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Abstract

This thesis first presents some program slicing techniques for Aspect-Oriented Programs

(AOPs) and then presents a technique for refactoring of software using the proposed slicing

technique. Main aim of all the proposed slicing algorithms in this thesis is to compute

accurate and precise dynamic slices of AOPs.

In order to compute the slices of aspect-oriented programs, first we extend the System

Dependence Graph (SDG) for Object-Oriented Programs (OOPs) to handle AOPs. We have

named the extended SDGExtended Aspect-Oriented SystemDependence Graph (EAOSDG).

The EAOSDG successfully represents different aspect- oriented features such as class

representation, method invocation, inheritance, aspect declaration, point-cuts, advices etc.

The EAOSDG of an aspect-oriented program consists of System Dependence Graph (SDG)

for the non-aspect code, a group of Aspect-Oriented Dependence Graphs (ADGs) for

aspect code and some additional dependence edges that are used to connect the SDG

of the non-aspect code (base code) to ADG of the aspect code. Then, we propose an

extended two-phase algorithm to compute the static slices of AOPs, using the proposed

EAOSDG. Subsequently, we present a context-sensitive slicing algorithm to compute the

dynamic slices of AOPs, using the proposed EAOSDG. The context-sensitivity makes the

computed slice more precise and accurate. We have developed a slicer to implement our

proposed algorithms. We have compared the performance of extended two-phase algorithm

and context-sensitive algorithm, in terms of the average slice extraction time. We have

considered five open source projects for comparison of slicing algorithms. We have observed

that the context-sensitive algorithm computes the slices faster than the extended-two phase

algorithm.

Next, we extends our intermediate representation (EAOSDG) to be able to represent

concurrent aspect-oriented programs. We have named this intermediate representation

Multithreaded Aspect-Oriented Dependence Graph (MAODG). Our MAODG correcly

represents the concurrency dependencies in concurrent AOPs. Then, we extend our

context-sensitive dynamic slicing technique to handle concurrent AOPs having multiple

threads. We have named our algorithm Context-Sensitive Concurrent Aspect (CSCA)

slicing algorithm. Due to the presence of inter-thread synchronization and communication

dependencies, some control and data flows in the threads become interdependent. This

interdependency causes difficulty in finding accurate slices of concurrent AOPs. Our

algorithm takes the MAODG of the concurrent AOP and a slicing criterion as input and

vii



computes the dynamic slice for the given concurrent AOP. We have developed a slicer

Concurrent AspectJ slicer to implement our proposed CSCA algorithm. We have compared

CSCA algorithm with two other existing algorithms using five case studies. The experiment

shows that, our proposed CSCA algorithm computes precise slices in less time as compared

to the other two existing algorithms.

Further, we propose an approach for dynamic slicing of distributed AOPs. We

first represent distributed aspect-oriented program using dependence based intermediate

representation which we have named Distributed Aspect Dependence Graph (DADG).

Based on the DADG, we present a slicing algorithm Parallel Context-sensitive Dynamic

Slicing (PCDS) algorithm for distributed AOPs. We introduce parallelism in our algorithm

to make slice computation faster. We have developed a tool called D-AspectJ slicer to

implement the PCDS algorithm. The proposed slicing algorithm is compared with two other

existing algorithms using seven case studies. The experimentation shows that our proposed

PCDS algorithm generates smaller slices in less time as compared to the other two existing

algorithms.

Finally, we present a technique for software refactoring using program slicing. We

use slice-based cohesion metrics to identify the target methods of a software that require

refactoring. After identifying the target methods, we use program slicing to divide the target

method into two parts. Then, we use the concept of aspects to alter the code structure

in a manner that does not change the external behavior of the original module. We have

implemented our proposed refactoring technique and evaluated its effectiveness through

eleven case studies. We have also evaluated the effect of our proposed refactoring technique

based on an open source code coverage tool EclEmma.

Keywords: Program Slicing; Aspect-Oriented Programming; Software

Refactoring; Concurrent Programming; System Dependence Graph.
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Chapter 1

Introduction

In the present day world, most of the activities are controlled by software or software

is helping the routine activities to be more effective. Starting from e-mail to artificial

satellite launching, software is developed to handle a wide range of activities. Every task

of these applications is controlled by software. The main concern of present day software

development organizations is to deliver more reliable and maintainable software. The

increasing program complexity generates obstacles in the development of such software.

Therefore, researchers have explored many program analysis techniques that help study the

behaviour of the programs and reduce the complexity of a program. Program slicing is one

of such program analysis techniques. Program slicing extracts the statements of a program

that may affect or may be affected by a particular point in a program [1]. The collection of

such bunch of extracted statements is called a slice and the point of interest at which we find

the slice is called slicing criterion. Typically, a slicing criterion consists of a pair < s, V >,

where s is the statement number and V is the set of variables present in that statement. The

important applications of program slicing include various software engineering activities

such as program understanding, testing, debugging, program maintenance, complexity

measurement using software metrics, software security, and software refacoring etc.

Program slicing technique was first proposed by Mark Weiser [1] in 1981. According

to Weiser, program slicing is a technique to generate a part of the program with respect to

a given slicing criterion by deleting zero or more irrelevant statements from the original

program. Also, the generated part called as slice must be an executable slice. The slice

is computed such that it generates the same output as the original program would have

generated with the same input. The slicing technique proposed by Weiser [1] is called static

backward slicing. It is called static because it is computing slices for all possible inputs to

the given program. Weiser proposed the algorithm for computing the slices by exploring the

reachability of the slicing criterion. Initially, program slicing was proposed for procedural

programs that basically contain only procedures. After Weiser, several other researchers

have developed various program slicing techniques such as, static forward slicing [2],

dynamic slicing [3, 4], data-flow equation based slicing [5], backward slicing [6], conditional

slicing [7], etc. As the programming practice changes from procedural programming to

Object-Oriented Programming (OOP) , all the above mentioned slicing techniques where
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found insufficient to address the features of OOP. The features like abstraction, inheritance,

overriding, instantiate, polymorphism etc. cannot be handled by the procedural slicing

techniques. Therefore new slicing techniques have been developed by several researchers

[8–10] to compute slices of Object-Oriented Programs (OOPs).

As the popularity of OOP increased, people started finding some drawbacks in the OOP

implementation. One of them is the presence of cross-cutting concerns. Cross-cutting

concerns are that parts of the program that are scattered across multiple modules of the

program and are also tangled with other basic modules. While OOP is the most common

methodology used tomanage core concerns, it is not sufficient formanaging the cross-cutting

concerns. A new methodology was evolved, called Aspect-Oriented Programming (AOP),

which can effectively handle the cross-cutting concerns of a software. Along with AOP

comes the new features like pointcuts and joinpoints, which cannot be handelled by the

Oject-Oriented (OO) slicing algorithms. Zhao et al. [11] had proposed a slicing algorithm

for AOPs. But, the algorithm of Zhao is a static type. According to Korel and Laski [12], the

dynamic slices are more useful for interactive applications such as designing and testing and

they are smaller in size. Therefore, there is a need for developing more efficient dynamic

slicing technique for AOPs which can compute accurate and precise slices.

The introduction of concurrency in a program increases the throughput of the system.

In AOP, concurrency is achieved through using threads. When an Aspect-Oriented (AO)

program does not contains any thread, then each timewe execute the program, it will produce

the same result for the same input. It means that the output of a program without threads

can be predicted, if we know the inputs. But, the presence of threads in a program make

it unpredictable. It may produce different results for the same input when the program

containing threads executes in different runs. Computation of dynamic slice of any given

program depends heavily on the program execution. The non-deterministic nature of a

concurrent program makes it very difficult to understand it's execution and hence presents

obstacles to compute the slices.

Similarly, the distributed AOPs are also harder to understand and analyze. Execution

sequence in a distributed program depends on the sequence of data exchange between the

distributed programs. But, the sequence of data exchange between the component programs

is not consistent, because all the component programs run on independent computers connect

through one network. Hence, dynamic slice generation of the distributed programs is very

difficult. However, most of the research work in the program slicing area have focused

attention on sequential programs. To the best of our knowledge research reports addressing

slicing of concurrent and distributed programs are scarce in literature [13, 14].

A major goal of any dynamic slicing technique is preciseness, since the results are

normally used during interactive applications such as program debugging. Preciseness

is especially an important concern in slicing aspect-oriented programs, since the size of

practical aspect-oriented programs is often very large. The slice computation time of an
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imprecise dynamic slicer may be unacceptably large for such programs [15]. Generally,

slicing starts with the analysis of the code of the given program and then presenting the

program using an intermediate representation. Most of the researchers have considered

graphs as the intermediate representation. The intermediate graph representation is analyzed

by using an algorithm to compute the required slices. So, the efficiency of a slicing technique

depends on how efficiently an intermediate graph representation is able to represent the given

program.

As already discussed, program slicing is useful in many fields of software development,

such as testing, debugging, re-engineering, software refactoring etc. One of the important

applications of program slicing is in the field of software refactoring. We have proposed

a new software refactoring technique based on program slicing and cohesion metrics. Our

experimental results show that after applying the software refactoring technique, the value of

cohesion metric for the given program is increasing. When the cohesion of programmodules

increases, the quality of the software enhances. So, we present software refactoring as an

application of our proposed slicing algorithms.

1.1 Categories of Program Slicing

Several slicing techniques were developed in the course of time between 1980 to till date.

In the literature, we found that the existing slicing techniques can be classified broadly

into the following categories: backward or forward, static or dynamic, intra-procedural

or inter-procedural. We found that there are also some slicing techniques that are

different from the above types of slicing. These types of slicing include Context-Sensitive

slicing [16], Simultaneous slicing [4], Conditioned Slicing [7], Amorphous slicing [17–19],

Observation-Based slicing [20] and some other variations of program slicing [21]. In this

section, we discuss all these different types of slicing.

Static Slicing andDynamic Slicing: In static slicing, all the program statements that affect

the value of a variable in the slicing criterion are included into the slice. The input values

provided to the program may change the program execution and the value of the variable in

the slicing criterion. But, in static slicing the slice is computed for all possible values of the

input variables. Likewise the predicates in a program can take either a true or a false value.

In static slicing, we have to consider both the cases and find the slice. It is obvious that when

we are considering all the input values and both true and false values of all the predicates,

the size of a static slice is likely to be very large. For a large and complex program, the

computed static slice will be of large size. Hence, large sized slices are again complex and

hard to comprehend. So, the objective of slicing may not be achieved. Consider the Java

method largest() given in Figure 1.1. The static slice with respect to the slicing criterion

< 10, result > is the set of statements {1, 4, 5, 6, 7, 8, 9, 10}.
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Figure 1.1: A code snippet showing the static slice in bold with respect to slicing criterion

<10,result>

Korel and Laski [12] introduced the concept of dynamic program slicing. In dynamic

slicing, the slices are computed for a particular execution of the program specific to some

input. The sequence of the executed statements in a particular execution is observed and

the dynamic slice for that particular execution is computed. A dynamic slice with respect to

slicing criterion < s, V > is computed by finding the statements which are executing and

also affecting the values of a variable in V at statement s. In the dynamic slicing, the values

of the input variables are known and the values of predicates are also fixed. Hence, the extra

statements that were included in a static slice due to the unavailability of the fixed values for

input variables and predicates, are not present in a dynamic slice. For example, consider a

particular execution of the Java method largest() with the input value x = 5, y = 9, z = 2

given in Figure 1.2. The dynamic slice with respect to the slicing criterion < 10, result >

for the particular execution of the program is {1, 6, 7, 10}.

Dynamic slicing is found more useful in complex and large programs [3]. In other words,

we can state that dynamic slicing techniques compute precise slices. A comprehensive

survey on the existing dynamic program slicing algorithms is reported in Korel and

Rilling [15] and Xu et al. [22].

Backward Slicing and Forward Slicing: The impact analysis of a statement can be either

forward or backward. Depending upon these program analysis, the slices are computed. So

according to the direction of program analysis involved in the slicing process, the slicing

techniques can be classified as either forward or backward slicing. A backward slice provides
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Figure 1.2: A code snippet showing the dynamic slice in bold with respect to slicing criterion

<10,result,(5,9,2)>

the answer to the question: ``which statements will affect the slicing criterion?". We start

from the slicing criterion and search for the statements of the program that may directly or

indirectly affect the value of a variable at slicing criterion. This type of slicing is called

backward slicing, because we move from the current statement (slicing criterion) towards

backward direction of the program execution [1]. For example, consider the read() method

given in Figure 1.4. The backward slice with respect to the slicing criterion < 7, volume >

includes statements {1, 3, 5, 7}, as shown in bold letters in Figure 1.4.

On the other side, in forward slicing, we start from the slicing criterion and search for the

statements that may be affected by the slicing criterion. Forward slicing follows the same

direction of the program execution, and hence called forward slicing. In forward slicing, we

find the statements of the program that are directly or indirectly dependent upon the slicing

criterion and its variables [23, 24]. The forward slice of the example method given in Figure

1.4 with respect to slicing criterion < 1, h > includes statements {1, 4, 5, 6, 7}, as shown

in bold letters in Figure 1.3. A forward slice provides the answer to the question: ``which

statements will be affected by the slicing criterion?". In this thesis, we always use backward

slicing in our proposed slicing approaches.

