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Abstract 
 

 Among different refractory materials, magnesium aluminate spinel is of great importance 

from the industrial point of view, mainly due to its excellent corrosion and thermal shock 

resistances. Magnesium aluminate spinel (MgAl2O4), the only compound forms in the MgO-Al2O3 

system, has the most desirable characteristics for refractory application, along with the 

environmental friendliness. Other than refractory there are studies for its applications as humidity 

sensors, transparent ceramic, anode material in aluminum cell, etc. In combination with alumina, 

spinel is of great importance as the refractory lining material for the steel ladles essential for iron 

& steel industries due to excellent corrosion and thermal shock resistances. Again in association 

with magnesia it is important for the burning zones and transition zones of cement rotary kilns. 

The major reason for this application is its better resistance to thermal shock and alkali materials, 

which indicates two or three times longer service lives than other basic bricks such as conventional 

MgO-chrome. Magnesium aluminate spinel has always an environment friendly advantage, so it 

has received favor from researchers, scientists and industrialists all over world. 

 Despite all these properties and application, the magnesium aluminate spinel is not 

commercially successful at per due to its high cost of production. The formation of magnesium 

aluminate spinel from its reactant is associated with a volume expansion which hinders to obtain 

dense magnesium aluminate spinel in a single step firing process. The commercial synthesis 

process involves two stage firing process which increases the cost of production 

The present work focused on synthesis of magnesium aluminate spinel from commercial 

grade oxide using a single step sintering process. The effect of planetary milling, effect of additives 

like zinc Oxide, zirconium dioxide was studied. The effect of insitu generated magnesia and 

alumina from nitrate precursor was also studied. The sintering study was done in the temperature 

range 1200-16000C.The phase and microstructure was studied with varying milling time and 

additive percentage using X-ray diffraction technique and field emission scattered electron 

microscopy respectively. The flexural strength and thermal shock behavior was also studied for 

each batch. 

Dense magnesium aluminate spinel was successfully produced. The planetary milling and 

additive were found to enhance spinellisation process at lower temperature. The density and 

strength was also found to improve with milling and additive incorporation. 
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Chapter 1 

1.0 Introduction                                                                       

The progress and evolution of the human civilization are associated with discovery, 

invention and development of new materials. Modern era focuses on improving the condition of 

human life with taking into environmental aspects. With the progression of human civilization 

there will be discoveries and inventions that will never stop. From the beginning to till date there 

is evolution and discovery of materials that have shaped and changed the way of living of a society 

and civilization. Development of new materials and their processing has helped in the evolution 

of new technologies in every field of science. Ceramic materials have played a crucial role in 

development of human civilization. Ceramic include a vast range of materials. In order to simply 

that ceramic is divided in two groups –traditional ceramics and advanced ceramics. Traditional 

ceramics include pottery, structural clay products, clay based refractories etc. Advance ceramic 

include functional ceramics like ceramics for electrical, optical, magnetic applications etc., and 

structural ceramics that involves materials that can be used in both room and elevated temperature. 

In brief it can be said that without ceramic research in materials engineering is incomplete. In 

ceramic materials spinel forms an interesting field of research because of their properties and 

different engineering applications. Among all spinels magnesium aluminate spinel have prominent 

place because of its excellent combination of properties. 

Magnesium aluminate spinel is an important industrial material among different refractory 

material because of its excellent corrosion and thermal shock resistance. It is the only compound 

that forms in MgO-Al2O3 system that has desirable characteristics for refractory application, along 

with environment friendliness. Other than the refractory application it has many applications such 

as humidity sensors, transparent ceramic, anode material in aluminium cell etc.[1.1, 1.2] 

The Magnesium aluminate is a type of double oxide which generally has a general formula 

AB2O4, where A is divalent element and B is a trivalent element. There are more than 200 

compounds that can be classified as spinels. But only a few are related with refractories system 

e.g. FeFe2O4, FeAl2O4, FeCr2O4, MgFe2O4, MgAl2O4, MgCr2O4 etc. Among these compounds 

MgAl2O4 and MgCr2O4 has good combination of physical and chemical properties to be used as 

material for making spinel containing refractories which has very high demand in industry. 

MgCr2O4 refractories having good physio-chemical properties are used in refractory application, 
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but there is a major disadvantage. It is carcinogenic in nature due to presence of Cr6+ ion. The 

presence of Cr6+ ion also bear the risk of contamination of ground water on disposal of the waste 

refractories and skin ulceration. For these reasons the MgAl2O4 which has similar properties like 

MgCr2O4 grabbed the attention as an alternative. MgAl2O4 is an environ friendly material. The 

thermal shock resistance of MgAl2O4 is better than the magnesite chrome refractory b .It has high 

chemical inertness and low linear thermal expansion than magnesium dichromate.[1.3-1.5] The 

typical properties of magnesium Aluminate spinel is listed in table 1.[1.3, 1.6]  

Table 1. Typical properties of magnesium aluminate spinel. 

Composition(wt.%) MgO-28.3 

Al2O3-71.7 

Molecular weight 142.2g 

True density 3.58g/cc 

Melting point(0C) 21350C 

Thermal expansion 

coefficient 

( X 10-6/ 0C) 

1000C 5.6 

5000C 7.6 

10000C 8.4 

15000C 10.2 

Thermal 

conductivity(W/mK) 

250C 15 

1000C 13 

5000C 8 

10000C 5 

Young’s modulus(GPa) 240-284 

Bending strength(MPa) Room 

temperature 

110-250 

14000C 8-10 

Hardness(GPa) 15 
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1.1 Structure or crystallography of MgAl2O4 

The crystallographic structure of the MgAl2O4 spinel is simple cubic with eight formula units in 

one cubic unit cell. The Structure of MgAl2O4 was first determined by Bragg and Nishikawa 

independently.[1.7, 1.8] The structure consist of a perfect cubic close packed array of oxygen ions 

with metal ions positioned in fourfold and six fold oxygen coordination. A maximum of 64 

octahedral sites and 32 tetrahedral sites are possible in such a structure respectively. Due to these 

kind of structure with relatively few potential sites occupied by cations it allows a large deviations 

and solid solutions. A small subshell of magnesium aluminate spinel has total 4 oxygen ions 

positioned to form face centered cubic lattice. As result there are total four octahedral and eight 

tetrahedral interstices. The trivalent Al3+ ion occupy two octahedral sites and divalent Mg2+ occupy 

one tetrahedral site. So half of the octahedral sites and one-eighth of the tetrahedral sites are 

occupied by cations. Since eight such sub-cells form a unit cell, so total 32 oxygen ions with 16 

trivalent ions filling half of the octahedral sites and 8 divalent ions filling one-eighth of the 

tetrahedral site constitutes a unit cell of MgAl2O4.The fig.1.1 shows the structure of the spinel.[1.9] 

 

 

Fig 1.1 Crystallographic structure of MgAl2O4 spinel. 
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The occupation of sites in MgAl2O4 structure is governed by factor that bond strength of oxygen 

must be correct. Each Mg2+ ion present in tetrahedral site has a bond strength of ½ and each Al3+ 

bond has strength of ½.A single oxygen ion is coordinated by 3 Al3+ and 1 Mg2+ ions, making bond 

strength of 2, which is appropriate to the divalent oxygen ion.[1.10].Structural measurements of 

magnesium aluminate and its solid solution were carried out by various researchers. The lattice 

parameter of MgO rich and stoichiometric spinel were nearly similar but with increase in alumina 

content it gradually decreased. The stoichiometric magnesium aluminate had a lattice constant of 

8.064±0.002 Å whereas magnesia rich composition (alumina content up to 32.1wt.% had a lattice 

constant of 8.06.[1.11, 1.12] But for alumina rich composition the lattice parameter reduced to 

7.93 Å. The reason for these decrease was stated as a second phase formation i.e. γ- 

Al2O3.[1.13].Many researchers reported a constant lattice parameter for non–stoichiometric 

MgO.nAl2O3 for n varying from 0.883 to 1.But for n > 1the lattice constant decreases.[1.14]. 

In 1932, Barth and Posnjak proposed possibility of different cation arrangement in different types 

of spinels.[1.15] In addition to the normal spinel structure they observed two different kinds of 

arrangement. In accordance to these arrangements they categorized spinel in three different ways: 

I. Normal spinel (AIVB2
VIO4): In this type of arrangement there are 32 oxygen ions. Out of 

32 octahedral voids 16 are filled with trivalent ions. And out of 64 tetrahedral voids 8 are 

filled with divalent ions. 

II. Inverse spinel (BIV(AB)VIO4): In this type of arrangement the tetrahedral sites are filled 

with 8 trivalent ions. The octahedral sites are filled with remaining 8 trivalent and 8 divalent 

ions. 

III. Intermediate or random Spinel (A1-XBX) IV(AXB2-X) VIO4:in this type of arrangement the 

both trivalent and divalent cations are distributed randomly over the available tetrahedral 

and octahedral voids. 

(A=divalent cation, B =trivalent cation) 

In general, all spinels are considered as random spinels. If the value of X=0 then it is normal 

spinel and for X=1 it is inverse spinel.to describe normal or inverse spinel a parameter λ is 

used which designates fraction of trivalent ions in tetrahedral voids. For normal spinel λ=0 and 

fully inverse spinel λ= 1/2. 
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1.2 MgO-Al2O3 phase diagram 

To understand the properties of materials it is important to understand the phase 

relationships. The different phases present in equilibrium in a system as a function of temperature, 

pressure and composition are indicated in a phase diagram. For ceramic pressure is assume to be 

constant as pressure variability is not important from application point of view. Phase diagrams 

also describes variation of different phases and their amounts against temperature and composition. 

Rankin and Merwin are the first to report about Mgo-Al2O3 phase diagram. They discovered it 

while studying the CaO-MgO-Al2O3 system.[1.16]The phase diagram of MgO-Al2O3 is depicted 

in fig.1.2.[1.17, 1.18]  

 

Fig. 1.2 MgO-Al2O3 phase diagram [1.17,1.18] 

The MgAl2O4 is the only compound formed in MgO-Al2O3 system having a congruent melting 

point of 21350C. The magnesia rich portion has a eutectic composition of 45 wt.% MgO and 55 

wt.% Al2O3 and the eutectic temperature is 20300C.The alumina rich portion has a eutectic 

composition of 97 wt.% Al2O3 and 3 wt.% MgO with a eutectic temperature of 19250C.Alumina 

makes solid solution with spinel and highest solubility up to a composition of 93 wt.% Al2O3 and 

7 wt.% MgO whereas, no such solid solution is reported with spinel.[1.19] 
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Many researchers did on the MgO-Al2O3 phase diagram and reported some deviations. The 

researchers divided the work into two separate systems namely, MgO-MgAl2O4 and MgAl2O4 –

Al2O3.Roy, Roy and Osborn studied on MgAl2O4 –Al2O3 system in 1953.They found that primary 

field of spinel solid solution extend up to 93.46 wt.% alumina content at eutectic temperature. But 

with cooling the solubility rapidly decreases. They reported exsolution of alumina from spinel 

lattice takes place with cooling up to 8000C.[1.20] Alper,Mcnally,Ribbe and Doman studied 

magnesia rich part of the MgO-Al2O3 system .They studied the system in N2 atmosphere and 

observed a remarkable difference in the melting point of spinel phase. The reported melting 

temperature as 21050C instead of 21350C as reported earlier. Similar eutectic composition was 

reported with a eutectic temperature of 19950C.They also reported about difference in solid 

solubility of MgO in spinel phase. Solubility was maximum at the eutectic temperature and 

extended up to 39 wt.% Magnesia and 61 wt.% alumina. They also reported about solubility of 

alumina in magnesia with a maximum limit up to 18 wt.% Al2O3.[1.21] 

1.3 Preparation of MgAl2O4 spinel  

Magnesium aluminate spinel does not occur in nature so they are synthesized by using a wide 

variety of techniques. This section will through a little light on these techniques along with 

formation mechanisms. 

I. Conventional oxide mixing (solid-solid reaction): This technique involves mixing of 

MgO and Al2O3 bearing compounds. Pressing them into certain shapes and then heating at 

high temperature for a prolonged period. The mechanism of spinel formation in this process 

involves a counter diffusion process that depends on a number of factors. At the beginning 

stage of MgAl2O4 formation reaction small crystals of spinel stoichiometry is nucleated on 

either MgO or Al2O3 grains. After the formation of this initial layer subsequent growth and 

thickening of spinel layer become difficult. This is because the reactants are now separated 

by an impassable spinel layer. So a counter diffusion process takes place Mg2+ ion diffuse 

away and Al3+ ion diffuse toward MgO-MgAl2O4 interface. Likewise, Al3+ ion diffuse 

away and Mg2+ ion diffuse toward MgAl2O4-Al2O3 interface.[1.3] The schematic for the 

counter diffusion process of MgAl2O4 formation is represented in Fig.1.3. This results in 

formation of 1 MgAl2O4 molecule in MgO-MgAl2O4 interface and 3 MgAl2O4  in 

MgAl2O4-Al2O3 interface.  
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Fig. 1.3 Formation of MgAl2O4 from oxide reactants by counter diffusion in solid oxide 

reaction process. 

The electro neutrality during the reaction is preserved diffusion of 3 Mg2+ ions for diffusion 

every 2 Al3+ ions. The reactions that occur at MgO-MgAl2O4 and MgAl2O4-Al2O3 interface 

are stated below (as mentioned by Zhang and Lee) [1.3]:  

At MgO-MgAl2O4 interface: 

2Al3+ −  3Mg2+ + 4MgO → MgAl2O4 

 At MgAl2O4-Al2O3 interface: 

3Mg2+ −  2Al3+ +  4Al2O3 → 3MgAl2O4 

 The overall reaction: 

4MgO + 4Al2O3  →  4MgAl2O4  

II. Electrical fusion process: The Electrofusion or electrical fusion process or EF process 

uses natural magnesite and calcined alumina as starting materials. The starting material 

were mixed and melted in an electric arc furnace by heating to a temperature greater than 

the melting temperature of the mixture. The reactants MgO and Al2O3 react in molten state 

to form spinel. The molten mass is then cooled to a solidified ingot which can be further 

crushed and ground to a further controlled particle size. Purity of spinel formed is more 

than conventional oxide mixing process. But the spinel powder formed by electrical fusion 

process has low surface reactivity so spinel formed require higher temperature to densify. 
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Another disadvantage of this process is that this process consumes a lot of energy and 

hence it is highly expensive.[1.3] 

III. Wet synthesis techniques: Wet synthesis techniques are used to prepare high quality 

spinel powders (both uniform and reactive). Some examples of wet synthesis techniques 

are sol-gel, hydrothermal synthesis etc. In sol-gel process reagents are mainly metal–

organic compounds such as alkoxides. The starting point of this process us to prepare a 

homogenous sol containing the cationic ingredients. The next step is to dry the sol 

gradually and transform into a viscous sol having particles of colloidal dimensions. Finally, 

the sol is transformed to an amorphous solid gel. The gel is fired to remove the volatile 

components and to crystallize the final product. Spinel powder formed by this process are 

pure and homogenous and possess very high reactivity. Synthesis temperature is much 

lower than conventional oxide mixing process and EF. In spite of having these advantages 

it has a lot of disadvantages. The first reason is requirement of organic precursors and 

solvents which are harmful for environment. Another reason is it cannot produce product 

in industrial scale because these process is difficult to commercialize.[1.22-1.24] 

Another wet synthesis technique which we mentioned about is hydrothermal 

technique. This technique involves reacting the precursor containing cationic ingredients 

in water/steam at appropriate pressure and temperature. The resulting spinel forming 

precursor after reaction are pyrolysized at appropriate temperature. The spinel formed by 

this process are very reactive. Temperature required for this process can be as low as 

5000C.[1.25]Main drawback of this process is the precursors which are harmful for 

environment and requirement of a high pressure autoclave. The technique is quite lengthy 

as pyrolysis takes time. 

IV. Other synthesis techniques: 

In addition to the wet synthesis techniques there are also other techniques which are 

implemented to synthesize Magnesium aluminate spinel. Two novel methods among them 

are mechano- chemical alloying and molten salt synthesis. In mechano-chemical alloying 

appropriate raw materials are mixed in a high energy milling machine. The raw materials 

may be oxide hydroxide or carbonates containing the reactant cations. After milling a 

spinel forming precursors are obtained from which fine spinel can be obtained. The 

crystallization temperature for this method is less than 12000C.[1.26]The technique which 
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can be used for synthesis of MgAl2O4 spinel is molten salt synthesis technique (MSS).This 

method use low melting salts as reaction medium permitting mixing of the reactants in a 

liquid phase in atomic scale. Due to presence of liquid phase the diffusion process become 

quicker and the reaction is completed at much lower temperature. Besides this technique 

there are many other routes which are used for synthesis of spinel like co precipitation, 

auto combustion etc.[1.1, 1.27, 1.28] 

 

Among all these processes the conventional oxide mixing technique still is the main route 

of production of spinel in industry because its economic advantage and easiness in 

commercialization.[1.2] 

1.4 Importance of MgAl2O4 spinel as a refractory material 

Even in 1980’s Magnesium Aluminate spinel was a laboratory material for research and science. 

The first commercial application of spinel was not as a refractory material but as a chemical bond 

in periclase bodies.[1.2] The in situ spinel bond formed in periclase bodies containing high purity 

alumina provided outstanding resistance against deformation under load, slagging and spalling. 

Soon after that spinel was tried in open hearth furnace roofs in 1970s.[1.29]After that the demand 

of spinel increased in Japan and USSR in late 1980’s.  

I. Cement industry: The first application of MgAl2O4 was done as a refractory material in 

Japan in cement rotary kilns as a replacement for magnesia chrome refractory which have 

environmental issues. Studies on the upper (feeding part) and lower transition zone of 

cement rotary kiln showed that life of this part was much lower compared to main sintering 

zone due to high thermal stress, wear and presence of liquid and alkali vapour. Application 

of periclase spinel bodies reported 2-3 times better life than the conventional magnesia 

chrome refractories.[1.30]In present scenario with increased in kiln diameter and rotational 

speed the rate of  stress is much more. To overcome this process in situ magnesia aluminate 

spinel formation techniques are being employed. This technique led to gain sufficient 

flexibility and increased the life of the brick by reducing the crack formation and also 

improved the chemical inertness.[1.31,1.32]Use of spinel bonded periclase bodies and 

spinel clinkers in the burning and transition zone of rotary kiln increased the life of the kiln 

by 40-100%.[1.33]  
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II. Iron and steel industry: Application of MgAl2O4 started with its application on the roof 

of open hearth furnaces in USSR.As open hearth furnace are nearly obsolete this practice 

has stopped. The most important application of magnesium aluminate spinel is in the lining 

of steel ladles as alumina rich castables. The steel ladles are always exposed to high 

temperature corrosion, mechanical wear and thermal shock. Magnesium aluminate spinel 

possess all these characteristics which make it suitable for application in steel ladles. The 

MgAl2O4 spinel is added either as a preformed spinel or formed by reaction between MgO 

and Al2O3 (insitu spinel).[1.2] Beside steel ladles spinel is also used in impact pads, purging 

cones and well blocks, nozzles, wears and dams, lances, and slide gates. The major 

advantage of spinel addition in alumina castables is high corrosion resistance. The 

betterment in corrosion resistance is due to dissolution of spinel in slag. The MgO rich 

spinel showed much better corrosion resistance than stoichiometric one. The addition of 

spinel not only increase the corrosion resistance but also increase the hot strength. In 

alternative to addition of presynthesized spinel to alumina castables, in situ spinel can be 

formed. The insitu formation of spinel is associated with a volume expansion that counter 

balance the shrinkage of castables. In situ spinel are mainly applicable in side walls of steel 

ladle where there is requirement of high corrosion resistance, thermodynamic stability and 

flexibility. In addition to steel ladle spinel in present day are also used in blast furnace 

trough castables which increase the corrosion resistance and spalling resistance. Many new 

application of spinel are coming up in iron and steel industries. Use of spinel carbon 

refractories in ladle application are booming because of their high thermal shock and 

corrosion resistance.[1.34-1.36] 

III. Glass industries: The glass tank furnace regenerators exposed to severe thermal 

fluctuations and suffer high sulfate and alkali attacks. Use of spinel contained brick in glass 

tank regenerators was found to possess high strength even after infiltration of sulfate into 

the brick.[1.37]Use of spinel as an additive for bonding in fused spinel checker brick was 

reported to possess highest corrosion resistance.[1.38] Direct bonded pure MgAl2O4 based 

brick were found to have excellent corrosion resistance in crown lining and superstructures 

of oxy fuel fired glass melting furnaces.[1.39] 

IV. Other refractory applications: MgAl2O4 because of excellent properties are used in many 

important refractories application. It application in copper smelting convertors increase the 
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life of convertor.[1.40]Magnesium aluminate spinel is also used as a substitute for 

magnesium chrome bodies in mineral processing kilns. This also led to decrease in 

problems of disposal of waste.[1.41]MgAl2O4 is also used as crucible material for 

reduction of uranium by “thermite reaction”.[1.42]Many researchers have synthesized and 

proposed magnesium aluminate spinel as a suitable anode material for metallurgical 

industry as a replacement for carbon anode.[1.43] 

Apart from refractories magnesium aluminate spinel is also used in humidity sensors, IR sensors 

and optical domes, ballistic weapons, military and armor vehicles etc. Other applications include 

faceplate of CRT, polarimeter for LED, Watch crystals, Safety goggles, as components in optical 

computer and high-speed printer, High-pressure arc lamp and lens, pressure vessel sight glass, 

furnace sight glass.[1.44] 
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Chapter 2 

Literature review 

2.0 Magnesium aluminate spinel 

As discussed in earlier chapter magnesium aluminate spinel is a material with immense 

technical applications owing to its excellent thermal, mechanical and chemical properties both at 

room and elevated the temperature. But magnesium aluminate spinel does not occur naturally, and 

so there is a need for an efficient method for its commercial-scale production. The commercially 

feasible method for its synthesis is the conventional oxide mixing (CMO), or solid – solid reaction, 

a technique in which powder MgO- and Al2O3-bearing compounds (e.g., oxides, hydroxides, or 

carbonates) are mixed, shaped & sintered at high temperature for extended times. The formation 

of spinel from its constituent oxides depends on a large number of factors [2.1].Many researchers 

studied various parameters and their effects on reaction, reactant products, formation mechanism, 

etc. Some researchers also studied the spinel formation reaction by different methods other than 

solid state reaction. But still solid oxide reaction dominates other synthesis techniques because of 

its simplicity and applicability in mass production in industry[2.2]. 

