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Abstract

The minimal model of a 1-connected differential graded Lie algebra is obtained as the
Adams cocompletion of the differential graded Lie algebra with respect to a chosen set
of morphisms in the category of 1-connected differential graded Lie algebras (d.g.l.a.’s)
over the field of rationals and d.g.l.a.-homomorphisms. The Postnikov-like approimation
of a module is obtained as the Adams completions of the space with the help of a suitable
set of morphisms in the category of some specific modules and module homomorphisms.
The Cartan-Whitehead decomposition of topological G-module is obtained as the Adams
cocompletion of the space with respect to suitable sets of morphisms. Postnikov-like
approximation is obtained for a topological G-module, in terms of Adams completion with
respect to a suitable sets of morphisms, using cohomology theory of topologicalG-modules.
The ring of fractions of the algebra of all bounded linear operators on a separable infinite
dimensional Banach space is isomorphic to the Adams completion of the algebra with respect
to a carefully chosen set of morphisms in the category of separable infinite dimensional
Banach spaces and bounded linear norm preserving operators of norms at most 1. The nth
tensor algebra and symmetric algebra are each isomorphic to the Adams completions of
the algebras. The exterior algebra and Clifford algebra are each isomorphic to the Adams
completions of the algebra with respect to a chosen set of morphisms in the category of
modules and module homomorphisms.

Keywords: Grothendieck universe; Adams completion; Adams cocompletion; Minimal
model; G-module; Tensor algebra; Symmetric algebra; Exterior algebra; Clifford
algebra.
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Chapter 0

Introduction

The concept of the Adams completion was proposed by J. F. Adams [1–4]; in fact this idea
first arose with respect to the problem of stability. Its characterization and properties were
clearly categorical in nature. However, only in later works by Deleanu, Frei and Hilton
the theory was freed from its topological bounds. The greatest difficulty, in dealing with
the Adams completion from the categorical point of view (hence in general), lies in its set
theoretical aspect. In fact category of fractions, which plays a basic role here, is not always
well defined, since there is no guarantee that the collection of morphisms between any two
of its objects is a set.

It is well known that the usual set theory, as described by Zermelo and Fraenkel [5, 6],
when used without extreme rigor leads very easily to some incoherent results. The most
famous of those is the Russell paradox, which implies that the set of all the sets is not
a set. To avoid those difficulties we will work in the logical framework of “universes”
of Grothendieck. The first step in this direction is to forget the existence of “primitive”,
i.e., indivisible, elements and to consider any set as a collection of other sets, where
the collection can even be empty or consists of a single element. With this agreement
Grothendieck universe is defined in [7]. This thesis does not attempt to make a study
of set theory; however the concept of universes is essential since their use seems to be
unavaoidable in some categorical constructions, in particular in the construction of category
of fractions.

It is a firmly established fact that the collection of objects of a category need not be a set,
but the logical contradiction which is at the basis of the Russell paradox works also in this
case, so that the category of all categories cannot be considered as a category. Nevertheless
many times it is very useful to consider this or other kinds of structures which present the
same difficulty. These difficulties may be overcome by making some mild hypotheses and
using Grothendieck universes [7].

Precisely speaking if we start with a category belonging to a certain Grothendieck
universe then the category of fractions with respect to a set of morphisms of the category
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Introduction

belongs to a higher universe [7]. We note that the cases in which we are interested, will not
present such difficulty. However, Nanda [8] has proved that if the set of morphisms admits
a calculus of left (right) fractions then the category of fractions with respect to the set of
morphisms of the category belongs to the same universe as to the universe that the category
belongs. Also if the set of morphisms of the category admits a calculus of left (right)
fractions then the category of fractions can be described nicely; this explicit construction is
given in [7].

The central idea of this thesis is to investigate some cases showing how some algebraic
and geometrical constructions are characterized in terms of Adams completions or
cocompletions. We will deal with such cases involving the concepts of calculus of left
(right) fractions. In fact in each of the characterizations that we have undertaken in our
study, the set of morphisms of the category has to admit either calculus of left fractions or
calculus of right fractions.

In Chapter 1, we recall the definitions of Grothendieck universe, category of fractions,
calculus of left (right) fractions [7] and generalized Adams completions (cocompletions)
[9]. We state some results on the existence of global Adams completions (cocompletions)
of an object in a cocomplete (complete) category with respect to a set of morphisms in
the category [9]. Deleanu, Frei and Hilton [9] have shown that if the set of morphisms
in the category is saturated then the Adams completion (cocompletion) of an object is
characterized by a certain couniversal property. We state a stronger version of this result
proved by Behera and Nanda [10] where the saturation assumption on the set of morphisms
is dropped. We also state Behera and Nanda’s result [10] that the canonical map from an
object to its Adams completion (from Adams cocompletion to the object) is an element of
the set of morphisms under very moderate assumption. These two results are fairly general
in nature and applicable to most cases of interest.

The concept of rational homotopy theory was first characterized by Quillen. In fact in
rational homotopy theory Sullivan introduced the concept of minimal model. In Chapter 2,
a categorical construction of minimal model of lie algebra is presented. In fact we prove
that the minimal model of a 1-connected differential graded Lie algebra can be expressed
as the Adams cocompletion of the differential graded Lie algebra with respect to a chosen
set of morphisms in the category of 1-connected differential graded Lie algebras (in short
d.g.l.a.’s) over the field of rationals and d.g.l.a.-homomorphisms.

Behera and Nanda have studied Postnikov approximation of a space, by introducing a
Serre class C of abelian groups. They have obtained the mod-C Postnikov approximation
of a 1-connected based CW -complex, with the help of a suitable set of morphisms in

2



the category of 1-connected based CW -complexes and based maps. In Chapter 3, we
have obtained the Postnikov-like approimation of a module, where the different stages
of the approximation are shown to be the Adams completions of the module, with the
help of a suitable set of morphisms in the category of some specific modules and module
homomorphisms.

It is known that the different stages of the Cartan-Whitehead decomposition of a
0-connected space can be obtained as the Adams cocompletion of the space with respect to
suitable set of morphisms [10]. In Chapter 4, Cartan-Whitehead decomposition is obtained
for topological G-module.

In Chapter 5, we study the dual of the decomposition of a topological G-module
obtained in Chapter 4. In fact, the central idea of this chapter is to obtain a Postnikov-like
tower of a topological G-module, using the cohomology theory of topological G-module.

In Chapter 6, it is shown that ring of fractions ofB(H), the algebra of all bounded linear
operators on a separable infinite dimensional Hilbert space H is isomorphic to the Adams
completion of B(H) with respect to a chosen set of morphisms in a suitable category. In
this chapter, we show that the ring of fractions of the algebra of all bounded linear operators
on a separable infinite dimensional Banach space is isomorphic to the Adams completion of
the algebra with respect to a carefully chosen set of morphisms in the category of separable
infinite dimensional Banach spaces and bounded linear norm preserving operators of norm
at most 1.

Chapter 7 is devoted to categorical study of tensor algebra and symmetric algebra. The
purpose here is to obtain the tensor algebra and symmetric algebra in terms of Adams
completion. Under some reasonable assumption, we show that given an algebra, its nth
tensor algebra and symmetric algebra are each isomorphic to the Adams completion of the
algebra.

In Chapter 8, we obtain that given an algebra, its exterior algebra and Clifford algebra
are each isomorphic to the Adams completion of the algebra with respect to a chosen set of
morphisms in the category of modules and module homomorphisms.



Chapter 1

Pre-Requisites

In this chapter we recall the definition of Adams completion (cocompletion) and some
known results on the existence of global Adams completion (cocompletion) of an object
in a category C with respect to a family of morphisms S in C . A characterization of Adams
completion (cocompletion) in terms of its couniversal property proved by Deleanu, Frei and
Hilton is recalled. We also describe a stronger version of this result proved by Behera and
Nanda [11]. We also state Behera and Nanda’s result [11] that the canonical map from an
object to its Adams completion is an element of the set of morphisms under very moderate
assumption. This chapter serves as the base and background for the study of subsequent
chapters and we shall keep on referring back to it as and when required.

1.1 Category of fractions

In this section we recall the abstract definition of category of fractions and some other related
definitions. We start with universe.

Definition 1.1.1. ([7], p. 266) A Grothendeick universe (or simply universe) is a collection
U of sets such that the following axioms are satisfied:

U(1): If {Xi : i ∈ I} is a family of sets belonging toU then ∪
i∈I
Xi is an element ofU .

U(2): If x ∈ U then {x} ∈ U .

U(3): If x ∈ X and X ∈ U then x ∈ U .

U(4): IfX is a set belonging to U then P (X), the power set ofX is an element of U .

U(5): IfX and Y are elements of U then {X, Y }, the ordered pair (X, Y ) andX ×Y
are elements of U .

We fix a universe U that contains N, the set of natural numbers (and so Z,Q,R,C).

Definition 1.1.2. ([7], p. 267) A category C is said to be a small U -category, U being a
fixed Grothendeick universe, if the following conditions hold:

S(1): The objects of C form a set which is an element of U .

S(2): For each pair (X, Y ) of objects of C , the set HomC (X, Y ) is an element ofU .

4



Chapter 1 Pre-Requisites

Definition 1.1.3. ([7], p. 269) Let C be any arbitrary category and S a set of morphisms
of C . A category of fractions of C with respect to S is a category denoted by C [S−1]
together with a functor

FS : C → C [S−1]

having the following properties:

CF(1): For each s ∈ S, FS(s) is an isomorphism in C [S−1].

CF(2): FS is universal with respect to this property : if G : C → D is a functor such
that G(s) is an isomorphism in D , for each s ∈ S, then there exists a unique
functor H : C [S−1] → D such that G = HFS . Thus we have the following
commutative diagram:

C

D

C [S−1]
FS

G
H

Reamrk 1.1.4. For the explicit construction of the category C [S−1], we refer to [7]. We
content ourselves merely with the observation that the objects of C [S−1] are same as those
of C and in the case when S admits a calculus of left (right) fractions, the category C [S−1]

can be described very nicely [7, 12].

1.2 Calculus of left (right) fractions

As discussed in [7], for constructing the category of fractions, the notion of calculus of left
(right) fractions plays a very crucial role.

Definition 1.2.1. ([7], p. 258) A family of morphisms S in the category C is said to admit
a calculus of left fractions if

(a) S is closed under finite compositions and contains identities of C ,

(b) any diagram

X

Z

Y
s

f

in C with s ∈ S can be completed to a diagram

5



Chapter 1 Pre-Requisites

X

Z

Y

W

s

f

t

g

with t ∈ S and tf = gs,

(c) given

X Y Z W
s t

f

g

with s ∈ S and fs = gs, there is a morphism t : Z →W in S such that tf = tg.

A simple characterization for a family of morphismsS to admit a calculus of left fractions
is the following.

Theorem 1.2.2. ([9], Theorem 1.3, p. 67) Let S be a closed family of morphisms of C

satisfying

(a) if uv ∈ S and v ∈ S, then u ∈ S,

(b) every diagram

•

•

•s

f

in C with s ∈ S can be embedded in a weak push-out diagram

•

•

•

•

s

f

t

g

with t ∈ S.

Then S admits a calculus of left fractions.

The notion of a set of morphisms admitting a calculus of right fractions is defined dually.

6



Chapter 1 Pre-Requisites

Definition 1.2.3. ([7], p. 267) A family S of morphisms in a category C is said to admit a
calculus of right fractions if

(a) S is closed under finite compositions and contains identities of C ,

(b) any diagram

X

Z Y

f

s

in C with s ∈ S can be completed to a diagram

W

Z

X

Y

t

g f

s

with t ∈ S and ft = sg,

(c) given

W X Y Z
st

f

g

with s ∈ S and sf = sg, there is a morphism t : W → X in S such that ft = gt.

The analog of Theorem 1.2.2 follows immediately by duality.

Theorem 1.2.4. ([9], Theorem 1.3∗, p. 70) Let S be a closed family of morphisms of C

satisfying

(a) if vu ∈ S and v ∈ S, then u ∈ S,

(b) any diagram

•

• •

f

s

7



Chapter 1 Pre-Requisites

in C with s ∈ S, can be embedded in a weak pull-back diagram

•

•

•

•

t

g f

s

with t ∈ S.

Then S admits a calculus of right fractions.

Reamrk 1.2.5. There are some set-theoretic difficulties in constructing the categoryC [S−1];
these difficultiesmay be overcome bymaking somemild hypotheses and usingGrothendeick
universe. Precisely speaking, the main logical difficulty involved in the construction of a
category of fractions and its use, arises from the fact that if the category C belongs to a
particular universe, the category C [S−1] would, in general belongs to a higher universe ([7],
Proposition 19.1.2 ). In most applications, however, it is necessary that we remain within
the given initial universe. This logical difficulty can be overcome by making some kind
of assumptions which would ensure that the category of fractions remains within the same
universe [13–15]. Also the following theorem (Theorem 1.2.6) shows that if S admits a
calculus of left (right) fractions, then the category of fractions C [S−1] remains within the
same universe as to the universe to which the category C belongs.

The following result will be used in our study.

Theorem 1.2.6. [8] Let C be a small U -category and S a set of morphisms of C that
admits a calculus of left (right) fractions. Then C [S−1] is a small U -category.

1.3 Adams completion and cocompletion

Sullivan introduced the concept of localizations [16]. Bousfield introduced the concepts
of localizations in categories [17]. Both the constructions are applicable to many cases of
intersts. Sullivan’s construction is neat and concrete. Bousfield construction is general and
categorical. Several authors have worked on both the constructions [18]. The notion of
generalized completion (Adams completion) arose from a categorical completion process
suggested by Adams [1, 2]. Originally this was considered for admissible categories
and generalized homology (or cohomology) theories. Subsequently, this notion has been
considered in a more general framework by Deleanu, Frei and Hilton [9], where an arbitrary
category and an arbitrary set of morphisms of the category are considered; moreover they
have also suggested the dual notion, namely the cocompletion (Adams cocompletion) of an
object in a category. We recall the definitions of Adams completion and cocompletion.

8



Chapter 1 Pre-Requisites

Definition 1.3.1. [9] Let C be an arbitrary category and S a set of morphisms of C . Let
C [S−1] denote the category of fractions of C with respect to S and

F : C → C [S−1]

be the canonical functor. Let S denote the category of sets and functions. Then for a given
object Y of C ,

C [S−1](-, Y ) : C → S

defines a contravariant functor. If this functor is representable by an object YS of C , i.e.,

C [S−1](-, Y ) ∼= C (-, YS)

then YS is called the (generalized) Adams completion of Y with respect to the set of
morphisms S or simply the S-completion of Y . We shall often refer to YS as the completion
of Y .

The above definition can be dualized as follows:

Definition 1.3.2. [9] Let C be an arbitrary category and S a set of morphisms of C . Let
C [S−1] denote the category of fractions of C with respect S and

F : C → C [S−1]

be the canonical functor. Let S denote the category of sets and functions. Then for a given
object Y of C ,

C [S−1](Y, -) : C → S

defines a covariant functor. If this functor is representable by an object YS of C , i.e.,

C [S−1](Y, -) ∼= C (YS, -)

then YS is called the (generalized) Adams cocompletion of Y with respect to the set of
morphisms S or simply the S-cocompletion of Y . We shall often refer to YS as the
cocompletion of Y .

1.4 Existence theorems

We recall some results on the existence of Adams completion and cocompletion. We state
Deleanu’s theorem [15] that under certain conditions, global Adams completion of an object
always exists.

Theorem 1.4.1. ([15], Theorem 1; [8], Theorem 1) LetC be a cocomplete smallU -category
(U is a fixedGrothendeick universe) andS a set of morphisms of C that admits a calculus of
left fractions. Suppose that the following compatibility condition with coproduct is satisfied.

9



Chapter 1 Pre-Requisites

(C) If each si : Xi → Yi, i ∈ I , is an element of S, where the index set I is an element
of U , then

∨
i∈I
si : ∨

i∈I
Xi → ∨

i∈I
Yi

is an element of S.

Then every objectX of C has an Adams completionXS with respect to the set of morphisms
S.

Reamrk 1.4.2. Deleanu’s theorem quoted above has an extra condition to ensure thatC [S−1]

is again a small U -category; in view of Theorem 1.2.6 the extra condition is not necessary.