Intra-procedural and Inter-procedural Slicing: Intra-procedural slicing computes slices

within a single procedure. Calls to other procedures are either not handled at all or handled

conservatively. If the program consists of more than one procedure, inter-procedural slicing

can be used to derive slices that span multiple procedures [6]. For object-oriented programs,
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Figure 1.3: Forward slice of the method with respect to slicing criterion <1,h> shown in

bold

Figure 1.4: Backward slice of the method with respect to slicing criterion <7,volume>
shown in bold
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intra-procedural slicing is meaningless as practical object-oriented programs contain more

than one method. So, for object-oriented programs, inter-procedural slicing is more useful.

Context-Sensitive Slicing The main aim of a slicing algorithm is not only to generate

slices but also to generate accurate slices. The slicing technique suggested by Wieser

computes the affected statements for a given slicing criterion by simply considering

reachability of the statements. This type of slicing is called context-insensitive slicing and it

does not always produce accurate slices. The slicing technique is said to be context-sensitive,

if during the traversal of the intermediate graph, the call-site is preserved at the time of entry

and exit of a method. It means that during graph traversal of a method call, one must return

to the same node fromwhere he/she entered into the method. For details on context-sensitive

slicing, the readers may refer [16].

Simultaneous Dynamic Slicing This type of slicing uses the combination of test cases

along with slicing [4]. This is called simultaneous slicing because it simultaneously compute

one dynamic slice formore than one test cases applied to the program. In dynamic slicing, the

slice is computed for only one input at a time. But, in simultaneous slicing, we can compute

one slice for a number of input test cases. A simultaneous dynamic slice of a program P with

respect to simultaneous slicing criterion C=({I1,I2,..., Im}, S, V) is a syntatically correct and

executable program P' that is obtained from P by deleting zero or more statements from P.

Here, Im represents the mth input, S is the statement and V is the set of variables in the

slicing criterion. For details on simultaneous dynamic slicing, the readers may refer [4].

Quasi Static Slicing It is a hybrid of static and dynamic slicing. In Quasi slicing the values

of some program variables are fixed and the slices are computed by varying values of other

variables [25]. This type of slicing is broadly known as conditioned slicing. Quasi-static

slicing can be used in that applications in which a set of the program inputs are fixed, and the

rest of the inputs are unknown. It is mainly used in debugging and program comprehension.

For details on simultaneous dynamic slicing, the readers may refer [25].

Amorphous Slicing Amorphous slicing is based on preserving program semantics [17, 18].

Generally all slicing techniques are syntax preserving in nature. In these techniques, the

statements are deleted from the program based on the slicing criterion, so that the syntax of

the program remains the same even after slicing. But, in amorphous slicing, any program

transformation technique can be used that preserves the semantics of the program with

respect to the slicing criterion. The computed slices are not as large as the slices computed

by other slicing techniques. The computed slices are simplified form of the program with

respect to the slicing criterion. Amorphous slicing is useful in program comprehension,

analysis and reuse. For details on amorphous dynamic slicing, the readers may refer [17, 18].
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Observation-Based Slicing Generally all the program slicing techniques are developed

based on a specific programming language and they work for the progras written in that

language only. When the same slicing technique is applied to the programs developed

using other programming languages, it may not work properly. The Observation-Based

slicing (ORBS) is a language independent slicing technique, which is capable of computing

slices for programs developed in multiple languages [20]. In ORBS, a repetitive statement

deletion process is adopted and it is validated after each deletion of statement through careful

observation of the program behaviour. If the sliced program after deletion of a statement

behaves as the original program, then the deletion is accepted. ORBS, in comparison with

dynamic slicing, is simple to construct, effective and efficient to handle programs written in

different languages. For details on simultaneous dynamic slicing, the readers may refer [20].

1.2 Issues in Program Slicing

In this section, we briefly discuss some of the most important issues that must be addressed

while computing dynamic slices of aspect-oriented programs.

• Intermediate Representation: Before computing the dynamic slices of an AOP, first

an intermediate representation is required. The given program is transformed using

the intermediate representation and then a suitable dynamic slicing algorithm can be

applied upon it to compute the slices. So, slicing of any AOP is dependent on the

intermediate representation. Hence, the intermediate representation must be efficient

to represent correctly all the features of AOP such as aspects, pointcuts, advices and

introduction.

• Memory Requirement: As the size of software is huge, therefore the memory

requirement for both the intermediate representation and the dynamic slicing

algorithm should be as small as possible. If the intermediate representation requires

more memory to represent an AOP, then the stored data will run out of memory. We

have designed our intermediate representations such that they consume little memory.

Also, we have shown that the space complexity of our proposed dynamic slicing

algorithms is less than the existing ones.

• Time Requirement: The time required for computing slices by any dynamic slicing

algorithm should be as little as possible, so that it's application can be availed in

debugging and software testing. Otherwise, the response time will be too large. We

have imparted more attention towards decreasing the slice computation time in all our

proposed algorithms. For each dynamic slicing algorithm, we have shown that of our

dynamic slicing algorithm is more time efficient than the existing ones.
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• Correctness: The dynamic slicing algorithm should compute correct dynamic slices

with respect to any given slicing criterion. A slice is said to be correct if it contains

all the statements that affect the slicing criterion. We prove that each of our proposed

dynamic slicing algorithm computes correct dynamic slices with respect to any given

slicing criterion.

• Scalability: The dynamic slicing algorithms should be developed in such a way that

the algorithms can easily be extended to handle large scale programs as the sizes of

practical aspect-oriented programs are very large. Our dynamic slicing algorithms can

be easily extended to handle large and complex programs.

• Preciseness: Only computing the slices is not useful in applications like debugging

and testing. A slice must be accurate and precise. A dynamic slice is said to be precise,

if it is an executable slice and it contains only that statements that affect the value of

the variable at a program point for execution. Generally a precise slice is smaller in

size.

1.3 Motivation for Our Work

One of the primary purpose of program slicing is to compute slices that can further be used

in debugging [23, 26]. A program slicing technique should compute correct and precise

slices so that it can be used to produce efficient results in debugging and testing. Much of

the literature on program slicing is concerned with procedural and Object-Oriented software

[10]. But, we found in the literature survey that there is a scarcity of papers on slicing of

aspect-oriented programs [27].

The existing program slicing techniques for procedural and object-oriented programs are

designed to handle the properties of procedural and OO programs, like procedures, classes,

objects, methods, inheritance, polymorphism etc. In AOP, there are some extra features

such as aspects, pointcuts, advices etc. which cannot be handled with these existing slicing

algorithms. Hence, the need of special slicing techniques explicitly for AOPs arises. There

are some researchers who have developed slicing techniques for AOPs [28, 29], but these

works are not much efficient to handle all the properties of AOPs.

Multithreading is very useful in real-time programming and parallel computing. A

multithreaded program runs faster than a single threaded program [30]. When a program

is implemented using multithreading, the independent parts of the program can run

concurrently. When the concurrency mechanism like thread is embedded with AOPs,

then they are called concurrent AOPs (CAOPs). But, there are some challenges in the

implementation of CAOPs such as debugging, testing, synchronization among threads, and

difficulty in porting the existing code to concurrent code. The CAOPs are so complex that

looking at the CAOP, it is very difficult to identify the control flow and data flow in the
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program. Hence, the complexity of CAOP puts obstacles in program comprehensibility,

debugging, and testing. Program slicing is an analysis and transformation technique that

reduces the complexity of a program. Research reports dealing with slicing of CAOPs

are scarce in the literature [14]. So, there is a imperative necessity to develop suitable

intermediate representations and efficient dynamic slicing algorithms for CAOPs.

When a AOP contains many component programs that can be executed in a distributed

environment, it is called a distributed AOP. In distributed AOPs, the component programs

execute in different computers connected to a common network. The component programs

of a distributed AOP communicate through message passing. Message passing is an

overhead for any distributed system, because it is very hard to know the sequence of

message communications between these component programs. As a result, it is very hard to

understand a distributed AOP. If a program is hard to understand, then it will be very difficult

to test it and debug the faults in the program. Hence there is a necessity of a program analysis

tool that can reduce the complexity of a given distributed AOP and help understand better.

The literature in the field of slicing of distributed AOPs is very scarce [13] and there is a

need to develop efficient and dynamic slicing techniques to handle the distributed AOPs.

Only computing slices is not useful in debugging and testing, but the computed slices

must be accurate and precise. To compute more precise slices, the slicing algorithm must

consider the context-sensitivity. Context-sensitive slicing algorithms compute more precise

slices for complex programs. The concurrent and distributed AOPs are very complex

programs and the existing slicing algorithms compute little precise slices for these programs.

By introducing explicit context-sensitive feature into the dynamic slicing algorithm, the

efficiency of slicing algorithm can increase.

There are many applications of program slicing, like debugging, testing, reverse

engineering, etc. One of the most important and useful application of program slicing is

software refactoring. In refactoring of a program, we change the structure of the more

complex modules of the program, so that the overall complexity of a given program reduces.

But, refactoring of the whole software is a tedious task in terms of time and cost involved

in it [31]. So, instead of going for refactoring of all the modules of the software, we have

to refactor only that modules which need refactoring. To identify that modules which need

refactoring, slice-based cohesion metrics [32] can be used. We can compute the cohesion of

each module in the software and then check their cohesion metrics values. If some module's

cohesion metric value is less than the admissible threshold value, then we need to refactor

that module. Program slicing can be used in refactor of the target modules.

Based on the above discussions, the main motivations of the thesis are listed below:

• Very little work has been done in the field of slicing of AOPs. Hence, there is a need

of an accurate and precise dynamic slicing algorithm for AOPs. For this, first we have

to develop a suitable intermediate representation and then based on the intermediate

representation we have to design a slicing algorithm.
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• Also, there is a scarcity of slicing techniques for concurrent AOPs. The

existing intermediate representations are not efficient to represent all the features

of a concurrent AOP. Hence, it is necessary to develop a suitable intermediate

representation of concurrent AOPs and to design a dynamic slicing algorithm for

concurrent AOPs.

• Slicing of distributed AOPs is not much explored and hence there is a need of

developing efficient dynamic program slicing technique for distributed AOPs.

• Computed slices are useful when they are accurate and precise. Context-sensitivity

is the property of program slicing algorithm which ensures the accuracy of computed

slices.

• The program slicing technique must be implemented to compare the correctness and

efficiency with other existing program slicing techniques. A dedicated tool is required,

that can generate appropriate intermediate graph for different types of AOPs. Also,

using the tool, we can implement our proposed algorithm and other existing slicing

algorithms to produce a comparison of accuracy and effectiveness.

• There are many applications of program slicing, one of them is software refactoring.

But, there is very few work found in literature which uses program slicing for

refactoring of the existing programs. So, there is a need to develop an efficient

algorithm for software refactoring using program slicing.

1.4 Objectives of Our Work

We aim at developing efficient and accurate dynamic slicing algorithms for AOPs, CAOPs

and distributed AOPs. Also, we want to propose some software refactoring techniques, such

that our proposed dynamic slicing algorithms can be used. To address these broad objectives,

we identify the following goals:

• We want to develop a dynamic slicing algorithm for aspect-oriented programs, with

more accuracy and preciseness. For this we plan to:

– develop an intermediate representation that correctly represents all the features

of an AOP and the various dependencies that exist among the statements of the

AOP.

– propose an efficient dynamic slicing algorithm for aspect-oriented programs

based on the above intermediate representation.

• Next, we wish to extend this approach to compute dynamic slices of concurrent

aspect-oriented programs. For this we plan to:
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– develop an intermediate representation that correctly represents the thread

dependencies along with the existing dependencies in an AOP.

– develop an efficient dynamic slicing algorithm for concurrent aspect-oriented

programs using the above intermediate representation.

– incorporate explicit context-sensitive features into the developed dynamic slicing

algorithm to enhance its efficiency.

• Then, we want to propose a technique to compute dynamic slices of distributed

aspect-oriented programs. For this we plan to:

– develop an intermediate representation that will accurately represent all the

communication dependencies of the distributed AOPs, along with all the basic

dependencies existing in AOPs.

– propose an context-sensitive dynamic slicing algorithm for distributed

aspect-oriented programs using the above intermediate representation.

• To develop a partial tool for construction of all proposed intermediate graphs and

implementation of all algorithms.

• To compare the performance of our approaches with some of the existing related

approaches.

• To develop a technique for software refactoring using our proposed algorithms. For

this we plan to:

– automatically identify the target modules for refactoring using the values of

slice-based cohesion metrics.

– use proposed slicing technique for refactor the target modules.

1.5 Organization of the Thesis

The rest of this thesis is organized into chapters as follows.

Chapter 2 provides the background concepts used in the rest of the thesis. We discuss

some concepts and definitions of graph theory which are used later in our proposed

algorithms. As all the proposed algorithms are based on intermediate representations, we

describe some popular intermediate program representation concepts that are used in existing

slicing techniques. Then, we present some concepts of program slicing, and applications.

Then, we present an introduction of program refactoring and its advantages. Finally, we

discuss the concepts of precision and correctness of a dynamic slice.

