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Abstract

Wireless Sensor Networks (WSNs) have received considerable attention in recent years

because of its broad area of applications. In the same breadth, it also faces many challenges.

Time synchronization is one of those fundamental challenges faced by WSN being a

distributed system. It is a service by which all nodes in the network will share a common

notion of time. It is a prerequisite for correctness of other protocols and services like

security, localization and tracking protocols. Several approaches have been proposed in

the last decade for time synchronization in WSNs. The well-known methods are based on

synchronizing to a reference (root) node's time by considering a hierarchical backbone for

the network. However, this approach seems to be not purely distributed, higher accumulated

synchronization error for the farthest node from the root and subjected to the root node failure

problem. Recently, consensus based approaches are gaining popularity due its computational

lightness, robustness, and distributed nature.

In this thesis, average consensus-based time synchronization algorithms are proposed,

aiming to improve the performance metrics like number of iterations for convergence,

total synchronization error, local synchronization error, message complexity, and scalability.

Further, to cope up with energy constraint environment, Genetic algorithm based topological

optimization strategies are proposed to minimize energy consumption and to accelerate the

consensus convergence of the existing consensus-based time synchronization algorithms.

All algorithms are analyzed mathematically and validated through simulation in MATLAB

based PROWLER simulator.

Firstly, a distributed Selective Average Time Synchronization (SATS) algorithm is

proposed based on average consensus theory. The algorithm is purely distributed (runs

at each node), and each node exploits a selective averaging with the neighboring node

having maximum clock difference. To identify the neighboring node with maximum clock

difference, every node broadcasts a synchronization initiation message to the neighboring

nodes at its local oscillation period and waits for a random interval to get the synchronization

acknowledgment messages. After receiving acknowledgment messages, a node estimates

relative clock value and sends an averaging message to the selected node. The iteration

continues until all nodes reach an acceptable synchronization error bound. The optimal

convergence of the proposed SATS algorithm is analyzed and validated through simulation

and compared with some state-of-the-art, average consensus based time synchronization

algorithms.

vii



Furthermore, it is observed that most of the consensus-based time synchronization

algorithms are one-hop in nature, i.e., the algorithms iterate by averaging with one-hop

neighbors' clock value. In a sparse network with a lower average degree of connectivity,

these algorithms show poor performance. In order to have better convergence on the sparse

network, a multi-hop SATS algorithm is proposed. The basic principle of multi-hop SATS

algorithm remains same as that of SATS algorithm, i.e., performing selective averaging

with the neighboring node, having maximum clock difference. But, in this case, the

search for neighboring node goes beyond one hop. The major challenge lies in multi-hop

search is the end-to-end delay which increases with the increase in hop count. So, to

search a multi-hop neighboring node with maximum clock difference and with minimum

and bounded end-to-end delay, a distributed, constraint-based dynamic programming

approach is proposed for multi-hop SATS algorithm. The performance of the proposed

multi-hop SATS algorithm is compared with some one-hop consensus time synchronization

algorithms. Simulation results show notable improvement in terms of convergence speed,

total synchronization error within a restricted hop count. The trade-off with the increase in

number of hops is also studied.

Thewell-known consensus-based time synchronization algorithms are ``all node based'',

i.e., every node iterates the algorithm to reach the synchronized state. This increases the

overall message complexity and consumption of energy. Further, congestion in the network

increases due to extensive synchronization message exchanges and induces the delay in the

network. The delay induced in the message exchange is the main source of synchronization

error and slows down the convergence speed to the synchronized (consensus) state. Hence,

it is desirable that a subset of sensors along with a reasonable number of neighboring sensors

should be selected in such a way that the resultant logical topology will accelerate the

consensus algorithm with optimal message complexity and minimizes energy consumption.

This problem is formulated as topological optimization problem which is claimed to be

NP-complete in nature. Therefore, Genetic Algorithm (GA) based approaches are used

to tackle this problem. Considering dense network topology, a single objective GA-based

approach is proposed and considering sparse topology, a multi-objective Random Weighted

GA based approach is proposed. Using the proposed topological optimization strategy,

significant improvements are observed for consensus-based time synchronization algorithms

in terms of average number of messages exchanged, energy consumption, and average mean

square synchronization error.

Keywords: Wireless Sensor Network, Consensus Time Synchronization, Distributed

Constraint Dynamic Programming, Topological Optimization, Genetic Algorithm,

Random Weighted Genetic Algorithm
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Chapter 1

Introduction

Timemeasurement has aroused the curiosity among research community from a long time. In

the 17th century, Galileo and Christian Huygens were the first scientists to pioneer the work

in this field [5]. They have developed an accurate scientific clock based on their theories

of the motion of a pendulum. Further advancement in this area includes the development

of the atomic clocks that are used in various applications, e.g., the Global Positioning

System (GPS), digital telephone communication network, to provide more accurate time

information [6]. Furthermore, it is also essential that different nodes in the network should

agree on a common time. Therefore, time agreement in the network is a prerequisite,

which helps successful working of other protocols and applications. The mechanism to

provide the common notion of time across all the nodes in the network is called time

synchronization. To achieve time synchronization, it is required that the nodes in the network

should communicate through the communication links. Those links can be wired or wireless

links. Our research is aimed at the latter one because the inherent challenges are more in

wireless networks.

1.1 Introduction

Among various wireless networks, Wireless Sensor Networks (WSNs) have received recent

scientific attention due to their ease of deployment and broad area of applications, starting

from terrestrial to underwater scenarios [1]. WSNs consist of small and cheap sensor nodes.

It is a resource constrained distributed network, consisting of large-scale of sensors with

limited battery power, short communication range, low bandwidth, and limited processing

and storage capability. In recent past, WSNs have witnessed many applications such as

environmental monitoring, target tracking, event detection, security and target localization.

For all these applications, time synchronization is an indispensable component. It is also

required for correctness of other protocols like TDMA, duty cycle scheduling, fault detection

and diagnosis and routing.

Time synchronization has remained one of the basic challenges in traditional distributed

system due to lack of global physical clock. It is also a well-studied problem in wired

network. The Network Time Protocol (NTP) has remained the de-facto synchronization
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protocol in the Internet. But the protocols designed for traditional distributed and wired

system do not suit for WSN because of the following reasons.

Firstly, sensors are battery operated and hence, limited energy is available. But accurate

time synchronization requires a series of message exchanges which consume much energy.

Secondly, the sensor networks are subjected to high degree of failures (nodes/links) because

of lack of infrastructure and in some scenario like underwater, due to the mobility of nodes

and dynamic topology. So, synchronization cannot be guaranteed all the time. Thirdly,

sensor nodes' clocks are made up of a cheap crystal oscillator. So the clock's frequency drift

is very high which needs some hardware level calibration for better precision which is out

of scope of this thesis.

Therefore, a trade-off always exists between different aspects of synchronization

schemes for wireless sensor network. There has been extensive research on time

synchronization in wireless networks during the last few years. Several surveys [1, 7–10]

have been written about this issue. Still, designing efficient time synchronization algorithms

for wireless sensor network is a burning issue in the research community.

The rest of this Chapter is organized as follows. A preliminary about definitions of a

clock and its model for sensor nodes is presented in Section 1.1.1. Section 1.1.2 discusses

the performance metrics used to evaluate synchronization algorithms. Section 1.3 presents

the motivation for the proposed works. Then the research objective is given in Section 1.4

and finally, the major contribution and organization of the thesis are discussed in Section 1.5

and 1.6 respectively.

1.1.1 Preliminaries

(i) Hardware Clock

The clock component of a sensor node consists of an oscillator of specified frequency, and

a counter register. Oscillators embedded in micro-controllers are of four types, viz. crystal

oscillators, ceramic resonators, RC oscillators, and silicon oscillators [11]. Since crystal

oscillators provide more accuracy with lower cost, all commercially available sensor motes

use crystal oscillators in their timer circuitry. The cost of a crystal oscillator is proportional

to the accuracy of the clock it provides, and therefore, low-cost sensor motes generally use

less accurate crystal oscillator [12].

The hardware clock available in sensor motes are of two types, viz. internal hardware

clock and external on-board clock. The internal hardware clock is embedded inside the

micro-controller. The crystal oscillators used in the internal hardware clocks have lower

frequency stability. Typically, for Tmote Sky sensor nodes, the micro controller MSP430

is embedded with a digitally controlled oscillator running at 8MHz [13]. So, the clock

resolution is 1/8MHz=0.125 µs which is quite low. This value is also known as one tick.

Also, the internal clock is switched off when the CPU is in sleep mode. Therefore, internal
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clock are generally not used for many applications.

Hence, to provide stable timing service for long interval, the external on-board hardware

clock must be used. Moreover, the external clock remains active when the CPU is in a sleep

state. To read the real time of hardware clock, each hardware clock is associated with a

counter register. The counter register is incremented after a certain number of oscillator

pulses. The software clock module only extracts the value of the counter register and uses

this value as the clock time of the sensor node.

(ii) Software Clock

The external hardware clock which counts an approximation of real time `t', can be

mathematically expressed as [14]:

C(t) = k

∫ t

0

ω (t) dt+ C (t0) (1.1)

where ω(t) is the angular frequency of the oscillator, `k' is a proportionality coefficient

andC (t0) is the initial value of the clock. For an ideal clock,
dC
dt

= 1. But for various reasons

like temperature, vibration, magnetic field, aging effect of the quartz oscillator, the angular

frequency of the oscillator varies, and the clock drifts. As shown in Fig.1.1, if dC
dt

< 1,

the clock is treated as slower clock and if dC
dt

> 1, it is treated as a faster clock. If the

angular frequency can be approximated to a fixed value, then for a node `i', the clock can be

expressed as :

t

c(t)

dc/dt=1,perfect clock 

dc/dt<1,slower clock

dc/dt>1,faster clock

Figure 1.1: Behavior of fast, perfect & slow clock w. r. to real time [1]

Ci(t) = ai(t) + bi (1.2)

where ai=clock skew and bi =clock offset.

Skew is defined as the rate or frequency of the clock and offset is defined as the deviation

from the real time. To compare the local clock of one node `i' with relative to another node

`j' , the above expression can be rewritten as:
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Ci(t) = aij(t) + bij (1.3)

where aij=relative skew and bij =relative offset. If the two nodes are synchronized, then

aij=1 and bij=0.

(iii) Synchronization Error

Let Ci(t) be the software or logical clock time obtained from the physical clock time `t' of

the node `i' using Equation 1.2. Then, the synchronization error between clocks of node `i'

and `j' at real time `t' is defined as |Ci(t)− Cj(t)|. Thus, the average synchronization error
is the average of clock difference between every pair of nodes in the network. At real time

`t', the average synchronization error in a WSN having `n' number of nodes is defined as
2

n(n−1)

∑
|Ci(t)− Cj(t)|,∀i, i 6= j.

The synchronization problem in a network of `n' nodes is defined as equalizing Ci(t),

∀ i= 1, 2, 3,..., n or some nodes which are neighbors to each other or take part in a

communication process. But there lie some limits to achieve ideal synchronization in WSN

[15], mostly because of uncertainty in communication delay, mobility, link failures, etc.

So, most of the algorithms try to achieve synchronization at least asymptotically. Some

algorithms deal with equalizing drifts, some with offset and some with both drift and offset.

Equalizing both will help in achieving long-term synchronization [14]. Otherwise, the

synchronization process has to be repeated at a regular interval of time to keep the whole

network synchronized. Precisely, the basic objective of any time synchronization algorithm

is to ensure that the average synchronization error at any real time `t' is less than the

maximum acceptable synchronization error. Themaximum acceptable synchronization error

is application dependent. For time-critical applications, it is in the scale of µs. The time

synchronization algorithm also needs to ensure that the logical clock should be monotonic

in nature.

(iv) Sources of Synchronization Error

Time synchronization in WSN is generally achieved by a series of message exchanges. The

message transmission suffers broadly two types of delays; fixed delay and variable delay.

The fixed delay is due to message preparation, MAC access whereas the variable delay is

due to message transmission. The variable delay is the main source of synchronization error

in large network. But it can be neglected in a small network where communication takes

place with neighboring nodes. The followings are the detailed classification of delay factors

which are the major sources of synchronization error [1].

(a) Send Time: This is the time required to prepare a message at the operating system

level and to send it to the network layer. It is non-deterministic in nature.

(b) Access Time: his is the delay incurred at MAC layer to get the transmission channel.
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It is specific to the MAC scheme employed by the protocol. For example, in TDMA based

protocol, it should wait for a specific time slot to transmit message. In CSMA/CA based

protocol, it must wait until the channel is clear.

(c) Transmission/Reception Time: This is the time taken by the sender or receiver

to send or receive the message bit-by-bit at the physical layer. It is deterministic in nature

because it depends on packet size and data rate of the channel.

(d) Propagation Time: This is the time required for the propagation of the message

between network interfaces of the sender and receiver. It is quite negligible for short range

communication as in wireless sensor network.

(e) Receive Time: This is the time required for the network interface at receiver to

receive and transfer it to the host. It is also non-deterministic in nature as send time.

Many time synchronization algorithms in WSNs follow the usage of MAC layer

time-stamping to reduce delay uncertainty [16–19]. Time-stamping of a synchronization

packet is done at MAC layer just before the transmission begins and immediately after the

packet is received at the MAC layer. As a consequence, the transmission delay would

only consist of transmission time, propagation time and reception time, which are quite

deterministic in nature. Our work also assumesMAC layer time-stamping to minimize delay

uncertainty.

1.1.2 Performance Metrics

Different applications put different demands on clock synchronization scheme. For instance,

some applications need high accuracy, e.g., TDMA, while some applications need energy

efficiency, e.g., power management in WSNs. Further, though there exist a rich set of

performance metrics in the literature, they face trade-offs, e.g., synchronization accuracy

versus energy efficiency, scalability versus robustness, etc. So an algorithm may not satisfy

all the requirements but always tries to optimize it. The followings are the broad set of

metrics for WSN, which can be used to evaluate any synchronization algorithm [1].

(a) Energy Efficiency: WSNs are generally battery operated and hence, a limited energy

source is available. The major cause of energy depletion is the exchange of messages.

So, while designing any synchronization algorithm, it should aim for minimizing number

transmissions (minimizing the number of message exchanges) over the network.

(b) Scalability: Scalability demands the accuracy of the synchronization algorithmmust

be preserved as the network grows in size or density.

(c) Precision: Synchronization precision or accuracy requirement varies according to

the type of applications. For some applications, a simple ordering of events and messages

is sufficient, e.g., some monitoring applications. Whereas, some time-critical applications

require precision in the order of microseconds, e.g., body area sensor network for surgical

purposes.

(d) Robustness: Robustness indicates the fault tolerance aspect of the protocol. In
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hostile environment, some sensor nodes may not participate in the synchronization process

or some link failure may occur due to short range of radio wave. In such scenario, the

synchronization algorithm should continue to operate with desirable accuracy.

(e) Lifetime: Lifetime is the period up to which the nodes are remained synchronized.

If the protocol synchronizes both skew and offset, then the lifetime will be increased.

(f) Scope: The synchronization algorithm may provide network-wide synchronization

or synchronization within a subset of neighboring nodes. Because of the scalability issue,

network-wide synchronization is difficult to achieve in a large sensor network.

(g) Cost and Size: WSNs are generally made up of cheap sensor nodes with limited

energy resources. So, deploying costlier and large hardware like GPS to achieve external

synchronization is not desirable in WSN.

1.2 Motivation

Time synchronization is a fundamental challenge to any distributed system because of the

absence of a centralized clock. Being a distributed system, WSNs also face the same

challenge. A rich set of time synchronization algorithms has been proposed in the literature

for traditional wired networks as well as wireless sensor networks in the near past. Being

distributed systems, both wired and wireless networks carry some common characteristics.

But, time synchronization issues and mechanism in WSNs are quite different from that in

wired networks due to certain fundamental differences between these two types of distributed

systems. Hence, time synchronization algorithms designed for wired networks cannot be

directly used in WSNs. These differences arise because of the following reasons [1].

Limited Resources: Sensor nodes in WSNs have limited energy, bandwidth and

processing capability. For wired network, there is no such type of limitations. As a

result, time synchronization algorithms for WSNs cannot exploit end-to-end communication

between any pair of sensor nodes which are multi-hop away.

In case of direct end-to-end communication, the delay is also quite higher which creates

difficulty in designing time synchronization algorithms with high synchronization accuracy.

This approach also suffers from consumption of more resources as every sensor node tries

to communicate with every other sensor node. Hence, time synchronization algorithms in

WSNs essentially rely on one-hop communication. As a result, the protocol like NTP which

requires end-to-end communication becomes infeasible on WSNs.

Nature of Communication: Another disadvantage of wireless communication is

external interference due to problems such as hidden nodes which has to be considered while

designing time synchronization algorithms for WSNs. But in the case of wired networks,

such interference is almost negligible.

In wireless networks, the electromagnetic signal gets attenuated with the distance

and therefore, the quality of reception at each node depends on its distance from the
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sender. In addition, applications like underwater, communications are established through

transmission of acoustic waves. In such applications, issues like limited bandwidth, long

propagation delay, and signal fading make traditional time synchronization algorithms

infeasible on WSNs. Besides, time synchronization mechanism in WSNs does not permit

a synchronization packet to be retransmitted to ensure its reliable delivery because, in case

of retransmission, the time-stamp will change which makes the synchronization algorithm

inconsistent.

Type of Deployment: Some application like environmental monitoring requires sensor

nodes to be densely deployed. Also, limited sensing range is another reason for the dense

deployment of sensor nodes. In such case, collisions are more likely. Hence, there is usually

more possibility of message loss in WSNs as compared to that in wired networks.

On the other hand, in sparse deployment, to achieve network-wide synchronization,

sensor nodes need to follow multi-hop communication whose disadvantages are already

discussed above. So, type of deployment also indirectly affects synchronization process.

Dynamic topology: Wired networks are static in nature. But, in the case of WSNs,

the connectivity among sensor nodes changes because of various reasons. For example, in

duty-cycled WSNs, the radio module of sensor nodes are switched on and off at regular

interval to save energy. So, the link connectivity changes which makes the topology

dynamic. As a result, the synchronization process can not be initiated as and when required,

thus, making it more challenging.

The above discussion has pointed out the existing challenges in the design of time

synchronization algorithm for wireless sensor networks which catalyzes the need to develop

efficient time synchronization algorithms for WSNs. For the last decade, a number of

synchronization algorithms have been proposed for WSNs. Some of the works [20, 21] are

based on synchronizing to a reference node's time by considering a hierarchical backbone

for the network. But a common problem in this approach is the root node failure problem.

Also, the synchronization error is accumulated along the path from the reference node.

Recently, to develop fully distributed and internal time synchronization mechanism,

consensustime synchronization method has gained much attention [17, 18, 22–25].

Consensus Time Synchronization (CTS) is mainly based on distributed average consensus

principle [26, 27] which states that all the nodes in a network can converge to a consensus or

synchronized state after a finite number of iterations, by communicating and performing

averaging only with the neighbors. Because of its simplicity, computational lightness,

robustness to node/link failure and purely distributed nature, CTS is more suitable for WSN.

Furthermore, the convergence of consensus-based algorithms depends on the type of

averaging schemes they employ and the topological connectivity of the network [28, 29].

This motivates to design average consensus based time synchronization algorithm forWSNs

with topological optimization strategy for performance improvement. Based on this criteria

of research, the following section highlights the research objectives.
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1.3 Research Objective

In this thesis, we have aimed at developing new average time synchronization algorithms

based on consensus theory to minimize convergence speed, global synchronization error,

local synchronization error with low message complexity and scalability. We have also

targeted to propose topological optimization strategies to improve the performance of

consensus-based time synchronization algorithms. In particular, the objectives of this

research are as follows.

1. To propose a distributed, average consensus time synchronization algorithm for dense

and single-hop WSNs with better convergence speed, global synchronization error,

local synchronization error with low message complexity and scalability as compared

to some state-of-the-art CTS algorithms.

2. To propose a distributed, average consensus time synchronization algorithm for

sparse, multi-hop WSNS with bounded end-to-end delay without compromising the

convergence speed, global synchronization error, local synchronization error with

low message complexity and scalability as compared to some state-of-the-art CTS

algorithms.

3. To propose a topological optimization strategy for dense and single-hop WSNs to

improve the performance of consensus-based time synchronization algorithms in terms

of convergence speed, synchronization error, number of messages exchanged and

energy consumption.

4. To propose a topological optimization strategy for sparse and multi-hop WSNs to

improve the performance of consensus based time synchronization algorithms in terms

of convergence speed, synchronization error, number of messages exchanged and

energy consumption.

5. To validate the proposed algorithms using PROWLER, a MATLAB based discrete

event simulator designed for WSNs [30]. This simulator is chosen because of rapid

prototyping feature and better support for optimization problems.

6. To evaluate the algorithms in terms of some standard performance metrics, described

in Section 1.1.2.

1.4 Major Contribution

In this dissertation, four algorithms are proposed related to average consensus time

synchronization problem and topological optimization for performance improvement. The

descriptions of the contributory chapters are given below.
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• In Chapter 3, an average consensus-based, distributed time synchronization algorithm,

named as Selective Average Time Synchronization (SATS), is proposed. The

optimality and convergence property of the algorithm is analyzed mathematically and

validated through simulation. Simulation results show that the performance of the

algorithm is improved as compared to ATSP and CCS algorithms.

• In Chapter 4, an average-consensus based, distributed time synchronization algorithm,

named as multi-hop Selective Average Time Synchronization (multi-hop SATS),

is proposed for the sparse network using distributed constraint-based dynamic

programming approach. Simulation results show that the performance has been

improved significantly as compared to ATS, CCS and SATS algorithms by restricting

the hop count. The trade-off is also studied through simulation with the increase in the

number of hops.

• In Chapter 5, a Genetic Algorithm (GA) based topological optimization strategy

for dense topology is proposed to improve the performance of consensus time

synchronization algorithms in terms of mean delay, average Mean Square Error

(MSE), average number of iterations for consensus convergence and energy

consumption.

• In Chapter 6, a multi-objective genetic algorithm scheme, Random Weighted Genetic

Algorithm (RWGA), based topological optimization strategy for sparse topology is

proposed to improve the performance of consensus time synchronization algorithms in

terms of mean delay, average Mean Square Error (MSE), average number of iterations

for consensus convergence and energy consumption. The performance of proposed

topological optimization strategy is also studied on dynamic topology.

1.5 Thesis Outline

• In Chapter 1, introduction to WSNs, an overview of hardware clock, clock

model, sources of synchronization error and performance metrics for evaluation of

time synchronization algorithms are presented. The motivation behind designing

distributed, consensus-based time synchronization algorithm is outlined along with

the research objectives. The major contributions are highlighted followed by the thesis

organization.

• In Chapter 2, a comprehensive overview of the related work done by different authors

in the area of time synchronization in WSNs is presented. The main focus is given on

distributed consensus-based time synchronization algorithms in WSNs.

• In Chapter 3, an average consensus-based, distributed time synchronization

algorithm, named as Selective Average Time Synchronization (SATS), is proposed.

9



The optimality and convergence property of the algorithm is analyzed mathematically

and validated through simulation. Simulation results show that the performance of the

algorithm is improved as compared to ATSP and CCS algorithms.

• In Chapter 4, an average consensus-based, distributed time synchronization

algorithm, named as multi-hop Selective Average Time Synchronization (multi-hop

SATS), is proposed for the sparse network using distributed, constraint-based dynamic

programming approach. Simulation results show that the performance has been

improved significantly as compared to ATSP, CCS and SATS algorithms by restricting

the hop-count. The trade-off is also studied through simulation with the increase in

the number of hops.

• In Chapter 5, a Genetic Algorithm (GA) based topological optimization strategy

for dense topology is proposed to improve the performance of consensus time

synchronization algorithms in terms of mean delay, average Mean Square Error

(MSE), average number of iterations for consensus convergence and energy

consumption.

• In Chapter 6, a multi-objective genetic algorithm scheme, RandomWeighted Genetic

Algorithm (RWGA), based topological optimization strategy for sparse topology is

proposed to improve the performance of consensus based synchronization algorithms

in terms of mean delay, average Mean Square Error (MSE), average number of

iterations for consensus convergence and energy consumption. The performance of

proposed topological optimization strategy is also studied on dynamic topology.

• In Chapter 7, a brief description of the whole work is presented. It also discusses the

improvements and limitations of the results obtained and suggests the future scope of

the work done.

1.6 Summary

This Chapter provides a brief introduction to WSNs and needs for time synchronization in

WSNs. It also meticulously outlines the scope, the motivation, and the objectives of the

thesis. A precise presentation of the research work carried out in the whole thesis, and the

contribution made in the thesis have also been highlighted. In brief, this chapter provides a

complete overview of the whole thesis in a concise manner.



Chapter 2

Background & Literature Survey

This Chapter briefly presents the journey of time service from a centralized system to time

synchronization methods in traditional distributed system to WSNs. Then, based on the

existing literature, a survey tree is presented which helps us to classify the different time

synchronization methods available for WSNs. Furthermore, the survey tree enables us to

select our research objectives which are pointed out in Chapter 1 and to carry out the research

in a particular direction.

2.1 Introduction

In centralized systems, synchronization issue does not arise because there is no time

ambiguity. A process obtains the time by simply using a system call to the kernel, and

the kernel is responsible for providing the time to all processes centrally [1]. When another

process requests for time, a higher time value is provided by the kernel. Hence, the events

are ordered chronologically without any ambiguity.

In distributed systems, there is no global physical clock. Each node in the system has

its internal clock and uses its local time. In practice, these clocks drift from each other in

seconds scale, and the errors get accumulated to a reasonable value over time. Also, different

clocks have different oscillation frequencies. As a result, they may not always continue in a

synchronized state though they might have initially synchronized to each other. This creates

problems with the applications that are solely dependent on a synchronized notion of time.

So, synchronization has remained an important issue for traditional distributed systems [31].

The rest of the Chapter is organized as follows. Section 2.2 gives a brief background

of handling synchronization problem in traditional distributed system followed by a detail

descriptions of somewell known traditional synchronizationmethods in Section 2.3. Section

2.4 presents a taxonomy of time synchronization methods available for WSNs. Section 2.5

presents a case study of some recent and state-of-the-art synchronization protocols inWSNs.

Section 2.6 highlights the key observations from the literature survey followed by conclusion

in Section 2.7.
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2.2 Background

In traditional distributed system, to handle time synchronization problem, there are two

basic methods adopted in the literature [8]. The first method deals with synchronizing

the physical clock and the second method deals with synchronizing the logical clock. In

physical clock synchronization, the objective is to make the physical clock of each node to

agree on a common value; whereas in logical clock synchronization, the requirement is the

chronological ordering of relevant events.

Network Time Protocol (NTP) is the most commonly used protocol on the Internet for

physical clock synchronization [8]. NTP follows a layered client-server architecture, based

on UDP message passing paradigm. It follows a hierarchical architecture, where each level

is called as a stratum. The lowest level is called as stratum-1 which contains the primary

servers and they are directly synchronized to stratum-0 devices. The stratum-0 contains

high-precision timekeeping devices such as atomic (cesium, rubidium) clocks, GPS clocks

or other radio clocks. The next level contains the secondary servers which are known as

stratum-2, and they get synchronized with the stratum-1 servers. The hierarchy continues up

to stratum-15, the highest level in the hierarchy.

In some applications of distributed systems, the logical ordering of events is more

important than knowing the actual occurrence time for each event. In such cases, the absolute

physical clock synchronization is not necessary. In this context, Lamport [32] and Fidge [33]

have proposed two schemes for logical clock synchronization in distributed systems.

Lamport has defined an ordering of events using the principle of causality. If an event

affects the outcome of another event, then it is termed as “happened before" event. The

partial ordering of events is obtained by the “happened before" relation. For the partial

ordering, two rules are defined. The first rule states that the local clock is to be incremented

between any two consecutive local events. The second rule states that upon receiving a

message from a sender process with a local time-stamp, sets the local clock of the receiver

process as greater than or equal to the maximum value between the local clock value and

the sender time-stamp. Finally, these logical clocks are used to obtain a total ordering of all

events.

Fidge has also proposed a partial ordering of events using the principle of causality. But,

instead of using a single time-stamp value, a vector of time-stamp values is used. The vector

is initially set to (0, 0, . . . , 0), where each index corresponds to a process. If a local event

occurs at a process, the value at that index is incremented. When a process receives amessage

from another process with time-stamp vector, it sets the time in each index to the maximum

value of either the corresponding value of or the local vector value. The advantage of keeping

a vector of timestamps and maximizing it among processes is that it allows ordering not only

the events within a local process but also the events in other processes in the system.
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2.3 Traditional Time Synchronization Methods

The above-discussed protocol and methods give the basis of synchronization handling

mechanisms in traditional distributed systems. Subsequently, a number of protocols and

methods have been proposed in the past few decades to handle the synchronization problem

in traditional distributed systems. Some of the representative methods are briefly highlighted

below.