Theorem 1.4.1 can be dualized as follows.

Theorem 1.4.3. ([8], Theorem 2 ) Let C be a complete small U -category (U is a fixed
Grothendeick universe) and S a set of morphisms of C that admits a calculus of right
fractions. Suppose that the following compatibility condition with product is satisfied.

(P) If each si : Xi → Yi, i ∈ I , is an element of S, where the index set I is an element
of U , then

∧
i∈I
si : ∧

i∈I
Xi → ∧

i∈I
Yi

is an element of S.

Then every object X of C has an Adams cocompletion XS with respect to the set of
morphisms S.

Wewill recall somemore results on the existence of Adams completion and cocompletion
in the relevant chapters.

1.5 Couniversal property

Deleanu, Frei and Hilton have developed characterization of Adams completion and
cocompletion in terms of a couniversal property.

Definition 1.5.1. [9] Given a set S of morphisms of C , we define S̄, the saturation of S
as the set of all morphisms u in C such that F (u) is an isomorphism in C [S−1]. S is said to
be saturated if S = S̄.

Theorem 1.5.2. ( [9], Proposition 1.1, p. 63) A family S of morphisms of C is saturated if
and only if there exists a functor F : C → D such that S is the collection of all morphisms
f such that F (f) is invertible.

Deleanu, Frei and Hilton have shown that if the set of morphisms S is saturated then the
Adams completion of a space is characterized by a certain couniversal property.

10



Chapter 1 Pre-Requisites

Theorem 1.5.3. ([9], Theorem 1.2, p. 63) Let S be a saturated family of morphisms of C

admitting a calculus of left fractions. Then an object YS of C is the S-completion of the
object Y with respect to S if and only if there exists a morphism e : Y → YS in S which is
couniversal with respect to morphisms of S : given a morphism s : Y → Z in S there exists
a unique morphism t : Z → YS in S such that ts = e. In other words, the following diagram
is commutative:

Y

Z

YS
e

s
t

Theorem 1.5.3 can be dualized as follows.

Theorem 1.5.4. ([9], Theorem 1.4, p. 68) Let S be a saturated family of morphisms of C

admitting a calculus of right fractions. Then an object YS of C is the S-cocompletion of
the object Y with respect to S if and only if there exists a morphism e : YS → Y in S which
is couniversal with respect to morphisms of S : given a morphism s : Z → Y in S there
exists a unique morphism t : YS → Z in S such that st = e. In other words, the following
diagram is commutative :

YS Y

Z

e

t s

In most of applications, however, the set of morphisms S is not saturated. The following
is a stronger version of Deleanu, Frei and Hilton’s characterization of Adams completion in
terms of a couniversal property.

Theorem 1.5.5. ([11], Theorem 1.2, p. 528) Let S be a set of morphisms of C admitting a
calculus of left fractions. Then an object YS of C is the S-completion of the object Y with
respect to S if and only if there exists a morphism e : Y → YS in S̄ which is couniversal
with respect to morphisms of S: given a morphism s : Y → Z in S there exists a unique
morphism t : Z → YS in S̄ such that ts = e. In other words, the following diagram is
commutative :

Y

Z

YS
e

s
t

11



Chapter 1 Pre-Requisites

Theorem 1.5.5 can be dualized as follows.

Theorem 1.5.6. ([10], Proposition 1.1, p. 224) Let S be a set of morphisms of C admitting
a calculus of right fractions. Then an object YS of C is the S-cocompletion of the object Y
with respect to S if and only if there exists a morphism e : YS → Y in S̄ which is couniversal
with respect to morphisms of S : given a morphism s : Z → Y in S there exists a unique
morphism t : YS → Z in S̄ such that st = e. In other words, the following diagram is
commutative :

YS Y

Z

e

t s

For most of the application it is essential that the morphism e : Y → YS (e : YS → Y )

has to be in S; this is the case when S is saturated and the results are as follows:

Theorem 1.5.7. ([9], Theorem 2.9, p. 76) Let S be a saturated family of morphisms of C

and let every object of C admit an S-completion. Then the morphism e : Y → YS belongs
to S and is universal for morphisms to S-complete objects and couniversal for morphisms
in S.

The above result can be dualized as follows.

Theorem 1.5.8. ([9], dual of Theorem 2.9, p. 76) Let S be a saturated family of morphisms
of C and let every object of C admit an S-cocompletion. Then the morphism e : YS → Y

belongs to S and is universal for morphisms to S-cocomplete objects and couniversal for
morphisms in S.

However, in many cases of practical interest S is not saturated. The following result
shows that under some extra conditions on S, the morphism e : Y → YS (e : YS → Y )
always belongs to S.

Theorem 1.5.9. ([11], Theorem 1.3, p. 533) Let S be a set of morphisms in a category C

admitting a calculus of left fractions. Let e : Y → YS be the canonical morphism as defined
in Theorem 1.5.5, where YS is the S-completion of Y . Furthermore, let S1 and S2 be sets of
morphisms in the category C which have the following properties :

(a) S1 and S2 are closed under composition,

(b) fg ∈ S1 implies that g ∈ S1,

(c) fg ∈ S2 implies that f ∈ S2,

(d) S = S1 ∩ S2.

12



Chapter 1 Pre-Requisites

Then e ∈ S.

Theorem 1.5.9 can be dualized as follows:

Theorem 1.5.10. ([11], dual of Theorem 1.3, p. 533) Let S be a set of morphisms in a
category C admitting a calculus of right fractions. Let e : YS → Y be the canonical
morphism as defined in Theorem 1.5.6, where YS is the S-cocompletion of Y . Furthermore,
let S1 and S2 be sets of morphisms in the category C which have the following properties :

(a) S1 and S2 are closed under composition,

(b) fg ∈ S1 implies that g ∈ S1,

(c) fg ∈ S2 implies that f ∈ S2,

(d) S = S1 ∩ S2.

Then e ∈ S.

1.6 A Serre class C of modules

We collect some relevant definitions and theorems involving Serre classes of modules [19].

Definition 1.6.1. [19] A nonempty class C of modules is called a Serre class of modules
if and only if whenever the three-term sequence A → B → C of modules is exact and
A,C ∈ C then B ∈ C.

Definition 1.6.2. [19] Let C be a Serrre class of modules and A,B ∈ C. A homomorphism
f : A→ B

(a) is a C-monomorphism if ker f ∈ C.

(b) is a C-epimorphism if coker f ∈ C.

(c) is a C-isomorphism if it is both a C-monomorphism and C-epimorphism.

Theorem 1.6.3. [20] LetA,B ∈ C and f : A→ B and g : B → C be two homomorphisms.
Then the following statements are true.

(a) If gf is C-monic, then so is f .

(b) If gf is C-epic, then so is g.

Theorem 1.6.4. (Five lemma of modules) [21] Let

13



M1 M2 M3 M4 M5

N1 N2 N3 N4 N5

α β γ δ ϵ

be a row exact commutative diagram of R-modules and R-module homomorphism where R
is a ring. Then the following hold :

(a) If α is an epimorphism and β, and δ are monomorphisms, then γ is a
monomorphism.

(b) If ϵ is a monomorphism and β, and δ are epimorphisms, then γ is an epimorphism.

(c) If α, β, δ and ϵ are isomorphisms, then γ is an isomorphism.



Chapter 2

A Categorical Construction of Minimal
Model of Lie Algebra

Quillen has established algebraic models for rational homotopy theory [22]. In fact Sullivan
introduced the concept of minimal model [23] in rational homotopy theory. It may be noted
that there are three basic constructions in literature which relate a 1-connected topological
spaceX to a differential graded algebra. Adams and Hilton [24] constructed a chain algebra
(with integer coefficients) for the loop space ΩX , a special version of which is Adams cobra
construction [25]. Later Quillen [22] associated a differential graded rational Lie algebra
L(X) to the space X and Sullivan [23, 26] using simplical differential forms with rational
coefficients, obtained a differential graded commutative cochain algebra for X . For these
cochain algebras, Sullivan introduced the notion of minimal model, which corresponds to
the Postnikov decomposition of a space. The aim of this chapter is to investigate a case
showing how this algebraic construction is characterized in terms of Adams cocompletion.

Baues and Lemaire [27] have constructed minimal models for chain algebras (over any
field) and for rational differential graded Lie algebras. In this chapter, we prove that the
minimal model of a simply connected differential graded Lie algebra is characterized in
terms of Adams cocompletion.

2.1 Minimal model

We recall the following algebraic preliminaries.

Definition 2.1.1. [28, 29] LetQ be the set of rational numbers. By a graded algebra A over
Q we mean a graded Q vector space

A = ⊕
n≥0

An

together with

(a) an associative multiplication

15



Chapter 2 A Categorical Construction of Minimal Model of Lie Algebra

µ : A⊗ A→ A

which is graded (µ(An ⊗ Am) ⊂ An+m) and

(b) graded commutative a · b = (−1)nmb · a, a ∈ An and b ∈ Bm.

We also assume, unless otherwise stated, that A has an identity element 1 ∈ A0. The
elements of An are said to be homogeneous of degree n (or dimension n).

Definition 2.1.2. [28, 29] A differential graded algebra (or d.g.a) is a graded algebra A,
together with a differential d, of degree +1, which is a derivation. This means that for each
n there is a vector space homomorphism

d = dn : An → An+1

satisfying

(a) d ◦ d = 0 (differential) and

(b) d(a · b) = d(a) · b+ (−1)na · d(b) for a ∈ An (derivation).

Definition 2.1.3. [29] Let (A, d) be a d.g.a. Let

Zn(A) = Ker{dn : An → An+1} = subalgebra of cycles of An,

Bn = Im{dn−1 : An−1 → An} = subalgebra of boundaries of An,

Z∗(A) = ⊕
n≥0

Zn(A),

B∗(A) = ⊕
n≥0

Bn(A).

As d2 = 0, we have Bn(A) ⊂ Zn(A). The nth homology space of A is defined to be the
quotient vector space

Hn(A) = Zn(A)/Bn(A)

H∗(A) = ⊕
n≥0

Hn(A) = Z∗(A)/B∗(A)

is a graded algebra, called the homology algebra of A.

Definition 2.1.4. [29] A d.g.a. A is said to be connected if

H0(A) ∼= Q

and that A is simply connected (1-connected) if it is connected and

H1(A) = 0.

A is called n-connected if

16
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(a) H0(A0) ∼= Q and

(b) Hp(An) = 0, 1 ≤ p ≤ n.

A is said to be of finite type if for each n,Hn(A) is a vector space of finite dimensional over
Q.

Definition 2.1.5. [29, 30] Let A and B be graded algebras over Q . A function f : A → B

is called a homomorphism if it preserves all algebraic structures, that is,

(a) f(An) ⊂ Bn,

(b) f(a+ b) = f(a) + f(b),

(c) f(a · b) = f(a) · f(b).

We assume that f(1) = 1. If A and B are d.g.a.’s it is required also that fn commute with
differentials, i.e., fn+1d

A
n = dBn fn

An

Bn

An+1

Bn+1

dAn

fn

dBn

fn+1

If f : A→ B is a d.g.a. homomorphism then f induces a map

f∗ : H∗(A) → H∗(B)

defined by the rule f∗([z]) = [f(z)], where [z] denotes the homology class of the element
z ∈ Z∗(A). Clearly f∗ is a homomorphism of graded algebras.

Let DG A denote the category of differential graded algebra and differential graded
algebras homomorphisms.

Definition 2.1.6. [29] Let h : A → A′ be a map of Lie algebra. Then h is a weak
isomorphism if and only if H∗(h) : H∗(A) → H∗(A

′) is an isomorphism.

Proposition 2.1.7. [27] LetH∗(M) be the homology of the differential graded vector space
M . A weak isomorphism f :M → N is differential graded map such that

H∗(f) : H∗(M) → H∗(N)

is an isomorphism.

17
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Definition 2.1.8. [28, 29] A differential graded algebraM is called aminimal algebra if and
only if it satisfies the following proprieties :

(a) M is free as a graded algebra,

(b) M has a decomposable differential,

(c) M0 = Q,M1 = 0,

(d) M has homology of finite type, that is, for each n, Hn(M) is a finite dimensional
vector space over Q.

Let M be the full subcategory of the category DG A consisting of all minimal algebras
and all differential graded algebra maps between them.

Definition 2.1.9. [28, 29] IfA is simple connected differential graded algebra. A differential
graded algebraM =MA is called a minimal model of A if the following conditions hold :

(a) M ∈ M ,

(b) there is a d.g.a. map ρ :M → A which induces an isomorphism on homology, i.e.,
ρ∗ : H∗(M)

∼=→ H∗(A).

Definition 2.1.10. [31] A differential graded Lie algebra is the data of a differential graded
vector space (L, d) together a with a bilinear map

[-, -] : L× L→ L

satisfying the following properties:

(a) [-, -] is homogeneous skew symmetric; this means [Li, Lj] ⊂ Li+j and

[a, b] + (−1)āb̄+1[b, a] = 0

for every a, b homogeneous.

(b) Every a, b, c homogeneous satisfies the Jacobi identity

[a, [b, c]] = [[a, b], c] + (−1)āb̄[b, [a, c]].

(c) d(Li) ⊂ Li+1, d ◦ d = 0

and

d[a, b] = [d(a), b] + (−1)ā[a, d(b)].

The map d is called the differential of d.

18
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Definition 2.1.11. [30, 31] Given two Lie algebraL andL′, their direct sum is the Lie algebra
consisting of the vector space L⊕ L′, of the pair (x, x′), x ∈ L, x′ ∈ L′ with the operation

[(x, x′), (y, y′)] = ([x, y], [x′, y′]),

x, y ∈ L and x′, y′ ∈ L′.

Definition 2.1.12. [31] Amorphism of differential graded Lie algebra is a graded linear map
f : L→ L′ that commutes with bracket and the differential, i.e.,

f [x, y]L = [f(x), f(y)]L′

and
f(dLx) = dL′f(x).

Theorem 2.1.13. ([27], p.226, Proposition 1.4) Let L be a simply connected differential
graded Lie algebra over Q andM =ML be a minimal model for L. Then the map

h :M → L

induces weak isomorphism and h has the following couniversal property: for any
1-connected differential graded Lie algebra L′ and differential graded Lie algebra map

f : L′ → L

which induces a weak isomorphism, there exists a differential graded Lie algebra map

g :M → L′

such that the diagram commutes up to Lie algebra homotopy fg ≃ h and g is unique up to
Lie algebra homotopy.

M L

L′

h

g
f

2.2 The category A

Let U be a fixed Grothendieck universe. Let A be the category of 1-connected differential
graded Lie algebras over Q (in short d.g.l.a.’s) and differential graded Lie algebra
homomorphisms where every element of A is an element of U .
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Let S denote the set of all differential graded Lie algebra homomorphisms in A which
induce weak isomorphisms in all dimensions.

We prove the following results.

Proposition 2.2.1. S is saturated.

Proof. The proof is evident from Theorem 1.5.2.

Next we show that the set of morphisms S of the category A admits a calculus of right
fractions.

Proposition 2.2.2. S admits a calculus of right fractions.

Proof. Clearly, S is a closed family of morphisms of the category A . We shall verify
conditions (a) and (b) of Theorem 1.2.4. Let u, v ∈ S. We show that if vu ∈ S and v ∈ S,
then u ∈ S. We have (vu)∗ = v∗u∗ and v∗ are both homology isomorphisms implying u∗ is
a homology isomorphism. Thus u ∈ S. Hence condition (a) of Theorem 1.2.4 holds.

To prove condition (b) of Theorem 1.2.4 consider the diagram

C

A

B

f

s

with s ∈ S. We assert that the above diagram can be completed to a weak pull-back diagram

D

C

A

B

f

s

t

g

with t ∈ S. Since A,B and C are in A we write

A = ⊕
n≥0

An, B = ⊕
n≥0

Bn, C = ⊕
n≥0

Cn,

and
f = ⊕

n≥0
fn, s = ⊕

n≥0
sn

where
fn : An → Bn, sn : Cn → Bn
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are differential graded Lie algebras homomorphisms. Let

Dn = {[(a, c), (a′, c′)] = ([a, a′], [c, c′]) ∈ An × Cn : fn[a, a
′] = sn[c, c

′]} ⊂ An × Cn

where a, a′ ∈ An and c, c′ ∈ Cn. We have to show that D = ⊕
n≥0

Dn is a differential graded

Lie algebra. Let tn : Dn → An be defined by

tn([a, a
′], [c, c′]) = [a, a′]

and gn : Dn → Cn be defined by

gn([a, a
′], [c, c′]) = [c, c′].