12
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Chapter 3 provides a brief review of the related work relevant to our contribution. We

first discuss the work on dynamic slicing of aspect-oriented programs. Then, we describe

the work on slicing of concurrent aspect-oriented programs. Finally, we discuss the reported

work on dynamic slicing of distributed aspect-oriented programs.

Chapter 4 presents our dynamic slicing algorithms for simple aspect-oriented programs.

We introduce some basic concepts and definitions. We first develop an intermediate

representation for aspect-oriented programs to represent all important features of

aspect-oriented programs and then present the proposed dynamic slicing algorithms. Then,

we present a brief discussion on the implementation of our algorithms. Finally, we compare

our dynamic slicing algorithm with some existing algorithms.

Chapter 5 deals with dynamic slicing of concurrent aspect-oriented programs. We first

introduce some definitions. We develop an intermediate representation for concurrent

aspect-oriented programs and then present the context- sensitive dynamic slicing algorithm.

Then, we give an implementation of our algorithm. Finally, using some case studies,

we present a comparison of our proposed algorithm with some existing closely related

algorithms.

Chapter 6 describes distributed dynamic slicing of aspect-oriented programs running

on several nodes connected through a network. We first present some basic concepts

and definitions. We develop an intermediate representation for distributed aspect-oriented

programs. Then, we present a parallel dynamic slicing algorithm for distributed

aspect-oriented programs. We show that this algorithm computes correct dynamic slices.

Then, we describe an implementation of our algorithm. Finally, we compare the efficiency

of our proposed algorithm with some related slicing algorithms.

Chapter 7 contains the application of program slicing in software refactoring. We first

present the use of slice-based cohesion metrics and refactoring. We use these metrics to

identify target modules that need refactoring. Finally, we propose a technique to refactor

that target modules based on our proposed slicing algorithms.

Chapter 8 concludes the thesis with a summary of our contributions. We also briefly

discuss the possible future extensions to our work.
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Chapter 2

Background

In this chapter, we present some of the basic concepts that form the basis of this thesis.

To keep the content simple, we only describe the concepts in brief and highlight only the

essential points. Section 2.1 introduces the concepts of AOP. These concepts are supported

byAspectJ, which is an extension of Java programming language, and is used in this thesis for

implementing AOP. We have discussed the syntax and features of AspectJ programs. Also,

we have discussed the advantages and disadvantages of AOP. In Section 2.2, we presents the

different approaches used for program slicing techniques. intermediate graph based slicing.

We describe some program representations used by different researchers for program slicing

in Section 2.3. In Section 2.4, the applications of program slicing in the field of software

development are briefly described. Lastly, in Section 2.5, we present the basic concepts of

software refactoring based on program slicing.

2.1 Aspect-Oriented Programming (AOP)

Object-oriented programs (OOPs) were developed at Xerox PARC (by Alan Kay and

others) in the 1970s, to represent the prevalent use of objects and messages as the basis

for computation. Since then OOP has been the most widely used software development

paradigm. Many companies have adopted to OOP methodology for their product

development. But, along with the increase in popularity of OOP some drawbacks of the OOP

implementation were also noticed. In most large object-oriented software, the mapping of

the customer requirements to the program modules that implement these requirements are

complex. One requirement may also need several modules to implement it [33]. It means

that, a change in one requirement requires to understand and change several modules.

For example, let us consider an Internet Banking System (IBS). This system has some

requirements related to new customers such as registration, identity verification and address

verification. Then it has some requirements related to accounts such as minimum balance

checking, withdraw and deposit. It also requires to manage the customer accounts. All

these requirements are core concerns of the IBS, because these are the primary features of a

banking system. In Figure 2.1, these core concerns are shown as vertical columns.

Now, as the banking system is a critical system, the systemmust have some requirements
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New Customer

Requirements
Account Requirements

Customer Mgmt

Requirements

Security

Requirements

Recovery Requirements

Cross-cutting

Concerns

Core Concerns

Figure 2.1: Example of cross-cutting concerns

related to the security of the system. Also, it must have recovery requirements to ensure that

the data is preserved even on system failures. These additional requirements apart from the

core concerns are called cross-cutting concerns, because these concerns are influencing the

implementation of all other core system requirements. The cross-cutting concerns are shown

in Figure 2.1 as horizontal bars that cross the vertical columns. The cross-cutting concerns

are the main point of interest of an AOP.

Definition 2.1: Cross-cutting concerns: Cross-cutting concerns are that parts of a

program that are scattered across multiple modules of the program and are also tangled with

other modules.

The concept of AOP was developed at Xerox PARC, the same place where OOP was

introduced, by Gregor Kiczales et al. [34] in the year 1997. OOP creates a coupling

between the core and cross-cutting concerns that is undesirable. Adding new cross-cutting

features and even certain modifications to existing cross-cutting functionalities require the

modification of the relevant core modules. But, AOP provides separation of cross-cutting

concerns from the core modules by introducing a new unit of modularization, called Aspect.

In AOP, we implement cross-cutting concerns in aspects instead of fusing them in the core

modules.

2.1.1 Aspect-Oriented Programming using AspectJ

There aremanymodels available for the implementation of AOP, such as SpringAOP,Aspect

C#, andAspectJ. Among all the existingmodels, AspectJ is themost widely usedAOPmodel.

AspectJ is a compatible extension to the Java programming language. We have used AspectJ

programming language for developing all the implementations in this thesis.
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//HelloWorld.java
1. public class HelloWorld {
2. public static void main(String args[]){
3. display();}
4. public static void display(){
5. System.out.print("World");

} }

Output: World

Figure 2.2: An example Java program to print World

Features of AsepctJ

• Aspect: Aspects are like classes in OOP, that contain functionalities. But aspects are

different from classes because aspects are meant to compute cross-cutting concerns to

be injected into other codes [35, 36].

• Joinpoints: Aspects cross-cut objects at only well-defined points, such as at object

construction, method call, or member variable access points. Such well-defined points

are known as joinpoints [36]. Joinpoints include method calls, constructor calls, field

accesses, object and class initialization, and others.

• Point-cut: The specification for naming a joinpoint is called a point-cut [35]. Point-cut

is the collection of joinpoints.

• Advice: Once the joinpoints are spotted in a program, the intended behavior must be

defined [36]. This behavior is called advice. An advice can contain anything that an

arbitrary Java method can have.

• Code Introduction: With code introduction, programmers can add variables and

methods into a program entity by using Aspects [36].

HelloWorld example

Let us consider a program HelloWorld.java having one main() method and another method

called display(), as shown in Figure 2.2. The display() method only displays a message

``World". Now, suppose we want to add some more strings to the output, but without any

modification in original program. This requires to write a separate Aspect that will add some

string in the output. This job is done by HelloWorld_aspect, as shown in Figure 2.3.

2.1.2 Advantages of Aspect-oriented programming

Aspect-oriented programming is a relatively new technique, but some of the studies show that

it is better for modularization of cross-cutting concerns and consequently for accelerating the
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//HelloWorld_aspect.aj
1. public aspect HelloWorld_aspect {
2. pointcut PC():call (void HelloWorld.display());
3. before():PC(){
4. System.out.print("Hello! ");

}
5. after():PC(){
6. System.out.print(": This is AOP ");

} }

Output: Hello! World: This is AOP

Figure 2.3: An example AspectJ program

software development process. The idea is that, well-separated concerns can be more easily

maintained, modified, and manufactured. So, the total time of the programmer to develop

a software product will be shorter than that of the development time of analogous system,

realized without the use of AOP techniques. In addition to this, some more advantages of

using AOP are as follows:

1. Improved design stability

In a study by Greenwood et al. [37] on the impact of Aspectual Decompositions

on design stability, it was found that the concerns that were modularized using the

Aspect-Oriented (AO) techniques, had superior design stability and the modifications

tend to remain confined within the target modules.

The AO design also follows the open-close principle more effectively. That is, a

module should be open for extension, but must be closed for modification. This also

increases stability of the software design.

2. Substantial reduction in module size

In AO software design, the module size can be reduced considerably and thus makes

it easier for developers to implement the modules more efficiently.

3. Use of AOP in exception handling

In the traditional software, many defects are caused due to wrong exception-handling

mechanism [38]. The programmers usually treat exception-handling as an ad-hoc

process and address them at the last minute, as and when needed. Also programmers

rarely reuse exception-handling code. As a result, handling of exceptions generically

can result in unreliable software. The main issue that makes exception-handling

difficult to manage is that it is difficult to modularize exception-handling using

standard OOP languages. Exception-handling can be considered as a cross-cutting
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concern because they tend to cut across the boundaries of many classes and hence it

can be handled more efficiently in AOP [39].

2.1.3 Disadvantages of AOP

Despite it's many advantages, AOP produces some challenges in producing high quality

software and it's testing. Some of these are [40]:

• Aspects do not have independent existence

Aspects can be created by keeping in mind the context of another class and also cannot

execute on their own. An aspect depends upon the context of another class for its

identity and execution.

• Difficult to determine Control and Data dependency

The control and data dependency of an AO program is not apparent from the source

code of the aspect or class, because both of them are developed separately. The

dependency is solely determined by the weaving process. So, it is difficult to know

the control dependence and data dependence before the execution of the program.

• Debugging and maintenance of AO program

In AOP, we inject a block of code that is being run at a given point, i.e. at joinpoint.

But, it is very difficult to determine where this block is invoked by just inspecting the

source code. If the advice causes some changes, then while debugging an application,

it will be very difficult to identify the root cause of a fault [41].

2.2 Program Slicing

In order to reduce the complexity of a program so that it will be easy for testing and

maintenance, one approach is to break the whole program into parts. Program slicing is an

analysis and transformation technique that uses the dependency relation between the program

statements to identify the parts of a program that affect or are affected by a point of interest,

called the slicing criterion. All the program statements influencing or influenced by the

variables mentioned in the slicing criteria are added to the slice. Program slicing was first

introduced by Weiser in 1981 [42].

The construction of a program slice starts with the definition of a slicing criterion. A

slicing criterion is the set <s,v>, where `s' denotes the statement number and `v' denotes

the subset of variables used or defined at `s'. In the literature, we found there are two major

categories of program slicing approaches. One is the program flow equation based slicing

technique, where the dependence information of a given program are represented in number

of equations. Then, depending upon the slicing criterion, the equations contributing to its
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value, are selected and presented as slice. Another category of program slicing is based

on reachablity analysis of intermediate graphs. In graph based program slicing techniques,

first the dependencies between the statements of a given program are identified. Then,

these dependencies are represented in the form of an intermediate graph, representing the

statements of the program as nodes, and the dependencies among the statements as edges

between the nodes. Then, a reachability analysis is carried out using the intermediate graph

to find out the slices. In the next section, we present the different program representations

used in program slicing techniques.

2.3 Program Representation

The most popular technique for program slicing is based on representing the program in

the form of an intermediate graph and then finding the slices using traversal algorithms.

Different types of intermediate representations are used by different researchers to represent

a given program and its features. Here, we present somemost important types of intermediate

program representations found in the literature.

2.3.1 Control Flow Graph (CFG)

A control flow graph for a given program P is a directed graph in which each node represents

a statement of P and the edges represent the flow of control in P [43].

Definition 2.1 CFG: Let the set S represents the set of statements of the program P. The

CFG of the program P is a directed graph G=(V,E), where V is the set of nodes representing

statements of the program P and E is the set of control edges. An edge (x,y) ∈ E represents

the flow of control from the node x to the node y. Each CFG contains two special nodes

labeled Start and End corresponding to the beginning and termination of the program P.

Definition 2.2 Post-dominance: In a CFG, a node i is said to be post-dominance by

another node j if all the paths from node i to the end node pass through node j, where end

node denotes the last statement of the program.

Definition 2.3 Control Dependence Edge: The control dependence edge, n1
cd→ n2 ∈ E,

is defined between two nodes n1 and n2, where n1, n2 ∈ V such that there is a transfer of

control from n1 to n2.

In a CFG, all the nodes are connected through the control dependence edges. Usually

control dependence is used to define the post-dominance relationship between two nodes.

Let us consider an example Java program for finding summation of numbers from 1 to n,

as shown in Figure 2.4. In this program, the sum() method is called from main() with a

parameter value 10. The sum() method performs the iterative summation of numbers from

1 to n and sends the result to the callee method. Finally, the computed result is stored in

a variable and displayed to the user. The CFG of the example program is given in Figure

2.5. In the CFG, each node represents one statement in the program and edges represent
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//Summation.java
1. public class Summation{
2. public static void main(String args[]){
3. int result;
4. result=sum(10);
5. System.out.print(result);

}

6. public static int sum(int n){
7. int i,summ;
8. i=1;
9. summ=0;
10. while(i<=n)
11. { summ=summ+1;
12. i=i+1;

}
13. return(summ);

} }

Figure 2.4: An example Java program for finding summation of `n' numbers

Figure 2.5: CFG for the example program given in Fig.2.4
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Figure 2.6: PDG for the sum() method of example program given in Fig.2.4

the transfer of control between nodes. The cycle between node 10, node 11, and node 12

represents the while loop in the program.

2.3.2 Program Dependence Graph (PDG)

The PDG for a given program P is a directed graph in which the nodes represent the

statements of P and the edges represent the dependence relationships between the statements

of P [44].