2.3.1 Remote Clock Reading Method

The remote clock readingmethod is proposed by Cristian, which considers non-deterministic

message delays between processes [34]. This method basically assumes a client-server

architecture for the distributed system. When a client process wants a time estimation, it

sends a request to the remote server and waits for the server to respond. When the client

receives the reply, it calculates the round-trip delay `rtt' as the difference between the time

at which it has sent the request and the time at which it received the reply. The reply message

contains the estimate of the time `t' on the remote server. Upon receiving the reply, it corrects

its local clock as t+ rtt/2. Multiple rounds of message passing are carried to compute and

choose the least round-trip delay, or the average of multiple round-trip delays is chosen. This

method synchronizes the clients with the remote server which is connected to an accurate

time service (Universal Coordinated Time).

The drawbacks of remote clock reading method are: (i) sending time uncertainty due to

network traffic and routing (ii) high message complexity and (iii) no definitive way to decide

the number of multiple rounds to be performed to find out the exact round-trip delay.

2.3.2 Time Transmission Method

This method is named as Time Transmission Protocol (TTP) and is proposed by Arvind [35].

The method states that a node communicates its own clock time to a target node. The target

node, upon receiving themessage from the source node, computes the time in the source node

and the delay statistics by using the timestamps appended in the message. The algorithm is

briefly described below.

Assume that `S' is the source node and `T' is the target node. `S' sends a series of

synchronization messages to `T'. The ith message is sent at time Ti of S's clock and received

at time Ri of T's clock. `T' estimates S's time as, Test = Rn − (R′(n)− T ′(n)) + d′ where

R′(n) = 1
n

∑n
i=1 Ri and T ′(n) = 1

n

∑n
i=1 Ti. d

′ is the expected value of message delay.Rn

is the time at which nth message is received by 'T'. Test is the target's estimate of the time

at the source. Once the time on the source is estimated, the target corrects its local clock to

achieve synchronization. The drawback of the TTP is its high message complexity.
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2.3.3 Offset Delay Estimation Method

This is the basic principle used by NTP for its operation [2]. In fact, a source node cannot

exactly compute the local time on the target node due to non-deterministic delays between

the nodes. This method employs a series of message exchange rounds and chooses the round

with the minimum delay. The remote clock reading method, propose by Cristian [34], also

follows the same method to compute the message delay.

T1 T2

T3 T4

A

B

Figure 2.1: Offset delay estimation method [2]

Fig. 2.1 shows that how timestamped messages are exchanged between two nodes A

and B. Let T1, T2, T3, and T4 be the most recent timestamps at node A and B. Assuming

that clocks of A and B have same oscillation frequency, then, a = T1 - T3 and b = T2 - T4.

Assuming the transmission delay between A and B is small, the clock offset θ and round trip

delay δ of B relative to A at time T4 are approximately given as: θ = (a + b)/2 , δ =a-b.

Each NTPmessage contains the recent three timestamps T1, T2 and T3, while T4 is computed

upon arrival. Thus, the delay and offset can be calculated independently by both the nodes

A and B using a single bi-directional message stream.

Since, this method also follows a series of message exchange rounds like Cristian's

method [34], both of them have the same drawback, i.e., high communication overhead in

terms of message complexity. However, the accuracy of this method is better than Cristian's

protocol because delays are partly compensated.

2.3.4 Model based Method

It is based on set-valued estimation method [3] which works as follows. Let a distributed

system have `N' number of nodes. Let ti denotes the local time on the clock of nodePi. Then,

the local times ti and tj on two nodes Pi and Pj are related as: ti = aijtj + bij where aij and

bij denotes, respectively, the relative skew and offset between the two hardware clocks.
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aij

bij

Timing uncertainty

True timing 

relationship

tj1 tj2 tjN

ti1

t'i1

ti2

t'i2

t'iN

tiN

Figure 2.2: Data triples plotted with the local time of Pj on the X-axis and the local time of

Pi on the Y-axis [3]

Node Pi sends `N' number of messages to node Pj at local times tik for k = 1, . . . ,

N. Node Pi receives replies to these messages from node Pj at times t
′
ik and each received

message is stamped with tik and the local time, tjk, when node Pjreceived the kth message.

When node Pi receives the last reply message from node Pj , node Pi has a triplet of

timestamps, (tik, tjk, t
′
ik). Using this triplet, a graph is drawn as shown in Fig. 2.2 with

the local time on node Pj on the X-axis and local time on node Pi on the Y-axis. Each data

triplet can be plotted as an error bar. The relative drift aij and the relative offset bij are

computed from the slope and Y-intercept of any line that passes through all of the error bars.

The drawback again remains the same, i.e., high message complexity.

The aforesaid traditional synchronization methods are mostly used in a wired network

and are not feasible on WSNs because of various reasons which are already discussed in

Section 1.2 of Chapter 1. Therefore, to cope up with the various issues, in the recent past,

a number of time synchronization algorithms are proposed by different authors for WSNs.

The following section highlights the classification of different synchronization algorithms

for WSNs.

2.4 Taxonomy of Time Synchronization Methods in WSNs

In the literature, the classification of synchronization methods is done based on different

perspectives [1, 9]. In [1], the synchronization methods are broadly divided into two types,

one is related to synchronization issues, and another is based on application-dependent

features. The following subsections highlight these two types.

2.4.1 Taxonomy based on synchronization issues

(a) Master-slave versus peer-to-peer synchronization

Master-slave: This method considers one node as the master and the others are considered

as slaves. The slave nodes take the master node's clock reading as the reference time and
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attempt to synchronize with the master. Some of the example protocols in this class are the

protocol proposed by Mock et al. [36] and Ping's protocol [37]. The demerit of this method

is: high computational resource requirement for the master node.

Peer-to-peer: In this method, any node can communicate directly with any other node

in the network. Such approach is tolerant to single-point (master node) failure problem.

Therefore, the protocols which are based on this method, are more flexible but also more

uncontrollable. RBS [20], protocol by Romer et al. [38], protocol by PalChaudhuri et al.

[39], TDP [40], and the asynchronous diffusion protocol of Li and Rus [23] are based this

method.

(b) Internal synchronization versus external synchronization

Internal synchronization: A global reference time is not available for the system and

therefore, this mechanism attempts to reduce the maximum difference between the values

of local clocks of the nodes. The protocol proposed by Mock et al. [36] belongs to this

category. Internal synchronization can follow both master-slave and peer-to-peer method.

External synchronization: In this type of synchronization, a standard reference time

source such as UTC (Universal Coordinated Time) is available. The local clocks of the

nodes try to synchronize to this external source. NTP [2] follows external synchronization

method. This method of synchronization is feasible where energy is not a constraint like

Internet. This method of synchronization can only adapt master-slave mode.

(c) Probabilistic versus deterministic synchronization

Probabilistic synchronization: This method provides a probabilistic upper bound on the

maximum clock offset with a failure probability that can be bounded or determined. This

method is quite expensive in an energy constraint environment. The protocol proposed by

PalChaudhuri et al. [39] is a probabilistic approach of RBS [20].

Deterministic synchronization: This method ensures a deterministic upper bound on the

clock offset. Examples of such protocols are RBS [20] and TDP [40].

(d) Sender-to-receiver versus receiver-to-receiver versus receiver-only synchronization

Sender-to-receiver synchronization (SRS): The sender node at regular interval sends a

timestamped message to the receiver nodes and then the receivers synchronize with the

sender using the time-stamp received from the sender. TPSN [21], Tiny-Sync, and

Mini-Sync [41] are based on this approach.

Receiver-to-receiver synchronization (RRS): This method assumes that if any two

receivers receive the same message within a single-hop, they receive it approximately at

the same time. Then, the receivers exchange the time at which they received the same

message and compute their offset based on the difference in reception times and using linear

regression. RBS [20] follows this principle of synchronization.
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Receiver-only synchronization (ROS): A group of nodes can be simultaneously

synchronized by only overhearing the message exchanges of a pair of nodes using the

broadcast nature of wireless medium. PBS [4] and multi-hop PBS [42, 43] follow this

method of synchronization.

(e) Clock correction versus untethered clocks

Clock correction: In practice, most synchronization methods follow the principle of

correcting the local clock in each node to run at par with a global reference time scale or

an atomic clock. The protocol proposed by Mock et al. [36] and Ping's protocol [37] are

based on this method. The local clocks of nodes that are present in the network are corrected

either instantaneously or at regular interval to keep the entire network synchronized.

Untethered clocks: To get a common notion of time without initiating the

synchronization process is becoming an attractive method, because a reasonable amount

of energy can be saved by this approach. RBS [20] follows this principle by building a table

of parameters that relate the local clock of each node to the local clock of every other node

in the network. Local timestamps are then compared using this table. So, a global time scale

is preserved while allowing the clocks run untethered. The protocol proposed by Romer et

al. [38] also uses this principle.

(f) Pairwise Synchronization versus network-wide synchronization

Pairwise synchronization: The method is primarily focused on to synchronize a pair of nodes

and can be extended to deal with the synchronization of a group of nodes.

Network-wide synchronization: The protocols are mainly designed to synchronize all

the nodes present in the network.

2.4.2 Taxonomy based on application requirements

(a) Single-hop versus multi-hop networks

Single-hop communication: In a single-hop network, a sensor node can directly

communicate with any other node in the network. The protocol proposed by Mock et al.

[36] is an example, following single-hop communication. However, it can be extended to

multi-hop communication.

Multi-hop communication: In the case of a large and sparse network, every node is not

within the vicinity of every other node. In this case, multi-hop communication can occur as

a sequence of hop-wise communication through connected, pairwise sensors. Extension of

PBS [42, 43] are examples of such protocols.
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(b) Stationary networks versus mobile networks

Stationary networks: Sensor nodes are assumed to have fixed geographical locations. Most

of the protocols in the literature are designed assuming stationary network.

Mobile networks: In applications like underwater sensor networks, sensors are mobile

in nature, and they connect with other sensors only when they are within the communication

range of each other. The dynamic topology is often a challenge to design synchronization

protocols as it needs resynchronization of nodes and re-computation of the neighborhoods

which is an extra computational overhead.

(c) MAC-layer-based approach versus standard approach

The protocol like RBS does not depend onMAC protocols so as to avoid a tight integration of

the application with the MAC layer. On the other hand, the protocols proposed by Ganeriwal

et al. [21] and Mock et al. [36] rely on the CSMA/CA protocol for the MAC layer. In

fact, MAC layer based approaches have the advantage of reduced delay, to have better

synchronization accuracy.

2.4.3 Taxonomy based on approaches

Based on the context of our research work and the exhaustive survey carried out, one

broader way of classifying the synchronization methods is shown in Fig. 2.3. They are

mainly categorized into two types, viz., (a) Non-consensus approaches and (b) Consensus

approaches. The details about each of the approach are explained below.
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Time synchronization 
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Consensus based
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Optimization
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        based
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Figure 2.3: Survey tree on time synchronization methods in WSNs

(a) Non-consensus based approach

The algorithms under this category are not purely distributed or semi-distributed. Either

they refer to an external or internal node for synchronization. The reference node may be

one node or more than one. Accordingly, they are further divided into following types.
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(i) Reference based approach

In this approach, one or more reference nodes are used to achieve synchronization. They

follow sender-to-receiver synchronization (SRS) or receiver-to-receiver synchronization

(RRS) principle. TPSN [21] and FTSP [44] are single reference, and SRS based

synchronization protocols. RBS [20] is single reference based and R4Sync [16] is multiple

reference based, and both of them follow RRS mechanism.

(ii) Overhearing based approach

The protocols under this approach follow receiver-only synchronization (ROS) principle.

Nodes in the network get synchronized by overhearing the synchronization packets,

exchanged between two other nodes within their vicinity. PBS [4] and its variants [42, 43]

follow this principle.

(iii) Optimization based approach

Some optimization methods have been applied to existing protocols to improve the

performance. In [45], Ant Colony Optimization (ACO) is applied on Time synchronization

Protocol for Sensor Network (TPSN), to minimize the synchronization error and to increase

the precision of time synchronization. The authors have claimed that the precision is

improved by nearly 10%. It removes the accidental error and enhances the convergence

speed. It is also claimed that the synchronization precision is around 2-8µs in a 5-hop range.

In [46], optimal foraging theory is applied on Reference Broadcast Synchronization (RBS)

protocol to minimize redundant message exchanges and to maximize the lifetime of the

network. The authors have claimed that the time spent in synchronization is reduced from

O (nm) to O (nm) where `n' is the number of nodes in the network and `m' is the number

of synchronization packets. The protocol also minimizes the storage space for each sensor

node, and hence, saves energy.

(iv) Statistical approach

Classical tools from mathematics and statistics have been applied in some time

synchronization protocols for WSN. These protocols are mainly based on parameter

estimation methods to perform time synchronization. The most common methods are

least square method [47], Bayesian estimation method [48, 49], Kalman filter method

[50–52], linear regression method [53], maximum likelihood estimator (MLE) [4], and

Crammers-Rao upper bound rule [16].

(b) Consensus based approach

In recent years, consensus approach from control theory has been widely implemented in

many problems of computer science, e.g., peer-to-peer network [54], load balancing in
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distributed system and sensor network [55]. Consensus problem is the problem of making

the scalar states of a set of agents converge to the same value using local communication

[26, 27].

Among different types of consensus (max value consensus, min value consensus, and

average consensus), the average consensus has gained more popularity because of its

feasibility in many applications [56]. The average consensus principle is the mostly adapted

principle in recent time synchronization algorithms for wireless sensor network. Some of the

recent and state-of-the-art consensus based time synchronization algorithms are presented

below. They are mainly categorized into two types: (i) all node based consensus algorithms

and (ii) cluster based consensus algorithms.

(i) All node based approach

In this approach, every node in the network participates in the consensus seeking process

by communicating with the neighboring nodes. Different authors have proposed different

averaging schemes for faster consensus convergence. Based on the averaging schemes, the

approaches can be further divided into two types, viz., (i) weighted averaging scheme and

(ii) pairwise averaging scheme.

In [17], the authors have proposed three weighted averaging consensus methods for

clock synchronization, namely, Cumulative Moving Average (CMA), Forwards Weighted

Average (FWA), and Confidence Weighted Average (CWA). Using a network of 100 nodes

and random linear drift, the authors claimed that CWA proved most reliable. Also, FWA

performance is same as CWA and has the advantage of reduced computational complexity.

The synchronization algorithm in [18] is also based on weighted averaging method. It

uses cascading of two consensus algorithm, one for skew compensation and another for

offset compensation. The communication protocol used is pseudo-periodic broadcast. The

algorithm is claimed to be fully distributed, asynchronous, and computationally light.

In [23], four protocols are proposed, namely, all-node-based method, cluster-based

method, diffusion-based method, and fault tolerant diffusion-based method. The first two

methods require a node to initiate the synchronization process. So, these are not fault-tolerant

and localized. The last two are based on local communication and can achieve the average

consensus. These protocols are also analyzed in the presence of a byzantine fault and claimed

to be fault tolerant.

The authors in [24] presented a pure average consensus-based synchronization algorithm.

It is claimed that the proposed algorithm is fully distributed, asynchronous, includes skew

compensation and computationally light. It is also robust to dynamic topology. Similarly, in

[25], an average synchronization algorithm is proposed with non-linear dynamical network

and with random time delays.
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(ii) Cluster based approach

In [57], the authors have proposed a cluster consensus-based time synchronization method.

The basic objective of embedding clustering into time synchronization is to minimize energy

consumption and to achieve faster convergence.

Advantages of Consensus-based time synchronization

From the above-discussed literature, the advantages of consensus-based time

synchronization methods can be summarized as:

1. It can work in a distributed way without depending on any hierarchical structure or a

node as a reference. So, they are tolerant to single-point failure problem.

2. Neighboring nodes are more accurately synchronized which is a major requirement in

most of the WSN applications.

3. As it uses only local communications, no routing is needed and hence, the network

congestion is avoided.

The above highlighted key points about consensus-based time synchronization

algorithms motivate us to choose our research direction towards this approach. The next

Section describes briefly some of the recent and state-of-the-art synchronization algorithms,

both from non-consensus and consensus based approaches.

2.5 Case study of state-of-the-art synchronization

algorithms

In this Section, a comprehensive study is carried out about some representative time

synchronization algorithms which are proposed in the recent past. The selected algorithms

are: TPSN [21], RBS [20], PBS [4] and its variants [42, 43],R4Sync [16], multi-hopR4Sync

[58], Average TimeSync [18], ATSP [22], MTS [19], CCS [17], and CCTS [57].

(i) Time synchronization Protocol for Sensor Network (TPSN)

It is based on conventional sender-receiver handshake method. The nodes are structured in a

hierarchical manner similar to NTP. Nodes are self-organized to act as a server to some node

while client to another server. Level-0 nodes are called root node. It can be either external

time source or one of the nodes of the network. Periodically root node is selected using

some leader election algorithm. All nodes have ID, and each node assumed to know his

neighbors. It is also assumed that all nodes have bi-directional links with their neighbors.

It follows two phases to achieve synchronization, viz., (i) Level Discovery Phase: In this

phase, root level node broadcasts “level discovery" packet to its neighbors. These neighbors

assign themselves level-1 and broadcast another packet to its neighbor with their level. This
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process continues till all neighbors have assign levels. In complex networks, some node

may not receive any packet, or it may join the network after level discovery phase is over.

Then it will wait for a time-out and then send a level request message to neighbors. If a root

node dies, the level 1 node will not get any acknowledgment from it, and they will wait until

time-out occurs. After the time-out, they will initiate a leader election algorithm to elect a

Root Node. (ii) Synchronization Phase: In this phase, two-way message exchange is done

between sender and receiver. Root node initiates by sending a time synchronization packet

and after a random time period, level-1 nodes behave as the sender and initiate two-way

message exchange. Every level node sends an acknowledgment after it is synchronized with

higher level node. The lower level node will overhear this message exchange and after some

random back-off time, it initiates two-way message exchange with neighboring higher level

nodes.

(ii) Reference Broadcast Synchronization (RBS)

It is based on receiver-receiver approach. A beacon node is required to synchronize

all its neighboring nodes with one another. It exploits the broadcast nature of wireless

medium. After receiving the beacon message from the reference node, clients exchange

their respective reception times of the beacon message and calculate the relative offset and

rate differences with other clients. Then, they transform local time reading into any other

client's local timescale. This method uses a series of synchronizationmessages from a sender

to estimate both relative offset and skew of the local clocks of receivers. The algorithm

exploits the principle of a time-critical path, i.e., the temporal path of a message that leads

to non-deterministic error in the protocol. To eradicate non-deterministic factors, the RBS

algorithm uses a sequence of reference messages from the same reference node, rather than

a single message. Then, receiver `j' will estimate its offset relative to any other receiver `i'

as the average of clock differences for each message received by nodes `i' and `j' using the

formula: Offset [i, j] = 1
m

∑m
k=1(Ti,k − Tj,k).

In the above formula, `i' and `j' denote two receivers, `m' is the number of beacon

messages, and Ti,k is node i's clock when it receives broadcast `k'.

(iii) Pair-wise Broadcast Synchronization (PBS)

It is based on both SRS (sender-receiver synchronization) and ROS (receiver only

synchronization) approaches to achieve network-wide synchronization. In this approach,

a subset of sensor nodes is synchronized by overhearing the timing message which is

exchanged between a pair of nodes. The PBS method works as follows:
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Figure 2.4: Pairwise Broadcast Synchronization [4]

Consider a node, say node `B', in the marked region as shown in Fig. 2.4. While node

`P' and node `A' exchange timestamped messages, Node `B' can receive messages from

both the nodes. Hence, node `B' can observe a set of time readings {TB
2,i}Ni=1 at its local

clock when it receives packets from Node `A'. Similarly, a set of time stamps {T P
2,i}Ni=1 can

also be obtained by receiving packets from Node `P'. Then, linear regression and joint skew

estimator technique are applied to synchronize node `B' and compensate the effect of the

relative clock skew between node `P' and node `A'. Similarly, the other nodes in the marked

region get synchronized with `P'.

The applicability of PBS is only limited to the single-hop network where every node

is assumed to be within the communication range of the two selected super nodes (`P'

and `A' in the given example). In this context, the extension of PBS for multi-hop

synchronization is proposed by Noh et al. in [42]. Two algorithms are proposed to achieve

network-wide synchronization by reducing the message complexity. The first extension

is a centralized algorithm, named as Network-wide Pair Selection (NPS) algorithm which

follows the principle of hierarchy creation. Then, it performs PBS by selecting a pair of

nodes along the hierarchy with the maximum number of unsynchronized neighbors in their

common coverage. Since, the method is dependent on hierarchy creation and selection

of synchronization pair with maximum common nodes, it incurs large communication

overhead. To alleviate this problem, another extension is proposed which is called

Group-wise Pair Selection(GPS) algorithm. In this case, the selection is done locally which

reduces the complexity to some extent. But, some unwanted message exchanges are carried

out which worsen the performance of GPS algorithm.

Another extension to PBS is proposed by Cheng et al. in [43], for multi-hop sensor

networks. The authors claimed that to achieve network-wide synchronization, selection of

the minimum number of pairs to perform PBS is an NP-complete problem. They proposed

a greedy-based, distributed algorithm which performs better than NPS and GPS algorithms.

It is also energy efficient and scalable.
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(iv) Relative Reference less Receiver-Receiver Synchronization

(R4Sync)

It follows the receiver-to-receiver principle, introduced by Reference Broadcast

Synchronization (RBS). It allocates the reference's function to all sensors instead of

to only one sensor as done in RBS, to eliminate the single point failure problem. It also

piggybacks the time-stamp with the regular signals (beacons) which removes the need of

sending separate synchronization signal, thus, saving the energy. The synchronization is

ensured by estimating parameters, reflecting relative deviation with respect to every other

node which does not require any local clock update. It runs in cycles and the nodes as per

their IDs sequentially broadcast beacons. A beacon carries timestamps, reporting local

reception times of previous beacons. For a neighborhood of nodes, every beacon would

carry (N-1) timestamps. These timestamps are then used by every node as samples to

estimate relative synchronization parameters. The analysis is done using joint skew/offset

MLE estimators.

A multi-hop extension to R4Sync is proposed by Djamel et al. in [58]. For multi-hop

synchronization, on-demand synchronization is considered instead of the global always-on

model. The objective is not to keep all the nodes synchronized to a common global time, but

to provide reactive mechanism permitting nodes to mutually synchronize whenever needed,

i.e., on-demand.

(v) Average TimeSync (ATS)

This protocol uses a combination of two consensus algorithms, one for clock drift and

another for clock offset. The whole algorithm proceeds through 3 steps: (i) relative

drift estimation (ii) drift compensation, and (iii) offset compensation. The underlying

communication protocol is assumed to be fully asynchronous, based on the principle of

pseudo-periodic broadcast. In the first step, nodes broadcast local timestamps as per their

own clock oscillation period to estimate the clock skew rates relative to each other. To avoid

quantization errors, the estimate of parameters are performed through a low-pass filter. Then,

nodes broadcast their current estimate of the virtual clock skew rate. At the receiving nodes,

this value is combined with their relative skew estimates through weighted sum method to

adjust their own virtual clock estimate. The same method is then applied to remove the

offset errors. The authors claimed that the offset compensation and skew compensation can

be carried out simultaneously for faster convergence.

(vi) Average Time Synchronization (ATSP)

This method suggests that if the nodes in a network like WSN, have lack of standard crystal

oscillators, then compensating the skew and offset of all the nodes to their average is a best

method. For the protocol, the local clock of node `i' is modeled as xi(t) = wit+ xi(0), i=1,
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2, ..., n, where wi=frequency of crystal oscillator, xi(0)=initial local clock at t=0. Assuming

all the crystal oscillators of the nodes in the network have identical frequency or can be

compensated to an identical frequency, i.e., w1 = w2 = ... = wn = w, then after some

update operations on the network which update partial or all the nodes' local clocks, the

average timestamp of the network at any instance `t' can be expressed as xavg−syn(t) = wt+

avg(x(0)) where avg(x(0)) = 1
n

∑n
i=1 xi(0) is the average clock of all nodes at time t=0.

ATS uses pair-wise message exchanges between neighboring nodes to achieve network-wide

synchronization.

(vii) Maximum consensus Time Synchronization (MTS)

In [19], the authors have proposed a maximum consensus based time synchronization

protocol. The basic objective of the protocol is to maximize local information to reach global

synchronization. The communication protocol is assumed to be pseudo-periodic broadcast

which is same as in [18]. The protocol compensates both skew and offset simultaneously.

The delay in packet transmission and reception is assumed to be negligible in this case.

(viii) Consensus Clock Synchronization (CCS)

In [17], the authors have proposed Consensus Clock Synchronization (CCS) protocol. In

each synchronization round, the CCS algorithm compensates the clock parameters for

each node and after a finite synchronization round, the clocks of all nodes converge to a

consensus. To compensate the parameters, nodes iterate the CCS algorithm which consists

of two main phases: (i) offset compensation and (ii) skew compensation. In the offset

compensation phase, nodes exchange local clock readings which are then updated using one

of the weighted averaging methods. In skew compensation, the nodes iteratively compare

the results from the current and previous synchronization round to improve their skew

compensation parameter. The synchronization rounds are repeated at intervals of tsync which

can be increased or decreased, depending on the precision requirement of the network. Three

weighted averaging methods are proposed for CCS, namely, Cumulative Moving Average

(CMA), Forwards Weighted Average (FWA), and Confidence Weighted Average (CWA).

Using a network of 100 nodes and random linear drift, the authors claimed that CWA proved

most reliable. Also, FWA performance is same as CWA and has the advantage of reduced

computational complexity.

(ix) Clustered Consensus Time Synchronization (CCTS)

In order to improve convergence speed and energy efficiency, Jie Wu et al. in [57] have

adapted clustering technique in consensus based clock synchronization algorithm. They have

incorporated LEACH clustering algorithm as a pre-step to their synchronization algorithm.

The first stage of the proposed CCTS algorithm is the intra-cluster time synchronization. In
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this stage, the cluster heads estimate the average values of the skew compensation parameters

of clocks of nodeswithin their clusters and the average values of intra-cluster virtual clocks of

nodes, and then they update the clock compensation parameters of intra-cluster virtual clocks

and simultaneously broadcast them to the neighboring nodes. Cluster member nodes receive

the messages and update the local intra-cluster virtual clock compensation parameters to

achieve the synchronization of intra-cluster virtual clocks. The second stage of the algorithm

is the inter-cluster time synchronization. The cluster heads exchange their intra-cluster

virtual clocks and their clock compensation parameters through gateway nodes. The received

messages are given corresponding weights according to the size of each cluster. Then cluster

heads update skew and offset compensation parameters of network virtual clocks in order to

achieve the synchronization of network virtual clocks.

Some of the aforementioned time synchronization algorithms have been recently

extended by considering different performance metrics. For example, the WMTS

(Weighted Maximum Time Synchronization) [59] is an extension of MTS [19] which

considers communication delay between sensor nodes. The SMTS (Secured Maximum

Time Synchronization) [60] considers the security metric (message manipulation attack)

in MTS and RMTS [61] is an extension of MTS on a mobile random network. Similarly,

the message manipulation attack is also considered in SATS (Secured Average Time

Synchronization) [62] as an extension of ATS protocol proposed by Schenato et al. in [18].

Table 2.1 gives a brief quantitative & qualitative analysis of the above-discussed

state-of-the-art synchronization algorithms.

2.6 Key Observations

The literature survey carried out in this Chapter leads to the following key observations

regarding time synchronization problem which act as the major source of motivation for

designing new synchronization algorithms for WSNs.

1. Time synchronization problem does not arise in a centralized system.

2. It is a fundamental challenge in traditional distributed systems due to lack of the

centralized physical clock.

3. WSNs, being a distributed system, also face this challenge.

4. The conventional protocols designed for traditional distributed system can not be

applied on WSNs due to limited resource, random deployment, dynamic topology,

etc.

5. The well-known protocols designed so far for WSNs are hierarchy based or reference

based which suffer single-point failure problem and higher synchronization error.
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6. Consensus-based Time Synchronization (CTS) is a recent method and is more

suitable for WSNs because of computational lightness, purely distributed nature and

robustness.

7. The state-of-the-art consensus-based synchronization algorithms have slower

convergence speed. So, there is a need for designing faster consensus-based

synchronization algorithms with better synchronization accuracy.

