 

in the appendix-A. By introducing the above equations into the kinetic and potential energy 

expressions and carrying out the integrations over the element length and applying the 

Hamilton’s principle, the following matrix equations of motion for the beam are generated 
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The following equations of the beam in matrix forms can be obtained by using the finite 

element method for the whole spindle-tool system is written as: 

               bCbPbbbb FqMKKqGqM  2                                           (3.28)             

Where [Mb] is the mass matrix, [Mb]c is the mass matrix used for computing the centrifugal 

forces, [Gb] is the gyroscopic matrix which is skew-symmetric, [Kb] is the stiffness matrix, 

[Kb]P is the stiffness matrix due to the axial force, and {Fb} is the force vector, including 

the distributed and concentrated forces. The sub-script b represents the beam. The details 

of the matrices are also shown in Appendix-A. The vibration performance of the spindle-

tool device can be effectively recognized using confined spindle assembly model shown 

in Figure 3.5.  
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Figure 3.5: Equivalent model of spindle-tool device 

All the segments of the spindle-holder-tool can be discretized with Timoshenko beam 

elements incorporating shear deformation and rotary inertia effects. In the present analysis, 

eight elements are considered and each node has two translations (x, y) and two rotational 

(x, y
) degrees of freedom. The spindle is supported between two bearings at the front and 

rear positions. 

3.2.3 Effect of Joint stiffness in spindle-holder-tool assemblies  

In the spindle-holder assemblies, often the joints cannot be considered as perfectly rigid. 

The joints are primarly responsible for the major part of the energy dissipation in 

assembled structures during cutting process [46]. The dissipated work in a joint depends 

on the excitation force. Figure 3.6 shows the segments of the spindle-holder-tool joined by 

spring elements at interfaces along with a Solid Works assembly model.  

 

(a) CAD model in Solid Works 
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(b)Line diagram with interfaces 

Figure 3.6: Equivalent line model of spindle tool unit 

Flexible joints at tool-holder and spindle-holder locations are represented by two springs 

having equivalent stiffness in y and z (bending) directions. The stiffness behavior of 

angular contact bearings rely on the applied loads and the bearing layout.  

3.2.4 Modified Receptance coupling theory 

In the full-order finite element modelling described above, as the number of elements 

increases so as to account the spindle shaft non-uniformities in cross-section, the 

compellability in handling the matrices rises enormously. The computational time 

increases and if the simulations are required for several tool-holder combinations, it takes 

huge computational memory. In this regard, receptance coupling substructure analysis 

procedure as a reduction scheme often employed in practice. In conventional methodology, 

often spindle machine fixed to the machine tool is tested experimentally using impact 

testing, while tool-holder are examined using beam theories analytically.  

 In the present work, unlike use of the experimental data of the spindle unit, a FE 

model of spindle alone is employed to obtain spindle-tip receptances. While the tool and 

holder receptances are computed analytically in an independent way. These spindle-device 

receptances are then systematically combined to the beam designs of tool and tool-holder 

to visualize the tool end point receptances for grouping of tool-holders and tools. The tool 

and the tool-holder are described using Bishop and Johnson theory with free-free boundary 

conditions, while the receptances of the spindle-machine are difficult to model based on 

first principles, primarily due to the difficulty in estimating damping at interfaces and the 

actual supporting conditions [64]. The overall principle is depicted in Figure 3.7. 
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Figure 3.7: Overall process chart 

The four bending receptances primarily used to describe each component.  

These are presented below: 

displacement to force, uij=xi/fj      

 displacement to couple, vij=xi/mj                                                                                      

 rotation to force, wij=i/fj                                                                                                

rotation to couple, zij=i/mj                                                                                                                                              

where i and j are the measurement and force/moment application coordinate locations, 

respectively. If i and j are equal, the receptances are referred to as direct-receptances; 

otherwise, they are called cross-receptances [63]. The individual component, or 

substructure-receptances, Yij(ω), are organized in matrix form given by the  equation                 
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 where xi is the substructure displacement at the coordinate location i, θi is the substructure 

rotation at the coordinate location i, fj is the force employed to the substructure at location 

j and mj is the couple employed to the substructure at location j. The direct and cross 

receptances for the components I and II (tool and holder) at the coordinate locations as 

shown in Figure 3.8 are first obtained. 

 

Compute the FRF of spindle tip using FE model based on beam theory  

Establish the tool and holder receptances by using beam theory  

Couple spindle tip FRF with tool and holder receptances  

Plot resultant tool tip response  
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(a) Component assembly 

 

 

 

 

 

 

 

(b) Individual components 

Figure 3.8: Three component receptance coupling model  

For component-I, the tool receptances are described as: 
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Similarly, for the component-II (the holder), the receptances are described by the following 

equations: 
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The relationships between displacements/rotations and forces/couples can be written using 

the matrix form.  
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                                                                 (3.38)               

    aa qY 2121k                                                                                                          (3.39)     

    aaa qY 2222ak                                                                                                      (3.40)        

    1122ak qY a                                                                                                         (3.41)       

    bba qY 2222bk                                                                                                       (3.42)        

    aaa qY 3322bk                                                                                                       (3.43)    

    aaa qY 3333ak                                                                                                        (3.44)      

    bba qY 2233ak                                                                                                         (3.45) 
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where k and q the generalized displacement/rotation and the force/couple vectors, 

respectively.        

Rigid coupling for free-free receptances                                                                                              

The free-free tool and holder models are coupled to form the subassembly I-II identified 

in Fig 3-7. In order to calculate the subassembly receptances, T11 (direct) and T3a1(cross), 

a generalized force Q1 (representing both the externally applied force and couple) is applied 

at coordinate location 1. 
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The displacement equations for the substructures can be described as follows: 

  aaqYqYk 2121111                                                                                                        (3.48)           

1122222 qYqYk aaaaa                                                                                                     (3.49) 

bbbb qYk 2222                                                                                                                 (3.50) 

bbaa qYk 2233                                                                                                                  (3.51) 

If rigid coupling between the two components is assumed, the compatibility and 

equilibrium condition that describes the connection between the two components is 

expressed as: 

022  ab kk                                                                                                                 (3.52)       

 022  ab qq                                                                                                                (3.53) 

At coordinate location 1, the external force/couple is applied, which gives the following 

set of equations:  

 11 Qq                                                                                                                          (3.54)                                                                                                            

011222222222  qYqYqYkk aaaabbbab                                                                     (3.55)        
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  011222222  QYqYY abaabb                                                                                       (3.56) 

In order to determine the subassembly receptances, T11 (direct) and T3a1 (cross), a 

generalized force Q1 (representing both the externally applied force and couple) is 

employed at location-1 as shown in Fig. 3.7(a). The displacement equations and 

compatibility conditions for the substructures I and II are written individually and then 

sub-assembly receptances can be expressed as a function of the component receptances by 

rigidly coupling them [67]. The following equations give the receptances for sub-assembly 

of I-II. 
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Similarly, the cross receptances between coordinates 3a and 1 are given by:  
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To establish the direct (T3a3a) and cross receptances (T13a) of the spindle-device (III) with 

respect to the sub-assembly (I-II), a generalized force Q3a is applied to the spindle at the 

position 3 as shown in Fig. 3.7(a) which gives the following set of equations. 
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The component displacement/rotation equations and compatibility and equilibrium 

conditions are applied in the similar manner which gives the subsequent equations as: 
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aaqYk 2121                                                                                                               (3.65)                       

aaaa qYk 2222                                                                                                                 (3.66) 

aabbbbb qYqYk 3322222                                                                                          (3.67)                         

bbaaaaa qYqYk 2233333                                                                                                 (3.68)   

022  ba kk                                                                                                                 (3.69)  
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The free-free component receptances of I (tool) and II (tool-holder) are connected to obtain 

the sub assemblage I-II, it might be firmly connected towards the spindle-device 

(component-III) to obtain the final assembled tool end point receptances, 11T . The possible 

connection is employed by means of equation given below 
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where the Tij are the individual subassembly matrices. The remaining unknown in the 

equation is the spindle-device receptance matrix:Y3b3b. The receptances of the spindle-

machine (component-III) are difficult to obtain due to operating speed and interference 

coupling. This receptance matrix can also be obtained using dynamic modelling of spindle 

machine. In present case, the four bending component receptances are arrived for the 

spindle using finite element analysis.  

Spindle-housing Receptances 

It has been noticed that finite element models have the potential to provide more precise 

design model predictions for the spindle machine receptances. The spindle-housing 

receptances are acquired by finite element modelling with Timoshenko beam theory, where 

the spindle-device unit supported over the rear and front bearings as shown in Figure 3.9. 

Housing of the spindle goes into the machine and the outer races of rolling-contact ball 

bearings are mounted on the housing [67]. During the analysis of spindle unit through finite 

element approach, both gyroscopic and shear deformation effects are taken into 

consideration. The degrees of freedom at each node include: two bending displacements and 

the corresponding slopes. Axial preload at the bearings is considered as 1500N. 

 

Figure 3.9: Finite element model of spindle supported by housing 

The assembled stiffness (Ka), mass (Ma) and gyroscopic matrices (Ga) are formulated and 

the boundary conditions (spring stiffness) at the bearings are applied. The frequency 

response function of the spindle system is given by  

    122
)]][]([]][[][[)][Im()Re()(  cbbbccbccc MKGiMiiH    

(3.82)     
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where Im and Re are the imaginary and real elements of the frequency response function 

of the spindle portion. This gives the four bending component receptances at position 

(node)-3b. 

In modelling of continuous beam, the material dependent damping is conveniently 

introduced in the elastic modulus as given by the term Es=E(1+i), where  is the solid 

damping factor and E is the elastic modulus. In this line, the free-free beam boundary 

conditions are applied for the tool and tool-holder components to get the direct and cross 

receptances and are given by the following equations [171]: 
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                                                               (3.84) 

 

where   
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                                     (3.85)       

                                                                                                        (3.86)                                                                     

)sinh()sin(2 llk                                                            (3.87)               

)sinh()sin(3 llk                                                            (3.88)

)cosh()cos(4 llk                                                                                             (3.89)  

)cosh()sin()sinh()cos(5 llllk                                                          (3.90)     

)sinh()sin(6 llk                                                                                             (3.91)                                     

)1)cosh()(cos(7  llIEk s                                                                     (3.92)                                       

)1)cosh()(cos(8  llIEk s                                                                                (3.93)                

Here, ω is frequency in rad/sec, As is beam cross-section,  is the density, and l is the 

component length. 

3.3 Numerical Results 

This section describes the spindle-tool dynamic analysis results under four headings: (i) 

tool-tip frequency response analysis (ii) Parametric studies of spindle-tool variables on 

overall dynamics (c) Optimization of spindle parameters (d) Dynamic studies of a drilling 

spindle.  

)cosh()sin()sinh()cos(1 llllk  
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3.3.1 Frequency response studies  

When the energy input exceeds the energy dissipated, the amplitude of vibration of the 

system will increase and it results-in an undesired relative vibration between the workpiece 

and the tool. To illustrate the methodology, materials and geometric properties of the 

individual components are selected from the manual of vertical CNC end milling machine: 

(make MTAB-MAXMILL).  

3.3.1.a Full-order finite element modeling approach 

The integrated tool-spindle dimensions as a finite element model data (referring to Figure 

3.4) is illustrated in Table 3.1.  

Table 3.1: Parameters of the finite element model 

 

The tool is rigidly connected to the tool holder whose lengths are adjustable and the spindle 

shaft is axially supported between the angular contact ball bearings. The ball bearings data 

considered for finding the equivalent stiffness is: Nb=20, Db=9mm, Fa=1500 N, and =250. 

An interactive computer program is developed in MATLAB software to analyse the 

dynamics of spindle system. Convergence tests are carried out on the present finite element 

modeling to minimize discretization errors by increasing the number of degrees of freedom 

(DOF). It is observed from Table 3.2, that after eight elements, it maintains the same 

frequency value. 
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Table 3.2: Convergence result of natural frequencies of spindle tool unit 

S No Natural frequency(Hz) 

3 elements 2055.8 

5 elements 2057.65 

8 elements 2056.45 

10 elements 2056.45 

15 elements 2056.45 

The eight element model considers 36 degrees of freedom and the rotational degrees of 

freedom were eliminated by using Guyan reduction technique. Figure 3.10 presents 

absolute part of tool tip FRF. It is observed that the first dominant modal frequency occurs 

at 2056 Hz.  

 

(a) Absolute FRF                                    (b) Real and Imaginary FRF 

Figure 3.10: Tool tip frequency responses using the Full-order FEM 

Considering the bearing dynamics and centrifugal stiffening effect, the direct frequency 

response function at the tool tip hxx(j) is obtained at a particular  spindle speed () of 

3000 rpm.   

3.3.1.b Receptance coupling sub-sub structuring  

Using RCSA approach for analyzing the tool-tip FRF, data for tool, holder and spindle 

considered is depicted in Table 3.3.   

Table 3.3: Parameters of the tool-holder and spindle machine unit 

 

 

 

Component Outer 

Lengths 

(mm) 

Outer 

diameter 

(mm) 

Inner 

diameter 

(mm) 

Young’s 

modulus E, (Pa) 

1 Tool 60 12 0 2.81011 

2 Holder 80 40 12 2.11011 

3 Spindle  248 75 40 2.11011 
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Here, 20mm length portion of the tool is inserted into the tool holder and remaining outer 

length is 60mm. Similarly, for the tool holder, 30mm is inserted into the spindle nose 

region as shown in Figure 3.11. 

 

 

 

 

 

 

Figure 3.11: Configuration of spindle tool system 

Figure 3.12 shows the methodology employed during receptance coupling. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Present receptance coupling concept 

Figure 3.13 shows the four predicted receptances in T11 of the tool-holder component 

subassembly independently at the holder-tip (where spindle would be joined) using Euler’s 

beam theory and it is in the frequency range of 1500 Hz to 2000 Hz. These receptances are 

further used to couple with the spindle- machine receptances.  

Start 

Enter the spindle details including bearing span, pre-load, diameter 

etc, along with tool and holder particulars 

Analyze the flexible spindle resting on bearings inside the housing 

for its end point receptances 

Couple the tool and holder receptances obtained analytically with 

those of flexible spindle unit 

Record the direct and cross 

receptances at the tool-tip 

60 
20 

80 30 

248 
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(a) Real part of U11       

 

             (b) Real part of V11 and W11 

 

(c) Real part of Z11 

Figure 3.13: Receptance T11of the Tool-Holder sub assembly  
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The component receptances at joint node corresponding to spindle-machine supported on 

ball-bearings are obtained from finite element model by discretizing it with five beam 

elements accounting the shear deformation and rotary inertia effects. Figure 3.14 shows the 

four component receptance at joint node. It is observed that the spindle possess two bending 

modes at around 650 Hz and 750 Hz in all the receptance curves. 

 

(a) Displacement to force (U3b3b)  (b) Displacement to couple (V3b3b) 

 

(c) Rotation to force (W3b3b)                   (d) Rotation to couple (Z3b3b) 

Figure 3.14: Spindle machine receptances (Y3b3b) obtained from finite element analysis 

Further, these receptances are added to the previously obtained tool-holder receptances to 

arrive the assembled receptances. A program is written for obtaining tool- tip frequency 

response by considering all individual receptances and their coupling. Figure 3.15 shows the 

resultant tool-tip response as displacement to force receptance U11=G(j) in the form of real, 
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imaginary and absolute graphs. It is observed that the first bending mode of the assembly 

occurs at 2028 Hz. 

 

(a) Real Part of U11                                                                 

 

                                             (b) Imaginary part of U11 

 

(c)Semi-log magnitude plot 

Figure 3.15: Tool tip frequency response of the assembly 

3.3.1.c Three-dimensional finite element modelling 

In order to further validate the natural frequency results, a three-dimensional finite element 

analysis of the entire spindle tool unit is carried in ANSYS workbench. Figure 3.16 shows 

the initial solid model of spindle-bearing assembly developed in SolidWorks software as 

per the available dimensions of CNC spindle unit available at central workshop.  
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Figure 3.16: Individual solid work components of MTAB MAXMILL realistic spindle 

system   

The model is imported into ANSYS V14 for dynamic analysis. Eight-node SOLID 187 

elements with 3 translational (ux, uy and uz) degrees of freedom are used to mesh the 

spindle shaft, tool holder, collet as well as the cutting tool with the material properties as 

considered for one-dimensional model. As boundary conditions, all the outer race nodes 

of the front and rear bearings are arrested. The meshed assembly is shown in Figure 3.17. 

 

 

Figure 3.17: Meshed model of spindle-bearing system 

The modal analysis of static spindle system revealed the first eight natural frequencies as 

2.0473 kHz, 2.0546 kHz, 2.6654 kHz, 2.6857 kHz, 2.7629 kHz, 4.4816 kHz, 4.7111 kHz, 

4.7143 kHz.  The first six mode shapes are illustrated in Figure 3.18. 
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(a) First mode shape               (b) second mode shape                         (c) third mode shape 

                             

     

  (d) fourth mode shape          (e) fifth mode shape                               (f) sixth mode shape 

Figure 3.18: First six mode shapes of spindle tool unit 

The first four modes have low deformation rates and are due to bending in two directions. 

Harmonic response analysis is also carried-out to predict the sustained dynamic behavior 

of spindle-bearing system. Figure 3.19 shows the harmonic response (displacement at tool 

tip due to harmonic load applied at a random node on the model) obtained from ANSYS 

workbench. The first peak is coming at approximately 2050Hz without considering any 

damping in the system. As the 3-D finite element model considers a mesh made-up of 

tetrahedral elements, it results in certain extra modes in axial direction.  
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Figure 3.19: Harmonic response of spindle bearing system 

Figure 3.20 shows a comparative chart of the natural frequencies obtained from the three 

approaches. It is seen that RCSA approach gives a lower approximation due to 

consideration of both Euler and Timoshenko beam theories for modelling of different 

components.  

 

 

 

 

 

 

 

 

 

Figure 3.20: First modal frequency of spindle-tool assembly 

3.3.1.d Experimental Modal Analysis 

An experimental modal analysis is conducted for the spindle -tool holder system of CNC 

milling centre (make: MTAB-Maxmill) available at NIT central workshop. The three axis 

machine tool has a single phase AC synchronous motor driving the spindle at variable 

speeds. The cutting tool is a 4-fluted HSS milling cutter (12 mm diameter) purchased from 

local market. In order to obtain the modal information of spindle-tool unit, the following 

instrumentation is employed: (i) 4-channel digital oscilloscope(model-DPO 43034 for 

recording time histories), (ii) a power amplifier (model- SI-28), (iii) an accelerometer (PG 

109 M0, frequency range 1 to 10,000 Hz), (iv) a charge amplifier (Model: CA 201 A0, 
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maximum output voltage-  5V, frequency range- 0.2 Hz to 15 kHz), (v) a signal generator 

and (vi) vibration shaker (Type:V-6-27050). Figure 3.21 shows the schematic of 

experimental set-up arranged on the milling machine for modal testing along with a 

photograph.  

 

 

 

 

 

  

 

 

 

 

 

(a) Schematic diagram of the experimental set-up 

 

(a) Photograph of the experimental set-up 

Figure 3.21: Experimental set up employed 

Sine-sweep testing is conducted by varying the frequency of the signal keeping the 

amplitudes constant (frequency modulation) with the help of a power amplifier. The 

vibration shaker excites the spindle-tool and the corresponding accelerometer readings are 

Power amplifier 

Spindle 

 

Signal Generator 

Oscilloscope 

Accelerometer 
Vibration shaker 
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recorded at every frequency using the oscilloscope. Amplitudes of response from the time-

domain at each frequency case are tabulated and plotted as a function of frequency as 

shown in Figure 3.22.  

 

Figure 3.22: Frequency response of the integral tool-spindle unit 

It can be seen that the first two peaks are found at 1998Hz and 2590Hz respectively within 

the sweeping range, which are in agreement with the earlier result obtained from numerical 

model. 

3.3.1.e Studies on spindle-tool system interfaces with interface stiffness 

As described in section 3.3.2, the spindle-holder coupling in machine tools plays a 

prominent role in the performance of the spindle. The taper portion of this coupled joint 

determines the machining capacity in terms of their stability. The spindle–holder joint is 

one of the most flexible connections in spindle systems and about 25–50% deformation at 

the tool tip is derived from the joint [74]. It is necessary to investigate the dynamic response 

of the spindle-holder joint to ensure the precision and stability in the machining process. 

The conical tapered connections are used as the interface between the spindle and the tool 

holder. The friction between the holder and spindle taper interfaces determine the 

translational and rotational stiffness of the connection. The connection between the tapered 

surfaces is modelled by springs in the y and z directions to prevent the holder from rotating 

and translating inside the spindle taper.  

In present task, along with four-degree-of-freedom Timoshenko beam finite element model 

elements for discretization of spindle assembly, the spindle-holder joint is modelled with 

three springs representing three tapered portion in the assembly. Similarly, holder-tool 

interface is modelled by two springs in both the bending directions as shown in the Figure 

3.23. The spindle-holder taper portion is modelled by two elements with three nodes and 
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for the tool portion inserted in the holder is assumed to be connected with two springs 

instead of rigid connection.  