Definition 2.4 PDG: The PDG for a program P is represented asGP=( V, E ) where V is

the set of nodes representing statements of the program P and E={control, data}. In a PDG,

there are two types of edges; control dependence edge and data dependence edge.

Definition 2.5 Data Dependence Edge: The data dependence edge, n1
dd→ n2 ∈ E, is

defined between two nodes n1 and n2, where n1, n2 ∈ V such that n2 is using a variable

which is defined at n1.

The PDG is constructed for only one procedure in the program to show the flow of control

and data inside that particular procedure or method. Each PDG has a special node called

Entry node to represent the method entry point [44]. As shown in Figure 2.6, the PDG has

the first node as Entry node which represents statement number 6 of the program. Rest of the

nodes represent the statements of the program. In Figure 2.6, we show the PDG of the sum()

method given in the example program of Figure 2.4. Each node in the PDG is connected

with other nodes through control or data dependence edges.

2.3.3 System Dependence Graph (SDG)

In a program, there can be one or more number of procedures. PDG cannot be used to show

the dependencies present among all the procedures, as it can only show the dependencies
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Figure 2.7: SDG for the example program given in Fig.2.4

present within a single procedure. Hence, to represent the whole program as a dependency

graph, system dependence graph (SDG) is used. SDG is a collection of PDGs [6]. SDG

contains some extra nodes than that of PDG, i.e. formal-in, formal-out, actual-in and

actual-out. To represent parameter passing, the SDG uses formal parameter vertices: a

formal-in node for each formal parameter of the procedure; a formal-out node for each formal

parameter that may be modified by the procedure. On the other side, i.e. the called procedure

side, parameter passing is shown through actual parameter nodes: an actual-in node for each

actual parameter at the call site; an actual-out node for each actual parameter that may be

modified by the called procedure.

Definition 2.6 Call Edge: The call edge, n1
call→ n2 ∈ E, is defined between two nodes

n1 and n2, where n1, n2 ∈ V , n1 is the method calling node, and n2 is the method declaration

node.

Definition 2.7 Parameter-in Edge: The parameter-in edge, n1
pin→ n2 ∈ E, is defined

between two nodes n1 and n2, where n1, n2 ∈ V , n1 is the actual parameter, and n2 is the

formal parameter.

Definition 2.8 Parameter-out Edge: The parameter-out edge, n1
pout→ n2 ∈ E, is defined

between two nodes n1 and n2, where n1, n2 ∈ V , n1 is the return node, and n2 is the node

accepting the value from the called method.

Definition 2.7 Summary Edge: If the formal-out node (n1) is transitively dependent on

the formal-in node (n2), then there is a summary edge n2
summary→ n1 ∈ E from node n2 to

node n1.

The SDG combines the PDGs procedure corresponding to each by the help of three types
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Figure 2.8: ASDG for the example AspectJ program given in Fig.2.2 and 2.3

of edges, i.e. call edge, parameter-in edge, and parameter-out edge. The SDG for the

example program of Figure 2.4 is shown in Figure 2.7. The PDGs of the main() method

and sum() method are connected through call edge, parameter-in, and parameter-out edges.

Sometimes, there exists a transitive data dependency between the formal-in and formal-out

nodes. This type of dependency is represented by a special edge called summary edge, as

shown in Figure 2.7.

2.3.4 Aspect-Oriented System Dependence Graph (ASDG)

AOP have additional features compared to procedural or OOP, such as aspects, join points,

advices etc. For representing these extra features appropriately, the SDG for OOP is not

an efficient option. Therefore, an ASDG is used to represent AOP programs. An ASDG

consists of three parts- an SDG for non-aspect part, a group of dependence graphs for aspect

part called Aspect Dependence Graphs (ADGs), and some additional dependence edges used

to connect the SDG and aspect dependence graph. The ASDG for the HelloWorld AspectJ

program given in Figure 2.2 and Figure 2.3, is shown in Figure 2.8. In this figure, the left

hand side box represents the SDG for the non-aspect program given in Figure 2.2 and the

right hand side box represents the Aspect Dependence Graph (ADG) for the aspect program

given in Figure 2.3. These two graphs are combined using the weaving edges.

2.4 Applications of Program Slicing

This section describes the use of program slicing techniques in various applications. Weiser

[23] had developed the concept of program slicing for the application of debugging. From

this modest beginning, the use of program slicing techniques has now ramified into a
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powerful set of tools for use in many diverse applications such as program comprehensibility,

program verification, computation of software metrics, software maintenance, testing,

reverse engineering, parallelization of sequential programs, software integration, software

quality assurance, software refactoring etc. [23, 45–52]. A comprehensive study on the

applications of program slicing is made by Binkley and Gallagher [53], Lucia [54] and

Silva [55]. In the following, we briefly discuss some of these applications of program slicing.

2.4.1 Testing

Software maintenance is required for improving the quality of the software. After

maintenance of the software is over, regression testing is carried out to detect the side effects

of the changes made during the maintenance [48, 49, 56]. Regression testing is the process of

retesting the whole software after any change is made to it. Regression testing of a software

is done using large number of test cases that can cover all the changed points in the software.

Regression testing is a very time consuming and costly process, because for a minor change

in the code, the whole test cases must be rerun. Program slicing in regression testing is used

to identify that modules which are affected by a change. Hence, program slicing helps to

select only that test cases which are covering the affected modules. So, the number of test

cases required for regression testing reduces.

Suppose during maintenance of a program, the value of a variable `v' at statement `s'

has changed. If we compute the forward slice with respect to <s,v> and observe that the

computed slice is disjoint from the coverage of a particular test case `t', then the test case `t'

must not be rerun in regression testing. Lots of work is done in the field of application of

program slicing for regression testing [49, 51, 57, 58].

2.4.2 Debugging

Debugging is the process of locating a bug or error and correcting it. Debugging is a

very tedious and time consuming task. Mark Weiser [23] observed that in the process of

debugging, a programmer mentally slices the program to find the location of a bug, this leads

to the development of program slicing. Debugging a large program is a very difficult task.

Program slicing is useful in debugging to narrow the search space for a bug. If a program

produces wrong value for a variable `x', then we compute a slice of the given program with

respect to 'x' [23, 45]. After computing the slice, the programmer has to search within the

slice of the program for the cause of bug, and rest of the code not present in the slice can be

ignored. Hence, when a slicer is embedded with a debugger, the discovery of bugs becomes

very easy and fast. Some variants of program slicing such as program dicing and program

chopping ate also used for debugging. Program dicing is used to find the difference between

the slices of two variables. It may be the case that the program produces correct result for

one variable and the same program produces incorrect result for another variable. Program
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dicing is used to find a bug in this type of programs [45]. Chopping is the process of revealing

the statements involved in a transitive dependence from one specific statement (the source

criterion) to another (the target criterion). Program chopping [46] is used to restrict the size

of slice to the point after it is known that the code is correct. This further reduces the size of

a computed program slice.

2.4.3 Software Maintenance

Software maintenance is very complex and time consuming process, because for every

modification in the existing program many complex dependence relationships must

be considered. Effective software maintenance is accomplished by understanding the

dependences in the existing code, so that the changes in the software cannot introduce any

new bug. The main problem in software maintenance is the ripple effect. During software

maintenance, when some code are changed, it will affect other parts of the program. To avoid

ripple effect of change during maintenance, it is necessary to know which variables and in

which statements will be affected by a modification. This process is supported by program

slicing [47].

2.4.4 Differencing

In testing and maintenance, a program changes at several points. After some changes are

made to the original program, it is difficult to identify that changing points. A textual

comparison on the difference between the changed program with the original program is

a straight forward technique. But this is inefficient for large programs. Program slicing is

useful in identifying semantic differences between two programs [50]. First, the dependence

graphs are build for the old and new programs. The backward slices for given slicing criteria

are generated. Components whose nodes are present in the slices of both graphs, have the

same behavior in old and new programs. The set of nodes present in the slice of new graph

but not present in the slice of old graph, are the components with changed behavior.

2.4.5 Program Integration

Once a module undergoes some changes, it may happen that the changed module not

integrate property with rest of the unchanged modules of the software. So program

integration is a challenging task. Many program integration techniques are developed in

due course of time [59, 60]. One such technique is Semantic-based program integration

technique [51]. In this technique, first the dependence graphs are build to represent the

original program (Base) and its variants (A and B). Then, the slices of the dependence

graphs are computed by giving the points of change in the program, as slicing criteria. The

computed slices of Base, A and B are merged to form a merged graph. Finally, a program is

reconstructed from the merged graph.
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2.4.6 Functional Cohesion

Functional cohesion of a module in the software shows the functional independence of a

module [61]. A highly functional cohesive software module is one that performs only one

function that is atomic in nature. Bieman and Ott [62] proposed a slicing based cohesion

measure defined data slices that consists of data tokens (instead of statements). A data

token is a variable with constant definition and reference. Data slices are computed for each

output of a procedure (e.g., output to a file, output parameter, assignment to a global variable).

The tokens that are common to more than one data slice are the connections between the

slices. They are called glue. The glue binds the slices together. The tokens that are in every

data slice of a function are called super-glue. Strong functional cohesion can be expressed

as the ratio of super-glue tokens to the total number of tokens in the slice, whereas weak

functional cohesion may be seen as the ratio of glue tokens to the total number of tokens.

The adhesiveness of a token is another measure expressing the number of slices are glued

together by that token.

2.4.7 Parallelization

In a multithreaded program, two or more parts of a program runs simultaneously. Each

part is handled by a thread and all the threads execute simultaneously. Program slicing can

be used to identify independent parts of a program such that that parts can be assigned to

different threads [63]. While computing the slices of a given program, if two slices are not

overlapping, then these parts of the given program can be executed parallely.

2.4.8 Reverse Engineering

Reverse engineering concerns the problem of comprehending the current design of a program

and the way this design differs from the original design [56]. This involves abstracting

the design decisions and rationale from the initial development (design recognition) and

understanding the chosen algorithms (algorithm recognition).

Program slicing provides a tool set for this type of re-abstraction [52]. For example,

a program can be displayed as a lattice of slices ordered by the is-a-slice-of relation.

Comparing the original lattice and the lattice after (years of) maintenance can guide an

engineer towards places where reverse engineering energy should be spent. Because slices

are not necessarily contiguous blocks of code they are well suited for identifying differences

in algorithms that may span multiple blocks or procedures.

2.5 Software Refactoring

According to Fowler [64], ``Refactoring is the process of modifying the original structure of

the software system to reduce the complexity, but without altering its external behavior".
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When we perform refactoring, we improve the design of the code after it has been written

[64]. In the current practice of software development, we first design and then start coding.

But over time, the requirement keeps on changing and hence the code requires modification.

As a result of repeated modifications, the integrity of the system, and its structure according

to the original design, gradually fade. But, on the other hand, refactoring can take a bad

design and rework it into a well design code. Refactoring is also found useful in introducing

aspect-oriented features into an existing object-oriented software [65]. Monteiro et al. [66]

shown the process of transformation of object-oriented source code into AspectJ code as an

application of software refactoring.

2.5.1 Advantages of Software Refactoring

From the literature survey we find several advantages of Software Refactoring [31]. Some

of them are listed as follows:

1. Refactoring improves the design of software

Generally we change the code to realize short-term goals and as a result of

accumulation of these small changes, the design of the program decays. Refactoring

helps redesign the code to make the code in accordance with a good design.

2. Refactoring makes software easier to understand

The code for a program must be written in a more descriptive mode and easily

understandable format. In general practice, we go on changing and adding code until

it gives the desired result. As a result our program is no more easy to understand.

Software refactoring re-arranges the code to improve its understandability.

3. Refactoring helps find bugs

Refactoring helps improve the understandability, and hence also helps find bugs. This

is because finding bugs in a whole structured code is easier than finding them in an

unstructured code.

4. Refactoring helps develop code faster

All the earlier points mentioned above, conclude that refactoring helps write program

faster. A good design is essential for rapid software development and refactoring

enhances the design of a program. Hence, it helps develop a software faster.

2.6 Summary

In this chapter, we have discussed some basic concepts and definitions that are used later

in our proposed approaches. The concept of AOP is discussed in detail along with its
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advantages and disadvantages. We discussed the implementation of AOP using AspectJ

programming language. We have also discussed various existing intermediate program

representations used by various researchers. We discussed some important applications of

program slicing. Finally, we describe in brief the process of software refactoring and its

advantages.
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Review of Related Work

This chapter presents an overview of the basic program slicing techniques and includes a

brief history of their development. First, we discuss the work done by previous researchers

on dynamic slicing of object-oriented programs. We present a popular two-phase slicing

algorithm in details with an example. Then, we briefly discuss slicing of aspect-oriented

programs. Next, we have presented the works in the field of slicing of concurrent

object-oriented programs. Then, we present the research work done in the field of concurrent

aspect-oriented programs. Subsequently, we present the work done in the field of slicing

of distributed object-oriented programs and slicing of distributed aspect-oriented programs.

Finally, we discuss some work carried out on software refactoring.

3.1 Slicing of Object-Oriented Programs

In slicing of object-oriented programs, developing intermediate representation of the

program is an important issue. Present-day software systems are basically object-oriented.