8. In CTS algorithms, every node iterates the algorithm till the desired synchronization

accuracy is achieved. Due to the participation of all node, the message overhead

increases, so also, the energy consumption. So, there is a need for topological

optimization which canminimize the number of message exchanges and hence, energy

consumption without compromising synchronization accuracy.
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Table 2.1: Quantitative & Qualitative Analysis of State-of-the-art Synchronization Algorithms

Protocols
Quantitative Metrics Qualitative Metrics

Precision Network Size
Convergence Time/

No. of iterations
Message Complexity Scalability Fault Tolerant Energy Efficiency

TPSN[21]
16.9 µs
per hop

150-300 - O(n2) Yes Yes Low

RBS[20]
29.1 µs
per hop

2-20 - O(n2) Yes No High

PBS[4] 30 µs - -
Independent

of n
- Yes High

Multi-hop

PBS[43]
- 200-400 - O(n2) Yes - Medium

ATS[18] 600 µs 9-35

10 mins.

( 5 sec/polling cycle

× 120 polling` cycle)

- Yes Yes Low

ATSP[22] 0.5 µs 300 ≈ 10 iterations O(n) - - -

R4Sync[16] 5 µs 10 200 sec. O(n3) - Yes -

Multi-hop

R4Sync[58]

5.6 µs
upto 10 hop

33 - - - - -

MTS[19] 100 µs 30-50 ≈ 212 iterations - Yes - -

CCS[17] 270 µs 100 ≈ 15 iterations - - - -

CCTS[57] 30.2 µs 50-400 ≈ 30 iterations - Yes - High

2
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2.7 Summary

A comprehensive study of the time synchronization algorithms for traditional distributed

system and WSNs is presented in this Chapter. For the last decade, quite a good number

of time synchronization algorithms have been proposed in the literature. Still, there exist a

trade-off between the metrics and the requirements. Classifications of time synchronization

algorithms, based on issues and application requirements, are presented. Based on our

exhaustive survey, a broader way of classifying time synchronization algorithms is also

suggested. A detail study of some recent and state-of-the-art algorithms, in the field of

time synchronization for WSNs, is also carried out. Finally, a conclusive quantitative and

qualitative analysis in terms of some standard performance metrics is presented to know the

merits and demerits of the existing synchronization algorithms.



Chapter 3

Consensus Time Synchronization

Algorithm by Selective Averaging

In this Chapter, a distributed, internal time synchronization algorithm is proposed based

on average consensus theory. The algorithm is purely distributed (runs at each node)

and every node exploits selective averaging with the neighboring node having maximum

clock difference. To identify the neighboring node with maximum clock difference, every

node broadcasts a synchronization initiation message to the neighboring nodes at its local

oscillation period andwaits for a random interval to get the synchronization acknowledgment

messages. After receiving acknowledgment messages, a node estimates relative clock value

and sends an averaging message to the selected node. The iteration continues until all nodes

reach an acceptable synchronization error bound. The optimal convergence of the proposed

SATS algorithm is analyzed and validated through simulation and compared with some

state-of-the-art, average consensus based time synchronization algorithms.

3.1 Introduction

Clocks of sensor motes drift from real time because of various reasons like temperature,

vibration, magnetic field, and aging effect of the quartz oscillator. In order to maintain

a common timescale for consistency and correctness of other protocols and applications

in WSNs, the clocks of the nodes need to be synchronized. Recently, to develop fully

distributed and internal time synchronization mechanism, consensus time synchronization

(CTS) method has gained much attention [17–19, 22, 23, 25, 63]. CTS is essentially based

on the distributed average consensus method in which the synchronization can be achieved

by communicating only with neighbors [26, 27]. Because of its simplicity, computational

lightness, robustness to node and link failure, and purely distributed nature, CTS is more

suitable for WSNs than hierarchy based synchronization methods. This motivates us to

design a consensus based time synchronization algorithm for WSNs.

In this Chapter, a novel average consensus based time synchronization algorithm is

proposed for WSN. It exploits the broadcast nature of wireless communication medium for

offset and skew estimation and then performs a selective pair-wise averaging to achieve faster

convergence and better synchronization accuracy than some state-of-the-art CTS algorithms.
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The major contributions of this Chapter are the followings.

1. A hybrid approach of broadcasting and pair-wise message passing paradigm is

proposed to achieve average consensus based time synchronization.

2. Amaximum difference based generic approach for both offset and skew compensation

is proposed which enables the algorithm to achieve faster convergence and better

synchronization accuracy.

3. An in-depth mathematical analysis is carried out to prove the optimal behavior of the

algorithm and its performance is verified through simulation and compared with some

recent, state-of-the-art consensus-based synchronization algorithms.

The rest of this Chapter is organized as follows. Section 3.2 presents some relevant

definitions, models, and the problem formulation. Section 3.3 outlines the proposed

Selective Average Time Synchronization (SATS) algorithm. Section 3.4 presents the

mathematical analysis of the optimality, consensus convergence, message complexity and

energy consumption of the proposed algorithm. Section 3.5 shows the simulation results

followed by conclusion in Section 3.6.

3.2 System Model & Problem Formulation

In this Section, we have introduced the clock model and the network model, based on

which the synchronization algorithm is proposed. Subsequently, the consensus-based time

Synchronization (CTS) problem is formulated using average consensus theory.

3.2.1 Clock Model

Sensor nodes are generally associated with a hardware-based oscillator clock [14]. It counts

an approximation of real time `t' which can be mathematically expressed as Equation 3.1:

C(t) = k

∫ t

0

ω (t)dt+ C (t0) (3.1)

where ω(t) is the angular frequency of the oscillator, `k' is a proportionality coefficient

and C(t0) is the initial value of the clock. If the angular frequency can be approximated to a

fixed value, then for a node `i', the affine clock model can be expressed as Equation 3.2:

Ci(t) = αit+ βi (3.2)

where αi=clock skew, βi=clock offset.

Clock skew is defined as the rate or frequency of the clock and clock offset is defined as

the deviation from the real time. To compare the local clock of any node `i' w. r. to another

node `j', the above expression can be rewritten as Equation 3.3:
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Ci(t) = αijt+ βij (3.3)

where αij=relative skew, βi=relative offset. If two nodes are synchronized, then αij = 1

and βij = 0.

3.2.2 Network Model

For our proposed algorithm, the WSN is assumed to be a random connected graph G= (V,

E, r), where V denotes set of `n' nodes, set `E' represents the connectivity matrix between

the nodes and `r' is the connectivity radius. Two nodes are said to be neighboring nodes

if the Euclidean distance between them is less than the connecting radius. E is a n × n

adjacency matrix where eij represents the entries in the matrix. All nodes have unique IDs.

The communication channel between the pair of nodes is assumed to be static, symmetric

and undirected, i.e., upstream delay and downstream delay is same (dip=dpi=d1, p=1, 2...,

k,..., j) in Fig. 3.1. If node vi and vj are neighboring nodes, then eij = eji = 1. Otherwise,

eij = eji = 0. Let, Ni = j : (i, j) ∈ E denotes the set of one-hop neighbors of node vi. The

communication topology is assumed to be fully distributed where there is no special node

such as root or reference node and all nodes execute the same algorithm.

3.2.3 Energy Model

To estimate energy consumption in wireless communication, two mostly used radio models

are: free-space (fs) model and multi-path (mp) model [64]. Since the proposed algorithm is

based on consensus and consensus algorithms follow one hop communication, the free- space

model is more suitable. Further, the major energy consumption to achieve synchronization is

due to synchronization message transmission and reception. Therefore, we have considered

these two factors for energy consumption estimation. Using free-space model, the energy

consumption Ptx for a message transmission and the energy consumption Prx for a message

reception is given as follows.

Ptx = M(β1 + β2l(i, j)
ζ) and Prx = Mγ (3.4)

where `ζ' is the path loss exponent, typically set to 2 for free-space model. The constants

β1, β2 and γ are the energy dissipated by the transmitter module, transmit amplifier, and the

receiver module respectively. The estimated distance between nodes `i' and `j' is denoted as

l(i, j) and the length of message as `M '.

3.2.4 Problem Formulation

Based on above models and average consensus principle [26, 27], the consensus-based time

synchronization (CTS) problem in a network of `n' nodes can be defined as converging
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each node's clock value to a consensus value, i.e., the average of the initial clock values of

all nodes, after a series of iterations. In each iteration, the nodes will communicate only with

the neighboring nodes to estimate the relative clock values and compensate the local clock

as per the proposed algorithm to reach the consensus value. Mathematically, CTS can be

defined as:

lim
k→∞

Ci(tk) =
1

n

n∑
i=1

Ci(0), i = 1, 2, 3, ..., n (3.5)

where Ci(tk)=clock value of node `i' at k
th iteration, Ci(0)=initial clock value of node

`i'.

From Equation 3.2,

1

n

n∑
i=1

Ci(0) =
1

n

n∑
i=1

βi(0), i = 1, 2, 3, ..., n (3.6)

where βi(0)= offsets of all clocks at time t=0. This is known as the initial offset. So,

using Equation 3.6, Equation 3.5 can be rewritten as:

lim
k→∞

Ci(tk) =
1

n

n∑
i=1

βi(0) (3.7)

So, CTS is said to be achieved when Equation 3.7 is satisfied after a series of iterations `k'

by each node in the network. Equation 3.7 signifies the ideal definition of consensus-based

time synchronization. Practically, it is quite impossible to achieve consensus on the exact

global average time for the whole WSN because of clock skew, random delays and network

dynamism [15]. So, we have assumed that converging to an approximate value for Equation

3.7 will suffice the definition for CTS. On this basis, the term ``acceptable synchronization

error" is defined as given below and used throughout the thesis. This also acts as the

termination criteria for the synchronization algorithm.

Definition: Acceptable Synchronization Error (ε)

It is a pre-specified value provided to the CTS algorithm such that each node in the

network will iterate the algorithm until the following condition is satisfied.

lim
k→∞

∣∣∣∣∣Ci(tk)−
1

n

n∑
i=1

βi(0)

∣∣∣∣∣ ≤ ε (3.8)

Since, the consensus value, i.e., the initial global average is unknown locally at each

node in the network, and by principle of average consensus theory, every node will reach the

consensus state after a series of iterations, thus, each node can verify the bound for `ε' by

simply checking the clock difference with the neighboring nodes. So, basically, `ε' denotes

the upper bound for the local synchronization error at every node.
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3.2.5 Mathematical Preliminaries

This Section briefly introduces the mathematical properties from matrix and consensus

theory which are used to validate the proposed algorithm in Section 3.3. In particular,

the Greedy Gossip with Eavesdropping (GGE) consensus theory [65] is employed (Lemma

3.4.2) to prove the optimality of synchronization error in Theorem 3.4.1. The GGE

consensus theory suggests that for convex optimization problem, the equivalent randomized

incremental expression is given by maximum-difference based averaging (Lemma 3.4.2).

Since the clock model is an affine function and the affine function is a well-known convex

function, the optimality of error function can be suitably realized using GGE principle.

Further, the convergence analysis of the proposed algorithm is carried out using the

special properties of compensation matrices which are proved to be doubly stochastic

matrices with positive diagonal entries in Lemma 3.4.4. The semi-contractive properties

of product of compensation matrix-chain is analyzed in its 2-norm (Lemma 3.4.5) which

defines an approximation to the averaging factor. In fact, an approximation to the averaging

factor is more realistic in a delay-sensitive and dynamic environment where exact averaging

is practically infeasible. Then using rank one matrix property, the consensus convergence is

proved in Theorem 3.4.7.

Based on the above-discussed models, definitions, assumptions and mathematical

background, the following Section describes the proposed Selective Average Time

Synchronization (SATS) algorithm in detail.

3.3 The SATS Algorithm

The proposed algorithm consists of a series of synchronization round which is iterated at

each node according to its local clock's oscillation period. The first synchronization round

is triggered by a random subset of initiating nodes upon receipt of a signal from a base station.

The subsequent rounds are initiated when a synchronization initiation message (SYN_INIT)

message is received from a node as shown in Fig. 3.1. All the one-hop neighboring

nodes which receive SYN_INIT message, reply with synchronization acknowledgment

(SYN_ACK) messages. Then using the proposed algorithm, the initiating node will send

a synchronization averaging (SYN_AVG) message to a selected node.

Each synchronization round is divided into two phases: phase-1 is for parameter

(offset/skew) estimation and phase-2 is for parameter compensation. Both offset and skew

estimation is performed in the same synchronization round. Phase-1 of a node `i' is assigned

with a random duration of time which is given by tirand=uniform (0, Pi-κ) where κ=constant,

0<κ<Pi, Pi= oscillation period of node `i'. Thus, duration of phase-2 is given by (Pi-t
i
rand).

One iteration is said to be over when each node has completed at least one synchronization

round. This is ensured by assigning the duration of one iteration=max{Pi} , i=1, 2,..., n so
that even if the node with the slowest clock can complete one synchronization round per
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Figure 3.1: Message Passing in SATS

iteration.

The algorithm considers physical layer and MAC layer delays for synchronization. In

Fig. 3.1, d1 is the physical (propagation) delay and dp2, p=1, 2,..., k,..., j is the MAC layer

delay at each neighbor `p'. Since the propagation delay in wireless medium is proportional

to distance [66] and the proposed synchronization algorithm requires communication with

the neighboring nodes within a fixed connectivity radius `r', dp1 is assumed to be equal

for all the neighbors which are denoted as d1. The delay d1 is quite negligible for 1-hop

communication [18]. The algorithm assumes the usage of MAC layer time-stamps [67],

appended in the control frames (e.g. IEEE 802.11 RTS/ CTS control packets for CSMA/

CA) and the averaged parameter's(offset/skew) value in the actual data frame, to minimize

the MAC delay.

In the long run, the clocks may get unsynchronized when the skew has again occurred.

So, the base station periodically checks if ∆t > ε where ∆t=max{Ci(t) − Cj(t)}, i, j ∈ V.
This condition is true when the skew is reoccurred. Then the algorithm is re-initiated by the

base station to maintain the synchronization.

The pseudo codes of the SATS algorithm are given in Algorithm 1. It consists of

both offset and skew averaging methods which can be performed simultaneously for faster

convergence to the consensus value. Algorithm 2 discusses the offset averaging process,

and Algorithm 3 discusses the skew averaging process. Fig. 3.2 (a) and (b) depict the skew

estimation method.

Remark: It is important to convey here that both skew and offset compensation can

be performed simultaneously and with the same neighboring node because the neighboring

node with the maximum relative skew will also have the maximum offset difference. This
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Algorithm 1 SATS ( vi)

Input: Acceptable synchronization error (ε)
Output: Consensus state (Ci(0))
1: for all node vi ∈ V do

2: while local synchronization error ≤ ε do
3: for each iteration do

4: OFFSET_AVERAGING ( vi)
5: SKEW_AVERAGING ( vi)
6: end for

7: end while

8: end for

Algorithm 2 OFFSET_AVERAGING ( vi)

1: for each synchronization round of duration Pi do

2: /******** Phase-1: Broadcast based offset estimation ********/

3: vi broadcasts the message SYN_INIT(T
0
i ) to its 1-hop neighbours.

4: if vp ∈ Nvi and receives SYN_INIT message then

5: vp sends the message SYN_ACK(T
p
1 , T

p
2 ) to vi, where

6: T p
1 =received timestamp of SYN_INIT message at node vp,

7: T p
2 = sent timestamp of SYN_ACK message by node vp,

8: Nvi=set of 1-hop neighbouring nodes of vi
9: end if

10: for each SYN_ACK message received from vp within t
i
rand do

11: Node vi estimates the relative offset and the delay as:
12: βip=(T

p
2 -T

i
p+T

p
1 -T

i
0)/2 , p=1,2,..,k,..,j

13: dp2=T
p
2 -T

p
1

14: dp1=d1=(T
i
p-T

p
2 +T

p
1 -T

i
0)/2 , p=1,2,..,k,..,j

15: end for

16: /********* Phase-2: Pairwise offset compensation **********/

17: After estimation, node vi selects the neighbour with maximum relative offset.

18: Let, node vk is the neighbour node having maximum relative offset. Then,

19: Node vi updates its local clock as:
20: (T k

1 + T i
k + d1 + dk2)/2=(T

k
2 + d1)− βik/2

21: Finally, node vi sends the message SYN_AVG(T
i
k,T

i
n) within interval (Pi-t

i
rand)

22: which also contains the values of d1, d
i
2 and βik/2.

23: When node vk receives this message at T
k
m, it updates its local clock as:

24: T i
k + d1 + T k

m + di2 + βik/2
25: end for
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Algorithm 3 SKEW_AVERAGING ( vi)

1: /********** Phase-1: Broadcast based Skew Estimation ***********/

2: for first synchronization round do

3: Node `i' broadcasts the message SYN_INIT(T i
1) to its 1-hop neighbours.

4: if j ∈ Ni and receives SYN_INIT message then

5: Node `j' sends the message SYN_ACK(T j
1 ,T

′j
1 )

6: end if

7: for a SYN_ACK message received at T ′i
1 from `j' within tirand do

8: Node `i' computes T ′′j
1 = (T j

1 + T ′j
1 )/2 and T

′′i
1 = (T i

1 + T ′i
1 )/2

9: and stores the timestamp as ( T ′′j
1 , T ′′i

1 )

10: end for

11: end for

12: for subsequent synchronization round do

13: /**** Assume current synchronization round as `k+1' and previous round as `k'****/

14: Node `i' computes the timestamp (T ′′j
k+1, T

′′i
k+1) in the current round using step-4 to

step-9 where T ′′j
k+1 = (T j

k+1 + T ′j
k+1)/2 and T

′′i
k+1 = (T i

k+1 + T ′i
k+1)/2

15: Retrieves the stored previous round timestamp (T ′′j
k , T ′′i

k )

16: Using this timestamp pair, node `i' computes the relative skew αij = (T ′′i
k+1 −

T ′′i
k )/(T ′′j

k+1 − T ′′j
k ) for every j∈ Ni

17: Node `i' stores the current round timestamp (T ′′j
k+1, T

′′i
k+1)

18: /********* Phase-2: Pairwise Skew Compenssation **********/

19: In the current round, after computing the relative skew for each j∈Ni, node`i' sends

SYN_AVGmessage to the neighbour node with maximum relative skew and also sets

its own clock's skew as αi=max{αij/2}
20: Node'j'after receiving the SYN_AVG message sets its clock's skew as αj = αij/2
21: end for
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Figure 3.2: (a)Timestamps exchange between node i and node j, (b) Relative clock skew

estimation of node`i' w. r. to node `j'

can be verified as follows. The relative time instances between a node `i' and its neighbor

node `j' can be written as ti =
αi

αj
tj +

(
βi − αi

αj
βj

)
[18]. The factor

(
βi − αi

αj
βj

)
denotes

the relative offset between the nodes. Now, considering the synchronized state between the

nodes i.e. equating the factor to zero, we have
(
βi − αi

αj
βj

)
=0. So, αi

αj
= βi

βj
. Hence, as the

time elapses, a proportionate increase in the relative skew (αi

αj
) also increases the offset in

the same ratio. So, the neighboring node with maximum relative skew will also have the

maximum offset difference.

So, maximum difference based average compensation enables the algorithm for

faster convergence with optimal message complexity and synchronization error. This is

mathematically validated by the following section.

3.4 Performance Analysis

In this Section, the proposed SATS algorithm is validated mathematically. It is shown that

the algorithm optimizes the synchronization error and also converges to the global average

consensus. Since the clock model described in Section 3.2 is an affine function and affine

function is convex in nature [68], the optimality analysis in Theorem 3.4.3 is based on the

convex property of the affine clock function and GGE consensus theory [65]. Further, the

convergence analysis is carried out using the special properties of compensation matrices

which are proved to be doubly stochastic matrices in Lemma 3.4.4. The compensation

matrices are analyzed in its 2-norm which defines an approximation to the averaging factor
′

n
[69].
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3.4.1 Optimality of Synchronization Error

In this Section, the optimality proof of the SATS algorithm is derived in Theorem 3.4.3 using

the principle of convex optimization and greedy gossip theory which is given below.

Lemma 3.4.1. [70] For the generic convex optimization problem which can be defined as:

Minimize
∑n

i=1 fi(x), x ∈ X
where each fi(x) is a convex function, not necessarily differentiable, the optimal solution

using incremental sub-gradient method is given by:

xk+1 = Px [xk − αkg (ωk, xk)] (3.9)

where Px=Projection onto the set X , αk=step-size, g(ωk,xk)=sub-gradient of fωk
at xk,

ωk =random variable taking equi-probable values from the set {1, 2, ..., n}

Lemma 3.4.2. [65] According to GGE consensus theory, the equivalent randomized

incremental sub-gradient expression can be written as:

min
n∑

i=1

maxj∈Ni

1

2
{xi − xj} (3.10)

The sub-gradient for the above expression is given by: gi (k + 1) = |xi(k)− xj(k)|

Theorem 3.4.3. The maximum difference based clock averaging is an optimal solution for

the total synchronization error function Er(t) which is given by:

Er(t) =
n∑

i=1

[Ci(t)− avg Ci(0)] (3.11)

whereCi(t) = αit+βi, avg Ci(0) =
1
n

∑n
i=1 Ci(0), αi =frequency of oscillation of node

i, βi=offset of node i, i=1, 2, 3,..., n.

Proof. The clock function Ci(t) is an affine function which is of convex type [70]. So, the
minimization problem can be considered as a convex optimization problem. Hence, using

Lemma 3.4.1, the incremental sub-gradient solution for Equation 3.11 will be given by the

iterative update,

Ci(tk) = Pt [Ci(tk−1)− αkgi (k)] (3.12)

where tk, tk−1 denotes timestamps at iteration k and k-1 respectively.

Since, the averaging is done pair-wise, i.e., αk = 1/2 (a constant), the projection Pt

is not necessary. Now mapping with Lemma 3.4.2, the sub-gradient gi(k) in Equation 3.12
mathematically signifies the neighbor selection withmaximum difference clock value. Thus,

the proposed maximum difference based clock averaging scheme can be expressed using

Equation 3.12 as:

Ci(tk) =

[
Ci(tk−1)−

1

2
gi (k)

]
(3.13)

Since, the algorithm needs to be iterated a number of time until the acceptable

synchronization error is reached, equivalently, solving the recurrence Equation 3.13 by

repeated substitution method, we have

40



Chapter 3 Consensus Time Synchronization Algorithm by Selective Averaging

Ci(tk) =

[
Ci(tk−1)−

1

2
gi (k)

]
(3.14)

=

[
Ci(tk−2)−

1

2

k∑
s=k−1

gi (s)

]
.

.

=

[
Ci(0)−

1

2

k∑
s=1

gi (s)

]

After infinite series of iterations, i.e., k → ∞, sum of sub-gradients
∑k

s=1 gi(s) converges
to zero almost surely [65]. So, as k →∞,

Ci(tk) ≈ Ci(0) (3.15)

Substituting the value of Ci(tk) from Equation 3.15 in Equation 3.11, the total

synchronization error function Er (t) after infinite iterations can be approximated as:

Er(t) ≈
n∑

i=1

[Ci(0)− avg Ci(0)] (3.16)

≈
n∑

i=1

[
Ci(0)−

1

n

n∑
i=1

Ci(0)

]

≈
n∑

i=1

Ci(0)−
n∑

i=1

1

n

n∑
i=1

Ci(0)

≈
n∑

i=1

Ci(0)−
n∑

i=1

Ci(0)

≈ 0

Hence, Er (t) ≈ 0 is nothing but the near optimal value for the total synchronization error

function.

3.4.2 Consensus Convergence

This Section shows the consensus convergence of the algorithm by exploring the special

property of clock compensation process as given below.

Lemma 3.4.4. For the proposed algorithm, the pair-wise average compensation process

produces doubly stochastic matrices with positive diagonal entries.

Proof. Consider, the clock values of a network of `n' nodes is represented as a vectorC(tk)
of order 1× n where tk represents the time-stamp at a particular iteration `k'. Lets, the

synchronization algorithm is initiated by a node `s' and after estimating the clock values
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using phase-1 of the algorithm, lets the neighboring node `r' is having the maximum clock

difference with node `s'. Then, the compensation phase can be expressed as:

C(tk) = MkC(tk−1) (3.17)

where entries in the matrixMk are defined as:

Mk(i, j) =
1

2
if i ∈ {s, r} and j ∈ {s, r} (3.18)

Mk(i, j) = 1 if i = j, i /∈ {s, r} (3.19)

Mk(i, j) = 0, elsewhere (3.20)

Clearly, the diagonal entries satisfy Equation 3.18 or 3.19, hence, positive. Furthermore,

when node `r' and `s' are synchronizing , the corresponding rth row and rth column inMk

will contain 1
2
at indexes (r, r) and (r, s) and rest indexes are zero. Hence, rth row sum

and column sum is 1. Similar case happens for sth row and column. For remaining nodes

which are not synchronizing, the corresponding rows and columns inMk are zero except 1

at diagonal entries. Hence, for rest of the rows and columns, the sum is also 1. So,Mk is a

doubly stochastic matrix with positive diagonal entries in each iteration.

Lemma 3.4.5. [69] Doubly stochastic matrix with positive diagonal entries are

semi-contractive in 2-norm and product of semi-contractive matrix chain MiMi−1...M1,

i ∈ {1, 2, ..} in 2-norm converges to a rank one matrix of the form c′ as i→∞.

Lemma 3.4.6. [71] For a non-zero rank one matrix A. If A = xy′ and if A = pq′, then

p = kx and q = y/k for some scalar `k'.

Based on above Lemmas, the following Theorem proves that the synchronization

algorithm converges to the average of the initial clock values.

Theorem 3.4.7. After 'k' iterations as k → ∞, the product of average compensation

matrices Mk converges to
′

n
. In other words, the proposed algorithm converges to the

average consensus.

Proof. Applying repeated substitution in Equation 3.17, the clock compensation phase after

iterations `k' can be rewritten as:

C(tk) = MkC(tk−1) = MkMk−1...M1C (0) (3.21)

Lemma 3.4.4 shows that the compensation matrices Mj's are doubly stochastic with

positive diagonal entries. Hence, using lemma 3.4.5,Mj's are semi-contractive in its 2-norm

and the product of compensation matrices in its 2-norm after infinite iterations will be:

MkMk−1...M1 = c′ (3.22)

Since,Mk's are symmetric, the transpose of the matrices are also doubly stochastic with

positive diagonal entries. Hence, applying Lemma 3.4.5 on transpose of the matrices, we

have

(MkMk−1...M1)
′ = d′ (3.23)
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Substituting the value of the matrix chain from Equation 3.22 in Equation 3.23,

(c′)'=d′. So, c′ = d′. As per Lemma 3.4.6, c′ and d′ are rank one matrices. Lets

denote A = c1′ = 1d′. Using Lemma 3.4.6, c=d=
k
. Since, c and d are stochastic and 

is a unit vector of order 1×n, 1
k
+ 1

k
+ 1

k
+ ... + n times = 1. So, k=n. c=d=

n
. Hence,

MkMk−1...M1 = ′

n
. In other words, after `k' iterations as k → ∞, C(tk) = ′

n
C(0)

which shows the synchronization algorithm converges to the average of the initial clock

values.

3.4.3 Message Complexity

The message complexity analysis of the proposed algorithm is based on the basic

handshaking Lemma for a connected, undirected graph which is reproduced as Lemma 3.4.8

as follows.

Lemma 3.4.8. [72] In a finite undirected graph, the sum of all the vertex's degree is equal

to twice the number of edges i.e.
∑n

i=1Degi=2|E| where `n' is the number of nodes and `E'
is the set of edges in the graph.

Based on the above Lemma, the following Lemma proves that the message complexity

per iteration of the proposed algorithm is linearly upper bounded by the number of nodes in

the network.

Lemma 3.4.9. The asymptotic message complexity per iteration for SATS algorithm isO (n)
where n=number of sensor nodes in the network.

Proof. ConsideringWSN as a random connected graph of `n' nodes, the number ofmessages

required per iteration can be summarized as follows. Since, each node broadcasts at least one

SYN_INIT to all its neighbors, the number of SYN_INIT messages for `n' nodes= O (n).
The number of SYN_ACK messages received by a node will be equal to the number

of neighboring nodes, i.e., number of SYN_ACK messages=O (
∑n

i=1 Degi), where Degi
denotes degree of a node `i' or number of neighboring nodes. Now, after clock parameter

estimation phase, each node will perform pairwise averaging with only one neighboring node

which satisfies the maximum difference criteria. So, each node will send one SYN_AVG

message to one of its neighbors. For, `n' nodes, number of SYN_AVG messages= O (n).
So, the total number of messages `M' per iteration is given by:

M (n)=O (n)+ O (
∑n

i=1 Degi)+ O (n). According to Lemma 3.4.8, for a connected
graph,

∑n
i=1 Degi=2|E|. But, in a connected graph of `n' nodes, number of edges, E =

(n − 1). So, M (n)= O (n)+ O (2(n − 1))+ O (n)= O (n). This shows that the message
complexity of the proposed algorithm is linear with respect to the number of nodes.