 

Figure 3.23: Equivalent model of the spindle-tool interfaces with distributed contact 

springs 

The magnitudes of simulated FRF’s at tool tip with different interface stiffness are shown 

in the Figure 3.24. As the tool and holder assembly is relatively rigid, its inter-phase 

stiffness is selected to higher (kt-h=1e9 N/m), while studies are carried out for the variation 

in interface stiffness between the holder and spindle region. The stiffness is considered 

both in the bending directions. Figure 3.24(a) shows the absolute part of the tool tip FRF 

and it is observed that for the stiffness value of 1.5×105N/m, the fundamental mode of 

natural frequency as 1981Hz. Comparatively, this is close to the natural frequency obtained 

earlier from the experimental modal testing. As the stiffness of the contact springs has 

increased, the amplitude of the tool-tip displacement levels (y-axis) raise with a decrease 

in the corresponding natural frequencies (x-axis). The corresponding real and imaginary 

parts of the tool-tip frequency responses for all three cases are shown in Figure 3.24(b) 

&(c). 

 

(a) Absolute part  
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(b)Real part                                                                (c) Real part 

Figure 3.24: Tool tip frequency response at different stiffness values 

Figure 3.25 shows the FRF plot of the system with and without considering the joint 

stiffness effects.  

 

Figure 3.25: Tool tip FRF with rigid and flexible interfaces 

In the next case, the stiffness of the spindle-holder connection is assumed to be varied 

along the interface layer instead of considering the individual stiffness at the connecting 

nodes. Toward this, an elastic interface layer stiffness coefficient Ki(x) is considered and 

it is assumed that there is no slip between these two parts during machining operations and 

stiffness coefficient remains constant. The stiffness of elastic interface layer is proportional 

to the normal pressure, therefore a parametric stiffness distribution based on the joint type 

(shrink fit, etc.) is selected and the stiffness parameters can be identified. These coefficients 
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are assumed to be complex valued to include a displacement-dependent energy dissipation 

mechanism in the joint interface )1)(()( ixkxK  where k(x) and   are the joint 

interface stiffness and its structural damping factor.   

Initially, a case study has been carried out for different structural damping factors 

(η). Proper selection of the structural damping factor produces a more representative model 

of damping compared to the viscous damping model commonly adopted in other machine 

tool dynamic models. Figure 3.26 shows the absolute magnitude of the FRF at the tool tip. 

It is observed that for the structural damping of 0.06 the fundamental mode is 1981 Hz 

which is closer to the value obtained for the experimental modal test. Similarly, for the 

structural damping factor of 0.02, the first mode frequency is 2033 Hz, this value is closer 

to the finite element modeling with rigid coupling. This shows the marked effect of 

damping on dynamic response behaviour. 

 

                                              (a) Absolute FRF at k(x) = 1.5×105 N/m 

 

    (b) Real part of FRF at k(x) = 1.5×105 N/m (c) Real part of FRF at k(x) = 1.5×105 N/m 

                   Figure 3.26:  Tool tip FRF plots for different structural damping factors 
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The significance of this study is that one can identify the interface stiffness from the 

experimentally measured frequency response using finite element modelling. 

3.3.1.f Non-linear bearing forces effects 

For studying the effect of flexible bearing dynamic contact forces, the frequency responses 

are obtained by solving the finite element formulation with nonlinear bearing forces in 

time-domain. Using an additional degree of freedom at each node in the axial direction for 

earlier finite element model, the bearing contact forces are expressed in terms of the 

corresponding nodal degrees of freedom and the combined set of equations are formulated 

with two bending deflections, corresponding slopes and an axial deflection at every node 

as shown in Figure 3.27.  

 

Figure 3.27: Element degrees of freedom for spindle discretization 

The reduced coupled set of differential equations is solved explicitly, by using Runge-

Kutta time-integration scheme [71]. The following bearing parameters are considered to 

arrive the time histories at different nodes: Inner radius (r)=75mm, outer radius(R)=110 

mm, number of ball (Nb)=20, Cb=13.34109 N/m3/2, diametral clearance(d0)=5.5m. 

Initially, the dyanmic behavior of the rotor bearing system is analyzed with changes in the 

radial clearance. Figure 3.28 shows the time histories and FFT plots at the tool-tip node in 

two lateral directions at 5000 rpm corresponding to a radial clearance of 10 m. As is 

observed from FFT plots that there are several sub-harmonics existing before the overall 

system frequency of 2041 Hz, (which is obtained earlier). The smaller peaks are due to 

ball-passing excitations. An axial load Fa=1500 N is maintained through-out. 
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              (a) Time-responses  

 

                    (b) FFT diagrams 

Figure 3.28: Tool-tip node displacements at r0=10m 

In high speed applications, spindle bearings possesses negative clearances as reported 

earlier. In such a low negative clearances, the Hertzian contact force model reduces to a 

linear spring model, which was used previously. A case of negative clearance is also 

therefore considered for illustration. Figure 3.29 shows the time histories and FFT plot 

simulations corresponding to r0= -0.5m.  
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(a)Time response                                                

 

(b) FFT diagrams 

Figure 3.29: Effect of small negative clearnace at the two bearings 

Figure 3.30 shows the FFT plots at tool-tip node for r0= -10m  

 

Figure 3.30: FFT plots for negative radial clearance of -10m 
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It is evident that the amplitude of the tool vibration level decreases for higher negative 

values of radial clearance and in turn produces the change in the peak values closer to 

around 1719 Hz, which is less than the previously predicted first natural frequency.  

Next, it is planned to study the effect of axial preload on the dynamic response. 

Figure 3.31 shows the FFT plots at various preload values applied at the front and rear 

bearings. It is observed from all these plots, for the preload value of 1500N the peak 

frequency value is 2041Hz, which merely equal to the value obtained from the finite 

element methods and experimental approach. As the axial preload value increases, the 

amplitude of the tool displacement levels are also raises, reducing the resonant frequencies.  

           

                                              (a) FFT at Fa=1000N  

 

          (b) FFT at Fa=1500N 
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(c) FFT at Fa=2000N 

Figure 3.31: FFT plots for different preload values (r0=10m) 

In general, the contact angle () of the ball with races influences the dynamic load capacity 

of the bearing. This contact angle constantly varies when there is a difference of velocity 

exists between the balls and races of the bearing. In the present work, the constant change 

in the value of contact angle is investigated with a constant axial preload Fa=1500N  and 

radial clearance of 10m. Figure  3.32(a) shows the FFT diagram at tool-tip node for 

=10o. It is observed that from FFT plot that the magnitude of the highest peak is at around 

1719Hz in both the bending directions. Figure 3.32(b) shows the corresponding diagram 

at =35o. As the contact angle increases, the amplitudes in both the bending directions have 

slightly increased.   

 

               (a) =100   
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                                        (b) =350 

Figure 3.32:  FFT at tool-tip node in two lateral directions 

In conclusion, this study revealed the effect of various ball bearing parameters including 

radial clearance, axial preload and contact angle on the overall dynamic behavior of the 

spindle-tool integral system.  

3.3.2 Parametric studies of spindle variables 

In order to select the optimal spindle configuration, initially it requires identification of 

variables influencing the dynamic response behavior of integral spindle-tool unit. Effects 

of bearing span (axial distance between rear and front bearings), axial-preload and tool-

overhang on tool-tip dynamic response are considered with constant bearing stiffness 

values using RCSA methodology. Figure 3.33(a) shows tool-tip FRF at two different 

bearing spans on the spindle system. In Figure 3.33(b), the variation of fundamental mode 

with different values of bearing span is shown using full-order FEM approach.  

 

                 (a)FRF at tool-tip (RCSA)                     
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                                               (b) Variation of natural frequencies 

Figure 3.33: Effect of bearing span on spindle-tool dynamics 

It is observed that the first mode has shifted from 1975Hz to 2658Hz as bearing span 

increases. Figure 3.34(a) shows the effect of tool overhang. It indicates that, as the 

overhand increases, the first mode has shifted from 1550Hz to 716Hz. But the maximum 

vibration frequency response of the system is mainly dominated by the second mode as the 

amplitude of vibration level is high. The remaining higher vibration modes have lesser 

effect on dynamic rigidity of the system. Thus, the second mode produces the most flexible 

vibration instabilities during machining process as the tool overhang length increases. 

Smaller tool-overhang is preferred as the amplitude of the vibration levels is comparatively 

less. Using FEM, the corresponding fundamental modes are obtained by varying the tool-

overhang lengths and are shown in Figure 3.34(b). 

 

              (a)FRF at tool-tip (RCSA)                              
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                                               (b) Variation of natural frequencies 

Figure 3.34: Effect of tool overhang on spindle-tool dynamics 

Similarly, the analysis is carried out for two different values of bearing preloads as shown in 

Figure 3.35(a). As the preload increases from 1800N to 2000N, it is observed that the curves 

match each other except during the first mode range (1300-2000 Hz). The first mode 

frequency increases from 1660Hz to 1750Hz. Figure 3.35 (b) shows corresponding 

fundamental frequencies of the system for different preload values using full-order FEM. 

Obviously, the frequencies increase with the bearing preload. In all above studies, the 

constant stiffness model (i.e., small negative clearance criterion) is employed.  

 

               (a)FRF at tool-tip (RCSA)      
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(b) Variation of natural frequencies 

Figure 3.35: Effect of bearing preload on spindle-tool dynamics 

Further, to study the effect of multiple parameters on the tool-tip FRF simultaneously, full-

order FE model is employed. This approach gives reasonable results at relatively lower 

computational time. Effects of additional parameters like tool diameter and spindle speed 

are also considered on the first mode frequency as shown in Figure 3.36. 

 

               (a)  spindle speed 
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        (b) tool diameter  

Figure 3.36: Variation of fundamental frequency with other parameters  

3.3.2.a Optimum Design of Experiments 

In order to reduce the numbers of experiments and maintain the resolution of the results, a 

three-level factorial design with five factors is implemented. Table 3.4 shows the process 

parameters and their levels for the experiments. Taguchi L27(3**5) orthogonal array is used 

for the experimental design in order to predict the influence of controlled factors such as 

bearing span (BS), tool overhang length (TO), interface stiffness kc (N/m), tool diameter 

(dt) and axial preload (Fa) on the natural frequencies and dynamic stiffness of the spindle-

tool unit.  

In this table, the first variable tool overhang (X1) is selected between practical 

values between 55 to 75 mm based on the available flute and shank lengths of commercial 

cutting tools. Bearing span (X2) likewise is an internal spindle parameter which can be 

varied within the feasible region. In present task X2[120, 240] mm in three levels 

depending on the total length of the spindle shaft of 280 mm. The tool diameter (X3) is 

varied between 8 to 12 mm as per the commercially available end-mill tools. The fourth 

parameter interface stiffness X4[1.5105, 1.5107] N/m is varied in three levels chosen 

based on the shaft stiffness. The final parameter axial preload (X5) is selected in three 

levels: 1000 N, 1500 N and 2000 N.  
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Table 3.4: Detailed simulated experimental data using Taguchi L27 (3**5) array 

Exp 

No 

Tool 

overhang

(TO) in 

mm 

Bearing 

span(BS) 

in mm 

Tool 

diameter 

(mm) 

Interface 

stiffness 

(N/m) 

Axial 

preload 

(N) 

Natural 

frequency 

(Hz)  

Dynamic 

stiffness 

(N/m) 

1 55 120 8 1.5105 1000 827 2170 

2 55 120 8 1.5105 1500 805 2070 

3 55 120 8 1.5105 2000 799 2060 

4 55 180 10 1.5106 1000 1292 5500 

5 55 180 10 1.5106 1500 1285 5400 

6 55 180 10 1.5106 2000 1274 5200 

7 55 240 12 1.5107 1000 2386 111480 

8 55 240 12 1.5107 1500 2374 110910 

9 55 240 12 1.5107 2000 2369 110630 

10 65 120 10 1.5107 1000 2286 343600 

11 65 120 10 1.5107 1500 2149 321800 

12 65 120 10 1.5107 2000 2121 320100 

13 65 180 12 1.5105 1000 920 7930 

14 65 180 12 1.5105 1500 914 7810 

15 65 180 12 1.5105 2000 901 7340 

16 65 240 8 1.5106 1000 1265 1690 

17 65 240 8 1.5108 1500 1242 1340 

18 65 240 8 1.5106 2000 1231 1290 

19 75 120 12 1.5108 1000 1038 23090 

20 75 120 12 1.5106 1500 1021 22460 

21 75 120 12 1.5108 2000 1011 21630 

22 75 180 8 1.5107 1000 2379 808400 

23 75 180 8 1.5107 1500 2269 794100 

24 75 180 8 1.5107 2000 2232 769500 

25 75 240 10 1.5105 1000 663 2850 

26 75 240 10 1.5105 1500 641 2690 

27 75 240 10 1.5105 2000 629 2540 

The data was statistically analysed by Analysis of variance (ANOVA) to check the 

capability of the parameters. Table 3.5 shows the ANOVA outputs using MINITAB (V15) 

software.  

 

 

 

 



Chapter-3                                                           Dynamic modeling of spindle-tool unit                                                                

75 
 

Table 3.5: Analysis of Variance for Natural frequency (Hz) 

Factors DOF Sum of 

squares 

Mean 

square 

F-value  P-

value 

Percentage 

of 

contribution 

Tool 

overhang(TO)in 

mm 

2 12.267 6.133 509.45 0.000 2.917 

Bearing 

span(BS) in mm 

2 6.879 3.440 285.69 0.000 1.636 

Tool 

diameter(mm) 

2 2.648 1.324 109.98 0.000 0.629 

Interface 

stiffness(N/m) 

2 397.957 198.978 16527.38 0.000 94.662 

Axial 

preload(N) 

2 0.454 0.227 18.85 0.000 0.107 

Residual error 16 0.193 0.012 --- --- 0.045 

Total 26 420.397 --- --- --- --- 

It is observed that, all the input factors are statistically significant on response parameter 

as the P value is less than 0.05. Compared to other factors, interface stiffness is the most 

dominant process parameter. The interface stiffness is having more influence on the natural 

frequency, as its F value is very high and the corresponding percentage of contribution is 

high. The adequacy of the model has also been investigated by the examination of 

residuals. The residuals are examined using the normal probability plots of the residuals 

and the plot of the residuals versus the fitted response for the natural frequencies. Figure 

3.37(a) revealed that the residuals generally fall on a straight line implying that the errors 

are distributed normally. Also Figure 3.37(b) revealed that they have no obvious pattern 

and unusual structure. This implies that the model proposed is adequate and there is no 

reason to suspect any violation of the independence or constant variance assumptions. 

 

               (a) Normal probability plot   



Chapter-3                                                           Dynamic modeling of spindle-tool unit                                                                

76 
 

 

                                                                (b) Residual plot 

Figure 3.37: Data normality testing for natural frequency 

The combination of bearing span, tool overhang, interface stiffness, tool diameter and axial 

preload are applied to get the maximum natural frequency. The S/N rate helps to recognize 

the best possible stage of process parameters. The grouping of parameters with the biggest 

S/N rate is definitely the best possible setting of process parameters. The formula for 

determining S/N percentages for “larger is better” is given as 
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,  where, yi= trial value in the ith test, yo=objective value and n= number of reproductions. It 

is also observed from the main effects plot for S/N ratios as seen from Figure 3.38, the 

optimized parameters could be taken as X1=180mm, X2=55mm, X3=8mm, X4=1.5×107 N/m 

and X5=1000N.  

 

Figure 3.38: Signal to noise ratios plots for the control factors on natural frequency (Hz) 
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It is also observed from Table 3.6, the levels and ranks are given for the control factors. 

Interface stiffness is the most dominant process parameter followed by the tool overhang, 

influences the dynamics of the spindle-tool system. 

Table 3.6: Response table for signal to noise ratio (Larger is better) 

level Tool 

overhang(TO) in 

mm 

Bearing 

span(BS) in 

mm 

Tool 

diameter 

(mm) 

Interface 

stiffness(N/m) 

 

Axial  

preload 

(N) 

1  62.62 61.72 62.43 57.85 62.32 

2 62.63 62.86 61.71 61.43 62.11 

3 61.20 61.87 62.30 67.17 62.01 

Delta 1.44 1.14 0.72 9.32 0.31 

Rank 2 3 4 1 5 

Similarly, the data was statistically analysed to check the influence of dynamic stiffness 

on the input process parameters. Table 3.7 shows the ANOVA outputs for the dynamic 

stiffness.  

Table 3.7: Analysis of Variance for dynamic stiffness (N/m) 

Factors DOF Sum of 

squares 

Mean 

square 

F-value  P-

value 

Percentage 

of 

contribution 

Tool 

overhang(TO)in 

mm 

2 528.72 264.36 1911.12 0.000 5.439 

Bearing 

span(BS) in mm 

2 810.50 405.25 2929.64 0.000 8.337 

Tool 

diameter(mm) 

2 170.36 85.18 615.79 0.000 1.752 

Interface 

stiffness(N/m) 

2 8206.42 4103.21 29662.80 0.000 84.421 

Axial 

preload(N) 

2 2.51 1.25 9.06 0.002 0.025 

Residual error 16 2.21 0.14   0.022 

Total 26 9720.73     

It is observed that, all the input factors are statistically significant on response parameter 

as the P value is less than 0.05. Compared to other factors, interface stiffness is the most 

dominant process parameter. The interface stiffness is having more influence on the 
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dynamic stiffness, as its F value is very high and the corresponding percentage of 

contribution is high. The normal probability plot, given in Figure 3.39(a) shows a clear 

pattern (as the points are almost in a straight line) indicating that all the factors are affecting 

the dynamic stiffness. Also the errors are normally distributed and the regression model is 

well fitted with the observed values. Figure 3.39(b) indicates that the maximum variation 

of -2 to 4, which shows the high correlation that exists between fitted values and observed 

values.  

   

            (a) Normal probability plot                                           (b) Residual plot 

 

                                     Figure 3.39: Data normality testing for dynamic stiffness 

The signal to noise (S/N) ratio plots are taken for the combination of same input design 

parameters on the dynamic stiffness. From Figure 3.40, the optimized parameters could be 

taken as X1=75 mm. X2=180mm, X3=12mm, X4=1.5×107 N/m and X5=1000N.  

 

Figure 3.40: S/N plots for control factors on dynamic stiffness 

From Table 3.8, it is seen that the delta values and ranks are given for the control factors. 

Interface stiffness is the most dominant process parameter followed by the bearing span 

influences the dynamic stiffness of the spindle-tool system. 
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Table 3.8: Response table for signal to noise ratio (Larger is better) 

level Tool 

overhang(TO) in 

mm 

Bearing 

span(BS) in 

mm 

Tool 

diameter 

(mm) 

Interface 

stiffness(N/m) 

 

Initial 

preload 

(N) 

1  80.65 87.92 82.50 70.92 85.58 

2 83.72 90.09 84.50 74.90 85.11 

3 91.18 77.54 88.54 109.73 84.85 

Delta 10.54 12.55 6.04 38.81 0.74 

Rank 3 2 4 1 5 

 

Based on the above studies, it observed that the dynamic stiffness of the system has been 

greatly affected by these spindle-tool parameters. So, as a next study, it is planned to obtain 

the optimal dimensions of spindle-tool system. 

3.3.3 Optimal design of spindle-tool system      

The design of spindle-tool system for improving the cutting process stability (increasing 

stable depth of cut at a speed) over operating process conditions is essentially important. 

As, the stability directly depends on tool-tip frequency response function, often the focus 

is on obtaining optimal values of frequency response function-based quantities [35]. 

Various performance criteria can be selected such as minimum weight, highest basic 

frequency, maximum dynamic stiffness, depth of cut, and so on. From these objectives, 

maximum dynamic stiffness and depth of cut are directly related to chatter vibration, which 

are the utmost important issues in the high-speed machining applications.  

In present work, the dynamic stiffness of the spindle-tool system is considered as 

the main objective function. Various parameters influencing the dynamic stiffness are the 

bearing span, tool overhang, tool rotational speed, tool diameter and preload which are 

treated as the design variables (X). The dynamic stiffness(Kd) of the spindle-tool system is 

defined from the frequency response function at the tool tip as shown in Figure 3.41, which 

is described as: 

  
 

iimag

di
H

K
1

          (3.94) 
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Here, Himag represents the imaginary part of FRF at the tool tip and ‘i’ is the mode muber 

which represents that each mode has its own dynamic stiffness.  