Clearly, tn and gn are differential graded Lie algebra homomorphisms and the above diagram
is commutative. Let (a, c) ∈ Dn, (a

′, c′) ∈ Dm,

dAn : An → An+1, d
A = ⊕

n≥0
dAn

and
dCn : Cn → Cn+1, d

C = ⊕
n≥0

dCn .

Define dDn : Dn → Dn+1 by the rule

dDn [(a, c), (a
′, c′)] = dDn ([a, a

′], [c, c′])

= (dAn [a, a
′], dCn [c, c

′]).

Let dD = ⊕
n≥0

dDn . For (a, c) ∈ Dn, (a
′, c′) ∈ Dm,

[(a, c), (a′, c′)] = ([a, a′], [c, c′])

=
(
−(−1)nm+1[a′, a],−(−1)nm+1[c′, c]

)
= −(−1)nm+1([a′, a], [c′, c])

= −(−1)nm+1[(a′, c′), (a, c)].

Thus we get
[(a, c), (a′, c′)] + (−1)nm+1[(a′, c′), (a, c)] = 0.

Next we have to show that

[a, [b, c]] = [[a, b], c] + (−1)āb̄[b, [a, c]].
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Since Dn+m is a Lie algebra, it satisfies the Jacobi property, i.e.,

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

where [a, [b, c]], [b, [c, a]] and [c, [a, b]] ∈ Dn+m. We have

[a, [b, c]] = −[b, [c, a]]− [c, [a, b]]

= −[b, [c, a]] + [[a, b], c]

= [[a, b], c] + (−1)nm[b, [a, c]].

We show that dD is a differential. We have

dD[(a, c), (a′, c′)] = dD([a, a′], [c, c′])

= (dA[a, a′], dC [c, c′])

= ([dAa, a′] + (−1)n[a, dAa′], [dCc, c′] + (−1)n[c, dCc′])

= ([dAa, a′], [dCc, c′]) + (−1)n([a, dAa′], [c, dCc′])

= [(dAa, dCc), (a′, c′)] + (−1)n[(a, c)(dAa′, dCc′)]

= [dD(a, c), (a′, c′)] + (−1)n[(a, c), dD(a′, c′)].

Thus D becomes a differential graded Lie algebra.

Next we have to show thatD is 1-connected, i.e.,H0(D) = Q andH1(D) = 0. First we
show that H0(D) = Q. We have

H0(D) = Z0(D)/B0(D)

= Z0(D)

= {([a, a′], [c, c′]) ∈ Z0(A)× Z0(C) : f0[a, a
′] = s0[c, c

′]} .

Let [1A, 1A′ ] ∈ A0, [1C , 1C′ ] ∈ C0. Then

dD0 ([1A, 1
′
A], [1C , 1

′
C ]) = (dA0 [1A, 1

′
A], d

C
0 [1C , 1

′
C ]) = (0, 0)

implies that ([1A, 1′A], [1C , 1′C ]) ∈ Z0(D).

Since A and C are 1-connected, we have

H0(A) = Z0(A) = Q = Q[1A, 1A′ ]
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and
H0(C) = Z0(C) = Q = Q[1C , 1C′ ].

Thus

([a, a′], [c, c′]) ∈ H0(D) = Z0(D) ⊂ Z0(A)× Z0(C)

if and only if
[a, a′] = r[1A, 1A′ ]

and
[c, c′] = r[1C , 1C′ ]

for some r ∈ Q. Now we get H0(D) = Q.

Next we have to show that H1(D) = 0. Let

([a, a′], [c, c′]) ∈ Z1(D).

This implies that
[a, a′] ∈ Z1(A), [c, c′] ∈ Z1(C)

and
f1[a, a

′] = s1[c, c
′].

Since A is 1-connected, we have

H1(A) = 0, i.e., Z1(A)/B1(A) = B1(A);

hence
[a, a′] = dA0 [ã, â]

where [ã, â] ∈ A0. Similarly since C is 1-connected we have

H1(C) = 0, i.e., Z1(C)/B1(C) = B1(C);

hence
[c, c′] = dC0 [c̃, ĉ]

where [c̃, ĉ] ∈ C0. Now
f1[a, a

′] = s1[c, c
′],

i.e.,
f1d

A
0 [ã, â] = s1d

C
0 [c̃, ĉ].
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This gives
dB0 f0[ã, â] = dB0 s0[c̃, ĉ],

i.e.,
dB0 (f0[ã, â]− s0[c̃, ĉ]) = 0

showing
f0[ã, â]− s0[c̃, ĉ]) ∈ ker dB0 .

Thus
[f0[ã, â]− s0[c̃, ĉ]] ∈ H0(B).

But s0 ∈ S. Hence s0∗ : H0(C) → H0(B) is an isomorphism. Hence there exists an element
[c̄, c̈] ∈ H0(C) such that

s0[c̄, c̈] = f0[ã, â]− s0[c̃, ĉ]

Thus
s0[c̄, c̈]− f0[ã, â]− s0[c̃, ĉ] ∈ B0(B) = 0,

i.e.,
f0[ã, â] = s0([c̃, ĉ] + [c̄, c̈]).

So
([ã, â], [c̃, ĉ] + [c̄, c̈]) ∈ D0.

Moreover

dD0 (([a
′, â], [c̄, ¯̄c]) + [c′, c̃]) = (dA0 [a

′, â], dC0 ([c̄, c̈] + [c′, ĉ]))

= (dA0 [a
′, â], (dC0 [c̄, c̈] + dC0 [c

′, ĉ]))

= (dA0 [a
′, â], 0 + dC0 [c

′, ĉ])

= (dA0 [a
′, â], dC0 [c

′, ĉ])

= ([a, a′], [c, c′])

showing that ([a, a′], [c, c′]) ∈ B1(D). Thus H1(D) = 0.

Next we have to shown that t ∈ S, i.e., t∗ : H∗(D) → H∗(A) is an isomorphism. Let
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F= ker g. Then we have the following commutative diagram [32]

F

D

F

A

C B

t

g f

s

We consider the exact homology sequences

· · · Hn−1(C) Hn(F ) Hn(D)

· · · Hn−1(B) Hn(F ) Hn(A)

s∗ t∗

Hn(C) Hn+1(F ) · · ·

Hn(B) Hn+1(F ) · · ·

s∗

Clearly, the above diagram is commutative. By Five lemma t∗ is an isomorphism. So
t ∈ S.

Next for any differential graded Lie algebra E = ⊕
n≥0

En and differential graded Lie

algebra homomorphism
u = ⊕

n≥0
un : E → A

and
v = ⊕

n≥0
vn : E → C

in A , let the following diagram

E

C

A

B

u

v

s

f

commute, i.e., fu = sv. For any d.g.l.a E and d.g.l.a. homomorphisms u : E → A and
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v : E → C with fu = sv. Consider the diagram

E

D

C

A

B

f

s

t

g

u

v

h

Define h : E → D by the rule

h[x, y] = ([ux, uy], [vx, vy])

for [x, y] ∈ E. Clearly, h is well defined and also differential graded Lie algebra
homomorphism. Next we show that the two triangles are commutative, i.e., th = u and
gh = v. For any [x, y] ∈ E,

th[x, y] = t([ux, uy], [vx, vy]) = [ux, uy] = u[x, y]

and
gh[x, y] = g([ux, uy], [vx, vy]) = [vx, vy] = v[x, y],

i.e., th = u and gh = v.

Proposition 2.2.3. Let {si : Li → L′
i, i ∈ I} be a subset of S; then

∧
i∈I
si : ∧

i∈I
Li → ∧

i∈I
L′
i

is an element of S, where the index set I is an element of U .

Proof. The proof is trivial.

The following result can be obtained from the above discussion.

Proposition 2.2.4. The category A is complete.

From Propositions 2.2.2, 2.2.3 and 2.2.4, it follows that the conditions of Theorem 1.4.3
are fulfilled and by the use of Theorem 1.5.4, we obtain the following result.

Theorem 2.2.5. Every object L of the category A has an Adams cocompletion LS with
respect to the set of morphisms S and there exists a morphism e : LS → L in S which is
couniversal with respect to the morphisms in S, that is, given a morphism s : L′ → L in
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S there exists a unique morphism t : LS → L′ in S such that st = e. In other words the
following diagram is commutative:

LS L

L′

e

t s

2.3 The main result

We show that the minimal model of a 1-connected differential graded Lie algebra can be
expressed as the Adams cocompletion of the d.g.l.a. with respect to the chosen set of
differential graded Lie algebra maps.

Theorem 2.3.1. ML ≃ LS .

Proof. Let e : LS → L be the map as in Theorem 2.2.5 and h : ML → M be a differential
graded Lie algebra map as in Theorem 2.1.13. By the couniversal property of e there exists
a d.g.l.a map θ : LS →ML such that e = hθ

LS L

ML

e

θ
h

By the couniversal property of h (Theorem 2.1.13) there exists a differential graded Lie
algebra map φ :ML → LS such that eφ = h.

ML L

LS

h

φ
e
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Consider the following diagram:

LS

LS

L

ML

e

θ

e
φ

1LS

We have eφθ = hθ = e. By the uniqueness condition of the couniversal property of e
(Theorem 2.2.5), we conclude that φθ = 1LS

.

Next consider the following diagram:

ML

ML

L

LS

h

φ

h
θ

1ML

We have hθφ = eφ = h. By the uniqueness condition of the property of h (Theorem 2.1.13),
we conclude that θφ ≃ 1ML

. ThusML ≃ LS .



Chapter 3

Homotopy Approximation of Modules

Behera and Nanda [11] have obtained the Postnikov approximation of a 1-connected based
CW -complex with the help of a suitable set of morphisms. They have obtained the said
decomposition by introducing a Serre class C of abelian groups. This chapter contains a
Postnikov-like decomposition of a module over a ring with unity with respect to a Serre class.

The relative homotopy theory of modules, including the (module) homotopy exact
sequence was introduced by Peter Hilton ([33], Chapter 13). In fact he has developed
homotopy theory in module theory, parallel to the existing homotopy theory in topology.
Unlike homotopy theory in topology, there are two types of homotopy theory in module
theory, the injective theory and projective theory. They are dual but not isomorphic [34–36].
Using injective theory we have obtained, by considering a Serre class C of modules, the
Postnikov-like factorzation of a module.

3.1 Homotopy of Modules

The narrativemay be recalled from [4, 33]. We briefly describe some of the concepts towards
notational view-points.

Definition 3.1.1. [33] Let Λ be a ring with unity. Let M be the category of Λ-modules
and Λ-module homomorphisms. Let A and B be right Λ-modules and f : A → B

Λ-homomorphism in the category M . The map f is i-nullhomotopic denoted f ≃i 0, if
f can be extended to some injective module Ā containingA. Also if g : A→ B then f ≃i g

if f − g ≃i 0 . The i-homotopy class of f is denoted by [f ]i.

Definition 3.1.2. [18, 33] Let A and B be right Λ modules and f : A → B. A mapping
cylinder of f is the module Ā ⊕ B together with maps λ : A → Ā ⊕ B, given by λ(a) =
i(a)+f(a)where i : A→ Ā is the inclusion and κ : Ā⊕B → B is defined by κ(ā+b) = b.

Definition 3.1.3. We nowmove towards a definition of suspension. Consider the short exact
sequence

0 → A→ Ā→ Ā/A→ 0
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Chapter 3 Homotopy Approximation of Modules

where Ā is injective. We define a suspension of A, S(A) as Ā/A and S2(A) is
defined as S(A)/S(A). Then repeating this process we get a sequence, namely,
SA, S2A, · · · , SnA, · · · . This enables us to consider unambiguously the group π̄(SA,B) or
more generally π̄n(A,B). Notice that these groups have effectively been defined by means
of an injective resolution of A, namely

A→ Ā→ SA→ · · · → SnA→ · · ·

with successive cokernels SA, S2A, · · ·SnA, · · · . Then π̄n(A,B) is the nth homology group
of the complex obtained by applying the functor Hom(, B) to this resolution. we may
describe the (injective) procedure for defining Extn(B,A) in similar terms.

Hom(B,A) → Hom(B, Ā) → Hom(B, SA) → · · · → Hom(B, SnA) → · · ·

Then Cn, the group of n-cochains, isHom(B, SnA) and δn, the coboundary operator, is the
map Cn → Cn+1 induced by in+1pn

SnA
pn−→ Sn+1A

in+1−→ Sn+1A,

where pn is the natural projection and in+1 the injection. Also, Zn, the group of n-cocycles,
may be identified with Hom(B, SnA). For f : B → SnA is a cocycle if and only if
in+1 ◦ pn ◦ f = 0, that is, pn ◦ f = 0. This means, by exactness, that f(B) ⊂ in(S

nA).
Thus f may be regarded as a map B → Sn. Then Bn, the group of n-coboundaries, will be
identified with pn−1∗Hom(B, Sn−1A). For, in order that f : B → SnA be a coboundary, f
must equal in ◦ pn−1 ◦ g for some g : B → Sn−1A. Thus we see that

Extn(B,A) = Zn/Bn = Hom(B,SnA)/pn−1∗Hom(B, Sn−1A)

where n ≥ 1.

Proposition 3.1.4. [33] Let A and B be right Λ-modules. The following statements are
equivalent, for n ≥ 0

(a) Sn(A) is injective.

(b) Extn+1(B,A) = 0 for all B.

(c) π̄n(A,B) = 0 for all B.

3.2 The category M̃

Let U be a fixed Grothendieck universe. Let M denote the category of all Λ-modules
and Λ-homomorphisms and let M̃ be the corresponding i-homotopy category, that is,
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Chapter 3 Homotopy Approximation of Modules

the objects of M̃ are all Λ-modules and the morphisms of M̃ are i-homotopy classes of
Λ-homomorphisms. We assume that the underlying sets of the elements of M are elements
of U .

We fix a suitable set of morphisms in M̃ . Let Sn denote the set of all maps α : A → B

such that for any moduleM ,

α∗ : π̄m(M,A) → π̄m(M,B)

is a C-isomorphism form ≤ n and a C-epimorphism form = n+ 1.

We will show that the set of morphisms Sn of the category M̃ admits a calculus of left
fractions.

Proposition 3.2.1. Sn admits a calculus of left fractions.

Proof. Clearly Sn is closed under composition. We shall verify conditions (a) and (b) of
Theorem 1.2.2. Let βα ∈ Sn and α ∈ Sn where α : A → B and β : B → C. Since
βα, α ∈ Sn, for any moduleM in M̃ ,

(βα)∗ : π̄m(M,A) → π̄m(M,C)

and
α∗ : π̄m(M,A) → π̄m(M,B)

are C-isomorphisms for m ≤ n and C-epimorphisms for m = n + 1. It is to be shown
that β∗ : π̄m(M,B) → π̄m(M,C) is C-isomorphism for m ≤ n and C-epimorphism for
m = n + 1. Since β∗α∗ and α∗ are C-isomorphism for m ≤ n and C-epimorphism for
m = n+ 1, it follows that

β∗ : π̄m(M,B) → π̄m(M,C)

is a C-epimorphism form = n+ 1.

It is enough to show that β∗ is a C-monomorphism for m ≤ n. For any [b] , [b̃] ∈
π̄m(M,B) with β∗ [b] = β∗[b̃] there exist [a] , [b̃] ∈ π̄m(M,A) such that α∗ [a] = [b] and
α∗[ã] = [b̃], since α∗ is a C-isomorphism form ≤ n; hence

(βα)∗ [a] = β∗α∗ [a] = β∗ [b] = β∗[b̃] = β∗α∗[ã] = (βα)∗ [ã]

giving [a] = [ã] as (β∗α∗) is a C-isomorphism form ≤ n. Hence β ∈ Sn.
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In order to prove condition (b) of Theorem 1.2.2 consider the diagram

A

C

B
α

γ

in M̃ with γ ∈ Sn. We assert that the above diagram can be embedded to a weak push-out
diagram

A

C

B

D

α

γ

β

δ

in M̃ with δ ∈ Sn. Let α = [f ]i and γ = [s]i. Let Ā be an injective module containing A
and ι : A→ Ā be the inclusion. The map

ιf : A→ Ā⊕B

is defined by
ιf (a) = i(a) + f(a)

and
r : Ā⊕B → B

is defined by
r(ā+ b) = b.