Table 3.1 shows the total number of messages required and the asymptotic message

complexity comparison with some existing synchronization protocols. Since, the proposed

algorithm is averaging based, comparing with ATSP [22] and CCS [17], it is observed

that though both of them have same asymptotic message complexity, in our algorithm, the

number of iterations (I) required is minimized due to maximum difference based averaging
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Table 3.1: Comparison of Message Complexity

Algorithm No. of Messages Required Asymptotic Complexity
RBS [20] I + n(n− 1)/2 O (n2)
TPSN [21] 2I(n− 1) O (n)
FTSP [4] In O (n)
ATSP [22] I(3n) O (n)
CCS [17] I(3n− 2) O (n)
Proposed SATS I(4n− 2) O (n)

as shown in simulation results in Fig. 3.3. Hence, the total number of messages (total number

of iterations× number of messages per iteration) required to achieve synchronization is less

in our algorithm.

3.4.4 Energy Consumption Analysis

To achieve synchronization up to an acceptable synchronization error bound, the SATS

algorithm executes at each node in the network by a certain number of iterations. In a

particular iteration, the energy consumption at node `i' is the sum of energy consumption for

SYN_INIT message transmission, energy consumption for receiving SYN_ACK messages

from neighbors and energy consumption for sending a SYN_AVG message to a selected

node. Following the energy model given in Section 3.2, the following lemma gives an

estimation of average energy consumption to achieve desired level of synchronization.

Lemma 3.4.10. The average energy consumption to achieve synchronization in a network

of `n' nodes using SATS algorithm is P avg(i) = 1
n

∑n
i=1 It(i)∗P (i) where P (i) = M [2β1+

β2{max{l(i, j)}ζ+l(i, k)ζ , j, k ∈ Ni}+γ|Ni|], is the total energy consumption per iteration
at node `i' and It(i) is the number of iterations required at node `i' to reach the acceptable

synchronization error bound.

Proof. Using the energy model given in Section 3.2, the following Equations can be derived.

For broadcasting a SYN_INIT message at node `i', the energy consumption is given by:

P SY N_INIT
tx (i) = M(β1 + β2{maxl(i, j), j ∈ Ni}ζ) (3.24)

For receiving SYN_ACK messages from neighbors at node `i', the energy consumption

is given by:

P SY N_ACK
rx (i) = Mγ|Ni| (3.25)

Similarly, for sending a SYN_AVG message by node `i' to a selected node `k', the energy

consumption is given by:

P SY N_AV G
tx (i) = M(β1 + β2{l(i, k), k ∈ Ni}ζ) (3.26)

Summing up the above Equations, the total energy consumption per iteration at node `i'

is given by:

P (i) = P SY N_INIT
tx (i) + P SY N_ACK

rx (i) + P SY N_AV G
tx (i) (3.27)

= M [2β1 + β2{max{l(i, j)}ζ + l(i, k)ζ , j, k ∈ Ni}+ γ|Ni|]
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Table 3.2: Simulation Parameters

Parameter V alues
Deployment area 10 × 10 square unit

Topology Random

No. of nodes (n) 50-500

Initial skew (α) uniform(-5,5)

Initial offset (β) uniform(0,1)

Iteration interval 10 sec

Acceptable Syn. error (ε) 0.0001sec.

Path Loss Exponent (ζ) 2

β1 45 nJ/bit

β2 10 pJ/bit

γ 35 nJ/bit

Message size (M ) 320 bits

MAC Protocol CSMA/CA

Thus, the average energy consumption to achieve network wide synchronization for a

network with `n' nodes is given by:

P avg(i) =
1

n

n∑
i=1

It(i) ∗ P (i) (3.28)

where It(i) is the number of iterations required at node `i' to reach the acceptable

synchronization error bound. This proves Lemma 3.4.10.

To the best of our knowledge, energy consumption analysis has not been considered in

most of the consensus-based synchronization algorithms. For a comparative analysis and

evaluation purpose, we have also derived the following corollaries for ATSP [22] and CCS

[17] algorithms using a similar reasoning as given in Lemma 3.4.10.

Corollary 3.4.11. The average energy consumption to achieve synchronization in a network

of `n' nodes using ATSP algorithm is P avg(i) = 1
n

∑n
i=1 It(i)∗P (i) where P (i) = M [2β1+

2β2{l(i, k)ζ , k ∈ Ni}+ γ], is the total energy consumption per iteration at node `i' and It(i)
is the number of iterations required at node `i' to reach the acceptable synchronization error

bound.

Corollary 3.4.12. The average energy consumption to achieve synchronization in a network

of `n' nodes using CCS algorithm is P avg(i) = 1
n

∑n
i=1 It(i) ∗ P (i) where P (i) =

M [β1 + β2{max{l(i, j), j ∈ Ni}ζ + γ|Ni|], is the total energy consumption per iteration
at node `i' and It(i) is the number of iterations required at node `i' to reach the acceptable

synchronization error bound.

3.5 Simulation

To study the correctness and behavior of the algorithm, it has been simulated in PROWLER

simulator [30] underMATLAB environment and the performances have been compared with

two recent state-of-the-art average consensus synchronization algorithms, ATSP [22], and

CCS [17]. Table 3.2 shows the simulation specifications incorporated in the simulator.
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3.5.1 Simulation Configuration

The simulations are performed on a random topology of 50 to 500 nodes in a square deployed

area of side (L) equals to 10 unit. To ensure a connected topology for consensus propagation,

the connectivity radius (r) is calculated using the formula r = L
√

2 logn/n to make the

topology connected with high probability [65].

To simulate the clock, an explicit clock function is defined in the application file of

the simulator following the affine clock model given in section 3.2. The real time `t′

is assumed to be the `cputime' for all the nodes. As per TelosB data sheet specification

mentioned in [18], the typical skew range is between -5 PPM to 5 PPM. So, to have a close

resemblance with the realistic environment, the skew is generated in the specified range

using random uniform distribution. To have a fair comparison with ATSP [22] and CCS

[17], the clock offsets are generated using random uniform distribution between 0 and 1

which is same as specified in [22][17]. The interval for one iteration, which denotes an

upper bound for maximum oscillation period, is set to 10 seconds. The clock parameters,

i.e., relative skew and offsets are observed at a pause time of 10 sec. which is the interval of

one iteration. This is a valid value between 5sec.-30 sec., a typical range specified in most

consensus-based algorithms [17–19]. The default MAC protocol provided in PROWLER

simulator is CSMA/CA.

3.5.2 Simulation Results and Analysis

In this Section, the simulation results are analyzed according to various performance metrics,

viz., convergence speed, average global synchronization error, average local synchronization

error, the number of messages exchanged, energy consumption, and scalability in terms of

network size and network density.

(i) Convergence Speed

The convergence speed to the consensus value is tested for both skew and offset parameter

by considering a network of 50 nodes and the observations are analyzed below.

(a) Skew Convergence

To test skew convergence, the observations are recorded by considering maximum 50

iterations as shown in Fig. 3.3 (a)-(c). It is observed that ATSP [22] algorithm, which uses

random pairwise averaging, achieves skew convergence between 15 to 20 iterations, CCS

[17] algorithm which uses cumulative weighted averaging (CWA) method convergences

between 10 to 12 iterations, both with an acceptable synchronization error (ε) of 0.0001 sec.

Whereas our SATS algorithm, as shown in Fig. 3.3 (c), achieves skew convergence within

5 to 10 iterations for the same value of acceptable synchronization error. So, convergence is

faster in our algorithm.
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(b) Offset Convergence

The offset convergence is tested and observed simultaneously with the skew convergence

with the same value of acceptable synchronization error as shown in Fig. 3.4 (a)-(c). The

initial average of random offset distribution is recorded as 0.49. Similar behavior is observed

as in skew convergence. Our algorithm has converged faster than ATSP and CCS algorithm.

Overall, our algorithm converges 16% faster than CCS and 50% faster than ATSP.
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Figure 3.3: Skew convergence of (a) ATSP, (b) CCS, and (c) SATS

(ii) Average Global Synchronization Error

Fig. 3.5 shows average global (network-wide) synchronization error of 50 nodes after each

iteration by considering maximum 50 iterations. It is observed that our algorithm has less

synchronization error, nearly 90%, as compared to ATSP and 70% as compared to CCS.
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Figure 3.4: Offset convergence of (a) ATSP, (b) CCS, and (c) SATS

(iii) Average local synchronization error

Fig. 3.6 (a)-(c) depicts average local synchronization error of each node for a topology of 50

nodes for 50 iterations. This shows the upper bound of local synchronization error of every

node. It is observed that our algorithm has less local synchronization error, nearly 80%, as

compared to ATSP and 82% as compared to CCS. So, local synchronization error is also

optimized by our algorithm.

(iv) Number of messages

To compare the average number of messages exchanged to achieve synchronization with

the given error bound, the number of messages exchanged at each node is recorded and the

average is computed for the whole network with different network size varying from 100-500

nodes. It is observed from Fig. 3.7 that our SATS algorithm has almost exchanged 50 % less
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Figure 3.5: Average global synchronization error of ATSP, CCS, and SATS

messages than ATSP and 10% less messages than CCS algorithm.

Mathematical analysis shows that for a network of `n′ nodes, our SATS algorithm

exchanges (4n − 2) number of messages per iteration which is comparatively higher than

ATSP algorithm which exchanges 3n number of messages per iteration and CCS algorithm

which exchanges (3n − 2) messages. But, due to faster convergence of our algorithm, the

total number of messages exchanged is minimized in our case.

(v) Energy consumption

The average energy consumption is estimated using the mathematical derivations obtained

in section 3.4.4. The number of nodes is varied from 100-500. It is observed from Fig.

3.8 that in an average, our SATS algorithm has consumed 60 % less energy than ATSP

and 20 % less energy than CCS algorithm. This is also due to faster convergence and

hence, minimization of total iterations in our algorithm which has major impact on energy

consumption of consensus-based synchronization algorithms.

(vi) Impact of scalability

The scalable performance of the algorithms is tested according to two aspects. The first

scalability test is based on increasing the network size and the second test is based on varying
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Figure 3.6: Average local error of individual node for (a) ATSP, (b) CCS and (c) SATS

the network density.

(a) Scalability in terms of network size

Fig. 3.9 and 3.10 show the behavior of the algorithms with the increase in network size.

We have considered average number of iterations and average Mean Square Error (MSE) as

performance metrics to evaluate the scalability of the algorithms.

The observations are made on random topologies, varying the number of nodes from

100-500 and defining the connecting radius accordingly. The average is calculated for 100

realizations of such random topologies for each number of nodes. From Fig. 3.9, it is

observed that the mean of the average number of iterations is 18.182 for ATSP, 8.79 for

CCS, and 4.31 for SATS. The standard deviation for ATSP is 1.16, 1.03 and for SATS, it is

0.71.

Similarly, from Fig. 3.10, it is observed that the mean of average MSE is 0.0048 for

ATSP, 0.0042 for CCS, and 0.0017 for SATS. The standard deviation for ATSP is 0.0012,

0.0009 for CCS and, for SATS, it is 0.0005. So, it is inferred that the lower mean value of

the proposed SATS shows its optimal performance, and lower standard deviation shows its
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Figure 3.9: Average number of iterations Vs
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consistency. Hence, our algorithm is more scalable than ATSP and CCS.

(b) Scalability in terms of network density

The algorithms are also tested in a scenario where the node density is varied in a constant

deployment area of 10 × 10 square unit. The radius of connectivity is set for 500 nodes,

which is found to be 1.04 unit. The dense networks are created by increasing the number of

nodes from 500-900, and the sparse networks are created by decreasing the number of nodes

from 500-100. On sparse networks, it is found out from Fig. 3.11 that the mean of average

MSE is 0.0107 for ATSP, 0.0129 for CCS, and 0.0008425 for SATS. The standard deviation

is respectively 0.0117, 0.0174, and 0.00005172.

On dense networks, it is observed from Fig. 3.12 that the mean of averageMSE is 0.0026

for ATSP, 0.0022 for CCS, and 0.0007934 for SATS. The standard deviation is respectively

0.0005415, 0.0015, and 0.00008337. In both types of networks, our SATS algorithm has a

lower mean of MSE and lower standard deviation. This indicates that the SATS algorithm
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3.6 Summary

A distributed, average consensus-based time synchronization algorithm (SATS) is proposed

in this Chapter. It exploits maximum difference based, selective pair-wise averaging method

for faster convergence and better synchronization accuracy. The optimality proof of the

algorithm is carried out using the principle of convex optimization and greedy gossip theory.

The consensus convergence analysis is done using doubly stochastic matrix properties. The

asymptotic message complexity of the proposed algorithm is proved to beO (n). A thorough

energy consumption analysis is carried out for the proposed algorithm and also for the

referred algorithms.

Simulation results show that the convergence speed of proposed SATS algorithm is 16

% faster than CCS and 50 % faster than ATSP. The network-wide synchronization error

is minimized by 90 % than ATSP and 70 % than CCS. The local synchronization error

is also improved by 80 % as compared to ATSP and 82 % as compared to CCS. Due

to faster convergence, the average number of messages exchanged has shown significant

improvement, nearly 50 % less than ATSP and 10 % less than CCS. The average energy

consumption to achieve acceptable synchronization error is also minimized due to lesser

number of messages exchanged. The SATS algorithm has consumed 60 % less energy than

ATSP and 20% less than CCS. The proposed SATS algorithm has shown consistent behavior

with the increase in network size and variable network density. So, it is more scalable

than ATSP and CCS. In the next Chapter, a multi-hop SATS algorithm is proposed using

distributed dynamic programming approach for sparse and multi-hop networks.



Chapter 4

Multi-hop Consensus Time

Synchronization Algorithm:

A Distributed Dynamic Programming

Approach

The recent consensus-based time synchronization algorithms are mostly one-hop in nature,

i.e., every node communicates with its one-hop neighbors and performs offset or skew

averaging to reach the consensus state or synchronized state. As per consensus theory, apart

from the averaging scheme employed by the consensus algorithm, another factor that affects

the consensus algorithms' performance is the topological connectivity of the networks. In

topologies of lower degree of connectivity like sparse network, these one-hop consensus

algorithms have exhibited poor performance in terms of convergence speed and accuracy.

This requires the design of multi-hop consensus- based algorithm for WSN. In this context,

we have proposed a multi-hop consensus based time synchronization algorithm for sparse,

multi-hop WSN in this Chapter. A distributed, dynamic programming based approach

is employed to propose the multi-hop average synchronization algorithms. Simulation

results show that the proposed algorithm outperforms some one-hop consensus based time

synchronization algorithms within a restricted hop count.

4.1 Introduction

In recent past, though some multi-hop extensions [42, 43, 58] to the state-of-the-art,

single-hop synchronization mechanisms have been proposed, the multi-hop time

synchronization is still challenging for various reasons [73]. Firstly, the number of hops

become a major parameter for accurate protocols design. This is because the multi-hop

synchronization error accumulates along the hops. For example, in case of RBS, the

multi-hop error increases with the square root of the hops. In order to reduce the cumulative

multi-hop error, the inherent delay must be bounded. Secondly, synchronization overhead

(number of synchronization messages) is another challenge that multi-hop synchronization

faces due to the limited power sources. In fact, the overhead is inversely proportional to

53



Chapter 4

Multi-hop Consensus Time Synchronization Algorithm:

A Distributed Dynamic Programming Approach

synchronization accuracy.

Recent literature [42, 43, 58] reveals that multi-hop synchronization algorithms are

available as an extension of reference based approach (sender-receiver synchronization,

receiver-receiver synchronization) and overhearing based approach (pairwise broadcast

synchronization). But, to the best of our knowledge, till now, no multi-hop algorithm is

designed for consensus-based synchronization. Further, the multi-hop extension to reference

based approach and overhearing based approach suffers from higher cumulative multi-hop

error. So, utilizing multi-hop consensus based averaging approach can significantly reduce

cumulative synchronization error.

The major challenges faced in the design of multi-hop consensus time synchronization

algorithms are: (i) mechanisms for estimation and averaging of offset and skew of nodes

which are multi-hop away for faster convergence and (ii) bounding the hop delay to improve

the synchronization precision and to ensure consensus stability.

In Chapter 3, the proposed SATS algorithm selects a one-hop neighbor node which is

having the maximum clock difference and performs pairwise averaging. This method shows

optimal behavior as compared to some other consensus-based synchronization algorithms.

In a densely deployed topology, the resultant communication topology is a completely

connected graph. So, the probability of getting a maximum clock differed node at one

hop in a completely connected graph is quite high. On the other hand, when the nodes

are sparsely deployed, the maximum clock differed node may be located at multi-hop away.

This motivates us to propose the multi-hop SATS algorithm.

The major contribution of this Chapter are the followings.

1. The feasibility of distributed dynamic programming technique on multi-hop SATS

problem is studied thoroughly.

2. A novel multi-hop clock parameters estimation technique is proposed based on

distributed, constraint-based dynamic programming approach.

3. The performance of the algorithm is analyzed mathematically, and extensive

simulations are carried out to show the efficacy of the proposed multi-hop SATS

algorithm.

4.2 System Models

In this Chapter, the same clock model and energy model is used as in Chapter 3. But, the

networkmodel is assumed to be a sparsely deployed random graph which is described below.

4.2.1 Network Model

For our proposed algorithm, the WSN is assumed to be a random, sparse graph G= (V, E),

where V denotes set of `n' nodes and set `E' represents the connectivity matrix between the
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nodes. eij represents the entry in the i
th row and jth column in `E'. `E' is a n× n adjacency

matrix which is a sparse, Boolean matrix with τ × n × n number of uniformly distributed

non-zero entries and 0 ≤ τ ≤ 1. All nodes have unique IDs. Communication channel

between pair of node is assumed to be static, symmetric and undirected, i.e., upstream delay

and downstream delay are same. If node i and j are neighbouring nodes, then eij = eji = 1.

Otherwise, eij = eji = 0. Let, Ni = j : (i, j) ∈ E denotes the set of one hop neighbours of

node vi. The communication topology is multi-hop and fully distributed where there is no

special node such as root or reference node and all nodes execute the same algorithm.

4.3 Multi-hop SATS

This Section first formulates the multi-hop SATS problem and then illustrates its inherent

advantage through an example.

4.3.1 Problem Formulation

The one-hop SATS algorithmwhich is presented in Chapter 3, mainly consists of two phases:

(i) selection of the one-hop neighbor with maximum difference clock value and (ii) pairwise

averaging. For any node `i' and its one-hop neighbor set `Ni', at k
th iteration, these phases

can be mathematically expressed as:

Phase-1: Maximum difference based selection:

maxj∈Ni

{
Ck

i (t)− Ck
j (t)

}
(4.1)

Phase-2: Pairwise averaging:

Ck
i (t) = Ck

j (t) =
1

2
{Ck

i (t) + Ck
j (t)} (4.2)

Following the above principle of one hop SATS algorithm, the selection phase for multi

hop SATS algorithm can be formulated as:

max
[{

Ck
i (t)− Ck

j (t)
}
j∈N1

i

,
{
Ck

i (t)− Ck
l (t)

}
l∈N2

i
, ...,

{
Ck

i (t)− Ck
q (t)

}
q∈Nm

i

]
(4.3)

where N1
i , N

2
i , ..., andN

m
i denote respectively the one-hop, two-hop, and m-hop

neighbor sets of node `i'. After selecting the node using Equation 4.3, the node `i' performs

phase-2 with the selected node, situated at multi-hop away.

4.3.2 Motivational Example

In Chapter 3, we have shown that selectively choosing a one-hop neighbor with

maximum relative clock difference and performing pairwise averaging improves the
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consensus convergence and synchronization error significantly over other consensus-based

synchronization algorithms. In fact, in a dense topology, there is a high probability to get

the maximum clock differed neighbor at one hop in each iteration. Now, considering a case

where the nodes are sparsely deployed, there is a high chance that the maximum differed

node may be located at multi-hop away from the synchronization initiating node.

For example, consider the following topology given in Fig. 4.1, consisting of 9 nodes

and assume that the clock values at a particular instance are denoted byCnode_id(t). Suppose,

node `A' initiates the synchronization algorithm. If it searches for maximum differed clock

only within one-hop, then it will select node `C'. Assume that the initial clock values at all

the 9 nodes, respectively, are {A, B, C, D, E, F, G, H, I}={1, 2, 3, 4, 5, 6, 7, 8, 9} and thus,

average of initial clock value is 5. Then after performing pairwise averaging with `C' by

node `A', the updated clock values will be { 2, 2, 2, 4, 5, 6, 7, 8, 9} with a variance of

6.44. If the search by node `A' will be expanded to two-hop, then it will select node `E' for

pairwise averaging. So, for the two-hop case, the updated clock values will be { 3, 2, 3, 4, 3,

6, 7, 8, 9} with a variance of 5.7 which shows that the two-hop averaging will enhance the

convergence to the initial value.

1-hop 2-hop 3-hop 4-hop

SI

CA(1)

CB(2) 

CC(3)

CD(4)

CE(5)

CG(6)

CF(7)

CI(8)

CH(9)

Figure 4.1: Effect of 1-hop averaging Vs. 2-hop averaging

This shows that expanding the search for maximum differed node to a higher

neighborhood (multi-hop) can improve the convergence. At the same time, increasing the

number of hops will incur hop delay which affects the synchronization precision and hence,

hamper the speed of convergence. So, the end-to-end delay must be taken into account to

design an efficient multi-hop SATS algorithm.

In the following Section, we have proposed a distributed dynamic programming based

approach to solve the multi-hop SATS problem.
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4.4 Proposed Distributed Dynamic Programming

Approach

In this Section, we first present the feasibility of dynamic programming approach for the

multi-hop SATS problem and then provide a detailed solution using this approach.

4.4.1 Overlapping Sub-structure

The dynamic programming paradigm is applicable to a problem which can be modeled

as a multi-stage decision problem and can be decomposed into a number of overlapping

sub-problems or sub-structures. The overlapping sub-problems are then solved using a

recursive relation, satisfying the principle of optimality [74]. The principle of optimality

applies if the optimal solution to a problem always contains optimal solutions to all

sub-problems. The following lemma proves that the multi-hop clock parameter estimation

follows overlapping sub-structures.

Lemma 4.4.1. The multi-hop clock parameter estimation for multi-hop SATS problem

follows overlapping sub-structures.

Proof. The multi-hop SATS problem involves in the process of selecting a node which is

multi-hop away from the initiating node and should have maximum relative clock skew or

offset. In other words, the multi-hop path, thus, established between the initiating node and

the selected node will have the maximum sum of offset among all the possible paths from the

initiating node to all multi-hop neighbors. Thus, the problem falls into a decision-making

problem of selecting the maximum sum-of-offset path.

Further, the initiating node can not estimate the relative offset with the multi-hop

neighbors directly in a sparsely deployed network. It has to go through a cascading of

message exchanges with the one-hop neighbors as shown in Fig. 4.2. Hence, the multi-hop

relative offset or skew estimation problem consists of a series of hop-wise estimation

(sub-problems) which can be recursively derived as follows [58].

Let, αni→nj
and βni→nj

denote relative skew and offset between two nodes ni and nj

respectively. Then, the time-stamps at node nj w. r. to ni is given by tnj
= αni→nj

tni
+

βni→nj
. Thus, time-stamps on a multi-hop path can be derived as:

tni+1
= αni→ni+1

tni
+ βni+1→ni

, i ∈ {1, 2, ..,m− 1} (4.4)

By repeatedly substituting the values for time-stamps in Equation 4.4, the multi hop skew

and offset are given as:

αn1→nm =
m−1∏
i=1

αni→ni+1
(4.5)

βn1→nm =
m−1∑
i=2

[(
i∏

j=2

αnj−1→nj

)
βni→ni+1

]
+ βn1→n2 (4.6)

The Equations 4.5 and 4.6 clearly indicates that the estimation ofm-hop parameters (both

skew and offset) is dependent on (m − 1)-hop parameter values, and hence, the estimation
method follows overlapping of sub-problems. This proves Lemma 4.4.1.
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Dynamic programming paradigm can be applied in a distributed way [75]. Since the

multi-hop parameter estimation has to be performed at each node in a distributed way,

the problem can be effectively modeled using distributed dynamic programming approach.

Now, in order to minimize synchronization error and ensure consensus convergence, the

multi-hop maximum parameter estimation and pairwise averaging must be carried out within

a bounded delay. To bound the end-to-end delay for consensus stability, the author in [76]

has derived a relationship between hop number, per hop delay and topological connectivity

property of the network which is given as the following Lemma.

Lemma 4.4.2. [76] For a connected network, the m-hop Request-Reply based consensus

protocol is globally asymptotically stable for each `m', if it satisfies the following condition.

Dmax ≤ π

2mλM

(4.7)

with `m' number of hop, Dmax = maxj {Dj} , λM = maxj {λM (Lj)} for j=1, 2,...,
m where Dj denotes maximum hop delay at jth hop, λM denotes largest eigenvalue of

Laplacian matrix Lj of j-hop graph.

Using the above Lemma, the threshold delayDTh can be set toDmax to ensure consensus

stability. The following section describes the recursive formulations of the parameters (skew

and offset) estimation and end-to-end delay.

4.4.2 Recurrence Relation Formulation

Let αi
m(k) be the skew value at node `i' with respect to its m-hop neighbors at kth iteration.

Since, multi-hop skew is a product of hop-wise skew values as shown in Equation 4.5, it can

be recursively defined as:

αi
m(k) =

j ∈ Ni{αij × αj
m−1(k)}, ifm > 1

αij, ifm = 1
(4.8)

where αij denotes the skew difference at node `i' with respect to its one-hop neighbors `j'

which can be estimated directly, using the two-way message exchange schemes shown in

Fig. 3.2 in Chapter 3 and hence, acts as the base condition for the recurrence relation.

Similarly, the additive nature of multi-hop offset value as given in Equation 4.6 can be

recursive defined as:

βi
m(k) =

j ∈ Ni{βij + βj
m−1(k)}, ifm > 1

βij, ifm = 1
(4.9)

where βij denotes the offset difference at node `i' with respect to its one-hop neighbors `j'

which can be estimated directly, using the two-way message exchange schemes discussed in
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Chapter 3 and hence, acts as the base condition for the recurrence relation.

Further, the multi-hop end-to-end delay at iteration `k' also can be recursively defined as

follows.

Delayim(k) =

j ∈ Ni{δij +Delayjm−1(k)}, ifm > 1

δij, ifm = 1
(4.10)

where δij denotes the one-hop delay which can be computed directly, using two-way

message exchange scheme, as ((T i
4 − T j

3 ) + (T j
2 − T i

1))/2. This acts as the base condition

for the recursive delay estimation.

The multi-hop SATS algorithm involves in the process of selecting a multi-hop neighbor

node with the maximum parameter (skew and offset) along with the constraint that the

maximum end-to-end delay lies within the threshold delay given in Lemma 4.4.2. So,

the objective function for distributed, multi-hop SATS algorithm and the constraint for

end-to-end delay can be stated, using the principle of optimality, as follows.

Objective function: ∀i ∈ V , Maximize αi
m(k) and βi

m(k) which can be expressed

recursively, using Equation 4.8 and Equation 4.9, as:

Max αi
m(k) =

j ∈ Ni{αij ×Max αj
m−1(k)}, ifm > 1

αmax
ij , ifm = 1

(4.11)

Max βi
m(k) =

j ∈ Ni{βij +Max βj
m−1(k)}, ifm > 1

βmax
ij , ifm = 1

(4.12)

Constraint: subject to Max Delayim(k) ≤ DTh where maximum end-to-end delay at

iteration `k' is estimated as follows.

Max Delayim(k) =

j ∈ Ni{δij +Max Delayjm−1(k)}, ifm > 1

δmax
ij , ifm = 1

(4.13)

Though Equation 4.11 and 4.12 represent distinct methods of parameter estimation, they

refer to the same m-hop neighbor which is already discussed in Chapter 3 that the node with

maximum relative skew has also maximum relative offset. Hence, the objective function

can be precisely defined using the atomic clock value Ci
m as: ∀i ∈ V,Max C i

m(k) s. t.

Max Delayim(k) ≤ DTh.
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4.5 The multi-hop SATS Algorithm

To implement the proposed distributed, dynamic programming approach, the corresponding

message passing model for m-hop SATS can be designed as shown in Fig. 4.2 which can be

realized at every node in the network. The synchronization round at every node is divided

into two phases: phase-1 is for parameter (offset and skew) estimation, and phase-2 is

for parameter compensation. Both offset and skew estimation are performed in the same

synchronization round.

To satisfy the constraint given in Equation 4.13, the duration of synchronization round for

every node is set to the threshold delay value (DTh) which is estimated centrally by the sink

node and disseminated to every node in the network. Phase-1 of a node `i' is assigned with

a random duration of time which is given by tirand=uniform (0, DTh-κ) where κ=constant,

0< κ<DTh. Thus, the duration of phase-2 is given by DTh-t
i
rand.