Object-oriented features such as classes, inheritance, polymorphism need to be considered

carefully in slicing. Due to presence of polymorphism and dynamic binding, the process of

tracing dependencies in OOPs becomes complex. Slicing of OOPs has been addressed by

several researchers [6, 13, 47, 48, 65, 66, 83, 115].

Horwitz et al. [6] developed system Dependence Graph (SDG) as an intermediate

program representation for procedural programs with multiple procedures. As explained

in Section 2.3.3, the SDG is built for a given program. For example, let us consider an

example program and its corresponding SDG as shown in the Figure 3.1. The program

declares two variables x and y, then a method check() is called by passing these variables as

parameter. If the parameter values is positive, then check() returns square of the parameter.

If the parameter is negative, then it returns the positive value of the parameter.
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Figure 3.1: An example program and it's SDG

They [6] proposed a two-phase graph reachability algorithm as shown in Algorithm 1, on

the SDG to compute the inter-procedural slices. Algorithm 1 is a worklist implementation

of the two-phase slicing algorithm. In the first phase, the algorithm starts with a given

slicing criterion node and traverses backward along all the edges except parameter-out edges.

Algorithm 1 uses a worklist data structureW1, which is initialized with the slicing node. In

the first phase, we remove one node from W1 and check all its incoming edges. All the

edges are processed except the parameter-out edge. This process continues tillW1 is empty.

This algorithm marks all the nodes reached during this traversal and includes them into the

slice. Then, in the second phase, the algorithm traverses backward along all the edges except

call and parameter-in edges. In this phase, the algorithm uses a worklist data structure W2.

We process each node in W2 and check its incoming edges. In this phase, all the edges

are considered for traversal except call and parameter-in edges, because these are already

processed in the first phase of the algorithm. The second phase continues till W2 becomes

empty. It includes all the nodes reached during both the traversals into the slice. The union

of nodes marked in phase one and phase two gives the slice of the given programwith respect

to the input slicing criterion.
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Algorithm 1 : Two-phase slicing algorithm

INPUT: SDG G < V,E >, a slicing criterion s.
OUTPUT: The Slice S for s.
INITIALISE:WorklistsW1 = {s},W2 = {}, S = {s}.
1: whileW1! = Φ do . phase 1
2: W1 = W1 − {n} . process the next node inW1

3: for allm →e n do . handle all incoming edges of n
4: if e /∈ {po} then . if e is not a parameter-out edge
5: ifm /∈ S then

6: S = S + {m}
7: W1 = W1 + {m}
8: end if

9: else e ∈ {po}
10: W2 = W2 + {m}
11: end if

12: end for

13: end while

14: whileW2! = Φ do . phase 2
15: W2 = W2 − {u} . process the next node inW2

16: for all v →e u do . handle all incoming edges of u
17: if e /∈ {pi, call} then . if e is not a parameter- in or call edge
18: if v /∈ S then

19: S = S + {v}
20: W2 = W2 + {v}
21: end if

22: end if

23: end for

24: end while

Let us take the slicing criterion < 8, x > for the program given in Figure 3.1. Initially

the worklists W1 = {8},W2 = {}, and S = {8}. Phase 1 starts at the slicing criterion and
traverses backward through all the edges except the parameter-out edges, while the source

nodes of encountered parameter-out nodes are saved in a worklistW2. The nodes visited in

phase 1 of the algorithm is shown by green color nodes in Figure 3.2. Phase 2 starts from

the first node in worklist W2 and traverses backward through all the edges excepting call

and parameter-in edges. All the nodes visited in phase 2 are colored in cyan color nodes in

Figure 3.2. Because of the summary edges, there is no need to return from a called procedure

back to the callee. The resulting slice consists of all the nodes visited in phases 1 and 2.
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Figure 3.2: Resulting slices using 2-phase algorithm for the example program given in

Fig.3.1

Later, Larsen and Harrold [10] extended the SDG of Horwitz et al. [6] to represent

object-oriented programs. Their extended SDG incorporates many object-oriented features

such as classes, objects, inheritance, polymorphism etc. After constructing the SDG,

Larsen and Harrold used the two-phase algorithm to compute static slices of object-oriented

programs.

Mohapatra et al. [67] have developed edge-marking and node-marking dynamic slicing

techniques for object-oriented programs. Their algorithms are based on marking and

un-marking of the edges or nodes of the graph appropriately, as and when dependencies

arise and cease.

3.2 Slicing of Aspect-Oriented Programs

Program slicing was initially proposed for procedural programming language and has been

extended to cope with the Object-Oriented paradigm by Harrold et al. [10] and Mohapatra

et al. [68]. Now-a-days the application of program slicing technique to Aspect-Oriented

programs is gaining most of the researchers attention.

A preliminary work in this area has been done by Zhao [69]. He proposed an

Aspect-oriented System Dependence Graph(ASDG) that is an extension of Object-Oriented

SDG. The ASDG consists of a system dependence graph for non-aspect code, some

dependence graphs for aspect code and special edges for combining these dependence graphs.
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According to his observations, an SDG can be created by combing the method dependence

graphs (MDGs) for call sites. He represented the advices in an aspect through Advice

Dependence Graph (ADG), the introductions of an aspect as Introduction Dependence Graph

(IDG). Both, ADG and IDG are constructed in a manner similar to the construction of

MDG. The Aspect Dependence Graph (AsDG) is constructed by combing all MDGs, ADGs

and IDGs of an aspect-oriented program. He also introduced some special edges for AOP

such as aspect membership edge and coordination arc. But the work by Zhao [69] suffers

from some limitations. In this paper, he had not mentioned any particular slicing algorithm

and its implementation. Also, the important features such as around advice and pointcut

representations, are not handled in this approach. Finally, the proposed slicing technique is

a static program slicing technique.

Braak et al. [70] extended the ASDG proposed by Zhao [69] to include inter-type

declarations in the graph. Each inter-type declaration was represented in the form of a field

or a method as a successor of the particular class. They introduced Aspect/Class membership

edge to connect the members of an aspect or class to the Aspect or Class nodes. They

represented one of the important feature of AOP i.e. around advice in their ASDG, which

was not handled by Zhao [69]. The two-phase slicing algorithm of Horwitz et al. [6] is used

to find a static slice of Aspect programs. The ASDG is created statically and the two-phase

algorithm used in this paper is also static. So, the proposed slicing technique is a static

approach which computes slices of larger size.

Mohapatra et al. [71] proposed a dynamic slicing technique for AOPs. They have

proposed a Dynamic Aspect-oriented Dependence Graph (DADG) for representing the

features of AOPs. This is a dynamic graph that is built at run time. They compute the

execution sequence of a program and represent the executed statements in the form of

DADG. Based on the DADG, they have proposed a Trace file BasedDynamic Slicing (TBDS)

algorithm. The TBDS algorithm is based on the traversal of DADG in a random manner

from the slicing node to all reachable nodes. Finally, they map the selected nodes of DADG

present in a slice, into the statements of the given program. The limitation of this approach is

that DADG does not represent many features of an AOP such as method call, aspect, around

advice, introduction etc. Also, the proposed slicing technique is based on the execution trace

of a program. Hence, for each execution of a program, a new DADG is constructed, which

is much time consuming. No specific slicing algorithm is proposed that can handle the AOP

features more efficiently.

Sahu et al. [71] constructed the Extended-ASDG (EASDG) as the intermediate

representation of Aspect-oriented programs. Their EASDG differs from the ASDG of Zhao

[69] in two ways: each point-cut in the AspectJ program is shown explicitly and also the

weaving process is represented in EASDG. The construction of EASDG starts with the

construction of SDG for non-aspect code of the AOP. Then the aspect dependence graph

(ADG) is constructed. The ADG is the combination of four graphs i.e. advice dependence
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graph, introduction dependence graph, pointcut dependence graph and method dependence

graph. After constructing the EASDG, they have applied a node-marking algorithm on the

EASDG to compute dynamic slice of aspect-oriented programs. While executing the given

program, if a statement of the program executes then its corresponding node in EASDG

is marked. When the control moves out of the current method then the marked nodes are

unmarked. The limitation is that Sahu et al. [71] have not mentioned the around advice in

their EASDG construction algorithm. Also, the marking and unmarking of nodes depending

upon the execution of individual statements of the program at run time, makes the slice

computation more time consuming.

Raheman et al. [27] has overcome some of the drawbacks of Zhao by computing

dynamic slices and adding a new type of edge called `` Weaving Edge" into the Extended

Aspect-oriented System Dependence Graph (EASDG) proposed by Zhao [69]. But this

approach does not compute an executable slice. They have added point-cut declaration but

not considered the aspect class declaration in the EASDG.

3.3 Slicing of Concurrent Object-Oriented Programs

Very intensive work have been done in the field of slicing of concurrent OOPs, by different

researchers [16, 72–75]. Probably, the earliest approach for slicing of concurrent OOP was

the work of Zhao [69]. Zhao presented a dependence based representation called the system

dependence net (SDN) which extends the previous dependence based representations [9]

to represent various dependence relationships in concurrent object-oriented programs like

Compositional C++ (CC++) programs [30]. An SDN of a concurrent object-oriented

program consists of a collection of dependence graphs each representing a main procedure,

a free standing procedure, or a method in a class of the program. It also consists

of some additional arcs to represent direct dependencies between a call and the called

procedure/method and transitive inter-procedural data dependencies. To represent

interprocess communications between different methods in a class of a concurrent

object-oriented program, they have introduced a new type of program dependence arc named

as external communication dependence arc into the SDN. An SDN can be used to represent

either object-oriented features or concurrency issues in a concurrent object-oriented program.

Based on the SDN, a two-phase algorithm is used to compute static slices of concurrent

object-oriented programs. In CC++, synchronization between different threads is realized

by using a single assignment variable. Threads that share access to a single assignment

variable can use that variable as a synchronization element. Their system dependence

net is an extension of the SDG of Larsen and Harrold [10] and therefore can be used to

represent many object-oriented features in a CC++ program. To handle concurrency issues

in CC++, they used an approach proposed by Cheng [76] which was originally used for

representing concurrent procedural programs with a single procedure each. However, their
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approach, when applied to concurrent Java programs suffers from some problems due to

the fact that the concurrency models of CC++ and Java are essentially different. While Java

supports monitors and some low level thread synchronization primitives, CC++ uses a single

assignment variable mechanism to realize thread synchronization. This difference leads to

different sets of concurrency constructs in both languages, and therefore requires different

techniques to handle concurrency issues in computing slices.

In another work, Zhao [72] has proposed a slicing technique for concurrent Java

programs. He designed a dependence-based representation calledMultithreaded dependence

graph (MTDG) for concurrent object-oriented programs. The MTDG is an extension of

SDG proposed by Larsen and Harrold [10]. In MTDG, he had added two new types of

dependencies, synchronization dependency and the communication dependency. They had

used Horwitz's 2-phase slicing algorithm [6], to compute the slices using MTDG. But, this

paper does not address anything about the implementation issues.

Another useful slicing technique for concurrent programs is presented by Krinke [16].

This algorithm takes into account the time-sensitive information to compute slices. The

algorithm computes precise and accurate slices for concurrent programs using threaded

Interprocedural Program Dependency Graph (tIPDG). Krinke has identified a new type of

dependency called interference dependency in a concurrent program. In these cases, one

variable declared in one thread can be used in another thread. It is shown that if interference

is present in the program, then the traditional two-phase algorithm is not suitable to compute

precise slices. But this slicing technique is a static technique. The author has not considered

dynamic aspects.

Chen and Xu [77] have developed concurrent control flow graphs (CCFG) and

concurrent program dependence graphs (CPDG) to represent concurrent Java programs.

Based on the CPDG, they proposed a static slicing algorithm for concurrent Java

programs [77]. In their algorithm, they have considered the fact that the inter-thread data

dependence is not transitive. But, they have not considered the dynamic slicing aspects.

3.4 Slicing of Concurrent Aspect-Oriented Programs

In the literature, we found very few work related to slicing of concurrent AOPs. The paper

by Ray et al. [14] is a closely related work with our proposed slicing technique. Ray et al.

[14] have used an intermediate graph calledConcurrent Aspect-oriented SystemDependence

Graph (CASDG) in their slicing technique. CASDG is created for each current execution

trace, starting from scratch. Next time for a different execution trace, another new CASDG

is formed. In our approach, we use the previously available information of the MAODG.

They extended the existing Node Marking Dynamic Slicing (NMDS) algorithm, proposed by

Mohapatra et al. [71]. Our slicing technique is based on context-sensitivity.
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3.5 Slicing of Distributed Object-Oriented Programs

Duesterwald et al. [78] have proposed a dynamic slicing algorithm for distributed C

programs. In computing the slices, they have first developed an intermediate representation

called Distributed Dependence Graph (DDG), which represents the communication

dependence between the statements in addition to the control and data dependence. The

control dependence is identified and added to the DDG statically i.e. during compilation

of the program. The target program is instrumented with some additional codes for finding

the data and communication dependence information. So that dynamic information can be

collected while the program is in execution. An execution trace-based re-execution of the

program is also used to collect the dynamic data and communication dependence information.