2.1 Formation and synthesis of magnesium aluminate spinel by solid state route 

The formation of magnesium aluminate spinel from its constituent oxide reactants is a 

counter diffusion process. This counter diffusion process occurs at two interfaces MgO-MgAl2O4, 

and MgAl2O4-Al2O3.the process consists of diffusion of 3 Mg2+ ions toward alumina side and 2 

Al3+ ions towards magnesia side forming in total 4 MgAl2O4.[2.3]The thickness ratio between 

spinel formed in alumina and magnesia side is 3:1. This is due to the higher solubility of alumina 

in spinel. The formation reaction of magnesium aluminate spinel is always associated with 

dimensional expansion ~8% the main reason for this is the density difference between reactants 

and products[2.4]. 

 Andrianov et al. studied [2.5] the expansion behavior of magnesium aluminate spinel in a 

designed apparatus and found 5% growth due to spinellisation. They reported that spinel formation 

was effected by the rate of diffusion. Colinas et al. studied [2.6] the formation of different spinel 

at different temperature by measuring the fraction of reaction completed as a function of time. 
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They found the rate of spinel formation followed the sequence MgAl2O4>ZnAl2O4>NiAl2O4. The 

cause of the increase in MgAl2O4 spinel formation was reported as the neutrality in site preference 

by Mg2+ cation which increases its mobility leading to higher rate of spinel formation. Mansour et 

al. studied [2.7] the effect of MgO and Al2O3 characteristics on spinel formation. He reported 

calcination temperature, calcination atmosphere, and raw materials played an important role in 

spinel formation. Eta alumina was reported to form spinel easily and formed spinel increased with 

the increase in the crystal size of the reactants. Mazzoni et al. studied [2.8] spinel formation and 

sintering using reducing atmosphere. They reported that presence of reducing atmosphere did not 

affect the spinel formation up to 13000C.The spinel formation was complete at 13000C in the 

stoichiometric composition. However, secondary phases were present in the non-stoichiometric 

composition. A weight loss was observed in Mg-rich spinel in CO atmosphere. They reported this 

weight loss due to volatization of MgO during sintering in reducing atmosphere. 

 Different workers studied the mechanism of spinel formation. W.D. Kingery well 

described [2.9] various mechanisms for spinel formation from its constituent oxides. All the 

mechanisms show that rate of spinel formation being controlled by diffusion of divalent, trivalent 

and oxygen ions. The rate of transportation of electron/holes and oxygen gas along interfaces AO-

AB2O4 or AB2O4-B2O3 also controlled the rate of formation of spinel. Navais et al. used [2.10] 

different atmospheric conditions for the formation of spinel. MgO vapors were diffused into Al2O3 

in a vapor –solid reaction at 1 atmospheric hydrogen pressure. Consistently increased amount of 

spinel was obtained with increasing temperature and time. The properties and compositions of 

spinel formed were found to be different at different layers. 

 Carter et al. studied[2.11] the mechanism of solid state reaction of spinel formation using 

molybdenum wires as inert markers. He confirmed that spinel formation reaction occurred due to 

counter diffusion of Mg2+ and Al3+ ions in the rigid oxygen lattice. This mechanism of spinel 

formation was later verified by Rossi et al.[2.12]Different parameters affecting solid state reaction 

of spinel formation was studied by Yamaguchi et al. They reported [2.13] that the reaction follows 

a parabolic law. No distinct effect of the specimen, single crystal or polycrystalline was found in 

the reaction. The thickness ratio of formed spinel layer was found to increase at a higher 

temperature. The spinel formed in contact with alumina was found to have higher alumina content. 

The activation energy of spinel formation was found to be 92kcal/mol. They also reported spinel 
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formation to spinel to be occurred by diffusion of 3 Mg2+ and 2 Al3+ ions. The role of oxygen in 

solid state reaction of MgAl2O4 spinel formation was studied by Nakano et al.[2.14] They prepared 

spinel by close contact with oxygen-rich MgO and Al2O3 polished surfaces piece in an argon 

atmosphere. The soaking time was 170hrs at 16500C.To study the distribution of oxygen ion in the 

resulted mass, spark source mass spectroscopy was used. An oxygen enriched spinel was obtained 

on MgO side; however, the concentration of oxygen was low at the interfaces and next alumina 

side spinel layer. They confirmed the diffusion of Mg and Al ions in rigid oxygen lattice as the 

main reason for the growth of spinel from these observations. 

 Whitney II et al. used [2.15] the cleaved and polished surface of single crystals to see 

interdiffusion between MgO and Al2O3.They reported that rate of spinel formation to be dependent 

on temperature. The rate varied with a rate constant of k=1.19X102 exp(-88000/RT) above 

17500C.The rate constant k was determined as 1.17X104 exp(-125000/RT) for a temperature less 

than 17500C.They also reported that change in diffusion mechanism was responsible for the 

change in activation energy for spinel formation. The interdiffusion coefficient of Al ion in MgO 

was studied in the temperature range 1565-19000C.It was reported that interdiffusion is directly 

proportional to temperature, mole fraction of cation vacancy and was found to be independent of 

the crystallographic orientation of alumina. Murphy et al. investigated [2.16] the mechanism of 

cation diffusion in magnesium aluminate spinel. The transportation mechanism of Al3+ and Mg2+ 

ions through MgAl2O4 lattice was investigated by atomic scale simulation in a computer. Both 

cation and the interstitial process were considered. They reported Mg2+ ions to be more mobile 

than Al3+ ions. The preferred mechanism for Al ion diffusion was reported as vacancy mechanism. 

Ghosh et al. investigated [2.17] the effect of particle size of MgO and Al2O3 on the spinel 

formation with permanent linear change on heating (PLCR)and microstructure in Al2O3-MgAl2O4-

C refractory. They reported spinel formation to be very much dependent on particle size and 

reactivity of the starting materials. Spinel formation was found to occur in between alumina grains 

which acted as bond. MgAl2O4 was found to improve the strength and control PLCR of the 

refractory in stoichiometric nature. Szczerba et al. studied [2.18] the influence of raw materials 

morphology on properties of magnesium -spinel  products. They mainly investigated the effect of 

clinker morphology on properties magnesia-spinel product. Two types of magnesia clinkers and 

fused magnesia was used along with fused spinel. The product containing a high amount of spinel 
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produced high open porosity, gas permeability and low crushing strength irrespective of the type 

of magnesia used. 

Zhang et al. examined [2.19] the effect alumina polymorphism on the synthesis of 

magnesium aluminate spinel. Three different kinds of alumina were used- α Al2O3, γ Al2O3, and ρ 

Al2O3.The magnesia used was analytical grade magnesia. The γ Al2O3 was found best for sintering 

and synthesis of spinel. The main reason for this may be due to its starting crystal structure similar 

to spinel. Haldar et al. prepared [2.20] magnesium aluminate spinel aggregates from Indian 

magnesite and calcined alumina in single firing stage. They achieved around 94% densification 

after sintering at 16000C.Sarkar et al. used [2.21] different commercial grade magnesia and 

alumina to prepare magnesium aluminate spinel by single stage firing. Spinel formation was 

completed at around 15000C for all compositions. Purer compositions led to higher expansion and 

low density with porous microstructure. Kong et al. synthesized [2.22] spinel by activated high 

energy ball milling process. They used commercially available 99.9% pure MgO and Al2O3 

powder. They chose a stoichiometric composition and did 12 hr. of planetary milling. Milling 

significantly enhanced the reaction between MgO and Al2O3.98% theoretical density was obtained 

by sintering at 15500C for 2hrs.Orosco et al. studied [2.23] magnesium aluminate synthesis in a 

chlorine atmosphere. They used 99.99% pure MgO and Al2O3 reactants. The presence of chlorine 

reduced the spinel synthesis temperature. The presence of chlorine in the atmosphere led to the 

crystallization of spinel in between 800 to 10000C.Tavangarian et al. used [2.24] lansfordite and 

gibbsite  in 1:2 ratio to prepare stoichiometric spinel. They mechanically activated the mixture by 

using planetary ball mill. Single phase nano- spinel powder was obtained after 6-10hrs of planetary 

milling at 1000 and 12000C after annealing for 1 hr. The reduction in particle size by milling 

increased spinel formation due to increase in contact surface area which accelerated the diffusion 

reaction of spinel formation. Tripathi et al. studied [2.25] the effect of MgO reactivity on synthesis 

and densification of magnesium aluminate spinel. They used two types of magnesia one calcined 

at 11000C and another sintered magnesia. Spinel produced from sintered magnesia show better 

densification than the calcined magnesia. Spinel formation to densification ratio was better in 

calcined magnesium composition due to higher spinel formation rate as a result of lower crystallite 

size .Ting et al. [2.26] tried to identify the rate controlling mechanism in the sintering of MgAl2O4 

compositions. They considered the defect reactions and constructed Brouwer diagram to correlate 

densification rates to defect concentrations. They reported intrinsic defects as Schottky types and 
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oxygen vacancies the principle charge compensating defect in MgO-rich composition. The oxygen 

lattice diffusion through vacancies was concluded as rate controlling mechanism. 

 Sarkar et al. studied [2.27] effect of attritor milling on densification of magnesium 

aluminate spinel in both single and double stage sintering process.99.5% densification was 

achieved after 6hrs of attrition milling. Calcination was done at 1400 and 16000C.Higher 

calcination temperature was not found beneficial for densification. Kostic et al. [2.28] sintered 

magnesium aluminate spinel bodies containing  60,80 and 90% spinel. They concluded degree of 

densification to be directly proportional to initial spinel content. Addition of even 0.5wt.% CaO: 

SiO2 enhanced the densification to a great extent. Grain growth was also increased with 0.5wt.% 

the addition of CaO: SiO2.Kim and Saito studied [2.29] the effect of grinding on the synthesis of 

MgAl2O4 spinel from Mg(OH)2 and Al(OH)3. The reported that formation of the amorphous phase 

of starting material after 60mins of grinding. Over 15mins of grinding produced MgAl2O4 phase 

at 7800C.However, the reactivity of mixture did not improve after 30 mins of grinding as over 

grinding led to aggregation of particles. Mustafa et al. studied [2.30] sintering of spinel forsterite 

bodies using talc, calcined magnesite, and reactive alumina. The spinel phase was found either in 

within forsterite or on the rims of forsterite or prismatic crystals between the boundaries. 

 Ganesh et al. reported [2.31] on the influence of processing parameters on formation and 

densification of MgAl2O4.They used 3 different sources of alumina and magnesia. The degree of 

hydration of precursor material had a strong influence on spinel formation. Spinel percentage 

greater than 70% in calcined powder was found to be good for densification. The presence of finer 

spinel particles led to high rate of sintering. Zhihui et al. studied [2.32] the effect of mechanical 

activation of  Al2O3 on the synthesis of  magnesium aluminate spinel  by reaction sintering alumina 

and magnesia. They used α Al2O3 synthesized from gibbsite heated at 14000C for 4 hr.The α-Al2O3 

was mechanically activated by milling for 12hr,24hr, and 36hrs. They reported improving in bulk 

density value with increase in milling time of Al2O3.However, the effect of milling for more than 

24hrs was not eminent in the bulk density values. Tavangarian and Emadi synthesized [2.33] 

nanocrystalline magnesium aluminate spinel powder by mechanical activation of precursor 

powder containing Al2O3 and MgCO3.The subsequent annealing mechanical activation led to the 

formation of a single phase nanocrystalline magnesium aluminate powder. Liberation of CO2 from 

MgCO3 increased surface reactivity. The crystallite size of prepared spinel was 25-45nm. 
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2.2 Synthesis through other non-conventional routes 

 A lot of literature are available in the fabrication of magnesium aluminate spinel. The 

synthesis of spinel by different routes, raw materials were studied by many workers in different 

conditions. Some of the methods which were used are co-precipitation, sol-gel, combustion 

synthesis, etc.  

 Mitchell developed a chemical method of spinel preparation by mixing aluminium 

hydroxychloride Al(OH)5Cl.2-3H2O and Mg(OH)2 suspension in water. The rapid reaction 

resulted in an amorphous gel which on drying produced solid mass. The solid was milled and heat 

treated at 9000C which produced white fine partially crystallized spinel.[2.34]      

2.2.1 Co-precipitation method  

 Among non –conventional techniques of spinel synthesis, co-precipitation is an important 

method. High purity powders can be produced by this method. A highly reactive homogenous 

sinterable powder with uniform particle size distribution and controlled morphology can be 

produced by this method. Mukherjee et al.  prepared[2.35] spinel from hydroxides of aluminium 

and magnesium in the pH range 6.5-10. Stoichiometric spinel was obtained at pH 9. They also 

reported that at a lower pH concentration of Al ion was higher which decreased after pH 9. 100 

mins at 12000C led to complete spinellisation. Co-precipitation of magnesium aluminate spinel 

was also studied by Bratton et al. [2.36] He co-precipitated in the pH range 9.5-10. He used Mg2+: 

Al3+ ion concentration solution obtained from hydroxide precipitation from chloride solutions. The 

precipitate was a mixture of gibbsite [Al(OH)3] and Mg-Al double hydroxide [2 

Mg(OH)2Al(OH)3]. Calcination of this mixture between 350-4000C resulted in an amorphous 

phase, but calcination above 4000C resulted in crystallization of spinel phase. After studying on 

spinellisation behavior of a mixture of magnesium oxalate precipitate and aluminium hydroxide, 

he reported that delay in spinel formation in this case up to 8000C.The complexity of the oxalate 

decomposition was reported as the cause of the delay. Mechanism of spinel formation from co-

precipitated hydroxides was studied by Gusmano et al. [2.37] They used Mg-Al hydroxycarbonate 

with Mg2+: Al3+ =2:1, Al(OH)3 and AlOOH to synthesize magnesium aluminate spinel. They 

reported decomposition of mixed hydroxide around 2200C. Around 2800C Al-hydroxide 

transformed to η alumina. These transition products than reacted to form transition phase which 

decomposed to magnesium aluminate spinel at about 4000C.Nicolai et al. developed [2.38] an 
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industrially feasible modified co-precipitation technique. They used Mg salts and sodium meta-

aluminate to produce active spinel powders. Popovic et al. [2.39] synthesized spinel through co-

precipitation of  magnesium hydroxide with pseudoboehmite and thereafter calcining the produced 

gel. The coprecipitate formed was a mixture of double hydroxide [2Mg(OH)2 Al(OH)3], 

pseudoboehmite [AlOOH] and aluminium trihydroxide [Al(OH)3]; calcination of the mixture 

resulted in poorly crystallized primary spinel phase around 4500C.This spinel converted to 

crystalline secondary spinel around 8500C due to solid state reaction between γ alumina and 

magnesia oxide. 

 Wang et al. used [2.40] a controlled chemical co-precipitation technique in aqueous 

solution based on thermodynamic modelling to synthesize nano-sized metastable precursor of 

magnesium aluminate spinel. At pH 10 and temperature 250C hydroxides of magnesium and 

aluminium were precipitated from chloride solutions. Calcination at 10000C for 10hrs produced 

pure spinel phase of specific surface area 47.4m2/gm. Thermal decomposition of spinel from 

hydrated nitrate mixture was studied by Messier et al.[2.41] They used magnesium nitrate 

hexahydrate and aluminium nitrate nonahydrate as a precursor to form a stoichiometric spinel. The 

mixture was comelted at 1300C and quenched to solidify, crushed, dried and heat treated to 

decompose at 4000C.The powder obtained was reported to be highly active with small crystallite 

size. Tomilov et al. [2.42] tried to determine the chemical and structural transformation during 

thermal decomposition of double hydroxide to understand the formation condition of magnesium 

aluminate spinel.   They obtained highly dispersed thermolysis product at 800 and 10000C.They 

reported that Mg-Al hydroxide precipitate composition to be dependent on co-precipitation method 

that predetermines the spinel formation mechanism. Takeo et al. studied [2.43] the spinel 

formation by decomposition of freeze dried sulfate. They used Mg(SO4)6H2O and Al2(SO4)3 

17H2O as a source of magnesia and alumina. They reported transformation of crystalline Al sulfate 

to crystalline anhydride on heating which on further heating transformed to amorphous alumina. 

Similarly, Mg sulfate transformed to amorphous MgO. The formed amorphous oxides reacted and 

produced spinel even at 8400C.Zenbee et al. studied [2.44] similar investigation and reported 

decomposition of a mixed amorphous sulfate MgAl2(SO4)4.8-9H2O to spinel above 10000C.Chae 

et al. [2.45] supported the reaction of spinel formation at 10000C from mixed sulfate hydrate in 

amorphous oxide state. The calculated the crystallite size after calcining at 10000C for 1 hr. as 

280Å and activation energy of spinel formation to be 36.5kcal/mol between 900-10000C.Healy et 
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al. used [2.46] hydrothermal processing using acetate and nitrate route to study the spinel 

formation reaction. 

Zawrah et al. [2.47] synthesized magnesium aluminate spinel powders using stoichiometric 

aluminium and magnesium chlorides at 800C by co-precipitation. They obtained a mixture of Mg-

Al double hydroxide with traces of gibbsite and brucite in the co-precipitated spinel powders. The 

particle size of the co-precipitated powder was 25-60nm.After heat treatment of the coprecipitate 

at 10000C crystalline spinel powder was obtained. They also studied the effect of MnO2 and ZnO 

on densification. About 94% and 96% theoretical density was achieved with ZnO and MnO2 

addition respectively. Improvement in mechanical properties was also reported with ZnO and 

MnO2 addition. Khalil et al. studied [2.48] the sintering, mechanical and refractory properties of 

magnesium aluminate synthesized by co-precipitation process and sol-gel process. He used 

magnesium nitrate and aluminium nitrate as a precursor in coprecipitation method and aluminium 

hydroxide and magnesium chloride in case of the sol-gel process. He concluded firing at 13000C 

to be sufficient for spinel formation for both the process. Spinel prepared via sol-gel route were 

reported to have lower particle size compared to co-precipitation method. He also studied the 

addition of zirconia and chromia; the addition of chromia and zirconia was reported to improve 

mechanical properties. However, the addition of a mixture of chromia and zirconia was reported 

to have the highest benefit. Wajler et al. investigated [2.49] the formation of magnesium aluminate 

spinel precursor powder prepared by a co-precipitation method using magnesium nitrate and 

aluminium nitrate and ammonium carbonate. During coprecipitation only crystalline phase formed 

was ammonium downsonite(NH4Al(OH)2CO3.H2O). A second phase(Mg6Al2(CO3) (OH)16.4H2O) 

was reported to appear after ageing. At 9400C, they obtain MgAl2O4 along with MgO and Al2O3. 