Clearly, rιf = f ; ιf is cofibration [37]. Let

j : B → Ā⊕B

be defined by
j(b) = 0 + b = b.

Clearly, rj = 1B.We need to show that jr ≃ 1Ā⊕B, i.e., 1Ā⊕B − jr ≃i 0. We have

jr(ā+ b) = j(b) = b

and
(1Ā⊕B − jr) (ā+ b)− jr(ā+ b) = ā.
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Let
t : Ā⊕B → Ā

be defined by
t(ā+ b) = ā

and
s : Ā→ Ā⊕B

be defined by
s(ā) = ā.

We have
st : Ā⊕B → Ā⊕B

and
st(ā+ b) = s(t(ā+ b)) = s(ā) = ā.

Clearly, 1Ā⊕B − jr = st. Since Ā is injective it follows that 1Ā⊕B − jr ≃i 0. Thus 1Ā⊕B ≃i

jr.We consider the diagram

A

Ā⊕B

C

Q

s

ιf

v

u

and form its push-out in M where Q =
(
Ā⊕B ⊕ C

)
/L is the factor module and

L = {i(a) + f(a) + s(a) : a ∈ A}

is a Λ-submodule of Ā⊕B ⊕ C. Define

u : C → Q

by
u(c) = (0 + 0 + c) + L

and
v : Ā⊕B → Q

by
v(ā+ b) = (ā+ b+ 0) + L.
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Chapter 3 Homotopy Approximation of Modules

Clearly, the two maps are well defined and Λ-module homomorphisms. For any a ∈ A,

us(a) = u(s(a)) = (0 + 0 + s(a)) + L = (s(a)) + L = L.

On the other hand

vιf (a) = v (ι(a) + f(a)) = (ι(a) + f(a) + 0) + L = L.

Thus us = vιf . Hence the above diagram is commutative. Since ιf is cofibration, so is u
[37, 38], we therefore have the following diagram

A

C

Ā⊕B

Q

X

X

ιf

s

u

v

p

q

whereX is the cokernel of ιf , as well as of u; p and q are the usual projections. We consider
the exact homotopy sequences

· · · π̄m+1(M,X) π̄m(M,A) π̄m(M, Ā⊕B)

· · · π̄m+1(M,X) π̄m(M,C) π̄m(M,Q)

s∗ v∗

π̄m(M,X) π̄m−1(M,A) · · ·

π̄m(M,X) π̄m−1(M,C) · · ·

s∗

From Five Lemma it follows that

v∗ : π̄m(M, Ā⊕B) → π̄m(M,Q)

is C-isomorphism for m ≤ n and C-epimorphism for m = n + 1. Since j is a i-null
homotopy equivalence, (vj)∗ : π̄m (M,B) → π̄m (M,Q) is a C-isomorphism for m ≤ n
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and a C-epimorphism form = n+ 1. We consider the following diagram:

A

B

C

Q

s

f

vj

u

Let β = [u]i and δ = [vj]i. Taking the corresponding i-homotopy classes, we have a
commutative diagram

A

B

C

Q

r = [s]i

α = [f ]i

δ = [vj]i

β = [u]i

in M̃ with δ ∈ Sn. This indeed is a weak push-out diagram in M̃ .

Proposition 3.2.2. Let {sj : Aj → Bj, j ∈ J} be a subset of Sn; then

∨
j∈J
sj : ∨

j∈J
Aj → ∨

j∈J
Bj

is an element of Sn, where the index set J is in U .

Proof. We consider the commutative diagram

⊕
j∈J
π̄(M,Aj)

⊕
j∈J
π̄(M,Bj)

π̄(M, ∨
j∈J
Aj)

π̄(M, ∨
j∈J
Aj)

{αj∗}
≃

⊕
j∈J
sj∗ ≃

{βj∗}
≃

( ∨
j∈J
sj)∗

where
αj : Aj → ∨

j∈J
Aj and βj : Bj → ∨

j∈J
Bj

are the canonical inclusions. Note that each horizontal row is an isomorphism, hence a
C-isomorphism. Since each sj∗ is a C-isomorphism in dim ≤ n and a C-epimorphism in
dimension n + 1, so is ⊕

j∈J
sj∗ and from the commutative diagram it follows that ( ∨

j∈J
sj)∗ is

also a C-isomorphism in dim≤ n and a C-epimorphism in dim n+1. Thus ∨
j∈J
sj ∈ Sn.

The following result is well known.
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Proposition 3.2.3. The category M̃ is cocomplete.

3.3 Existence of Adams completion in M̃

From Propositions 3.2.1, 3.2.2 and 3.2.3 we see that all the conditions of the Theorem 1.5.5
are satisfied and hence we have the following result.

Theorem 3.3.1. Every object M of the category M̃ has an Adams completion MSn with
respect to the set Sn of Λ-module homomorphisms. Furthermore, there exists a Λ-module
homomorphism en : M → MSn in S̄n which is couniversal with respect to the Λ-module
homomorphisms in Sn : given a Λ- module homomorphism s :M → N in Sn there exists a
unique Λ-module homomorphism tn : N → MSn in S̄n such that tns = en. In other words
the following diagram is commutative :

M

N

MSn

en

s
tn

Theorem 3.3.2. The Λ-module homomorphism en :M →MSn is in Sn.

Proof. Let S1
n be the set of all morphisms f : A→ B in the category M̃ such that

f∗ : π̄m(M,A) → π̄m(M,B)

is a C-monomorphism for m ≤ n and S2
n be the set of all morphisms f : A → B in the

category M̃ such that
f∗ : π̄m(M,A) → π̄m(M,B)

is a C-epimorphism form ≤ n+ 1. Clearly

(i) Sn = S1
n ∩ S2

n,

(ii) S1
n and S2

n satisfy all the conditions of Theorem 1.5.9.

Therefore en ∈ Sn.

3.4 A Postnikov-like approximation

We can obtain a decomposition of a module with the help of the sets of morphisms Sn.

Theorem3.4.1. For anyΛ-moduleA, forn ≥ 0, there exist modulesAn, maps en : A→ An

and maps pn+1 : An+1 → An such that
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(a) en∗ : π̄m(M,A) → π̄m(M,An) is C-isomorphism form ≤ n and π̄m(M,An) = 0,
form > n,

(b) en = pn+1 ◦ en+1.

Proof. For each integer n ≥ 0, let An be the Sn-completion of A and en : A → An be the
canonical map as stated in Theorem 3.3.2. Since en+1 ∈ Sn+1, it follows that en+1 ∈ Sn.
Hence by the couniversal property of en+1, there exists a Λ-homomorphism pn+1 : An+1 →
An making the following diagram commutative, i.e., pn+1 ◦ en+1 = en

A

An

An+1

en+1

en
pn+1

Since en ∈ Sn,

en∗ : π̄m(M,A) → π̄m(M,An)

is a C-isomorphism form ≤ n.We show that π̄m(M,An) = 0 m > n. Every Λ-moduleM
has an injective resolution [21]. So we can take an injective resolution ofM as

M →M → SM → · · · → SmM → · · ·

with successive cokernels SM,S2M, · · · , Sm+1M, · · · . We break the exact sequence into
short exact sequences:

0 →M →M → SM → 0,

0 → SM → SM → S2M → 0,

...

0 → Sm−1M → Sm−1M → SmM → 0.

...

Applying ExtjΛ(M,−) to the short exact sequence

0 → Sm−1M → Sm−1M → SmM → 0

of Λ-modules, we get the exact sequence

0 → ExtjΛ
(
M,Sm−1M

)
→ ExtjΛ

(
M,Sm−1M

)
→ ExtjΛ (M,SmM) → 0

37



for any j > 0. Since Sm−1M is injective, ExtjΛ(M,Sm−1M) = 0 for each j > 0 [21]. It is
clear that ExtjΛ(M,SmM) = 0 and SmM is injective [33]. Hence π̄m(M,An) = 0 for all
m > n.

...

An+1

An

...

A2

A1A

θn+1

θ2

en

en+1

e2

e1

Thus we get Postnikov-like approximation of a module in M̃ .



Chapter 4

Topological G-Module and Adams
cocompletion

Deleanu, Frei and Hilton have developed the notion of generalized Adams completion in a
categorical context; they have also studied the dual notion, namely the Adams cocompletion
of an object in a category [9]. Behera and Nanda [10] have obtained the Cartan-Whitehead
decomposition of a 0-connected based CW -complex with the help of a suitable set of
morphisms. They have obtained the said decomposition by introducing a Serre class C
of groups. In this chapter, following the arguments in [10] and using the cohomology
theory of topologicalG-modules, we characterize a topologicalG-module in terms of Adams
cocompletions. In fact, the central idea of this chapter is to obtain a mod-C Whitehead-like
tower of a topologicalG-module using cohomology theory of topologicalG-modules, where
C is a Serre class of modules [19].

4.1 Topological G-modules

We need the following preliminaries.

Definition 4.1.1. [39, 40] Let G be a group. A G-module is an abelian group A together
with a G-action on A that is compatible with the structure of A as an abelian group, i.e., a
map · : G× A→ A satisfying the following properties:

(a) 1 · a = a for all a ∈ A.

(b) g1 · (g2 · a) = (g1g2) · a for all a ∈ A and g1, g2 ∈ G.

(c) g · (a1 + a2) = g · a1 + g · a2 for all a1, a2 and g ∈ G.

Definition 4.1.2. [39, 40] Let G be a topological group. A topological G-module is an
abelian topological group A together with a continuous map · : G × A → A satisfying the
following properties:

(a) 1 · a = a for all a ∈ A.
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Chapter 4 Topological G-Module and Adams cocompletion

(b) g1 · (g2 · a) = (g1g2) · a for all a ∈ A and g1, g2 ∈ G.

(c) g · (a1 + a2) = g · a1 + g · a2 for all a1, a2 and g ∈ G.

Definition 4.1.3. [39] A homomorphism α : A→ B ofG-modules is just a homomorphism
of abelian groups that satisfies α(ga) = gα(a) for all a ∈ A and g ∈ G.

We recall the group cohomology via cochains from [39, 41].

Definition 4.1.4. [39] Let A be a G-module and let n ≥ 0.

(a) The group of n-cochains of G with coefficients in A is the set of all functions from
Gn to A : Cn(G,A) = {f : Gn → A}.

(b) The nth differential

dn = dnA : Cn(G,A) → Cn+1(G,A)

is the map

dn(f)(g0, g1, · · · , gn) = g0 · f(g1, · · · , gn)

+
n∑

j=1

(−1)jf(g0, g1, · · · , gj−2, gj−1gj, gj+1, · · · gn)

+ (−1)n+1f(g1, g2, · · · gn−1)

It can be checked that for any n ≥ 0, dn+1 ◦ dn = 0 and

C(G,A) = (Cn(G,A), dn)

is a cochain complex.

Definition 4.1.5. [39, 41] Let A be a G-module and dn denotes the nth differential, n ≥ 1.
Let

Zn(G,A) = Ker dn, the group of n-cocycles of G with cofficients in A.

Bn(G,A) = Im dn−1, for n ≥ 1 the group of n-coboundaries of G with cofficients in A.

The nth cohomology group of G with coefficients in A is defined to be

Hn(G,A) = Zn(G,A)/Bn(G,A).

Theorem 4.1.6. ( [39] Lemma 1.2.7, p. 8) If α : A → B is a G-module homomorphism,
then for each n ≥ 0, there is an induced homomorphism of groups

αn : Cn(G,A) → Cn(G,B)
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taking f to αf and compatible with the differentials in the sense that

dnB ◦ αn = αn+1 ◦ dnA

Theorem 4.1.7. ([39], Corollary 1.2.9, p. 8) A G-module homomorphism α : A → B

induces maps
α∗ : Hn(G,A) → Hn(G,B).

on cohomology.

4.2 The category G

Let U be a fixed Grothendieck universe. Let G denote the category of all topological
G-modules and continuous G-homomorphisms. We assume that the underlying sets of the
elements of G are elements of U .We fix a suitable set of morhisms in G .

For n ≥ 1, let Sn denote the set of all maps α : A → B such that for any
topological group G, α∗ : Hm(G,A) → Hm(G,B) is a C-isomorphism for m > n and a
C-monomorphism form = n.

We will show that the set of morphisms Sn of the category G admits a calculus of right
fractions.

Proposition 4.2.1. Sn admits a calculus of right fractions.

Proof. Clearly, Sn is closed under composition. We shall verify conditions (a) and (b) of
Theorem 1.2.4. Let βα ∈ Sn and β ∈ Sn,where α : A → B and β : B → C. Since β∗α∗

and α∗ are C-isomorphism for m > n and C-monomorphism for m = n. it follows that
α∗ : Hm(G,B) → Hm(G,C) is a C-monomorphism for m ≥ n. It is enough to show that
α∗ is a C-epimorphism form > n. We have

β∗α∗(Hm(G,A)) = Hm(G,C)

form > n, i.e.,
β∗(α∗(Hm(G,A))) = β∗(Hm(G,B))

form > n. From this we conclude that

α∗(Hm(G,A)) = Hm(G,B)

for m > n, that is, α∗ is a C- epimorhism for m > n and C-monomorphism for m = n.
Therefore α∗ is a C-isomorphism for m > n and a C-monomorphism for m = n. Hence
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condition (a) of Theorem 1.2.4 holds.

To prove condition (b) of Theorem 1.2.4 consider the diagram

A

C B

f

s

with s ∈ Sn. We assert that the above diagram can be completed to a weak pull-back diagram

P

C

A

B

t

g f

s

with t ∈ Sn. Let
P = {(a, c) ∈ A× C : f(a) = s(c)} ⊆ A× C.

Define t : P → A by the rule
t(a, c) = a

for a ∈ A and g : P → C by the rule

g(a, c) = c

for c ∈ C. Clearly, the two maps are well defined and continuous G-homomorphisms.
Next we show the above diagram is commutative, i.e., ft = sg. For any (a, c) ∈ P ,
ft(a, c) = f(a) and sg(a, c) = s(c). Since f(a) = s(c), hence ft = sg, i.e., the diagram is
commutative.

Next let u : X → A and v : X → C in G be two morphisms such that fu = sv.

X

P

C

A

B

f

s

t

g

u

v

θ
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Define θ : X → P by the rule

θ(x) = (u(x), v(x))

for x ∈ X . Clearly, θ is well defined and also a continuous G-homomorphism. Next we
show that the two triangles are commutative. Now

tθ(x) = t(u(x), v(x)) = u(x)

and
gθ(x) = g(u(x), v(x)) = v(x).

So tθ = u and gθ = v.

We need to show that t ∈ Sn. Let F= ker f=ker g and from the commutative diagram

F

P

F

A

C B

t

g f

s

in G we have the following commutative diagram

· · · Hm+1(G,C) Hm(G,F ) Hm(G,P )

· · · Hm+1(G,B) Hm(G,F ) Hm(G,A)

s∗ t∗

Hm(G,C) Hm−1(G,F ) · · ·

Hm(G,B) Hm−1(G,F ) · · ·

s∗

From Five Lemma it follows that t∗ is C-isomorphism form > n and C-monomorphism for
m = n.

Proposition 4.2.2. Let sj : Aj → Bj lie in Sn, for each j ∈ J, where the index set J is an
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element of U . Then
∧
j∈J
sj : ∧

j∈J
Aj → ∧

j∈J
Bj

lies in Sn.

Proof. Let s = ∧
j∈J
sj , A = ∧

j∈J
Aj and B = ∧

j∈J
Bj . Define a map s : A→ B by the rule

s(a) = (sj(aj))j∈J

where a = (aj)j∈J . Clearly, s is well defined and is also a G-morphism in G . Consider the
commutative diagram

A

Aj

B

Bj

s

pj qj

sj

where pj and qj are the projections. Let F = ker pj and from the commutative diagram

F

A

F

B

Aj Bj

k

s

l

pj qj

sj

we have the following commutative diagram

· · · Hm+1(G,Aj) Hm(G,F ) Hm(G,A)

· · · Hm+1(G,Bj) Hm(G,F ) Hm(G,B)

s∗j s∗

Hm(G,Aj) Hm−1(G,F ) · · ·

Hm(G,Bj) Hm−1(G,F ) · · ·

s∗j

By Five Lemma, s∗ is a C-isomorphism for m > n and a C-monomorphism for m = n,
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that is, s ∈ Sn.