Their proposed dynamic slicing algorithm is a distributed algorithm that works parallely on

individual parts of the distributed program. Themain disadvantage of this approach is the use

of trace file, which is more time consuming. The implementation and practical applicability

of the proposed algorithms are not discussed. Also, it does not handle the features of OOP

and AOP.

Kamkar et al. [79] have used an intermediate graph called Distributed Dynamic

Dependence Graph (DDDG), which is based on the execution trace file. The data and

communication dependences are identified at the run time of the program. DDDG does

not provide any representation for concurrency within the program. After construction of

the DDDG, a sequential graph traversal algorithm was used to find the nodes present in a

slice. But, the size of the DDDG is large, because they have used a ``Complete statement

instance-based" approach for construction of DDDG. In their approach, for each instance of

a statement in the execution trace one node is created. It makes the graph size exponential

and the graph generation time very large. Also, their proposed slicing algorithm is sequential,

which takes more time to compute the slices.

Li et al. [80] have developed an approach for predicate-based dynamic slicing of

distributed programs. Apart from the traditional slicing, a predicate-based slicing finds

that parts of the program that influence the predicates. They have used the concept of the

global predicate, which is a logical formula defined over local variables used in parallel

programs. The global predicates are found to be useful in capturing the abstract design

requirements and defining program behaviour. They have developed two slicing algorithms.

One is the coarse-grained dynamic slice, and the other is a fine-grained dynamic slice. Their

algorithms are based on the partially ordered multi-set (POMSET) model. Their proposed

algorithms are capable of computing dynamic slices of distributed programs that usemessage

passing for communication. But, the authors have neither considered communication

through shared variables nor object-orientation aspects in their proposed approach. Also,

their proposed algorithm is not able to handle the distributed AOP features.
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Mohapatra et al. [81] have proposed a dynamic slicing algorithm for distributed

object-oriented programs. First, they construct the Distributed Program Dependence Graph

(DPDG) for a given distributed OOP. The graph is constructed statically, followed by

marking and unmarking of the nodes at run-time to capture the dynamic dependencies. In

the DPDG, an additional node called C-Node is created to represent the communication

dependencies in the program. The C-Node does not represent any statement of the

program, but it is just a logical node created to show the communication dependencies

in a distributed object-oriented program. They have proposed a slicing algorithm called

Distributed Dynamic Slicing (DDS) algorithm. The DDS algorithm marks an edge when

the dependency related to the edge arises, and unmarks the edge when that dependency

ceases. Their approach computes precise slices for distributed OOPs. But, the marking and

unmarking of edges make the slice computation process more time consuming. Also, the

DPDG does not represent the non-determinism behavior of the distributed programs. The

size of DPDG is large because it stores the relative local slices on each node of the graph. In

this slicing approach, the additional AOP features are not considered.

Barpanda et al. [82] have extended the theory of state restriction for handling the different

dependencies in a dependence graph. The DPDG of Mohapatra et al. [81] has been used by

Barpanda et al. as an intermediate representation. Then, they have adopted the popular graph

coloring technique [83] for computing the slices of a distributed object-oriented program.

The graph coloring technique for a given graph is to color all nodes of the graph with the

minimum number of colors, such that no two nodes sharing the same edge can have the same

color. Barpanda et al. [82] have modified the graph coloring technique to Contradictory

Graph Coloring Algorithm (CGCA). They have considered the chromatic number of the

graph to be 1, i.e. two nodes sharing the same edge can be colored with one color. They have

compared the efficiency of their CGCA with the DDS algorithm proposed by Mohapatra

et al. [81]. CGCA implemented on 15 programs and shown that the algorithm is both

time and space efficient than DDS algorithm. But, the authors have not discussed the

implementation issues of their proposed slicing algorithm. They have used the DPDG as the

intermediate graph representation, which does not represent the non-deterministic behavior

of a distributed program. Also, the AOP features are not considered in DPDG; hence it

unsuitable for slicing of AOPs.

Cheng [76] presented an alternate dependence graph-based algorithm for computing

dynamic slices of procedural distributed and concurrent programs. The author used Program

Dependence Net (PDN) as the intermediate representation. The PDN representation of

a concurrent program is basically a generalization of the initial approach proposed by

Agrawal and Horgan [84]. The PDN vertices corresponding to the executed statements

are marked, and the static slicing algorithm is applied to the PDN sub-graph induced by

the marked vertices. So, if a statement in a while loop is executed in some iteration, then

the corresponding vertex is marked and included in the slice. But, if that statement is not
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executed in some other iteration, then that marked vertex is not removed from the slice. So,

this approach yields inaccurate slices for programs having loops.

3.6 Slicing of Distributed Aspect-Oriented Programs

Only one work [13] is carried outon slicing of DAOPs, by Ray et al. They have used

an intermediate graph called Distributed Aspect-oriented Program Dependence Graph

(DAPDG) to represent the aspect-oriented features. This is the extension of the Distributed

Program Dependence Graph (DPDG) proposed by Mohapatra et al. [81]. One special node

Comm-Node is used to represent the communication dependence between statements of the

distributed AOP. DAPDG is constructed by creating the DPDG for non-aspect code and

Aspect Dependence Graph (AsDG) for aspect code, separately. Then, these intermediate

graphs are combined using weaving edges to construct DAPDG. DAPDG is created for

each current execution trace, starting from scratch. Next time for a different execution

trace, another new DAPDG is formed. In our approach, we use the previously available

information of the DADG.

Ray et al. [13] proposed a Parallel Aspect-oriented Dynamic Slicing (PADS) algorithm

that extends the existing node-marking algorithm, proposed by Sahu et al. [71]. PADS

algorithm has three steps, as shown below:

• Statically construction of DAPDG.

• Updation of the DAPDG at run-time to show dynamic dependencies.

• Computation of dynamic slice.

But, the PADS algorithm is a sequential algorithm then, not a parallel algorithm. Hence,

the speed of slice computation is slow. Also, the PADS algorithm does not represent the

non-determinism behavior of the distributed AOPs. Size of DAPDG is large because it stores

the relative local slice on each node of the graph. The work of Ray et al. [13] is most closely

related to our proposed slicing technique for DAOPs.

3.7 Software Refactoring: An Application of Program

Slicing

Not much work has been done in the field of refactoring of software using slice-based

metrics. In this section, we compare our proposed technique with some of the existing work.

Wang et al. [85] have developed a tool called SEGMENT, that inserts blank lines into the

given method to increase the readability of the program. The authors tried to identify the

important points in a program where there is a need of vertical space between the lines of

code to improve readability. But, their technique does not make any change into the internal
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structure of the program so as to improve the program complexity. Our approach identifies

that methods of a given program which are more complex and reduces their complexity by

splitting them into a number of methods.

Bavota el al. [86] have proposed an Extract Class refactoring method based on graph

theory. They have used structural and semantic analysis to identify the relationships between

the methods of a class. One semi-automated tool is developed to improve the cohesion of

a class by identifying refactoring opportunities. Here the target class for refactoring is to

be identified by the software engineers. The developed tool does not provide any support

for the detection of more complex classes. Also, the proposed approach does not consider

the class inheritance while performing the class refactoring, hence it may cause compilation

error or an unexpected change in the behaviour of the program. In our proposed refactoring

technique, we provide an approach to find the complex methods in a given software by

calculating their slice-based cohesion metrics. Also, we do not change the overall behaviour

of the program, so as to avoid the compilation error or an unexpected error.

Mohsin et al. [87] discussed code restructuring by using program slicing. In that work,

they have shown that program slicing can be used for decomposition of modules. They found

that by decomposition, the coupling is lowered to 40% and cohesion has grown to 70%more

than before. But this work does not address the most crucial point, i.e. how to decompose a

module. In this thesis, we discuss in detail the decomposition process of a module.

Monteiro et al. [66] presented an approach for refactoring of object-oriented programs

and conversion into aspect-oriented programs. They collected 17 refactoring techniques to

identify the cross-cutting concerns from the programs. In the first phase, all the cross-cutting

concerns were moved into aspects, leaving behind only the core object-oriented programs.

In the next phase, the refactoring techniques are again applied onto the newly created aspects

to remove the duplicate codes. That work concentrated on application of refactoring, not on

any new refactoring technique. In our work, we present a new refactoring technique. Our

proposed technique can be applied recursively on a program till the cohesion metrics of all

it's methods improve upto the threshold values.

Monteiro et al. [88], have used Code Smells to identify the modules where refactoring

is needed. But, code smells do not provide precise criteria when refactoring are belated.

Instead, code smells suggest symptoms of the presence of bugs in the code. Their approach

does not give any quantitative information regarding the cohesion metrics. But, in our

technique, we have used slice-based metrics to identify the methods where refactoring

must be applied. Slice-based metrics are quantitative and they can be compared with the

benchmark values for cohesion metrics.

Sward et al. [89] have proposed that cohesion, coupling, and cyclomatic complexity (CC)

can be used to determine the target module that needs refactoring. With detail example, they

have shown that refactoring the existing module into two modules, reduces the coupling and

CC. They have proposed that the modules could be sliced with respect to a set of slicing
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criteria. It reduces the average complexity of the module by the same amount as that it had

been sliced with respect to individual slicing criterion. In our example program, we have

adopted this technique. But, in Sward's approach [89] the authors have not mentioned clearly

how to compute the cohesion, coupling, and CC values. Also, they have not given any idea

on how to identify the target modules for refactoring, and what should be the benchmark

values for cohesion, coupling, and CC. We have addressed all these issues in this thesis.

Applying the refactoring process on a given software will enhance the design if a

collection of different refactoring techniques are applied to the software in a proper sequence.

Generating a proper sequence of refactoring is an NP-hard problem. Lee et al. [90]

have developed a genetic algorithm based technique to generate the optimized sequence of

refactoring to be applied on the target software. Our proposed refactoring technique should

be applied on a software after all the remaining refactoring sequences are followed, because

our proposed technique works on the individual methods to further enhance the complexity

of the software.

3.8 Summary

In this chapter, we have briefly reviewed some work on slicing of object-oriented programs

relevant to our research. We have discussed the work on slicing of simple aspect-oriented

programs. We have also presented the recently reported results on slicing of concurrent

object-oriented programs and slicing of concurrent aspect-oriented programs. Then, we

have discussed some research work on slicing of distributed object-oriented and slicing of

aspect-oriented programs. Some useful work is discussed in the field of software refactoring.
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Chapter 4

Dynamic Slicing of Aspect-Oriented

Programs

Aspect-Oriented Programming (AOP) is a new programming paradigm proposed for cleanly

modularizing the scattered and tangled code known as cross-cutting concerns (such as

exception handling, synchronization, and resource sharing, etc. [34]. The presence of such

cross-cutting concerns in a standard language constructs (such as Java) usually results in

poorly structured code. AOP controls the scattering and tangling of such code, thereby

improving the structure of the program and making it easier to develop and maintain. Due to

various specific features of AOP, existing representations for procedural and object-oriented

programs cannot be used directly for aspect-oriented programs. Therefore, we need to

develop a new intermediate representation for AOP for better program comprehension.

Before developing a slicing algorithm, a suitable intermediate graph must be designed

to represent any given AO program. We have proposed an intermediate graph called

Extended Aspect-Oriented System Dependence Graph (EAOSDG) to represent AOPs. In

this chapter, tow type of slicing algorithms are proposed. First, an Extended Two-Phase

slicing algorithm is proposed, which traverses the EAOSDG of a given AO program and

generates slices depending on the given slicing criterion. The second slicing algorithm also

works on EAOSDG with an intention to preserve the method calling context. All these

slicing algorithms are explained in this chapter and a comparative study is presented to find

out the best algorithm out of the two proposed algorithms.

In this chapter, first we present the concept of context-sensitive and context-insensitive

slicing. We have explained the technique with examples. Then, we present the intermediate

program representation used to represent AOPs. Next, we present our first proposed slicing

algorithm, which is an extension of two-phase slicing algorithm. Subsequently, we propose

another dynamic slicing algorithm with context-sensitive property. Finally, we present the

implementation of our proposed algorithms and comparison with other research works.

4.1 Basic Concepts

In this section, we present the concept of context-sensitive during the computation of slices

and its advantage over context-insensitive slicing.
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4.1.1 Context-insensitive Vs Context-sensitive slicing

The slicing algorithm must compute accurate and precise slices. The slicing technique

suggested by Wieser [42] computes the affected statements for a given slicing criterion

by simply considering reachability of the statement. This type of slicing does not always

produce accurate slices. For example, consider the code segment given in Figure 4.1. This

code segment is for calculating the area of two squares and displaying the results. The

square() method is called two times from main, i.e. at line number 19 and line number

22. The system dependence graph of the code segment is shown in Figure 4.2a. In the

dependence graph shown in Figure 4.2a, we compute a slice with node 20 as slicing criterion.

We traverse the graph in the backward direction starting from node 20. During the traversal,

we visited node 19, node 18 and also node 8. Node 8 belongs to square() method. Now, we

start traversing backward. Inside the square() method, we have visited node 7 and node 5.