Guotian Ye et al. used [2.50] a combination of sol-gel and coprecipitation process to prepare 

magnesium aluminate spinel powder using aluminium isopropoxide [Al(-O-i-C3H7)3] and 

magnesium acetate tetrahydrate [Mg(CH3COO)2.4H2O] as starting materials. They obtained pure 

spinel phase using this technique at 9000C.Mosayebi et al. [2.51] employed surface assisted co-

precipitation method to produce high surface area nanocrystalline magnesium aluminate spinel at 

low temperature. They used magnesium nitrate hexahydrate and aluminium nitrate nonahydrate 

and pluronic P123 triblock copolymer (as a surfactant) as starting material. The increase in pH and 

reflux temperature and time increased the surface area and decreased the particle size. They also 
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reported that increase in calcination temperature increased crystallite size and particle size due to 

sintering. 

Alvar et al.[2.52] synthesized mesoporous nanocrystalline MgAl2O4 spinel via surfactant 

assisted precipitation route. They used aluminium nitrate nonahydrate, magnesium nitrate 

hexahydrate as precursor and N-Cetyl-N,N,N-trimethylammonium bromide and ammonium 

hydroxide as surfactant and precipitation agent respectively. They reported that addition of 

surfactant influenced the spinel structural properties. Use of surfactant reduced crystallite size and 

increase surface area and thermal stability. Li et al. [2.53] used ammonium carbonate as a 

precipitator to produce magnesium aluminate spinel precursor from magnesium nitrate and 

aluminium nitrate. The precursor was composed of ammonium dawnsonite hydrate 

[NH4Al(OH)2CO3H2O] and hydrotalcite [Mg6Al2(CO3) (OH)164H2O] which transformed to spinel 

at 9000C.The sintering of the 11000C calcined powder at 15500C for 2hrs produced dense spinel 

of 99% theoretical density. 

2.2.2 Sol-gel method 

Many researchers studied the synthesis of magnesium aluminate spinel via a sol-gel route. The 

sol-gel route has the advantage among different other routes; as it can produce pure ultrafine 

powders at low temperature. Besides this, it can also incorporate soluble inorganic salts into the 

matrix either by actual chemical reaction or by simple entrapment in the gel matrix. In 

organometallic sol-gel route, two organometallics are hydrolyzed in a controlled environment with 

vigorous stirring which results in a translucent gel. Later the fluid of the gel is drained out to 

produce an amorphous gel which on heating crystallizes and produce the desired phase at a much 

lower temperature. 

 Carole et al.[2.54]used the sol-gel technique to produce magnesium aluminate spinel for 

optical applications. They hydrolyzed Mg-Al alkoxide mixture or mixture of Al-alkoxide and Mg 

nitrate solution thereafter spray drying it in an inert atmosphere. They obtained homogenous 

spheroidal amorphous particles; spinel formation was reported at 10000C.Lepkova et al. [2.55] 

used the sol-gel technique to produce 97% spinel at 10000C using Mg(NO3)2.6H2O and 

Al(OC4H9)3 as a precursor. During hydrolysis combination of additives like B2O3, TiO2 were 

added as alcoholate to intensify the spinel formation. Around 500-6000C amorphous phase was 

obtained. Crystallization of amorphous phase occurs at around 9000C.Wang et al. [2.56] used the 
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freeze-drying technique to prepare high sintered magnesium aluminate spinel from alkoxide 

precursors. They used aluminium isopropoxide to prepare an aluminium sol. Magnesium 

methoxide was introduced thereafter up to stoichiometric composition into the alumina sol. The 

excess water evaporated out, and organic matters and sol was freeze dried and calcined to produce 

spinel powder. Spinel formation was reported to occur at 4300C.Varnier et al. [2.57] used the sol-

gel technique to produce high-quality magnesium aluminate spinel. They used heterobimetallic n-

butoxide as precursor, intermediate alumina or magnesia phase formation was eliminated. 

Hydrolysis of molecular precursor[MgAl2(O
nBu)8] n with polyethelene glycol produced a 

reproducible transparent gel. Decomposition of glycol occurred at 150 to 5000C, and pure fine 

crystallites of spinel were formed at 7000C. 

 The addition of mineralizers on spinel formation via sol-gel route was studied by 

Kadogawa et al. [2.58]They prepared magnesium aluminate using Al(NO3)3 and Mg(NO3)2 with 

a small amount of Si(OC2H5)4 and mineralizers like LiCl, NaCl, KCl, etc. The spinel formation 

reaction started at 8000C. LiF was reported to have the highest influence on spinel formation. Singh 

et al. [2.59] used combined gelation-coprecipitation method to prepare spinel from a mixture of 

sulfates of aluminium and magnesium. They reported spinel formation to start at 6000C and 

completed at 10000C.They obtained 95% densification in pressed calcined bodies sintered at 

14500C for 3hrs.Magnesium aluminate spinel was produced by Waldner et al. [2.60] using 

Al(OH)3 and MgO or Mg(OH)2 with tetra ethanolamine. Calcination of the polymeric precursor at 

5000C led to very fine material which got converted to magnesium aluminate and γ-alumina at 

7000C for 2hrs.At 9000C, a homogenous material was obtained which transformed into spinel at 

12000C after 2hrs of soaking. 

 Saberi et al. [2.61] used sol-gel citrate technique to synthesize magnesium aluminate spinel. 

They studied the influence of heat-treatment atmosphere on the formation of magnesium aluminate 

spinel. Nano-size magnesium aluminate spinel in the range 20-100nm was produced when they 

used argon atmosphere. Use of argon atmosphere slowed down the heat generation from 

combustion reactions, which helped in the production of nano-size MgAl2O4 powder. Sanjabi et 

al. [2.62] also synthesized nanocrystalline magnesium aluminate spinel using a modified sol-gel 

technique. They used aluminium nitrate, magnesium nitrate, citric acid and diethylene glycol 

monoethyl ether as a precursor material. They investigated the formation of spinel at different 
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calcination temperature 700,800 and 9000C.The 8000C 2h calcined powder showed optimum 

properties with a crystallite size of 11 nm and surface area 154m2/g. Pei et al. [2.63] developed a 

low cost efficient aqueous sol-gel technique to synthesize fine magnesium oxide and magnesium 

aluminate spinel powders. They used citrate precursors derived from magnesium chloride, 

aluminium nitrate and citrate as a precursor. The citrate precursor decomposed to Magnesium 

oxide and spinel at 4000C.The heat treatment of spinel precursor at 12000C lead to the formation 

of cubic MgAl2O4 phase. The particle size of spinel formed was reported in the range of nanometer 

and micrometer size. Nassar et al. [2.64] used sol-gel auto combustion technique to prepare 

magnesium aluminate spinel using oxalic acid, urea, and citric acid as fuel. Pure phase spinel was 

synthesized at 2500C.Nano –sized MgAl2O4 with crystallite size 27.7,14.6 and 15.65nm were 

produced at 8000C. 

2.2.3 Other modified non-conventional techniques 

Besides sol-gel and coprecipitation, many researchers have worked and developed many other 

routes and techniques to prepare magnesium aluminate spinel. Suyama et al. [2.65] used spray 

pyrolysis technique to prepare magnesium aluminate spinel. The reaction temperature of 740-

10300C was used by them. They used alcohol and alcohol-water system. The alcohol –water 

system was reported to produce spinel of poorer crystallinity and lower surface area.Spinel 

synthesis by flame spray pyrolysis was studied by Brickmore et al. [2.66] They used double 

alkoxide in alcoholic solutions as precursors. Nano size spinel with surface area 20-45m2/gm was 

obtained at 6000C.They reported the formation of powder due to nucleation and grain growth of 

oxide species in the vapour phase. Kang et al.[2.67] used colloidal solution to prepare magnesium 

aluminate spinel using filter expansion aerosol generator and aqueous solution. They also reported 

that crystallinity of formed spinel was not dependent on alumina or magnesia source. Good 

crystallinity was obtained for particles calcined with a soaking period. Very high surface area 

particles were obtained from colloidal solutions compared to aqueous solution due to higher 

nucleus concentration in colloidal solutions. Spinel formation by decomposition of a double 

alkoxide Mg[Al(OR)4]2 in supercritical fluid ethanol, was studied by Pommier et al. [2.68] They 

reported the formation of partly crystallised submicronic powder at around 3500C and 15 MPa. 

The crystallinity was found to increase with reaction temperature and time. The increase in ethanol 

content leads to better crystallinity and smaller particles and agglomerates. Kanerva et al. studied 
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[2.69] the crushing strength of MgAl2O4 granules. They use MgO and Mg(OH)2 as magnesia 

precursor and Al(O)OH and α-Al2O3 as alumina precursor. Spinel granules were prepared via 

dispersion manufacturing and spray drying process. The granules were heat treated between  1000-

14000C.The highest strength was obtained from spinel prepared by using Mg(OH)2 as Mg 

Precursor and Al(O)OH as Al precursor. 

  Effect of seeding on spinel formation was studied by Pasquier et al. [2.70] through different 

methods using different sols, nitrate solutions, and alkoxides. A decrease in crystallization 

temperature of spinel was reported due to isostructural seeding. The nucleation and epitaxial 

growth mechanism were attributed for this. Ghosh et al. studied [2.71] seeding effect on formation 

of MgO-rich spinel with 20wt.% spinel incorporation. They reported improvement in thermo-

mechanical properties of the MgO-rich spinel refractory material. 

 Choi et al. used [2.72] the self-propagating high-temperature synthesis (SHS) method to 

synthesize magnesium aluminate spinel. Variable conditions such as mixing of fines, preheating 

temperature, amount of ignition catalyst were optimized. They reported 48 hr. mixing time,8000C 

preheating temperature and 20 wt. % as the most in effect parameters. Ping et al. used [2.73] SHS 

technique to prepare magnesium aluminate spinel. They used reagent grade MgO powder and 

metallic alumina as starting material. Very high purity spinel with 92% theoretical density was 

achieved at 16000C. 

  Tong et al. [2.74] prepared nanocrystalline MgAl2O4 by a convenient salt assisted 

combustion process using low-toxic glycine as fuel, magnesium nitrate hexahydrate, and 

aluminium nitrate nonahydrate as raw materials. The reported to obtain optimal condition to 

synthesize nanocrystalline magnesium aluminate oxide. Glycine/metal/salt =2:1:1 using LiCl (salt 

assistant) and calcination temperature 7000C was reported perfect for the synthesis. They also 

studied the crystal growth dynamics of MgAl2O4 and reported the activation energy of nanocrystals 

to be 39.1kJ/mol. Gomez et al. [2.75] did a comparative study of microwave and conventional 

processing of MgAl2O4 based materials. They reported 90% spinel formation by both the methods. 

However, the microwave heating was reported to be faster than conventional heating resulting in 

the better microstructure. 

 Ganesh et al. studied[2.76] the effect of processing route on microstructure and mechanical 

properties of magnesium aluminate spinel. They concluded calcination of 1hr at 14000C could 
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produce 89% spinel via temperature induced gelation process. They obtain stable slurries by using 

surface passivated MgAl2O4 powder with 45vol% solid loading.95-98% theoretical density was 

achieved by sintering at 16500C for 1 hr.Behera et al. [2.77] synthesized magnesium aluminate 

spinel via auto ignition of citrate-nitrate gel. They used 1:1 hydrated nitrates of Mg and Al as 

precursors. Auto-ignition of the gel produced a black color mass, which on calcination at 6500C 

for 9hrs yielded crystalline MgAl2O4 spinel. They also reported calcination at higher temperature 

lead to increasing order of spinel. 

 Fazli et al. [2.78] used the molten salt method to prepare nanocrystalline MgAl2O4 spinel. 

They used nano alumina, magnesia and lithium chloride as starting materials. They reported 8500C 

and 3h soaking as optimum temperature to prepare nano-crystalline MgAl2O4 using LiCl via the 

molten salt method. The optimum salt to oxide ratio was reported as 5:1. The particle size of 

synthesized MgAl2O4 nanocrystal was in the range of 30-50nm. Kutty et al.[2.79] used a non-

conventional soft chemical method to prepare  nanocrystalline MgAl2O4 .They used oxalic acid as 

an organic template and nitric acid as an oxidizing agent. They used 1:2 molar ratio of Magnesium 

nitrate hexahydrate and aluminium nitrate nonahydrate as raw materials. They reported obtaining 

MgAl2O4 nanocrystals at around 7000C which was quite low in comparison to conventional 

processes. 

2.3 Sintering of magnesium aluminate spinel 

The definition of sintering is given as- “Thermal treatment of powder or compact at a 

temperature below the melting point of the main constituent in order to increase its strength by 

bonding the particles together”. Sintering results in an increase in strength, conductivity and 

density.   

 Generally, sintering can be divided into a number of stages namely, initial stage, 

intermediate stage, and final stage. Initial sintering stage is accompanied by large curvature 

gradient near the inter-particle neck, tangential contact between particles and interconnected pores. 

The initial stage sintering ends with coalescing of particles. The next stage is the intermediate stage 

which is marked with interconnected cylindrical pore structure along the grain junctions. Grain 

growth with possible pore isolation occurs at the end of an intermediate stage of sintering.70-92% 

densification occur at this stage. The open pore network that was formed during the initial stage 

of sintering breaks up during this stage. The beginning of the last or final stage of sintering is 
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marked with the appearance of isolated pores. The rate of sintering is slow during this stage. Mass 

transport from grain boundaries to the pores eliminates the isolated pores. But the presence of 

gaseous phase in the pores limits the end point density. 

Sintering is generally divided into three categories depending on the mechanism involved- 

I. Solid state sintering     

II. Liquid state sintering 

III. Sintering in the presence of reactive liquid. 

IV. Sintering with chemical reaction or reactive sintering 

 

I. Solid state sintering:-In solid state sintering transfer of material from one part to other 

leads to the occurrence of densification without the presence of any liquid phase. The 

main driving force of sintering is lowering of the free energy due to the reduction of 

surface area by the elimination of solid vapour interfaces by solid-solid interfaces. 

II. Liquid state sintering:-In liquid phase sintering densification occur in the presence of 

a liquid phase which serves as a bond for the body. Liquid phase sintering is used in 

the system were solid-solid sintering is difficult due to poor diffusion of material 

transport. Sintering with liquid phase must be controlled critically or else there may be 

a distortion of the body due to additional complications arising from the liquid phase. 

III. Sintering in the presence of reactive liquid: -This sintering mechanism is quite 

similar to liquid phase sintering, but essential requirement is the solubility of the solid 

phase in the liquid medium at sintering temperatures. The essential part of this is a 

solution-    reprecipitation of the solids which leads to increase in grain size and density. 

Essential requirement of this sintering technique are- 

 Presence of appreciable amount of liquid  

 Solubility of solid phase in formed liquid and 

 Complete wetting of solids by the liquids. 

 

IV. Reaction sintering or sintering with the chemical reaction: - It is a type of sintering 

in which chemical reaction between the starting materials and densification of powder 

compact are achieved in a single heat treatment step. 
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Densification of magnesium aluminate is important as the formation reaction of magnesium 

aluminate is associated with a volume expansion which opposes the densification process. So, in 

general, a two-step firing process is used. The first stage is the calcination stage during which 

spinel formation occurs. The formed spinel is then crushed, milled and reshaped and sintered in 

the second firing step. Research on sintering of MgAl2O4 by different sintering methods, spinel 

formed by different processes, the effect of different sintering parameters, the effect of additives, 

and effect of stoichiometry is going on from a long time. However, commercial viability and 

sophistication involved is increasing with time. Sintering also effects development different 

properties. Many researchers have also worked on the characterization of spinel sintered at various 

conditions.  

Bailey et al. studied [2.80] the formation of spinel and its densification taking MgO and Al2O3 

as starting material. They calculated activation energy for spinel formation as 90.5kcal/mol. They 

developed a new method in order to minimize the effect of volume expansion during spinellisation. 

They named it as “Partial reaction technique” in which 55-70% spinellisation was completed in 

the first firing, retaining sufficient degree of reactivity of material which would benefit in sintering 

in next firing. They reported obtaining 95% theoretical density after sintering at 16400C.They also 

reported that sintered product had an average grain size of 15.6μ, lattice parameter 8.083Å, cold 

MOR of 24000psi, modulus of elasticity 29.1 X 106 psi and coefficient of thermal expansion 8.38 

X 10-6 / 0C in the temperature range 25-7000C. Densification behavior of magnesium aluminate 

spinel via co-precipitation route and mixed route sintered at 1600-17500C with soaking time 30-

240mins was studied by Ruthner et al.[2.81] He reported achieving 92% true density after sintering 

at17500C for 4 hrs. for spinel synthesized via co-precipitation route from chloride 

solutions.Chisato et al. [2.82] studied the factors influencing the densification of magnesium 

aluminate spinel. They reported particle size of the starting materials to have the highest influence 

on sintering. They synthesized spinel with density value more than 3.3gm/cc through a 

commercially accepted process.Sintering of magnesia spinel using vibromilling and thermal 

treatment of the starting materials was studied by Dunaitseva et al. [2.83] They reported 

vibromilling to improve densification and reported 12000C calcined powder to produce higher 

density after sintering at 16000C.Serry et al. [2.84] used a two stage firing process for pure 

magnesia; spinel bonded magnesia, pure spinel, and pure corundum bodies. They reported 

periclase and spinel to be present as clusters with direct bonding in magnesia-rich composition. 
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Microstructure with closed porosity was reported for pure spinel body than that of the spinel 

bonded body. Kitagawa et al. studied [2.85] the mass transport mechanism of MgO2.4Al2O3 spinel 

by the scratch smoothening method. They found that mass transport in spinel to be controlled by 

the transport of oxygen ions either as volume or surface diffusion. However, the overall transport 

was reported to be low because of low transport through the surface. They concluded that oxygen 

ion is the slowest diffusing species, this sluggish mechanism of mass transport was reported as a 

reason for slow densification process of spinel. 

Bratton et al. investigated [2.86] the initial sintering kinetics of spinel synthesized from 

magnesium aluminium hydroxide co-precipitation, calcined at 11000C for 4hrs.He calculated the 

activation energy for initial stage sintering as 116kcal/mol with spinel formation energy of 100-

107kcal/mol. He also concluded that the initial sintering rate was controlled by Al3+ ions. In the 

temperature range 1050-13000C, he reported volume diffusion as the operating mechanism and 

apparent diffusion-coefficient was calculated as D = 18.6 exp [(-116 kcal/mol)/ RT] cm2/sec for 

initial sintering. They also determined the sintering and grain growth kinetics in the temperature 

range 1300-16000C for same spinel powder with 96% densification. A sharp increase in density 

was reported with an initial soaking period, but prolonged soaking flattened densification for all 

sintering temperatures. Sintering process was found to be volume diffusion controlled one and 

apparent diffusion-coefficient was calculated as Dv = 157 exp [(-118 kcal/mol)/RT] cm2/sec. The 

grain growth was calculated using the relationship G2 – Go
2 =  kt ( where Go = initial grain size 

and G = instantaneous grain size).[2.87] The densification kinetics of spinel sintered under rate 

controlled conditions was investigated by Johnson et al. [2.88] They reported the sintering of finely 

divided magnesia-rich spinel, cold-pressed to 50% theoretical density, with densification rate as 

controlling variable. The kinetics for 60-90% theoretical density was described as a rate 

independent correspondence of temperature and density as ln D = 1.96 + 1.48 x 10-3 T and a linear 

densification and heating rate correspondence dD/ Ddt = 1.48 x 10-3 dT/dt.  They reported that 

spinel ceramics sintered at constant densification rate synthesized from active powders produced 

bloating when the initial heating rate was too fast on reheating. 