The following result is well known.

Proposition 4.2.3. The category G is complete.

4.3 Existence of Adams completion in G

Using Propositions 4.2.1, 4.2.2 and 4.2.3, we draw the following result.

Theorem 4.3.1. Every object A in the category G has an Adams cocompletion ASn with
respect to the set of morphisms Sn.

Since every object in the category G has Adams cocompletion with respect to the set of
morphisms Sn, from Theorem 1.5.6 we will have the following result.

Theorem 4.3.2. Every object A of the category G has a Sn cocompletion with respect to
the set of morphisms Sn if and only if there exists a morphism en : ASn → A in S̄n which
is couniversal with respect to the morphisms in Sn: given a morphism s : B → A in Sn

there exists a unique morphism tn : ASn → B in S̄n such that stn = en. In other words the
following diagram is commutative:

ASn A

B

en

tn s

Theorem 4.3.3. The topological G-module homomorphism en : ASn → A is in Sn.

Proof. Let S1
n be the set of all morphisms f : A→ B in the category G such that

α∗ : Hm(G,A) → Hm(G,B)

is a C-monomorphism for m ≥ n and S2
n be the set of all morphisms α : A → B in the

category G such that
α∗ : Hm(G,A) → Hm(G,B)

is a C-epimorphism form ≥ n+ 1. Clearly,

(i) Sn = S1
n ∩ S2

n;

(ii) S1
n and S2

n satisfy all the conditions of Theorem 1.5.10.

Therefore, en ∈ Sn.
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Chapter 4 Topological G-Module and Adams cocompletion

4.4 Cartan-Whitehead-like tower

We obtain a decomposition of a module with the help of the set of morphisms Sn.

Theorem 4.4.1. For a topological G-module A, for n ≥ 1, there exist topological
G-modules An, maps en : An → A and maps θn+1 : An+1 → An such that

(a) e∗n : Hm(G,An) → Hm(G,A) is C-isomorphism for m > n and Hm(G,An) = 0

form ≤ n,

(b) en+1 = θn+1 ◦ en.

Proof. For each integer n ≥ 1, let An be the Sn-cocompletion of A and en : An → A be the
canonical map as stated in Theorem 4.3.3. Since en ∈ Sn, it follows that en+1 ∈ Sn; hence
by the couniversal property of en+1, there exists a map

θn+1 : An+1 → An

making the following diagram commutative, i.e., θn+1 ◦ en+1 = en.

A

An

An+1

en+1

en
θn+1

Since en ∈ Sn,

en∗ : Hm(G,An) → Hm(G,A)

is a C-isomorphism form > n. Let An be the cokernel of

en : An → A.

Consider the exact cohomology sequence of

An
en // A // An

We conclude that
Hm(G,An) = 0

form ≤ n. Since
en ∈ Sn ⊂ Sn+1,
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it follows from the couniversal property of en+1 that there exists a unique map

θn+1 : An+1 → An

such that the following

An+1 A

An

en+1

θn+1 en

diagram is commutative, i.e., en+1 = enθn+1.

...

An+1

An

...

A2

A1 A

θn+1

θ2

en

en+1

e2

e1

Thus we have a tower of topological G-modules.



Chapter 5

Cohomology Decomposition of
Topological G-Module

In this chapter we study the dual construction of the previous chapter. Behera and Nanda
[11] have obtained the Postnikov approximation of a 1-connected based CW -complex with
the help of a suitable set of morphisms in the category of 1-connected basedCW -complexes.
They have obtained this decomposition by introducing a Serre class C of abelian groups; we
follow the techniques of their study to the case of cohomology of G-modules [41]. This
chapter contains a Postnikov-like decomposition of a topological G-module by using the
cohomology theory of topological G-modules and considering a Serre class C of abelian
groups.

5.1 The category M

Let U be a fixed Grothendieck universe. Let M denote the category of all topological
G-modules and continuous G-homomorphisms. We assume that the underlying sets of the
elements of M are elements of U . We follow the narrative of topological a G-module
A and the cohomology group Hn(G,A) as given in Chapter 3. We fix a suitable set of
morhisms in M .

For n ≥ 1, let Sn denote the set of all maps α : A → B such that for any topological
groupG, α∗ : Hm(G,A) → Hm(G,B) is a C-isomorphism form ≤ n and a C-epimorphism
form = n+ 1.

We will show that the set of morphisms Sn of the category M admits a calculus of left
fractions.

Proposition 5.1.1. Sn admits a calculus of left fractions.

Proof. Clearly, Sn is closed under composition. We shall verify conditions (a) and (b) of
Theorem 1.2.2. Let βα ∈ Sn and α ∈ Sn where α : A → B and β : B → C. Since
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Chapter 5 Cohomology Decomposition of Topological G-Module

βα,∈ Sn, for any topological G-module G in M ,

(βα)∗ = β∗α∗ : Hm(G,A) → Hm(G,C)

is C isomorphisms form ≤ n and

α∗ : Hm(G,A) → Hm(G,B)

is C-epimorphisms form = n+ 1. It is to be shown that

β∗ : Hm(G,B) → Hm(G,C)

is C-isomorphism for m ≤ n and C-epimorphism for m = n + 1. Since β∗α∗ and α∗ are
C-isomorphisms form ≤ n and C-epimorphisms form = n+ 1,

β∗ : Hm(G,B) → Hm(G,C)

is a C-epimorphism for m ≤ n + 1. It is enough to show that β∗ is a C-monomorphism
for m ≤ n. This is obvious for any b, b̃ ∈ Hm(G,B) let β∗(b) = β∗(b̃). Since α∗ is a
C-isomorphism form ≤ n there exist a, ã ∈ Hm(G,A) such thatα∗(a) = b andα∗(ã) = (b̃);
hence

(βα)∗(a) = β∗α∗(a) = β∗(b) = β∗(b̃) = β∗α∗(ã) = (βα)∗ (ã)

giving a = ã. Thus β is a C-isomorphism form ≤ n. Hence β ∈ Sn.

In order to prove condition (b) of Theorem1.2.2 consider the diagram

A

C

B
f

s

in M with s ∈ S. We assert that the above diagram can be embedded to a weak push-out
diagram

A

C

B

D

f

s

g

t
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Chapter 5 Cohomology Decomposition of Topological G-Module

in M with t ∈ S. Let
D = (B ⊕ C)/N

where N is a submodule of B ⊕ C generated by

{(f(a),−s(a) : a ∈ A}.

Define t : B → D by the rule
t(b) = (b, 0) +N

and g : C → D by the rule
g(c) = (0, c) +N.

Clearly, the two maps are well defined and continuous topological G-module
homomorphisms. For any a ∈ A,

tf(a) = (f(a), 0) +N = (0, s(a)) +N = gs(a),

implying that tf = gs. Hence the diagram is commutative.

Next let u : B → X and v : C → X be in category M such that uf = vs.

A

C

B

Q

X

f

s

g

t
u

v

θ

Define θ : Q → X, by the rule θ((b, c) + N) = u(b) + v(c). It is easy to show that θ is
well defined and continuous topological G-module homomorphism. Next we show the two
triangles are commutative. For any b ∈ B,

θt(b) = θ((b, 0) +N) = u(b)

and for any c ∈ C,
θg(c) = θ((0, c) +N)) = v(c).

So θt = u and θg = v.

We consider the commutative diagram
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Chapter 5 Cohomology Decomposition of Topological G-Module

A

C

B

Q

K

K

f

s

g

t

p

q

where K is the cokernel of f as well as of g, p and q are the usual projections. We consider
the exact cohomology sequences

· · · Hm+1(G,K) Hm(G,A) Hm(G,B)

· · · Hm(G,K) Hm(G,C) Hm(G,Q)

s∗ t∗

Hm+1(G,K) Hm−1(G,A) · · ·

Hm(G,K) Hm−1(G,C) · · ·

s∗

Since s∗ : Hm(G,A) → Hm(G,C) is a C-isomorphism for m ≤ n and a C-epimorphism
form = n+ 1, it follows from the Five lemma that

t∗ : Hm(G,B) → Hm(G,Q)

is a C-isomorphism form ≤ n and C-epimorphism form = n+ 1. Thus t ∈ Sn .

Proposition 5.1.2. Let sj : Aj → Bj lie in Sn, for each j ∈ J, where the index set J is an
element of U . Then

∨
j∈J
sj : ∨

j∈J
Aj → ∨

j∈J
Bj

lies in Sn.

Proof. We consider the commutative diagram

⊕
j∈J
H∗(G,Aj)

⊕
j∈J
H∗(G,Bj)

H∗(G, ∨
j∈J
Aj)

H∗(G, ∨
j∈J
Aj)

{α∗
j}
≃

⊕
j∈J
s∗j ≃

{β∗
j }
≃

( ∨
j∈J
sj)

∗
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Chapter 5 Cohomology Decomposition of Topological G-Module

where
αj : Aj → ∨

j∈J
Aj

and
βj : Bj → ∨

j∈J
Bj

are the canonical inclusions. Note that each horizontal row is an isomorphism, hence a
C-isomorphism. Since each s∗j is a C-isomorphism in dim ≤ n and a C-epimorphism in
dimension n + 1, so is ⊕

j∈J
s∗j , and from the commutative diagram it follows that ( ∨

j∈J
sj)

∗ is

also a C-isomorphism in dimension ≤ n and a C-epimorphism in dimension n + 1. Thus
∨
j∈J
sj ∈ Sn.

The following result is well known.

Proposition 5.1.3. The category M is cocomplete.

From Propositions 5.1.1, 5.1.2 and 5.1.3 we see that all the conditions of Theorem 1.4.1
are satisfied and hence we have the following result.

Theorem 5.1.4. Every object M of the category M has an Adams completion MSn with
respect to the set Sn of continuous topological G-module homomorphisms. Furthermore,
there exists a continuous topological G-module homomorphisms en : M → MSn in S̄n

which is couniversal with respect to the continuous topological G-module homomorphisms
in Sn : given a continuous topological G-module homomorphism s : M → N in Sn there
exists a unique continuous topological G-module homomorphism t : N → MSn in S̄n such
that ts = en. In other words the following diagram is commutative:

M

N

MSn

en

s
t

We show that the G-module homorphism en : M → MSn as constructed in Theorem
5.1.4 belongs to Sn.

Theorem 5.1.5. The topological G-module homomorphism en :M →MSn is in Sn.

Proof. Let S1
n be the set of all morphisms α : A→ B in the category M such that

α∗ : Hm(G,A) → Hm(G,B)

is a C-monomorphism form ≤ n and S2
n be the set of all morphisms

α : A→ B
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in the category M such that

α∗ : Hm(G,A) → Hm(G,B)

is a C-epimorphism form ≤ n+ 1. Clearly

(a) Sn = S1
n ∩ S2

n

(b) S1
n and S2

n

satisfy all the conditions of Theorem 1.5.9. Therefore, en ∈ Sn.

5.2 Existence of Adams Completion in M

We obtain a decomposition of a G-module with the help of the sets of morphisms Sn.

Theorem 5.2.1. Let A be a topological G-module. Then for n ≥ 1, there exist topological
G-modules An, continuous G-homomorphism en : A → An and θmn : Am → An for each
pair of indicesm,n satisfying n ≤ m such that

(a) e∗n : Hm(G,A) → Hm(G,An) is C-isomorphism for i ≤ n and a C-epimorphism
for i = n+ 1,

(b) en = θmn ◦ em, n ≤ m,

(c) θmn = 1An .

Proof. For each integer n ≥ 1, let An be the Sn-completion of A and en : A → An be the
canonical G-homomorphism as stated in Proposition 5.1.5. Since en ∈ Sn, it follows that
em ∈ Sn, for n ≤ m and hence by the couniversal property of en, there exists a continuous
G-homomorphism θmn : Am → An making the following diagram commutative, i.e., θmn ◦
em = en, n ≤ m

A

Am

An

en

en
θmn

It follows that θnn = 1An . Since en ∈ Sn,

e∗n : Hm(G,A) → Hm(G,An)

is a C-isomorphism for m ≤ n and a C-epimorphism m = n + 1. Thus we get a tower of
topological G-modules.
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...

An+1

An

...

A2

A1A

θn+1

θ2

en

en+1

e2

e1

Thus we have a tower of topological G-modules.



Chapter 6

Ring of Fractions as Adams Completion

The formation of ring of fractions is one of themost important technical tools in commutative
algebra. It corresponds in the algebraic-geometric picture to concentrating attention on
an open set or near a point. This chapter describes the categorical construction of ring of
fractions in Banach space (and Hilbert space). It is shown that, the ring of fractions of the
algebra of all bounded linear operators on a separable infinite dimensional Banach space is
isomorphic to the Adams completion of the algebra with respect to a chosen set of morphisms
in the category of separable infinite dimensional Banach spaces and bounded linear norm
preserving operators of norms at most 1.

6.1 Ring of fractions

We briefly recall the ring of fractions.

Definition 6.1.1. [42] A subset S of a ring A with unit 1 is called a (right) denominator set
if S satisfies the following conditions:

(a) If s, t ∈ S then st ∈ S and 1 ∈ S.

(b) If s ∈ S and a ∈ A then there exist t ∈ S and b ∈ A such that sb = at.

(c) If sa = 0 with s ∈ S, then at = 0 for some t ∈ S.

(d) S does not contain 0 (to avoid triviality).

Definition 6.1.2. [42] Let A be a ring and let S be a multiplicatively closed subset of A,
i.e., s, t ∈ S implies st ∈ S and 1 ∈ S. A ring of fractions (right) of A with respect to S is
defined as a ring A[S−1] together with a ring homomorphism

u : A→ A[S−1]

satisfying:

(a) u(s) is invertible for every s ∈ S.
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Chapter 6 Ring of Fractions as Adams Completion

(b) Every element in A[S−1] has the form u(a)u(s)−1 with s ∈ S.

(c) u(a) = 0 if and only if as = 0 for some s ∈ S.

Proposition 6.1.3. [42] Let S be a multiplicatively closed subset of A. Then A[S−1] exists,
if and only if S satisfies

(a) If s ∈ S and a ∈ A then there exists t ∈ S and b ∈ A such that sb = at,

(b) If sa = 0 with s ∈ S, then at = 0 for some t ∈ S.

Reamrk 6.1.4. For the detailed construction of A[S−1] we refer to [42]. However there is a
universal property in A[S−1].

Proposition 6.1.5. [42] When A[S−1] exists, it has the following universal property: for
every ring homomorphism

g : A→ B

such that g(s) is invertible in B for every s ∈ S, then there exists a unique ring
homomorphism

h : A[S−1] → B

such that g = hu, i.e., the following diagram is commutative:

A

B

A[S−1]
u

g
h

We shall use the following result in the sequel.

Proposition 6.1.6. Let A and B be the algebras of all bounded linear operators on a
separable infinite dimensional Banach space. Let g : A → B be a surjective bounded
linear homomorphism such that

(a) g(s) is a unit in B for every s ∈ S.

(b) g(a) = 0 implies as = 0 for some s ∈ S.

Then there exists a unique ring homomorphism θ : B → A[S−1] such that θg = u, i.e., the
following diagram is commutative

A

B

A[S−1]
u

g
θ

56
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Proof. By Proposition 6.1.5 there exists a unique isomorphism

h : A[S−1] → B

such that g = hu.

A

B

A[S−1]
u

g
h

Let θ = h−1. For any a ∈ A,

θg(a) = h−1g(a) = h−1hu(a) = u(a)

implying θg = u, i.e., the above diagram is commutative.

We show that θ is unique. Let there exist another θ′ : B → A[S−1] such that θ′g = u.

For any b ∈ B, we have

θ′(b) = θ′(g(b′)) = u(b) = θg(b),

i.e., θ = θ′.

6.2 The category B

Let B denote the category of separable infinite dimensional Banach spaces and linear norm
preserving operators of norm at most 1. We assume that the underlying sets of the elements
of B are elements of U . We fix a set of morphisms in the category B.

Let S be the set of those bounded linear norm preserving operators of norm at most 1
which are surjective in B.