Each node in the network, at its local oscillation period, broadcasts a synchronization

initiating message (SYN_INIT) to its one-hop neighbors and waits for a random duration

tirand to receive acknowledgment messages. The (SYN_INIT) message, along with normal

information like node ID, current time-stamp, contains additional information, i.e., the

current hop count (h) and maximum hop count (hmax). The initiating node initially sets

h = 0 and hmax = m. The one-hop neighbors after receiving SYN_message, increment h by

1 and compare with hmax. If h < hmax, the one-hop neighbors further send the SYN_INIT

requests to their upstream one-hop neighbors. This process continues up to `m' hop, i.e.,

until h = hmax.

Then, the nodes atmth hop reply back by sending SYN_ACKmessages to their requester

at (m − 1)th hop. The requester upon receiving the SYN_ACK message compute the

clock parameters (skew and offset) and the delay. Then it sends the estimated maximum

values along with the corresponding neighbor's node ID to the downstream requester. This

process continues until the initiating node receives the acknowledgment message. Thus, a

synchronization tree is established at each node as shown in Fig. 4.4 whose root node is the

synchronization initiating node and its depth is bounded by `m'.
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Figure 4.2: Message passing model for multi-hop SATS

Finally, the initiating node estimates the maximum multi-hop skew, offset, and

end-to-end delay using Equation 4.11, 4.12 and 4.13 respectively. If the maximum estimated

end-to-end delay is within the assigned interval for phase-1, then it selects the multi-hop

neighbor having maximum clock value and performs a pairwise averaging with the selected

node by sending a synchronization averaging (SYN_AVG) message within the assigned

duration of phase-2, along the shortest route. The pseudo code of multi-hop SATS algorithm

is given below.

4.5.1 Algorithm Illustration

To explain the working of proposed multi-hop SATS algorithm, an example network of 16

nodes is considered as shown in Fig. 4.3. Let the multi-hop SATS algorithm is executed at

synchronization initiating node `A' up to 2 hops. Fig. 4.4 shows the synchronization tree

rooted at node `A' of Fig. 4.3. For the sake of simplicity, we have considered the atomic

clock `C' value instead of individual skew (α) and offset (β) to illustrate the algorithm.

In fact, the clock with maximum skew and offset also has maximum atomic value. The (t)

value at each node denotes the atomic clock value, and the edge weights denote the estimated

round trip delay between a pair of nodes. The threshold delay (DTh) is estimated as follows.

For ease of estimation of graph-related parameters, a MATLAB tool known as `matgraph'

is used.

The Laplacian of the 1-hop graph (example network), L1, is estimated using the

adjacency matrix and diagonal matrix of the network. Its largest eigen value λM(L1) is

computed to be 5.7537. Similarly, the Laplacian of the 2-hop graph L2 is estimated using

the adjacency matrix and diagonal matrix of the 2-hop graph of the given network. The
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Algorithm 4 Distributed DP based Multi-hop SATS (vi)

Input: Acceptable synchronization error (ε), hop count (m), Threshold delay (DTh)

Output: Consensus state (Ci(0))
1: Sink node computes DTh=

π
2mλM

and disseminate to each node `i' /***m-hop threshold

delay estimation using Lemma 4.4.2***/

2: while local synchronization error ≤ ε do
3: for all node i ∈ V do

4: Compute tirand=rand(0, DTh-κ), κ=constant, 0< κ<DTh

5: Assign duration of Phase-1 at node `i'=tirand
6: for Duration=tirand do
7: /************* Phase-1**************/

8: for hop=1 tom do

9: Node `i' broadcasts SYN _INIT message to Nhop
i

10: For j ∈ Nhop
i and SYN_INIT.received(j)=TRUE

11: Node i = Node j
12: Continue

13: end for

14: for hop=m downto 1 do

15: For j ∈ Nhop
i and SYN_INIT.received(j)=TRUE

16: Node j sends SYN_ACK to the requesters (r) at (m− 1)th hop
17: Requesters (r) at (m− 1)th compute αmax

rj , βmax
rj , and δmax

rj

18: Requesters (r) send < αmax
rj , βmax

rj , δmax
rj , node_ID_max > in SYN _ACK

messages to downstream requesters

19: Continue

20: end for

21: Node i estimatesmax Ci
m, andmax Di

m using Equations 4.11, 4.12 and 4.13

22: end for

23: /************* Phase-2**************/

24: ifmax Di
m ≤ tirand then

25: Selects the m-hop node with max Ci
m

26: Within Duration=DTh − tirand
27: Node i sends SYN_AVG message to m-hop selected node

28: end if

29: end for

30: end while
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2-hop graph's adjacency matrix is computed by first finding out a path matrix of length 2

for the given network and then replacing its non-zeroes value by 1 and setting all diagonal

entries as 0. Its largest eigen value λM(L2) is found out to be 9.5504. Hence, λM is 9.5504.

Thus, the Dmax using Lemma 4.4.1 is estimated as 0.17. Let, the duration of phase-1 using

the threshold delay is set to 0.11 and phase-2 is set to 0.06. Then, the execution of proposed

multi-hop SATS algorithm will proceed as follows.

Figure 4.3: An example network of

16 nodes
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0.050.04

0.07

0.06

0.06
0.07

Subtree-1

Subtree-2

Subtree-3

Figure 4.4: The 2-hop sync tree rooted at `A' of Fig.

4.3

Node `A' broadcasts the SYN_INIT message to B, C, and D. Then, SYN _INIT message

is forwarded by B, C, and D to their upstream neighbors E, F, G, H, I, and J and the messages

are reached at maximum hop (hmax = m = 2). Let, the SYN_ACK messages are sent from

leaf nodes (nodes at m=2) to their corresponding requesters. For E and F, the corresponding

requester is B. Similarly, for G and H, it is C and for I and J, it is D. After, receiving the ACK

messages, let, the estimated delays are as shown in Fig. 4.4 as edge weight. Then, using the

dynamic programming approach, the maximum parameters estimation is done as follows.

For the constraint to satisfy, the delay estimation up to 2 hops using Equation 4.13 at

different sub-trees rooted at `A' is illustrated as follows.

DelayA2 = j ∈ NA{δAj +max Delayj1}

= {δAB +max DelayB1 , δAC +max DelayC1 ,

δAD +max DelayD1 }

= {δAB +max {DelayBE, DelayBF},

δAC +max {DelayCG, DelayCH},

δAD +max {DelayDI , DelayDJ}

= {0.04 + 0.07, 0.05 + 0.07, 0.06 + 0.07}

= {0.11, 0.12, 0.13}

From the above delay estimation, the maximum end-to-end round-trip delay along

sub-tree 1, sub-tree 2, and sub-tree 3 are respectively, 0.11, 0.12, and 0.13. Similarly, the
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maximum clock value estimation at node `A' up to 2 hop is given below.

max (t)A2 = maxj∈NA
{(t)Aj +max (t)j1}

= max {(t)AB +max (t)B1 , (t)AC +max (t)C1 ,

(t)AD +max (t)D1 }

= max {(t)AB +max {(t)BE, (t)BF},

(t)AC +max {(t)CG, (t)CH}, (t)AD +max {(t)DI , (t)DJ},

= max {(t)A − (t)B +max {(t)B − (t)E, (t)B − (t)F},

(t)A − (t)C +max {(t)C − (t)G, (t)C − (t)H},

(t)A − (t)D +max {(t)D − (t)I , (t)D − (t)J}}

= max {1 + 4, 2 + 5, 3 + 6} = 9

From the above clock estimation, the maximum 2-hop clock value is 9 which is along

path A-D-J which is in sub-tree 3. But, delay estimation shows that the end-to-end round

trip delay in sub-tree 3 exceeds the duration of phase 1 which is 0.11. So, A-D-J path is not

selected though it is an optimal path. The similar case happens with sub-tree 2. Instead, the

path A-B-F is chosen in sub-tree 1 because it satisfies the constraint and hence, node A will

perform pairwise averaging with node F.

4.6 Performance Analysis

The proof of optimality of synchronization error and consensus convergence of multi-hop

SATS algorithm is same as discussed in Chapter 3 because the basic principle of averaging

remains the same, i.e., maximum difference based pair-wise averaging and the estimation

and compensation processes are carried out within the delay bound as per Lemma 4.4.2. The

following subsections analyze themessage complexity and energy consumption ofmulti-hop

SATS algorithm.

4.6.1 Message Complexity

This subsection analyzes the message complexity of the multi-hop SATS algorithm.

Theorem 4.6.1. The distributed, multi-hop SATS algorithm has asymptotic message

complexity O(n(logn)m) where `n' is number of sensor nodes in the network and `m' is
the hop number.

Proof. The multi-hop SATS algorithm will be initiated at every node of the network. Thus,

it will generate `n' number of synchronization trees with depth `m'. Let the whole network

has an average degree of connectivity `K'. Hence, the number of SYN_INIT messages

broadcasted in a synchronization tree up to `m' hop (depth of the tree) will be derived as

follows.
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= 1 + θ(K) + θ(K2) + ...+ θ(Km−1)

= θ
(Km+1 − 1

K − 1

) (4.14)

Similarly, the number of SYN_ACK messages replied from the child nodes to the root

(SI node) of the synchronization tree will be:

= θ(Km) + θ(Km−1) + ...+ θ(K)

= θ(K(Km−1 +Km−2 + ...+ 1))

= θ
{
K
(Km − 1

K − 1

)} (4.15)

Then, the SI node will send a single SYN_AVG message to the m-hop selected node to

perform pairwise averaging. So, the number of SYN_AVG message is θ(1).
For the whole network total number of messages exchanged will be:

= O
(
n
(Km+1 − 1

K − 1

))
+O

(
n
(
K
(Km − 1

K − 1

))
+O(n)

= O
(
n
(
1 +

Km+1 − 1

K − 1
+K

(Km − 1

K − 1

))
= O

(
n
(Km+1 − 1

K − 1

)) (4.16)

In a random, sparse graph, the relation between the average degree of connectivity and

number of nodes is given byK = θ(logn). Hence, substituting the value of `K' in Equation
4.16, we have

= O
(
n
((logn)m+1 − 1

(logn− 1)

))
= O

(
n
((logn− 1)((logn)m + (logn)m−1 + ...+ 1)

(logn− 1)

))
= O(n(logn)m)

(4.17)

This proves that the message complexity of multi-hop SATS algorithm isO (n(logn)m).

4.6.2 Energy Consumption Analysis

In Chapter 3, the energy consumption of one-hop SATS algorithm is investigated at

each node for sending and receiving synchronization messages. But, in multi-hop SATS

algorithm, the synchronization messages traverse across m-hop paths. So, the energy

consumption in a particular iteration is the sum of energy consumption at intermediate

nodes which constitutes the path. So, for each type of synchronization message, the energy

consumption across an m-hop path can be derived recursively as follows.

Using the energy model given in Section 3.2, the following Equations can be derived.

For broadcasting a SYN_INIT message up to m-hop neighbors, the energy consumption

across the m-hop paths originating at node `i', P SY N_INIT
tx (i,m), is given by:
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P SY N_INIT
tx (i,m) =

j ∈ Ni{P SY N_INIT
tx (i) + P SY N_INIT

tx (j,m− 1)}, ifm > 1

P SY N_INIT
tx (i), ifm = 1

(4.18)

where P SY N_INIT
tx (i) is estimated using Equation 3.24 given in Chapter 3. Similarly, for

receiving SYN_ACK messages across the m-hop path terminating at node `i' is given by:

P SY N_ACK
rx (i,m) =

j ∈ Ni{P SY N_ACK
rx (i) + P SY N_ACK

tx (j,m− 1)}, ifm > 1

P SY N_ACK
rx (i), ifm = 1

(4.19)

whereP SY N_ACK
rx (i) is estimated using Equation 3.25 given in Chapter 3. Finally, to send

the SYN_AVGmessage by node `i' to a selected node at m-hop away through a shortest path

is given by:

P SY N_AV G
tx (i,m) =

j ∈ Ni{P SY N_AV G
tx (i) + P SY N_AV G

tx (j,m− 1)}, ifm > 1

P SY N_AV G
tx (i), ifm = 1

(4.20)

where P SY N_AV G
tx (i) is estimated as follows.

P SY N_AV G
tx (i) = M(β1 + β2{min l(i, j), j ∈ Ni}ζ) (4.21)

So, the total energy consumption per iteration for a network of `n' nodes is given by:

Ptotal =
n∑

i=1

[
P SY N_INIT
tx (i,m) + P SY N_ACK

rx (i,m) + P SY N_AV G
tx (i,m)

]
(4.22)

To compute the average energy consumption in a network of `n' nodes for m-hop SATS

algorithm, the number of m-hop paths need to be found out. Given, the adjacency matrix of

the network as `A', the number of m-hop paths, Nm−hop, can be computed as:

Nm−hop =
m∑
k=2

n∑
ij=1

(Ak)ij (4.23)

Hence, the average energy consumption per iteration can be estimated as:

Piteration = Ptotal/Nm−hop (4.24)
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Thus, average energy consumption to achieve network-wide synchronization is given by:

Pavg = Piteration
1

n

n∑
i=1

It(i) (4.25)

where It (i) is the number of iterations required at node `i' to reach the acceptable

synchronization error bound.

4.7 Simulation

In this Section, the proposed dynamic programming based multi-hop SATS algorithm is

evaluated and compared with some standard one hop consensus based time synchronization

algorithms like ATSP [22], CCS [17], and proposed one hop SATS algorithm in Chapter 3.

The performance is evaluated using some relevant performance metrics such as convergence

speed, average global synchronization error, average local synchronization error, average

number of messages exchanged, average energy consumption, Impact of number of hops,

and scalability. The algorithms are implemented in PROWLER simulator, aMATLAB based

simulator which is a simple yet strong simulator designed for wireless sensor network. The

simulation parameters used are shown in Table 4.1.

4.7.1 Simulation Configuration

The simulations are performed on random, sparse topology by varying the number of nodes

from 50-250. Since the multi-hop SATS algorithm is targeted for the sparse network which

requires multi-hop communication; to realize the sparse network, the τ parameter mentioned

in the network model is set between 0.1-0.5. As per TelosB data sheet specification

mentioned in [18], the typical skew range is between -5 PPM to 5 PPM. So, to have a close

resemblance with the realistic environment, the skew is generated in the specified range

using random uniform distribution.

To have a fair comparison with ATS [22] and CCS [17], the clock offsets are generated

using random uniform distribution between 0 and 1 which is same as specified in [22].

The duration for one iteration is set to 10 seconds. The default MAC protocol provided

in PROWLER simulator is CSMA/ CA. The hop count `m' varies from 2-4. The theoretical

threshold delay DTh is calculated by the sink node centrally and disseminated to the

each node of the network where every node executes the same algorithm in a distributed

fashion.The algorithm has incorporated the usage of MAC layer time stamps [67], appended

in the control frames (e.g. IEEE 802.11 RTS/ CTS control packets for CSMA/CA) and the

averaged parameter's (offset/ skew) value in the actual data frame, to minimize the MAC

delay.
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Table 4.1: Simulation Parameters

Parameter V alues
Deployment area 10 × 10 square unit

Topology Random, Sparse

No. of nodes (n) 50-250

Hop Count (m) 2-4

Initial skew (α) uniform(-5,5)

Initial offset (β) uniform(0,1)

Acceptable synchronization error (ε) 0.0001 sec.

Iteration interval 10 sec

Path Loss Exponent (ζ) 2

β1 45 nJ/bit

β2 10 pJ/bit

γ 35 nJ/bit

Message size (M ) 320 bits

MAC Protocol CSMA/CA

4.7.2 Simulation Results and Analysis

The following Sections show the performance of the proposed algorithm with respect to

various performance metrics.

(i) Skew convergence

To test the skew convergence, the observations are recorded by considering maximum 50

iterations as shown in Fig. 4.5 (a)-(d). It is observed that ATSP [22] algorithm achieves skew

convergence at around 20 iterations, CCS [17] algorithm which uses cumulative weighted

averaging (CWA) method convergences at around 15 iterations, and 1-hop SATS algorithm

takes around 12 iterations, all are with an acceptable synchronization error (ε) of 0.0001 sec.

Whereas the 2-hop SATS algorithm, as shown in Fig. 4.5 (d), achieves skew convergence

within 10 iterations for the same value of acceptable synchronization error. So, convergence

is faster in 2-hop SATS algorithm.
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Figure 4.5: Skew convergence of (a) ATSP, (b) CCS, (c) 1-hop SATS, and (d) 2-hop SATS
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(ii) Offset convergence

The offset convergence is also tested and observed simultaneously with the skew

convergence with the same value of acceptable synchronization error as shown in Fig. 4.6

(a)-(d). The initial average of random offset distribution is recorded as 0.513. Similar

behavior is observed as in skew convergence. The 2-hop SATS algorithm has faster

convergence than 1-hop SATS, ATSP and CCS algorithms. Overall, the 2-hop SATS

algorithm converges 16% faster than 1-hop SATS, 33 % faster than CCS and 50% faster

than ATSP.
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Figure 4.6: Offset convergence of (a) ATSP, (b) CCS, (c) 1-hop SATS, and (d) 2-hop SATS

(iii) Average global synchronization error

Fig. 4.7 shows average global (network-wide) synchronization error of 50 nodes after each

iteration by considering maximum 50 iterations. It is observed that the average global

synchronization error for 50 iterations for ATSP is 0.0550 sec., 0.0180 sec. for CCS, 0.0040

sec. for 1-hop SATS, and 0.0023 sec. for 2-hop SATS algorithms. Hence, the 2-hop SATS

algorithm has 95% improvement of average global synchronization error over ATSP, 86%

over CCS, and 46% improvement over 1-hop SATS algorithm.
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Figure 4.7: Average global synchronization error Vs. Iteration number

(iv) Average local synchronization error

Fig. 4.8 (a)-(d) depicts average local synchronization error of each node for a topology of

50 nodes for 50 iterations. This shows the upper bound of local synchronization error of

every node. It is observed ATSP has maximum local synchronization error of 0.0610sec.,

CCS has 0.0523 sec., 1-hop SATS has 0.0124 sec., and 2-hop SATS has 0.0073 seconds. So,

the 2-hop SATS algorithm has less local synchronization error, nearly 88%, as compared to

ATSP, 86% to CCS, and 41% to 1-hop SATS algorithm. So, local synchronization error is

also optimized by the 2-hop SATS algorithm.
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Figure 4.8: Average local synchronization error of (a) ATSP, (b) CCS, (c) 1-hop SATS, and

(d) 2-hop SATS

(v) Number of messages

To achieve synchronization with the given error bound, the number of messages exchanged

at each node is recorded, and the average is computed for the whole network with different

network size varying from 50-250 nodes. It is observed from Fig. 4.9 that the 2-hop SATS

algorithm has almost exchanged 29% less messages than ATSP but 83%moremessages than

CCS and 5%more messages than 1-hop SATS. This is because of multi-hop communication

in 2-hop SATS. Further, themessage overhead in the proposed 2-hop SATS algorithmw. r. to

CCS is more because CCS follows one-way message passing paradigmwhereas 2-hop SATS

follows two-way messaging scheme. So, there exist a trade-off between synchronization

accuracy and number of messages exchanged between 2-hop SATS and CCS.
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Figure 4.9: Avg. no. of messages Vs. No. of
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(vi) Energy consumption

The average energy consumption is estimated using the mathematical derivations obtained

in section 3.4.4. The number of nodes is varied from 50-250. It is observed from Fig.

4.10 that in an average, the 2-hop SATS algorithm has 38 % less energy consumption

than ATSP but 82 % and 18 % more energy consumption than CCS and 1-hop SATS

algorithm respectively. The extra energy consumption in 2-hop SATS algorithm is also due

to multi-hop communication and message overhead.

(vii) Scalability

The scalable performance of the algorithms is tested according to two aspects. The first

scalability test is based on increasing the network size and the second test is based on varying

the sparsity factor `τ '.

(a) Impact of network size

Fig. 4.11 and 4.12 show the behavior of the algorithms with different network size with a

constant sparsity factor τ=0.2. We have considered the average number of iterations and

average Mean Square Error (MSE) as performance metrics to evaluate the scalability of the

algorithms. The observations are made on random, sparse topologies varying nodes from

50-250 nodes. The average is calculated for 100 realizations of such random topologies for

each number of nodes. From Fig. 4.12, it is observed that the mean of the average number

of iterations is 5.84 for ATSP, 2.84 for CCS, and 2.24 for 1-hop SATS, and 0.8 for 2-hop

SATS. The standard deviation for ATSP is 0.49, 0.316 or CCS, 0.26 for 1-hop SATS, and

0.08 for 2-hop SATS.
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Figure 4.12: Avg. iterations Vs No. of nodes

Similarly, from Fig. 4.11, it is observed that the mean of average MSE is 0.0033

for ATSP, 0.0021 for CCS, 0.000264 for 1-hop SATS, and 0.00018 for 2-hop SATS. The

standard deviation for ATSP is 0.0023, 0.0024 for CCS, 0.000054 for 1-hop SATS, and
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0.0000433 for 2-hop SATS, it is 0.0005. So, it is inferred that the lower mean value of the

proposed 2-hop SATS shows its optimal performance, and lower standard deviation shows

its consistency. Hence, the 2-hop SATS algorithm is more scalable than 1-hop SATS, ATSP,

and CCS algorithm on sparse network.

(b) Impact of sparsity factor`τ '

The impact of sparsity factor 'τ ' has been studied by considering different network size

and varying the sparsity factor between 0.2 and 0.5. The considered network size is from

50-250 and for each network size, the sparsity factor is varied in the given range to check its

impact on the performance of the algorithms. For each network size, the means and standard

deviations of MSE are observed for different values of sparsity factor as shown in Fig. 4.13

and Fig. 4.14.

It is observed that the averagemean ofMSE for different network size is 0.0027 for ATSP,

0.0015 for CCS, 0.00022 for 1-hop SATS, and 0.000153 for 2-hop SATS. Similarly, the

average standard deviation of MSE is 0.0012 for ATSP, 0.0011 for CCS, 0.000086 for 1-hop

SATS and 0.0000587 for 2-hop SATS. So, it is inferred that the lower mean value of 2-hop

SATS shows its optimal performance, and lower standard deviation shows its consistency.

Hence, 2-hop SATS algorithm is more scalable than ATSP, CCS, and 1-hop SATS w. r. to

different sparsity factor.
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Figure 4.13: Mean of MSE Vs. No. of nodes
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(viii) Impact of number of hop

The impact of increasing the number of hop on the proposed multi-hop SATS algorithm is

also studied. By increasing the number of hop from 2 to 3 and 4, the average end-to-end

delay is estimated from the time instance of sending the SYN_INIT message to the instance

of receiving SYN _ACK message and is compared with the theoretical threshold delay

as shown in Fig. 4.15. It is observed that with the increase in the number of hops, the
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estimated end-to-end delay increases and the theoretical threshold delay decreases. After,

hop count 4, the estimated average end-to-end delay supersedes the threshold delay. As

a result, the consensus stability is disturbed as shown in Fig. 4.17 (c) for 4-hop SATS.

Also, it is observed from Fig. 4.16 that due to consensus instability, the synchronization

error also increases for 4-hop SATS algorithm. So, a restricted hop selection between 2

and 3 can improve the performance of the multi-hop SATS algorithm over the one-hop

consensus-based synchronization algorithms.
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4.8 Summary

In this Chapter, a consensus-based multi-hop SATS algorithm is proposed which is targeted

for the random and sparse network. Since consensus-based algorithms are greatly affected

by topological connectivity, we aimed at increasing the topological connectivity by using

multi-hop communication for the underlying sparse network. At the same time, increasing

hop count incurs higher end-to-end delay which affects the consensus stability. In order

to restrict the delay and select a multi-hop node with maximum relative clock values, a

distributed, constraint-based dynamic programming approach is suggested. Using multi-hop

communication, a node is selected using the proposed multi-hop SATS algorithm and

pairwise averaging is performed between the initiating node and the selected node. The

asymptotic message complexity of multi-hop SATS algorithm in a network of n nodes and

up tom hop is proved to be O (n(logn)m). A thorough energy consumption analysis is also

carried out for the proposed multi-hop SATS algorithm.

Simulation results show that on sparse topology, the proposed multi-hop SATS algorithm

with hop count 2 has 16 % faster convergence speed than the proposed SATS (1-hop)

algorithm in chapter 3. Also, the 2-hop SATS algorithm has 33 % faster convergence speed

than CCS and 50 % faster than ATSP on sparse topology. The 2-hop SATS algorithm has

95% improvement of average global synchronization error over ATSP, 86% over CCS, and

46% improvement over 1-hop SATS algorithm. The local synchronization error using 2-hop

SATS is also optimized, nearly 88% as compared to ATSP, 86% to CCS, and 41% to 1-hop

SATS algorithm. As compared to ATSP, the average number of messages exchanged for

2-hop SATS algorithm is 29 % less but, when compared with CCS and 1-hop SATS, it is

respectively, 83% and 5%more. Themessage overhead of 2-hop SATS as compared to CCS

is high because CCS follows one-way message passing paradigm for weighted averaging

whereas 2-hop SATS follows two-way message passing paradigm to perform pair-wise

averaging. So, there exist a trade-off between message exchanges and synchronization

accuracy in case of 2-hop SATS and CCS.

The 2-hop SATS algorithm has shown better scalability, both in varying network size

and varying sparsity factor scenario. Increasing the hop count from 2 to 3 also improves

the convergence speed and synchronization error. But, simulation results show that with the

further increase in hop count, the end-to-end delay supersedes the threshold delay. So, the

optimal behavior of the algorithm lies in the restricted selection of hop count which also

ensures consensus stability of multi-hop SATS algorithm. In fact, restricted hop count also

makes the algorithm optimal in terms of message complexity. In the next two Chapters,

topological optimization strategies are proposed to create logical communication topologies

for consensus-based synchronization algorithms. The basic objective is tominimizemessage

overhead, energy consumption without compromising synchronization precision.



Chapter 5

Topological Optimization Strategy for

Consensus Time Synchronization

Algorithms on dense topology: A Genetic

Algorithm based Approach

Recent approaches to Consensus Time Synchronization (CTS) algorithms are ``all node

based", i.e., every node iterates the consensus algorithm to reach to the synchronized state

by exchanging synchronization messages with neighbors. This increases the congestion in

the network due to extensive synchronization message exchange and induces delay in the

network. The delay induced in the packet exchange is the main source of synchronization

error and slows down the convergence speed to the synchronized (consensus) state. Also,

extensive use of synchronization messages causes more energy consumption. Hence, it is

desirable that a ``subset" of sensors along with a balanced number of neighboring sensors

should be selected during topology construction such that an optimal logical topology can

be established. Embedding this logical communication topology, the performance of CTS

algorithms can be improved significantly. In this Chapter, a Connected Dominating Set

(CDS) based topological optimization strategy is proposed usingGenetic Algorithm (GA) for

CTS algorithms. Using this optimized generic communication topology, it is observed that

the performance of some state-of-the-art CTS algorithms has been improved significantly.

5.1 Introduction

Topological optimization for a specific objective in WSNs is a well-researched area. This

problem is also referred as sensor selection problem in some literature [4, 69, 77]. The major

objectives include network coverage and connectivity, energy savings, delay minimization,

optimal routing, and broadcasting [78–80]. Specific to clock synchronization problem, in

[77], the authors have used MCDS and k-CDS (for fault tolerant environment) to solve

the sensor selection problem for TPSN [21] and RBS [20] synchronization protocols. In

[43], CDS based and set cover based approaches are used for multi-hop PBS protocol

[4] to minimize message complexity. A generic strategy is proposed for hierarchy based
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synchronization protocols in [69] to select multiple clock reference nodes, which is

formulated as a k-median problem. The strategies so far proposed for clock synchronization

problem are all for hierarchy based protocols.

Topological optimization for CTS algorithms is a least explored area. To the best

of our knowledge, our work is the first work to address the topological optimization

problem for CTS algorithms. A recent work has been reported by Jie Wu et al. in [57]

which incorporates LEACH clustering technique to improve convergence speed and energy

efficiency of distributed CTS algorithms. But, the basic difference between our work

and the work proposed in [57] is: our approach is based on creating an optimal, logical

communication topology for CTS algorithms which can be incorporated during topology

construction phase whereas the work in [57] is based on clustering as a pre-step for CTS

algorithms which is an extra overhead for the synchronization process.

The major contributions of this Chapter are the followings.

1. Proposes a novel GA-based approach for topological optimization problem for CTS

algorithms, based on the delay balanced topology concept introduced by [66].

2. Validates the optimal behavior of the proposed strategy through extensive simulation

based performance analysis of some recent state-of-the-art CTS algorithms.

3. Compares the performance with all node based CTS algorithms, Minimum Connected

Dominating Set (MCDS) strategy, and Load Balanced Connected Dominating Set

(LBCDS) strategy which are widely used as generic logical communication strategies.

The rest of the Chapter is organized as follows. Section 5.2 introduces the system

models and definitions; Section 5.3 formulates the problem; Section 5.4 presents the detailed

GA-based proposal and Section 5.5 gives the simulation results followed by conclusion in

Section 5.6.