Sintering of magnesium aluminate spinel depends on a number of factors and parameters such 

as general time, temperature and sintering rate. Petkovic et al. studied [2.89] the effect of magnesia 

powder activity on sintering of spinel. They used three types of magnesia and commercial alumina 
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powder as raw materials. They produced partially synthesized spinel at 1200 and 13000C. The 

partially synthesized alumina was then sintered at 1600 and 17000C in a vacuum. Smaller particle 

size was reported to produce more spinel but at a higher temperature and prolong soaking the 

advantage was found to be gradually reduced. The main reason for this was reported as the 

initiation of the sintering process due to higher fineness which reduced the reaction. They also 

reported the quantity and structure of presynthesized spinels an important parameter for sintering 

of spinel. 

 Kanai et al. investigated [2.90] the effect of body composition on sintering and developed 

strength of magnesium aluminate spinel. Sintering at 16000C for 4 hrs. they reported magnesia 

rich and stoichiometric compositions to show higher density and uniform texture in comparison to 

alumina rich composition. The obtained highest bending strength for stoichiometric composition 

and lowest in the case of alumina rich spinel.Teoreanu et al. [2.91] worked on single stage sintering 

of spinel using different source sources of alumina and magnesia. Effect of additives like B2O3, 

Cr2O3 and MgCl2 was also studied by them. Higher densification was observed for the batch 

containing calcined alumina and sintered magnesia irrespective of the additive.Sarkar et al. [2.92] 

used solid state oxide reaction for densification of magnesium aluminate spinel using three 

different sea water magnesia and commercial alumina. They reported achieving 99% theoretical 

density for highest purity material after attrition milling to a surface area of 9.3m2/gm. The 

properties like hot MOR, thermal shock resistance, etc. was reported best for the purest grade 

material. 

 Recrystallization and grain growth are two important terms in ceramics literature. Both 

these terms are related to increasing in grain size. In recrystallization abnormal or discontinuous 

grain growth may occur due to consumption of smaller grains by larger ones. However, in grain 

growth the grain size increases maintaining a same grain size distribution. Many researchers 

studied on recrystallization and grain growth of magnesium aluminate spinel by changing different 

parameters. Budnikov et al. studied [2.93] sintering and recrystallization of high purity magnesia 

alumina spinel produced by hot pressing. They used temperature range of 1200-16000C pressure 

range of 60-300kg/cm2 and holding time 10-30mins.They reported spinel with theoretical density 

at temperature 15000C and above. Around 1450-16000C intensive recrystallization was reported. 

Recrystallization rate of 10-6cm/sec was reported for grain size 2-6μ when hot pressed at 14000C 
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with a pressure 300kg/cm2 for 10-30mins.Rossi et al. studied [2.12] epitaxial growth of spinel by 

solid oxide reaction .They used a periclase crystal sandwiched between two sapphire crystals as a 

reaction couple and heat them at 16500C for 250hrs in air. They obtained two spinel layers one 

from each oxide, with thickness ratio supporting the counter diffusion of cations. They observed 

that sapphire grown spinel had a similar orientation as sapphire, but periclase grown spinel was 

independent of the orientation of the periclase crystal. The mechanism of material transport 

through spinel periclase interface was reported as the main parameter which decided the degree of 

epitaxy.The growth of magnesium aluminate spinel was studied by Grabmier et al. using 

Czochralski method[2.94] They produced single crystal of magnesium aluminate with MgO: 

Al2O3 molar ratio 1:1 to 1:3.2 with a pulling rate of 0.5cm/hr. The Higher rate of pulling was 

reported to entrap gas bubbles. Lattice constant of 8.089±0.002Å was reported for stoichiometric 

spinel. Two lattice parameters were reported for alumina rich composition due to the existence of 

two separate types of spinel in a single crystal.Ming et al.[2.95] took non-stoichiometric 

magnesium aluminate spinel to study  grain growth by grain boundary migration. They obtained 

grain boundary mobility100-1000 times higher in MgO rich compositions compared to Al-rich 

composition in the temperature range 1200-18000C.The mobility was varied by less than 10 times 

over composition 1<n<1.56 for MgO.nAl2O3 composition. 

 Spinel with non-stoichiometric compositions are also important it has got a lot of 

commercial applications. But very fewer literature is available in its study. Bailey et al.[2.96] 

varied alumina content from 71.66-93.46 wt.%. They used partial reaction technique to prepare 

spinel around 1100-11500C and sintered in the range 1640-16850C.With the increase in alumina 

content, they observed a decrease in lattice parameter till precipitation of free corundum phase. 

They obtained spinel phase up to 85% alumina content and also achieved maximum grain size and 

minimum thermal expansion for that composition. A sharp improvement in mechanical properties 

was observed for compositions containing 85% alumina with free corundum phase.The authors 

also studied [2.97] magnesia rich spinel systems and compared them against stoichiometric spinel. 

They reported the presence of little excess magnesia was extremely beneficial for stoichiometric 

spinel. The presence of a distinct second phase was suggested to restrain the grain boundary motion 

which produced highly sintered small grained spinel body. The also suggested excess magnesia 

less than 10% was sufficient to enhance densification. 
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 Proverbio et al. investigated[2.98] nonstoichiometric spinel with composition 

MgO1.5Al2O3.They focused on densification behavior, phase evaluation and microstructure 

development during sintering of spinel. They obtained 95% relative density after sintering at 

13000C for 6 hrs. for spinel synthesized via hydrolysis of alkoxide calcined at 9000C.In between 

1100-14000C precipitation of corundum phase was reported with larger grain size. An increase in 

spinel grain size was also reported resulting in heterogeneous microstructure with discontinuous 

grain growth. But in second stage sintering at 15000C, they reported a homogenous microstructure 

with fine grain size. An increase in solubility of alumina in spinel phase was observed with 

increasing temperature. The grain growth of spinel was reported to be restricted by finely 

distributed second phase alumina which resulted in a fine homogenous microstructure in the final 

product. 

2.4 Effect of additives on formation and sintering of magnesia aluminate spinel  

Additives have great influence on ceramic processes. Additives are nothing but foreign substances 

which are intentionally added to a matrix to enhance effects to ceramic processes. For MgAl2O4 

system additives are important from many aspects such as the formation of spinel, sintering, grain 

growth, and properties, etc. Additives are most important for formation and sintering of spinel. 

Additives promote sintering as they react with the system to make a solid solution or new 

compound or liquid phase by reacting with batch composition. Both interstitial and substitutional 

effect may occur in solid state solution causing a vacancy or strain in the lattice which promotes 

densification process. The introduction of a lower valence cation creates anion vacancy or cation 

interstitial which increases diffusivity which leads to increase the sintering rate. Such phenomenon 

can be observed when Li2O is incorporated in MgO [2.99]In a similar way cation vacancies are 

created when higher valence cations are incorporated. Incorporation of higher valence cation 

increases the diffusion rate which further enhance sintering and related processes. Some additive 

form liquid phase which acts as lubricant enhancing the mass transfer by diffusion in comparison 

to solid state sintering. The wetted solid particles are attracted by the capillary force of attraction 

which leads to higher densification.  

Many researchers are studying the effect of the addition of additives on formation and 

densification of magnesium aluminate spinel from a long time. Effect of salt vapour on synthesis 

and crystal growth of MgAl2O4 was studied by Noda et al.[2.100] They reported increase 
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spinellisation in the presence of salt vapour from 74-90%. However, the influence was reported to 

be complex.  The addition of salt vapour increased crystal growth specially alkali fluorides. Effect 

of additives like B2O3,V2O5,P2O5,MoO,WO3,MgF2, and LiF was studied by Helmut et al.[2.101] 

using  2wt.%  additive addition on the formation of spinel in the temperature 1200-14000C.Among 

these additives V2O5 and B2O3 was reported to have maximum effect .Additives like 

MnO2,MgO,CaO, and NiO were reported to have very less or almost negligible effect. Many 

additives like Li2O, SiO2, CoO and Cr2O3 was reported to hinder the reaction. 

Kostic et al.[2.102] investigated the influence of AlF3 and CaF2 on reaction sintered 

magnesium aluminate spinel. They reported substitution of O2- ion by F- ion in the lattice which 

created more cation vacancy which intensified cation diffusion completing spinellisation process 

in much lower temperature. However, a higher concentration of fluorine ion was found to be 

detrimental as it led to producing MgF2.Bakker et al.[2.103] used 1.5% AlF3 and reported to 

complete spinellisation reaction within 10000C using hydroxides. The addition of AlF3 was also 

studied by Sarkar et al. [2.104] They used oxide reactants with 3% AlF3 addition. The addition of 

AlF3 was found to lower the spinel formation temperature from 1400 to 11000C.Sintering was also 

reported to start at a lower temperature with the higher amount of AlF3 addition. Sarkar et al. also 

studied [2.105] the densification of reaction sintered and presynthesized stoichiometric spinel 

using various oxide additives. They used oxide additives namely B2O3,TiO2,V2O5, and Cr2O3 and 

calcined co-precipitated spinel. The greatest beneficial effect was reported for TiO2 addition 

followed by Cr2O3 addition. They also reported that additives B2O3 and V2O5 to have detrimental 

effects on densification.Sarkar et al. also studied [2.106, 2.107] the effect of various additives on 

phase composition and densification of reaction sintered spinel with MgO:Al2O3 molar ratio 

2:1,1:1 and 1:2.The addition of additives was found to have no effect on phase formation. 

However, the densification was greatly influenced by additives.TiO2,Cr2O3 ,Dy2O3, etc. was found 

to increase sintered density whereas V2O5 was found to inhibit sintering of all compositions.Effect 

of chloride ions on sintering of spinel was studied by Homano et al. [2.108] using hydroxide 

reactants. They found chlorine ions to help in decomposition of hydroxides and decrease in spinel 

formation temperature finally aiding in sintering.The addition of AlCl3 in conventional double 

oxide densification process of magnesium aluminate spinel was studied by Ganesh et al.[2.109] . 

They reported having a similar effect with AlCl3 addition like AlF3 addition. However, the addition 

of AlCl3 also improved the sintered density. The reason for improved sintered density was reported 
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due to the formation of OH- ions over Al2O3 particle surface due to hygroscopic nature of AlCl3. 

These OH- ions get removed at a higher temperature causing an increase in defect concentration 

improving sintered density. 

Ghosh et al. [2.110] studied the effect of ZnO addition on reaction sintered MgAl2O4.The 

added ZnO as an additive up to 2wt.%. The addition of ZnO was reported to improve thermal 

shock resistance.99% theoretical density was achieved with 0.5wt.% ZnO addition at 15500C.They 

reported that addition of ZnO caused anion vacancy by entering the spinel structure resulting in 

higher densification and strength. ZnO incorporation was also found to restrict grain boundary 

migration which resulted in reduced grain size .Yu et al. also studied[2.111] the addition of zinc 

oxide on magnesium aluminate spinel prepared from alumino ferrous waste slag and 

Mg(CO3)4.Mg(OH)2.5H2O.They reported producing 93% MgAl2O4 phase with the addition of 2 

wt.% ZnO. They achieved a bulk density of 3.36g/cc and bending strength 136.2 MPa. 

Effect of MgSO4 on magnesium aluminate spinel was studied by Sarkar et al. [2.112] They 

reported improvement in solid solubility of corundum into spinel in the presence of MgSO4.The 

addition of MgSO4 was also reported to improve strength both at room and elevated temperature 

due to the high rate of sintering. However, thermal shock resistance was reported to deteriorate 

with MgSO4 addition. They also studied[2.113] the addition of Cr2O3 on properties of reaction 

sintered spinel in both stoichiometric and non-stoichiometric compositions. They choose three 

different compositions with MgO: Al2O3 molar ratio 1:1,1:2,2:1. Upto 4 wt.% Cr2O3 was added. 

The addition of Cr2O3 was reported to be very effective on alumina rich composition sintered at 

15500C.Thermal shock resistance was found to improve with 1wt.% Cr2O3 addition. They also 

reported Cr2O3 to help in grain growth of all the compositions. 

Mohammadi et al. studied [2.114] MgCl2 addition on formation and sintering of 

stoichiometric MgAl2O4.They reported an increase in spinel phase formation with MgCl2 addition. 

They also observed a decrease in average grain size of spinel with MgCl2 addition.MgAl2O4 nano 

particles were reported to form on the surface of larger grains due to the reaction of ultra-fine MgO 

from MgCl2 with Al2O3. 

Ugur et al. investigated [2.115] the incorporation of SnO2 on magnesia spinel composites. 

The incorporation was reported to increase mechanical properties significantly. The reported 

improvement in mechanical properties mainly due to the formation of Mg2SnO4 phase, 
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microstructural change, transformation in the type of fracture and decrease in average MgO grain 

size as the effective parameters. Effect of yttria addition on thermal shock behavior of magnesium 

aluminate spinel was investigated by Posarac et al. [2.116] They reported an increase in density 

and thermal shock resistance with an increase in the amount of yttria. The improvement in thermal 

shock resistance was reported due to the formation of YAlO3 phase which had a lower thermal 

expansion coefficient in comparison to spinel. Formation of this new phase caused residual stress 

which was beneficial for thermal cycling. Sarkar et al. studied [2.117] the addition of Y2O3 in 

stoichiometric and magnesia rich spinel(MgO:Al2O3 1:1 and 2:1).The found Y2O3 addition 

beneficial for sintering of stoichiometric MgAl2O4 spinel. They concluded lattice strain caused by 

substitution of Al3+ by Y3+ as the reason for enhanced densification. Aguiler et al. studied [2.118] 

the addition of CaCO3 up to 30 mol% in a stoichiometric mixture of MgO and Al2O3.They studied 

the formation of MgAl2O4 up to 14000C.They reported the formation of pure spinel phase along 

with traces of calcium aluminate phase in the sintered product. The influence of CaO and moisture 

in the precursor on formation and densification of magnesium aluminate spinel was studied by 

Ganesh et al. [2.119] They reported to obtain bulk density value >3.35g/cc, porosity< 2% and 

water absorption less than 0.55% in stoichiometric spinel composition containing CaO%>0.9%. 

They observed better sintering properties in batches containing CaO%>0.9. 

Alvarez et al. studied [2.120] the effect of the addition of LiCl on magnesium spinel 

formation. They reported that presence of Li+ and Cl- enhanced reaction kinetics of spinel 

formation. Diffusion of aluminium into magnesia was reported to accelerate in the presence of Li+. 

The reason for this was reported as vacancy creation due to the dissolution of Li+ which improved 

atomic mobility and enhanced crystal growth. Rozenburg et al. studied [2.121] interaction between 

LiF and MgAl2O4 spinel during sintering. They concluded that reaction between LiF and MgAl2O4 

involves a sequence of reaction that involves transient liquid phase at elevated temperature. The 

LiF addition was reported to be beneficial for sintering of MgAl2O4 due to the formation of 

transient liquid phase and reformation of MgAl2O4 at a higher temperature. They also studied the 

sintering kinetics of LiF doped MgAl2O4.They studied [2.122] about the activation energies 

associated with spinel formation and densification on the addition of LiF. They concluded that 

main limiting factor in sintering of spinel was oxygen diffusion. The addition of LiF created 

oxygen vacancies which enhanced the densification process. The activation energy of spinel 

formation was also reported to get lowered in the presence of LiF. 
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Hamid et al. [2.123] worked on the processing of cast particulate composite of insitu 

generated alumina by adding MnO2 to molten aluminium. Magnesium was also added to improve 

wetting of alumina particles by molten aluminium. They reported obtaining MgAl2O4 and α Al2O3 

phase in the composite. The addition of MnO2 was reported to improve mechanical strength due 

to the formation of MnAl6 phase at high temperature. The addition of TiO2 and MnO2 on 

magnesium aluminate was studied by Baik et al. [2.124] They reported TiO2 to have a better impact 

on densification in comparison to MnO2. The addition of TiO2 on sintering of MgAl2O4 was 

studied by Yu et al. [2.125] They studied the TiO2 addition in the range 0.2-2wt.%. They achieved 

increasing densification up to 1.5wt.% TiO2 addition. They concluded reason for this as exsolution 

of alumina and dissolution of TiO2 in the spinel lattice. Sarkar et al. [2.126] studied TiO2 addition 

on magnesium aluminate spinel with MgO:Al2O3 molar ratio 1:1,1:2,2:1.They reported higher 

densification on Al-rich and stoichiometric spinel  with TiO2 at 15500C.But the higher amount of 

TiO2 was reported to have deteriorating effect at elevated temperature due to the occurrence of 

grain growth. Hot strength was reported to decrease with TiO2 addition due to increasing in the 

roundness of grain and presence of impurities and TiO2 along the grain boundaries. Yan et al. 

studied the [2.127] effect of the addition of TiO2 on microstructure and strength of porous spinel 

prepared using magnesite and Al(OH)3 as raw material. The MgO: Al2O3 was 2.53. They found 

the addition of TiO2 lead to the formation of the liquid phase at a higher temperature(16000C). 

They concluded that increasing amount of TiO2 lead to more liquid phase formation which 

decreased porosity and improved strength. 

Tripathi et al. [2.128] synthesized magnesium aluminate spinel from calcined alumina and 

calcined magnesia. They studied the effect of the addition of Dy2O3 on stoichiometric spinel 

composition. They found Dy2O3 to mainly enhance densification without effecting spinellisation. 

The addition of Dy2O3 was also found to influence microstructure. They reported uniform, and 

compact microstructure with small intergranular pores in Dy2O3 contained samples. 

The addition of SiO2 on magnesium aluminate spinel was investigated by Zografou et al. 

[2.129] They reported the addition of SiO2 in Mg-rich spinel was detrimental for spinel formation 

as it reduces the anion vacancy formation by consuming free magnesia to produce forsterite phase. 

However, the addition of SiO2 in Al-rich spinel leads to liquid phase formation which accelerated 

the grain boundary diffusion thus enhancing the densification process. Yi et al. [2.130] reported 
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that addition of SiO2 not beneficial for spinel formation due to the formation of some intermediate 

compounds. But they found SiO2 incorporation to promote densification at elevated temperature. 

Kim et al. [2.131] used SiO2,TiO2 and CaCO3 as additive up to 4wt.% in the stoichiometric 

composition. They found the addition of TiO2 for densification. SiO2 and CaCO3 were reported to 

present in grain boundary in the microstructure. However, TiO2 was reported to react with spinel 

and present in both grain boundary and grain. They achieved the highest densification with TiO2 

addition. 

Futija et al. [2.132] found that incorporation of fine zirconia enhanced the bending strength and 

fracture toughness. They also studied the effect of the addition of zirconia on densification and 

fracture toughness of the sample. They reported improvement in densification with the addition of 

zirconia above 1.4vol%. The addition of zirconia above 6.6vol% was reported to improve bending 

strength. Fracture toughness was reported to improve with incorporation of zirconia % in between 

12.5-15.1vol.%. The transformation of zirconia was stated as the reason for improved fracture 

toughness at a higher temperature. Tsuboi et al. [2.133] also worked on zirconia addition on the 

MgO-Al2O3 system by varying the MgO:Al2O3 ratio. They reported higher strength value in all 

zirconia contained compositions. However, compositions containing higher alumina along with 

zirconia was reported to have  the highest strength .Ganesh et al.[2.134] used double stage sintering 

process to prepare MgAl2O4 spinel. The addition of yttria partially stabilized zirconia on the 

synthesis of MgAl2O4 and sintering was investigated. They reported improvement in density, 

hardness and fracture toughness values with zirconia addition. Quenard et al. [2.135, 2.136] 

prepared ZrO2–MgAl2O4 composite through combustion synthesis technique using 1–30% ZrO2. 

Mechanical strength was reported to improve with increasing amount of ZrO2 content, even 1% 

incorporation of ZrO2 was reported to increase strength to a great extent. Sahin and Aksel et al. 

[2.137, 2.138] also found  improvement in strength, modulus of elasticity, fracture toughness, and 

fracture surface energy for MgO–MgAl2O4 composites with the incorporation of 3 mol% Y2O3 

and varied % of zircon.MgAl2O4–ZrO2 composite was prepared using calcined alumina and 

magnesia (1400 °C), 4 mol% Y2O3 to stabilize ZrO2 by Lodha et al. [2.139] The ZrO2/Y2O3% was 

varied from 0 to 20. Solid oxide reaction with 3 h attrition milling was used for processing. An 

increase in density and flexural strength value was reported by them. Kim [2.140]worked on ZrO2 

incorporation in the MgO-Al2O3 system and non-stoichiometry. He reported that inclusion of ZrO2 

in the MgO-Al2O3 system increased the concentration of cation vacancies on either side. The 
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increase in vacancy concentration resulted in an acceleration in diffusion process and formation of 

spinel. 