While going backward from node 5, we find two call edges, one from node 19 and another

from node 22. It is obvious to include node 19 into the slice, but as we are not putting any

constraint on the return call edges, we have to include node 22 also into the slice. As a

result, the final slice will contain node 22 and node 21, which are extra nodes. This type

of unconstrained slicing approach is called context-insensitive slicing. The nodes included

in the resultant slice are shown as shaded nodes in Figure 4.2a. The slices generated by the

context-insensitive slicing algorithm are inaccurate and larger in size, because many extra

nodes are included in the generated slices.

Context-sensitive slicing puts constraints on the process of slice computation [16]. In the

example program shown in Figure 4.1, suppose we want to compute context-sensitive slice

where the calling sites are preserved. It implies that during backward traversal of a graph

representing a program, when we move from the called method to the callee method, we

must return to the same callee method through which we have entered into the called method.

This is called context-sensitive slicing. To implement context-sensitive slicing, we have used

labels on call edges, as shown in Figure 4.2b. So while entering into square() method from

node 19 and start processing node 8, we store the label of the edge, i.e. 19. Then, we proceed

backward and visit node 7 and node 5. Now, when returning from the called method (node

5) to the callee method (node 19 and node 22), we look at the stored label. We consider only

that edges, whose labels match with the labels stored previously. As a result, we process only

node 19 and exclude node 22. The nodes included in the context-sensitive slice are shown

as shaded nodes in Figure 4.2b, which does not include nodes 21 and node 22.
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...

...
5 public int square(int a) {
6 int result;
7 result = a * a;
8 return result;
}
...
...
15 public static void main(String args[])
16 { int side;
17 int area;
18 side=10;
19 area= square(side);
20 System.out.println("Area of Square 1 ="+area);
21 side=5;
22 area= square(side);
23 System.out.println("Area of Square 2 ="+area);
24 }

Figure 4.1: An example of simple method call

(a) A context-insensitive slice (b) A context-sensitive slice

Figure 4.2: Slices of the program with slicing criterion < 20 >
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//primebetween.java
import java.util.*;
1 public class primebetween {
2 private static int n;
3 public static void main(String [] args) {
4 n = Interger.parseInt(args[0]);
5 System.out.println("Prime numbers:");
6 primeList(n); }
7 public static void primeList(int n) {

int i;
boolean j;

8 i = 1;
9 while(i < n + 1) {
10 j = prime(i);
11 if(j)
12 System.out.println("\t" + i);
13 i++; } }
14 public static boolean prime(int n) {

int i,r;
15 i = 2;
16 while(i < n) {
17 r = n - ( n / i ) * i;
18 if(r == 0)
19 return(false);
20 i++; }
21 return(true);

} }

\\primeAspect.aj
22 public aspect primeAspect {
23 pointcut checkprime():
call(boolean primebetween.prime(int));
24 pointcut chechkvarn():
get(int primebetween.n);
25 before(): checkprime(){
26 System.out.println("Prime() is called");

}
27 after() returning: checkprime(){
28 System.out.println("Returned Normally");

} }

Figure 4.3: An Example AspectJ program

4.2 Intermediate Program Representation

We have proposed an intermediate representation called Extended Aspect-Oriented System

Dependence Graph (EAOSDG), that represents the features of the Aspect-Oriented

Programs. The EAOSDG is a directed graph, G = (V,E), where V is the set of nodes
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and E is the set of edges. EAOSDG contains the trivial edges such as control edge, data

edge, call edge, parameter-in/out edge etc., as discussed in Chapter 2. Some new types of

edges (such as weaving edges) are used to connect the aspect and non-aspect parts of the

program. The weaving edge represents the dependency between the aspect and non-aspect

parts of the program.

Let us consider the sample program shown in Figure 4.3. We have used AspectJ for

writing the program, because AspectJ is a widely used programming language for developing

aspect-oriented programs. The sample program prints the list of prime numbers upto the

specified integer given by the user. The sample program consists of 2 parts; aspect part and

non-aspect part. The aspect part has two pointcuts; one for capturing the call of prime()

method and another to capture the use of variable n. The EAOSDG of the sample program,

given in Figure 4.3, is shown in Figure 4.4. Each node n ∈ V corresponds to the bytecode

version of the statements of the AOP written in AspectJ 1. First, the SDG for non-aspect part

is constructed. Then, for representing the aspect part ADG is constructed. The EAOSDG

is the combination of these two types of dependence graphs. Weaving edges are used to

combine different SDGs and ADGs and construct EAOSDG. The EAOSDG shown in Figure

4.4 contains the following set of edges already defined in Chapter 2 (Background). Some

extra edges are used that are defined below:

Definition 4.1. Class Membership Edge: The class membership edge, n1
class→ n2 ∈ E, is

defined between two nodes n1 and n2, where n1, n2 ∈ V such that n2 is either an attribute

or operation of the class node n1.

Definition 4.2. Weave-In: Weave-In edge, n1
Weave−in→ n2 ∈ E, connects the non-aspect

part with the aspect part of EAOSDG.

Definition 4.3. Weave-Out: Weave-Out edge, n1
Weave−out→ n2 ∈ E, connects the aspect

part with the non-aspect part of EAOSDG.

4.2.1 EAOSDG Construction Algorithm

EAOSDG is generated using a series of steps as explained in Algorithm 2. First the nodes

are created for each statement of the program. For a method call statement, one or more

extra nodes are created to represent the actual-in and actual-out parameters. Similarly, for a

method entry node, appropriate number of nodes are created to represent the formal-in and

formal-out parameters. After, creation of nodes, control dependence and class membership

edges are added depending on the nodes and the respective usages of the edges. Then, the

call edges are added between the calling node andmethod entry node of corresponding callee

method. Subsequently, param-in/param-out edges are added between actual and formal

parameters. After that, the transitive dependency between parameter-out and parameter-in

nodes are identified, a summary edge is draw between these nodes. Similarly, the creation

1eclipse.org/aspectj/
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of SDG, we want to represent aspect-part as ADG. The pointcut nodes for the aspect part

of the programs, the weaving (In/Out) edges are added to connect the aspect and non-aspect

part of the program.

Algorithm 2 EAOSDG Generation Algorithm

INPUT: Aspect-oriented program.

OUTPUT: An EAOSDG G < V,E >.

1: Create individual nodes for each statement of the programs.

• If the node is a method node, then add actual-in and actual-out nodes.

• If it is a method entry node, then create formal-in and formal-out nodes.

2: Add Control Dependency, Data Dependency, and Class Membership Edge in between

nodes by analysing the programs.

• Add a Control Dependent edge, n1
cd→ n2, if n1 transfers the control to n2.

• Add a Data Dependent edge, n1
dd→ n2, if n2 is data dependent on n1.

• Add Class Membership edge, n1
class→ n2, if n2 is either an attribute or operation of

the class node (n1).

3: Add Call Edges and Param-In/Param-Out Edges between the nodes in the graph.

• Add a Call edge, n1
call→ n2, if n2 is the method declaration node and n1 is the

corresponding method calling node.

• Add a Param-In edge, n1
Pin→ n2, if n1 is the actual parameter and n2 is the formal

parameter.

• Add a Param-Out edge, n1
Pout→ n2, if n1 is the return node and n2 is the node

accepting the value.

4: Add Summary Edge between nodes if the Param-Out node is transitively dependent on

the Param-In node.

5: Create nodes for statements pointcuts in the Aspect part of the program.

• Add call edges between pointcut nodes and advices.

6: Add Weaving Edge to connect the Aspect and Non-Aspect part of the program.

• Add a weave-Out edge, n1
Weave−Out→ n2, if n1 is the before advice node and n2 is

the corresponding method entry node.

• Add a weaving edge, n1
Weave−In→ n2, if n2 is the after advice node and n1 is the

corresponding method entry node.
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Figure 4.4: EAOSDG of the aspect-oriented program given in Figure 4.3
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4.3 Proposed Algorithm 1: Extended Two-Phase slicing

algorithm

In this section, we discuss the proposed approach to compute static slices of AOPs based on

the intermediate graph Extended Aspect-Oriented System Dependence Graph (EAOSDG).

The procedure to construct EAOSDG is presented in Section 4.2. Below, we present our

slicing algorithm and then we have explained its working with suitable example.

4.3.1 Proposed Algorithm

The two-phase slicing algorithm given by Horwitz [6] and used by Zhao[91] cannot handle

the aspect part of the program properly. The two-phase slicing algorithm just backward

traverses the SDG in two different phases which arguably handles the procedural and

object-oriented parts of the program respectively. The aspect part of the program is not

handled properly by this algorithm.

We extend the two-phase slicing algorithm of Horwitz [6] by adding one more phase, to

enable slicing of bytecode based graphs. This algorithm finds a static slice for a given slicing

criterion `s', which comprises of that program statements that affect the value of the slicing

criterion. The extended two-phase algorithm works in three steps, as given below:

• Phase 1: In the first phase, the algorithm traverses backward, taking into consideration

the slicing criterion, along all edges except parameter-out edges and weaving edges,

and marks that vertices in EAOSDG that are reached during the first phase of traversal.

• Phase 2: In the second phase, the algorithm traverses backward from all the vertices

that were marked during the first phase along all edges except call, parameter-in and

weaving edges and marks the reached vertices in the EAOSDG.

• Phase 3: In the third and last phase, this algorithm traverses backward from all the

vertices which were marked by the first and second phases, along the weaving edges

to reach the aspect part of the program.

The final slice is the union of all the vertices marked during the phase 1, phase 2 and phase

3 traversal of EAOSDG.

4.3.2 Working of Algorithm

For explaining the working of our algorithm, we have considered the example program given

in Figure 4.3. The generated EAOSDG for the example program is shown in Figure 4.4. The

disadvantage of the extended two-phase algorithm is that it will not work for slicing node

present in the aspect part of the EAOSDG. Now, suppose we consider statement 19, which

represents the statement ′return(false)′, as the slicing criterion. We use three worklists, i.e.,
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Algorithm 3 Extended Two-Phase Slicing Algorithm

INPUT: An EAOSDG G < V,E >, a slicing criterion s.
OUTPUT: The Slice S for the slicing criterion s,
INITIALISE:W1 = {s},W2 = {},W3 = {}, S = {s}.
1: whileW1! = φ do . phase 1
2: W1 = W1 − {n} . process the next node inW1

3: for allm→n do . handle all incoming edges of n
4: ifm /∈ S then

5: S = S + {m}
6: if e /∈ {po, weav} then . if e is not a parameter-out or weaving edge
7: W1 = W1 + {m}
8: else if e ∈ {po} then
9: W2 = W2 + {m}
10: else

11: W3 = W3 + {m}
12: end if

13: end if

14: end for

15: for all n→m do

16: ifm /∈ S&&e ∈ {weav} then . if e is an outgoing weaving edge
17: W3 = W3 + {m}
18: end if

19: end for

20: end while

21: whileW2! = φ do . phase 2
22: W2 = W2 − {n} . process the next node inW2

23: for allm→n do . handle all incoming edges of n
24: ifm /∈ S then

25: S = S + {m}
26: if e /∈ {pi, call, weav} then . if e is not a parameter-in, call or weaving edge
27: W2 = W2 + {m}
28: else if e ∈ weav then
29: W3 = W3 + {m}
30: end if

31: end if

32: end for

33: for all n→m do

34: ifm /∈ S&&e ∈ {weav} then . if e is an outgoing weaving edge
35: W3 = W3 + {m}
36: end if

37: end for

38: end while

39: whileW3! = φ do . phase 3
40: W3 = W3 − {n} . process the next node inW3

41: for allm→n do . handle all incoming edges of n
42: ifm /∈ S then

43: if e /∈ {pi, call} then . if e is not a parameter-in or call edge
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44: S = S + {m}
45: W3 = W3 + {m}
46: end if

47: end if

48: end for

49: end while

return S

Figure 4.5: Sliced EAOSDG of the example program given in Figure 4.3 w.r.t. slicing

criterion < 19 >
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W1,W2 andW3, in the three phases respectively. Thus the initial state of the data structures

used in our approach, is given as follows:

S = {19}
W1 = {19}
W2 = φ

W3 = φ

In Phase 1, we pop one node at a time fromW1. If it is not present before, then we add

that node into S. Here, we check for all incoming edges to the current node. Then, we add

the source nodes of these edges into W2, if the edge is a parameter-out edge. We will use

this worklistW2 in Phase 2 of our approach. If the edge is a weaving edge, then we add the

source node into worklistW3, that will be used in Phase 3 of our approach. Else, we put the

source node intoW1 itself. Then, we check for the outgoing weaving edges from the popped

node and add the destination nodes of that edges into worklistW3. This process is continued

tillW1 is empty.

After phase 1 we have:

S = {19,18,17,16,15,14,20,F2,F3,21,A2,7,F1,A1,1}

W1 = φ

W2 = {A3,9,6}
W3 = {14,4}

In phase 2, we pop one node from W2, add the node into S (if it is not present before)

and check for all incoming edges to the current node. If the edge is a weaving edge, then add

the source nodes of these edges into worklistW3. Otherwise, we check whether the edge is

a parameter-in/call edge or not. If it is not a parameter-in/call edge, then we add the source

node into worklist W2. Then, we check for the outgoing weaving edges from the popped

node and add the destination nodes of that edges intoW3. This process is repeated tillW2 is

empty. We show the newly added nodes into the slice in the present phase as bold faces.