We prove the following results.

Proposition 6.2.1. Let si : Pi → Qi lie in S for each i ∈ I , where the index set I is an
element of U . Then

∨
i∈I
si : ∨

i∈I
Pi → ∨

i∈I
Qi

lies in S.
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Proof. Coproducts in B are l1 sums. Let

P = ∨
i∈I
Pi

and
Q = ∨

i∈I
Qi.

Define s = ∨
i∈I
si : P → Q by the rule

s(p) = (si(pi))i∈I .

Clearly, s is well defined bounded linear homomorphism. For any (qi)i∈I ∈ Qi, since si is
surjective we have si(pi) = qi and

(qi)i∈I = (si(pi))i∈I = s(p).

That s is a bounded linear norm preserving operator of norm at most 1, can be proved easily.
Hence s = ∨

i∈I
si lies in S.

Proposition 6.2.2. S admits a calculus of left fractions.

Proof. Let A and B be any two objects of category B. Clearly, S is a closed family of
morphisms of the category B. We shall verify conditions (a) and (b) of Theorem 1.2.2. Let
s : A → B and t : B → C be two morphisms of the category B. We show that if ts ∈ S

and s ∈ S, then t ∈ S. Clearly, t ∈ S. Hence the condition (a) of Theorem 1.2.2 holds.

In order to prove condition (b) of Theorem 1.2.2, consider the diagram

A

C

B
f

s

in B with s ∈ S. We assert that the above diagram can be embedded to a weak push-out
diagram

A

C

B

D

f

s

g

t
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in B with t ∈ S. Let
D = (B ⊕l1 C)/△̄

is the quotient of the direct sum (B⊕l1D) endowed with the l1 norm [43] and △̄ is the closer
of the subspace

△ = {(f(a),−s(a)) : a ∈ A} .

Define g : C → D by the rule, for c ∈ C

g(c) = (0, c) + △̄

and t : B → D by the rule, for b ∈ B

t(b) = (b, 0) + △̄.

Clearly, the two maps are well defined and bounded linear homomorphisms. For any a ∈ A,

tf(a) = t(f(a)) = (f(a), 0) + △̄ = (0, s(a)) + △̄ = g(s(a)) = gs(a)

implying that tf = gs. Hence the diagram is commutative in B with t ∈ S.

In order to show that t is surjective, take an element

(b, c) + △̄ ∈ D.

Then

(b, c) + △̄ = (b, 0) + (0, c) + △̄

= t(b) + g(c)

= t(b) + g(s(a))

= t(b) + tf(a)

= t(b+ f(a))

(since t is linear), implying t is surjective, i.e., t ∈ S.

Next let u : B → Z and v : C → Z be in category B such that uf = vs.
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A

C

B

D

Z

f

s

g

t
u

v

θ

Define θ : D → Z by the rule

θ((b, c) + △̄) = u(b) + v(c).

It is easy to show that θ is well defined and bounded linear homomorphism (since
∥θ∥ ≤ max {∥u∥ , ∥v∥}). It follows that θ is bounded.

Next we show the two triangles are commutative. For any b ∈ B,

θt(b) = θ(b, 0) = u(b),

showing that θt = u. Similarly θg = v. Thus the two triangles are commutative.

The following result is well known.

Proposition 6.2.3. The category B is cocomplete.

From Propositions 6.2.1, 6.2.2, and 6.2.3 we see that all the conditions of Theorem 1.4.1
are satisfied and hence we have the following result.

Theorem 6.2.4. Every objectA of the categoryB has an Adams completionAS with respect
to the set S of homomorphisms. Furthermore, there exists a homomorphism e : A → AS

in S̄ which is couniversal with respect to the homomorphisms in S: given a homomorphism
s : A → B in S there exists a unique homomorphism t : B → AS in S̄ such that ts = e. In
other words the following diagram is commutative:

A

B

AS
e

s
t

Theorem 6.2.5. The homomorphism e : A→ AS ( as obtained in Theorem 6.2.4 ) is in S.

Proof. Let
S1 = {f : X → Y in B | f is a surjective homorphism}
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and

S2 = {f : X → Y in B | f is a bounded linear norm preserving operator}.

Clearly,

(a) S = S1 ∩ S2 and

(b) S1 and S2 satisfy all the conditions of Theorem 1.5.9. Therefore e ∈ S.

6.3 The main result

We show that the ring of fractions A[S−1] of the algebra A of all bounded linear operators
on a separable infinite dimensional Banach space is precisely the Adams completion AS of
A.

Theorem 6.3.1. A[S−1] ∼= AS .

Proof. Consider the diagram

A

AS

A[S−1]
u

e
φ

By Proposition 6.1.6, there exists a unique homomorphism φ : AS → A[S−1] in S such that
φe = u.

Next consider the diagram

A

A[S−1]

AS
e

u
ψ

By Theorem 6.2.4, there exists a unique homomorphism ψ : A[S−1] → AS in S such that
ψu = e.
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In the following diagram

A

A[S−1]

AS

AS
e

e

φ

ψ

1AS

we have ψφe = ψu = e. By the uniqueness condition of the couniversal property of e, we
conclude that ψφ = 1AS

.

Also in the diagram

A

AS

A[S−1]

A[S−1]
u

u

ψ

φ

1A[S−1]

we have φψu = φe = u. By the uniqueness condition of the couniversal property of u, we
conclude that φψ = 1A[S−1]. Thus A[S−1] ∼= AS .

Note 6.3.2. The above results can recasted with minor changes to show that the ring of
fractions A[S−1] of the algebra A of all bounded linear operators on a separable infinite
dimensional Hilbert space [44] is precisely the Adams completion AS of A. We omit the
details in order to avoid the repeatedness of the proofs of the results.



Chapter 7

A Categorical Study of Symmetric and
Tensor Algebras

In this chapter we present a categorical construction of tensor and symmetric algebras. In
fact we obtain these algebras as Adams completion by choosing different sets of morphisms
in appropriate categories.

First we make categorical study of tensor algebra. For this study we work in the category
of all K-modules and module homomorphisms where K is a commutative ring with unit 1.
We recall tensor algebra.

7.1 Tensor algebra

The tensor algebra of a module V , denoted as T (V ) or T ∗(V ), is the algebra of tensors on
V (of any rank) with multiplication being the tensor product. It is the free algebra on V in
the sense of being left adjoint to the forgetful functor from algebras to vector spaces.

In this chapter, it is shown that given an algebra, its nth tensor algebra is isomorphic to
the Adams completion of the given algebra.

Definition 7.1.1. [45, 46] LetK be a commutative ring. Let V be aK-module. The tensor
algebra T (V ) of V overK is defined to be theK- algebra formed by theK-module

T (V ) = ⊕∞
i=0V

⊗i = K ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

equipped with a multiplication which is defined by

(ai)i∈I · (bi)i∈I =

(
n∑

i=0

ai ⊗ bn−i

)
n∈N

for every
(ai)i∈I ∈ ⊕i∈IV

⊗i
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and
(bi)i∈I ∈ ⊕i∈IV

⊗i.

T (V ) is a gradedK-algebra with the graded piece of degree n ≥ 0 being the subgroup V ⊗n,
which we denote by T n(V ). The map

V ⊗n → T nV

defined by
m1 ⊗ · · · ⊗mn 7→ (0, · · · ,m1 ⊗ · · · ⊗mn, 0, · · · )

is a morphism ofK-modules, which gives an isomorphism ofK-modules of V with its image
T n(V ).

We prove the following couniversal property of nth term of tensor algebra.

Theorem 7.1.2. Let V ⊗n and W⊗n be K-modules and let f : V ⊗n → W⊗n be module
isomorphism ofK-modules. Then f has the following property: given amodule isomorphism
g : V ⊗n → T n(V ), there exists a unique module isomorphism such that g = θf.

V ⊗n

W⊗n

T n(V )
g

f
θ

Proof. For w1 ⊗ w2 ⊗ · · · ⊗ wn ∈ W⊗n, define

θ : W⊗n → T n(V )

by the rule
θ(w1 ⊗ w2 ⊗ · · · ⊗ wn) = gf−1(w1 ⊗ w2 ⊗ · · · ⊗ wn).

Clearly, θ is well defined and is a homomorphism. We show that θ is one-one. If

θ(w1 ⊗ w2 ⊗ · · · ⊗ wn) = θ(w′
1 ⊗ w′

2 ⊗ · · · ⊗ w′
n)

then
gf−1(w1 ⊗ w2 ⊗ · · · ⊗ wn) = gf−1(w′

1 ⊗ w′
2 ⊗ · · · ⊗ w′

n);

since f and g are isomorphisms, we have

w1 ⊗ w2 ⊗ · · · ⊗ wn = w′
1 ⊗ w′

2 ⊗ · · · ⊗ w′
n.
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We show that θ is onto. Since g, f are surjective,

T n(V ) = g(V ⊗n) = g(f−1(W⊗n)) = θ(W⊗n).

Next we have

θf(v1 ⊗ v2 ⊗ · · · ⊗ vn) = θ(f(v1 ⊗ v2 ⊗ · · · ⊗ vn))

= gf−1(f(v1 ⊗ v2 ⊗ · · · ⊗ vn))

= g(v1 ⊗ v2 ⊗ · · · ⊗ vn).

showing θf = g. Suppose that there exists another θ′ : W⊗n → T n(V ) such that θ′f = g.

Then

θ(w1 ⊗ w2 ⊗ · · · ⊗ wn) = gf−1(w1 ⊗ w2 ⊗ · · · ⊗ wn)

= θ′ff−1(w1 ⊗ w2 ⊗ · · · ⊗ wn)

= θ′(w1 ⊗ w2 ⊗ · · · ⊗ wn).

Hence we get θ is unique.

7.2 The Category A

Let A denote the category of all K-modules and module homomorphisms where K is a
commutative ring with unit 1. We assume that the underlying sets of the elements of A are
elements of U .We fix a set of morphisms in A .

Let Sn denote the set of all free K-module homomorphisms sn : P⊗n → Q⊗n such that
sn is isomorphism.

Proposition 7.2.1. Let si : P⊗n
i → Q⊗n

i , i ∈ I lie in Sn, where the index set I is an element
of U ; then

∨
i∈I
Si : ∨

i∈I
P⊗n
i → ∨

i∈I
Q⊗n

i

lies in Sn.

Proof. Coproducts inA are direct sums equipped with a collection of projection maps. Here

P = ∨
i∈I
P⊗n
i ,

and
Q = ∨

i∈I
Q⊗n

i .
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Define s = ∨
i∈I
si : P → Q by the rule s(p) = (si(pi))i∈I . Clearly, s is well defined and is

also a homomorphism.

In order to show s is injective, take p, p′ ∈ P and consider s(p) = s(p′). Then
(si(pi))i∈I = (si(p

′
i))i∈I for each i ∈ I (since si is injective for each i ∈ I) showing p = p′.

Hence s is injective.

To show s(P ) = Q, take (qi)i∈I ∈ Q⊗n
i . Since si(P⊗n

i ) = Q⊗n
i , we have

(qi)i∈I = (si(pi))i∈I = s(p),

showing s is surjective. Therefore s : P → Q is an isomorphism, i.e., s = ∨
i∈I
si lies in

Sn.

We will show that the set of morphisms Sn of the category A of K-modules and
homomorphisms admit a calculus of left fractions.

Proposition 7.2.2. Sn admits a calculus of left fractions.

Proof. Since Sn consists of all isomorphisms in A , clearly, Sn is a closed family of
morphisms of the category A . We shall verify conditions (a) and (b) of Theorem 1.2.2.
Let s : P⊗n → Q⊗n and t : Q⊗n → R⊗n be two morphisms of the category A .We show
that if ts ∈ Sn and s ∈ Sn, then t ∈ Sn. For any

q1 ⊗ q2 ⊗ · · · ⊗ qn ∈ Q⊗n

and
q′1 ⊗ q′2 ⊗ · · · ⊗ q′n ∈ Q⊗n

consider
t(q1 ⊗ q2 ⊗ · · · ⊗ qn) = t(q′1 ⊗ q′2 ⊗ · · · ⊗ q′n).

Then since s is an isomorphism.

(q1 ⊗ q2 ⊗ · · · ⊗ qn) = s(p1 ⊗ p2 ⊗ · · · ⊗ pn

and
(q′1 ⊗ q′2 ⊗ · · · ⊗ q′n) = s(p′1 ⊗ p′2 ⊗ · · · ⊗ p′n).

Thus
t(s(p1 ⊗ p2 ⊗ · · · ⊗ pn)) = t(s(p′1 ⊗ p′2 ⊗ · · · ⊗ p′n)),

i.e.,
ts(p1 ⊗ p2 ⊗ · · · ⊗ pn) = ts(p′1 ⊗ p′2 ⊗ · · · ⊗ p′n)
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since ts is isomorphism we have

p1 ⊗ p2 ⊗ · · · ⊗ pn = p′1 ⊗ p′2 ⊗ · · · ⊗ p′n.

Hence
s(p1 ⊗ p2 ⊗ · · · ⊗ pn) = s(p′1 ⊗ p′2 ⊗ · · · ⊗ p′n)

implying
q1 ⊗ q2 ⊗ · · · ⊗ qn = q′1 ⊗ q′2 ⊗ · · · ⊗ q′n,

i.e., t is injective. Since ts ∈ Sn and s ∈ Sn, we have

ts(P⊗n) = R⊗n and s(P⊗n) = Q⊗n.

Then
t(Q⊗n) = t(s(P⊗n)) = R⊗n.

So t is surjective. Thus t is an isomorphism, i.e., t ∈ Sn. Hence the condition (a) of
Theorem 1.2.2 holds.

In order to prove condition (b) of Theorem 1.2.2, consider the diagram

A⊗n

C⊗n

B⊗n
f

s

in A with s ∈ Sn.We assert that the above diagram can be embedded to a weak push-out
diagram

A⊗n

C⊗n

B⊗n

D⊗n

f

s

g

t

in A with t ∈ Sn. Let
D⊗n = (B⊗n ⊕ C⊗n)/N⊗n

where N⊗n is a sub module of B⊗n ⊕ C⊗n generated by

{(f(a1 ⊗ a2 ⊗ · · · ⊗ an),−s(a1 ⊗ a2 ⊗ · · · ⊗ an)) : a1 ⊗ a2 ⊗ · · · ⊗ an ∈ A
⊗

n}.
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Define t : B⊗n → D⊗n by the rule

t(b1 ⊗ b2 ⊗ · · · ⊗ bn) = (b1 ⊗ b2 ⊗ · · · ⊗ bn, 0) +N

and g : C⊗n → D⊗n by the rule

g(c1 ⊗ c2 ⊗ · · · ⊗ cn) = (0, c1 ⊗ c2 ⊗ · · · ⊗ cn) +N.

Clearly, the two maps are well defined and homomorphisms. For any a1 ⊗ a2 ⊗ · · · ⊗ an ∈
A⊗n, we have

tf(a1 ⊗ a2 ⊗ · · · ⊗ an) = (f(a1 ⊗ a2 ⊗ · · · ⊗ an), 0) +N

= (0, s(a1 ⊗ a2 ⊗ · · · ⊗ an)) +N

= gs(a1 ⊗ a2 ⊗ · · · ⊗ an).

Thus tf = gs. Hence the above diagram is commutative.

Next we show t ∈ S, i.e., t is injective. Take

b1 ⊗ b2 ⊗ · · · ⊗ bn ∈ B⊗n

with t(b1 ⊗ b2 ⊗ · · · ⊗ bn) = N. This implies that

(b1 ⊗ b2 ⊗ · · · ⊗ bn, 0) +N = N,

i.e.,
(b1 ⊗ b2 ⊗ · · · ⊗ bn, 0) ∈ N.

So
(b1 ⊗ b2 ⊗ · · · ⊗ bn, 0) = (f(a1 ⊗ a2 ⊗ · · · ⊗ an),−s(a1 ⊗ a2 ⊗ · · · ⊗ an))

from which it follows that
a1 ⊗ a2 ⊗ · · · ⊗ an = 0.

Now we get
f(0) = (b1 ⊗ b2 ⊗ · · · ⊗ bn) = 0.

Thus t is injective.