2.5 Effect of sintering on properties of magnesium aluminate spinel 

 The process of sintering is associated with densification and grain growth which occur due 

diffusion of mass. Sintering changes microstructure which in turn effects the properties. Sintering 

of magnesium aluminate spinel in single stage firing is difficult in solid state sintering as the 

formation of magnesium aluminate spinel is always associated with volume expansion. To 

overcome this, many researchers used different techniques. Use of intermediate mechanical 

milling, sintering additives, etc. are most prominent among all. Sintering is associated with 

densification which directly effects strength and thermos-mechanical properties. 

Kanerva et al. [2.69] evaluated the cold crushing strength of MgAl2O4 granulated beds 

prepared using two different Mg precursors and three different Al precursors by spray drying. The 

sintering temperature 1000-14000C.They reported an increase in cold crushing strength with 

increase in temperature, Highest strength was reported for MgAl2O4 granules prepared using 

AlOOH and Mg(OH)2 as a precursor. 

Wan et al. [2.127]investigated the effect of the addition of TiO2 as an additive on sintering 

properties like strength and porosity on porous MgAl2O4 ceramic. They use aluminium hydroxide 

and magnesite as raw materials. A maximum of 2wt.% TiO2 was used as additive. Sintering was 

done at 16000C for 3hrs.They reported an increase in strength value with increase in TiO2 addition 

A maximum compressive strength of 23.1MPa and flexural strength of 11.8MPa was reported for 

2wt.% TiO2 containing sample. 

Lodha et al. [2.139]studied the effect of zirconia addition on mechanical properties of 

magnesium aluminate spinel. They used 4 mol % Y2O3 to stabilize ZrO2.The amount of ZrO2/Y2O3 

was varied from 0-20wt.%. The sintering temperature was 1550-16500C with a soaking period of 

2hrs.They reported an increase in flexural strength of MgAl2O4 both at room temperature and 

elevated temperature with addition of ZrO2.Flexural strength ~190MPa was reported to achieve 

with 20wt.% the addition of ZrO2. 

 Ma et al.[2.141] investigated the effect of rare earth oxide Sm2O3 on magnesium aluminate 

spinel. They used 2.5-7.5 wt.% Sm2O3 as an additive. They used an intermediate planetary milling 
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process of 3hrs.The sintering was done at 15800C for 4hrs.They reported achieving a bulk density 

of 3.13g/cc and compressive strength of 209.4 MPa with 7.5 wt.% Sm2O3 addition. 

 Ganesh et al. [2.142]investigated the effect of synthesis technique on properties of 

nanocrystalline MgAl2O4 and ZrO2 contained MgAl2O4.The use both conventional solid state 

reaction and combustion technique to compare the results. The sintering temperature was 16250C 

with 3hr soaking time. They reported higher flexural strength and fracture toughness in combustion 

process prepared samples. The presence of tetragonal zirconia was reported as the reason for 

improved mechanical properties. 

 Ugur et al. [2.115]tried to improve the mechanical properties of MgO-MgAl2O4 composites 

by using 5-30 wt.% of SnO2.They sintered the samples at 16000C for 2hrs.They reported obtaining 

significant improvement in mechanical properties like strength, modulus of elasticity, fracture 

toughness, and fracture surface energy. They reported to highest strength with 0-5 wt.% 

incorporation of SnO2 in MgO-MgAl2O4 composites. 

 Zhang et al.[2.143] studied the sintering behavior of magnesium aluminate spinel by 

varying alumina content. The increase in alumina in the composition was reported to make the 

sintering process difficult. They reported precipitation of corundum from magnesium aluminate 

spinel at 14000C for the composition containing 85% alumina. The precipitation of corundum was 

reported to hinder the process of sintering. However, at sintering temperature above 16000C the 

corundum was reported to get dissolved in spinel. 

 Li et al. [144] studied the sintering behavior, changes in microstructure, physical and 

mechanical properties of spinel/SiC pellets sintered at different temperature with different holding 

time in vacuum. They used talc, aluminium and graphite as raw materials. 6h of ball milling was 

done in argon atmosphere to produce stoichiometric spinel containing 27.26% SiC. They obtained 

best results for samples annealed at 12000C for 1 hr. Samples when sintered above 13000C was 

reported to get decomposed to different phases. The 12000C sintered samples was reported to have 

mean grain size of 34nm, hardness of 1.6GPa and cold crushing strength 118 MPa.  Sarkar et al. 

studied[2.145] the effect of stoichiometry and fineness of composition on densification of 

magnesium aluminate spinel. The milling time was varied from 2-6 hrs. The sintering temperatures 

were 1550,1600, 16500C.They reported higher sintering Mg-rich composition. The milling was 
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reported to enhance sintering in all compositions. Highest density was reported to achieve for 6hr. 

milled compositions. 

 Various researchers used different new sintering techniques, methods and additives to 

improve the sintering properties of magnesium aluminate spinel. But commercial viability, 

availability of raw materials, additives, and processing cost were the main factors which 

determined the success of the research work.[2.104, 2.117, 2.146-2.154] 
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Chapter 3 

Motivation and objective 

3.0 Motivation 

Magnesium aluminate spinel is a technically important material for its unique properties both at 

room and elevated temperatures. But it is deprived of wide commercial success because of the 

volume expansion associated with spinel formation, the requirement of purity raw materials and a 

two stage firing process which increases the production cost. Beside this, no natural of magnesium 

aluminate source is available for commercial extraction.  Many literatures are available on the 

synthesis of magnesium aluminate spinel, as described in chapter 2, but very less literature are 

available on synthesizing magnesium aluminate spinel in a single stage reaction sintering method 

using commercially available raw materials. Also, very limited literature is available on the 

evaluation of strength and thermal shock properties of the spinel developed. Literature also does 

not throw much light on the effect of the addition of additives like zinc oxide, zirconium oxide, 

magnesium nitrate, aluminium nitrate, etc. in reaction sintering method. So, in the present work, 

the following objectives were selected for the study. 

3.1 Objective of the work 

 To prepare reaction sintered magnesium aluminate spinel from commercial grade reactants. 

 To study the spinellisation and sintering behavior of the stoichiometric composition in a 

single stage firing process in the temperature range 1200-16000C. 

 To study the effect of planetary milling on densification and spinel formation by varying 

the milling time for 0.5,1,1.5, and 2 hr. respectively. 

 To study the effect of additives, like zinc oxide, zirconium dioxide, magnesium nitrate 

hexahydrate, aluminium nitrate nonahydrate, etc. 

 Evaluation of phase and microstructure using X-ray diffraction and Field emission 

scanning electron microscopy. 

 To study the spinel formation and sintering process using dilatometer. 

 Evaluation of densification behavior, strength and thermal shock resistance properties. 
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Chapter 4 

Experimental methods and materials 

4.0 Raw materials 

Commercial grade alumina (source Almatis, India) and fused magnesia (Chinese source) were 

used as raw materials. The detail physio-chemical properties of these raw materials are mentioned 

in table 4.1.[4.1, 4.2] The additives used were ZnO, ZrO2, Al(NO3)3.9H2O, Mg(NO3)2. 6H2O.The 

purity of the additives is mentioned in table 4.2.[4.3, 4.4]A maximum 2 wt.% of each additive was 

used. From table 4.1 it can be observed that alumina is 99.8% pure with traces of SiO2, Fe2O3, 

CaO, MgO, etc. The specific surface area of the alumina powder used was 8.9g/m2. The fused 

magnesia used was 97.14% pure with traces of impurities like CaO, SiO2, and Al2O3, etc. Magnesia 

fines were relatively coarser than alumina. 

Table 4.1. Physio-chemical properties of the starting material [4.1,4.2] 

Constituent Oxide(%) Alumina fines Fused magnesia 

SiO2 0.05 0.47 

Al2O3 99.8 0.12 

Fe2O3 0.03 0.063 

CaO 0.05 1.46 

MgO 0.06 97.14 

Na2O+K2O 0.10  

Specific surface area, m2/gm 8.9  

Particle size D50, µ 0.5 28 

True density (g/cc) 3.98 3.58 
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Table 4.2 Purity of the additives used [4.3,4.4] 

Additives Purity Density(g/cc) 

Zinc oxide ≥ 99.5% 5.61 

Zirconium dioxide 97% 5.85 

Magnesium nitrate hexahydrate ≥98% 1.464 

Aluminium nitrate nonahydrate ≥98% 1.72 

 

 

              

                                                              

 

 

 

 

 

 

 

4.1 Sample preparation processes 

The processes which were used for the preparation of samples are mixing, drying, milling, 

pressing, and sintering. The detail description of processes are as follows- 

4.1.1 Weighing  

A Mettler Toledo electronic balance was used to weigh the raw materials and additives 

before mixing. The accuracy of the balance was up to the 4-digit decimal place. 

4.1.2 Mixing 

 The weighed composition was mixed in an alcoholic medium (isopropyl alcohol, purity ≥ 

99%) using a magnetic stirrer. The mixing increases homogeneity of the mixture. The alcohol to 

the solid mass ratio used was 3:1. A maximum of 6hrs of mixing was done. 

(a) (b) 

Fig 4.1 Raw materials(a) Fused magnesia (b) Reactive alumina 
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4.1.3 Drying 

The thoroughly mixed mixture was then dried in a hot air oven. The hot air oven uses thermally 

heated air to maintain the temperature inside the oven. The drying was done at 800C and 

1100C.Drying gives strength to green body and helps in quick evaporation of volatile matter in 

composition. 

4.1.4 Milling 

 For the milling study, a planetary ball mill was used to mill the samples. A maximum two 

hour of milling was done. The milling balls used was zirconia balls. The ball to mixture ratio was 

1:4. To avoid heating during milling the machine was scheduled to stop automatically after every 

half an hour of milling. The milling was done at 300rpm.  

 

Fig.4.2 Pressed pellets and bars 

4.1.5 Pressing 

The pressing was done to compact the particles of a loose mix and dried powder together 

by applying some external pressure. A binder was used to compact the particles properly. In the 

current work, uniaxial pressing was done using an automatic hydraulic press. The applied pressure 

was 150MPa and 4wt.% polyvinyl alcohol (6wt.% concentration) was used as a binder. Acetone 

and stearic acid solution (4% conc.) was used for cleaning and lubrication respectively. Three types 

of stainless steel mold were used. The dimensions of each mould are mentioned in table 4.3. 
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Table 4.3 Types of mold used 

Sl. No. Mold type Dimensions 

1. Cylindrical  15mm(diameter) 

`2. Rectangular 25mm X 6mm  

3. Rectangular 60mm X 6mm  

 

4.1.6 Sintering 

The sintering of the pressed specimen was done in a programmable electric arc furnace in 

an air atmosphere. The heating schedule used during sintering process is shown in Fig 4.3. The 

sintering was done at 5 different temperatures 1200,1300,1400,1500 and 16000C respectively. The 

dwell time at peak temperature was 4hrs.  

 

Fig.4.3 Heating schedule during sintering.  
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4.1.7 Grinding 

Grinding of the sintered pellets was done for X-ray analysis using  a mortar pestle .Grinding 

was done untill the pellet was ground to very fine powder.           

4.2. Experimental process flow-chart  

4.2.1For milling compositions  

For the preparation of magnesium aluminate spinel stoichiometric composition was 

chosen. So,71.7wt.% Al2O3 and 28.3wt.% MgO was weighed, mixed and stirred using a magnetic 

stirrer in alcohol medium (isopropyl alcohol, purity ≥ 99%) for 2 hrs. The mixture was then dried 

in a hot air oven at 800C for 24 hrs. The dried powder was then divided into 5 equal parts and 

milled for 0, 0.5, 1, 1.5, and 2 hrs. respectively using a planetary milling machine in alcoholic 

medium with balls to mass ratio 1:4.The milled powder was then dried again in hot air oven at 

800C for 24hrs.The dried powders were pressed into cylindrical pellets and bars of dimension 

15mm(dia.)X 15 mm (height) and 60mm X 6mm X 6mm respectively with 150 MPa pressure in 

an automatic hydraulic press using 4wt.% PVA(6wt.% conc.) as a binder.The pellets were then 

sintered in the temperature range 1200-16000C with 4hrs dwell time at peak temperature. The 

sintered pellets were characterized by bulk density, apparent porosity, phase, microstructure 

analysis, etc. The rectangular bar samples were sintered at 16000C for 4 hrs. The sintered bars were 

then characterized for flexural strength and thermal shock resistance study. The spinel formation 

and sintering were also studied by using a dilatometer. For dilatometry study, rectangular bar 

samples pressed at 150MPa in a stainless steel mold of dimension 25mm X 6mm X 6mm were 

used.  The experimental flow diagram for the preparation of magnesium aluminate spinel by using 

planetary milling is shown in fig.4.4 for better understanding. 

4.2.2For additive containing compositions 

Similar methodology as mentioned in section 4.1.1 were used for sample preparation of additive 

containing compositions. But here instead of milling 0.5,1,1.5,2 wt.% of additives were added and 

stirred again in the alcoholic medium for better mixing. The stirred mixture was then again dried 

at 800C for 24 hrs. Fig 4.5 shows the process flow chart of a single additive containing batch for 

better understanding. Four different additives zinc oxide, zirconium dioxide, aluminium nitrate 

nonahydrate, magnesium nitrate hexahydrate were used. The percentage of additive was varied 
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from 0-2 wt.% in each case. Density, microstructure, phase, flexural strength, thermal shock 

resistance was studied after sintering in the temperature range 1200-16000C.The effect of the 

additives on spinel formation and densification was studied using dilatometer 

 

 

Fig.4.4 Process flow chart for milling composition. 
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Fig.4.5 Process flow chart for additive containing compositions. 

 

4.3 Methods used for characterization. 

4.3.1 Surface area measurement 

Sintering characteristics can be predicted by knowing the surface area of ceramic powder. 

BET (Brunauer, Emmet and Teller after the developers of the basic calculations) method is a 

precise method to measure the surface area. The BET method involves adsorbing a monolayer of 

nitrogen gas onto the surface of particles, then measuring the amount of nitrogen that is released 

when that monolayer is vaporized. Based on this nitrogen quantity adsorbed, the surface area of 

the sample can be calculated from the BET equation: 

1

𝑉𝑔
 

𝓍

1 − 𝓍
=

(𝑐 − 1)

𝑐𝑉𝑚
𝓍 +

1

𝑐𝑉𝑚
 

Where- 

Vg = volume of gas adsorbed. 

Vm = volume of gas adsorbed at monolayer coverage. 

x = P/Po 
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P = Ambient pressure,  

Pο = Total pressure,  

c = a constant that is related to the heat of adsorption. 

BET surface area of raw combustion powder as well calcined powder was measured using 

5-point method by AUTOSORB 1, (Quantachrome) (Model No: Nova 1200 BET). 

4.3.2 Linear shrinkage measurement 

 The linear shrinkage of cylindrical sintered sample was measured to see the densification 

rate. The diameter before and after firing was measured using a digital Vernier caliper. The linear 

shrinkage percentage was then calculated using the following formula – 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(%) =
𝐷𝑂 − 𝐷𝑠

𝐷𝑜
× 100 

Where 

D0 = Diameter of the cylindrical sample before sintering. 

Ds = Diameter of the cylindrical sample after sintering. 

4.3.3 Density and porosity measurement 

 Bulk density and apparent porosity were measured using Archimedes principle. Both 

boiling water method and vacuum method was used. The medium used was water in both the cases. 

Cylindrical pellets of 15mm diameter and 15mm height were used for this purpose. The dry weight 

soaked weight and suspended weight were measured in a Mettler Toledo electronic balance. The 

bulk density and apparent porosity were calculated using the following equations – 

𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(g/cc) =
𝑊

𝑊−𝑆
 

𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦(%) =  
𝑊 − 𝐷

𝑊 − 𝑆
× 100 

Where 

W = Soaked weight of the sample. 

D = Dry weight of the sample. 

S = Suspended weight of the sample. 
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The relative density was also measured for additive containing sample. The relative density was 

calculated using the formula- 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
 × 100 

 

The specific gravity was calculated using the formula- 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝜌𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒  × % 𝑜𝑓 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 + (100 − % 𝑜𝑓 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒) × 𝜌𝑠𝑝𝑖𝑛𝑒𝑙 

 

The density of spinel (ρ spinel) was taken as 3.58g/cc. 

 

4.3.4 Dilatometry study 

 For dilatometry study, rectangular bar shaped samples prepared. The bars were pressed at 

150 MPa using stainless steel mold of dimension 25mm X 6mm X 6mm  in an automatic hydraulic 

press. The pressed samples were put inside a dilatometer. A dilatometer measured the linear 

dimensional change of sample with respect to dynamic temperature. The dilatometry study was 

done in an inert argon atmosphere up to a maximum temperature of 14500C.The heating rate used 

was 100C/min. The data obtain from dilatometer was plotted using Origin graph analysis software. 

4.3.5 Phase analysis study 

X-ray diffraction technique was used to study the phases present in the compositions after 

sintering. The technique involves irradiation of a beam of monochromatic X-ray radiation on the 

sample and recording the position and intensity of diffracted beam as a function of goniometer 

position(2θ). The main principle on which it works is Bragg’s law- 

𝜆 = 2𝑑𝑠𝑖𝑛𝜃 

Where λ=wavelength of X-rays, d=interplanar spacing or d-spacing=position of the diffraction 

angle. 

 For X-ray analysis sintered sample were ground into powder using an agate mortar. The 

ground powder was placed on a sample holder and was irradiated by a monochromatic X-ray beam 

from an X-ray tube. Cu-Kα radiation of wavelength(λ) =1.5406Å passed through nickel filter was 

used. The range of scanning angle (2θ) used was 20-600.The step size used was 0.05 and scanning 

rate was 20/min. The generator voltage and current were set 35KV and 25mA respectively. The X-
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ray diffraction pattern obtained was analyzed using Philips Xpert highscore software. XRD of 

1200,1300,1400,1500 and 16000C sintered sample was done to see the change in spinel phase 

formation with temperature, milling and additives addition. 

4.3.6 Microstructure study 

Field emission scanning electron microscope (FESEM) was used to see the microstructure 

of fractured samples sintered at 12000C and 16000C. A field emission scanning electron  

microscope uses a high  energy focused beam of electron produced by field emission gun(FEG)  

for generating an image.As the wavelength, of the electron is very small a very high magnification 

can be achieved in field emission electron micrisocopy.The electron beam on interaction with the 

specimen produces secondary images and back scattered images. The samples with milling were 

observed under secondary electron(SE) mode. However, the sample with additives was observed 

in back scattered electron(BSE) mode. The samples were gold coated for 240sec in a sputter coater 

in an argon atmosphere for observation. 

EDAX analysis was also carried out for the samples using an EDAX detector attached to 

the microscope. The EDAX or energy dispersive X-ray spectroscopy is a technique to analyze the 

elemental or chemical composition of a specimen. The technique analyzes the X-ray emitted due 

to excitation of atoms of the certain portion of the specimen due high energy electron beam or X-

rays interaction with the specimen using an analyzer to determine the elemental composition of 

the specimen. 

4.3.7 Flexural strength study 

The flexural strength of material is its property which gives the maximum stress the material can 

bear before it yields in a flexure test. The flexural strength was measured using three-point bending 

method. The strength was calculated using the formula – 

𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝜎) =
3𝐹𝐿

2𝐵𝐷2
 

Where F= Force (N) 

 L= Span length of the sample between two supports (mm). 

 B= Breadth of the sample (mm). 

 D= Height of the sample (mm).  

 σ = Flexural strength (N/mm2 or MPa) 
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For flexural strength measurement, rectangular bar shaped samples were used. The 

dimensions of the sample were 60mm X 6mm X 6mm.The samples were pressed at 150 MPa in 

an automatic hydraulic press using a stainless steel mold. The pressed samples were sintered at 

16000C for 4 hrs. in an air atmosphere. The flexural strength of sintered sample was determined in 

a universal testing machine. 

4.3.8 Thermal shock resistance study 

For thermal shock resistance study, 150MPa pressed 16000C sintered samples were used. Each 

thermal shock cycle involved heating of the sample to 10000C for 10mins in an electric arc furnace 

and quenching at room temperature for 10mins.The flexural strength retained by the sample after 

2,4,6, and 8 cycles of thermal shock were measured. The dimension of the sample used for thermal 

shock study was 60mm X 6mm X 6mm.   