 

                                                   Figure 3.41: Imaginary part of FRF of spindle 

In achieving high dynamic stability during the cutting operation, the tool-tip frequency 

response function is to be optimally designed. As this is a nonlinear function of spindle-

tool parameters, a solution is obtained from non-conventional optimization scheme in 

present work. Figure 3.42 shows the concept of optimization procedure employed in this 

work, which has four modules: (i) a neural network module, (ii) de-normalization module  

(iii) fitness function definition and (iv) optimization module. First and last modules are 

explained in detail  

 

 

 

 

 

 

Figure 3.42: Block diagram of the proposed Neuro-Genetic system 

(i) Neural network Module 

The first module is based on the trained neural network, which acts in function 

approximation of dynamic stiffness in terms of the input parameters considered. The 

famous neural network model is multi-layer perceptron (MLP) trained with back-

propagation learning algorithm [141]. MLP neural network consists of an input and output 

layer along with one or multiple intermediate (hidden) layers of neurons. It requires a set 

of input and output (target) patterns initially. Such a data is generated from a reliable 

computational procedure or experimental analysis. Entire data is grouped into training 

Denormalization 
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(75%) and testing (25%) samples. During the training phase, the training samples (both 

inputs and corresponding targets) are presented one by one. As inputs are supplied to the 

input layer, hidden layers process them to output layer through a sequence of operations. 

The input at every layer (Y) is the sum of products of the outputs at previous layer (X) and 

the corresponding weights (strength of synapse) connecting the current node with all other 

nodes of previous layer (Wj). That is Y=Wj X The output at each of the hidden layers 

(O=f(Y)) and output layer are computed using a threshold function (often sigmoidal 

function). Once, outputs at output layer are estimated from threshold function, they are 

compared against the target values corresponding to that sample. Then an error (e) or 

square error is estimated.  

Training in neural network concept refers to the adjustment of connection weights 

in each layer such that the mean square error at the output layer gets minimized. For such 

an adjustment, error is back-propagated and the initially chosen random weight matrices 

between the layers are updated.  

All the input-output data is initially normalized before it is supplied to neural 

network. The purpose of the normalization is to minimize issues arising out of different 

ranges between the variables of interest and to adjust the values of the attributes to the 

same interval [144]. The weight adjustment law or learning law is called back-propagation 

rule.  

Figure 3.43 shows typical architecture of 3-layer error back-propagation neural network.  

 

 

 

 

 

 

                                  

 

 

 

 

Figure 3.43:  Typical 3-layer neural network 
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Here, the computations are passed forward from input to output layer and resulting errors 

are propagated back in other direction to change the weights. The connection weights are 

initially chosen randomly. In each subsequent training step, the initial set of weight vectors 

is adjusted to minimize the square error E as follows:  

 ,EWW oldnew                                                    (3.95) 

Where, 









n21 dW

dE
,.......,

dW

dE
,

dW

dE
E and  is learning parameter. While computing the 

gradient, the selection of the output function is important. There are different output 

functions such as linear function, step function and sigmoid functions. One useful property 

of sigmoid function is that the differential (gradient) of the function can be expressed in 

terms of the function itself. i.e., f(x)=g(f(x)).  This property simplifies the computation of 

new weights from initial random values. When the number of layers and the number of 

variables and data points increase, the learning tends to be slow during training. Also, as it 

is a gradient based algorithm, it may reach a local minimum in weight space. By adding 

momentum/modifying the error optimization rule according to other schemes including 

Newton/Marquardt methods, it is possible to overcome the difficulty. At  the  end  of  the  

training  phase,  the  associated  trained  weights  of  the  neurons  are stored  in  the  

memory.  In  the  next  phase(testing),  the  trained  network  is fed  with a new set  of input 

data.  The network predictions (using  the trained weight)  are  compared to  the  target 

output values to assess the ability  of the network  to  produce (generalize) correct  

responses  for the  testing. Once  the training and  testing phases are  found  to  be  

successful,  the  corresponding  network can  be put to use in practical application. Details 

of the training algorithm is given in Appendix-D. In the present work, dynamic stiffness is 

taken as a function in terms of spindle-tool system variables. It is approximated using a 

single hidden layer feed-forward neural network model trained and tested with 27 sets of 

data derived earlier. Figure 3.44 shows the neural network architecture.  

 

Figure 3.44: Neural network model in present case 
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Twenty-two sets of input-output data are used for training and remaining five sets are 

employed for testing. Number of neurons in the hidden layer is varied and in each case the 

mean square error at the end of one thousand cycles is computed. Figure 3.45 shows the 

convergence plots of the neural network training with different number of hidden neurons.  

 

                             (a) 3 Hidden neurons                                  (b) 4 Hidden neurons 

 

                   (c) 5 Hidden neurons                                        (d) 6 Hidden neurons                                 

Figure 3.45: Convergence trends for various hidden neuron structures 

MATLAB neural network tool box is employed for training the data. A learning rate of 0.4 

is employed through-out. It is observed that the five hidden neuron structure gives smallest 

mean square error. The final weight structure between the input-hidden layer; and between 

hidden-output layer are shown in Table 3.9.  
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Table 3.9: The weight structure for 5 hidden node skeleton 

No. of 

neurons 

W1 W2 

1 0.040334 -0.07013 0.007651 -1.41E-06 0.004007 0.007009 

2 -0.04021 0.00154 -0.63537 4.66E-07 -3.91E-05 0.64129 

3 0.00274 -0.08291 -0.61247 0.000238 -0.01637 0.004103 

4 0.222607 0.038745 0.835961 -3.35E-07 -0.01066 0.006297 

5 0.079119 -0.00345 -0.63072 0.000446 -0.00861 -0.21506 

 

Logarithmic sigmoidal activation function is used in the hidden and output layers. The 

performance of the developed network is examined on the basis of correlation coefficient 

(R value) between the output (predicted) values and the target (experimental) values for 

the test data set (5) and training data set (22). Figure 3.46 shows the variation of R value 

as a measure of variation in output with respect to targets. It lies in between 0 and 1. If it 

is 1 then it indicates the perfect correlation between the target values and output. 

Correlation coefficient of 0.999 was obtained between the test data set and model predicted 

values which indicate good correlation. 

 

Figure 3.46: Correlation between the predicted values and test data 

(ii) Intelligent optimization scheme 

 (a) Harmony search optimization   

Additional optimal studies are carried out related to the cutting dynamics using the harmony 

search algorithm. Here, the maximum dynamic stiffness function in terms of spindle design 

variables is approximated using a feed-forward neural network model developed with the 
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help of training data arrived for different combinations of spindle-tool geometry. The error-

back propagation algorithm is employed to update the weight structure for a single hidden 

layer model. In optimizing the average stable depth of cut, it is proposed to employ one of 

the latest meta-heuristic algorithm namely harmony search optimization (HSO), which is 

motivated from the behavioural phenomenon of musicians towards improvisation [150]. The 

HSO presents the following basic advantages compared to other non-conventional 

optimization schemes: (a) It requires fewer mathematical requirements (b) the derivative 

information is not necessary due to its stochastic random nature. The essential steps of the 

basic method are presented below:  

Step1: Problem details and initialization of algorithm parameters 

                                                 Min f(X)  

                                
).......,,,( 321 DXXXXX 

                                                            
(3.96) 
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i
L
ii XXX , ,   i=1,2,3…….D                  

where f(X) is the objective function and D is the number of decision variables. The 

parameters of algorithm are: harmony memory size (HMS), Pitch adjustment rate (PAR), 

Harmony memory consideration rate (HMCR), bandwidth vector (bw), maximum number 

of improvisations etc.  

Step2: Initialize the harmony memory  

The harmony memory (HM) is composed of HMS harmony vectors. Each harmony vector 

is produced from a consistent distribution in the possible vicinity, as   

                                  
())( randxxxx L
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i                                                                 (3.97)                 

where  i=1,2,…D; j =1,2,…,HMS, rand() is random values between 0 to 1. 
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Step3: Develop a new harmony 

A New Harmony vector ),......,,( 21
new
D

newnewnew xxxx   is designed based mostly on three rules: 

(a) Random generation 
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(b) Memory consideration 

 (c) Pitch adjustment 

In random generation, every individual decision variable of a new harmony vector is 

randomly selected with a probability rate of (1-HMCR) and it generally lies between 0 to 1.  
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Decision variable has to be pitch-adjusted using PAR parameter with a probability ratio of 

HMCR*PAR. The initial pitch attained in the memory consideration is retained as 

HMCR*(1-PAR). The following pitch adjustment rule is employed to each decision variable 

with a bandwidth (bw) and a uniform distribution u(-1,1) between -1 to1as follows  
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(3.100) 

Step4: Revise the harmony memory 

Obtain the worst individual worstx from the HM. If newx is improved than worstx then .newworst xx 

 

Step5: If number of cycles exceeds maximum, exit the loop and display optimum design 

parameters and corresponding objective function.  

HMCR, PAR and bw are very important factors and are useful in adjusting convergence rate. 

Also, these parameters allow the solution to escape from local optima. So, latest techniques 

focus on the fine adjustment of these parameters. An improvised HSO scheme is adopted in 

this work.  

              The function values are estimated using a set of pre-trained neural network weight 

structure. The dynamic stiffness of the spindle-tool structure is improved by selecting an 

optimum set of spindle-tool data. The formulation is solved by using harmony search 

algorithm. The function evaluations are performed by the trained neural network explained 

above. The pitch adjustment rate (PAR) is set as 0.3, harmony memory size (HMS) =13, 

harmony memory considering rate (HMCR) =0.8; range of variables considered same as 

in parametric studies conducted earlier. The design vector is represented by X={X1, X2, X3, 

X4,  X5}, where X1 to X5 respectively represents the tool overhang, bearing span, tool 

diameter, interface stiffness and axial preload. In present task, X1 [55, 75] mm, X2 

[120,180] mm, X3[8,12]mm, X4 [1.5×105, 1.5×107]N/m X5[1000, 2000]N.  The 

convergence pattern observed in HSO technique is shown in Figure 3.47.  
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Figure 3.47: Error plot rate of HS algorithm 

(b) Genetic algorithms (GA) 

In order to validate the results HSO algorithm, the genetic algorithms (GA) approach is 

used for optimizing the dynamic rigidity of the spindle-tool system. GA procedure is based 

on the Darwinian principle of survival of the fittest. The data processed by GA includes a 

set of strings (or chromosomes) each representing a variable with an infinite length in 

which each bit is called an allele (or a gene). A selected number of strings are called a 

population and the population at a given time is a generation. The initial population of 

strings is selected randomly [147]. Since the binary alphabet offers the maximum number 

of schemata per bit of information of any coding, a binary encoding scheme is traditionally 

used to represent the chromosomes using either zeros or ones. Thereafter, the fitness value 

(or objective function value in maximization problems) of each member is computed. The 

population is then operated by the three main operators, namely, reproduction, crossover, 

and mutation to create a new population. The new population is further evaluated and tested 

for determination.  

The following steps are implemented in general GA procedure: 

(a) Coding: To solve the problem, variables should be first coded in some string structures. 

Largely binary-coded strings taking ones and zeros are applied. The length of the string is 

generally defined according to the desired solution accuracy.  

(b) Fitness function: Basically the maximization problems are typically altered to 

minimization problems by means of appropriate transformation. A fitness function F(x) is 

resulting from the objective function and it is used in consecutive genetic operations. For 
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maximization problems, fitness function is able to reflect the objective function itself. The 

fitness function often used in terms of objective function f(x) is 

)(1

1
)(

xf
xF


                                                                                                               (3.96) 

 (c) Reproduction: Reproduction is the principal functional operation on a population. Here 

the particular strings are copied into a distinct string named the ‘mating pool’ giving to their 

fitness values (the strings with a greater value take a greater probability of contributing one 

or more offspring in the next generation). To select the mating pools, two famous schemes 

are employed: (i) roulette wheel selection and (ii) tournament selection. The best possible 

way is to make a biased roulette wheel where every existing string in the population takes a 

roulette-wheel-slot-size in part to its fitness. In this way more highly fit strings have higher 

numbers of offspring in the succeeding generation. Once the string has been selected for 

reproduction, an exact replica of the string is made. The string is then entered into the mating 

pool, a tentative new population for further genetic operator action. 

(d) Crossover: After reproduction, the population is enriched with good strings from the 

previous generation but does not have any new string. A crossover operator is applied to the 

population to hopefully create better strings. The total number of participative strings in 

crossover is controlled by crossover probability, which is the ratio of total strings selected 

for mating and the population size. The crossover operator is mainly responsible for the 

search aspect of GA. Crossover requires a site. Bits on either side of the site will be swapped 

to generate to new strings. There are both single point and multi-point crossover operations. 

It is specified by a crossover probability pc.  

(e) Mutation: Mutation, as in the case of simple GA, is the occasional random alteration of 

the value of a string position. This means changing 0 to 1 or vice versa on a bit by bit basis 

and with a small mutation probability of 0.001 to 0.05. The need for mutation is to keep 

diversity in the population. It is specified by mutation probability pm.  

After applying the GA operators, a new set of population is created. Then, they are decoded 

and objective function values are calculated. This completes one generation of GA. Such 

iterations are continued till the termination criterion is achieved. The flow of genetic 

algorithms concepts is shown in Figure 3.48. 
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                                        Figure 3.48: Flowchart for genetic algorithms 

In present work, the above process is simulated with a population size of 20, iterated for 

90 generations and crossover and mutation probability are selected to be 0.9 and 0.001, 

respectively. MATLAB GA toolbox is used in this work. The convergence pattern 

observed in GA technique is shown in Figure 3.49. In the present work 50 generations are 

applied. It can be seen that both of the average value and best fitness value of the GA 

optimization objective function decrease rapidly at the beginning, but after  25 generations 

it approaches to a steady value. After 50 generations, the convergent solution value for 

bestfitness of the objective function is 0.001450 and the averagevalue is 0.001466.  

 

Figure 3.49: Error plot rate of GA algorithm 
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The best optimal values obtained from these two meta-heuristic algorithms are given in Table 

3.10 It is observed that the optimal values obtained from these two algorithms are closely 

matches.  

Table 3.10: Optimal data from HSO and GA 

S. no Parameters Harmony 

search 

Genetic 

Algorithm 

1 Tool 

overhang(mm) 

55.002 55.01 

2 Bearing span(mm) 235.37 233.95 

3 Tool diameter(mm) 8.9079 8.068 

4 Interface stiffness 

(N/m) 
1.43×107 1.37×107 

5 Axial preload (N) 1108.21 1102.87 

The best optimal values obtained from the HSO algorithm are used to obtain the frequency 

response at the tool-tip. In this program the tool diameter is taken as a standard 8mm from 

available tools. The program takes 25sec on a 2GB RAM, and Core I3 processor system for 

executing the operation. The frequency responses  plotted between the original values and 

the optimal values obtained from the HSO are shown in Figure 3.50. The optimized values 

increases the fundemental frequency from 2058 Hz to 2284 Hz. The corresponding 

imaginary values are aslo shown in Figure 3.50 (b). It shows that for the optimized 

dimensions of spindle-tool system, the dynamic stiffness value increases from 0.41×105 N/m 

to 0.99 ×105 N/m.  

 

(a) Absloute FRF 
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(b) Imaginary part of FRF 

                   Figure 3.50: Tool-tip  FRF for the spindle-tool unit with optimal dimensions 

3.3.4 Dynamic modelling of drilling-spindle for milling-A case study 

High-speed machining using vertical CNC milling centres continues to find widespread 

applications in a variety of sectors, specifically aerospace, automobile, mould and die-

cavity preparation and other processes. During past one decade, several works focussed on 

fabrication of low-duty machine tools for internal requirements.  

 Due to economic considerations, sometimes a specific machine tool has to be employed 

for different machining operations. To carryout vertical milling operations, a drilling 

machine may be economically employed with appropriate modifications in design by 

changing the tools and operating parameters etc. However, as the original machine tool is 

designed for one series of operating conditions, in its original form it cannot be used for 

other high end machining processes. While machining especially in longitudinal planes, 

chattering phenomenon becomes significant restricting high metal removal rates as 

required in typical applications. The spindle is one of the important components in machine 

tools, which dictates the dynamic stability during cutting operations. It would influence the 

frequency response at the tool tip which is significant in assessing the vibration levels and 

cutting forces during the machining. 

In present work, a modified design approach for drill-spindles is proposed in 

economical way for milling operations. To this end, a realistic spindle tool-unit of manual 

drilling machine is first considered and its modal characteristics are arrived 

experimentally. The stability lobes are also generated and validated with machining 

experiments. In order to use the drilling machine for milling operations, a portable X-Y 
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table of work feed is fabricated as per the existing dimensions of the machine base to 

ensure a smooth cutting operation. Topology of spindle unit is modified with respect to 

the existing drill tool spindle to improve its dynamic rigidity. An optimized topology of 

spindle unit is selected with front and rear bearing supports within the housing. The tool 

tip frequency response is then arrived by using finite element method. Figure 3.51 shows 

the design procedure of drilling spindle. The modified spindle unit can operate at higher 

axial depths of cut without excessive vibrations.  

 

Figure 3.51: Drill-spindle modification procedure 

In this section, the dynamic model of topologically modified spindle unit of drilling 

machine is proposed. Initially, the tool-tip frequency responses are arrived using finite 

element model of the original drill spindle. The stability lobe diagrams are obtained for 

conditions of material damping and immersion rates in comparison with original drill 

spindle unit. Figure 3.52 shows the dimensions of original drill spindle-tool unit.    

 

 

Figure 3.52: Original component modeling of drilling spindle 

The drill spindle has a single bearing as shown in the Figure 3.53(a). To improve the 

dynamic rigidity of this spindle for the machining process an additional bearing is provided 

with a collar over them as shown in the Figure 3.53(b). This spindle can be utilized for 

both the drilling as well as for the milling operations. 
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(a) Original drill spindle with single bearing 

 

(b) Double bearing spindle with collar  

Figure 3.53: Spindle-tool unit of the In-house drilling machine  

For experimental modal analysis, an impact hammer (type B&K 2302-5) and 

accelerometer (type B&K 4507) were employed as shown in Figure 3.54. 

 

(a) Impact hammer (B&K Type 2302-05) 

 

                                   (b) Acclearometer(B&K 4507) 

Figure 3.54: Instrumentation for modal analysis 

Bearing collar 
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A four channel Bruel & Kjaer pulse analyzer system (type 3560 B) was used to record the 

frequency response. When the spindle system was excited in a selected point by means of 

Impact hammer,  the signal of resulting vibrations of the specimens were received to the 

FFT Analyzer with the help of accelerometer mounted on the specimen by means of bees 

wax. For clamping spindle tool unit, a frame was fabricated which provides the fixed free 

boundary conditions. The input and output signals are examined through FFT analyzer and 

the resulting FRF are examined in the laptop screen using the pulse lab software. The peaks 

of the FRF are taken as the average of the five loadings applied on the tool tip by the 

hammer along with the coherence plots. When the coherence is straight and equals to one 

it indicates better FRF. The output from the analyzer was displayed on the display unit in 

the graphical form which includes graph of force amplitude spectrum, response amplitude 

spectrum, coherence and frequency response functions. Figure 3.55 shows the FRF and 

coherence of original spindle, while Figure 3.56 shows that for modified spindle. 

 

                                   (a) Typical FRF of the drill spindle 
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                                   (b) Coherence of the drill spindle 

Figure 3.55: Experimental response for original drill spindle 

; 

(a) FFT plot of modified spindle 
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(b) Coherence of the modified spindle 

Figure 3.56:  Expermental measured FRF in modified drill spindle  

In modelling of continuous spindle system using finite element analysis, the material 

dependent damping is conveniently introduced in the elastic modulus as given by the term 

Es=E(1+i), where  is the solid damping factor and E is the elastic modulus. Figure 3.57 

depicts the FRF obtained by considering spindle mounted on bearings at a particular speed. 

It is observed that, there is a shift in the fundamental frequency of spindle from 301Hz to 

444Hz in the modified case.             

 

                                                          (a)Original drill spindle                                     
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(b) Modified spindle 

Figure 3.57: Tool tip FRF of drill and modified spindle 

As a further verification, three-dimensional models of the original and modified spindle 

units are modelled in Solid Works software. The whole assembly is modelled as per the 

dimensions spindle. In providing boundary conditions, the outer races of the bearings are 

fixed while the inner races are allowed to rotate with the spindle tool unit.  The model was 

imported into ANSYS workbench and the spindle shaft, tool holder as well as the cutting 

tool are discretized using eight-node SOLID 187 elements with the uniform material 

properties as considered for one-dimensional model. Figure 3.58 shows the finite element 

model of solid. 

 

 

Figure 3.58: Meshed assembly of the model in ANSYS Workbench 

Table 3.11 depicts the first few natural frequencies of spindle system with and without 

modifications of spindle.  
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Table 3.11: Modal frequencies (Hz) 

Mode  With improved 

topology 

Original drill 

tool spindle 

1  464.34 289 

2 500.89 350 

3 996.75 760 

4 1009.75 985 

5 1505.5 1025 

6 1554.2 1253 

Figure 3.59 shows the chart of comparison for the first mode using experimental test along 

with present FE code and ANSYS solution.  

 

Figure 3.59: Comparison chart for the first mode of vibration 

It is observed that there is a considerable agreement between the present finite element 

model based on Timoshenko beam theory and ANSYS solution. There is a little differences 

observed between the modal test and theoretical values. This may be due to the fact that 

real tool has discontinuities like twisted flutes over its length and material and geometric 

variations.  

3.4 Concluding remarks 

Present work aims in evaluating the combined effect of a spindle-tool unit on the dynamics 

of cutting by considering the flexibility of spindle unit supported on bearings. Following 

are some conclusion from this chapter.  