5.2 System Models & Definitions

In this Chapter, the clock model and the network model are the same as described in Chapter

3. The additional models used in this chapter are described below along with the following

definitions.

Definition 1: Synchronization Initiating (SI) Node

This is the subset of sensor nodes which are selected for initiating the synchronization

algorithm. For the WSN `G', let `I' denotes the set of SI nodes where I ⊂ V. It is required

that the nodes in `I' must be connected for achieving network wide synchronization.

Definition 2: Synchronization Participating (SP) Node

This is the subset of one hop neighbor sensor nodes which are allocated to the SI nodes.

These nodes involve in the synchronization process only upon receipt of messages from
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the SI nodes. It is given by P=V-I. Each SP node is allocated to only one SI node to

avoid synchronization update inconsistency, congestion, and packet losses. It is important

to note here that the SI nodes also behave as SP nodes when they receive messages from the

neighboring SI nodes. This helps in propagating the consensus throughout the network.

5.2.1 Generic CTS Framework

In each iteration of the CTS algorithm, every node initiates the synchronization process by

sending an initiation message. After receiving the time-stamped reply messages from its

neighbors, it estimates the arrival time of its neighbors' messages. Each node then updates its

local clock time using pairwise averaging method [22] or weighted averaging methods [17,

18] until all nodes converge to the average of the initial clock differences between the nodes

with some tolerable synchronization error. In the presence of both random and deterministic

delays during message exchanges, the clock update rule at each node `i' is given as [66]:

Ci(tk+1) = Ci(tk) + ε
∑
j∈Ni

∣∣C ′
j(tk)− Ci(tk)

∣∣ (5.1)

where Ci(tk) is the local time at node `i' during iteration `k' and `ε' is the constant step

size for each iteration. C ′
j(tk)=Cj(tk) + Tdelay. The total delay Tdelay, ignoring system level

delay factors, is given as:

Tdelay = T PHY
delay + TMAC

delay (5.2)

where T PHY
delay is the physical layer delay and TMAC

delay is the MAC layer delay.

According to [28], if the topology is balanced, then consensus can be achieved even if

in the presence of delay. Similar analysis exist in [66] on the basis of CTS protocols and the

authors have introduced the concept of ``delay balanced network" which is defined as:

Definition 3: A network is said to be delay balanced if
∑

j∈Ni
(Tc+lij/c) =

∑
m∈Nk

(Tc+

lkm/c) = ... =
∑

q∈Np
(Tc + lpq/c) for (i, j), (k, m),..., (p, q) ∈ E. `l' represents the distance

between the neighbouring nodes, `c' is the speed of light and Tc is a constant.

In [66], Definition 3 is used for all node based approach. But, our objective is to select a

subset of nodes to minimize message complexity and energy consumption along with delay

balancing to accelerate consensus. So, the following definition, based on CDS, is introduced.

Definition 4: CDS based delay balanced network

A network is said to be CDS based delay balanced if
∑

j∈Ni
(Tc+ lij/c) =

∑
m∈Nk

(Tc+

lkm/c) = ... =
∑

q∈Np
(Tc + lpq/c) for (i, j), (k, m),..., (p, q)∈ E'. i, k, .., p are the nodes in

CDS and E' represents connectivity among dominators.
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5.2.2 Consensus Energy Model

To compute the energy consumption for the CTS protocols, the power model-1, proposed

in [81], is closely followed. For the sake of simplicity, the model only considers energy

consumption in message transmission Ptx and reception Prx, defined as follows:

Ptx = M(β1 + β2l(i, j)
ζ) and Prx = Mγ (5.3)

where `ζ' is the path loss exponent, typically within the range between 2 and 6. The

constants β1, β2 and γ are the energy dissipated by the transmitter module, transmit amplifier,

and the receiver module respectively. The estimated distance between nodes `i' and `j'

is denoted as l(i, j) and the length of message as `M '. Using CTS framework, a node

transmits and receives to and from each of its neighbors at every iteration. Assuming local

broadcasting, the energy consumed by a node `i' after 't' iteration is given by Equation 5.4.

P (i) = tM(β1 + β2max{l(i, j), j ∈ Ni}ζ + γ|Ni|) (5.4)

Thus, the average nodal energy consumption for a network of `n' nodes is given by

Equation 5.5:

Pavg =
1

n

n∑
i=1

P (i) (5.5)

5.3 Problem Formulation

Based on the above-discussed models and definitions, the following section first analyzes

the relationship between topological parameters and delay and then formulates the objective.

5.3.1 Problem Analysis

The major factor that affects the synchronization accuracy and convergence speed is the

delay incurred at different layers of communication to send the synchronization packets.

Since the system level and communication delay estimation is not feasible during topology

construction phase [82], some topological parameters need to be identified tomodel the delay

cost. From literature [66, 80, 82], it is observed that the physical layer delay is proportional

to the distance between the nodes in a wireless medium, i.e., T PHY
delay ∝ lij where lij is the

Euclidean distance between sender and receiver. On the other hand, as multiple SP nodes

are associated with a single SI node, there exists a channel competition among SP nodes

at the MAC level to send the synchronization reply messages. Assuming each SP node

has an equal probability of accessing the channel, the MAC delay, as a result of SP nodes

competition, is directly influenced by the number of SP nodes associated with a SI node,

i.e., TMAC
delay ∝ di [82] where di is the degree of connectivity of the node i. For CTS protocols
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which rely on one hop communication, the T PHY
delay can be neglected [18]. Hence, the TMAC

delay

mostly affects the synchronization accuracy.

As a matter of fact, there are various other parameters, both deterministic and random,

e.g., network traffic, protocol processing time, transmission collision, that count for delay.

In this Chapter, since, our focus is on selection of SI nodes and assignment of SP nodes prior

to the synchronization process, i.e., during the topology construction phase of the network,

it is quite infeasible to measure all the delay components at this phase [82]. Hence, we have

considered ``degree of connectivity" of SI nodes as discussed above as an equivalent metric

for delay to design our objective function which is given below.

5.3.2 Problem Objective

Based on the definition 4, the problem is named as CDS based Delay Balanced Topology

problem (CDSDBT). Our objective is to select a subset of sensors known as SI nodes where

the SI nodes form a CDS and to assign the remaining nodes known as SP nodes such that

each SP node is assigned to exactly one SI node and the delay is balanced at each SI node

with the overall delay being minimized. The problem is formally described below. Let,

(i) the set of total sensor nodes is denoted by V where |V |=n .
(ii) the set of SI nodes is denoted by I={i1, i2,..., im}, m < n.

(iii) the set of SP nodes is denoted by P={p1, p2,..., pn−m} and I ∪ P=V.
(iv) the set of SI nodes to which a SP node pk can be assigned is denoted by Gk

(v) the Boolean variable bkj=1, if the SP node pk is assigned to the SI node ij and bkj=0,

otherwise.

(vi) the degree of connectivity at a SI node `i' is given by di.

(vii) the average degree of connectivity of SI nodes is given by µ= 1
m

∑m
i=1 di.

The objective is to:

Minimize
m∑
i=1

|di − µ| (5.6)

subject to
∑
ij∈Gk

bkj = 1,∀pk ∈ P (5.7)

The constraint in Equation 5.7 signifies the assignment of a SP node to exactly one SI node.

For structured networks, e.g., ring, hypercube, etc., CDSDBT problem is analytically

tractable. For example, a 2D hypercube with its CDS based balanced topology is given in

Fig. 5.1, assuming the distance between neighboring nodes is same. The SI nodes are {1, 2,

3, 4} and the SP nodes are {5, 6, 7, 8}. Each SI node has a balanced degree of 3. But, for

WSN where nodes are deployed in large scale and random, employing brute force method to

reassign SP nodes to possible SI nodes for topological optimization has high computational

complexity. In fact, CDSDBT problem can be reduced to an NP-complete problem which is
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proved in the following subsection.
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Figure 5.1: 2D hypercube and its CDS based delay balanced topology

5.3.3 Intractability of CDSDBT problem

The CDSDBT problem is a generalization of Load Balanced Connected Dominating Set

(LBCDS) problem which is described below.

The LBCDS Problem [83]: For a WSN represented by a graph G=(V, E), the LBCDS

problem is to find out a node set S ⊂ V , S={s1, s2, ..., sm}, such that:
(i) G [S]=(S, E'), where E'={e|e=(u, v), u∈ S, v∈ S, (u, v)∈ E}, is connected.
(ii) ∀ u ∈ V and u /∈ S, ∃ v ∈ S, such that (u, v)∈ E
(iii) min |S|2 = (

∑m
i=1 |di − µ|2) 1

2

In the following Lemma, it is shown that LBCDS is reducible to CDSDBT problem under

the limiting condition.

Lemma 5.3.1. CDS based Delay Balanced Topology (CDSDBT) problem is NP-complete.

Proof. The proof is based on a limiting condition assumption using Definition 4. For a

random graph with radius of connectivity `r' , the Equation 5.8 must hold for the graph to

be connected [72].

lij ≤ r,∀(i, j) ∈ E (5.8)

Lets, under limiting condition, lij = r,∀(i, j) ∈ E. Now, the sufficient condition in
definition 4 can be splitted into `m' terms as given in Equation 5.9.

t1 =
∑
j∈Ni

(Tc + r/c), t2 =
∑
s∈Nk

(Tc + r/c), ...tm =
∑
q∈Np

(Tc + r/c) (5.9)

where Ni, Nk, ..., Np represents the set of SP nodes assigned to SI nodes. The terms t1,
t2,..., tm must be same , for the definition 4 to be true, if Equation 5.10 is satisfied.

|Ni| = |Nk| = ... = |Np| (5.10)

Equation 5.10 states that all SI nodes, assumed to be a CDS, have equal degree, i.e.,

d1 = d2 = ... = dm. Hence, µ = 1
m

∑m
1 di = di. |S|2 = 0. So, condition (iii) in definition of

LBCDS problem is satisfied. This is verifiable in polynomial time of O(davgm
2) where davg

is the average degree of the network and `m' is the cardinality of the CDS (set of SI nodes).

So, under the assumption of above limiting condition, CDSDBT problem is a generalization

of LBCDS problem. Since, LBCDS is an NP-complete problem [83], by the principle of

reducibility [74], CDSDBT problem is also NP-complete.
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So, to deal with the intractability nature of the problem, a GA based approach is proposed

to get a near optimal solution for the problem. To solve the problem, a set of nodes needs

to be initially selected as SI nodes, which forms a CDS and serves a virtual backbone. In

fact, a majority of works have been proposed in the literature to construct CDS whose basic

objective is to minimize the cardinality of CDS [65]. Minimizing the cardinality of CDSmay

not ensure balanced allocation of dominatees to dominators. As a result, the delay balancing

criteria may not be satisfied which is our primary requirement. Also, if the CDS are not

balanced, some heavily loaded dominators will deplete their energy quickly, resulting in a

disconnected network. Recently, a CDS heuristic is proposed by Jing et al. [83] to balance

CDS. But, the heuristic does not explicitly allocate dominatees to dominators in a balanced

way.

Hence, our proposal proceeds by cascading the following two steps:

(i) Selecting a set of SI nodes (dominators) using the CDS heuristic [83] described in

algorithm 5.

(ii) Allocating the SP nodes (dominatees) to SI nodes (dominators) using the proposed

GA based strategy to get the CDS based delay balanced logical topology.

Algorithm 5 CDS Heuristic [83]

1: /***`n' is total number of nodes in the network and `degi' is the degree of node i***/
2: Set DS=φ
3: Compute deg = 1

n

∑n
i=1 degi

4: for i=1 to n do

5: Compute vari =
∣∣degi − deg

∣∣
6: end for

7: Select Node i such that `vari' is minimum
8: DS=DS ∪ i
9: if DS dominates all other nodes then

10: if Connected(DS)=TRUE then

11: The required CDS is: DS

12: Exit

13: else

14: Goto Step 7

15: end if

16: end if

5.4 Proposed GA based Strategy for CDSDBT problem

After selecting the set of SI nodes using Algorithm 5, the proposed GA proceeds as follows.

5.4.1 Chromosome encoding

Each chromosome is encoded as a structured string of length (n − m) where (n − m) is

the number of SP nodes. Each gene represents two values, one is the SP node ID and the
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other is the assigned SI node ID. The nodes are assigned with ids as 1, 2,..., n. The following

example illustrates the chromosome representation.

1

2

3

4

5

6

7

8

(a)

(1,3) (2,3) (4,6) (5,6) (8,7)

(1,6) (2,3) (4,3) (5,7) (8,3)

(b)

(c)

Figure 5.2: (a) WSN topology of 8 nodes, (b) Valid Chromosome, and (c) Invalid

Chromosome

Example: Consider aWSN of 8 nodes as shown in Fig. 5.2 (a) where the set of SI nodes,

obtained by the CDS heuristic given in algorithm 5, is I={3, 6, 7}. So, the set of SP nodes

is given by P={1, 2, 4, 5, 8}. Thus, the length of the chromosome is 5. Fig. 5.1(b) shows

a valid chromosome representation. The value at gene position 1 is (1, 3) which means SP

node 1 is assigned to SI node 3. Similar interpretations can be drawn for other positions.

5.4.2 Initial Population Generation

The initial population in GA is generally generated randomly. But, in our problem, total

randomness may generate invalid chromosomes which will make the selection process

slower. So, each SP node is assigned to one of the randomly selected neighboring SI nodes

instead of assigning it to any randomly selected SI node. The idea is illustrated below

to differentiate between valid and invalid chromosome. In Fig. 5.1(c), the gene value at

position 4 is (5, 7) which means SP node 5 is assigned to SI node 7. Though node 7 is a

SI node, it is not a neighboring SI node of SP node 5 as given in Table 5.1. So, this creates

invalid chromosome for our problem.

All the chromosomes generated in this process represent valid assignments of SP node

to SI nodes but may not be optimal. To find an optimal chromosome, its fitness is evaluated

as follows.

5.4.3 Fitness Evaluation

The fitness value of each chromosome is evaluated using Equation 5.6. The `di' value in

Equation 5.6 is calculated using the following Equation.

di = fi + ki (5.11)

where di=degree of SI node `i', fi=frequency of SI node `i' in the chromosome,

ki=number of neighbor SI nodes of SI node `i', i=1, 2,..., m. The `fi' value is obtained

by counting the number of appearance of a SI node id in the second gene value and the `ki'
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Table 5.1: SP nodes with possible neighbor SI nodes

SP node id Neighbour SI nodes id
1 {3}
2 {3}
4 {3, 6, 7}
5 {6}
8 {7}

value is obtained from the dominators (SI nodes) adjacency matrix. This is illustrated in the

following example.

Example: Consider, a valid chromosome as shown in Fig. 5.2 (b). For each SI node, the

di value can be calculated as follows:

d3=3+ 1=4, d6=1+ 2=3, d7=1+ 1=2. The number of neighboring SI nodes of a particular

SI node ki is obtained from the SI node adjacency matrix E' as shown below. First row

corresponds to SI node 3, second row to SI node 6 and third row to SI node 7 and similar for

columns.

E ′ =

0 1 0

1 0 1

0 1 0


The lower value of Equation 5.6 gives better fitness value and the chromosomes with

better fitness values are selected using the following step.

5.4.4 Selection

The selection step determines which chromosomes from the current generation will mate to

create new chromosomes. For this step, we have used tournament selection with tournament

size 2. It selects better of two randomly selected chromosomes with the probability given

by the tournament selection parameter tsp (in our case, it is 0.75). With probability (1-tsp),

the worse of the two chromosomes is selected. The selected chromosomes will mate by the

crossover method described below to produce new off-springs.

5.4.5 Crossover

The crossover takes place between the chromosomes selected in the above step with certain

crossover probability crp (in our case, it is 0.8). We have used 1-point crossover where a

point is chosen at random and the two selected chromosomes swap their gene values after

that point.

5.4.6 Mutation

The mutation operator is applied at a selected gene position instead of random gene position.

This is the heart of the delay balanced sensor selection strategy. The SI node ID with
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maximum di value is selected from the chromosome for mutation as shown in Fig. 5.3 (a).

It is replaced with the SI node ID with minimum di value which belongs to the neighbor SI

ID of the corresponding SP node ID given in Table 5.1. This is illustrated in the following

example.

(1,3) (2,3) (4,3) (5,6) (8,7)

(1,3) (2,3) (4,7) (5,6) (8,7)

1 2 3 4 5

2 3 541

(a)

(b)

1

2

4

5
8

2

1

4

5 8

(c)

(d)

Figure 5.3: (a) Chromosome before mutation, (b) Chromosome after mutation, (c) topology

corresponds to chromosome (a), and (d) topology corresponds to chromosome (b)

Since, d3 has the maximum value, a gene position, with its second value as 3, has to

be chosen for mutation. The selection is made on position 3 (satisfying criteria for a valid

chromosome) and mutated with value 7 because d7 is minimum.The fitness values using

equation 5.6 is 3.6 for unmutated chromosome and 1.8 for themutated chromosome as shown

in Fig. 5.3 (b). The corresponding topologies are shown in Fig. 5.3 (c) and (d).

Thus, the proposed strategy produces an optimal chromosome after a number of

generations which represents an optimal balanced, logical topology that will satisfy

definition 4. Embedding this logical topology as the virtual backbone for the CTS algorithms

can balance and minimize the overall delay with optimal consensus convergence, message

complexity and energy efficiency as given below in simulation results.

5.5 Simulation Results & Discussion

The synchronizing nodes are selected offline using the proposed GA-based strategy. The

obtained optimal communication topology is tuned with the PROWLER simulator [30]

to study the performance of the recent state-of-the-art CTS algorithms. The simulation

parameters considered for the evaluation of synchronization algorithms are mentioned

in Table 5.2. For comparative analysis, the traditional MCDS and the recent LBCDS

topological strategies are also considered. Since, both MCDS and LBCDS are proved to be

NP-complete, some recent GA based approaches [84, 85] to these problems are considered

to have a fair comparison with our GA based proposal.
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Table 5.2: Simulation Parameters

Parameter V alues
Deployment area 10× 10 square unit
Topology Random
No. of nodes (n) 100− 500
Connectivity radius (r) 2 unit
Initial skew (α) uniform(−5, 5)
Initial offset (β) uniform(0, 1)
Iteration interval 10 sec
Acceptable Syn. error 0.0001sec.
MAC Protocol CSMA/CA
Communication Standard IEEE 802.11
Path Loss Exponent (ζ) 2
β1 45 nJ/bit
β2 10 pJ/bit
γ 35 nJ/bit
Message size (M) 320 bits

5.5.1 Evaluation of the proposed GACDBT strategy

The offline evaluation of the proposed strategy is done considering topologies of 100,

200 and 300 nodes as shown in Fig. 5.4. The normalized average fitness is plotted for

each generation which is minimized as the generation progresses. Maximum generation

considered is 50. The number of chromosomes generated is 50 with tournament selection

probability as 0.75 and crossover probability as 0.8. After 50 generations (stopping criteria

for our proposed strategy), the chromosome with best fitness value is selected which gives

the optimal, balanced topology.
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Figure 5.4: Convergence of Proposed GA with topology of 100, 200 and 300 nodes

Online Delay Estimation

Fig.5.5(a)-(d) shows the delay distribution on different topological strategies by estimating

the delay in sending and receiving the control packets (RTS/CTS packets) at each node to

its one-hop neighbors, using the MAC layer time-stamping mechanism for CSMA/CA and
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following IEEE 802.11 standard [86]. The simulation time taken is 100 sec. and iterated

for 50 times. The average delay thus computed at each node, for a random topology of 100

nodes, is plotted as shown in Fig. 5.5.

It is observed that the proposed strategy has a mean delay of 1.046 sec whereas the mean

delay for all node, MCDS and LBCDS strategies are 5.828 sec., 2.713 sec. and 1.713 sec.

respectively. So, the proposed strategy minimizes the average delay almost up to 80 %, 50%

and 30% as compared to the all-node, MCDS and LBCDS strategies respectively. Further,

the observed delay variance for the proposed strategy is 2.077 sec. whereas it is 3.583 sec.

for LBCDS, 7.514 sec.for MCDS, and 9.660 sec. for all node which is minimum among

other strategies' delay variance. So, the delay is comparatively more balanced than other

strategies. Table 5.3 shows the scalable performance of the proposed strategy w. r. to delay

and comparative optimal behavior among other strategies.
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Figure 5.5: Delay Distribution at Individual Node using Different Topological Strategies

Table 5.3: Scalability of Delay Analysis on Different Topological Strategies

XXXXXXXXXXXXXXXXX

Topological

Strategy

No. of nodes
100 200 300 400 500

µdelay σ2
delay µdelay σ2

delay µdelay σ2
delay µdelay σ2

delay µdelay σ2
delay

All node 0.358 0.034 9.673 20.627 12.616 21.345 7.314 15.907 10.164 27.925

LBCDS 0.150 0.018 5.321 7.896 7.495 9.552 5.573 7.396 7.667 10.163

MCDS 0.213 0.028 8.828 14.013 8.067 12.616 6.212 9.010 8.829 16.286

Proposed GACDBT 0.121 0.015 2.647 4.287 2.435 7.445 2.264 5.242 2.880 7.844

5.5.2 Independent evaluation of CTS algorithms on proposed

GACDBT Strategy

After tuning the optimized topology with the simulator, the proposed SATS algorithm in

Chapter 3 along with two recent consensus based synchronization algorithms, namely CCS

[17] and ATSP [22], are tested using the performance metrics: (i) convergence speed,

(ii)average global and local synchronization error, (iii) Average number of messages and

energy consumption.
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(a) Test algorithm-1: ATSP

The ATSP algorithm which uses random pairwise averaging is tested on the proposed

GACDBT on a network of 50 nodes and the results obtained are discussed below.

(i) Convergence speed

The convergence speed of ATSP in terms of offset convergence is tested for an acceptable

synchronization error (ε) of 0.0001 sec. as mentioned in Table 5.2. From Fig. 5.6 (a)-(d), it is

observed that all node ATSP takes around 28 iterations, GACDBT based ATSP takes around

18 iterations, MCDS based ATSP takes around 22 iterations, and LBCDS based ATSP takes

around 20 iterations to converge to the consensus value 0.4132. So, the convergence speed

of ATSP on GACDBT has improved by 35 % over all node ATSP, 18 % over MCDS based

ATSP and 10 % over LBCDS based ATSP.
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Figure 5.6: Offset convergence of ATSP on different topological strategies

(ii) Average global synchronization error

The average global synchronization error per iteration is shown in Fig. 5.7 for ATSP on

different topological strategies. It is observed that ATSP on GACDBT has, in an average, 60

% less global synchronization error than all node ATSP, 28 % less than MCDS based ATSP

and 22 % less synchronization error than LBCDS based ATSP.

(iii) Average local synchronization error

The local synchronization error is averaged for 50 iterations at individual node as shown

in Fig. 5.8. The percentage improvement is calculated by considering the maximum local

synchronization error among 50 nodes. It is observed that ATSP on GACDBT has 85 % less

local synchronization error than all node ATSP, 98 % less than MCDS based ATSP, and 40

% less local synchronization error than LBCDS based ATSP.
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Figure 5.7: Average global synchronization error of ATSP on different topological strategies

(iv) Average number of messages & energy consumption

The average number of messages exchanged and average energy consumption to achieve

the acceptable synchronization error is estimated as given in Table 5.4. For computing the

average energy consumption, the model discussed in Section 5.2 is followed. It is observed

that ATSP on GACDBT has 70 % less messages exchanged than all node ATSP, 30 % less

than LBCDS based ATSP and 15 % less messages exchanged than MCDS based ATSP.

From Table 5.4, it is also observed that ATSP on GACDBT has 73 % less energy

consumption than all node ATSP, 19 % less than LBCDS based ATSP and 12 % less energy

consumption than MCDS based ATSP.

Table 5.4: Average number of messages & energy consumption of ATSP on different

topological strategies for 50 nodes

Parameters
All node

ATSP

LBCDS based

ATSP

MCDS based

ATSP

GACDBT based

ATSP

Avg. number

of messages
1223 512 423 357

Avg. energy

consumption

(in Joule)

0.0019 0.00062 0.00057 0.0005

(b) Test algorithm-2: CCS

The CCS algorithm which uses cumulative weighted averaging (CWA) is tested on the

proposed GACDBT on a network of 50 nodes and the results obtained are discussed below.
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Figure 5.8: Average local synchronization error of ATSP on different topological strategies

(i) Convergence speed

The convergence speed of CCS in terms of offset convergence is tested for an acceptable

synchronization error (ε) of 0.0001 sec. as mentioned in Table 5.2. From Fig. 5.9 (a)-(d),

it is observed that all node CCS takes around 17 iterations, GACDBT based CCS takes

around 8 iterations, MCDS based CCS takes around 20 iterations and LBCDS based CCS

takes around 12 iterations to converge to the weighted consensus value 0.6013. So, the

convergence speed of CCS on GACDBT has improved by 52 % over all node CCS, 60 %

over MCDS based CCS and 33 % over LBCDS based CCS.
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Figure 5.9: Offset convergence of CCS on different topological strategies
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(ii) Average global synchronization error

The average global synchronization error per iteration is shown in Fig. 5.10 for CCS on

different topological strategies. It is observed that CCS on GACDBT has, in an average, 84

% less global synchronization error than all node CCS, 78 % less than MCDS based CCS

and 53 % less synchronization error than LBCDS based CCS.
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Figure 5.10: Average global synchronization error of CCS on different topological strategies

(iii) Average local synchronization error

The local synchronization error is averaged for 50 iterations at individual node as shown in

Fig. 5.11. The percentage improvement is calculated by considering the maximum local

synchronization error among 50 nodes. It is observed that CCS on GACDBT has 63 % less

local synchronization error than all node CCS, 64 % less than MCDS based CCS, and 53 %

less local synchronization error than LBCDS based CCS.

(iv) Average number of messages & energy consumption

The average number of messages exchanged and average energy consumption to achieve the

acceptable synchronization error is estimated as given in Table 5.5. It is observed that CCS

on GACDBT has 71 % less messages exchanged than all node CCS, 40 % less than LBCDS

based CCS and 13 % less messages exchanged than MCDS based CCS.

From Table 5.5, it is also observed that CCS on GACDBT has 64 % less energy

consumption than all node CCS, 27 % less than LBCDS based CCS and 6 % less energy

consumption than MCDS based CCS.
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Figure 5.11: Average local synchronization error of CCS on different topological strategies

Table 5.5: Average number of messages & energy consumption of CCS on different

topological strategies for 50 nodes

Parameters
All node

CCS

LBCDS based

CCS

MCDS based

CCS

GACDBT based

CCS

Avg. number

of messages
1024 484 332 287

Avg. energy

consumption

(in Joule)

0.0012 0.00059 0.00046 0.00043

(c) Test algorithm-3: SATS

The SATS algorithmwhich is proposed in Chapter 3 is also tested on the proposed GACDBT

on a network of 50 nodes and the results obtained are discussed below.

(i) Convergence speed

The convergence speed of SATS in terms of offset convergence is tested for an acceptable

synchronization error (ε) of 0.0001 sec. as mentioned in Table 5.2. From Fig. 5.12 (a)-(d),

it is observed that all node SATS takes around 17 iterations, GACDBT based SATS takes

around 11 iterations, MCDS based SATS takes around 25 iterations and LBCDS based SATS

takes around 19 iterations to converge to the consensus value 0.5002. So, the convergence

speed of SATS on GACDBT has improved by 35 % over all node SATS, 56 % over MCDS

based SATS and 42 % over LBCDS based SATS.
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Figure 5.12: Offset convergence of SATS on different topological strategies

(ii) Average global synchronization error

The average global synchronization error per iteration is shown in Fig. 5.13 for SATS on

different topological strategies. It is observed that SATS on GACDBT has, in an average, 81

% less global synchronization error than all node SATS, 66 % less than MCDS based SATS

and 53 % less synchronization error than LBCDS based SATS.
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Figure 5.13: Average global synchronization error of SATS on different topological

strategies

(iii) Average local synchronization error

The local synchronization error is averaged for 50 iterations at individual node as shown in

Fig. 5.14. The percentage improvement is calculated by considering the maximum local
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synchronization error among 50 nodes. It is observed that SATS on GACDBT has 46 % less

local synchronization error than all node SATS, 72 % less than MCDS based SATS, and 60

% less local synchronization error than LBCDS based SATS.
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Figure 5.14: Average local synchronization error of SATS on different topological strategies

(iv) Average number of messages & energy consumption

The average number of messages exchanged and average energy consumption to achieve

the acceptable synchronization error is estimated as given in Table 5.6. For computing the

average energy consumption, the equation derived in chapter 3 is followed. It is observed

that SATS on GACDBT has 83 % less messages exchanged than all node SATS, 76 % less

than LBCDS based SATS and 51 % less messages exchanged than MCDS based SATS.