In order to show t is surjective, take an element

d1 ⊗ d2 ⊗ · · · ⊗ dn +N ∈ D⊗n,
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where
d1 ⊗ d2 ⊗ · · · ⊗ dn = (b1 ⊗ b2 ⊗ · · · ⊗ bn, c1 ⊗ c2 ⊗ · · · ⊗ cn).

Then

(d1 ⊗ d2 ⊗ · · · ⊗ dn) +N = ((b1 ⊗ b2 ⊗ · · · ⊗ bn), (c1 ⊗ c2 ⊗ · · · ⊗ cn)) +N

= (b1 ⊗ b2 ⊗ · · · ⊗ bn, 0) + (0, c1 ⊗ c2 ⊗ · · · ⊗ cn) +N

= t(b1 ⊗ b2 ⊗ · · · ⊗ bn) + g(c1 ⊗ c2 ⊗ · · · ⊗ cn)

= t(b1 ⊗ b2 ⊗ · · · ⊗ bn) + g(s(a1 ⊗ a2 ⊗ · · · ⊗ an))

= t(b1 ⊗ b2 ⊗ · · · ⊗ bn) + tf(a1 ⊗ a2 ⊗ · · · ⊗ an)

= t((b1 ⊗ b2 ⊗ · · · ⊗ bn) + f(a1 ⊗ a2 ⊗ · · · ⊗ an))

Thus t is surjective. So t ∈ Sn.

Next let u : B⊗n → X⊗n and v : C⊗n → X⊗n be in category A such that uf = vs.

A⊗n

C⊗n

B⊗n

D⊗n

X⊗n

f

s

g

t
u

v

θ

Define
θ : D⊗n → X⊗n

by the rule

θ((d1 ⊗ d2 ⊗ · · · ⊗ dn) +N) = u(b1 ⊗ b2 ⊗ · · · ⊗ bn) + v(c1 ⊗ c2 ⊗ · · · ⊗ cn)

where
(d1 ⊗ d2 ⊗ · · · ⊗ dn) = ((b1 ⊗ b2 ⊗ · · · ⊗ bn), (c1 ⊗ c2 ⊗ · · · ⊗ cn)).

It is easy to show that θ is well defined and also a homomorphism. Next we show the two
triangles are commutative. For any (b1 ⊗ b2 ⊗ · · · ⊗ bn) ∈ B⊗n, we have

θt(b1 ⊗ b2 ⊗ · · · ⊗ bn) = θ((b1 ⊗ b2 ⊗ · · · ⊗ bn, 0) +N)

= u(b1 ⊗ b2 ⊗ · · · ⊗ bn)
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and for any (c1 ⊗ c2 ⊗ · · · ⊗ cn) ∈ C⊗n,

θg(c1 ⊗ c2 ⊗ · · · ⊗ cn) = θ(0, (c1 ⊗ c2 ⊗ · · · ⊗ cn) +N)

= v(c1 ⊗ c2 ⊗ · · · ⊗ cn).

So θt = u and θg = v.

The following result is a well-known.

Theorem 7.2.3. The category A is cocomplete.

From Propositions 7.2.1 7.2.2 and Theorem 7.2.3 we see that all the conditions of the
Theorem 1.4.1 are satisfied. So from the Theorem 1.5.5 hence we have the following result.

Theorem 7.2.4. Every object V ⊗n of the category A has an Adams completion VSn with
respect to the set of morphisms Sn. Furthermore, there exists a morphism e : V ⊗n → VSn in
Sn which is couniversal with respect to the morphisms in Sn: given a morphism s : V ⊗n →
U⊗n in Sn there exists a unique morphism t : U⊗n → VSn in Sn such that ts = e. In other
words the following diagram is commutative:

V ⊗n

U⊗n

VSn

e

s
t

7.3 Tensor algebra as Adams completion

We show that the nth term of tensor algebra T n(V ) of aK-module V , is precisely the Adams
completion VSn of V ⊗n.

Theorem 7.3.1. T n(V ) ∼= VSn .

Proof. Consider the following diagram:

V ⊗n

VSn

T n(V )
g

e
φ

By Theorem 7.1.2, there exists a uniquemorphismφ : VSn → T n(V ) in Sn such thatφe = g.
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Next consider the following diagram:

V ⊗n

T n(V )

VSn

e

g
ψ

By Theorem 7.2.4, there exists a uniquemorphismψ : T n(V ) → VSn inSn such thatψg = e.

Consider the following diagram:

V ⊗n

T n(V )

VSn

VSn

e

e

φ

ψ

1VSn

We have ψφe = ψg = e. By the uniqueness condition of the couniversal property of e, we
conclude ψφ = 1VSn

.

Next consider the following diagram :

V ⊗n

VSn

T n(V )

T n(V )
g

g

ψ

φ

1Tn(V )

We have φψg = φe = g. By the uniqueness condition of the couniversal property of g, we
conclude φψ = 1Tn(V ). Thus T n(V ) ∼= VSn .

Next we extend our study to symmetric algebra using the properties of the category
A as described in Section 7.2. In fact we do a categorical study of symmetric algebra.
For this study we add some extra assumption on the category A ; in particular we work in
the of category M of all free K-modules and free module homomorphisms where K is a
commutative ring with unit 1. We recall symmetric algebra.
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7.4 Symmetric algebra

We recall the the definition of symmetric algebra [47].

Definition 7.4.1. [47] Let K be a commutative ring. Let M be a K-module. Let n ∈ N.
Let Sn denote the nth symmetric group. Let In be the K-submodule

⟨
m1 ⊗m2 · · ·mn −mσ(1) ⊗mσ(2) · · · ⊗mσ(n) | ((m1,m2, · · · ,mn) , σ) ∈Mn × Sn

⟩
of the K-moduleM⊗n. The factorK-module

Sn(M) =M⊗n/In(M)

is called the nth symmetric power of the K-module M . We denote by pn, the canonical
projection

M⊗n →M⊗n/In(M) = Sn(M).

Clearly, this map pn is a surjective K-module homomorphism for n ≥ 2.

Let Sn(M) denote the nth symmetric algebra. The map ρn : M
⊗

n → Sn(M) is a
surjectiveK-module homomorphism for n ≥ 2. We prove the following for our need.

Theorem 7.4.2. Let K be a commutative ring with unit 1. Let M⊗n and N⊗n be free
K-modules and let f : M⊗n → N⊗n be a surjective free K- module homomorphism
in Sn. Then i has the following property: given a surjective free K-module homorphism
i : M⊗n → SnM in S̄n, there exists a unique surjective free K- module homorphism
φ : N⊗n → SnM in S̄n such that i = fφ, i.e., the following diagram is commutative
:

M⊗n

Sn(M)

N⊗n
f

i φ

Proof. By Theorem 7.1.2, there exists a unique K-module isomorphism ψ : N⊗n → T nM

such that ψf = g

M⊗n

T n(M)

N⊗n
f

g
ψ
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where g :M⊗n → T n(M) ) is a K-module isomorphism. Consider the diagram

T n(M)

M⊗n Sn(M)N⊗n

hg

f φ

ψ

Let h = ig−1. For each n ∈ N⊗n, define φ : N⊗n → Sn(M) by the rule φ(n) = hψ(n).
Then for eachm ∈M⊗n we have

φf(m) = hψ(f(m))

= ig−1ψ(f(m))

= if−1ψ−1ψ(f(m))

= if−1(f(m))

= i(m)

showing φf = i. Clearly, φ is surjective. For the uniqueness of φ, suppose there exists
another φ′ : N⊗n → Sn(M) such that i = φ′f . For each n ∈ N⊗n, let n = f(m),m ∈
M⊗n, thus

φ(n) = φf(m) = i(m) = φ′f(m) = φ′(n),

showing φ = φ′.

7.5 The category M

Let M denote the category of all free K-modules and free K-module homomorphisms
where K is a commutative ring with unit 1. We assume that the underlying sets of the
elements of M are elements of U .

Let Sn denote the set of all freeK-module homomorphisms f :M⊗n → N⊗n such that
f is surjective for n ≥ 2 and isomorphism for n = 1.

Proposition 7.5.1. Let {si : X⊗n
i → Y ⊗n

i , i ∈ I} be a subset of Sn; where the index set I is
an element of U , then

∨
i∈I
Si : ∨

i∈I
P⊗n
i → ∨

i∈I
Q⊗n

i

is an element of Sn.

Proof. The proof is trivial
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We will show that the set Sn of free K-module homomorphisms of the category M of
free K-modules and freeK-modules homomorphisms admits a calculus of left fractions.

Proposition 7.5.2. Sn admits a calculus of left fractions.

Proof. The proof is almost the proof of Theorem 7.2.2; hence it is omitted.

Proposition 7.5.3. The category M is cocomplete.

For n = 1, the set of morphisms Sn is saturated. When n ≥ 2, from Propositions 7.5.1
7.5.2 and 7.5.3 we see that all the conditions of the Theorem 1.4.1 are satisfied. So from the
Theorem 1.5.5 we have the following result.

Theorem 7.5.4. Every objectM⊗n of the category M has an Adams completionMSn with
respect to the set of morphismsSn. Furthermore, there exists a morphism e :M⊗n →MSn in
S̄n which is couniversal with respect to the morphisms in Sn: given a morphism s :M⊗n →
N⊗n in Sn there exists a unique morphism t : N⊗n →MSn in S̄n such that ts = e. In other
words the following diagram is commutative:

M⊗n

N⊗n

MSn

e

s
t

Theorem 7.5.5. The freeK-module homomorphism e :M⊗n →MSn is in Sn.

Proof. Let

S1
n = {s :M⊗n → N⊗n in M | s is a surjective free K-module homorphism for n ≥ 2}

and

S2
n = {s :M⊗n → N⊗nin M | s is a free K-module isomorphism for n = 1}.

Clearly,

(a) S = S1
n ∩ S2

n and

(b) S1
n and S2

n satisfy all the conditions of Theorem 1.5.9. Thus e ∈ Sn.
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7.6 Symmetric algebra as Adams completion

We show that the nth term of symmetric algebra Sn(M) of a freeK-moduleM is precisely
the Adams completionMSn ofM⊗n.

Theorem 7.6.1. Sn(M) ∼= MSn .

Proof. The arguments of the proof of this therem are exactly that of Theorem 7.3.1.



Chapter 8

Exterior Algebra and Clifford Algebra
as Adams Completion

The concepts of exterior algebra and Clifford algebra are fundamental to the theory of
differential forms used in geometry and analysis. In this chapter we express both the exterior
and Clifford algebra of a module as the Adams completion of the module by choosing a
suitable sets of morphisms in appropriate categories. First we express exterior algebra in
terms of Adams completion

8.1 Exterior algebra

In this section, we describe a few results about exterior algebra of K-modules, where K is
a commutative ring with 1.

Definition 8.1.1. [48, 49] The exterior algebra of aK-moduleM is theK-algebra obtained
by taking the quotient of the tensor algebra T (M) by the ideal I(M) generated by all
elements of the form

m⊗m, m ∈M

The exterior algebra T (M)/I(M) is denoted by ∧(M). The exterior algebra is graded with
nth homogeneous component

∧n(M) = T n(M)/In(M).

We can identifyK with∧0(M) andM with∧1(M) and so we considerM as aK-submodule
of the K-algebra ∧(M).

Furthermore the exterior algebra ∧(M) of theK-moduleM has the following universal
property.

Theorem 8.1.2. [48, 49] Let A be an associative algebra with unit element e and let

f :M → A
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be a linear map ofM into A such that

f(m)2 = 0

for allm ∈M . Then f extends uniquely to an associative algebra homomorphism

f̃ : ∧(M) → A

from the exterior algebra ∧(M) into A. That is, there is a unique associative algebra
homomorphism

f̃ : ∧(M) → A

such that
f̃(1) = e and f̃ ◦ iM = f,

where iM is the natural inclusion mapping of M = ∧1(M) into ∧(M); in otherwords the
following diagram is commutative:

M

A

∧(M)
iM

f
f̃

Theorem 8.1.3. LetK be a commutative ring with unit 1. LetM andN be freeK-modules
and let f : M → N be an injective free K-module homomorphism with f(m)2 =

0 for all m ∈ M . Then f has the following property: given an injective free K-
module homomorphism iM : M → ∧(M), there exists a unique injective free K-module
homomorphism φ : N → ∧(M) such that iM = fφ, i.e., the following diagram is
commutative:

M

∧(M)

N
f

iM φ

Proof. By Theorem 7.1.2, there exists a unique K-module isomorphism ψ : N → T 1(M)

such that ψf = g. Consider the diagram

T 1(M)

M ∧(M)N

g′g

f φ

ψ
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where g : M → T 1(M) is a K-module isomorphism. Let g′ = iMg
−1. For each n ∈ N ,

define φ : N → ∧(M) by the rule

φ(n) = g′ψ(n).

For eachm ∈M , we have φ(f(m)) = g′ψ(f(m)). Form ∈M let f(m) = n, so

φf(m) = φ(n) = g′ψ(n)

= iMg
−1ψ(n) = iMf

−1ψ−1ψ(n)

= iMf
−1(n) = iM(m)

showing φf = iM . To show that φ is one-one, consider the commutative diagram

M

∧(M)

N

∧(N)

f

iM

∧(f)

iN
φ

Since ∧(f) ◦ φ : N → ∧(N) is injective we have that φ is injective. Next for each n ∈ N ,
we have

φ(n)2 = g′(ψ(n))2 = 0.

For the uniqueness of φ, for each n ∈ N , let n = f(m),m ∈M . Let there exist

φ′ : N → ∧(M)

such that φ′η = iM . Thus

φ(n) = φf(m) = iM(m) = φ′f(m) = φ′(n)

showing φ = φ′.

8.2 The category A

Let A denote the category of all free K-modules and free module homomorphisms where
K is a commutative ring with unit 1. We assume that the underlying sets of the elements of
A are elements of U .We fix suitable set of morphisms in the category A .

Let S denote the set of all free K-module homomorphisms f : M → N such that f is
injective and f(m)2 = 0 for allm ∈M .

78



Chapter 8 Exterior Algebra and Clifford Algebra as Adams Completion

Proposition 8.2.1. Let si : Pi → Qi lie in S, for each i ∈ I , where the index set I is an
element of U . Then

∨
i∈I
si : ∨

i∈I
P → ∨

i∈I
Q

lies in S.

Proof. Coproducts inA are direct sums equipped with a collection of projection maps. Here

P = ∨
i∈I
Pi

and
Q = ∨

i∈I
Qi.

Define
s = ∨

i∈I
si : P → Q

by the rule
s(p) = (si(pi))i∈I .

Clearly, s is well defined and is also a freeK-module homomorphism.

In order to show s is injective, let p, p′ ∈ P with s(p) = s(p′). Then (si(pi))i∈I =

(si(p
′
i))i∈I for each i ∈ I (since si is injective for each i ∈ I) showing p = p′. Hence s is

injective. Now we have to show that s(p)2 = 0. We see that

s(p)2 = s(p) ∧ s(p) = −(s(p) ∧ s(p))

implying 2 (s(p) ∧ s(p)) = 0. Thus (s(p) ∧ s(p)) = 0.

We will show that the set S of freeK-module homomorphisms of the categoryA of free
K-modules and freeK-modules homomorphisms admit a calculus of left fractions.

Proposition 8.2.2. S admits a calculus of left fractions.

Proof. LetM,N and P be in A . Let s : M → N and t : N → P be two free K-module
homomorphisms of the category A . We have to show that ts(m)2 = 0 for all m ∈ M .
Since s and t are in S, we have s(m)2 = 0, t(n)2 = 0. Consider ts(m)2 = t(s(m))2 = 0

for all m ∈ M . So S is a closed family of free K-module homomorphisms of category
A .We shall verify conditions (a) and (b) of Theorem 1.2.2. Let s, t be two free K-module
homomorphisms in the category A . We show that if ts ∈ S and s ∈ S, then t ∈ S, i.e.,
t(n)2 = 0 and t is injective. Consider the following commutative diagram.
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M

∧(M)

N

∧(N)

P

∧(P )

s

iM

∧(s)

iN

t

∧(t)

iP
φ′

From the above diagram we have a diagram

∧(M)

M ∧(N)P

∧(s)iM

ts φ′

φ

By Theorem 8.1.3, φ is one-one and φts = iM . Again we have φ′ = ∧(s)φ implying φ′ is
injective. From φ′t = iN we conclude t is injective. We have

t(n)2 = t(n) ∧ t(n) = −(t(n) ∧ t(n))

implying
2(t(n) ∧ t(n)) = 0.