 

Fig.4.6 Thermal shock resistance experiment 

4.4 List of equipments used  

The detail description of all equipment used during the work is mentioned as below- 

4.4.1. Electronic balance 

Company/Make – Mettler toledo/Switzerland make. 

Maximum capacity-220g 

Model-ML 203T. 

Readability-1 mg.  

 

 
  Fig.4.7 Electronic balance 
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4.4.2. Magnetic stirrer 

Company Model/Make- 

Tarson spinot magnetic stirrer cum hot plate/India make. 

Maximum capacity-5 ltrs. 

Dimensions-18cm X 18 cm.  

 

 

 

4.4.3. Hot air oven 

Company /Make- 

Weiber achmas technology private Ltd. /India make.  

 

 

 

 

4.4.4. Electric arc furnace  

Company model/Make - 

1.Jay crucibles raising heart furnace/India make 

Maximum temperature-14000C.  

2. Baisakh raising hearth furnace/India make  

Maximum temperature-17000C. 

3.Jay crucibles chamber furnace/India make  

Maximum temperature-14000C.  

 

 

Fig.4.8 Magnetic stirrer 

Fig.4.9 Hot air oven 

Fig.4.10 Electric arc furnaces 
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4.4.5. Automatic hydraulic pressing machine 

Company model/Make-Carver automatic hydraulic 

press/USA make  

Maximum load-15 tons 

 

 

 

 

4.4.6. Dilatometer 

Company model/Make- Netzsch DL402 C 

dilatometer/Germany make. 

Vacuum tight horizontal pushrod.  

 

 

4.4.7. Molds 

Three types of stainless steel molds were used- 

(a) Cylindrical mold –Dimension-15mm diameter. 

(b) Rectangular mold- Dimension- 60mm X 6mm. 

(c) Rectangular mold-Dimension-25mm X 6mm. 

 

Fig.4.13 Molds 

(b) (a) (c) 

Fig.4.11 Automatic hydraulic pressing 

machine 

Fig.4.12 Dilatometer 
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4.4.8. Mortar pestle  

Mortar pestle was used to grind the pellet to powder for x-ray 

analysis. 

 

 

 

4.4.9. Field emission scanning electron microscope. 

Company model/Make-Nova Nanosem FEI/USA make 

Equipped with EDAX (Bruker USA make) 

Beam landing energy down to 50KV  

 

 

 

 

 

 

4.4.10. Multi-purpose X-ray diffractometer. 

Company model/Make- Rigaku multi-purpose x-ray 

diffractometer/ Japan make.  

-Cu-Kα radiation (λ=1.5406Å) 

-Nickel filter 

 

 

 

 

 

 

Fig.4.14 Mortar pestle 

Fig.4.15 Field emission scanning 

electron microscope 

Fig.4.16 Multi-purpose X-ray 

diffractometer 
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4.4.11. BET surface area analyzer 

Company model/Make-Quantachrome /AUTOSORB-1 BET 

analyzer/USA make. 

Surface area range- >0.05m2/g 

Max. degasing temperature-3500C 

 

 

 

 

 

4.4.12. Universal testing machine 

Company model/make -Tinius olsen universal testing 

machine/USA make. 

 

 

 

 

4.4.13. Glassware’s and accessories 

Different types of glasswares such as beaker, measuring 

cylinder, petri dish, funnel, etc. were used to carry out the 

experiment. 

 

 

 

 

 

Fig.4.17 BET surface area 

analyzer 

Fig.4.18Universal 

testing machine 

Fig.4.19 Glasswares and 

accessories 
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4.4.14. Planetary mill 

Company model/Make-Planetary Mill PULVERISETTE 5 classic line/ 

Germany make 

-300 rpm rotation. 

-zirconia balls.  

 

 

 

4.4.15. Digital Vernier caliper 

Company model/Make- Mitotuyo ABSOLUTE Digimatic 

Caliper Series 500/USA make.  

 

 

 

 

 

Fig.4.20 Planetary mill 

Fig.4.21 Digital Vernier 

caliper 
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Chapter 5 

Results and discussions 
This chapter includes detail discussions of results of all the experiments undertaken. The chapter 

comprises of 5 sections. The first section is on the effect of planetary milling; the second section 

discusses the effect of zinc oxide. The third section discusses the effect of zirconium dioxide on 

reaction sintered spinel. The fourth and fifth section are on the effect of in situ generated alumina 

and magnesia from nitrate precursor added as an additive. 

The chapter also includes a description of all the characterization results obtained like surface area 

after milling, bulk density, apparent porosity sintered samples of each batch, and phase analysis 

by X-ray diffraction technique, microstructure by field emission scanning electron microscopy. 

The spinel formation reaction was studied by dilatometry technique as the spinel formation is 

associated with a volumetric expansion. The detail discussion of this is mentioned in subsection 3 

for each section. 

The reason for variation of properties is also discussed in detail in each subsection with proper 

reasoning. 

The effect of milling and additives on strength and thermal shock behavior was also studied and 

discussed in subsection 6 and 7 of each section. 
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Section-I 

5.1 Effect of planetary milling 

5.1.1 Surface area variation with milling time 

Increase in milling time increases the surface area of the raw mix (Fig. 5.1) as the particle size 

decreased with the increase in milling time. The extent of increase in surface area is very rapid at 

the initial stage of milling i.e. from 0 to 1hr but as the milling time is increased the effectiveness 

of milling decreases. The incremental increase in surface area value from 1.5 to 2 h milling is 

relatively less which might be due to agglomeration of the particles.[5.1] Milling above 2 h, was 

not considered in this study. 

 

5.1.2 Densification study 

Increase in sintering temperature resulted in increased density (Fig. 5.2) and lower porosity (Fig. 

5.3) values for all the compositions due to a greater extent of sintering. But milling was found to 

be strongly affecting the densification behavior. At lower temperatures, milling was found to 

reduce the density values greatly, and the decrease was found to be more with increasing milling 

time. This is due to a greater extent of spinel formation reaction and associated expansion in the 

composition when the sintering was poor.  
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   Fig. 5.1 BET surface area of batch against milling time.     
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Higher the milling time finer was the material, greater was the spinel formation, with higher 

expansion and lower density values. But at higher temperatures, say 16000C, sintering is strongly 

higher for the milled batch, because  of the finer materials resulting in denser fired samples. A 

maximum density equal to 96% of theoretical density (bulk density 3.44g/cm3) was achieved for 

2 h milled samples fired at 16000C. Apparent porosity values (Fig.5.3) fully support the 

densification character of the samples with milling time and firing temperature.[5.1] 

 

     

 

 

5.1.3 Dilatometry study 

The dilatometry study shows (Fig.5.4) an increasing length of the sample with increasing the 

temperature due to reversible thermal expansion properties of starting materials.  A sharp 

expansion peak was observed for all the samples above 11000C, which is due to the volumetric 

expansion associated spinel formation reaction. On further increase in temperature, sintering in the 

compositions starts. Shrinkage due to sintering and expansion due to spinel formation run parallel. 

At higher temperatures, sintering process enhances due to increased mass transfer and expansion 

behavior of spinel formation is overtaken by shrinkage due to sintering. Thus, the dilatometry 

curve takes a downward turn at the high temperatures. This feature is common to all the powders 

milled at different times. Again with the increase in milling time, it has been found that the 

Fig.5.2 Bulk density vs. sintering 

temperature plot with the variation of 

milling time 

 

Fig.5.3 Apparent porosity vs. sintering 

temperature plot with the variation of 

milling time. 
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expansion peak increases to a higher dL/L0 value, indicating the greater extent of spinel formation 

and expansion associated with the spinel formation is more than the shrinkage of from sintering. 

But milling above 1 h showed a lower expansion peak but much higher shrinkage value, indicating 

a higher densification rate compared to that of expansion from spinel formation. 2 h milled batch 

showed minimum expansion with very high shrinkage value. This spinel formation reaction and 

its sintering in a single firing is a case of reaction sintering. It is established[5.2, 5.3] that for 

reaction sintering process, the reaction is dependent on L-1 or L-2 and densification depend on L-3 

or L-4, where L is the size of starting material. Now as the milling is increased, the sizes of the 

starting powders are decreased and so the densification is enhanced preferentially compared to that 

of spinel formation. Hence, spinel formation expansion peak is reduced with the increase in 

shrinkage behavior associated with densification.[5.1] 

 

 

 

5.1.4Microstructure study 

FESEM photomicrographs show that the samples fired at 12000C (Fig. 5.5) are highly porous, and 

the grains are very small (average grain size calculated was 0.3 micron). Pores are present mainly 

as intergranular in nature. Milling was found to enhance the average size of the sintered grains 

(average grain size calculated was 0.85 micron), but the overall features are nearly same. Increase 

in sintering temperature to 16000C (Fig. 5.6) grossly changed the microstructural features of the 

sintered samples. All the samples are well compact irrespective of milling time. 

Fig. 5.4 Dilatometry plot of the samples with different milling time. 
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Sample without any milling was found to have higher porosity and pores are inter-granular and 

intra-granular in nature. But milling of 2 hr. has resulted in more compact grain structure with a 

lesser extent of porosity and the pores are mainly intra-granular in nature. [5.1] 

 

 

Fig 5.5. FESEM images of 12000C fired samples with different milling time. 
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EDAX study on the sintered samples showed that only magnesium, aluminium, and oxygen ions 

were present. No calcium ion was found, but gold ions were observed coming from the gold 

coating on the samples. EDAX study of the without milled 16000C sintered sample is provided as 

Fig.5.7. [5.1] 

 

 

Fig 5.6. FESEM images of 16000C fired samples with different milling time. 
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Figure 5.7. EDAX analysis of without milled 16000C sintered sample. 

5.1.5 Phase analysis study 

Phase analysis study shows the presence of spinel phase in the 12000C fired compositions, which 

confirms that the spinel phase formation starts below 12000C (Fig. 5.8). At 12000C, spinel phase 

is present with the reactant corundum and periclase phases and on increasing temperature spinel 

phase peak intensity has increased with a decrease in peak intensities of the reactant phases. The 

introduction of milling has a great effect on increasing the spinel formation reaction. At 1200oC, 

the reactant phases were found for the milled samples, but the peak intensities were much reduced.  

The intensity of spinel phase in 12000C sintered without milled batch were found to be 

very low may be due to the initiation of spinel reaction in the batch, which results in poorly 

crystalline spinel phase and a lesser amount of reactant phases present. Again, for the milled 

samples the intensity of the spinel phase was found to be stronger due to a greater extent of reaction 

(resulting in better crystallization of spinel phase) amongst the fine particles produced by milling. 

Complete spinel formation was observed at 14000C, even for 0.5 h milling (Figure 5.9); whereas 

a little amount of free reactant phases mainly periclase was observed in the unmilled batch even 

after firing at 15000C and 16000C (Fig. 5.10 and 5.11).This might be due to formation of solid 

solution by excess alumina in spinel structure at high temperature. Complete spinellisation of the 

milled sample occurred at 14000C due to increasing in the surface area leading to increasing 

reactivity of the reactants. With the increase in milling time increase in spinel phase, peak intensity 

is observed due to a greater extent of spinel phase formation.[5.1] 
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Fig.5.8. XRD plot of samples fired at 12000C 

 

 
Fig 5.9. XRD plot of samples fired at 14000C 

 

Fig 5.10 XRD plot of samples fired at 15000C Fig 5.11. XRD plot of samples fired at 16000C. 
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5.1.6 Flexural strength study 

Flexural strength of 1600oC fired samples was found to increase with the increase in milling time, 

as shown in Fig.5.12. Enhancement of densification with the increase in milling time is responsible 

for such increase in strength. The increase in strength was very high at relatively lower milling 

hrs.; strength increased from 62 MPa to 122 MPa (nearly double) for increasing milling time from 

0.5 to 1 hr. Highest strength of 140 MPa was observed for 2h milled samples whereas 0 h milled 

samples had only 54MPa of flexural strength.[5.1] 

 

5.1.7 Thermal shock behavior study 

Thermal shock behavior of both milled and non-milled samples fired at 1600 oC was studied by 

measuring the retained bending strength values after 0, 2, 4, 6, 8 thermal cycles. The bending 

strength values against the number of cycles are plotted in Fig.5.13. It is clearly observed that the 

milled samples retained more strength compared to unmilled samples after thermal shock. This 

may be associated with the higher densification and strength of the milled products. The increase 

in milling time had the direct effect on thermal shock behavior. Samples milled for a longer time 

retained more strength then the samples milled for lesser time. The 2 h milled samples had the 

highest strength retainment, has 63MPa even after 8 cycles, whereas without milled batch had a 

strength retainment of 29 MPa only, which is less than half of the 2 h milled samples.[5.1] 

 

   

Fig 5.12. Flexural strength of 16000C fired 

samples with different milling time. 
Fig. 5.13 Thermal shock behavior of 16000C 

fired samples with different milling time. 
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5.1.8 Conclusions 

 Milling was found to be very effective during initial hours and increasing milling time has 

a much-reduced effect on increasing the surface area. 

 Free reactant phases were observed in the without milled batch even after firing at 15000C 

whereas introduction of milling resulted in only spinel phase even at 14000C. 

 Density values were very low at low temperatures for the milled batches due to a greater 

extent of spinel formation and associated expansion. But at high temperature, once spinel 

formation is completed, milled batches showed much higher density values due to greater 

sintering from higher fineness. 

 Microstructural features show well compact and less porous structure for the milled 

samples. 

 Strength and retainment of strength after thermal shock was found to be double or more 

for the 16000C fired 2-hour milled samples compared to that of without milled ones. 
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Section-II 

5.2 Effect of zinc oxide addition 

5.2.1 Linear shrinkage study 

The linear shrinkage study (Fig.5.14) shows that addition of zinc oxide resulted in higher shrinkage 

at a higher temperature and a maximum of 6.5% at 16000C for 2wt. % zinc oxide containing batch; 

whereas at low temperature (12000C) the samples without zinc oxide exhibit higher shrinkage 

value. The addition of zinc oxide accelerated the spinellisation process even at a low temperature 

which was accompanied by a volumetric expansion. But as the spinellisation process was 

completed earlier due to accelerated spinellisation, the densification process was enhanced by the 

presence of zinc oxide resulting in higher shrinkage at a higher temperature. [5.4] 

 

 

 

5.2.2 Densification study 

Increase in sintering temperature resulted in an increase in density (Fig. 5.15) and lower porosity 

(Fig. 5.16) values for all the compositions due to a greater extent of sintering. But zinc oxide 

addition was found to affect the densification behavior strongly. At lower temperatures, zinc oxide 

addition reduced the density values due to a greater extent of spinel formation reaction and 

associated expansion. But at higher temperatures, say 16000C, zinc oxide addition enhanced the 

Fig.5.14 Linear shrinkage with the addition of zinc oxide. 
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sintering strongly. A maximum density of 3.17g/cm3 was obtained for 2 wt. % Zinc oxide 

containing samples sintered at 16000C. Apparent porosity values (Fig.5.16) fully support the 

densification character of the samples with zinc oxide addition and sintering temperature. The 

addition of zinc oxide creates anion vacancy in Al2O3 [5, 6] , which helps the increased diffusion 

of the anion, oxygen which results in completion spinellisation reaction at a lower 

temperature.[5.4] 

 

  

 

 

2.3 Dilatometry study 

The dilatometry plot shows (Fig.5.17) that addition of zinc oxide lowered the densification 

temperature which is clearly visible as the shrinkage starts at a lower temperature. With the 

increase in temperature, expansion due to spinel formation and shrinkage due to sintering run 

parallel. At higher temperatures, sintering process dominates due to increased mass transfer and 

expansion behavior of spinel formation is overtaken by shrinkage due to sintering. Thus, the 

dilatometry curve takes a downward turn at the higher temperatures. This feature is common to all 

the compositions containing zinc oxide. [5.4] 

It was  found that an increase in zinc oxide percentage increased the shrinkage value due to higher 

densification. The shrinkage from sintering began at a little lower temperature for zinc oxide 

Fig.5.15 Variation in bulk density against 

zinc oxide addition and sintering 

temperature. 

 

Fig.5.16 Variation in apparent porosity 

against zinc oxide addition and sintering 

temperature. 
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contained samples due to higher densification rate in the presence of zinc oxide compared to the 

spinellisation rate.[5.5, 5.6] 

 

 

Fig 5.17 The dilatometry plot of the samples with variation in zinc oxide percentage. 

5.2.4 Microstructure study 

FESEM photomicrographs of the fractured surface show that the samples fired at 12000C 

(Fig.5.18) are highly porous, and the grains are small. The addition of zinc oxide had a negligible 

effect at this temperature. Again zinc oxide addition was found to influence the microstructure 

strongly for 16000C sintered products (Fig. 5.19). Sample without Zinc oxide addition was found 

to have higher porosity and both the inter-granular and intra-granular in nature. But the addition 

of zinc oxide resulted in more compact grain structure with a lesser extent of porosity at 

16000C.The pores were mainly intra-granular in nature. [5.4] 

EDAX frame analysis study done on 16000C sintered samples show that only magnesium, 

aluminium, and oxygen ions are present in samples without Zinc oxide [Fig.5.20]. But gold (Au) 

ions are observed in the EDAX analysis, coming from the gold coating on the samples. EDAX 

study of 2 wt. % zinc oxide containing sample sintered at 16000C is shown in Figure 5.21. Spot A, 

as marked in microstructural photomicrograph (Fig 5.19), represents a spinel grain which was 

found to contain magnesium, aluminium and oxygen ions with no presence of zinc ion (Figure 

5.21A).  It indicates that the grains in zinc oxide containing samples are pure spinel and have 

nearly no Zn ion in it. Again spots B and C, as marked in figure 5.19, which mark the different 



Chapter 5 Results and discussions 

 

69 | P a g e  
 

regions of the grain boundary and grain of the ZnO-containing sample sintered at 1600oC 

respectively, was found to contain Zn ions along with magnesium, aluminium and oxygen ions 

[Fig.5.21 B and 5.21C]. The presence of Zn ions in the grain boundaries and grain indicates that 

zinc ions diffused in the MgAl2O4 structure and acted as a barrier for grain boundary migration 

and grain growth which lead to uniform and dense microstructure in the case of zinc oxide 

containing samples at a higher temperature.[5.4, 5.5] 

 

 

Fig 5.18 FESEM images of 12000C fired samples with different wt. % of zinc oxide. 
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Fig 5.19 FESEM images of 16000C fired samples with different wt. % of zinc oxide. 
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Fig.5.20 EDAX frame analysis of 16000C sintered sample without zinc oxide. 

 

Fig.5.21EDAX analysis of 2 wt. % zinc oxide containing composition sintered at 16000C, (a) 

analysis of grain, spot A, (b) analysis of grain boundary, spot B and (c) analysis of grain, spot C. 
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5.2.5 Phase analysis study 

The presence of spinel phase in the 12000C fired compositions confirms that the spinel formation 

started below 12000C (Fig. 5.22). At 12000C, spinel was present with the reactant corundum and 

periclase phases but with increasing temperature, spinel phase peak intensity has increased with a 

decrease in the reactant phases. The addition of zinc oxide had a great influence on enhancing the 

spinel formation reaction. At 12000C, the reactant phases were present with much-reduced 

intensity for the ZnO-containing samples. Spinel formation increased at 1300, 1400, 1500 0C even 

for 0.5 wt. % zinc oxide incorporation (Figure 5.23, 5.24 and 5.25); whereas the high intensity of 

free reactant phases was observed in the batch without zinc oxide. Complete spinellisation of the 

zinc oxide contained samples occurred at 16000C (Fig.5.26) whereas reactant phases were still 

present in the without additive batch. The ionic radius and the ionization potential of Zn2+ and 

Mg2+ are similar, due to which Zn2+ and Mg2+ may have substituted each other [Zn2+=88pm, 

Mg2+=86pm], thus enhancing the diffusion process resulting in more spinel formation. Also, the 

addition of zinc oxide creates anion vacancy in Al2O3, which may have accelerated the 

spinellisation reaction.[5.4, 5.5, 5.7] 

                   

Fig.5.22 XRD plot of samples fired at 12000C 

 

Fig.5.23 XRD plot of samples fired at 13000C 
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 Fig.5.25 XRD plot of samples fired at 15000C     Fig.5.26. XRD plot of samples fired at 16000C. 