From Table 5.6, it is also observed that SATS on GACDBT has 62 % less energy

consumption than all node SATS, 38 % less than LBCDS based SATS and 18 % less energy

consumption than MCDS based SATS.

Table 5.6: Average number of messages & energy consumption of SATS on different

topological strategies for 50 nodes

Parameters
All node

SATS

LBCDS based

SATS

MCDS based

SATS

GACDBT based

SATS

Avg. number

of messages
932 662 329 158

Avg. energy

consumption

(in Joule)

0.0011 0.00067 0.0005 0.00041
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5.5.3 Comparative evaluation of CTS algorithms on proposed

GACDBT strategy

In this Section, the comparative evaluation of ATSP, CCS and SATS algorithms are carried

out on the proposed GACDBT strategy using the same performance metrics. The results

obtained are discussed below.

(i) Convergence speed

The convergence speed is tested through offset convergence. The offset values for 50 nodes

are recorded by considering maximum 50 iterations as shown in Fig. 5.15 (a)-(c). It is

observed that ATSP [22] on GACDBT takes around 15 iterations to achieve convergence,

CCS [17] algorithm which uses cumulative weighted averaging (CWA) takes approximately

10 iterations to convergence, both with an acceptable synchronization error (ε) of 0.0001

sec. Whereas our SATS algorithm on GACDBT achieves convergence within 8 iterations

for the same value of acceptable synchronization error. So, convergence speed of SATS on

GACDBT has improved by 20 % over CCS on GACDBT and almost 50 % over ATSP on

GACDBT.

(ii) Average local synchronization error

Fig. 5.16 (a)-(c) depicts average local synchronization error of each node for a topology of

50 nodes for 50 iterations. This shows the upper bound of local synchronization error of

every node. By considering the maximum local synchronization error, it is observed that

SATS on GACDBT has less local synchronization error, nearly 79%, as compared to ATSP

on GACDBT and 65% as compared to CCS on GACDBT.

(iii) Average global synchronization error

Fig. 5.17 shows average global(network-wide) synchronization error of 50 nodes after each

iteration by considering maximum 50 iterations. It is observed that SATS on GACDBT

has less synchronization error, nearly 85%, as compared to ATSP on GACDBT and 71% as

compared to CCS on GACDBT.

5.5.4 Scalability

To study the scalable performance of the proposed GACDBT strategy, the above test

algorithms are also evaluated and compared with other topological strategies by varying

the number of nodes from 100-500 as shown in Tables 5.7-5.11. Due to randomness of

the topology, the average is calculated for 100 realizations of such random topologies for

each number of nodes. The scalability is analyzed by estimating (i) Average Mean Square

synchronization Error, (ii) Average Number of Iterations, (iii) Average Number of Messages

Exchanged and (iv) Average Energy Consumption as shown in the tables. From the tables,
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Figure 5.15: Offset convergence of (a) ATSP (b) CCS, and (c) SATS on GACDBT

it is observed that the proposed strategy's performance remains consistent and optimized as

compared to other strategies with the increase in number of nodes.

Table 5.7: Performance of CTS algorithms on different topological strategies for network of

100 nodes

Network size=100 nodes, Random dense topology

Algorithm Topological Strategy Avg. MSE Avg. iterations Avg. Messages Avg. Energy (in Joule)

ATSP

All node 0.0114 20 4064 0.011

MCDS 0.0093 19 3027 0.0040

LBCDS 0.0069 17 3678 0.0043

GACDBT 0.0059 15 1025 0.0019

CCS

All node 0.0098 19 2124 0.0032

MCDS 0.0073 18 1063 0.0015

LBCDS 0.0061 16 1208 0.0017

GACDBT 0.0040 14 956 0.0012

SATS

All node 0.0008 15 2112 0.0030

MCDS 0.0017 18 1218 0.0019

LBCDS 0.0012 17 1015 0.0014

GACDBT 0.0007 12 936 0.0011
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Figure 5.16: Average local synchronization error of (a) ATSP, (b) CCS, and (c) SATS on

GACDBT

Table 5.8: Performance of CTS algorithms on different topological strategies for network of

200 nodes

Network size=200 nodes, Random dense topology

Algorithm Topological Strategy Avg. MSE Avg. iterations Avg. Messages Avg. Energy (in Joule)

ATSP

All node 0.0092 21 8878 0.0137

MCDS 0.0075 20 6437 0.0070

LBCDS 0.0061 19 6989 0.0072

GACDBT 0.0058 18 2029 0.0020

CCS

All node 0.0013 15 4232 0.0041

MCDS 0.0012 13 2115 0.0023

LBCDS 0.0011 11 2813 0.0031

GACDBT 0.0009 09 1827 0.0019

SATS

All node 0.00079 13 3688 0.0039

MCDS 0.00192 15 1845 0.0025

LBCDS 0.00157 12 1676 0.0021

GACDBT 0.00073 10 1238 0.0018
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Figure 5.17: Average global synchronization error of ATSP, CCS, and SATS on GACDBT

Table 5.9: Performance of CTS algorithms on different topological strategies for network of

300 nodes

Network size=300 nodes, Random dense topology

Algorithm Topological Strategy Avg. MSE Avg. iterations Avg. Messages Avg. Energy (in Joule)

ATSP

All node 0.0071 19 13583 0.0193

MCDS 0.0054 18 10045 0.0079

LBCDS 0.0034 17 11056 0.0081

GACDBT 0.0033 16 4031 0.0023

CCS

All node 0.0041 17 5125 0.0049

MCDS 0.0039 16 2719 0.0033

LBCDS 0.0036 14 3011 0.0034

GACDBT 0.0031 12 2535 0.0029

SATS

All node 0.00080 12 5012 0.0041

MCDS 0.00195 14 2452 0.0031

LBCDS 0.00162 13 2181 0.0029

GACDBT 0.00071 11 1667 0.0021

Table 5.10: Performance of CTS algorithms on different topological strategies for network

of 400 nodes

Network size=400 nodes, Random dense topology

Algorithm Topological Strategy Avg. MSE Avg. iterations Avg. Messages Avg. Energy (in Joule)

ATSP

All node 0.0087 23 19692 0.0198

MCDS 0.0072 22 15650 0.0083

LBCDS 0.0067 20 16054 0.0090

GACDBT 0.0062 18 10032 0.0082

CCS

All node 0.0064 16 5912 0.0052

MCDS 0.0062 15 3432 0.0043

LBCDS 0.0059 14 3971 0.0039

GACDBT 0.0056 11 3128 0.0035

SATS

All node 0.0078 12 6832 0.0043

MCDS 0.0021 11 3274 0.0036

LBCDS 0.0020 10 2912 0.0033

GACDBT 0.00089 10 2119 0.0028
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Table 5.11: Performance of CTS algorithms on different topological strategies for network

of 500 nodes

Network size=500 nodes, Random dense topology

Algorithm Topological Strategy Avg. MSE Avg. iterations Avg. Messages Avg. Energy (in Joule)

ATSP

All node 0.0059 23 21796 0.0204

MCDS 0.0036 22 19945 0.0088

LBCDS 0.0035 21 20115 0.0089

GACDBT 0.0032 19 18035 0.0086

CCS

All node 0.0039 14 7915 0.0061

MCDS 0.0038 13 4112 0.0032

LBCDS 0.0035 12 4305 0.0033

GACDBT 0.0032 11 3917 0.0030

SATS

All node 0.0078 12 7523 0.0045

MCDS 0.0021 11 3751 0.0034

LBCDS 0.0020 10 3197 0.0032

GACDBT 0.00094 09 2703 0.0030

5.6 Summary

In this Chapter, a GA based topological optimization strategy is proposed, based on delay

balanced topology concept, to accelerate CTS algorithms for wireless sensor network.

Extensive simulations have been carried out to show the effectiveness and scalability of

the proposed strategy on recent and state-of-the-art CTS algorithms. Simulation results

show that using the proposed strategy, the number of iterations for consensus convergence,

mean square synchronization error, the number of messages exchanged to achieve consensus

and energy consumption have been optimized significantly. In the next Chapter, the

topological balancing strategy is proposed for sparse topology using Random Weighted

Genetic Algorithm (RWGA) based approach.
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based Approach

In the previous Chapter, a topological optimization strategy is proposed for improving the

performance of consensus-based synchronization algorithms for WSNs. In fact, the network

is considered to have a densely deployed topology where the degree of connectivity has a

significant impact on the medium access delay incurred in the network. But, in a sparse

network, the physical layer delay also has an equivalent impact. It is solely dependent

on the propagation delay along the multi-hop path which is directly proportional to the

Euclidean distance between the nodes in a wireless medium. In this Chapter, a topological

optimization strategy is proposed, considering both the degree of connectivity and Euclidean

distance as parameters in the objective functions. In order to handle the trade-off between

the objective functions, a multi-objective Random Weighted Genetic Algorithm (RWGA)

approach is presented. Using this optimized communication topology, it is shown that some

recent state-of-the-art CTS algorithms have shown improved performance.

6.1 Introduction

The objective of topological optimization in various problem domain ofWSNs is highlighted

in Chapter 5. It is also incorporated with some existing time synchronization algorithms, as

discussed in Chapter 5, to improve their performances. In this chapter, we have targeted

towards developing topological optimization strategy for CTS algorithms on the sparse

sensor network. For such type of network, the physical layer delay has equal impact on

CTS algorithms' performance as medium access delay. In a wireless medium, the physical

layer delay is directly related to the hop count between two nodes which in turn, can

be equivalently replaced with the Euclidean distance between them. Considering these

two metrics, a multi-objective Random Weighted Genetic Algorithm (RWGA) approach is

100



Chapter 6

Topological Optimization Strategy for Consensus Time Synchronization Algorithms on

sparse topology: A Random Weighted Genetic Algorithm based Approach

proposed in this Chapter to obtain an optimal logical topology.

The major contributions of this Chapter are the following:

1. Proposes a generic topological optimization strategy for CTS algorithms that

significantly minimizes physical and MAC layer delay.

2. Proposes a novel RWGA based multi-objective approach to select the logical,

optimized topology to handle the trade-off between the delay cost functions.

3. Demonstrates the efficacy of the proposed strategy by conducting extensive

simulations for some state-of-the-art CTS algorithms and using standard performance

metrics like number iterations for convergence, total synchronization error, the number

of exchanged messages and energy consumption.

The rest of the Chapter is organized as follows. Section 6.2 highlights the system models

and definitions used in this Chapter. A priori analysis and problem formulation is presented

in section 6.3. Section 6.4 gives a brief overview of the multi-objective approach based on

RWGA. Section 6.5 presents the RWGA based proposed strategy in detail. The simulation

results and discussion is given in Section 6.6, followed by conclusion in Section 6.7.

6.2 System Model & Definitions

In this Chapter, the same CTS framework, clock model, and energy model are followed as

presented in Chapter 5 except the network model which is described below. The definitions

used in this Chapter are also same as given in Chapter 5.

6.2.1 Network Model

For our proposed strategy, the WSN is assumed to be a random, sparse and weighted graph

G= (V, W), where V denotes set of `n' nodes, set `W' represents a weight matrix. Two nodes

are said to be neighboring nodes if the Euclidean distance lij between them is less than the

connectivity radius. W is a n×nweight matrix with τ×n×n number of non-zero entries and

the non-zero entries are represented as wij in the matrix. If node vi and vj are neighboring

nodes, then wij = wji = lij . Otherwise, wij = wji = 0. All nodes have unique IDs.

The communication channel between a pair of nodes is assumed to be static, symmetric and

undirected, i.e., upstream delay, and downstream delay is same. Ni = j : (i, j) ∈ E, denotes

the set of one-hop neighbors of node `i'. The communication topology is assumed to be fully

distributed where there is no special node such as root or reference node.
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6.3 Problem Formulation

From the framework of CTS algorithm presented in Chapter 5, the following subsection first

analyzes the relationship between delay and topological parameters and then formulate the

objective.

6.3.1 A Priori Analysis

The major factor that affects the synchronization accuracy and convergence speed is the

delay incurred at the physical and MAC layer to send the synchronization packets [66].

During topology control (optimization) phase, since, the communication delay estimation is

not feasible [82], some topological parameters need to be identified to model the delay cost.

From literature [66][67][80], it is observed that the physical layer delay is proportional to

the distance between the nodes in a wireless medium, i.e., TPHYdelay
∝ lij , lij is the Euclidean

distance between sender and receiver.

On the other hand, as multiple SP nodes are associated with a single SI node, there exists

a channel competition among SP nodes at the MAC level to send the synchronization reply

messages. Assuming each SP node has an equal probability of accessing the channel, the

MAC delay, as a result of SP nodes competition, is directly influenced by the number of SP

nodes associated with an SI node, i.e., the degree of connectivity of SI nodes, i.e., TMACdelay

∝ di [82], di is the degree of connectivity of the node i. As a matter of fact, there are various

other parameters, both deterministic and random, e.g., network traffic, protocol processing

time, transmission collision, that count for the delay. Since our focus is to design a generic

optimization strategy at topology control phase, these two major topological parameters

(Euclidean distance and degree of connectivity) are considered to model the delay cost

function.

Further, an empirical analysis is conducted to study the relationship between average

Euclidean distance and the average degree of connectivity for generic random topology.

Random topologies are generated by deploying 50-1000 nodes randomly and uniformly

in an area of 10×10 square unit. To make the random topology connected, the radius of

connectivity is calculated as: r(L, n) = L
√

(2 log n
n

), where L=side of square deployed area,

and n=number of nodes [72]. For each number of nodes, 100 instances of topology are

generated, and the average value is calculated and normalized for the average degree of

connectivity and average Euclidean distance.

From the study, as shown in Fig. 6.1, it is observed that a trade-off exists between the

average degree of connectivity and average Euclidean distance. So, minimization of both

these conflicting parameters at topological optimization phase, to minimize both physical

and MAC delay during communication phase, can be better modeled as a multi-objective

optimization problem which is discussed below.
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Figure 6.1: Trade-off between Avg. degree of connectivity and Avg. Euclidean Distance in

Random Topology

6.3.2 Problem Objective

In this Section, the overall problem is also defined and named as CDS based Delay Balance

Topology (CDSDBT) problem as in Chapter 5 with one more objective function. We adopt

the following notations in the problem formulation. Let,

(i) the set of total sensor nodes is denoted by V where |V|=n .
(ii) the set of SI nodes is denoted by I={i1,i2,...,im}, m < n.

(iii) the set of SP nodes is denoted by P={p1,p2,...,pn−m} and I ∪ P=V.
(iv) the set of SI nodes to which a SP node pk can be assigned is denoted by Gk

(v) the Boolean variable bkj=1 ,if the SP node pk is assigned to the SI node ij and bkj=0,

otherwise.

(vi) the degree of connectivity at a SI node `i' is given by di.

(vii) the Euclidean distance between node 'i' and `j' is given by lij

Based on the definition 4 given in Chapter 5, our objectives are defined as follows.

Objective (a): To select a subset of connected dominating sensors, known as SI nodes,

to minimize message complexity for energy saving.

Objective (b): To assign the remaining nodes, known as SP nodes, to the SI nodes with

minimum Euclidean distance for physical layer delay minimization.

Minimize
m∑
i=1

∑
j∈Ni

lij (6.1)

Objective (c): To balance the MAC layer delay by minimizing the variance of degree of
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connectivity at each SI node with the overall delay being minimized.

Minimize

m∑
i=1

|di − µ| , µ =
1

m

m∑
i=1

di (6.2)

subject to
∑
ij∈Gk

bkj = 1,∀pk ∈ P (6.3)

The constraint in Equation 6.3 signifies the assignment of a SP node to exactly one SI node.

6.3.3 Motivating Example

A straightforward solution to the objective (a) is finding out an MCDS with the required

constraint for the given network and assigning the role of SI nodes to the dominators and

SP nodes to dominatees. Similar approaches exist in [43][77]. But, for consensus-based

synchronization algorithms, MCDS approaches can minimize message complexity because

of the lesser number of dominators as shown in Fig.6.3 , but may not ensure objective (b)

and (c) which is necessary for optimal consensus convergence.

For example, Fig. 6.3 shows the MCDS based sensor selection for the WSN shown in

Fig. 6.2. The SI nodes are {4,7}, which are the MCDS of the given topology, and the SP

nodes are {1, 2, 3, 5, 6, 8}. The SP nodes are assigned to the SI nodes satisfying constraint

mentioned in (6.3). Whereas, in Fig. 6.4, the CDS is first constructed based on objective

(c). Then the topology is optimized by reassigning SP node 4 to possible dominators to

satisfy both objective (b) and (c). The resultant topologies thus obtained by the brute force

method are shown in Fig. 6.4(a)-(c). The objective functions are evaluated using (6.1) and

(6.2) and are given in Table 6.1. It can be observed that scenario-3 is the optimal topology

as compared to MCDS based topology. Further, from the table 6.1, a comparative analysis

among different optimized topologies (scenario-1, 2 and 3) reveals that a trade-off exists

while optimizing both the objective functions.
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Figure 6.3: MCDS based sensor topology for Fig. 6.2

6.4 Multi Objective Approach

Due to the intractability nature of CDSDBT problem which is already proved in Chapter