 Dynamic model of the system was analysed by different approaches: (a) integral 

finite element model (b) three dimensional finite element model (c) receptance 

coupling model and (d) distributed parameter model.  
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 A practical spindle dimension of a vertical CNC milling machine was considered 

for the analysis and simulation task.  

 In receptance coupling approach, 1-D finite element model of bearing supported 

spindle is employed to find the spindle-end frequency receptances. These 

receptances are combined with the analytical tool-holder receptances and the 

resultant tool tip FRFs were generated.  

 These tool-tip frequency responses were validated with full-order 1-D and 3-D 

finite element models, where all component flexibilities are included.  

 Several parametric studies were conducted for understanding the most 

influencing spindle-tool parameters on dynamic rigidity of the system.  

 Based on the obtained results, a function approximation model was developed 

with the help of a neural network that works as an estimator for the GA 

optimization module to optimize the spindle geometry. 

 Using the FE modeling, the effects of joint stiffness at spindle-holder-tool 

connections and nonlinear Hertzian contact ball bearing forces were studied and 

estimated the dynamics parameters of the spindle-tool structure.   

 The modal response of spindle-tool assembly was also obtained experimentally 

using the sine sweep tests over the integrated spindle-tool system.  

 A case study was presented by taking out the spindle-tool unit of an in-house 

manual drilling machine. The dynamic tests are conducted on the original unit 

and modified design were proposed and tested to improve the dynamic stiffness.
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Chapter-4 

Cutting dynamics and stability analysis 

Effects of spindle dynamics on the process stability are often studied by using machining 

simulations. Milling process is an intermittent multi-point cutting operation, in which each 

tooth is in contact with the workpiece for a fraction of a spindle period. Tooth contact 

period varies as a function of width of cut, spindle speed and number of flutes. Unlike 

turning process, where chip thickness remains constant, milling tool follows a trochoidal 

path due to simultaneous feed and rotation motions leading to a variable chip thickness 

[84]. Two different methods are observed in planar milling: up (conventional) and down 

(climb) milling. In up milling, chip thickness increases as the cutter rotates and the 

direction of the cutter rotation is opposite to the feed motion. In the down milling where 

the cutter rotation and feed motion are in same phase, the initial chip thickness is at 

maximum, when the tool enters the workpiece and becomes zero as the tool leaves it. 

Several terms are often employed in defining the average cutting forces in every time step 

during cutting operations. Process simulation of milling depends on the kinematics of the 

spindle dynamics, cutting tool and cutter-workpiece interactions. 

The chip thickness is a function of the cutter vibrations, flute-to-flute runout, and 

the surface undulations left by the previous tooth.Since the tool and workpiece are not 

rigid, they vibrate as the flutes of the tool move through the workpiece. The vibration 

results in the tooth leaving a wavy surface behind the workpiece. The variations in the 

instantaneous chip thickness result from the phasing between the surface left by the 

previous tooth and the current tooth. The magnitude and phase of the vibration are 

governed by the tool and workpiece dynamics. Because of phasing, the forces can develop 

unstable cutting phenomenon called chatter. Chatter is characterized by violent 

oscillations, changes in the time/frequency domain responses etc. Chatter conditions may 

occur due to be due to regeneration behaviour or by mode-coupling phenomena. The 

stability lobe diagram is famous tool based on frequency-domain response for demarking 

the stable and unstable states during cutting process. The time domain simulation can also 

be used to determine stability of a process with the selected cutting conditions. 

 This chapter begins with dynamics of milling process with a well known two-

degree of freedom (two mode) cutting model subjected to time-varying  forces. The 

construction of analytical stability-lobe diagram using tool-tip frequency response data is 

explained by considering various practical issues including process damping, variable 
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pitch of the tool and tool-tip run-out. Further, a methodology of gnerating analytical 

stability lobe diagrams using a three-dimensional cutting force model is presented with and 

without considering nonlinear force feed terms in the dynamic equations. Frequency and 

time-domain simulation are conducted. In the later part of the chapter, parametric studies 

of spindle-tool system on the overall stability of cutting are carried-out and a generalized 

integrated model of spindle-tool-cutting process is developed. The analytical and 

computational studies are validated with experimental cutting tests wherever needed. 

4.1 Classical cutting force model  

Figure 4.1 shows a milling cutter model with two degrees of freedom having Nt number of 

teeth with a zero helix angle. The tool is assumed to be compliant relative to the rigid work 

piece. Both tool geometry and machining specifications are important to assess the cutting 

process stability [86]. The tool geometry includes the number of teeth, helix angle, tooth-

to-tooth angle, cutter diameter and the flute-to-flute run-out. The machining specifications 

needed are the starting and exit angles (a function of radial immersion), spindle speed, 

axial depth of cut and feed per tooth. 

 

Figure 4.1: Two-degree of freedom milling model 

The cutting forces excite the structure in feed and normal directions, causing dynamic 

displacements x and y, respectively. If the spindle rotates at an angular speed of  (rad/s), 

the immersion angle vary with time as j(t)=t. The resulting chip  thickness consists of a 

static component  ft sinj, where ft is feed per revolution, which  is due to rigid body motion 

of  the  cutter and  a dynamic component  (nj-1- nj) caused by  the  vibrations  

i 
Ω 
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(displacements) of  the  tool  at  the present (nj) and previous (nj-1) tooth periods.  Since the 

chip thickness is measured in radial direction (n), the instantaneous variable total chip 

thickness is expressed as [171]: 

  )(g)nn()sin(f)(h jjjjtj   1      (4.1) 

where the switching function , g(j), is equal to one when the jth tooth is engaged in the cut 

(i.e., between the cut start and exit angles) and zero otherwise and is expressed as: 
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where  s and e  are  start  and  exit immersion angles  of  the  cutter  to  and  from  the  

cut, respectively.  As static part of the chip thickness (ft sinj) has no effect on the dynamic 

chip load regeneration mechanism, reduces to 

)())cos(.)sin(.()( jjjj gyxh             (4.3) 

where  

x=x(t)-x(t-)              (4.4a)  

y=y(t)-y(t-)            (4.4b)  

=




tN

2
                                   (4.4c) 

[x(t), y(t)] and [x(t-),  y(t-)] represent dynamic displacements of the cutter at the present 

and previous tooth periods and  is the delay time or tooth passing period.  

The components of linear cutting force in tangential and radial directions (Ft,j and Fr,j) 

acting on the tooth j is proportional to the axial depth of cut (b) and chip thickness h(j) 

                                      
)()(, jtjt bhKF                                   (4.5)                 

                
)()()( ,, jtrjtrjr bhKKFKF                       (4.6)                              

where flute coefficients  Kt and Kr are contributed by shearing in respectively tangential and 

normal directions. The projections of the tangential and normal force components onto the 

fixed (x and y) coordinate frame are      
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                                         Fx,j = -Ft,j cos j – Fr,j sin j                 (4.7) 

                                       Fy,j = +Ft,j sin j – Fr,j cos j  (4.8) 

The closed-form expressions for cutting forces are computed by including the summation 

over all the teeth (flutes) to obtain the total forces as: 
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The X and Y direction force expressions are arranged in matrix form to obtain: 
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 where the elements of matrix [A] are the time varying directional dynamic force 

coefficients depend on the angular position of the cutter which can be expressed as: 
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These expressions are periodic with the tooth pitch:
t

p
N




2
 (rad) and tooth period 

tN


60
 (s). In general, the Fourier series expansion of the periodic term is used for the 

solution of the periodic systems. In stability analysis, the single chatter frequency is usually 

dominated and the higher harmonics in solution may not be required. Thus, the average 
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term in Fourier series expansion of [A(t)] is included to reduce the following form: 

   {F(t)}= ½ bKt[A0]{(t)}       (4.15) 

where [A0] consists of four directional orientation factors defined as [168] : 
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By substituting the response and delay terms, the following expression is obtained.  
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where {F} represents the amplitude of dynamic milling force vector {F(t)}and the transfer 

function matrix is given as: 

 [G(ic)]= 
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Here, the terms are computed as summation of the cutter and work piece transfer function 

components. The characteristic equation of the closed loop dynamic milling system is 

finally expressed as: 
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where the product [A0][G(ic)] gives the oriented frequency response function [G0]. 



Chapter-4                                                        Cutting dynamics and stability analysis           

105 
 

A new variable, is now introduced as 
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So that the characteristic equation can be rewritten as  

0])[]det([  orFRFI        (4.24) 

The eigenvalue  of  the  above  equation  can  easily be solved  for a given chatter  frequency  

ωc, static  cutting  factors  (Kt , Kr) , radial immersion angles ( s and e )  and frequency 

response function  at the tool-tip.  

By using, 
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the expression for the stability limit is obtained as: 

                 tt KN
b

2
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The corresponding frequency dependent spindle speeds are determined by first by writing 

the phase shift in the surface undulations between subsequent tooth passages,  2

where )(tan 1   .The tooth passing periods are next expressed as  


 2
1

j
c

 , where 

j=0, 1, 2…. refers to the integer number of waves between the teeth and incrementing j 

leads to the individual lobes. Finally the spindle speeds in rpm are obtained from 

                               
tN

60
                                                                              (4.27) 

There are three main graphs employed for stability analysis: (i) the limiting depth-of-cut 

graph ( blim versus Ω) (ii) the chatter frequency graph (c versus ) and (iii) phase shift 

graph ( versus ). The first plot (called analytical stability lobe diagram) gives the 

boundary between stable and unstable zones and is often used in most cases. 
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To illustrate the stability lobe diagram from tool-tip frequency response function in present 

context, a Matlab program is employed with the variable data given in the Table-4.1.  

Table 4.1: Modal and cutting coefficients for the system 

Cutting stiffness in X and Y directions 

(Kxx=Kyy) 
2.1108 N/m 

Natural frequencies (ωx=ωy) 2056Hz 

Damping ratios(x=y) 0.01 

Tool diameter 12mm 

average specific cutting pressure(Ks) (corresponding to 

Aluminum alloy)  

750N/mm2 

number of teeth (Nt) 4 

The starting/exit angle in down/up milling is respectively given as follows 

milling milling  upfor 0  , cos

millingdown for   180  ,cos180
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Here, r is the tool radius, and a is the radial depth of cut defined in terms of percentage if 

immersion as a=%immersion×2r. The stability regions are plotted for the down-milling 

process at two different depths of radial immersions as shown in Figure 4.2. This is arrived 

by using first mode fundamental frequency response data at tool-tip obtained from the 

finite element analysis earlier.  

 .  

(a) 20% Radial immersion                               
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(b)  50% Radial immersion 

Figure 4.2: Stability lobe plots for different percentages of radial immersion 

It is observed that the average stable depth of cut decreases with the increase of radial 

immersion as pointed out in earlier literature. To assess the correctness of the stability 

boundary, cutting tests are conducted on a CNC milling center employing the same spindle 

as used in finite element modeling. The machine tool has 3-axes with a spindle motor 

having a maximum speed of 4,000 rpm. A four fluted end mill cutter with 12mm diameter 

is used for the cutting process. Full-immersion down milling machining is performed on 

aluminium alloy (Al-6061). The output data of abnormal vibrations occurred during cutting 

process at specified speeds and depth of cut are recorded using a 4-channel digital 

oscilloscope (model-DPO 43034), an accelerometer (PG 109 M0, frequency range 1 to 

10,000 Hz) and with a charge amplifier (Model: CA 201 A0, maximum output voltage- 

5V, frequency range- 0.2 Hz to 15 kHz) as shown in Figure 4.3 (a) along with a schematic 

diagram shown in Figure 4.3 (b).  

 

(a)Photograph of the experimental set-up 
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(a)Schematic view of the experimental set-up 

 Figure 4.3: Experimental set-up employed 

Based on the analytically predicted stability lobe diagrams, a series of cutting tests are 

conducted at the corresponding spindle speeds and axial depth of cuts. Accelerometer is 

connected to a non-rotating portion of the spindle with the charge amplifier to measure the 

vibration response of the cutting tool during machining. The machined surface is 

photographed by using the scanning electron microscope with a magnification scale of 

100μm and an optical microscope with a zoom factor of 10X. It is observed that when the 

axial depth of cut is at 0.07mm at a spindle speed of 2200 rpm and a feed rate of 20mm/min, 

there are no chatter marks observed on the workpiece material with the optical microscope 

as shown in Figure 4.4 (b). The same sample was magnified with SEM, which shows that 

inside of the work surface is also having the less indentation marks as  shown in Figure 

4.4(b). Further, if the cutting exceeds the limit of 0.07mm, large sized pits are observed as 

shown in Figure 4.4(c) and the corresponding microscope image was shown in Figure 

4.4(d). It signifies that the machining enters into the chatter prone regions when it exceeds 

the average stable depth of cut of 0.07mm. 
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           (a) SEM image at 0.07mm                    (b) Optical microscope image at 0.7mm 

            

             (c) SEM image at 0.17mm          (d) Optical microscope image at 0.17mm 

Figure 4.4: Machining areas of workpiece at dfferent depths of cut 

Cutting signals recorded in the oscilloscope in the form of time-histories and corresponding 

FFT plots are shown in Figure 4.5 at two different depths of cut of 0.07mm and 0.17mm 

respectively.   

                    

(a) Depth of cut 0.07mm (Stable)  
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                                  (b) Depth of cut 0.17mm (Unstable) 

Figure 4.5: Time history and FFT plots for different axial depths of cut. 

It is observed from a series of plots that, when there is an increment in the axial depth of 

cut, the amplitude of tool vibration levels during machining increases which forms the tool 

chatter marks on the workpiece and there is also a shift in the chatter frequency (seen as 

star) from 1300Hz to 1100Hz. It signifies that when the depth of cut increases the chatter 

likely to appear early at the engagement of cutting tool. 

For each cutting points, the sound-pressure signal information has been analysed 

with a microphone (sensitivity of -73dB±3dB) interfaced with the LabVIEW software to 

verify the correctness of the stability lobe diagram. Experiments were performed at 

selected combinations of axial depth of cut and spindle speed from analytical stability lobe 

diagram. Figure 4.6 shows the amplitude of sound signal(v) in time domain(s) and the 

corresponding power spectral density(PSD) plots.  In initial case, two axial depth of cuts 

0.07mm and 0.17 mm at a spindle speed of 2200rpm are considered. The PSD contains the 

tool chatter frequencies(indicated as stars). It is observed that the chatter frequency occurs 

at the frequencies of 1350Hz for 0.07mm, 1090Hz for 0.17 mm respectively.  

 

(a) Depth of cut 0.07mm (stable)  

(V
) 
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(b)Depth of cut 0.17mm (unstable) 

Figure 4.6: Amplitude and FFT plots for differnt axial depths of cut 

Based on the tool machining vibration levels, sound signal spectrographies and the surface 

images of corresponding machining areas, the points are superposed in the analytical 

stability lobe diagram. Figure 4.7 shows the corresponding stability lobe diagram for full 

immersion down milling process. It is clear that the experimentally tested points are well 

matching with respect to analytically obtained stability boundary.  

 

Figure 4.7: Predicted SLD with experimental validation 

In practice, stability of the cutting process with the spindle-tool system has to be studied 

with various practical considerations including process damping, tool run-out, variable 

(V
) 
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pitch effects etc. A brief study of these effects with the proposed spindle-tool model is 

presented in the following sections. 

4.1.1 Effects of process damping 

Process damping can be described as the energy dissipation due to relative velocity and 

interference between the relief angle of a cutting tool and the existing vibrations on the 

machined workpiece surface. Many researchers have investigated process damping in 

turning and milling operations. It occurs when there is a contact between the cutter flank 

and the vibrations imprinted on the machined surface. It influences the dynamic cutting 

forces and lead to process damping. 

The chatter-free depths of cut are observed to diminish substantially at low spindle 

speeds, where the stability lobes become more closely spaced. Fortunately, the process 

damping effect can serve to increase the allowable chip width for low spindle speeds. The 

process damping force, Fd is characterized as a 900 phase shift relative to the displacement 

and opposite in sign from the velocity. Given the preceding description, the process 

damping force is modeled as the viscous damping force as  

                                       
y

V

b
CFd                                                                         (4.28) 

Here, the process damping force in the y direction (perpendicular to the cut surface) is 

expressed as a function of the cutter velocity ( y ), chip width (b), cutting speed (V) and a 

process damping coefficient (C). A primary difficulty to defining an analytical solution for 

milling stability is the time dependence of the cutting force direction. To solve this problem 

the average angle of the tooth in the cut (fave), is considered in an average force direction. 

This approach produces an independent (or) time-invariant system. The use of directional 

orientation factors, µx and µy, to be first project this force into the x and y mode directions 

and, second, project these results onto the surface normal. The following equations are 

used to obtain the stability lobe boundaries for the milling process [168]: 

                                     
*
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                                    yyxxor HHH  
                                                              (4.33) 

Where the *
tN is the average number of teeth in the cut, e  and s are the exit and start 

angles of radial immersion, tN is number of teeth on the cutter, j=0, 1, 2... is lobe number, 

Hor is the oriented frequency response function,  is the force angle in degrees( for 

Aluminium alloy =750).  

The process damping force can be conveniently applied for up and down milling processes. 

The geometry for the up-milling process shown in the Figure 4.8 where the n is surface 

normal direction which is defined by avg .   

 

 

          Figure 4.8: Geometry for up-milling using average tooth angle approach 

The projection of the process damping force from the n direction onto the x direction is  

            

  ncos
V

b
C)cos(FF avgavgdx 








  9090

                                          

(4.34) 
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Where the new velocity term is  xcosn avg   90 . Substituting the velocity term in the 

Fx expression gives 

                                                

  xcos
V

b
CF avgx 








 902

                                    

(4.35) 

The new damping for the stability calculations in x and y directions, is therefore: 

                                            

 







 avgxx,new cos

V

b
Ccc 902            (4.36)

            

  

 







 avgyy,new cos

V

b
Ccc 1802                  (4.37)  

The geometry for the down milling case is shown in Figure 4.9.  

 
Figure 4.9: Geometry for down-milling using average tooth angle approach 

Using the same approach as described in the up milling case, the x and y direction damping 

values are provided for down milling as [168]. 

                                                

 







 902

avgxx,new cos
V

b
Ccc       (4.38) 

                                                   

 







 avgyy,new cos

V

b
Ccc 1802     (4.39) 

The expressions for directional orientation factors x and y for up and down milling 

processes are given in Table 4.2 
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Table 4.2: Summary of directional orientation factors 

Up milling Down milling 

    avgavgx coscos   9090  

   avgavgy coscos   180180  

    9090  avgavgx coscos 

 

    avgavgy coscos   180180

 

A MATLAB program is developed to study the effect of process damping with the above 

modifications in the classical model. The numerical study is carried out with  degs 0

and dege 90
 
(50% radial immersion). The stability regions are plotted for the up-

milling process using the fundamental frequency response data at tool-tip obtained from 

the finite element analysis. Figure 4.10 shows the comparison stability plots with process 

damping constant varied from zero (no process damping) to a maximum value 

(C=6.5105N-s/m). It is observed that, the process damping increases the average stable 

depth of cut from 0.04mm to 0.3mm.  

 

(a) Without process damping 
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(b) With process damping (C=6.5104 N-s/m) 

 

                                  (c)With process damping(C=6.5105 N-s/m)  

                                   Figure 4.10: Analytical stability lobe diagrams 

The cutting force simulation requires the input of modal parameters the tool geometry, and 

machining specifications. The modal parameters include the stiffness, damping ratio and 

natural frequency for each tool mode in the x and y-directions. Figure 4.11 depicts the time 

domain simulation results with and with-out process damping effect for the two degree of 

freedom milling model. By introducing the process damping effect in the model, it is 

observed that tool displacements levels reduce in both the x and y directions. Furthermore 

it provides the steady tool displacements which are essentially required during a stable cut.  
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                                               (a) without process damping 

 

                                       (b)With process damping (C=6.5105 N-s/m) 

Figure 4.11: Cutting tool vibrations at rpm3000 at 1mm depth of cut 

Effect of process damping is similar to the internal damping in spindle –tool system where 

the damping at the interfaces between collet and tool as well as chuck and collet has 

significant influence on the system stability.  

There are various sources of machining errors due to tool run-out, deflection of the tool,  

work-piece displacements and variable pitch end mills. In-spite of an effective spindle-tool 

design, sometimes the process may be lost due to these sources of errors. 
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4.1.2 Cutting force simulation with tool run-out  

Tool run-out is an inaccuracy of a rotating mechanical system that the tool does not rotate 

exactly in-line with its rotational axis. There are two types of run-outs (a) radial and (b) 

axial. Radial run-out is caused tool being rotated off the centre and axial run-out is due to 

angular offset of the tool from the axis. Tool run-out effect is an important issue in cutting 

process and it will occur mainly from the errors between positioning of the spindle and 

tool holder, radial position of teeth on the cutter, tool dimensional errors, thermal deflection 

of the tool, imbalance between the tool and holder etc. It causes chip thickness to vary over 

the tool rotation and therefore the tool experiences uneven forces during each cutting tooth 

period [102]. Cutting forces were calculated based on the cutting geometry engaged into 

the workpiece and the empirical equations are used to relate the cutting forces with the 

uncut chip thickness. Radial run-out is defined by run out distance (eccentricity ) and the 

run cut angle (). The trajectory of the cutting tool was approximated by a circular path, 

thus the chip thickness including tool run-out can be calculated as given by the following 

expression  

                                          
  j

rojtjj hfh  )sin(
                                                        

(4.40)
                           

 

Where j

roh  is the variation of the chip thickness due to run-out in cutting edge j and it will 

be defined as follows 

                                          1 jj
j

roh                                                                    (4.41) 

The run-out of cutting edge, j, represents the variation of the actual radius of each flute 

which effects in a variation on cutting forces. The actual radius is the radius of the actual 

trajectory of the flute, which varies from its nominal radius owing to run-out.  