Fig.5.24 XRD plot of samples fired at 14000C  
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5.2.6 Flexural strength study 

Flexural strength study of 16000C sintered samples shows that increase in zinc oxide addition 

improved the flexural strength of the samples (Fig. 5.27). The flexural strength of 2 wt. % zinc 

oxide containing sample was found to be 240 MPa whereas the sample without zinc oxide had the 

strength of only 53 MPa. The incorporation zinc oxide has improved the densification of spinel by 

modifying the microstructure with smaller and uniform grains and resulted in higher strength. The 

increase in strength was found to rise with the increase in zinc oxide content in the composition. 

However, the incremental effect on strength with the increase in zinc oxide content was found to 

be reduced by higher amounts of ZnO. [5.4] 

 

5.2.7 Thermal shock behavior study 

Fig.5.28 represents the strength retainment capacity of the 16000C sintered samples after thermal 

shocks. As the flexural strength, results show that presence of zinc oxide has increased the strength 

of the samples. The strength of zinc oxide containing samples was much higher even after thermal 

shock cycles compared to those samples without ZnO. The strength of all samples both zinc oxide 

containing and without zinc oxide decreased drastically after 4 cycles of thermal shock. But even, 

in that case, the strength was more for zinc oxide containing samples. After 8 cycles of thermal 

shock, the strength of all samples decreased, but the 2 wt. % Zinc oxide containing samples 

retained the strength better than the other ones even after 8 cycles.[5.4] 

    

 

 

Fig.5.27 Flexural strength of 16000C 

sintered samples. 

 

Fig.5.28 Strength retainment of 16000C 

sintered samples after thermal shock. 

 



Chapter 5 Results and discussions 

 

75 | P a g e  
 

5.2.8 Conclusions 

 High linear shrinkage was observed with the addition of ZnO at higher temperature 

whereas at low temperature (12000C) the samples without ZnO exhibits greater shrinkage 

value. 

 The introduction of ZnO resulted in only spinel phase but in non-ZnO samples, reactant 

phases were present even after firing at 16000C. ZnO containing batch had a lower intensity 

of reactant phase compared to non-ZnO batch. 

 The Greater extent of spinel formation and associated expansion resulted in low-density at 

low temperature with increase in ZnO contain, but at high temperature (16000C) ZnO 

doped samples showed higher density due to greater sintering resulting from defects. 

 Microstructural features show well compact and less porous structure for the ZnO doped 

samples with traces of Zn present in EDAX of 16000C sintered samples. 

 Flexural strength and thermal shock resistance were improved with ZnO addition. 
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Section-III 

5.3 Effect of zirconium dioxide addition 

5.3.1 Linear shrinkage study 

Fig.5.29 represents linear shrinkage behaviour of the different compositions at different sintering 

temperatures. Addition of ZrO2 was found to cause more expansion compared to that of the without 

additive batch which may be due to increased spinel formation. All ZrO2 added samples have the 

highest expansion at 13000C. Again an increase in sintering temperature resulted in a sharp 

increase in the shrinkage curve which may be due to the greater densification of spinel grains in 

the presence of ZrO2 at high temperatures and at 16000C the ZrO2 containing samples exhibit much 

higher shrinkage values compared to samples without ZrO2. [5.8] 

 

 

Fig.5.29 Linear shrinkage behaviour of zirconium dioxide contained samples 

 

5.3.2Densification study 

Variation in bulk density values of different batches sintered at different temperatures are shown 

in Fig.5.30. The increase in sintering temperature was found to increase the bulk density and 

decrease the porosity due to a greater extent of sintering at higher temperatures. Bulk density 

values of the ZrO2 containing compositions remained lower than that of the without additive 

composition till 1500oC. However, a strong increase in density values were observed for ZrO2 

containing compositions from 1500oC. Highest density was achieved for 0.5 wt. % ZrO2 

containing samples sintered at 16000C. [5.8] 
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Apparent porosity values (Fig.5.31) support the densification behaviour. The porosity of all 

samples was found to increase at low temperatures, due to the spinellisation reaction which is 

accompanied by a volume expansion. But at higher firing temperatures, when spinellisation is 

completed, sintering overtakes the spinellisation reaction, so there is a fall in apparent porosity 

values, above 14000C. At 16000C, very low porosity values were observed in ZrO2 contained 

samples due to higher sintering. But porosity was found to be higher for higher ZrO2 containing 

samples, due to a greater extent of micro-cracks generation caused by the presence of ZrO2 in grain 

boundaries.[5.8] 

Percent relative densification of the batches is shown in Fig.5.32. Spinel formation is associated 

with a volumetric expansion that results in decreased densification; again sintering will cause 

shrinkage in the batch resulting in increased densification (relative density). Relative density 

values of the without ZrO2 batch was found to increase with increasing firing temperature above 

1200oC. Whereas ZrO2 containing compositions showed decreasing relative density values upto 

about 1400oC and then densification increased with increasing temperature. This marginally lower 

densification (relative density) of ZrO2 containing compositions at lower temperatures compared 

to the without ZrO2 containing composition is associated with the greater spinel formation. Bulk 

density values differ from the relative density values as the specific gravity of ZrO2 is much higher 

than spinel and increases the specific gravity of the ZrO2 containing compositions. The lower 

Fig.5.30 Variation of bulk density with 

zirconium dioxide addition. 

 

Fig.5.31 Variation of apparent porosity with 

zirconium dioxide addition. 

 



Chapter 5 Results and discussions 

 

78 | P a g e  
 

relative density values of ZrO2 containing compositions continued till about 1500oC. But at 

1600oC, the relative density of the ZrO2 containing samples are higher than the without ZrO2 

composition, which indicates that ZrO2 enhances the densification process of spinel at a higher 

temperature. This may be the due presence of high-density ZrO2 in the grain boundaries which 

may have hindered the grain growth at higher temperature leading to greater densification, as 

observed in microstructural and EDAX studies. The increase in ZrO2 content more than 0.5 wt. % 

was also not found to help in densification process. Greater amount of ZrO2 was found to reduce 

the density values due to the expansion caused by more spinel formation and an increase in micro-

cracks due to the presence of Zirconia in the grain boundaries.[5.6, 5.8, 5.9] 

 
 [8 ] 

 

Fig.5.32 Variation of relative density with zirconium dioxide addition. 

5.3.3 Dilatometry study 

The dilatometry plot clearly shows (Fig.5.33) that addition of ZrO2 accelerates the spinellisation 

reaction. With the increase in temperature, expansion due to spinel formation and shrinkage due 

to sintering run parallel. At higher temperatures, sintering process enhances due to increased mass 

transfer and expansion behavior of spinel formation is overtaken by shrinkage due to sintering. 

Thus, the dilatometry curve takes a downward turn at the high temperatures. This feature is 

common to all the compositions with or without containing zirconia. The addition of ZrO2 has 

resulted in more spinellisation compared to densification because of which there is a sharp increase 

in dL/L0 value for ZrO2 containing samples. Also, it was observed that increase in ZrO2 content 
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has increased the temperature at which shrinkage rate (due to sintering) overtakes the expansion 

rate (due to spinel formation). Hence, a higher amount of spinel forms and densification is delayed 

with increasing amount of ZrO2. The increase in spinellisation due to Zirconia addition may be 

due to cation vacancy created by substitution of Mg2+ or Al3+ by Zr4+, which accelerated the 

spinellisation reaction at a lower temperature.[5.8, 5.10] 

 

 

 

 

5.3.4 Microstructure study 

Microstructure study of the fractured sample was done in a field emission scattered electron 

microscope in back-scattered electron mode. The micrographs of 12000C fired samples show 

(figure 5.34) that the samples are very porous. Uniform distribution of zirconia particles can easily 

be seen in the micrographs.  

The 16000C sintered microstructure clearly shows the presence of ZrO2 in the grain boundaries. 

The micrograph of 0.5 wt. % ZrO2 containing sample showed (figure 5.35) very compact structure 

with intragranular pores. The micrographs of 0 wt. % ZrO2 contained sample show a porous 

structure. The 2 wt. % ZrO2 contained sample micrograph show grains with cracks. The cracks 

may be due to phase transformation of excess zirconia present in the grain boundaries.[5.8] 

 

Fig 5.33 The dilatometry plot of the samples with a variation of zirconium 

dioxide percentage.   
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Fig.5.34 FESEM images of 12000C sintered samples. 
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Fig.5.35 FESEM images of 16000C sintered samples. 
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Fig.5.36 EDAX of zirconium dioxide containing samples. 

EDAX frame analysis study was done on 16000C sintered samples (Fig 5.35) which show that 

only magnesium, aluminium, and oxygen ions are present in samples without ZrO2 (Fig.5.36(a)). 

But gold (Au) ions are observed in the EDAX analysis, coming from the gold coating on the 

samples. Again, EDAX study on 2 wt. % ZrO2 containing sample sintered at 16000C is shown in 
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Figure 5.36(b). Spot B, as marked in microstructural photomicrograph (Fig 5.35), which represents 

a spinel grain is found to contain magnesium, aluminium and oxygen ions with no presence of 

zirconium ion (Figure 5.36(b)). This indicates that the grains in ZrO2 containing samples are pure 

spinel in composition and have nearly no zirconium ion in it. Again spots C and D, as marked in 

figure 5.35, which mark the different regions of the grain boundary of the ZrO2 containing sample 

sintered at 16000C, is found to contain Zr4+ ions along with magnesium, aluminium and oxygen 

ions [Fig.5.36(c)and 5.36(d)]. The presence of Zr4+ ions in the grain boundaries indicates that it 

acts as a barrier for grain boundary migration and grain growth which lead to uniform and dense 

microstructure in the case of ZrO2 containing samples at a higher temperature.[5.8] 

 

5.3.5 Phase analysis study 

Fig 5.37(a) shows the presence of spinel phase in the 12000C fired compositions which confirm 

that the spinel formation has started below 12000C.  Reactant phase corundum and periclase are 

present along with spinel phase at 12000C but with increasing temperature spinel phase peak 

intensity has increased with a decrease in the reactant phases. Incorporation of ZrO2 has a great 

influence on enhancing the spinel formation reaction. The intensity of the reactant phases was 

present with much-reduced intensity at 12000C for the ZrO2 containing samples. ZrO2 

incorporation has increased the spinel formation which was also observed at 1300, 1400 even for 

0.5 wt. % ZrO2 (Figure 5.37 b and 5.37 c); whereas the high intensity of free reactant phases was 

observed in the batch without ZrO2. Complete spinellisation of the ZrO2 incorporated sample 

occurred at 16000C (Fig. 5.37 (e)) whereas reactant phases were still present in the without additive 

batch. It can also be seen that 0.5 wt. % and 1 wt. % ZrO2 showed the highest degree of spinel 

formation in all sintering temperatures. XRD of 15000C sintered samples (fig. 5.37 d) shows that 

ZrO2 containing compositions had the very low intensity of the reactant phases compared to the 

without ZrO2 batches. The ionic radius and ionization potential of Zr4+ and Mg2+ are similar, due 

to which Zr4+ may substitute Mg2+ [ionic size: Zr4+ = 86 pm, Mg2+ = 86 pm and ionization potential: 

Mg2+=1450.7 kJ/mole, Zr4+= 1270 kJ/mole], causing cation vacancy and enhancing the cation 

diffusion for spinel formation. 
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Fig.5.37 XRD plots of samples sintered at (a) 12000C (b) 13000C (c) 14000C (d) 15000C and (e) 

16000C with variation of zirconium dioxide percentage. 

 

The substitution of Mg2+ or Al3+ by Zr4+ may occur in accordance to following equations as 

suggested by Kim.[5.10] 

 

𝑍𝑟𝑂2
𝑀𝑔𝑂
→   𝑍𝑟𝑀𝑔

°° + 𝑂𝑖
′′ + 𝑂0

𝑋 

𝑍𝑟𝑂2  
2 𝑀𝑔𝑂
→     𝑍𝑟𝑀𝑔

°° + 𝑉𝑀𝑔
′′ + 2𝑂0

𝑋 

3𝑍𝑟𝑂2
2𝐴𝑙2𝑂3
→     3𝑍𝑟𝐴𝑙

° + 𝑉𝐴𝑙
′′′ + 6𝑂0

𝑋 

2𝑍𝑟𝑂2  
𝐴𝑙2𝑂3
→    2𝑍𝑟𝐴𝑙

° + 𝑂𝑖
′′ + 3𝑂0

𝑋 

The formation of oxygen interstitial is difficult because of the higher ionic radius of oxygen. But 

the cation vacancy cause by Zr4+ substitution is more possible and favorable reaction.[5.8] 
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5.3.6 Flexural strength study 

Flexural strength values of 16000C sintered samples improved with the addition of ZrO2 in spinel 

composition (Fig. 5.38). The Flexural strength of 1.5 wt. % ZrO2 containing sample was found to 

be 97 MPa whereas the sample without ZrO2 had the strength of only 53 MPa. The incorporation 

ZrO2 has improved the densification of spinel by modifying the microstructure with smaller and 

uniform grains and resulted in enhanced strength. The increase in strength was found to increase 

with the increase in zirconia content in the composition. However, the incremental effectiveness 

of the increase in strength with the increase in ZrO2 content was found to be reduced by higher 

amounts. For 2 wt. % ZrO2 contained composition; strength value was found to be reduced, which 

may be due to crack formation within the sample as observed in the microstructure.[5.8] 

 

5.3.7Thermal shock behaviour study 

Fig.5.39 show the strength retainment capacity of the 16000C sintered samples after thermal 

shocks. As the flexural strength and density values indicate that presence of ZrO2 increased these 

properties significantly, the strength retainment capacity of the ZrO2 containing samples was found 

to be much higher after thermal shock cycles compared to those samples without ZrO2. This 

enhanced strength retainment was prominent up to 6 thermal cycles. The strength of all samples 

Fig.5.38 Variation of flexural strength with 
zirconium dioxide content for 16000C 

sintered samples.   

 

Fig.5.39 Strength retainment of the 

compositions after thermal shock. 
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without ZrO2 decreased more after 4 cycles of thermal shock. But ZrO2 containing samples showed 

strength retainment up to 6 cycles of thermal shock. The increase in strength of ZrO2 contained 

samples compared to without ZrO2 may be the due presence of ZrO2 in the grain boundaries which 

have helped in a micro crack generation which lead to crack deflection which resulted in increased 

strength retainment capacity of the samples. [5.8] 

5.3.8 Conclusions 

 The addition of ZrO2 at a higher temperature resulted in higher shrinkage due to 

densification whereas at low temperature (1200 °C) the samples without ZrO2 exhibits 

higher shrinkage value. 

 The introduction of ZrO2 resulted in only spinel phase at single stage sintering but in non- 

ZrO2 samples, reactant phases were present even after firing at 1600 °C. The peak intensity 

of the reactant phases was low in ZrO2 contained samples compared to without ZrO2 batch. 

 The greater extent of spinel formation and associated expansion resulted in low-density at 

low temperature for ZrO2 contained samples, but at high temperature (1600 °C) ZrO2 

contained samples showed higher density due to greater sintering resulting from defects. 

 The addition of ZrO2 helped in spinel formation by creating cation vacancy as well as 

densification process by restricting the grain boundary movement. But the presence of ZrO2 

in higher amount i.e. more than 1% leads to micro-crack generation that affected the 

sintering process. 

 Microstructural features show well compact and less porous structure for the ZrO2 

contained samples with traces of Zr present in EDAX of 1600 °C sintered samples. 

 Flexural strength and strength retainment after thermal shock was improved with ZrO2 

addition. The ZrO2 added samples retained high strength even after 6 cycles of thermal 

shocks in comparison to without ZrO2 samples. However, the retainment drastically fall in 

all the samples after 8 cycles of thermal shock. 
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Section-IV 

5.4 Effect of aluminium nitrate nonahydrate addition 

5.4.1 Linear shrinkage study 

The linear shrinkage behavior vs. sintering temperature plot is shown in fig.5.40. All the 

batches showed expansion at 12000C due to spinel formation with no shrinkage. However, the 

expansion in all additive containing batches was found to be much greater than compared to that 

of the without additive composition at the lower sintering temperature. This higher expansion in 

additives containing compositions was due to a greater extent of spinel formation at the lower 

temperatures which may have occurred due to the presence of an additional amount of reactant 

phases produced via decomposition of the additives on heating. The additive containing batch 

showed higher shrinkage value above 14000C indicating the greater extent of densification. It was 

observed that with an increase in the amount of nitrate addition the shrinkage rate was decreased. 

This might due to exaggerated grain growth which might have occurred due to the presence of 

more amount of fine alumina formed from the decomposition of the nitrate additive. [5.11, 5.12] 

 

 

5.4.2 Densification study  

The variation in bulk density values of all the batches against sintering temperatures and the 

additive percentage is represented in fig.5.41. With the increase in sintering temperature, a 

Fig.5.40 Plot of linear shrinkage vs. sintering temperature. 
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common trend of increasing bulk density value was observed for all compositions due to the higher 

extent of sintering with increasing temperature. The addition of aluminium nitrate was found to 

affect the densification behavior in almost all sintering temperatures. This indicates the greater 

extent of spinel formation reaction (associated with volumetric expansion) in additive containing 

batches at a lower temperature in comparison to non-additive batch. The apparent porosity was 

also high for the additive containing batch at 12000C. The apparent porosity of alumina nitrate 

containing batch is shown Fig.5.42. The formation of nascent alumina from nitrate additive 

accelerated the spinellisation reaction because of which porosity was high in low sintering 

temperature. When the sintering temperature was increased to 15000C, the higher density values 

were observed in additive containing batch due to a greater extent of sintering in the samples. This 

clearly indicates that the presence of additive influenced the spinellisation process at lower 

temperature and also aided in the sintering of the formed MgAl2O4. The highest density value was 

observed for 1 wt.% additive-containing composition sintered at 16000C. The apparent porosity 

results supported the bulk density values.[5.11, 5.12] 

 

  

 

 

 

5.4.3 Dilatometry study 

Fig.5.43 represents the dilatometric plot of all the compositions. It represents both the expansion 

due to spinel formation and shrinkage due to sintering at higher temperatures, which run parallel. 

Fig.5.41 Variation of bulk density with 

sintering temperature and additive 

percentage. 

 

Fig.5.42 Variation of apparent porosity with 

sintering temperature and additive 

percentage. 
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At higher temperatures, the sintering process accelerates due to increased mass transfer and 

expansion behavior related with spinel formation is overtaken by shrinkage resulting from 

sintering. Thus, a downward turn of the dilatometric curve is observed at the high temperatures. 

This feature is common in all the compositions with or without the additive. Initially, there is no 

effect of the additive on the dilatometry plot up to ~10000C. However, aluminium nitrate 

containing batch showed much higher expansion in comparison to zero additive batch. Aluminium 

nitrate will decompose with an increase in temperature and yield very fine and reactive Al2O3 

particles respectively. The presence of these fine particles will affect the stoichiometry. The effect 

of these particles at onset temperature is negligible. After the formation of the MgAl2O4 layer 

between MgO and Al2O3, the reaction is mainly controlled by diffusion of slow moving cation over 

this layer. However, the process of sintering depends on the mobility of both cations and anions. 

As oxygen diffusion is lower than the cations due to the larger ionic size of the oxygen ion, it acts 

as the rate determining step in sintering. The non-stoichiometry plays an important role in this part. 

The reactive and fine alumina produced from decomposition of aluminium nitrate will incorporate 

in accordance with following reactions as suggested by Kim[5.10]- 

 

Al2O3 into MgAl2O4 –  

 

4 𝐴𝑙2𝑂3
3𝑀𝑔𝐴𝑙2𝑂4
→       5𝐴𝑙𝐴𝑙

𝑋 + 3𝐴𝑙𝑀𝑔
° + 𝑉𝐴𝑙

ʹʹʹ + 12𝑂𝑜
𝑋-----------------1 

 

4 𝐴𝑙2𝑂3
3𝑀𝑔𝐴𝑙2𝑂4
→       6𝐴𝑙𝐴𝑙

𝑋 + 2𝐴𝑙𝑀𝑔
° + 𝑉𝑀𝑔

ʹʹʹ + 12𝑂𝑜
𝑋------------------2 

 

3 𝐴𝑙2𝑂3
2𝑀𝑔𝐴𝑙2𝑂4
→       4𝐴𝑙𝐴𝑙

𝑋 + 2𝐴𝑙𝑀𝑔
° + 𝑂𝑖

ʹʹ + 8𝑂𝑜
𝑋--------------------3 

 

 

The creation of interstitial requires much higher structural adjustments and is less likely to occur. 