5, Genetic Algorithm (GA) is one of the most suitable heuristics that can be applied for
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Table 6.1: Objective functions for different topology selections

````````````````````̀

Topological

Strategy

Objective Functions
Objective (b) : (

∑m
i=1

∑
j∈Ni

lij) Objective (c) : (
∑m

i=1 |di − µ|)

MCDS based 4.9 2

CDS based

(Scenario-1)
4.6 2.6

CDS based

(Scenario-2)
4.2 2.6

CDS based

(Scenario-3)
4.8 1.8

efficient topological optimization from such a large solution space. In fact to handle the

trade-off between both the delay metrics as discussed above, a RWGA based multi-objective

approach is proposed to get Pareto optimal solutions for the given problem. A brief overview

of multi-objective approach and the detailed proposed RWGA method is described below.

6.4.1 Preliminaries & Background

The solution to the CDSDBT problem involves in finding out a CDS based topology

which optimizes the two objective functions, namely objective (b) and (c), as discussed in

Section 6.3. So, it can be formulated as a multi-objective optimization problem. A general

multi-objective optimization (minimization) problem is expressed as [87]:

Min F (x) = ((f1(x), f2(x), ..., fk(x))
T s.t. x∈ S, x = ((x1, x2, ..., xn))

T

where f1(x), f2(x), ..., fk(x) are the k objective functions, (x1, x2, ..., xn) are the n

optimization parameters and S ∈ Rn is the solution or parameter space.

The aim of multi-objective optimization problems is to handle all the possible tradeoffs

amongmultiple objective functions that are usually conflicting. Since it is difficult to select a

single solution for a multi-objective optimization problem without iterative interaction with

the decision maker, one general approach is to show the set of Pareto optimal solutions to

the decision maker [88].Then one of the Pareto optimal solutions can be chosen depending

on the preference. A Pareto optimal solution is defined as follows:

Pareto optimal solution:x∗ is said to be a Pareto optimal solution if there exists no other

feasible x ∈ S such that,

fj(x) ≤ fj(x
∗), ∀ j ∈ {1, 2...m} and

fj(x) < fj(x
∗), for atleast one objective function.
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To solve multi objective optimization problem by GA, a number of variant of GA have

been proposed [87]. In [88], the authors have proposed a MOGA based on a weighted sum

of multiple objective functions, known as RWGA, where a normalized weight vector wi is

randomly generated for each solution xi during the selection phase at each generation. This

approach aims to stipulate multiple search directions in a single run without using additional

parameters. Due to its simplicity and suitability for discrete objective functions as in our

case, this approach is adopted for our problem. The general procedure of the RWGA is

given in Fig. 6.5 and a brief overview is given below.

6.4.2 Overview of RWGA

Selection Procedure

A classical approach to combine multiple objective functions into a scalar fitness function

is using Equation 6.4.

f(x) =
n∑

i=1

wifi(x) (6.4)

where x is a string (individual), f(x) is a combined fitness function, fi(x) is the i
th objective

function, wi is a weight value for fi(x) , and `n' is the number of objective functions. If

constant weights are assigned to wi in Equation 6.4 then the search will be restricted to

only one direction. RWGA proposes to assign random weights to search for Pareto optimal

solutions by exploring various search directions. Each timewhen a pair of strings are selected

for crossover, random weights are assigned as given in Equation 6.5.

wi =
randi∑n
j=1 randj

, i = 1, 2, ..., n (6.5)

where randj is a positive random number andwi is a real number in the closed interval [0,1].

Elite Preserve Strategy

During the execution of the RWGA, a tentative set of Pareto optimal solutions is stored

and updated at every generation. A certain number (say, Nelite) of individuals are randomly

selected from the set at each generation. Those solutions are used as elite individuals in

RWGA. This elite preserve strategy has an effect in keeping the variety of each population

in RWGA.

6.5 Proposed RWGA based Strategy for CDSDBT

Problem

To solve the CDSDBT problem, a set of nodes needs to be initially selected as SI nodes

which must form a CDS to satisfy objective (a). Most of the works on CDS have a
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Figure 6.5: Flow chart of RWGA method

common objective to minimize the cardinality of CDS [89]. But, MCDS does not ensure

balanced allocation of dominatees which is a prerequisite for CDSDBT problem. Recently,

meta-heuristics are proposed by A. Potluri et al.[90] for computing capacitated dominating

set with uniform and variable capacities which resembles CDSDBT problem. But, they do

not consider the connectivity among dominators and the Euclidean distance between the

nodes which is primarily required for the CDSDBT problem. A CDS heuristic is proposed

by Jing et al. [83] to find out a load balanced Connected Dominating Set. We have used this

heuristic for initial SI nodes selection. Then, the proposed RWGA is used to assign the SP

nodes to get the optimal CDS based delay balanced topology. The detail GA implementation

is given below.

6.5.1 Chromosome encoding

Each chromosome is encoded as a structured string of length (n−m) where (n−m) is the

number of SP nodes. A gene at any position `i', denoted as Gi, represents a triplet as shown

in Fig. 6.6. The first value of the triplet represents an SP node id; second value represents

a SI node id and the third value is the Euclidean distance between them. The nodes are

assigned with ids as 1, 2,..., n. The following example illustrates the chromosome encoding.

g

1

g

i

g
n-m... ...

(SP node id, SI node id, Euclidean distance)

g

2

Figure 6.6: Chromosome Encoding
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Example: Consider a WSN of 8 nodes as shown in Fig. 6.2 where the set of SI nodes are

obtained by using the existing CDS heuristic is I={3, 6, 7}. So, the set of SP nodes is given

by P={1, 2, 4, 5, 8}. Thus, the length of the chromosome is 5. Fig. 6.7 (a) shows a valid

chromosome representation. The value at gene position 1 is (1, 3, 0.25) which means SP

node 1 is assigned to SI node 3 and the Euclidean distance between them is 0.25. A similar

interpretation can be drawn for other positions.

(1,3,0.25) (2,3,0.9) (4,6,0.3) (5,6,0.75) (8,7,0.2)

(1,6,0) (2,3,0.9) (4,3,0.7) (5,7,0) (8,7,0.2)

(a)

(b)

Figure 6.7: Illustrative Examples:(a) Valid chromosome (b) Invalid Chromosome

6.5.2 Initial Population Generation

The initial population for GA is generally generated randomly. But, in our problem, total

randomness may generate invalid chromosomes which will make the selection process

slower, and the result will not be a valid topology. The idea is illustrated below to

differentiate between valid and invalid chromosome. In Fig. 6.7 (b), the gene value at

position 4 is (5, 7, 0) which means SP node 5 is assigned to SI node 7. Though node 7 is a

SI node, it is not a neighboring SI node of SP node 5 as given in Table 6.2. So, this creates

invalid chromosome for our problem. To create valid chromosomes, a data structure is first

created as shown in Table 6.2. The table contains the list of SP nodes in the first column and

their respective neighboring SI nodes with the Euclidean distance in the second column. The

valid chromosomes are then generated using Table 6.2 by assigning each SP node to one of

the randomly selected neighboring SI nodes instead of assigning it to any randomly selected

SI node. All the chromosomes generated in this process represent valid assignments of SP

node to SI nodes but may not be optimal. The fitness value of each chromosome is evaluated

as given below.

6.5.3 Fitness Evaluation

The fitness function of each chromosome is defined as given in Equation 6.6 by taking a

weighted sum of Equation 6.1 and Equation 6.2 where the weight values of w1 and w2 are

assigned using Equation 6.5 and a tentative set of Pareto optimal solutions are preserved
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Table 6.2: SP nodes with possible neighbor SI nodes

SP node id (Neighbour SI node id, Euclidean distance)
1 (3,0.25)

2 (3,0.9)

4 (3,0.7),(6,0.3),(7,0.95)

5 (6,0.75)

8 (7,0.2)

which is known as the elite group.

Minimize D = w1

m∑
i=1

∑
j∈Ni

lij + w2

m∑
i=1

|di − µ| (6.6)

The `lij' value is obtained from the third position of the gene value and `di' is calculated

using Equation 6.7.

di = fi + ki (6.7)

where di=degree of SI node `i', fi=frequency of SI node `i' in the chromosome, ki=number

of neighbor SI nodes of SI node `i', i=1, 2,..., m. The `fi' value is obtained by counting

the number of appearance of SI node `i' in the second gene value and the `ki' value is

obtained from the dominators (SI nodes) adjacencymatrix. This is illustrated in the following

example.

Example: Consider, a valid chromosome according to Fig. 6.7 (a). For the SI nodes

{3, 6, 7}, the degree di can be calculated as follows:
d3=f3+ k3=3+ 1=4, d6=f6+ k6=1+ 2=3, d7=f7+ k7=1+ 1=2. The frequency of SI node

fi is obtained from the second position of the gene values in the chromosome. The number

of neighboring SI nodes of a particular SI node ki is obtained from the SI node adjacency

matrix E' as shown below. First row corresponds to SI node 3, second row to SI node 6 and

third row to SI node 7 and similar for columns.

E ′ =

0 1 0

1 0 1

0 1 0



6.5.4 Selection

The selection step determines which chromosomes from the current generation will mate to

create new chromosomes. The selection directs GA search towards promising regions in the

search space. A roulette wheel selection mechanism is employed where the individuals on

each generation are selected for survival into the next generation according to a probability

value `P(x)' given by Equation 6.8.
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P (x) =
D(x)−Dmax(η)∑

x∈η{D(x)−Dmax(η)}
, Dmax(η) = max{D(x)|x ∈ η} (6.8)

where D(x) is the fitness value evaluated using equation for an individual `x' in the current

population `η'. This step is repeated for selecting N/2 pairs of strings from the current

populations where N is the total number of individuals.

6.5.5 Crossover

The crossover takes place between the chromosomes selected in the above step with certain

crossover probability `crp'. We have used 1-point crossover where a point is chosen at

random and the two selected chromosomes swap their gene values after that point.

6.5.6 Mutation

The mutation operator is applied at a selected gene position instead of random gene position

with certain mutation probability `mp'. The selected gene position is decided by Equation

6.9 and the mutated value is given by Equation 6.10.

gk(j, i, dist) = {i|max{di}, i ∈ I and |Gj| > 1, j ∈ P} (6.9)

gk(j, i
′, dist′) = {i′ = k|min{ljk}, k ∈ Gj, dk < di, dist

′ = lji′} (6.10)

Equation 6.9 signifies that the SI node id with maximum degree is selected from the

chromosome for mutation along with the condition that the associated SP node should have

more than one neighboring SI nodes. The imposed condition avoids generation of invalid

chromosomes. It is then replaced with the neighboring SI node id to which the associated

SP node is more closer (less Euclidean distance) and lesser degree than the selected SI node

id, according to Equation 6.10. This is illustrated in the following example.

(1,3,0.25) (2,3,0.9) (4,3,0.7) (5,6,0.75) (8,7,0.2)

(1,3,0.25) (2,3,0.9) (4,6,0.3) (5,6,0.75) (8,7,0.2)

(a)

(b)

g
1

g
2

g
3

g
4

g
5

g
1

g
2

g
3

g
4

g
5

Figure 6.8: (a) Chromosome before mutation, (b) Chromosome after mutation

In chromosome given in Fig. 6.8 (a), the degree of SI node {3, 6, 7}, calculated using
Equation 6.7, are d3=3+ 1=4, d6=1+ 2=3, and d7=1+ 1=2 respectively. The SI node id `3'

is having the maximum degree. The associated SP nodes with `3' are 1, 2 and 4 at gene

position 1, 2 and 3 respectively. From the Table 6.2, only SP node `4' is having more than
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1 neighboring SI nodes (satisfies condition |Gj| > 1). So, gene position `g3' is selected for

mutation as shown encircled in Fig. 6.8(a). From the Table 6.2, SP node `4' is more closer to

neighboring SI node `6' having Euclidean distance 0.3 and d6 < d3. So, according to (6.9),

the mutated gene value at g3 is (4, 6, 0.3). The topology corresponding to chromosome in

Fig. 6.8 (a) is shown in Fig. 6.4 (a) and the topology corresponding to chromosome in Fig.

6.8 (b) is shown in Fig.6.4 (b). From the table which shows the objective functions' values,

the topology corresponding to mutated chromosome is a Pareto optimal solution.

6.5.7 Termination Criteria & User Selection

The proposed strategy terminates when the maximum number of generations is reached. A

set of Pareto optimal solutions is obtained as shown in Fig. 6.10. Since, the topology is

random, the decision of the user, to select the best optimum trade-off, is quite imprecise

in nature. To cope with the impreciseness, the fuzzy based approach [91] is used to select a

compromised solution from the set of Pareto front. The fuzziness for each objective function

is defined by membership function having values in the range [0,1]. The membership value

for ith objective of jth solution in the final Pareto front is calculated using Equation 6.11.

µj
i =


1, if Fi ≤ Fmin

i

Fmax
i −Fi

Fmax
i −Fmin

i
, if Fmin

i < Fi ≤ Fmax
i

0, if Fi > Fmax
i

(6.11)

where Fmin
i and Fmax

i are the minimum and maximum values from non-dominated

solutions of each objective function, respectively. For each non-dominated solution, the

normalized membership function can be calculated using Equation 6.12.

µj =

∑2
i=1 µ

j
i∑N

j=1

∑2
i=1 µ

j
i

(6.12)

The solution with maximum value of µj is a compromised solution that can be selected by

the user.

6.6 Simulation Results & Discussion

The proposed strategy is simulated under MATLAB environment with an initial population

of 100 chromosomes. The maximum number of generations taken is 200 with crossover

probability `crp' equals to 0.8 and mutation probability `mp' equals to 0.05. The optimal

chromosome (topology) is selected using the preference criteria as discussed above and

then tuned with the PROWLER simulator [30] to study the behavior the synchronization

algorithms. The simulation setup for the synchronization algorithms are given in Table

6.4. For comparative analysis, the traditional MCDS and the recent LBCDS topological
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strategies are also considered. Since, bothMCDS and LBCDS are proved to beNP-complete,

some recent GA based approaches [84, 85] to these problems are considered to have a fair

comparison with our GA based proposal.

6.6.1 Performance Evaluation of the Proposed RWGA based Strategy

Fig. 6.9 shows the optimization of the objective functions with the progress of number of

generation using the proposed RWGA based strategy. The trade-off between the objective

functions is also identified as shown in the Fig. 6.9. At the end of maximum number of

generation which is equal to 200 , there is no change in the fitness value. At this point, the

feasible Pareto points are extracted and plotted in the two dimensional objective space as

shown in Fig. 6.10. From the feasible Pareto points, the Pareto optimal solution is chosen

using the fuzzy based approach as discussed above.
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Figure 6.9: Optimization of Objective Functions using the Proposed RWGA Strategy

Online Delay Estimation

Fig. 6.11(a)-(d) shows the delay distribution on different topological strategies by estimating

the delay in sending and receiving the control packets (RTS/CTS packets) at each node to

its one hop neighbors, using the MAC layer time-stamping mechanism for CSMA/CA and

following IEEE 802.11 standard [86]. The simulation time taken is 100 sec. and iterated for

50 times. The average delay thus computed at each node, for a random sparse topology of

50 nodes, is plotted as shown in Fig. 6.11.

It is observed that the proposed RGACDBT strategy has a mean delay of 0.1078 sec.

whereas the mean delay for all-node, MCDS, and LBCDS strategies are 0.1665 sec., 0.1423

sec. and 0.1167 sec. respectively. So, the proposed strategy minimizes the average delay

almost up to 35 % , 24 % and 7% as compared to the all-node, MCDS and LBCDS strategies
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Figure 6.10: Feasible Solutions and Pareto Optimal Solutions generated using the proposed

RWGA strategy

respectively. Further, the observed delay variance for the proposed strategy is 0.0027 sec.

whereas it is 0.0029 sec. for LBCDS, 0.0036 sec. for MCDS, and 0.0066 sec. for all-node.

So, the delay is comparatively more balanced than other strategies. Table 6.3 shows the

scalable performance of the proposed strategy w. r. to delay and optimal behavior among

other strategies.
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Figure 6.11: Delay Distribution at Individual Node using Different Topological Strategies

6.6.2 Independent evaluation of CTS algorithms on the proposed

RGACDBT Strategy

To evaluate the performance of CTS algorithms on the proposed strategy, the same

state-of-the-art algorithms are considered which are tested in Chapter 5. The typical

algorithms which are tested are: (i) Confidence Weighted running Average (CWA) based

CCS [17], (ii) ATSP [22], and (iii) SATS proposed in Chapter 3. The ``all node'' terminology

is used for the existing algorithms because they do not use any topological strategy
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Table 6.3: Scalability of Delay Analysis on Different Topological Strategies

XXXXXXXXXXXXXXXXX

Topological

Strategy

No. of nodes
50 100 150 200 250

µdelay σ2
delay µdelay σ2

delay µdelay σ2
delay µdelay σ2

delay µdelay σ2
delay

All node 0.1665 0.0066 2.463 2.293 2.064 1.532 3.044 3.122 3.583 4.544

LBCDS 0.1167 0.0029 1.612 0.933 1.482 0.715 2.232 1.448 2.651 1.896

MCDS 0.1423 0.0036 1.943 1.327 1.650 0.848 2.508 1.638 3.025 2.363

RGACDBT 0.1078 0.0027 1.047 0.926 0.863 0.651 1.321 0.960 1.552 1.466

Table 6.4: Simulation Parameters

Parameter V alues
Deployment area 10× 10 square unit
Topology Random
No. of nodes (n) 50− 250
Initial skew (α) uniform(−5, 5)
Initial offset (β) uniform(0, 1)
Iteration interval 10 sec
Acceptable Syn. error (ε) 0.0001sec.
MAC Protocol CSMA/CA
Communication Standard IEEE 802.11
Path Loss Exponent (ζ) 2
β1 45 nJ/bit
β2 10 pJ/bit
γ 35 nJ/bit
Message size (M) 320 bits

and assumes all node execute the synchronization algorithm. A comparative evaluation

of the proposed strategy is also carried out with the traditional MCDS and the recent

LBCDS strategy to analyze its performance. The following metrics are considered for the

synchronization algorithms, same as in Chapter 5, to study their performance on different

topological strategies.

(i) Convergence speed, (ii) Average global synchronization error, (iii) Average local

synchronization error, (iii) Average number of messages exchanged, and (iv) Average energy

consumption. Finally, the scalability is also studied.

All the algorithms are simulated on a random sparse topology of 50 nodes with random

and uniform offset and skew distribution for the clocks as given in Table 6.3. The acceptable

synchronization error (ε) at every node is set to 0.0001 sec. The timestamps are appended

in the RTS/CTS control packets at the MAC layer by closely following the modified MAC

layer time-stamping format for IEEE 802.11 standard for CSMA/CA proposed in [86]. The

following subsections show the performance of the tested algorithms.

(a) Test Algorithm-1: ATSP

The ATSP algorithm which uses random pairwise averaging is tested on the proposed

RGACDBT on a network of 50 nodes and the results obtained are discussed below.

(i) Convergence speed

The convergence speed of ATSP in terms of offset convergence is tested for an acceptable

synchronization error (ε) of 0.0001 sec. as mentioned in Table 6.4. From Fig. 6.12 (a)-(d),
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it is observed that all node ATSP takes around 26 iterations, RGACDBT based ATSP takes

around 19 iterations, MCDS basedATSP takes around 24 iterations, and LBCDS basedATSP

takes around 21 iterations to converge to the consensus value 0.5041. So, the convergence

speed of ATSP on RGACDBT has improved by 26 % over all node ATSP, 20 % over MCDS

based ATSP and 9 % over LBCDS based ATSP.
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Figure 6.12: Convergence Behavior of ATSP algorithm on different Topological Strategies

(ii) Average global synchronization error

The average global synchronization error per iteration is shown in Fig. 6.13 for ATSP on

different topological strategies. It is observed that ATSP on RGACDBT has, in an average,

42 % less global synchronization error than all node ATSP, 25 % less than MCDS based

ATSP and 2 % less synchronization error than LBCDS based ATSP.

(iii) Average local synchronization error

The local synchronization error is averaged for 50 iterations at individual node as shown in

Fig. 6.14. The percentage improvement is calculated by considering the maximum local

synchronization error among 50 nodes. It is observed that ATSP on RGACDBT has 65 %

less local synchronization error than all node ATSP, 63 % less than MCDS based ATSP, and

25 % less local synchronization error than LBCDS based ATSP.

(iv) Average number of messages & energy consumption

The average number of messages exchanged and average energy consumption to achieve

the acceptable synchronization error is estimated as given in Table 6.5. For computing the

average energy consumption, the model discussed in Section 5.2 of Chapter 5 is followed.

It is observed that ATSP on RGACDBT has 43 % less messages exchanged than all node

ATSP, 30 % less than LBCDS based ATSP and 8 % less messages exchanged than MCDS

based ATSP.
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Figure 6.13: Average global synchronization error of ATSP algorithm on different

Topological Strategies

From Table 6.5, it is also observed that ATSP on RGACDBT has 25 % less energy

consumption than all node ATSP, 11 % less than LBCDS based ATSP and 5 % less energy

consumption than MCDS based ATSP.

Table 6.5: Average number of messages & energy consumption of ATSP on different

topological strategies for 50 nodes

Parameters
All node

ATSP

LBCDS based

ATSP

MCDS based

ATSP

RGACDBT based

ATSP

Avg. number

of messages
827 673 514 469

Avg. energy

consumption

(in Joule)

0.011 0.0093 0.0087 0.0082

(b) Test Algorithm-2: CCS

The CCS algorithm which uses cumulative weighted averaging (CWA) is tested on the

proposed RGACDBT on a network of 50 nodes and the results obtained are discussed below.

(i) Convergence speed

The convergence speed of CCS in terms of offset convergence is tested for an acceptable

synchronization error (ε) of 0.0001 sec. as mentioned in Table 6.4. From Fig. 6.15 (a)-(d), it

is observed that all node CCS and MCDS based CCS takes beyond 50 iterations to converge

to the consensus. RGACDBT based CCS takes around 10 iterations and LBCDS based

CCS takes around 15 iterations to converge to the weighted consensus value 0.5011. So, the
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Figure 6.14: Average local synchronization error of ATSP algorithm on different Topological

Strategies

convergence speed of CCS on RGACDBT has improved significantly over all node CCS

and MCDS based CCS and 33 % over LBCDS based CCS.

(ii) Average global synchronization error

The average global synchronization error per iteration is shown in Fig. 6.16 for CCS on

different topological strategies. It is observed that CCS on RGACDBT has, in an average,

82 % less global synchronization error than all node CCS, 66 % less than MCDS based CCS

and 55 % less synchronization error than LBCDS based CCS.

(iii) Average local synchronization error

The local synchronization error is averaged for 50 iterations at individual node as shown in

Fig. 6.17. The percentage improvement is calculated by considering the maximum local

synchronization error among 50 nodes. It is observed that CCS on RGACDBT has 51 %

less local synchronization error than all node CCS, 34 % less than MCDS based CCS, and

19 % less local synchronization error than LBCDS based CCS.

117



Chapter 6

Topological Optimization Strategy for Consensus Time Synchronization Algorithms on

sparse topology: A Random Weighted Genetic Algorithm based Approach

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Iteration number

O
ffs

et
 v

al
ue

s(
se

c)

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

O
ffs

et
 v

al
ue

s(
se

c)

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration number

O
ffs

et
 v

al
ue

s(
se

c)

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

O
ffs

et
 v

al
ue

s(
se

c)

All node CCS LBCDS based CCS

RWGA based CCS

(b)(a)

(c)
(d)

MCDS based CCS

Figure 6.15: Convergence Behavior of CCS algorithm on different Topological Strategies

(iv) Average number of messages & energy consumption

The average number of messages exchanged and average energy consumption to achieve

the acceptable synchronization error is estimated as given in Table 6.6. It is observed that

CCS on RGACDBT has 39 % less messages exchanged than all node CCS, 24 % less than

LBCDS based CCS and 4 % less messages exchanged than MCDS based CCS.

From Table 6.6, it is also observed that CCS on RGACDBT has 39 % less energy

consumption than all node CCS, 26 % less than LBCDS based CCS and 12 % less energy

consumption than MCDS based CCS.

Table 6.6: Average number of messages & energy consumption of CCS on different

topological strategies for 50 nodes

Parameters
All node

CCS

LBCDS based

CCS

MCDS based

CCS

RGACDBT based

CCS

Avg. number

of messages
467 373 296 283

Avg. energy

consumption

(in Joule)

0.0023 0.0019 0.0016 0.0014

Test Algorithm-3: SATS

The SATS algorithm which is proposed in chapter 3 is also tested on the proposed

RGACDBT on a network of 50 nodes and the results obtained are discussed below.

(i) Convergence speed

The convergence speed of SATS in terms of offset convergence is tested for an acceptable

synchronization error (ε) of 0.0001 sec. as mentioned in Table 6.4. From Fig. 6.18 (a)-(d),

it is observed that all node SATS takes around 25 iterations, RGACDBT based SATS takes

around 15 iterations, MCDS based SATS takes around 20 iterations, and LBCDS based SATS

takes around 19 iterations to converge to the consensus value 0.493. So, the convergence
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Figure 6.16: Average global synchronization error of CCS algorithm on different

Topological Strategies

speed of SATS on RGACDBT has improved by 40 % over all node SATS, 25 % over MCDS

based SATS and 21 % over LBCDS based SATS.

(ii) Average global synchronization error

The average global synchronization error per iteration is shown in Fig. 6.19 for SATS on

different topological strategies. It is observed that SATS on RGACDBT has, in an average,

64% less global synchronization error than all node SATS, 7 % less thanMCDS based SATS

and 2 % less synchronization error than LBCDS based SATS.

(iii) Average local synchronization error

The local synchronization error is averaged for 50 iterations at individual node as shown in

Fig. 6.20. The percentage improvement is calculated by considering the maximum local

synchronization error among 50 nodes. It is observed that SATS on RGACDBT has 69 %

less local synchronization error than all node SATS, 21 % less than MCDS based SATS, and

5 % less local synchronization error than LBCDS based SATS.

(iv) Average number of messages & energy consumption

The average number of messages exchanged and average energy consumption to achieve

the acceptable synchronization error is estimated as given in Table 6.7. For computing the

average energy consumption, the equation derived in Chapter 3 is followed. It is observed
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Figure 6.17: Average local synchronization error of CCS algorithm on different Topological

Strategies

that SATS on RGACDBT has 53 % less messages exchanged than all node SATS, 40 % less

than LBCDS based SATS and 27 % less messages exchanged than MCDS based SATS.

From Table 6.7, it is also observed that SATS on RGACDBT has 43 % less energy

consumption than all node SATS, 30 % less than LBCDS based SATS and 18 % less energy

consumption than MCDS based SATS.

Table 6.7: Average number of messages & energy consumption of SATS on different

topological strategies for 50 nodes

Parameters
All node

SATS

LBCDS based

SATS

MCDS based

SATS

RGACDBT based

SATS

Avg. number

of messages
582 458 376 273

Avg. energy

consumption

(in Joule)

0.0048 0.0039 0.0033 0.0027
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Figure 6.18: Convergence Behavior of SATS algorithm on different Topological Strategies

6.6.3 Comparative evaluation of CTS algorithms on RWGA based

Strategy

In this Section, the comparative evaluation of ATSP, CCS and SATS algorithms are carried

out on the proposed RGACDBT strategy using the same performance metrics. The results

obtained are discussed below.

(i) Convergence speed

The convergence speed is tested through offset convergence. The offset values for 50 nodes

are recorded by considering maximum 50 iterations as shown in Fig. 6.21 (a)-(c). It is

observed that ATSP [22] on RGACDBT takes around 20 iterations to achieve convergence,

CCS [17] algorithm which uses cumulative weighted averaging (CWA) takes approximately

30 iterations to converge, both with an acceptable synchronization error (ε) of 0.0001 sec.

Whereas our SATS algorithm on RGACDBT achieves convergence within 15 iterations for

the same value of acceptable synchronization error. So, the convergence speed of SATS on

RGACDBT has improved by 50 % over CCS on RGACDBT and almost 25 % over ATSP

on RGACDBT.

(ii) Average local synchronization error

Fig. 6.22 (a)-(c) depicts average local synchronization error of each node for a topology of 50

nodes for 50 iterations. This shows the upper bound of local synchronization error of every

node. By considering the maximum local synchronization error, it is observed that SATS

on RGACDBT has less local synchronization error, nearly 48 %, as compared to ATSP on

RGACDBT and 54 % as compared to CCS on RGACDBT.

Average global synchronization error

Fig. 6.23 shows average global (network-wide) synchronization error of 50 nodes after each

iteration by considering maximum 50 iterations. It is observed that SATS on RGACDBT
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Figure 6.19: Average global synchronization error of SATS algorithm on different

Topological Strategies

has less synchronization error, nearly 47%, as compared to ATSP on RGACDBT and 55%

as compared to CCS on RGACDBT.

6.6.4 Scalability

To study the scalable performance of the proposed strategy, the above test algorithms are

also evaluated and compared with other topological strategy by varying the number of nodes

from 50-250 as shown in Tables 6.8-6.11. Due to randomness of the topology, the average

is calculated for 100 realizations of such random topologies for each number of nodes. The

scalability is analyzed by estimating (i) Average mean square synchronization Error, (ii)

Average number of iterations, (iii) Average number ofmessages exchanged, and (iv) Average

energy consumption as shown in the Tables 6.8-6.11. From the Tables, it is observed that

the proposed strategy's performance remains consistent and optimized as compared to other

strategies.
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Figure 6.20: Average local synchronization error of SATS algorithm on different Topological

Strategies

Table 6.8: Performance comparison of CTS algorithms on sparse network of 100 nodes

Network size=100 nodes, Random sparse topology

Algorithm Topological Strategy Avg. MSE Avg. iterations Avg. Messages Avg. Energy (in Joule)

ATSP

All node 0.0069 25 1612 0.0236

MCDS 0.0067 23 1135 0.0174

LBCDS 0.0066 21 1306 0.0213

RGACDBT 0.0063 19 1019 0.0158

CCS

All node 0.0013 30 518 0.0029

MCDS 0.0012 28 356 0.0019

LBCDS 0.0011 25 423 0.0021

RGACDBT 0.0009 20 321 0.0018

SATS

All node 0.0007 20 814 0.0059

MCDS 0.0005 19 594 0.0047

LBCDS 0.0006 18 703 0.0052

RGACDBT 0.0004 17 483 0.0041
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Figure 6.21: Convergence Behavior of CTS algorithms on RGACDBT based Strategy

Table 6.9: Performance comparison of CTS algorithms on sparse network of 150 nodes

Network size=150 nodes, Random sparse topology

Algorithm Topological Strategy Avg. MSE Avg. iterations Avg. Messages Avg. Energy (in Joule)

ATSP

All node 0.0032 26 2752 0.0391

MCDS 0.0029 24 2117 0.0314

LBCDS 0.0027 23 2431 0.0353

RGACDBT 0.0024 22 1967 0.0289

CCS

All node 0.0011 28 673 0.0031

MCDS 0.0010 27 426 0.0025

LBCDS 0.0009 26 507 0.0029

RGACDBT 0.0007 24 367 0.0021

SATS

All node 0.0009 19 1203 0.0064

MCDS 0.0006 18 879 0.0057

LBCDS 0.0007 17 1019 0.0061

RGACDBT 0.0004 15 692 0.0052
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Figure 6.22: Average local synchronization error of CTS algorithms on RGACDBT based

Strategy

Table 6.10: Performance comparison of CTS algorithms on sparse network of 200 nodes

Network size=200 nodes, Random sparse topology

Algorithm Topological Strategy Avg. MSE Avg. iterations Avg. Messages Avg. Energy (in Joule)

ATSP

All node 0.0043 28 3237 0.0432

MCDS 0.0042 22 2705 0.0375

LBCDS 0.0041 25 2984 0.0417

RGACDBT 0.0039 21 2436 0.0334

CCS

All node 0.0033 32 952 0.0037

MCDS 0.0031 31 608 0.0030

LBCDS 0.0030 30 773 0.0034

RGACDBT 0.0026 29 523 0.0028

SATS

All node 0.00075 20 1624 0.0069

MCDS 0.00071 19 1206 0.0063

LBCDS 0.00073 18 1443 0.0066

RGACDBT 0.00069 17 1025 0.0061
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Figure 6.23: Average global synchronization error of CTS algorithms on RGACDBT based

Strategy

Table 6.11: Performance comparison of CTS algorithms on sparse network of 250 nodes

Network size=250 nodes, Random sparse topology

Algorithm Topological Strategy Avg. MSE Avg. iterations Avg. Messages Avg. Energy (in Joule)

ATSP

All node 0.0029 26 3923 0.0472

MCDS 0.0024 21 3207 0.0397

LBCDS 0.0023 23 3682 0.0431

RGACDBT 0.0022 20 3019 0.0374

CCS

All node 0.0017 29 1173 0.0043

MCDS 0.0016 28 754 0.0036

LBCDS 0.0015 27 986 0.0039

RGACDBT 0.0013 26 593 0.0032

SATS

All node 0.00063 22 2129 0.0073

MCDS 0.00058 18 1721 0.0067

LBCDS 0.00061 17 1916 0.0070

RGACDBT 0.00053 16 1534 0.0064

6.7 Summary

In this Chapter, a topological optimization strategy is proposed, based on delay balanced

topology concept, to accelerate consensus based time synchronization algorithms for

wireless sensor network on sparse topology. To handle the trade-off between the MAC

and physical delay cost functions, the problem is modeled as a bi-objective topological

optimization problem. One of the most effective and simplest optimization method, known

as Random Weighted Genetic Algorithm (RWGA) based approach has been applied to get

Pareto optimal solutions for the given problem. Extensive simulations have been carried out

to show the effectiveness and scalability of the proposed strategy on three recent and state

of the art consensus-based synchronization algorithms. Simulation results show that using
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the proposed strategy, the convergence speed, synchronization error, number of messages

exchanged to achieve consensus, and energy consumption have shown notable improvement.



Chapter 7

Conclusion & Future Scope

The work presented in this thesis broadly addresses two issues regarding consensus-based

time synchronization problem in wireless sensor networks. The first issue is: designing

average consensus-based time synchronization algorithms with better convergence speed

and synchronization accuracy for dense and sparse networks. The second issue is: improving

the performance of consensus-based time synchronization algorithms by topological

optimization strategies on dense and sparse topologies. The overall contribution of this thesis

is highlighted in this Chapter along with the possible future research directions.

7.1 Conclusion

In this thesis, two average consensus based time synchronization algorithms and two

topological optimization strategies are proposed as per the aforesaid issues. Firstly, a

distributed, average consensus-based time synchronization algorithm (SATS) is proposed

for dense, one-hop sensor network. It exploits a novel maximum difference based, selective

pair-wise averaging method for faster convergence and better synchronization accuracy. The

asymptotic message complexity of the proposed algorithm is proved to beO (n). Simulation

results show that the convergence speed of proposed SATS algorithm is 16 % faster than

CCS and 50 % faster than ATSP. The network-wide synchronization error is minimized by

90 % than ATSP and 70 % than CCS. The local synchronization error is also improved by

80 % as compared to ATSP and 82 % as compared to CCS. Due to faster convergence, the

average number ofmessage-exchanged has shown significant improvement, nearly 50% less

than ATSP and 10 % less than CCS. The average energy consumption to achieve acceptable

synchronization error is also minimized due to the lesser number of message-exchanged.

The SATS algorithm has consumed 60 % less energy than ATSP and 20 % less than CCS.

The proposed SATS algorithm has shown consistent behavior with the increase in network

size and variable network density. So, it is more scalable than ATSP and CCS.

In order to improve the performance of SATS algorithm on sparse, multi-hop network,

a multi-hop SATS algorithm is proposed. Since, consensus-based algorithms are greatly

affected by topological connectivity, we aimed at increasing the topological connectivity

by using multi-hop communication for the underlying sparse network. At the same time,
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increasing hop count incurs higher end-to-end delay which affects the consensus stability.

In order to restrict the delay and select a multi-hop node with maximum relative clock

values, a distributed, constraint-based dynamic programming approach is suggested. Using

multi-hop communication, a node is selected using the proposed multi-hop SATS algorithm

and pairwise averaging is performed between the initiating node and the selected node. The

asymptotic message complexity of multi-hop SATS algorithm in a network of n nodes and

up tom hop is proved to be O (n(logn)m). A thorough energy consumption analysis is also

carried out for the proposed multi-hop SATS algorithm.

Simulation results show that on sparse topology, the proposed multi-hop SATS algorithm

with hop count 2 has 16 % faster convergence speed than the proposed SATS (1-hop)

algorithm in Chapter 3. Also, the 2-hop SATS algorithm has 33 % faster convergence speed

than CCS and 50 % faster than ATSP on sparse topology. The 2-hop SATS algorithm has

95% improvement of average global synchronization error over ATSP, 86% over CCS, and

46% improvement over 1-hop SATS algorithm. The local synchronization error using 2-hop

SATS is also optimized, nearly 88% as compared to ATSP, 86% to CCS, and 41% to 1-hop

SATS algorithm. As compared to ATSP, the average number of messages exchanged for

2-hop SATS algorithm is 29 % less but, when compared with CCS and 1-hop SATS, it is

respectively, 83 % and 5 % more.

The message overhead of 2-hop SATS as compared to CCS is high because CCS follows

one-way message passing paradigm for weighted averaging whereas 2-hop SATS follows

two-way message passing paradigm to perform pair-wise averaging. So, there exist a

trade-off between message exchanges and synchronization accuracy in case of 2-hop SATS

and CCS. The 2-hop SATS algorithm has shown better scalability, both in varying network

size and varying sparsity factor scenario. Increasing the hop count from 2 to 3 also improves

the convergence speed and synchronization error. But, simulation results show that with the

further increase in hop count, the end-to-end delay supersedes the threshold delay. So, the

optimal behavior of the algorithm lies in the restricted selection of hop count which also

ensures consensus stability of multi-hop SATS algorithm. In fact, restricted hop count also

makes the algorithm optimal in terms of message complexity.

Further, in order to address the second issue, the topological optimization problem

for consensus-based time synchronization algorithm is first proved to be an NP-complete

problem, using delay balanced topology concept. Therefore, a GA based topological

balancing strategy is proposed to accelerate consensus-based time synchronization

algorithms for the dense sensor network. Extensive simulations have been carried out

to show the effectiveness and scalability of the proposed strategy on three recent and

state-of-the-art consensus-based algorithms. Simulation results show that using the proposed

strategy, the number of iterations for consensus convergence, mean square synchronization

error, the number of messages exchanged to achieve consensus and energy consumption

have been optimized significantly.
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Finally, a topological optimization strategy is proposed to accelerate consensus based

time synchronization algorithms for the sparse sensor network. In a sparse network, to

handle the trade-off between the MAC and physical delay cost functions, the problem is

modeled as a bi-objective topological optimization problem. One of the most effective and

simplest optimization method, known as Random Weighted Genetic Algorithm (RWGA)

based approach has been applied to get Pareto optimal solutions for the given problem.

Extensive simulations have been carried out to show the effectiveness and scalability of

the proposed strategy on three recent and state of the art consensus-based synchronization

algorithms. Simulation results show that using the proposed strategy, the convergence speed

to the consensus value, total synchronization error, the number of messages exchanged to

achieve consensus and energy consumption have been optimized significantly.

7.2 Future Scope

The proposed SATS and multi-hop SATS algorithms presented in this thesis are based on

the assumption that the network topology is static in nature. But, in some applications of

sensor networks like underwater sensor network, vehicular sensor network, the topology is

dynamic due to the mobility of sensor nodes. As a result, the neighborhood of each sensor

node changes at different instances of communication. Since, SATS and multi-hop SATS

are consensus-based and consensus algorithms are neighbor-dependent, a further study is

required to know the effect of dynamic topology on these algorithms.

In the proposed synchronization algorithms, the nodes are assumed to be fault free.

But, sensor nodes are generally deployed in an unattended and hostile environment where

there is a high chance of getting faulty nodes. So, synchronization in the presence of

faulty node is highly challenging, especially in the presence of byzantine faults. So, the

proposed algorithms can be extended so that they can operate in the presence of different

types of faults without compromising the desired synchronization accuracy. Some recent

works highlighted that average consensus-based synchronization algorithms are vulnerable

to message manipulation attack. So, the performance of proposed algorithms can be

examined under such type of security attacks and methods must be designed how to defend

it.

Further, the topological optimization problem for consensus time synchronization

algorithms has proven to be NP-complete. So, different heuristic and meta-heuristic

approaches can be applied to study the optimal behavior of the algorithms and their impact

on the consensus algorithms' performances.
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