In this study, where small values of depth of cut and helix angles were considered, 

the variation of the effective radius along the cutting edge may be neglected and then the 

tool run-out can be adequately defined by means of the difference between the actual and 

the nominal trajectory for each flute. As the specific cutting force is considered as the 

function of radial, tangential and axial cutting forces and chip thickness along the cutting 

edge, the cutting forces in X and Y directions are obtained by resolving the tangential and 

radial forces as follows 
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The effect of run-out is illustrated using a 12mm diameter tool. The run-out is measured in 

the direction of feed. Time domain simulations are carried-out with and without run-out 

effects for the case of 10m run-out offset as shown in the Figure 4.12. All the parameters 

of spindle-tool system are considered as per the two dimensional cutting process model.  

 

                                                              (a) without run-out 

 

                                                                     (b) with run-out 

                                     Figure 4.12: Tool displacement levels with run-out correction 

It is observed that run-out in the cutting process causes an increase in the tool displacement 

levels.  

Figure 4.13 shows the simulated cutting forces for the tool with run-out at two values of 

run-out equal to 10m and 25m. A very less percentage of difference is observed for the 

change in 10-12m between the cutting forces for each flute as shown in Figure 4.13(a). 

As it further proceeds, the cutting forces can be seen with high amplitude in the differences 



Chapter-4                                                        Cutting dynamics and stability analysis           

120 
 

of chip-load on the each tooth as shown in Figure 4.13(b) which leads to undesirable tool 

vibration levels. 

 

(a)10 m                                                      

 

(b) 25 m 

Figure 4.13: Force variations with tooth-to-tooth run-out  

4.1.3 Cutting force simulation with variable pitch effect  

In normal studies, it is assumed that the teeth are equally spaced around the cutter periphery 

(i.e., having constant teeth pitch). Variable pitch end mills are often employed in 

machining hard materials [118]. The variable pitch mills are either having variable helix 

angle or variable pitch angle. The feed per tooth of a variable pitch tool varies from tooth 

to tooth as a function of the tooth angle θi (deg), as shown in Figure 4.14 
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Figure 4.14: Angular position of edges for end mill on cutter circumference 

The feed per tooth is described by 

                       








 


360

,

var,

timeant

iablet

Nf
f                                                                  (4.43) 

Where ft,mean is the mean feed per tooth and Nt  is the number of teeth . 

Figure 4.15 shows the resultant forces measured during a 25%  radial immersion up- 

milling cutting of aluminium alloy using the tool with variable pitch spacing [0o 95o 180o 

275o] and with equal pitch [0o 90o 180o 270o] for two different axial depths of cut. It is 

observed that when the depth of cut increases from 1mm to 2.5mm, the variable pitch 

causes the forces to vary non-linearly. Amplitudes of cutting force components have been 

also increased considerably. 

 

(a) depth of cut=1mm                                      
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θ2 
0 

Z 

θ3 

2π 

θ1 θ4 

θ2 

θ3 

θ4 

θ1 



Chapter-4                                                        Cutting dynamics and stability analysis           

122 
 

 

(b) depth of cut=2.5mm 

Figure 4.15: Time domain simulation with variable pitch at 25% radial immersion 

Cutting tool displacement levels are obtained for the 1mm depth of cut with equal and 

variable  pitch case as shown in Figure 4.16. It is evident that the variable pitch in the 

cutting tool significantly increases the tool displacement levels drastically. 

 

(a) with equal pitch 

 

(b) with variable pitch 

Figure 4.16: Tool vibration levels at 1mm depth of cut 
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The effect of cutting tool parameters is therefore considerable in assessing the cutting 

process stability and it requires optimal selection with respect to process parameters. Based 

on the above results, the permissible limit for the tool run-out may be ascertained with 

respect to dimensions of the spindle. Also, the tools with variable pitches are allowed 

during the machining for the higher stable depth of cuts for the proposed spindle-tool 

design.  

4.2 Three-dimensional cutting force model 

In practice, spindle-tool system generates three different forces in radial, tangential and 

axial directions while machining the workpiece. A milling cutter having Nt number of teeth 

with a lead angle (α) is considered as shown in Figure 4.17. When the cutter engages with 

the workpiece, the cutting forces cause the systematic vibrations in all the three possible 

directions [136]. A coordinate system is defined for the end milling process with X 

direction specifies the feed of cutter, Y defines the normal to feed and Z defines the vertical 

cutter position with respect to the base plane and i, j and k are the rotating co-ordinate 

frame. These forces lead to excite the system in all the directions producing the 

corresponding displacements x, y and z respectively. Generally the chip thickness is 

measured in radial direction. The total chip thickness is expressed as  

        

Figure 4.17: Three-degree of freedom cutting force model 

    )()(sinsin)()( 0, kkkktkdek gnnfghhh 
                                 (4.44)                           
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Fz 
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Where (nko,nk) are the previous and present positions of the cutter and ft is feed rate, )( kg   

is the step function indicating the in or out of cut. The static component (  sinsinf kt ) in 

chip thickness has very less contribution in prediction of chatter stability. Generally, it is 

neglected from the expression. Therefore the final expression in terms of dynamic chip 

thickness similar to 2-D modeling is given by the following expression 

  )(]cossin)cossin[( kkkk gzyxh 
                (4.45)

 

Where  ),t(y)t(yy),t(x)t(xx   and )t(z)t(zz  , here  is 

tooth passing period and t is present time. The tangential (Ftk), radial (Frk) and axial (Fak) 

forces acting on the tooth k is proportional to the dynamic chip thickness and axial depth 

of cut. If the lead angle (α) is set to 900, then the x and y projections are identical to the 

helical square end milling. By resolving all these components on to the three perpendicular 

directions(X, Y and Z), the final expression is obtained as function of their average cutting 

force coefficients as [171] 
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The resultant cutting force is obtained by the summation of all individual force components 

acting on every tooth and is given as follows  
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The force expressions in x, y and z directions are arranged in matrix form to obtain  
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(4.48) 

where the elements of matrix [A(t)] are the time varying directional dynamic force 

coefficients which depend on the angular position of the cutter. Thus, the average term in 

Fourier series expansion of [A(t)] is included to eliminate the periodic time varying 



Chapter-4                                                        Cutting dynamics and stability analysis           

125 
 

coefficients. The final form is obtained as follows: 
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where the matrix    contains the following directional orientation factors  

e

s

arxx KK









 





























2

2sin

2

2sin
sinsin)sin(sin 222

                     (4.50) 

e

s

arxy KK














 

































 22 sin

2

2sin
sin

2

2sin
sin

2

2sin
                              (4.51) 

e

s

arxz KK








 
















 )cos(cos)cos(sinsin

2

2sin
2 2                                                 (4.52) 

e

s

aryx KK











 



























 222 sin

2

2sin
sin

2

2sin
)sin(sin                                   (4.53) 

e

s

aryy KK












 



































2

2sin

2

2sin
sinsinsin

2

2sin 22                               (4.54) 

 
e

s

aryz KK








 
















 sincos)cos(cossin

2

2sin
2 2                                                  (4.55) 

 
e

s

aryz KK








 
















 sincos)cos(cossin

2

2sin
2 2                                                    (4.56) 

 
e

s

arzx KK








 
















 cossincos

2

2sin
2 2                                                                   (4.57) 

 
e

s

arzy KK








 
















 sinsinsin

2

2sin
2 2                                                                      (4.58) 

 
e

s

arzx KK






 


















2

2sin
cos2 2                                                                               (4.59) 

The dynamic milling equation with directional orientation factors is obatined as  



Chapter-4                                                        Cutting dynamics and stability analysis           

126 
 

                              
    )t(bK

N
)t(F t

t  
4

                                                             (4.60) 

The vibration vector with regeneration effect consists of both delay terms( ci
e
 ) and the 

frequency reponse function [G(iωc)] matrix at the tool/workpiece contact region and is 

given by the expression as  
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(4.61)           

Where the transfer function matrix is given as: 
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The dynamic cutting force system is given by 
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The characteristic equation of the closed loop dynamic milling system is finally expressed 

as: 
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(4.64) 

The eigenvalues () of  the  above  equation  can  be solved  for a given chatter  frequency  

ωc, static  cutting  factors  (Kt , Kr, Ka) , radial immersion angles ( s and e )  and frequency 

response function  of the structure. These have real and imaginary  components given as 

follows 
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The final expression for the stable depth of cut is obtained as: 
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Where the Re is the real part of the eigen-value and ωc is the chatter frequency and the 

corresponding spindle speed (Ω) is  

                                  
tN

60
 (rpm)                                                                        (4.67)                                                                                                                                                                                                

Where Nt is the number of teeth and  is the tooth passing period, obtained same as in two-

dimensional model. 

 The end milling process requires a cylindrical cutter having cutting edges on the 

periphery as well as the cutting edges at the base, to provide each successive engagement 

of cutting edges with appropriate impact on workpiece. The cutting tool is modelled as a 

series of single point tools having one cutting edge and the cutter is discretized along the 

Z-direction with ‘s’ slices. To model the cutting forces in all the three directions, a rotating 

co-ordinate system for each cutting edge segment at the jth slice and kth cutting edge is 

incorporated. The individual cutting forces at each cutting edge is evaluated in all the 

radial, tangential and axial directions. Finally, the summation of component forces at every 

cutting edge with respect to the slices are given by the following expressions 
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During helical end milling process, cutter’s displacements (vibrations) are determined in 

the directions: perpendicular to the tool’s rotational axis and collinear to the feed motion 

vector (y(t)), perpendicular to the tool’s rotational axis and feed motion vector (x(t)), 

parallel to tool’s rotational axis (z(t)). In order to determine cutter’s instantaneous 

displacements related to cutter’s deflections,   induced by  cutting  forces  in all the three 

directions,  the following differential motion equations are considered for each mode: 
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where ( x,  y,  z), (  x,  y,  z) and (Kxx, Kyy, Kzz) are the modal frequencies, damping 

factors and stiffness coefficients in x, y and z directions, respectively, Fx, Fy, Fz are 

instantaneous cutting forces  in the machine tool coordinates. Table 4.3 depicts the 

dynamic parameters used in the simulation.  

Table 4.3: Directional dynamic parameters for simulation 

Cutting stiffness in X, Y and Z directions 

(Kxx=Kyy=Kzz) 
2.1108 N/m 

Damping ratios(x=y=z) 0.01 

Tool diameter 12mm 

Average specific cutting pressure(Ks) (corresponding to 

Aluminum alloy)  

750N/mm2 

number of teeth (Nt) 4 

The stability regions are plotted for the up-milling process using the frequency-domain 

data at tool-tip obtained from the finite element analysis and is shown in Figure 4.18 for 

40% depth of immersion. For comparison sake, the stability-lobe using 2-D model is also 

plotted (blue colour contour). It is clearly observed that the limiting axial depth of cut 

increases by 55 percent approximately with three dimensional force model (as seen from 

dotted-black curve) due to consideration of axial cutting force component.  

 

Figure 4.18: Stability lobe diagrams with 40%depth of immersion 

Similarly, the two and three dimensional stability plots are obtained for the change in the 

percentage of damping ratios. It is evident that with a slight enhancement in the damping 

2-D model 3-D model 
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ratios, the average stable depth of cut drastically increases in both the cases as shown in 

Figure 4.19. Here also 40 percent depth of immersion is considered. 

 

(a) x= y= z=0.01 

    
(b)  x= y= z =0.05                                   

Figure 4.19: Stability lobe plots for two different damping ratios 

In order to ascertain the reliability of stability boundary, experimental work is conducted 

on CNC milling centre employing the same spindle. The machine tool has 3-axes with a 

spindle motor having maximum speed of 4,000 rpm. A High speed steel (HSS) end mill 

with four flutes having 12mm diameter is inserted in tool-holder. Up-milling with 10 

percentage radial immersion in machining is performed on aluminium alloy (Al 3031). 

Based on analytical stability lobe diagram, a set of experimental tests are conducted at 

different combination of spindle speeds and axial depth of cut. The output data for analysis 

of abnormal vibrations during cutting process at specified speeds and depth of cut are 

recorded using a 4-channel digital oscilloscope (Tektronix-43034), an accelerometer (PG 

3-D model 2-D model 

3-D model 2-D model 
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109 M0, frequency range 1 to 10kHz) with a charge amplifier mounted over the spindle 

housing. 

The time histories and corresponding FFT plots are shown in Figure 4.20 at two 

different depths of cut 0.196mm and 0.285mm respectively both at 1850 rpm, where the 

stability of cutting has to be confirmed from analytical lobe diagram. The chatter frequency 

(indicated in star) occured at 2380 Hz as its amplitude of vibration level is high as shown 

in Figure 4.20(b). Similarly, when there is an increment in the axail depth of cut, the 

amplitude of tool vibration levels during machining increases and there is a shift in the 

chatter frequency from 2300Hz to 2000Hz. It signifies that when the depth of cut increases 

the chatter likely to appear early at the engagement of cutting tool. 

 
(a) depth of cut=0.196 mm                                 

 
                           (b) depth of cut=0.285 mm 

Figure 4.20: Experimental response and FFT plots at differnt axial depths of cut 
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Further, an optical microscope is used to study the machined surfaces. A relatively rough 

cut surface is observed from Figure 4.21(b) at an axial depth of cut 0.285mm (spindle speed 

of 1850 rpm)  indicating it as unstable.  

                   

(a) Depth of cut=0.196mm                            (b) Depth of cut=0.285mm 

Figure 4.21: Optical microscope images of workpiece  

Based on the tool machining vibration levels and the surface images of corresponding 

machining areas, the experimental cutting states are super-imposed over the analytical 

stability lobe diagram as shown in Figure 4.22. It is observed that the analytically predicted 

lobes from the 3D model provide the correct stability boundaries for the tested conditions. 

 

Figure 4.22: Predicted SLD with experimetal validation 

4.2.1 Time-domain simulations 

In the proposed method, the spindle speed was selected as 1850 rpm, and tool diameter as 

12mm, the axial depth of cut is varied between 1 to 2 mm and feed per tooth is taken as 

0.15mm. A 10% radial immersion up-milling process is considered for the cutting force 

analysis.  It is seen that, there is a flatten portion in cutting forces with respect to cutter 
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rotation angle ( ) for an axial depth of cut of 1mm as shown in Figure 4.23(a). As the 

axial depth of cut increases, sharp waveforms are observed with increase in magnitude of 

cutting force in all the three directions, as seen from Figure 4.23(b). The modal equations 

are solved together with zero initial conditions using ode45 function in Matlab. These 

simulations are obtained from a user interactive computer program.  

 

(a) 1mm axial depth of cut 

 

(b) 2mm axial depth of cut 

Figure 4.23: Three directional cutting force histories 

Cutting displacement components at the cutting tool in the X, Y and Z directions are 

investigated. The simulation is carried out at for an axial depth of cut =1mm as shown in 

Figure 4.24. It is seen that the initial transient vibration level was high in the x direction 

and it dies out  approximately at 1.5s compared to the other two directions. Vibrations 

generated in the z direction signify that it has more influence to produce the chatter in the 

machining process.  
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(a) x-direction vibration                                        (b) y-direction vibration 

 

                                        (c) z-direction vibration 

Figure 4.24: Time history plots for an axial depth of cut of 1mm 

Similarly the simulation was carried out for an axial depth of cut of  2mm. It is observed that, 

the vibration level at the engagement of cut at the beginning is higher and  the transient 

vibration dies out at 1.8s in x direction compared to the other two directions as shown in 

Figure 4.25. 
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(a) x-direction vibration                                      (b) y-direction vibration 

 

(c) z-direction vibration 

Figure 4.25: Time history plots for an axial depth of cut of 2 mm 

When the axial depth of cut increases the amplitude of vibration levels also increase in all 

the three directions. For the sake of further understanding the phase plane diagrams at the 

two depths of cuts are also plotted in X direction. Figure 4.26 shows the phase diagrams in 

X directions at two different depth of cuts considered. It is seen that in both the cases there 

exists a stable centre. 
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             (a) depth of cut=1mm                               (b) depth of cut=2mm 

                                    Figure 4.26: Phase plane plots at 1850 rpm 

A case with unstable cutting operation for the same spindle-tool system is also studied by 

varying the helix angle of the tool and depth of cut as shown in Figure 4.27. 

        

                  (a) Time history                                                        (b) phase plot 

                          Figure 4.27: Time domain simulation at a depth of 4mm  

4.2.2 Nonlinear force feed model  

The cutting process stability with a spindle-tool system depends on the cutting force model 

accounting several practical considerations. Generally in the nonlinear force-feed model, 

uncut chip thickness (h) is taken to the power a positive constant (γ). The tool immersion 

angle is varied along the axial direction (Z) in terms of helix angle () as [142]: 
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 , r is the cutting tool radius. The differential milling force 

expressions is written as:
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Here, Kt and Kr are the cutting mechanics parameters which characterize the local cutting 

mechanics of the differential cutting edge and  jtjj fh  sin)( is static chip thickness. 

The exponents of the chip thickness characterize the size effect in metal cutting are taken 

same in all three directions. Also, g(j) is a screen function that is equal to one if jth cutting 

edge is in cut otherwise equals to zero. When uncut chip thickness is less than zero, dFt 

and dFr are both zero. This situation corresponds to loss of contact between tool and work-

piece. The differential forces in the X, Y and Z directions is obtained by coordinate 

transformation of the differential forces in tangential, radial and axial directions as follows 
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The total cutting force acting on the jth cutting edge can be attained by integrating along 

the axial depth of cut (b) given by the following expression: 
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0

 
z

ll dzdFF                               (4.79)       

The cutting forces are evaluated for a four-fluted endmillcutter with a helix angle of 650, 

feed rate of 2 mm/tooth, γ = 0.83 and depth of cut = 2 mm. Both the linear and non-linear 

force models are compared as shown in the Figure 4.28. It is observed that the cutting 

forces increases drastically by introducing the power index. The maximum cutting forces 

for the linear model is very low compared to the nonlinear model. In the  linear model, 

cutting forces in all the directions behave in the symmetrical wave form with respective to 

the time whereas nonlinear  model does not represent any harmonic wave form.  
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(a) Cutting force simulation in x-direction 

 

(b) Cutting force simulation in y-direction 

 

(c)Cutting force simulation in z-direction 

Figure 4.28: Effect of non-linear feed rate forces 
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4.3 Effects of spindle-tool system parameters on stability 

The average stable depth of cut (blim) is directly related to the chatter vibration and milling 

instability. There are significant number of important design parameters related to spindle-

tool system, such as the dimensions of spindle shaft and its housing,  bearing locations, 

preload of the bearings and tool overhang of the cutting tool as studied in earlier chapter. 

As, the tool-tip frequency response has a significant influence on the cutting process 

stability, the effects of above parameters on limiting depth of cut are studied by keeping 

the common cutting parameters as constant.  

In this regard,  stability of slot milling process for different lengths of the tool overhang, 

bearing span ratios, diameters of cutting tool, interface stiffness and axial prelaod  are 

considered for the analysis. The cutting conditions considered are as in two-dimesional 

model namely spindle speed=2200rpm, helix angle()=65o, and tool diameter=12mm. An 

average stable depth of cut is computed in each combination of spindle-tool parameters 

according to the following equation from stability lobe diagrams 
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b

N

j

j




                                                                                 (4.80) 

where Nmax refers to the maximum speed limit in stability lobe diagram, while blim,j is the 

instantaneous limiting depth of cut at particular speed Nj. Figure 4.29 shows the 

discretization of stability lobe in order to predict the proposed average stable depth of cut.  

  

Figure 4.29: Prediction of average stable depth of cut 
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Figure 4.30 shows the variation of simulated data for the different values of tool overhang 

(TO), bearing span, tool diameter, interface stiffness and axial preload. When there is an 

increase in bearing span of the spindle machine, there is an increase in the average stable 

depth of cut as shown in Figure 4.30(b). But after  the bearing span of 180mm the average 

stable depth decreases due to second mode of vibration came into existence which critically 

influences the dynamic stability of the system. Similarly, it is observed that when there is 

an increase in the tool overhang length and tool diameter of the cutting tool, there is an 

increase in the average stable depth of cut (blim) as shown in Figure 4.30(a) and 4.30(c). 