So, the equations 1-3 clearly indicate that the presence of fine reactive alumina into the MgAl2O4 

will generate cation disorder and decrease oxygen vacancy concentration. 
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The dilatometry plots clearly indicate higher spinellisation in alumina nitrate contain batches. This 

is due to increase in cation disorder which has occurred due to the incorporation of fine reactive 

alumina produced from insitu decomposition of alumina nitrate at a higher temperature. But we 

can also observe that increase in the higher amount of alumina nitrate led to higher shrinkage with 

an increase in temperature the presence of excess alumina which assisted in densification acting 

as a second phase inclusion.[5.11, 5.12] 

 

5.4.4 Microstructure study 

The FESEM micrograph of the fractured surface of without additive batch is shown in figure 5.44. 

The 12000C sintered sample show a porous microstructure with fine alumina grains uniformly 

distributed over the coarser magnesia grains. However, the 16000C sintered samples show a dense 

microstructure with little intergranular and intragranular pores. 

A porous microstructure was observed in 12000C sintered 1 wt.% aluminium nitrate nonahydrate 

containing a sample (Fig. 5.45). The growth of some platelet shape structure was observed on 

larger size grains. This may be due to the formation of nanosize spinel on coarser magnesia grains 

caused by diffusion of fine alumina particles. The microstructure became more porous, and the 

intensity of this platelet formation was found to increase with the increase in the percentage of 

aluminium nitrate nonahydrate addition (Fig.5.46). This might be due to increase diffusion of 

alumina in magnesia due to increasing cation defects as mentioned in section 5.4.3 thus 

Fig.5.43 Dilatometry plots of aluminium nitrate nonahydrate containing batch. 
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accelerating spinel formation reaction. The literature also provides some evidence of the growth 

of such structure. The mechanism of growth of such nano-size structure is called template 

mechanism.[5.13, 5.14] 

 

 

Fig.5.44 FESEM micrograph of without additive batch. 

 

 

Fig.5.45 Microstructure 12000C sintered 1wt. % aluminium nitrate nonahydrate containing 

sample. 
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Fig.5.46 Microstructure of 12000C sintered 2 wt. % aluminium nitrate nonahydrate containing 

sample. 

 

The microstructure of 16000C sintered 1 wt. %, and 2 wt. % aluminium nitrate nonahydrate 

containing batches are shown in fig.5.47. A dense microstructure with few close pores was 

observed. The increase in the addition of aluminium nitrate was found to aid in grain growth at 

higher temperature due to increase in grain boundary mobility.[5.11, 5.12] 

 

 

Fig.5.47 Microstructure of 16000C sintered 1 and 2 wt. % aluminium nitrate nonahydrate 

containing batches. 



Chapter 5 Results and discussions 

 

94 | P a g e  
 

5.4.5 Phase analysis study 

 

 

  

Fig.5.48 XRD of aluminium nitrate nonahydrate batch (a) 12000C sintered (b) 14000C sintered 

and (c) 16000C sintered. 

(c) 
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X-ray diffraction pattern of aluminium nitrate nonahydrate contained batches sintered at 12000C 

are shown in Fig.5.48 (a). The presence of spinel peak in x-ray diffraction pattern confirms that 

spinel formation started below 12000C in both the batches. The intensity of spinel phase was 

observed to be quite low in zero additive batch in comparison to the non-additive batches. The 

addition of aluminium nitrate was found to aid spinel formation reaction at low temperature. Effect 

of aluminium nitrate addition on spinel formation reaction was more compared to zero additive 

batch. This may be due to the generation of cation defects caused by diffusion of nascent alumina 

(formed from the decomposition of aluminium nitrate) into spinel which aided in spinellisation 

reaction. 

The x-ray diffraction patterns of all 14000C sintered compositions are shown in fig.5.48 (b). The 

increase in sintering temperature increased the amount of spinel formation in all the batches. The 

spinel formation was much higher in additive containing batch compared to zero additive batch 

where reactant phase was observed distinctly. However, in aluminium nitrate batch small reactant 

phase peaks were observed on addition of more than 1.5 wt. % aluminium nitrate nonahydrate 

which might due to exsolution of alumina. The 16000C sintered samples xrd pattern were shown 

in fig.5.48(c). The presence of only spinel phase was observed in all the additive containing 

samples which confirm completion of spinel reaction. However, unreacted phases were observed 

in the without additive sample indicating incomplete spinellisation reaction.[5.11, 5.12] 

5.4.6 Flexural strength study 

Flexural strength of 1600 °C sintered samples of both the additive containing batch is shown in 

fig.5.49 The Flexural strength of 0.5 wt.% aluminium nitrate nonahydrate containing sample was 

found to be 176.98 MPa whereas the sample without additive batch merely showed the strength of 

only 31.25 MPa. The incorporation aluminium nitrate improved the strength of spinel by 

modifying the microstructure. In aluminium nitrate nonahydrate batch, strength increased rapidly 

with 0.5 wt.% addition of aluminium nitrate, but the addition of more amount of additive decreased 

the strength. This might be due to exaggerated grain growth in presence of extra alumina as 

observed in microstructure in section 5.4.4. This hindered the densification resulting in poor 

strength [5.11, 5.12] 
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5.4.7 Thermal shock behavior study 

Fig.5.50 represents the strength retainment of additive containing batch after thermal shock.The 

strength retainment capacity increased in both the additive containing batches in comparison to 

zero additive batch.In aluminium nitrate nonahydrate added batch,highest strength retainment was 

shown by 0.5 wt.% aluminium nitrate contained batch.The strength retainment did not vary much 

with a variation of additive percentage.The improvement in strength may be due to the presence 

of extra alumina as a secondary phase which has the ability to deflect cracks.[5.11, 5.12] 

5.4.8 Conclusions 

 Effect of addition of aluminum nitrate nonahydrate as a source of nascent, fine and reactive 

Al2O3 was studied on the development of solid-oxide reaction sintered stoichiometric 

magnesium aluminate spinel. 

 Shrinkage, densification and dilatometry have shown that the additives enhance the spinel 

formation at low temperatures, up to 14000C and negatively affects densification. But at 

higher temperatures they resulted in higher density values. 

 Microstructural studies showed loose grain arrangements for all the compositions at lower 

temperatures but well compacted dense structure at high temperature with little inter and 

intragranular porosity. The presence of additive also aided in grain growth at a higher 

temperature. 

Fig.5.49 Flexural strength of 16000C 

sintered sample. 

 

Fig.5.50 Strength retainment additive 

containing batch after thermal shock. 
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 The strong beneficial effect was observed for the additions on flexural strength but strength 

fall marginally with increasing amount of the additives due to exaggerated grain growth. 

Phase analysis also showed the beneficial effect of the additive on spinel formation 

reaction. 

 Retained strength after thermal shock was also found to be much higher for additive 

containing batches, and a slow and gradual decrease in retained strength values with 

increasing number of thermal shock cycles. 
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Section-V 

5.5 Effect of magnesium nitrate hexahydrate addition 

5.5.1 Linear shrinkage study 

Fig. 5.51 represents linear shrinkage behavior of all the batches at different sintering temperatures. 

At 1200oC, all the additive containing batches showed expansion values, no shrinkage, due to 

spinel formation and nearly no sintering. The presence of magnesium nitrate hexahydrate was 

found to cause more expansion compared to that of the without additive composition. This higher 

expansion behavior in additive containing compositions is due to increased spinel formation at a 

lower temperature, which is associated with volume expansion. But after 14000C, the shrinkage 

was more in additive containing batch compared to zero additive batch. This may be due to higher 

sintering in the additive batch. The shrinkage was found to increase upto 1 wt. % addition of 

magnesium nitrate hexahydrate. The addition of more than 1 wt.% led to slight fall in the shrinkage 

value.[5.11, 5.12] 

 

 

5.5.2 Densification study 

Fig. 5.52 represents the variation in bulk density values of all the batches against sintering 

temperatures. A general trend of increasing bulk density with increasing sintering temperature was 

common for all compositions due to greater sintering. The addition of magnesium nitrate 

hexahydrate was found to influence the densification behavior in almost all sintering temperatures. 

Fig.5.51 Plot of linear shrinkage vs. sintering temperature for 

magnesium nitrate hexahydrate batch. 
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At 12000C, additive containing batches showed lower bulk density value compared to non-additive 

batch. This is due to a greater extent of spinel formation reaction in additive containing 

compositions at a lower temperature compared to non-additive batch. The porosity values are also 

high for the additive containing ones at 12000C compared to without additive batch (Fig.5.53). 

With the increase in sintering temperature to 14000C an increase density value was observed due 

to greater sintering of the samples. The rate of increase of density value in additive containing 

samples was much higher compared to non-additive batch. When sintering temperature was further 

increased to 16000C the bulk density value of magnesium nitrate containing batch was higher than 

the zero additive. But the addition of more than 1 wt.% magnesium nitrate led to slight fall in 

density. This might be due to exaggerated grain growth occurred in the presence of extra magnesia 

formed from decomposition magnesium nitrate hexahydrate at a higher temperature. The apparent 

porosity results represented in fig 5.53 also supports the bulk density results[5.11, 5.12].  

 
 

 

    

 

 

5.5.3 Dilatometry study 

Fig.5.54 represents the dilatometry plot of all the compositions. It represents both the expansion 

due to spinel formation and shrinkage due to sintering at higher temperatures, which run parallel. 

At higher temperatures, the sintering process accelerates due to increased mass transfer and 

expansion behavior related with spinel formation is overtaken by shrinkage resulting from 

Fig.5.53 Plot of apparent porosity vs. 
sintering temperature for magnesium nitrate 

hexahydrate batch. 

 

Fig.5.52 Plot of bulk density vs. sintering 
temperature for magnesium nitrate 

hexahydrate batch. 
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sintering. Thus, a downward turn of the dilatometry curve is observed at the high temperatures. 

This feature is common in all the compositions with or without the additive. After the formation 

of the MgAl2O4 layer between MgO and Al2O3, the spinellisation reaction depends on diffusion 

slow moving cations over this layer. The mobility of both cations and anions decides the sintering 

process. As oxygen diffusion is lower than the cations due to the larger ionic size of the oxygen 

ion, it acts as the rate determining step in the sintering process. The non-stoichiometry plays an 

important role during this step. The presence of nascent magnesium oxide from magnesium nitrate 

hexahydrate effects this step. The incorporation of the nascent magnesia in magnesium aluminate 

spinel can take place in the following way as suggested by Kim [5.10]- 

 

MgO into MgAl2O4 – 

 

3 𝑀𝑔𝑂
𝑀𝑔𝐴𝑙2𝑂4
→      𝑀𝑔𝑀𝑔

𝑋 + 2𝑀𝑔𝐴𝑙
ʹ + 3𝑂𝑜

𝑋 + 𝑉𝑜
°°---------------------4 

 

4 𝑀𝑔𝑂
𝑀𝑔𝐴𝑙2𝑂4
→      𝑀𝑔𝑀𝑔

𝑋 + 2𝑀𝑔𝐴𝑙
ʹ +𝑀𝑔𝑖

°° + 4𝑂𝑜
𝑋-------------------5 

 

Equations 4 and 5 indicate that the incorporation of extra MgO in MgAl2O4 will increase oxygen 

vacancy concentration. 

 

 

 Fig.5.54 Dilatometry plots of magnesium nitrate hexahydrate containing batch. 
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Incorporation of fine reactive in-situ MgO produced through decomposition of magnesium nitrate 

at a higher temperature will increase in oxygen vacancy concentration, and so higher shrinkage 

due to sintering was observed in the dilatometry curve of magnesium nitrate containing 

batch.[5.11, 5.12] 

 

5.5.4 Microstructure study 

Microstructure study of the sintered fractured surfaces of all the batches was done using a field 

emission scanning electron microscope(FESEM) in back-scattered electron mode. Fig. 5.55(a) and 

(b) represent the microstructure of 12000C and 16000C sintered without additive batch 

respectively. A porous microstructure was observed at 12000C, presence of spinel and reactant 

phases were clearly visible in the micrograph (Fig 5.55(a)). The 16000C sintered sample showed 

the presence of only a single phase with a large number of intergranular pores along with small 

and large grains (Fig 5.55 (b)). 

 

 

Fig.5.55 Microstructure of the without-additive batch. 

The microstructure of 12000C sintered magnesium nitrate hexahydrate containing batch shows a 

porous structure with a different kind of nano-size spinel template (needle–like) growing on large 

magnesia grains. (Fig.5.56 and 5.57) The intensity of the growth of these platelets was found to 

increase with an increase in the percentage of magnesium nitrate hexahydrate. The change in shape 
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of templates to needle-like structure might occur due to shrinkage caused by sintering of the 

platelets in the presence of magnesium nitrate hexahydrate[15]. As magnesium nitrate hexahydrate 

will produce fine nano size magnesia on decomposition, which on incorporation in these nano-

sized spinel platelets increase in oxygen ion diffusion which will cause sintering of this 

platelets.[5.10-5.14, 5.16] 

 

 

Fig.5.56 Microstructure of 12000C sintered 1 wt.% magnesium nitrate hexahydrate containing 

sample. 

 

Fig.5.57 Microstructure of 12000C sintered 2 wt.% magnesium nitrate hexahydrate containing 

sample. 
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Fig.5.58 Microstructure of 16000C sintered 1 and 2 wt.% magnesium nitrate hexahydrate 

containing batches. 

The fig.5.58 represents microstructure of 16000C sintered 1 wt.% and 2 wt.% magnesium nitrate 

hexahydrate containing batches. The addition of magnesium nitrate resulted in a dense 

microstructure. The increase in grain boundary mobility due to the presence of nascent magnesia 

lead to exaggerated grain growth. The pore size decreased with increased in magnesium nitrate 

addition. This might be due to a higher rate of sintering in magnesium nitrate containing batch. 

 

5.5.5 Phase analysis study 

The xrd pattern of both without additive and magnesium nitrate hexahydrate containing batches 

are shown in fig.5.59. The xrd patterns of 12000C sintered samples are shown in fig 5.59(a). It 

shows spinel peaks along with reactant peak was conclude that spinel formation reaction started 

below 12000C in both without additive and magnesium nitrate hexahydrate batch. However, the 

intensity of the spinel peak was quite high in magnesium nitrate hexahydrate batch in comparison 

to the without additive batch. This specifies that magnesium nitrate hexahydrate addition aided in 

spinel formation reaction. The reason for this may be due to the presence of nascent magnesia from 

magnesium nitrate hexahydrate which accelerated the spinellisation reaction.[5.11, 5.12] 
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Fig.5.59 XRD of magnesium nitrate hexahydrate batch (a) 12000C sintered (b) 14000C sintered 

and (c) 16000C sintered. 
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Fig 5.59(b) shows xrd pattern of 14000C sintered compositions. A general trend of increase in 

spinel formation with an increase in sintering temperature was observed. However, the intensity 

of spinel peak in magnesium nitrate hexahydrate batches was high compared to zero batch. The 

intensity of the reactant peaks were quite small in the additive batch. 

The xrd pattern of 16000C sintered samples are depicted are in fig 5.59(c). Only spinel phase was 

observed in the additive batch which confirms the completion of spinellisation reaction. However, 

unreacted phases were observed in the without additive sample indicating incomplete 

spinellisation reaction. A small magnesia peak was observed in the 0.5 wt.% magnesia nitrate 

hexahydrate batch. But the addition of more amount of magnesia nitrate led to increasing in spinel 

amount which may be due to increasing the solubility of alumina in the presence of nascent 

magnesia from magnesium nitrate.[5.11, 5.12] 

 

5.5.6 Flexural strength study 

Fig 5.60 represents flexural strength plot of 16000C sintered magnesium nitrate hexahydrate and 

zero batch. The flexural strength was found to increase drastically up to 152.06 MPa in 0.5 wt.% 

Mg(NO3)2.6H2O addition. The increase in flexural strength in magnesium nitrate hexahydrate 

batch is mainly due to the occurrence of higher sintering which led to a compact microstructure 

with high strength. But as the amount addition of magnesium nitrate hexahydrate increased the 

strength started to decrease this is due to the increase in grain growth in the presence of an 

additional amount of nascent MgO from magnesium nitrate hexahydrate decomposition.[5.11, 

5.12] 

 

5.5.7 Thermal shock behavior study  

The strength retainment of 16000C sintered zero batch and magnesium nitrate hexahydrate batch 

after exposing to thermal shock cycle is plotted in the  Fig.5.61.The strength retainment capacity 

of the magnesium nitrate hexahydrate batch was quite high in comparison with the zero batch.Even 

after 8 cycles of thermal shock the fall in strength was quite low.The increase in retainment of 

strength after thermal shock might be due to the presence of extra fine MgO from magnesium 

nitrate decomposition which might have hindered the growth of crack after thermal shock.The 

presence in closed pore inside the grains might be another probable cause of entrapment of crack 

which might have increased the strength retainment. [5.11, 5.12]  
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5.5.8 Conclusions 

 The addition of nascent, fine and reactive MgO from magnesium nitrate hexahydrate 

precursor was studied on solid-oxide reaction sintered stoichiometric magnesium 

aluminate spinel. 

 Shrinkage, densification, and dilatometry have shown enhanced spinel formation at low 

temperatures, up to 14000C and negatively affected the densification. But higher density 

values were observed at higher temperatures. 

 At lower temperatures, loose grain arrangements for all the compositions was observed in 

microstructure but at high-temperature microstructure became well compacted dense with 

minute inter and intragranular porosity. The presence of nascent MgO accelerated grain 

growth at a higher temperature. 

 Flexural strength improved in the presence of the extra fine in-situ generated magnesia 

with but with increasing amount of the additives, a fall in strength was observed due to 

exaggerated grain growth. Phase analysis confirmed that addition of the additive had a 

beneficial effect on spinel formation reaction. 

 Improved thermal shock was observed for additive containing batches, the retained 

strength decrease at a slow and gradual rate with increasing number of thermal shock cycles 

in additive contained batches. 

Fig 5.60 Flexural strength of 16000C 

sintered magnesium nitrate hexahydrate 

 

Fig.5.61 Strength retainment magnesium 
nitrate hexahydrate containing batch after 

thermal shock. 
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Chapter 6 

Summary of the work 
 Dense magnesium aluminate spinel was successfully prepared from commercial grade 

materials using single step solid state sintering process. 

 Planetary milling was found to have a profound effect on both spinel formation and 

densification process. 

 The surface area of the starting materials was found to increase with milling  

 The addition of additives like zinc oxide, zirconium dioxide was found to enhance the 

densification process. 

 The addition of additives leads to a modified microstructure which leads to an increase in 

strength of the formed spinel. 

 The dilatometry results showed that milling and additives addition helped in obtaining 

dense spinel by lowering the densification temperature. 

 Phase analysis depicted that the spinel formation started below 10000C in all the 

compositions. 

 The presence of secondary phase due to additive was not detected in the additive batches. 

 The thermal shock resistance improved in additive contained batch. 

 The effect of in situ generated magnesia and alumina were also found to be beneficial in 

spinel formation and densification via solid state route. 

 The presence of extra reactant phase from in situ generated magnesia and alumina from 

nitrate precursor additive had a beneficial effect on reaction stoichiometry. 

 A significant grain growth was observed in the nitrate additives contained batches. 

 The thermal shock resistance was also found to improve in the nitrate additive contained 

batches. 
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Chapter 7 

Future work 
 The commercial synthesis of dense magnesium aluminate spinel via single step solid state 

route is challenging owing to associated volume expansion due to spinel formation.  

 The current work describes a reaction sintering technique to developed dense magnesium 

aluminate spinel by solid state reaction using milling and additives in stoichiometric 

composition.  

 The future work may be done on the development of dense spinel using these additives in 

non-stoichiometric composition. 

 The addition of more than one additive at a time can be studied. 

 The incorporation of both milling and additive at a time can be studied. 

 The development of transparent spinel from commercial grade materials using spark 

plasma sintering and hot isostatic pressing can be studied. 

 The reaction kinetics of spinel formation and densification with milling and additive 

addition can also be done. 
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