Thus
t(n) ∧ t(n) = 0.

Hence the condition (a) of Theorem 1.2.2 holds.

In order to prove condition (b) of Theorem 1.2.2 consider the diagram

A

C

B
f

s

in A with s ∈ S. We assert that the above diagram can be embedded to a weak push-out
diagram

A

C

B

D

f

s

g

t
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in A with t ∈ S. Let
D = (B ⊕ C)/N

where N is a sub module of B ⊕ C generated by

{(f(a),−s(a)) : a ∈ A}.

Define t : B → D by the rule
t(b) = (b, 0) +N

and g : C → D by the rule
g(c) = (0, c) +N.

Clearly, the two maps are well defined and freeK-module homomorphisms. For any a ∈ A,

tf(a) = (f(a), 0) +N = (0, s(a)) +N = gs(a),

impling that tf = gs. Hence the above diagram is commutative.

Next we show that t ∈ S, i.e., t is injective. Take b ∈ B with t(b) = N ; this implies
(b, 0) + N = N, i.e., (b, 0) ∈ N. So (b, 0) = (f(a),−s(a)) from which it follows that
a = 0. Now we get f(0) = (b) = 0. Thus t is injective. Clearly, t(b)2 = 0 for all b ∈ B.

Next let u : B → X and v : C → X be in category A such that uf = vs.

A

C

B

D

X

f

s

g

t
u

v

θ

Define θ : D → X by the rule

θ((b, c) +N) = u(b) + v(c).

It is easy to show that θ is well defined and also a freeK-module homomorphism. Next we
show the two triangles are commutative. For any b ∈ B,

θt(b) = θ((b, 0) +N) = u(b)
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and for any c ∈ C,
θg(c) = θ((0, c) +N) = v(c).

So θt = u and θg = v.

The following result holds in the category of free modules and free module
homomorphisms.

Proposition 8.2.3. The category A is cocomplete.

From Propositions 8.2.1, 8.2.2 and 8.2.3 we see that all the conditions of Theorem 1.4.1
are satisfied, hence we have the following result.

Theorem 8.2.4. Every object M of the category A has an Adams completion MS with
respect to the set S of free K-module homomorphisms. Furthermore, there exists a free
K-module homomorphism e : M → MS in S̄ which is couniversal with respect to the free
K-module homomorphisms in S : given a free K-module homomorphism s : M → N in S
there exists a unique free K-module homomorphism t : N → MS in S̄ such that ts = e. In
other words the following diagram is commutative:

M

N

MS
e

s
t

Theorem 8.2.5. The freeK-module homomorphism e :M →MS is in S.

Proof. Let

S1 = {s :M → N in A | s is an injective free K-module}

and

S2 =
{
s :M → N in A | s is a free K-module homomorphism such that s(m)2 = 0

}
.

For S1 and S2, it easily follows that all the conditions of Theorem 1.5.9 are satisfied.
Therefore, e ∈ S.

8.3 Exterior algebra as Adams completion

We show that the exterior algebra ∧(M) of a free K-module M is precisely the Adams
completionMS ofM .
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Theorem 8.3.1. ∧(M) ∼= MS .

Proof. Consider the following diagram:

M

MS

∧(M)
iM

e
φ

By Theorem 8.1.3, there exists a unique free K-module homomorphism φ : MS → ∧(M)

in S such that φe = iM .

Next consider the following diagram

M

∧(M)

MS
e

iM
ψ

By Theorem 8.2.4, there exists a unique free K-module homomorphism ψ : ∧(M) → MS

in S such that ψiM = e.

Consider following diagram

M

∧(M)

MS

MS
e

e

φ

ψ

1MS

we have ψφe = ψiM = e. By the uniqueness condition of the couniversal property of e, we
conclude that ψφ = 1MS

.

Next consider the following diagram

M

MS

∧(M)

∧(M)
iM

iM

ψ

φ

1∧(M)
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we have φψiM = φe = iM . By the uniqueness condition of the couniversal property of iM ,
we conclude that φψ = 1∧(M). Thus ∧(M) ∼= MS .

8.4 Clifford algebra

Clifford algebras were introduced by Clifford in the late 19th century as part of his search
for generalizations of quaternions. Clifford algebras have become a more popular tool in
theoretical physics. We show that given an algebra, its Clifford algebra is isomorphic to the
Adams completion of the algebra with respect to a chosen set of morphisms in the category
of modules and module homomorphisms.

Theorem 8.4.1. [50] Let K be a commutative ring. LetM be a K-module and

f :M ×M → K

be a bilinear form onM . Let
φ :M → Cl(M, f)

be theK-module homomorphism defined by φ = (proj) ◦ (inj), where

inj :M → ⊗M

is the canonical injection of theK-moduleM into its tensor algebra ⊗M and where

proj : ⊗M → Cl(M, f)

is the canonical projection of the tensor algebra ⊗M onto its factor algebra

⊗M/If = Cl(M, f),

where If is the two-sided ideal

(⊗L) · ⟨M ⊗M − f(M,M) |M ∈ L⟩ · (⊗L)

of the algebra ⊗L. The homomorphism f is injective.

Definition 8.4.2. [51] LetM and N be two K-modules. The mapping

q :M → N

is said to beK-quadratic mapping if

q(λx) = λ2q(x)
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for all λ ∈ K, x ∈M and the map

f :M ×M → N

defined by
f(x, y) = q(x+ y)− q(x)− q(y)

isK-bilinear, this mapping f(x, y) is called the associated bilinear mapping. WhenN = K,
q is called a quadratic form onM and (M, q) is called quadraticK-module.

Definition 8.4.3. [51, 52] The Clifford algebra of a quadratic form (M, q) is a pair
((Cl(M), q), ρ), where Cl(M, q) is a K-quadratic module and ρ : M → Cl(M, q) is a
quadratic mapping such that ρ(m)2 = q(m)1M we assume the following universal property:
for every linear mapping

f :M → A

with
f(m)2 = q(m)1A

for allm ∈M , there exists a unique algebra morphism

f ′ : Cl(M, q) → A

such that the following diagram

M

A

Cl(M, q)
ρ

f
f ′

is commutative, i.e., f = f ′ρ.

Theorem 8.4.4. [51] If u : (M, q) → (M ′, q′) is a morphism of quadratic modules, i.e.,

q′(u(x)) = q(x)

for all x ∈M , then the algebra morphism Cl(u) is defined as follows

q′(u(x))2 = q′(x)1q′

and the universal property of δ : M → Cl(M, q) implies the existence of a unique
morphism

Cl(u) : Cl(M, q) → Cl(M ′, q′)

such that the following diagram
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(M, q)

(M ′, q′)

Cl((M, q)

Cl(M ′, q′)

ρ

u

ρ′

Cl(u)

is commutative, i.e., ρ′u = Cl(u)ρ.

We prove the following result which will be used in the sequel.

Theorem 8.4.5. LetK be a commutative ring with unit 1. LetM andN be freeK-quadratic
modules and let η :M → N be an injective freeK-quadratic module homomorphism. Then
η has the following property: given an injective freeK-quadratic module morphism

iM :M → Cl(M, qM)

there exists a unique injectiveK-quadratic module morphism

θ′ : N → Cl(M)

such that θ′η = iM , i.e., the following diagram is commutative

M

Cl(M)

N
η

iM
θ′

Proof. By Theorem 7.1.2, there exists a unique K-module isomorphism θ : N → T 1(M)

such that θη = g

M

T 1(M)

N
η

g
θ

Now consider the diagram

T 1(M)

M Cl(M)N

g′g

η θ′

θ
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where g : M → T 1(M) is a K-module isomorphism. Let g′ = iMg
−1. For each n ∈ N ,

define θ′ : N → Cl(M) by the rule

θ′(n) = g′θ(n).

For each m ∈ M , we have θ′(η(m)) = g′θ(η(m)). For m ∈ M , let η(m) = n. Thus we
have

θ′η(m) = θ′(n) = g′θ(n)

= iMg
−1θ(n) = iMf

−1θ−1θ(n)

= iMf
−1(n) = iM(m)

showing θ′η = iM .

To show that θ′ is one-one, consider the commutative diagram

M

Cl(M)

N

Cl(N)

η

iM

Cl(η)

iN
θ′

Since Cl(η) ◦ θ′ : N → Cl(N) is injective we have that θ′ is injective. Next we show that
θ′(n)2 = qN(n) · 1M . We have qNη(m) = qM(m). Since (M, qM), (N, qN) are quadratic
free modules, we have

θ′(n)2 = g′g(m)2 = qM(m) · 1M = qN(n) · 1M .

For the uniqueness of θ′, for each n ∈ N , let n = η(m),m ∈M . Let there exist

θ′′ : (N, qN) → Cl(M, qM)

such that θ′′η = iM Thus

θ′(n) = θ′η(m) = iM(m) = θ′′η(m) = θ′′(n)

showing θ′ = θ′′.
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8.5 The category Ã

Here we modify the categoryA as chosen above, also we choose different set of morphisms
as described in Section 8.2.

Let Ã denote the category of all free K-quadratic modules and free quadratic module
homomorphisms whereK is a commutative ring with unit 1. We assume that the underlying
sets of the elements of Ã are elements of U . We fix a suitable set of morphisms S in Ã .

Let S denote the set of all freeK-quadratic module homomorphisms

s : (M, qM) → (N, qN)

such that s is injective and
s(m)2 = qM(m) · 1N

for allm ∈M .

Proposition 8.5.1. Let si : (Pi, qPi
) → (Qi, qQi

) lie in S, for each i ∈ I , where the index set
I is an element of U . Then

∨
i∈I
Si : ∨

i∈I
Pi → ∨

i∈I
Qi

lies in S.

Proof. Coproducts in Ã are direct sums equipped with a collection of projection maps. Here

P = ∨
i∈I
Pi

and
Q = ∨

i∈I
Qi.

Define
s = ∨

i∈I
si : P → Q

by the rule s(p) = (si(pi))i∈I . Clearly, s is well defined and is also a free K-module
homomorphism.

In order to show s is injective, take p, p′ ∈ P and consider s(p) = s(p′). Then
(si(pi))i∈I = (si(p

′
i))i∈I for each i ∈ I (since si is injective for each i ∈ I) showing p = p′.

Hence s is injective. We consider the homomorphism
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M

Cl(M)

N

Cl(N)

η

iM

Cl(η)

iN
θ′

(P, iP ) (Q, iQ) Cl(Q, iQ)
s iQ

Then
iQs(p)

2 = iQ(s(p))
2 = qQ(s(p)) · 1Q = qP (p) · 1Q.

Thus we get s(p)2 = qQ(p) · 1Q.

We will show that the set S of freeK-quadratic module homomorphisms of the category
Ã of free K-quadratic modules and free K-quadratic modules homomorphisms admit a
calculus of left fractions.

Proposition 8.5.2. S admits a calculus of left fractions.

Proof. Let (M, qM), (N, qN) and (P, qP ) be in Ã and

iM :M → Cl(M, qM),

iN : N → Cl(N, qN)

and
iP : P → Cl(P, qP )

the corresponding Clifford algebras. Let

s : (M, qM) → (N, qN)

and
t : (N, qN) → (P, qP )

be two morphisms of the category Ã . We have to show that

ts(m)2 = qM · 1P

for allm ∈M . Since s and t are the free quadraticK-module morphisms, we have

qNs(m) = qM(m), qP t(n) = qN(n).

Consider
qP ts(m) = qP t(s(m)) = qN(s(m)) = qM(m)
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for all m ∈ M . Composition of injective map is injective. So S is a closed family of
morphisms of category A .

We shall verify conditions (a) and (b) of Theorem 1.2.2. Let s, t be two freeK-quadratic
module homomorphisms in category Ã . We show that if ts ∈ S and s ∈ S, then t ∈ S, i.e.,
t(n)2 = qN1P and t is injective. Consider the following commutative diagram.

M

Cl(M)

N

Cl(N)

P

Cl(P )

s

iM

Cl(s)

iN

t

Cl(t)

iP
φ′

From the above diagram we have a diagram

Cl(M)

M Cl(N)P

Cl(s)iM

ts φ′

φ

By Theorem 8.4.5, φ is one-one and φts = iM . Again we have φ′ = Cl(s)φ implying φ′

is injective. From φ′t = iN , we conclude t is injective. Now consider the commutative
diagram

N

Cl(N)

P

Cl(P )

t

iN

Cl(t)

iP

with
Cl(t) ◦ iN = iP ◦ t · iP ◦ t(n)2 = iP (t(n))

2 = t(n)2.

Since t is quadratic homomorphism, we have qP t(n) = qN(n) for all n ∈ N . Again

iP (t(n))
2 = qP t(n)1P = qN1P

for all n ∈ N . Thus t ∈ S and the condition (a) of Theorem 1.2.2 holds.

In order to prove condition (b) of Theorem 1.2.2 consider the diagram
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A

C

B
f

s

in Ã with s ∈ S. We assert that the above diagram can be embedded to a weak push-out
diagram

A

C

B

D

f

s

g

t

in Ã with t ∈ S. Let
D = (B ⊕ C)/N

where N is a sub module of B ⊕ C generated by

{(f(a),−s(a)) : a ∈ A}.

Define t : B → D by the rule
t(b) = (b, 0) +N

and g : C → D by the rule
g(c) = (0, c) +N.

Clearly, the two maps are well defined and free K-quadratic module homomorphisms. For
any a ∈ A,

tf(a) = (f(a), 0) +N = (0, s(a)) +N = gs(a),

implying that tf = gs. Hence the above diagram is commutative.

Next we show that t ∈ S, i.e., t is injective. Take b ∈ B with t(b) = N ; this implies
(b, 0) +N = N , i.e., (b, 0) ∈ N. So

(b, 0) = (f(a),−s(a))

from which it follows that a = 0. Now we get f(0) = (b) = 0. Thus t is injective. We
consider iDt:

(B, qB) (D, qD) Cl(D, qD)
t iD
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iDt(b)
2 = iD(t(b))

2 = qD(t(b)) · 1D = qB(b) · 1D.

So we get t ∈ S.

Next let u : B → X and v : C → X be in category Ã such that uf = vs.

A

C

B

D

X

f

s

g

t
u

v

θ

Define θ : D → X, by the rule

θ((b, c) +N) = u(b) + v(c).

It is easy to show that θ is well defined and also a freeK-quadratic module homomorphism.
Next we show the two triangles are commutative. For any b ∈ B,

θt(b) = θ((b, 0) +N) = u(b)

and for any c ∈ C,

θg(c) = θ(0, (c) +N) = v(c).

So θt = u and θg = v.

The following theorem is a well known result in the category of free quadratic modules
and free quadratic module homomorphisms.

Proposition 8.5.3. The category Ã is cocomplete.

From propositions 8.5.1, 8.5.2 and 8.5.3 we see that all the conditions of Theorem 1.4.1
are satisfied, hence we have the following result.

Theorem 8.5.4. Every object M of the category Ã has an Adams completion MS with
respect to the set S of free K-quadratic module homomorphisms if and only if there exists
a morphism e : M → MS in S̄ which is couniversal with respect to the free K-quadratic
module homomorphisms in S: given a freeK-quadratic module homomorphism s :M → N

in S there exists a unique freeK-module homomorphism t : N →MS in S̄ such that ts = e.
In other words the following diagram is commutative :
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M

N

MS
e

s
t

Theorem 8.5.5. The freeK-quadratic module homomorphism e :M →MS is in S.

Proof. Let

S1 = {s : (M, qM) → (N, qN) in A | s is an injective free

K-quadratic module homomorphism}

and

S2 = {s : (M, qM) → (N, qN) in A | s is a free K-quadratic module

homomorphism such that s(m)2 = qM · 1N}.

Clearly,

(a) S = S1 ∩ S2 and

(b) S1 and S2 satisfy all the conditions of Theorem 1.5.9.

Hence e ∈ S.

8.6 Clifford algebra as Adams completion

We show that the Clifford algebra Cl(M) of a freeK-quadratic moduleM , is precisely the
Adams completionMS ofM .

Theorem 8.6.1. Cl(M) ∼= MS .

Proof. The proof is same as that of Theorem 8.3.1.
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