While the interface stiffness and axial preload decreases the depth of cut as shown in Figure 

4.30(d) and 4.30(e). In each of these graphs one of the parameter is varied with respect to 

initial set (tool overhang= 65mm, bearing span=90mm, tool diameter=12mm, interface 

stiffness=1.5×105 and axial preload=1500N) as considered in chapter-3. 

 

(a) blim vs tool overhang                                      (b) blim vs 

bearing span 

 

                   (c)blim vs tool diameter                               (d) blim vs interface stiffness 
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(e) blim vs axial preload 

Figure 4.30: Variation of average depth of cut as a function of spindle tool parameters 

Figure 4.31 shows the stability lobe corresponding to a critical value of bearing 

span=180mm. It is observed from the lobe diagram that the critical depth of cut is 

0.312mm. 

                     

                 Figure 4.31 Stability lobe diagram at the critical bearing span=180mm 

4.4 Cutting dynamics with nonlinear bearing forces 

The effects of bearing contact forces supporting the spindle along with the cutting forces 

at the tool-tip node on overall stability are studied in this section. The solution is obtained 

as a transient analysis problem first in time domain and then the frequency spectrum is 
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obtained using fast Fourier transformation (FFT) algorithm. The reduced coupled 

differential equations were solved by explicit Runge-Kutta solver using MATLAB ode45 

function with zero initial conditions. Figure 4.32 shows the time histories and 

corresponding FFT diagrams at the tool-tip node corresponding to the bearing parameters 

previously defined in the chapter-3. It is clearly observed from frequency responses that 

the additional modes due to chatter and tooth passing oscillations are formed apart from 

spindle resonance modes and ball passing frequencies due to cutting forces and ball contact 

forces respectively. 

 

(a) x-Displacements at tool-tip                            (b) Corresponding FFT plot 

Figure 4.32: Transient response with bearing and cutting forces 

In order to ascertain the reliability of dynamic stability of the system, cutting experiments 

are conducted on CNC milling center. As described earlier, the machine tool has 3-axes 

with a spindle motor having maximum speed of 4,000 rpm. A HSS end mill cutter with 

four flutes having 12mm diameter is employed for cutting operation. Down-milling 

operation is performed on aluminum alloy (Al 6061) work-piece. The output data for 

analysis of abnormal vibrations during the cutting process at specific speeds, feeds and 

depths of cut are recorded using a digital oscilloscope (Type: Tektronix-43034), along with 

two piezoelectric accelerometers and charge amplifier.  Figure’s 4.33(a) and 4.33 (b) 

shows the experimental set up and the schematic diagram employed in this regard.  
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(a) Photograph of the experimental set-up 

 

 (b) Schematic view of the experimental set-up 

Figure 4.33: Experimental set-up employed 

The corresponding FFT plots are shown are shown in Figure 4.34 for an axial depth of cut 

of 0.5mm, feed of 20mm/min and a spindle speed of 2600 rpm. Using the same cutting 

parameters analytically FFT is arrived as shown in Figure 4.34(b). It is observed that the 

multiple peaks are arrived in experimental FFT because of the chatter phenomenon during 

cutting process as compared to the theoretical frequency response. 
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Figure 4.34: Experimental FFT plot  

4.5 Stability analysis of a practical drill spindle for milling 

The design and analysis procedure of modified drill spindle as described in the chapter-3 

has been extended to study the cutting process stability in a slot milling operation. Milling 

tests are conducted on the manual drilling machine with a designed portable milling work 

bed with modified spindle according to the specifications. The machine tool has 3-axes 

with a spindle motor having maximum speed of 1750 rpm. Machining is carried out with 

a HSS end mill with four cutting edges fitted in the collet has a 12mm diameter. All milling 

tests are performed on aluminium alloy (Al6061) work pieces of 100mm×8mm×5mm 

thickness. Figure 4.35 (a) shows the experimental set up for measurement of vibration 

signals during cutting operation. Similarly, Figure 4.35 (b) shows the schematic diagram 

of the experimental set-up. The instrumentation employed are (1) 4-channel digital 

oscilloscope (Tektronix-43034) (2) accelerometer (frequency range 1 Hz to 10 kHz) 

mounted on the bearing collar of the spindle in radial direction (3) charge amplifier to 

amplify the signals of acclerometer (4) microphone (frequency range 8 Hz to 12 kHz, 

sensitivity of -73dB±3dB) connected with LabVIEW interface (5) Dial-guage used to 

measure the depths of cut provided to drilling machine.  
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(a) Photograph of the experimental set-up 

 

(b)Schematic view of the experimental set-up 

Figure 4.35: Experimental set-up employed for the modified drilling machine 

During cutting operation, the vibration signals in time-domain are recorded in the 

oscilloscope at different depths of cut and spindle speeds. Initially an analytical stability 

lobe diagram is plotted from the frequency responses at the tool tip of modified drill spindle 
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system in order to approximately know the range of operating speeds and depths of cut.  A 

combination of three speeds and two depths of cut are used in experimental tests. FFT plots 

are obtained from then time history data from the acclerometer signals. Figure 4.36 

represents the time domain and FFT plots at the spindle of 1030 rpm at two axial depths of 

cut of 0.5mm and 1mm.  

 

                    (a)Axial depth of 0.5mm               (b)  Axial depth of 1mm 

Figure 4.36: Time histories and FFT plots at 1030 rpm 

It is observed that, when the depth of cut increases the chatter frequencies are found to be 

211.9Hz and 159.2Hz respectively from FFT plots. Similarly, as the spindle speed changes 

to 1300rpm, Figure 4.37 shows the experimentally acceleration response and its FFT 

diagrams corresponding to two different depths of cut. At the depth of cut 0.5mm, the 

amplitude of vibration level grows suddenly which produces the rough chatter marks at the 

frequency of 125Hz. As the depth of cut increases to 1mm there is almost smooth cutting 

operation as observed from the time histories.  

 

                (a)Axial depth=0.5mm                            (b)Axial depth=1mm                        

Figure 4.37: Time histories and FFT plots at 1300 rpm 
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Further, the spindle speed has changed to 1650rpm with same depths of cut of 0.5mm and 

1mm respectively as shown in Figure 4.38.The amplitude of the vibration level in time 

history grows suddenly at the beginning of cut corresponding to the frequency of 68.36Hz 

in the FFT plot. As the depth of cut increases to 1mm the chatter frequency are observed 

at a lesser frequency of 35Hz from FFT plot.  

.                                              

(a)Axial depth of 0.5mm                                             (b)  Axial depth of 1mm 

Figure 4.38: Time history and FFT plots at 1650 rpm 

4.5.1 Sound spectrum analysis using LabVIEW 

Typically in machine shops and on production floors, chatter can be identified from the 

noise signals during cutting operations and by using the nature of the chatter marks on the 

workpiece surface. The periodic impacts of the cutting tooth with the workpiece and the 

corresponding vibrations levels generate the sound pressures during the machining 

process. Experienced operators can usually extract information from it and correct or 

modify the cutting parameters. The sound spectrums are currently elaborated by two 

simple methods (1) by sampling, through acoustic analyses of sound acquired with 

microphones or sonometers, which are then power density  digitalised or (2)  by 

simulations that simulate the acoustic situation in a certain zone. These spectral 

measurements are obtained by taking measurements at certain points in the area being 

evaluated and calculating the rest of the points by interpolation.  

In the present work, along with the acclerometer signals, the sound pressure 

intensity levels are also recorded using a microphone to distinguish unsatable cutting 

conditions from a selected cutting conditions as seen from Figure 4.39. The amplidute of 

the sound pressure levels are recorded as time domain signals during the cutting operation 

at different combinations of speed and axial depths of cut and the corresponding power 
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spectral density(PSD) plots are obtained simultaneouly using LabVIEW software. From 

these diagrams, the tooth passing and chatter frequencies are identified. 

LabVIEW software was used to develop a data acquisition platform capable of 

recording  the sound emission from the cutting process and collect the data in time domain 

with a microphone placed inside the machine chamber. The fast fourier transform of the 

time-based audio signal was calculated on-line to obtain the frequency-domain spectrum 

of the milling sound signals. The audio signal was displayed on-line on the computer screen 

in time domain.  

For the full-immersion down milling process considered  on the table top modified 

drilling machine with 12mm diameter end mill tool, the experimental is recorded. Figure 

4.39 shows the amplitude of sound signal (in volts) in time domain and the corresponding 

power spectral density plots corresponding to two depths of cut.  Initially the for the axial 

depth of cuts of 1mm and 2mm for the spindle speed of 1030rpm the PSD contains tool 

chatter frequencies as shown in Figure 4.39(b) and 4.39(d). It is observed from the plots, 

the chatter frequency is observed at the frequency of 180Hz for 0.5mm, as the depth of cut 

increases to 1mm the amplitude of sound signal raised suddenly and the chatter marks are 

observed on the workpiece at a frequency of 120Hz. It is nearly matching with that 

obtained from the accelerometer data.  

         
(a) Microphone signal               (b) PSD plot at axial depth=0.5mm   

  180 Hz (v
) 
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(c) Microphone signal               (d) PSD plot at axial depth=1mm   
Figure 4.39: Amplitude and FFT plots for different depths of cut at 1030 rpm 

Similarly, the cutting tests are carried out at a spindle speed of 1300rpm with the same 

axial depth of cuts previously taken. It is observed that the cutting sound signals gives the 

light and sharp signal frequencies nearer to the chatter frequency of 240Hz at a depth of 

1mm. Whenever the depth raised to 1mm at the same spindle speed the pattern of the 

frequencies changed drastically with the amplitude of signals. The chatter frequency 

hampers the stable cutting process whenever the system reaches the frequency of 150Hz 

as shown in the Figure 4.40. 

 

(a) Microphone signal               (b) PSD plot at axial depth=0.5mm   

 240 Hz 

 120 Hz (v
) 

(v
) 
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(c) Microphone signal               (d) PSD plot at axial depth=1mm   

Figure 4.40: Amplitude and FFT plots for different depths of cut at 1300 rpm 

Further the cutting process is extended to the spindle speed of 1650rpm. The cutting sound 

becomes tedious and deep, and low frequency components can be more predominant for 

the depth of cut 0.5mm. The rise in the depth of cut increases the friction and cutting forces 

between the cutting tool and work surface which in turn produces the chatter at the start of 

the cut as shown in the Figure 4. 41. 

 

 (a) Microphone signal               (b) PSD plot at axial depth=0.5mm   

150 Hz 

 150.5 Hz 

(v
) 

(v
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(c) Microphone signal               (d) PSD plot at axial depth=1mm   

Figure 4.41: Amplitude and FFT plots for different depths of cut at 1650 rpm 

These time-based audio signals clearly identifies the chatter frequencies on-line and to 

build the proper boundaries of the stability lobe diagram. Milling sound pressure signals 

analyze the status of the cutting process and it is easy to implement for monitoring. From 

these data, it is observed that even the chatter frequencies are present in the FFT or PSD 

diagrams it cannot be concluded that the process as unstable. When the lower chatter 

frequencies are observed, it may result in cutting process instability. To confirm further, 

the surface images of the work pieces are examined for chatter marks. The experimentally 

tested cutting states (as points) are super imposed on the analytical stability lobe diagram 

obtained earlier. Figure 4.42 shows these points in the lobe diagram and the corresponding 

work surface images are also illustrated. It is observed from these plots that when the axial 

depth of cut is 0.5mm there are slight chatter marks on the workpiece. If depth of cut 

exceeds the limit 1mm, the machining enters into the chatter prone regions. These 

experimental cutting points are clearly defining the correctness of the boundaries of the 

analytically predicted stability lobes. 

 49.5 Hz 

(v
) 
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Figure 4.42: Testing of stability boundaries with surface images 

4.5.2 Stability charts for modified drill spindle 

A study is conducted on the modified and the original drill spindle with the change in the 

percentage of damping ratios. The directional dynamics are considered as follows: 

Kx=Ky=2.1e7 N/m, tool diameter=12mm, specific cutting coefficient for aluminium alloy 

Ks=750N/mm2, number of teeth=4. The stability regions are plotted for the down milling 

process for the slot milling operation. Figure 4.43 shows the analytical stability lobe 

diagram of modified drill spindle obtained from its tool-tip frequency response using two 

dimensional cutting model with two different modal damping values. The plots also show 

the stability lobes for the original single bearing drill spindle system. It is evident that when 

a slight percentage of enhancements in the damping ratios, the average stable depth of cut 

drastically increases in both the cases of modified spindle assembly.  

 

(a) x=y =0.02  
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                                                      (b) x=y =0.04  

                       Figure 4.43: Stability lobe diagrams for modified spindle 

4.6 Conclusions 

The development of new spindle designs and their corresponding stability studies provide 

a guiding technology to reduce the production costs.  

 In this chapter, a realistic spindle tool unit of a vertical CNC milling machine is 

considered for the analysis. Based on the formulation of dynamic milling with 

regeneration in the chip thickness, the stability lobes are plotted. 

 The three dimensional cutting force models were employed to generate the 

expressions for stable depth of cut and operating speeds during machining 

operation and these outcomes were compared with those obtained from two-

dimensional cutting force model. 

 Two practical considerations were taken into account in three dimensional force 

model such as percentage of immersion and damping to study the stability. Results 

were found to be very interesting, as the change in damping provides an efficient 

way in increase the average stable depth of cut. 

 Parametric studies were conducted for different cases of bearing span, tool 

overhang, tool diameter, interface stiffness and axial preload for the spindle system 

and their influence on the average stable depth of cut has been considered. It was 

observed that for large bearing span conditions, the second mode of chatter 

frequencies have the considerable effect on the system dynamics which leads to 

dynamic instability during cutting conditions. 

 In order to obtain the machining stability boundaries, a dynamic milling model is 

developed by considering the variable pitch effect and permissible run-out effect to 
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carry out the same chip load for each cutting edge. Furthermore, the non-linear feed 

forces are studied to identify the allowable permissible limits for the present model. 

 In order to ascertain the dynamic stability of the spindle tool unit both the nonlinear 

bearing forces and the cutting forces were considered at the particular nodes. Later 

corresponding FFT plots were arrived both from the cutting tests and from the 

numerical simulations.  

 A table top drill spindle model was considered and its improvement for milling 

applications has been presented. In order to use the drilling machine for milling 

operations, a portable X-Y table was fabricated as per the existing dimensions of the 

base to ensure a smooth cutting operation.  

 The modular computer programs developed in this part facilitate in considering more 

number of geometric parameters of the spindle-tool system to minimize the chatter 

vibrations with an accurate picture of cutting stability.  
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Chapter-5 

Control strategies in end milling process 

Several aspects of the current trends in production intensify mechanical vibration 

problems coming from the interaction between the manufacturing process and the machine 

tool structure. In particular, the dynamical loads generated by the process tend to increase 

so as to fulfill the demand for productivity. At the same time, the efficiency requirements 

lead to the production of high rigidity machine tools with low energy consumption. This 

implies the use of lightweight structures and an explanation of the moving parts inducing 

low damping properties and thus low dynamical stiffness. Also, the development of novel 

materials requiring extreme machining conditions as well as the rising complexity of tool 

or workpiece geometries contribute to the propensity of vibrations to occur. On the other 

hand, the demand for an increasing accuracy makes such vibration problems in machine 

tools less tolerable. 

Under severe machining conditions, mainly two types of detrimental structural 

vibrations are susceptible to arise between the tool and the workpiece. These two types are 

the resonances and the instabilities. Generally, the instabilities, commonly called: chatter, 

are more critical for the production than resonances, due to the fact that much more energy 

is induced by the closed-loop interactions formed between the machine and the process. 

Apart from these, various phenomena may lead to the process instabilities.  

In general the occurrence of chatter increases the production costs and it minimizes 

the productivity. An intuitive way to suppress chatter is to reduce the process load by 

decreasing the material removal rate and thus the productivity. Active structural control 

techniques probably present the greatest potential of development. They are characterized 

by the use of a sensing system delivering information to a controller. Based on a pre-

defined control strategy, this controller transmits instructions to an actuating system in 

order to mitigate the detected vibrations. The main attractiveness of these methods comes 

from their high degree of adaptivity due to the fact that the controller can be easily 

reprogrammed. This constitutes a key aspect in modern manufacturing techniques, as a 

great amount of production costs can be saved using one flexible machine tool instead of 

several specialized ones. The latest developments in computer technology and numerical 

simulation techniques will always be more attractive for industrial applications. 
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This chapter presents the chatter control concept using the semi active and active 

techniques using the previously analyzed spindle-tool system and the cutting conditions in 

usual operating ranges. 

5.1 Methods for Chatter Mitigation 

As the chatter is result of interaction between the cutting conditions and structural 

dynamics characteristics of spindle-tool system, there exist two methods of chatter 

mitigation. In the first type of methods, cutting conditions are adjusted, while in the second 

type the structural dynamic characteristics of the system are modified. The methods based 

on the process parameters, take advantage of the stability lobes pattern by finding the 

maxima of stability. In this category, two subdivisions can be identified: offline and on-

line methods. The offline or passive methods select suitable machining parameters, i.e. 

spindle speed and depths of cut, based on the predicted stability lobes diagrams. The on-

line or active methods monitor the process and as soon as chatter is detected, the process 

parameters are adjusted in order to stabilize the cut. So, they need the integration in the 

machine environment of a monitoring system transmitting information to a decision 

making device providing new set of machining conditions. 

In this  approach of process parameter adjustment, there are some limitations with 

respect to machining operations such as the spindle speed and depth of cut cannot be varied 

to maintain stable cutting zone [168]. This may halt the cutting process. Also, all required 

ranges of natural frequencies cannot be achieved due to response limitations of the spindle. 

 On the other hand, by adjusting the dynamic characteristics of spindle-tool system 

either passively, actively or semi-actively, the stability of cutting operations can be 

maintained comfortably. In passive method of chatter mitigation, often (a) dynamic rigidity 

of spindle-tool system is increased or (b) geometric shape of the cutter can be changed or 

(c) the vibration absorbers are inserted or (d) dynamic or impact dampers may be used.  

In general, high dynamic stiffness and high damping are desirable in avoiding 

chatter. This is intuitive because a very stiff tool is not free to vibrate and damping removes 

energy from vibrations, including chatter vibrations. Unfortunately, stiffness and damping 

are restricted to physically realizable levels. There is no such thing as a perfectly rigid 

spindle. As technology continues to advance, machining speeds are getting faster, 

workpiece materials are getting harder, and part geometries are getting more intricate. This 

makes difficult to increase the dynamic stiffness and damping. The passive systems are 

simple, but have no intelligence and flexibility which leads to non-optimized performance 

for various machining conditions.  
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In the active methods, the vibration is minimized by continuously applying force 

on the system by using piezoelectric actuators and active dynamic absorbers. The approach 

is expensive and requires high power sources. The third category is known as semi-active 

control offering simple and low cost effective adaptable way of vibration reduction. Figure 

5.1 represents the proposed classification of the methods dedicated to the mitigation of 

chatter.  

 

Figure 5.1:  Classification of the methods for chatter mitigation 

In the above figure, the third category of methods tries to disturb the periodicity of 

feedback loop between the machine structure and the process. These methods are called 

regenerative disturbing methods. Among, them a distinction can be made between those 

employing parameters related to the process and those using structural parameters. 

5.2 Semi-active control using secondary system 

In machining operations self-excited vibrations or chatter is the most important 

type of vibration. The machine tool chatter is due to regeneration phenomenon or by 

mode-coupling. Regenerative type is most common and the phase difference between the 

inner and outer waves and dynamic gain of the system play an important role in the 

stability of cutting process. For the chatter suppression in milling process, use of tunable 

vibration absorbers is quite common. In the present work, the cutting tool and work piece 

are modeled as flexible and rigid parts respectively.  
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Figure 5.2(a) shows the spindle-tool system employed earlier with secondary 

spring mass damper model connected at one of the nodes along the two bending 

directions. The dynamic behavior of the spindle-tool unit is well established through the 

modeling of the restricted spindle rotating system on the front and rear bearings.  

 

 

 

 

  

  

 

 

 

  

           

 

 

(a) Spindle with attached absorber          (b) Equivalent system in x-direction 

Figure 5.2: Finite element discretization of spindle-tool system with vibration absorber 

The two-dof system investigated in this work is depicted in Figure 5.2(b). The movement 

of the primary spindle system mass (m0) and the vibration absorber masses (m1 and m2) 

relative to the ground due to a force P(t) acting on the primary mass are represented by 

x0(t) and y0(t). The primary mass is connected to ground by a spring with stiffness k0 and a 

viscous damper with constant c0. The absorber masses in two bending directions are 

connected to the primary mass by springs having stiffness (k1 and k2) and viscous dampers 

with constants (c1 and c2). The equations of motion in two bending directions are given as 

[167] 

)()()( 101001010000 tPxxkxkxxcxcxm                                                          (5.1) 

0)()( 01101111  xxkxxcxm            (5.2)

)()()( 102001020000 tPyykykyycycym                                                        (5.3) 

0)()( 01201212  yykyycym                                                                                 (5.4) 
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The solution for the displacement vector in the frequency domain can be written as  

x=[H(ω)]P                                                                                                                      (5.5)   

where [H(ω)]is the frequency response function matrix and is given by 

[H(ω)]=(−ω2[M]+iω[C]+[K])−1                                                                                   (5.6) 

 In the present analysis, spindle-tool system is analyzed as a continuous system 

discretized into six beam elements with each node having two translations and two 

rotational degrees of freedom.  Two sets of spring mass and damper systems are attached 

in x and y directions to the spindle at suitable location. The boundary conditions of the 

spindle-tool system are therefore include  

(1) Forces at the bearing nodes in two bending directions 

(2) The secondary system (absorber) forces at the connected node 

The time varying cutting forces are not accounted in this design.  

  A computer program is developed in MATLAB to analyze the spindle-tool system 

with vibration absorber. The spindle speed is set at 4000rpm. The coefficients of 

Rayleigh’s damping  and  are obtained as 17.32 and 3.67e-6 respectively for 1% 

damping ratio. The stiffness behavior of angular contact bearings relies on the applied 

loads and the bearing layout. The system is simulated with the following 

parameters:Diameter of the ball (Db)=9mm,Axial preload applied (Fa) =1500N,  Angular 

contact of the ball-bearing()=25degrees, Number of balls (Nb) =20. The frequency 

response at the tool-tip are studied for the following absorber parameters: mass of the 

damper m1=m2=1Kg, absorber stiffness k1=k2=1.5×105N/m, absorber damper values 

c1=c2=1.5 N-s/m.  

 Figure 5.3 shows the effect of vibration damper on the tool tip FRF. It is seen that 

absorber affects considerably the amplitude of the vibration and there are two close peaks 

in the resultant FRF. The FRF simulation results show that the magnitude of maximum 

amplitude is dropped from 3.2e-5 m/N to 1.4e-5 m/N, which is 55.9 percent drop and 

natural frequency dropped from 2056Hz to 1995Hz with the utilization of the spring 

damper absorber model. 
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Figure 5.3: Tool tip FRF of the spindle-tool unit 

To obtain the stability lobe diagrams, the equivalent modal properties obtained from 

dynamic analysis namely the modal stiffness and natural frequencies are taken as 

Kxx=Kyy=2.1108 N/m, ωx=ωy=2056Hz, and modal damping ratios x=y=0.01.The other 

parameters are tool diameter=12mm, average specific cutting pressure (corresponding to 

Aluminum alloy) Ks=750N/mm2, the number of teeth (Nt) = 4. The stability regions are 

plotted for the slot-milling process as shown in Figure 5.4. This is arrived by using 

frequency response data at tool-tip obtained from the finite element analysis. It is observed 

that stable depth of cut is improved from to 0.15mm to 0.48 mm for the spindle-tool system 

embedded with semi-active damper.  Semi-active control strategy used for this model is 

very efficient in reducing the amplitudes of tool-tip frequency responses with good 

computational accuracy. 

 

Figure 5.4: Stability lobe plots with and without absorber 
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However, there are many alternative locations of absorber placement as well as their 

parametric selection which would give much better improvement in the stable depth of cut. 

Therefore, it is attempted as a next part.  

Optimum absorber parameters  

The locations of absorber placement as well as the values of the stiffness and damping 

values are optimized to minimize the amplitude in the tool-tip frequency response. The 

problem is formulated as follows.  

Minimize f(X) = Hmax(i)         (5.7a) 

Subjected to the variable constants  

     1.5×104 k1,2  1.5×106 N/m       (5.7b) 

      1.2  c1,2  1.6 N-s/m        (5.7c) 

      116  zloc  248 mm (within spindle length)     (5.7d) 

Here, X= [k1,2, c1,2, zloc] is the design vector to be estimated. Physically the spring-damper 

model can be realized as a plate mass attached to the primary spindle tool system. Particle 

swarm optimisation (PSO) approach is implemented to solve the problem. The objective 

function is the amplitude of tool-tip frequency response that is defined by making use of 

the finite element model of spindle-tool system with tuned spring-damper system which 

takes the various inputs such as stiffness and damping constants along with the location of 

absorber interactively. In the present case, the absorber parameters in both the directions 

are taken as same. i.e., k1=k2 and c1=c2.  

PSO is basically developed through simulation of bird flocking in n-dimension 

space. The position of each particle is represented random vector and also the velocity is 

represented similarly. Modification of the particle position is realized by the position and 

velocity information. From an initial position, a swarm of particles starts flying in the 

search space exploring optimal points. Each particle position represents a potential 

solution. Therefore, the performance of each particle position is evaluated by the fitness 

function which is to be maximized always. During the flight (iterations), the best 

experiences (positions) for each particle is stored in its memory and called personal best 

(Pbest). The lowest value of all the Pbests, determines the global best (Gbest) of the swarm. 

Each particle tries to modify its position using the following information: (a) the current 

positions X=(x1, x2, ….xn) (b) the current velocities V=(v1, v2, ….vn)  (c) the distance between 

the current position (Pbest and Gbest). This modification can be represented by the concept 

of velocity and it is updated or modified (for each particle) as follows [152]: 
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where 1t
iV  is the particle velocity at new iteration (t + 1), W is inertia weight, C1, C2 are 

the acceleration coefficients called cognitive and social factors, t is the generation,  (r1, r2) 

are two separate random numbers between 0 and 1, Pbest
iX  is the Pbest of the particle i (local 

best position) and  GbestX  is the Gbest of the group (global best position). 

Therefore, the new particle position is obtained by: 

it
i

t
i

it
i VXX                                                                                                              (5.9) 

Figure 5.5 shows the general flowchart of PSO strategy. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Flowchart of PSO algorithm 
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A MATLAB program is developed for this three variable optimization scheme. The 

termination criterion employed is the number of generations which is considered as 500. 

Swarm size in each generation is varied and a size of 30 is found to be optimal. Figure 5.6 

shows the convergence trend of the fitness function which in present case is F=1/(1+f(X)).  

 

Figure 5.6: Convergence trend corresponding to population size=30 

The final best optimized design variables are obtained as k1= k2=194812.965N/m; c1= 

c2=1.296 N-s/m; zloc=128.875mm. Figure 5.7 shows the tool-tip frequency response for the 

system with optimized damper  parameters  in comparison to the system before optimization. 

This time, the natural frequencies of the spindle -tool system increase to 2291Hz and 2315Hz 

respectively. The amplitude has reduced from 1.433×10-5 m/N to 1.048×10-5 m/N in 

comparison with the system attached to unoptimized absorber. 

 

Figure 5.7: Tool tip FRF with optimal vibration absorber parameters 
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Figure 5.8 shows the corresponding stability lobe diagram of spindle tool system during 

the up milling process with optimized vibration absorber parameters. It is observed that a 

stable depth of cut of 0.532 mm has been achieved with improved tool-tip frequency 

response, which was previously 0.152mm before insertion of the optimized absorber. 

 

  (a) System attached with optimized absorber            (b) System without absorber  

Figure 5.8: Stability lobe diagrams from tool-tip FRF 

In above design, the cutting force influences are not considered and also the amplitude in 

tool-tip FRF reduces only around the first mode. A more realistic control scheme is 

therefore required. 

5.3 Active vibration control 

In-process detection of chatter is a quite complex phenomenon. Vibration control 

is another strategy to suppress chatter instability. The aim of this strategy is to reduce the 

relative displacements between the tool and the workpiece and thus to the suppress chatter. 

The two DOF model of a milling process is described by 

)()]()()[()(][)(][)(][ tUtXtXtbHtXKtXCtXM                                      (5.10) 

Here, b is the depth of cut and the first term on the right hand side represents the dynamic 

cutting force with H(t) representing the cutting force variation matrix. Also U(t) represents 

the control force. When depth of cut is large, the system becomes unstable and the 

perturbation X(t) increases resulting in chattering behaviour. By adding an active control 

U(t) to the perturbation system, the closed loop becomes stable for higher depths of cut. 

There are different adaptive control optimization methods, where the process parameters 

are computed and regulated in order to optimize certain index of performance like 

reduction of vibration, increasing productivity, improvement of surface quality and control 

of tool wear. Alternatively, without directly changing the process parameters, by 

employing certain controls which could provide the required force U(t) we can minimize 

the amplitudes of vibration at the contact region.  
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Design of PID controller  

PID-based control is the major design method in the automatic control industry. 

These controllers are extensively used in robotics industries, electrical system units, 

aircrafts, machining industries etc. These methods are popularized because of their 

robustness in an extensive variety of operational forms, and their structure, in addition to 

the awareness for designers and machinists with the PID algorithms.  

A PID controller is actually a three part system:  

(1) Proportional compensation: the main function of the proportional compensator is to 

introduce a gain (KP) that is proportional to the error reading which is produced by 

comparing the systems output and input. (2) Derivative compensation: in a unitary 

feedback system, the derivative compensator will introduce the derivative of the error 

signal multiplied by a gain KD. In other words, the slope of the error signal's waveform 

is what will introduce to the output. Its main purpose is that of improving the transient 

response of the overall closed-loop system. (3)Integral compensation: in a unitary 

feedback system, the integral compensator will introduce the integral of the error signal 

multiplied by a gain KI.  This means that the area under the error signal's curve will be 

affecting the output signal.  It improves the steady-state error of overall closed-loop 

system. 

Active control system needs information of minimum two basic components of a 

system: (1) the plant (G), which defines the mathematically modeled behavior of the 

system, and (2) the output(Y), which is the objective trying to approach. First analyse the 

components and behavior of a system (uncompensated) and then the individual 

components of a PID (proportional-integral-derivative) controller.  The final step would 

be to bring these two together and design a PID controller that will compensate the 

originally observed system [157].  A system can be made up of various components 

arranged equally in various ways; but it is better to analyse the components and their 

functionality as a classical closed-loop system shown in Figure 5.9.         

 

Figure 5.9: Block diagram of a single-input single-output system closed loop system 
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Here r is input, C is controller, G is plant and is mathematically expressed as a transfer 

function, y is output, and H is feedback. It is important to note that the transfer function 

for the complete loop, which could be further simplified into just one block with a single 

input and single output by the use of the closed loop transfer function 

                  
)()()(1

)(
)(

sHsGsC

sG
sC


                                                               (5.11)                                    

 Therefore, a PID controller can be mathematically described in two domains 

In time domain the control signal is represented as 

                         

       xdxeKte
dt

d
KteKtU

t

O

IDP )(                                                (5.12)                                 

Here, the tracking error is represented by the variable (e) and the variation among the 

preferred input (r) and output (y). In particular, the concerned error signal (e) drive, be 

directed to the controller, which calculates the integral and derivative of the signal.  

The error signal will be transferred to the mathematically derived transfer function 

(G) which produces a new output (y). This output will be processed to the feed-back (H) 

which again produces the new signal (e) which further proceeds to compute the new 

derivatives and integral values and the process will continue.  

Most of the time, in active control, PD controller is sufficient to improve the 

transient response while maintaining the stability of the process. This eliminates the 

steady-state error and compensates for the system nonlinearity (or uncertainty). The control 

scheme with PD controller is shown in Figure 5.10. The error and its rate are adopted as 

the two input variables in the system.  

 

 

 

 

 

 

 

Figure 5.10:  Block diagram of control scheme 

The error (e) is expressed as deviation of the measured displacement (X(t)) from the 

reference force (Xdes): 
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XXE des                                                                 (5.13)                                                                         

The output of the PD controller is 

                                         
EKEKU DP
                                                                (5.14)                                                                                  

where KP and KD are parameters for the proportional and derivative gains K= [KP, KD]; 

and e=[e, ce]
T. 

These reduced coupled differential equations were solved by explicit Runge-Kutta 

solver using MATLAB. Figure 5.11 shows the time histories at the tool-tip node 

corresponding to the same bearing parameters given below: Number of balls (Nb) =20; 

Contact angle of bearings (θ) =25o, Diameter of ball (Db)= 9mm, and other bearing 

parameters are inner radius (r)=75mm, outer radius(R)=110 mm, interface stiffness(Cb) 

=13.34109 N/m3/2, diametral clearance(d0)=5.5m. Also, the directional dynamics are 

considered as follows: Kx=Ky=2.1e7 N/m, tool diameter=12mm, specific cutting 

coefficient for aluminium alloy Ks=750N/mm2, number of teeth=4 and spindle speed was 

set at 2500 rpm. Trail runs are conducted by adjusting the KP and KD values to reduce the 

tool vibration levels. The tool tip vibration responses are arrived including the regenerative 

dynamic equations for system. The controller is placed at node-2(at the junction of tool 

and holder) so that the control force (U) in two directions x and y acts at that node in the 

force vector. This location of actuator may be altered close to the tool tip also where the 

amplitudes of vibrations are to be minimized.  

Figure 5.11 shows the arrangement of controller over the spindle-tool system in the 

form of electromagnetic (EM) actuator placed at the junction of tool and holder.  

 

 

 

 

 

 

 

 

Figure 5.11: Electro-magnetic actuator for the spindle 

 

 

EM actuator 
X,  
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The total regenerative cutting force of the milling dynamics as described previously in the 

two dimensional cutting force model in chapter-4 are considered for analysis. A 

considerable reduction in the vibration levels has occurred at KP=380 and 
PD KK 2

=39 in both x and y directions as shown in Figure 5.12.  

 

                (a) without controller                                          (b) with controller 

 

                (c)without controller                                     (d) with controller 

Figure 5.12: Tool tip vibration levels at a depth of 1mm 

Similarly, Figure 5.13 shows the corresponding vibration levels obtained for a depth of cut 

3mm at the same spindle speed. It is observed that the amplitude of displacement levels is 

increased when the depth of cut increases. As the controller is applied the vibration levels 

are reduced in both the directions. 
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                 (a) without controller                                          (b) with controller 

     

                     (c) without controller                                     (d) with controller 

                     Figure 5.13: Tool tip vibration levels at a depth of 3mm 

Figure 5.14 shows the regenerative cutting forces obtained for two different depths of cut 

at 1mm and 3mm. Initially, it is seen that, when the depth of cut increases the amplitude 

of the forces also increases. It is also observed that, when the PD control is applied there 

is a considerable reduction in the amplitude of the cutting forces. 
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                          (c) without control                                   (d) with control 

Figure 5.14: Time domain simulation at a depth of 1mm and 3mm 

Figure 5.15 shows the FFT plots at the tool-tip node in x direction with and without 

controller at two different depths of cut. Vibration amplitudes have reduced considerably 

by applying the control forces at node near to the tool-tip. 

       

                                                        

                                                       (a) Axial depth=1mm                                               

0 10 20 30 40
-40

-20

0

20

40

time(s)

F
o
rc

e
s
 (

N
)

0 10 20 30 40
-10

-5

0

5

10

15

time (s)

F
o
rc

e
s
 (

N
)



Chapter-5                                                       Control strategies in end milling process     

170 
 

 

                                                            (b)Axial depth=2mm 

                                        Figure 5.15: FFT plots at different depths of cut 

It is observed that the PD controller is easy to be implemented and gains can be 

designed based upon the system parameters if they can be achieved or estimated precisely. 

Moreover, the PD gain can be designed just based on the system tracking error and treats 

the system to attain the steady state. 

5.4 Conclusions 

This chapter has presented some control strategies for chatter mitigation due to 

regenerative phenomenon. The primary structural vibration modes are considered for the 

entire spindle unit which has the significant role in ascertaining the self-excited vibration. 

In summary the following are the important issues considered. 

 Initially the semi-active methods are introduced for the spindle model by 

placing the tuned mass dampers. Optimal studies are conducted using the 

PSO algorithm to identify the location of vibration absorber and its stiffness 

and damping parameters to maximize the stable depth of cut. 

  With this damped FRF’s at tool-tip the corresponding stability lobes are 

plotted. This has increased the average stable depth of cut. 

 Active controller design has been presented using PD control scheme and 

explained with the finite element model of spindle-tool system to reduce 

the tool-tip vibration levels for the up milling process. 

 The PD controller produces the feasible results, by reducing the tool-tip 

vibration levels at a very less time. 
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Chapter-6 

Conclusions 

In this work, a comprehensive study of the spindle-tool system design has been 

presented with its influences on the machining instability in the end milling process. 

Prediction of frequency response at the tool tip is of paramount importance in assessing the 

machining quality at the design stage. A coupled dynamic field approach for prediction of 

tool-tip frequency response of spindle-housing system has been presented.  

6.1 Summary 

Dynamics of spindle-tool system of a practical CNC machining center XLMILL has been 

considered and analyzed by finite element modeling in order to understand its vibrational 

characteristics and tool-tip frequency response behaviour. Effect of operating speeds, depth 

of cuts and tool-workpiece combinations on vibration behaviour were studied. The 

dynamic characteristics of the system were validated with those obtained from three-

dimensional finite element model of the system along with receptance coupling approach 

in which the receptances of spindle tip were assembled with that of the holder-tool system. 

Experimental modal analysis was conducted on the CNC machining spindle system to 

obtain the modal characteristics of combined system by using both impact hammer and 

vibration shaker tests. Interactive programs developed in the work facilitates user to select 

the required number of elements in the model, alter various spindle-tool parameters or 

account conveniently any cross-sectional changes such as step/taper portions on spindle. 

Some studies are carried-out to estimate optimal spindle-tool parameters to maximize the 

dynamic rigidity of the spindle and hence in improvising the stability of cutting operation. 

Several experimental cutting studies were conducted on manual bench drilling machine 

spindle for end milling operations and it was found that modifications of existing spindle 

by adapting additional bearing system has enhanced the stability regions without 

appreciable chatter vibrations in the system. Generalized programs were developed for 

obtaining accurate stability lobe plots from the tool-tip frequency responses. These plots 

have been validated by conducting the cutting tests using the vibration and sound signals.  

Once chatter vibrations start due to regeneration, some external control methods need to 

be employed for achieving normal cutting conditions. Two common control schemes were 

illustrated with present spindle-tool system. In first method, tuned mass vibration dampers 

were employed on the spindle, while in other approach; active strategy using model-based 

control was presented for minimization of vibration amplitudes when chatter begins. 

Modular programming
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 approach employed in this work helps in easy changes for considering effects of several 

variables. Point-wise summary of the work is given below: 

 The spindle-holder and tool system of a CNC machine centre has been analysed by finite 

element modeling and receptance coupling method to obtain the tool-tip frequency 

response functions. 

 The dynamic characteristics of the model were compared with experimental modal 

analysis on the practical spindle system. 

 The generalized computer programs were further used to carry out parametric studies on 

dynamic stiffness of spindle and optimum spindle system variables were identified to 

achieve the maximum dynamic stiffness.  

 In this regard, the ball bearings were modelled using non-linear Hertzian contact forces 

with axial preload along with the joint interfaces at spindle, holder and tool idealized as 

spring damper systems. 

 DOE and ANOVA techniques are employed to identify the effective spindle-tool 

parameters on the tool-tip frequency response. Based on the simulated results, the data 

was generalized with the help of a neural network model that works as a function 

estimator for the GA based optimization module. The optimal data obtained from this 

optimization technique increases the dynamic stiffness of the structure and proposes to 

design a new modified spindle-tool unit which can be able to bear the dynamic vibrations 

during the cutting process. 

 The modeling methods developed in this work facilitate to us apply to any type spindle-

tool assemblies.  In view of this, a practical spindle unit of an in-house manual drilling 

machine is considered for the analysis. Finite element models are applied for the spindle-

tool unit of a drill spindle and optimal topology of designs were proposed to improve the 

dynamic stiffness. 

 The fundamental frequency responses arrived from the spindle-tool unit was utilized to 

plot the two and three dimensional stability lobes. Both these plots were further validated 

by conducting the cutting tests which shows the correctness of boundaries.  

 The time-domain simulation studies were carried for three dimensional helical force 

model at different depths of cut. These simulations were further extended to study the 

various effects like variable tool pitches, tool-run outs, process damping, high speed 

effects and nonlinear feed rates.  This virtual scenario developed in this work can be 

implemented for milling process optimization at the design stage when selecting various 

parameters of a particular cutting tool and their associated process dynamics. 

 In order to utilize a bench drilling machine with its work-bed, the spindle design was 

modified slightly and a portable X-Y table for mounting of workpiece was fabricated. 
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Several experimental studies have been carried out on this set up to know the effects of 

the spindle-tool parameters on overall cutting process stability.  

 In order to control the instability and improve the stable depth of cut, two control schemes 

such as semi-active and active strategies were implemented using the finite element 

model of the spindle-tool system.  

6.2 Future work 

The computer simulations and experimental studies carried out in this work have in general 

applications in stability assessment in different machining operations. In spite of these 

studies, there are several possible issues considered for future research work. Some these 

includes 

 The thermal expansion of the spindle is an important issue as it changes the 

dimensions of the spindle-tool unit, bearing and spindle dynamics when the 

spindle is rotating at high speeds and this may be considered during 

modeling. 

 In the RCSA approach modeling of cutter flutes and the flexible coupling 

at the interfaces of the joints are the important issues which need to be 

further studied and analyzed in order to increase the accuracy of the tool-

point FRF predictions. 

 The process mechanics and dynamic models will be applied to cover 

various other milling operations such as flank, face and peripheral five axis 

milling process. 

 The workpiece dynamics is an important phenomenon while machining the 

flexible work pieces and may be considered as the future work. 

  The concept of frictional damping can be considered at cutting tool as it 

increases the cutting depth over the solid tool. 

 More robust control techniques such as adaptive control with FUZZY rule 

base can be considered to improve the stability of the cutting process. 

 For the experimental test bed developed on bench drilling machine an 

electromagnetic actuator system has to be designed so as to reduce the 

vibrations during higher depths of cut based on proposed PD control 

module. 
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APPENDIX-A 

Finite element matrices 

A.1 Shape Functions 

For consideration of axial preload effects, a ten degree beam element is considered according 

to following field variables. 

xaau 10   

3
3

2
210 xbxbxbbv 

                                                                                            (A1)
 

3
3

2
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2
210 xdxddy 
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210 xexeez   

The displacements u, v, w, y  and z  are expressed in terms of element nodal  

displacements ui, vi, wi, yi , zi  and uj, vj, wj, yj  and zj . There are 16 unknowns in 

equations which satisfy both homogeneous equations and element boundary conditions.  
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[N] is a matrix formed by shape functions, and {q} is nodal displacement. 
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Shape functions defined as: 
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Set the weighted functions as  
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From equations (A.5) and (A.6) the following equations can be obtained: 
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     RT MMM  where [M]T and [M]R are the translational and rotational mass matrices. 
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The mass matrix [Mc] is used to compute the centrifugal force is given by 
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    The gyroscopic matrix [G] is: 
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 The stiffness matrix [K] is given by 
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APPENDIX-B 

Fourth order Runge-Kutta time integration method 

This method is used to find Xi+1 from Xi upto terms of order ( )nt . All second order 

differential equations are converted to state space form before beginning the method. 

From matrix eq. of motion, acceleration vector can be expressed as: 

1( ) [ ] ( ( ) [ ] ( ) [ ] ( ))x t M F t C x t K x t  
                                             (B1) 

In this method a new vector, ( )X t , is defined which contains the unknown displacements 

and velocities as: 
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Rearranging above the equations to get displacement and velocity terms as: 
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Now, ( )X t can be obtained from the recurrence formula as: 
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APPENDIX-C 

Static condensation technique 

In the structural dynamics area, model order reduction techniques have been widely used 

in global-local analysis, eigen-value problem, structural vibration and buckling, sensitivity 

studies and control parameters design and model update. For all model 

reduction/expansion techniques, there is a relationship between the master dof (adof) and 

the deleted dof (ddof) which can be written in general terms as 

    a
d

a
n XT

X

X
X 











                                                                                                 
(C1)

 

Where ‘n’ denotes all degrees of freedom, ‘a’ denotes master or tested dof, ‘d’ denotes 

deleted or omitted dof 
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Since the energy of the system needs to be conserved, a balance can be written between 

the energy at state 1 and state 2 as 
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Substituting the transformation gives 
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Rearranging some terms then yields 
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Then the reduced stiffness is related to the original stiffness by 
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The mass is reduced in a similar fashion 
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Using the reduced mass and stiffness matrices, the eigen-solution produces frequencies 

that are higher than those of the original system (for most of the reduction schemes). 

The eigen-solution of the reduced matrices 

                      0 aaa X M K 
                                                                              (C9)                  

 

The stiffness equation becomes  

                 nnn FX K 
                                                                                             (C10)

 

can be partitioned into the ‘a’ active DOF and the ‘d’ deleted or omitted DOF to form two 

equations given as 
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Assuming that the forces on the deleted DOF are zero, then the second equation can be 

written as 

       0 dddada X KX K
                                                                                  (C12)

 

which can be solved for the displacement at the deleted DOF as 

      adaddd X K KX
1


                                                                                        (C13)

 

The first equation can be written as 

       adadaaa FX KX K 
                                                                                   (C14)

 

and upon substituting for the ‘d’ deleted DOF gives the equation becomes 
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This can be manipulated to yield the desired transformation to be 
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Using this transformation, the reduced stiffness and mass matrices can be written as 
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APPENDIX-D 

Training algorithm for MLP neural network 

D.1 Neuron model 

The simple model of an artificial neuron is shown in Figure B.1, where O1 O2……. On are 

the inputs to the artificial neuron and W1B, W2B, WnB are the weights attached to the input 

links. The weights are multiplicative factors of the inputs to account for the strength of the 

synapse. Hence the total input IB received by the soma of the artificial neuron is  
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Figure B.1: Mathematical model of neuron 

To generate the final output OB, the sum is passed to a non-linear filter ‘f’ called activation 

function or transfer function or Squash function which releases the output. 

 BB IfO                                                                                                                     (D2) 

Following sigmoidal functions are used as activation functions for approximating non-

linear data;  

Logarithmic sigmoid function f(x) =
xe1
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D.2 Learning in Multi-Layer Perceptron 

The notations followed are W1, W2, W3, ..... are the weight matrices, (θj, j) are the bias terms 

and (, ) are learning and momentum factors. The following steps are followed. 

1. Output at the jth hidden layer neuron  

      







  j

i

ij jiWxfh ),(1                                                                                       (D5) 

2. Output of jth ouput layer neuron 
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i

ij jiWhfO ),(2                                                                                      (D6) 

3. ith component of output error at output layer  

      iii OTe                                                                                                                (D7) 

4. ith component of output error at hidden layer  
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5. Adjustment of weights between ith neuron in hidden layer and jth neuron in output    

    layer in cycle t is  

     )1(),())(,( 22  tjiWehtjiW ji                                                           (D9) 

6. Adjustment of weights between ith neuron in input layer and jth neuron in hidden layer   

    is  

     )1(),())(,( 11  tjiWtxtjiW ji                                                         (D10) 

7. Adjustment of threshold/bias 

      jth output neuron: jj e                                                                                 (D11) 

      jth hidden neuron: jj e                                                                               (D12) 
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APPENDIX-E 

LabVIEW programs for sound spectrum analysis 

E.1 Read the sound spectrum data 

The following program is used for receiving the signals from micro-phone into LabVIEW 

software. LabVIEW 2015 is used. 

 

Figure E.1: Block diagram to read the sound data 

E.2 Save the sound spectrum data 

 

 

Figure E.2: Block diagram to save the sound data 
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E.3 Power spectral density of the cutting signal 

Using   signal analysis express VI, Fourier transforms are taken to display the frequency 

domain plots. Figure C3 shows the block diagram employed to convert time domain to 

frequency domain. 

 

 

                                       Figure E.3: Block diagram for the spectral sound  
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APPENDIX-F 

Computer programs 

A list of partial codes for important programs developed in the work is summarized below. 

All the codes are developed in MATLAB. 

F.1 Finite element method to obtain the matrices 

====================================================== 
% Initializing global matrices as null matrices 
K=zeros(4*n+4,4*n+4); 
M=zeros(4*n+4,4*n+4); 
Gr=zeros(4*n+4,4*n+4); 
speed=15000; 
omega=speed*2*pi/60; 

  
fid=fopen('sample.m','r'); 
for k=1:n %elements 
      for p=1:8 % dof 
      ne(p)=fscanf(fid,'%f',1); 
   end 
  switch k 
  case 1 
     

le=L1;A=A1;G=G1;RA=R1*A1;RI=R1*I1;YI=E1*I1*(1+1i*eta);r=sqrt(I1/A1); 
  case 2 
     

le=L2;A=A2;G=G2;RA=R2*A2;RI=R2*I2;YI=E2*I2*(1+1i*eta);r=sqrt(I2/A2); 
  case 3 
       

le=L3;A=A3;G=G2;RA=R2*A3;RI=R2*I3;YI=E2*I3*(1+1i*eta);r=sqrt(I3/A3); 
  case 4 
       

le=L4;A=A4;G=G2;RA=R2*A4;RI=R2*I4;YI=E2*I4*(1+1i*eta);r=sqrt(I4/A4); 
  case 5 
       

le=L5;A=A5;G=G2;RA=R2*A5;RI=R2*I5;YI=E2*I5*(1+1i*eta);r=sqrt(I5/A5); 
  end 

   
  ks=0.9; 

 
% BOUNDARY CONDITIONS 
theta=25*pi/180;Db=0.009;Z=20;F=1500; 
K(7,7)=1.77236*10^7*(Z^2*Db)*(cos(theta)^2/sin(theta)^0.333)*F^0.333; 
K(8,8)=1.77236*10^7*(Z^2*Db)*(cos(theta)^2/sin(theta)^0.333)*F^0.333; 
K(9,9)=1.77236*10^7*(Z^2*Db)*(cos(theta)^2/sin(theta)^0.333)*F^0.333; 
K(10,10)=1.77236*10^7*(Z^2*Db)*(cos(theta)^2/sin(theta)^0.333)*F^0.333; 

  
% ASSEMBLING OF ELEMENTS 
   for ii=1:8 
     p=ne(ii); 
     for jj=1:8 
       q=ne(jj); 
       K(p,q)=K(p,q)+kef(ii,jj); 
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       M(p,q)=M(p,q)+me(ii,jj); 
       Gr(p,q)=Gr(p,q)+ge(ii,jj); 
    end 
  end 
end 
fclose(fid); 

  
Gq=-(omega*Gr); 
    Cr=Gq;  % Total damping 
    t1=1; 
    for om=0:1:15000   %rad/sec 
       A1=K-M*om^2+1i*om*Cr; 
       Hg=inv(A1); 
       tfrf(t1)=Hg(1,1); 
       t1=t1+1; 

        
    end 

     

 F.2 Program for receptance coupling  

====================================================== 
% four bending receptsances form FINITE ELEMENT METHOD 

  
h3b3breal=xlsread('soliddamping.xlsx',1,'A1:A4000'); 
h3b3bimg=xlsread('soliddamping.xlsx',1,'B1:B4000'); 
h3b3b=(h3b3breal+1i*h3b3bimg)'; 
l3b3breal=xlsread('soliddamping.xlsx',1,'D1:D4000'); 
l3b3bimg=xlsread('soliddamping.xlsx',1,'E1:E4000'); 
l3b3b=(l3b3breal+1i*l3b3bimg)'; 
n3b3breal=xlsread('soliddamping.xlsx',1,'G1:G4000'); 
n3b3bimg=xlsread('soliddamping.xlsx',1,'H1:H4000'); 
n3b3b=(n3b3breal+1i*n3b3bimg)'; 
p3b3breal=xlsread('soliddamping.xlsx',1,'J1:J4000'); 
p3b3bimg=xlsread('soliddamping.xlsx',1,'K1:K4000'); 
p3b3b=(p3b3breal+1i*p3b3bimg)'; 

  
% Calculate assembly receptances 
for cnt = 1:length(w) 
    % Define generalized receptance matrices  

    % Free-free cylinder 
    R11 = [h11(cnt) l11(cnt); n11(cnt) p11(cnt)]; 
    R2b3a=[h2b3a(cnt) l2b3a(cnt); n2b3a(cnt) p2b3a(cnt)]; 
    R2b2b=[h2b2b(cnt) l2b2b(cnt); n2b2b(cnt) p2b2b(cnt)]; 
    R2a2a=[h2a2a(cnt) l2a2a(cnt); n2a2a(cnt) p2a2a(cnt)]; 
    R12a=[h12a(cnt) l12a(cnt); n12a(cnt) p12a(cnt)]; 
    R3a2b=R2b3a; 
    R2a1=R12a; 
    R3b3b=[h3b3b(cnt) l3b3b(cnt); n3b3b(cnt) p3b3b(cnt)]; 

    
      R13a=  R12a*inv(R2a2a+R2b2b)*R2b3a; 
    R3a3a = [h3a3a(cnt) l3a3a(cnt); n3a3a(cnt) p3a3a(cnt)]; 

     
    R3a1=R3a2b*inv(R2a2a+R2b2b)*R2a1;   

    G11 = R11 - R13a/(R3a3a + R3b3b)*R3a1; 

     
    % Individual terms in G11 
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    H11(cnt) = G11(1,1); 
    L11(cnt) = G11(1,2); 
    N11(cnt) = G11(2,1); 
    P11(cnt) = G11(2,2); 

 

F.3 Programs for Stability Computations 
===================================================================== 

alphaxx = 0.5*((cos(2*phie)-2*Kn*phie+Kn*sin(2*phie))-(cos(2*phis)-

2*Kn*phis+Kn*sin(2*phis))); 
alphaxy = 0.5*((-sin(2*phie)-2*phie+Kn*cos(2*phie))-(-sin(2*phis)-

2*phis+Kn*cos(2*phis))); 
alphayx = 0.5*((-sin(2*phie)+2*phie+Kn*cos(2*phie))-(-

sin(2*phis)+2*phis+Kn*cos(2*phis))); 
alphayy = 0.5*((-cos(2*phie)-2*Kn*phie-Kn*sin(2*phie))-(-cos(2*phis)-

2*Kn*phis-Kn*sin(2*phis))); 

  
wnmax = max([wnx wny]); 
w = (0:0.1:2*wnmax/2/pi)'*2*pi;   % frequency, rad/s 
FRFxx = (wnx^2/kx)./(wnx^2 - w.^2 + 1i*2*zetax*wnx.*w);  % m/N 
FRFyy = (wny^2/ky)./(wny^2 - w.^2 + 1i*2*zetay*wny.*w); 

  
for cnt = 1:length(w) 
    % Oriented FRF 
    FRF_or = [alphaxx*FRFxx(cnt) alphaxy*FRFyy(cnt); alphayx*FRFxx(cnt) 

alphayy*FRFyy(cnt)];    % m/N 
    % Calculate two eigenvalues 
    E = eig(FRF_or); 
    temp = E(1); 
    lambda1(cnt) = temp; 
    temp = E(2); 
    lambda2(cnt) = temp; 
    if (cnt > 1) 
        dot_prod1 = real(lambda2(cnt))*real(lambda2(cnt-1)) + 

imag(lambda2(cnt))*imag(lambda2(cnt-1)); 
        dot_prod2 = real(lambda2(cnt))*real(lambda1(cnt-1)) + 

imag(lambda2(cnt))*imag(lambda1(cnt-1)); 
        if (dot_prod2 > dot_prod1) 
            temp = lambda2(cnt); 
            lambda2(cnt) = lambda1(cnt); 
            lambda1(cnt) = temp; 
        end 
    end 
end 

  
lambda1 = lambda1'; 
lambda2 = lambda2'; 

  
alim1 = (2*pi/Nt/Kt)./((real(lambda1)).^2 + (imag(lambda1)).^2) .* 

(real(lambda1) .* (1 + (imag(lambda1)./real(lambda1)).^2));  % m 
alim2 = (2*pi/Nt/Kt)./((real(lambda2)).^2 + (imag(lambda2)).^2) .* 

(real(lambda2) .* (1 + (imag(lambda2)./real(lambda2)).^2)); 

  
[index1] = find(alim1 > 0); 
alim1 = alim1(index1); 
alim1 = alim1*1e3;      % mm 
w1 = w(index1); 
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epsilon1 = pi - 2*psi1; 
omega11 = (60/Nt)*w1./(epsilon1 + 2*0*pi);     % rpm 
omega12 = (60/Nt)*w1./(epsilon1 + 2*1*pi); 
omega13 = (60/Nt)*w1./(epsilon1 + 2*2*pi); 
omega14 = (60/Nt)*w1./(epsilon1 + 2*3*pi); 

  
[index2] = find(alim2 > 0); 
alim2 =  

psi2 = atan2(imag(lambda2), real(lambda2)); 
psi2 = psi2(index2); 
epsilon2 = pi - 2*psi2; 
omega21 = (60/Nt)*w2./(epsilon2 + 2*0*pi); 
omega22 = (60/Nt)*w2./(epsilon2 + 2*1*pi); 
omega23 = (60/Nt)*w2./(epsilon2 + 2*2*pi); 
omega24 = (60/Nt)*w2./(epsilon2 + 2*3*pi); 

 

F.4 Programs for time domain computations 

====================================================== 
  for cnt1 = 1:steps 
          

    for cnt2 = 1:Nt               
        teeth(cnt2) = teeth(cnt2) + 1; 
        if teeth(cnt2) > steps_rev  
            teeth(cnt2) = 1; 
        end 
    end      

  
    Fx = 0; 
    Fy = 0; 
    Fz = 0; 

     
    for cnt3 = 1:Nt 
        for cnt4 = 1:steps_axial 
            phi_counter = teeth(cnt3) - (cnt4-1); 
            if phi_counter < 1     % helix has wrapped through phi = 0 
                phi_counter = phi_counter + steps_rev; 
            end 
            phia = phi(phi_counter);  % angle for given axial disk, deg 
            z = cnt4*dz;                                

              if z <= d/2                      
                kappa_p = acos(1-2*z/d);    % force projection angle,  
            else                             
                kappa_p = pi/2; 
            end 

             
            if (phia >= phis) & (phia <= phie) 
                if z <= d/2                                  
                    theta = kappa_p - acos(1 - 2*(z-dz)/d);  

                 else 
                    db = d/2*theta;                                                                 
                    db = dz; 
                end 
                n = x*sin(phia*pi/180) - y*cos(phia*pi/180);                      

h = (ft*sin(phia*pi/180) + surf(cnt4, phi_counter) - 

n)*sin(kappa_p)^beta; % m 
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                if h < 0 
                    Ft = 0; 
                    Fn = 0; 
                    Fa = 0; 
                    surf(cnt4, phi_counter) = surf(cnt4, phi_counter) +  

ft*sin(phia*pi/180); 
                else 
                    Ft = kt*db*h; 
                    Fn = kn*db*h; 
                    Fa = ka*db*h; 
                    surf(cnt4, phi_counter) = n; 
                end 
            else 
                Ft = 0; 
                Fn = 0; 
                Fa = 0; 
            end 

     
            Fx = Fx + Ft*cos(phia*pi/180) + 

Fn*sin(phia*pi/180)*sin(kappa_p) - Fa*sin(phia*pi/180)*cos(kappa_p); 
            Fy = Fy + Ft*sin(phia*pi/180) - 

Fn*cos(phia*pi/180)*sin(kappa_p) + Fa*cos(phia*pi/180)*cos(kappa_p); 
            Fz = Fz -Fa; 
        end 
    end 

     
    Forcex(cnt1) = Fx; 
    Forcey(cnt1) = Fy; 
    Forcez(cnt1) = Fz; 

 

F.5 Programs FFT and amplitude spectrum 

====================================================== 
t=xlsread('FFT1.xlsx',2,'Q1:Q10000'); 
A=xlsread('FFT1.xlsx',2,'R1:R10000'); 
Fs = 5000;                    % Sampling frequency 
T = 1/Fs;                     % Sample time 
L = 3000;                     % Length of signal 
%t = (0:L-1)*T;                % Time vector 
% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid 
t=xlsread('FFT1.xlsx',2,'Q1:Q10000'); 
y = 2*randn(size(t));     % Sinusoids plus noise 
NFFT = 2^nextpow2(L); % Next power of 2 from length of y 

 
% Plot single-sided amplitude spectrum. 
figure(1) 
subplot(2,1,1) 
plot(t,A,'b') 
xlabel('Time (s)'); 
ylabel('Amplitude ') 
title('Tool and workpice amplitude vibration level') 
subplot(2,1,2) 
plot(f,2*abs(Y(1:NFFT/2+1)))  
title('Amplitude Spectrum of y(t)') 
xlabel('Frequency (Hz)') 
ylabel('|Y(f)|') 
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F.6 Programs for process damping 
======================================================================= 

zetax=(Cx1+(C*b*cos(90-phiavg).^2)/V)/(2*wnx*mx); 
zetay=(Cy1+(C*b*cos(180-phiavg).^2)/V)/(2*wnx*mx); 

 

FRF_real_x = FRF_real_x*1e3; 
FRF_imag_x = FRF_imag_x*1e3; 
FRF_real_y = FRF_real_y*1e3; 
FRF_imag_y = FRF_imag_y*1e3; 
% Directional orientation up milling factors 
mux = cos((beta -(90- phiavg)*pi/180)*cos(90-phiavg)*pi/180); 
muy = cos((180-phiavg-beta)*pi/180)*cos((180-phiavg)*pi/180); 
% Oriented FRF 
FRF_real_orient = mux*FRF_real_x + muy*FRF_real_y;  
FRF_imag_orient = mux*FRF_imag_x + muy*FRF_imag_y; 
% Define average number of teeth in cut, Nt_star 
Nt = 4; 
phis = 0;      % deg 
phie = 60; 
Nt_star = (phie - phis)*Nt/360; 

  
% Calculate blim 
blim = -1./(2*Ks*FRF_real_orient*Nt_star);  % mm 

  
% Calculate epsilon 
for cnt = 1:length(FRF_imag_orient) 
    if FRF_imag_orient(cnt) < 0 
        epsilon(cnt) = 2*pi - 

2*atan(abs(FRF_real_orient(cnt)/FRF_imag_orient(cnt))); 
    else 
        epsilon(cnt) = pi - 

2*atan(abs(FRF_imag_orient(cnt)/FRF_real_orient(cnt))); 
    end 
end 
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