After phase 2, we have:

S = {19,18,17,16,15,14,20,F2,F3,21,A2,7,F1,A1,1, A3,9,8,10,13,6,4,3}

W1 = φ

W2 = φ

W3 = {14,4}
In phase 3, we pop one node from worklist W3, and add the node into S (if it is not

present before) and check for all incoming edges onto the present node. If the edge is not a

call edge or parameter-in edge, the source node is added into worklistW3. Similar process

is carried out tillW3 becomes empty.

After phase 3, we have:

S = {19,18,17,16,15,14,20,F2,F3,21,A2,7,F1,A1,1, A3,9,8,10,13,6,4,3,30,29,24,26,25,

28,27,23,22}

W1 = φ
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W2 = φ

W3 = φ

Hence, for the given slicing criterion, 19, the computed slice is computed as follows:

S = {19,18,17,16,15,14,20,F2,F3,21,A2,7,F1,A1,1, A3,9,8,10,13,6,4,3,30,29,24,26,25,
28,27,23,22}
The marked nodes that comprise the slice are shown as shaded nodes in Figure 4.5.

4.3.3 Correctness of Extended Two-Phase Slicing Algorithm

In this section, we sketch the proof of correctness of our extended two-phase slicing

algorithm.

Theorem 4.4. Extended Two-Phase slicing algorithm aways finds correct slice with respect

to a given slicing criterion.

Proof. An algorithm is said to be correct if it satisfy the properties of completeness,

correctness, and finiteness. First, we show that our proposed extended two-phase slicing

algorithm is complete. During computation of slices of AOPs, we construct EAOSDG for

the given AOP. EAOSDG contains following types of edges: class, control, data, call, and

weaving. In phase-1 of our algorithm, we start backward traversal from a given slicing

criterion. During the phase-1 of extended two-phase slicing algorithm, when we find any

class dependence edge , control dependence edge or data dependence edge, we add the new

source nodes into slice. Apart from these edges, if we find any parameter-in edge or call

edge then we add the new source nodes in slice. When we find any parameter-out edge or

weaving edge, we add the new nodes in the respective worklists for future processing. After

phase-1 is over, in the phase-2 our algorithm process all parameter-out edges found during

the phase-1 traversal of EAOSDG. Similarly, in phase-3, all weaving edges are processed.

In our proposed slicing algorithm all types of edges of an EAOSDG are processed one after

other in three different phases. Hence, the extended two-phase algorithm is complete.

To proof that our proposed algorithm computes correct slices, we assume that the given

EAOSDG is correct. Now, suppose s is the slicing node in a given EAOSDG, if there exist

any type of dependency of s on another node p of EAOSDG, then there must be an edge

from p to s. While computing slice, we start with the slicing node s, as there is an incoming

edge from p to s we add the new node p in the slice and similarly move backward traversing

all incoming edges in an EAOSDG. In our proposed slicing algorithm, we handle all types

of incoming edges while traversing EAOSDG from s, in three phases. If any dependency

exist between node s and node p and s is already inserted in slice, then only the node p will

be added in slice. So, we can ensure that our proposed slicing algorithm compute correct
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slices for a given correct EAOSDG.

Our proposed slicing algorithm is based on a worklist W which holds nodes of a given

EAOSDG. First, we add the slicing node in the worklist W and repeatedly delete nodes

from W and add new dependent nodes in W. The algorithm iterates till the worklist W not

becoming empty. As the number of nodes and edges in an EAOSDG is finite, the worklist

W will become empty after finite number of iterations. Hence, we can say that our proposed

slicing algorithm terminates after finite iterations in finite time. �

4.3.4 Complexity Analysis

In the following we discuss the space and time complexity of the extended two-phase slicing

algorithm.

Space complexity: The EAOSDG is a graph stored using a modified adjacency list, which

has nodes and edges as objects of different classes. For each statement of the given program,

one node is created in its EAOSDG. If the number of statements in a given AOP is n, then its

EAOSDG must have atleast n nodes. Then nodes in EAOSDG may be more than n because

some extra nodes are created for showing actual-in, actual-out, formal-n, and formal-out.

But, these extra nodes are little in comparison to nodes in a large EAOSDG, hence can be

neglected. Since the number of nodes in the graph is n and the number of edges is e, the

space complexity of storing the graph is of order O(ne).

Time complexity: Extended two-phase algorithm has three phases. For each phase, there

is an inner and an outer loop. Let the number of edges in the EAOSDG is e and number of

nodes be n, then the inner loop runs for e times and the outer loop runs for n times in the

worst case scenario. As all the phases have the same number of iterations, the worst case

time complexity of the extended two-phase algorithm is O(ne).

The extended two-phase algorithm computes static slicing using EAOSDG. The dynamic

slices are very useful in testing, debugging, reverse engineering etc. and smaller in size. So,

we want to develop a dynamic slicing algorithm for AOPs. In the next section, we have

proposed a dynamic slicing algorithm.

4.4 Proposed Algorithm 2: Context-Sensitive Dynamic

Slicing Algorithm

As discussed above, the dynamic slices are more useful than static slices. In this section, we

present a dynamic slicing algorithm for AOPs. For computing dynamic slices for a given

program, first we have to construct the dependence graph dynamically. So, we have proposed

an algorithm for dynamic construction of EAOSDG for a given AOP. Also, we want to

develop a context-sensitive slicing algorithm for AOPs for which we add labels on each
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edge of EAOSDG except data dependence edges and control dependence edges. Next, we

present the dynamic EAOSDG construction algorithm.

4.4.1 Dynamic EAOSDG Construction

Before implementation of context-sensitive slicing algorithm, we need to know that call-site

[16] of each edge except data and control dependence edges. Our proposed Dynamic

EAOSDG Construction Algorithm (i.e. Algorithm 4) first calls Control Dependence

Algorithm (CDA) for creation of nodes in EAOSDG and drawing control dependence edges

between the nodes. ThenDynamic Data Dependence Algorithm (DDDA) is called to analyse

run-time data dependencies between nodes of an EAOSDG and draw corresponding data

dependence edges. Also, the call edges, weave-in/out edges are labeled with the call-sites,

from where they are linked. Labeling of edges is required for or proposed context-sensitive

slicing algorithm.

Algorithm 4 Dynamic EAOSDG Construction Algorithm

1: INPUT: P- Input AOP

2: OUTPUT: EAOSDG- Modified EAOSDG

3: Invoke Control Dependence Algorithm (CDA)

4: Invoke Dynamic Data Dependence Algorithm (DDDA)

Control Dependence Algorithm (CDA)

The pseudo code for the Control Dependence Algorithm (CDA) is given in Algorithm

5. CDA takes the AOP as input and creates nodes for each statement of input AOP.

Then it identify the control dependencies between the statements of AOP and draw

control dependence edges between appropriate node of EAOSDG. After adding all control

dependence edges it adds call edges, parameter-in edges, and parameter-out edges between

appropriate call nodes and method entry nodes of EAOSDG. Then to maintain call-site

of each method call, all the call edges, parameter-in edges, and parameter-out edges are

labeled. After adding all method call related edges, weaving edges are added. The weaving

edges are added between non-aspect part of the EAOSDG and aspect part of EAOSDG.

Appropriate labels are given to each weaving edges. The EAOSDG constructed by CDA

does not contains data dependence edges, so the DDDA is called for adding runtime data

dependencies between nodes of EAOSDG.

Dynamic Data Dependence Algorithm (DDDA)

In Algorithm 6, we present the pseudo code of Dynamic Data Dependence Algorithm

(DDDA). DDDA is responsible to identify the runtime data dependencies between

statements of AOP and draw appropriate data dependence edges between nodes of EAOSDG.
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Algorithm 5 Control Dependence Algorithm (CDA)

1: INPUT: P- Input AOP

2: OUTPUT: EAOSDG- Modified EAOSDG suitable for computing context-sensitive

slice

3: for each executable statement or predicate ∈ P do

4: Create a node in the EAOSDG

5: Create separate call nodes and actual-in/out nodes for each call sites

6: Create method entry nodes and formal-in/out nodes for each method entry nodes

7: end for

8: \\ Add control dependence edges
9: if node j controls the execution of another node k then
10: add control dependence edge j → k
11: end if

12: \\ Add call dependence edges
13: if node n is a call node andm is the entry node for the method called at n then

14: add call dependence edge n → m
15: insert a label n on the call edge, i.e. n

n→ m
16: add parameter_in edges between actual-in and formal-in nodes

17: add parameter_out edge between formal-out and actual-out nodes

18: insert label n on each parameter edge

19: end if

20: \\ Add weaving edges
21: if v is the entry node of an advice target method and w is the starting node of before

advice then

22: add weaving edge v → w
23: insert a label v on the weaving edge, i.e. v

v→ w
24: end if

25: if node x is the last node of before advice then
26: add weaving edge x → v
27: insert a label v on the weaving edge, i.e. x

v→ v
28: end if

29: if node c is the last node of an advice target method and d is the starting node of after
advice then

30: add weaving edge c → d
31: insert a label c on the weaving edge, i.e. c

c→ d
32: end if

33: if node g is the last node of after advice then
34: add weaving edge g → c
35: insert a label c on the weaving edge, i.e. c

c→ c
36: end if

37: if node a is the call node of an advice target method and b is the starting node of around
advice then

38: add weaving edge a → b
39: insert a label a on the weaving edge, i.e. a

a→ b
40: end if

41: if node c is the last node of around advice then
42: add weaving edge c → a
43: insert a label a on the weaving edge, i.e. c

a→ a
44: end if
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45: if node p is a proceed() node inside around advice then
46: add weaving edge between p to the target method entry node
47: add another weaving edge between the last node of the target method and node p
48: end if

It first execute the given program by providing the input values to find the run-time data

dependencies. The input variables are such variables in a program, whose values must be

provided during run-time by the user, like command line arguments in Java. To capture

these dynamic data dependencies, we execute the given AOP. During the execution, DDDA

maintains a variable C(v) for each variables used in the program. As the program executes,

C(v) contains the recent statement number where the variable v is defined or changed. At

the end, DDDA adds data dependence edges between the node represents C(v) and nodes

where the variable v is used. At the end of DDDA a dynamic EAOSDG is constructed.

We have constructed the dynamic EAOSDG for the example program given in Figure

4.3. First we have called CDA for constructing the EAOSDG's node and adding control

dependence edge, call edges, parameter-in edges, parameter-out edges, and weaving edges.

Then, DDDA is called for adding dynamic data dependence edge in EAOSDG. Dynamic

EAOSDG for the example program given in Figure 4.3 is shown in Figure 4.6.

Algorithm 6 Dynamic Data Dependence Algorithm (DDDA)

1: INPUT: P- Input program

2: I- Values for input program variables

3: OUTPUT: DynamicEAOSDG
4: for each variable v ∈ P do

5: initialize C(v) = φ
6: end for

7: while (! P terminate) do

8: for each statement s ∈ P do

9: execute statement s of P associated with I
10: for each variable v ∈ s do
11: if v is defined at s then
12: C(v) = s
13: end if

14: if v is used at s AND C(v) 6= φ then

15: add a data dependence edge C(v) → s toMAODGP

16: end if

17: end for

18: end for

19: end while
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Figure 4.6: Dynamic EAOSDG of the example program given in Figure 4.3 that displays

call-sites

Theorem4.5. DynamicDataDependence Algorithm (DDDA) finds correct data dependence

in a given program.

Proof: In this section, we sketch the correctness proof of DDDA. The main properties

of an algorithm are finiteness, effectiveness, and termination. DDDA consists of mainly two

loops. The number of iterations in first for loop is the number of variables in a program. In

a program, the number of variables is fixed and hence, the for loop will iterate for a fixed

number of times. The second loop is a while loop, which iterates for each statement of the

program. As the number of statements in a program is finite, so the while loop will have

finite number of iterations. This proves that DDDA will terminate after a finite number of

iterations. Suppose v1, v2, ...vi, ...vn are the variables present in the input program. DDDA

first assigns a cache C(vi) for each variable vi and initializes it with φ. Before the use of a
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variable, it must be defined. Let the statement p defines a variable vi, so DDAwill change the

cache value of the variable as C(vi) = p. After execution of some statement of the program,

suppose at statement q, variable vi is used. Then there exists a data dependence between the

statement where vi is defined and the current statement q which uses vi. In DDDA, a data

dependence edge is drawn between the node representing C(vi) and the node representing

statement q. So, it proves that DDDA is effective to handle data dependencies present in a

program. Finally, as the algorithm has two loops and both of them are finite, so after finite

number of iterations, the algorithmwill terminate. This proves that DDDA terminates within

finite time. �

4.4.2 Proposed Slicing Algorithm

The proposed context-sensitive slicing algorithm is responsible for maintaining

context-sensitivity during computation of slices. It takes the EAOSDG of an AOP, as

input. It produces a list L which includes all the nodes included in the computed slice, as

output. It maintains a stack, i.e. SC, for preserving call-context. The algorithm is based on

a worklist. First, the worklist W is initialised with the slicing criterion node `s'. The slicing

algorithm runs until the worklist W becomes empty. Repeatedly one node is removed from

W and added into L and all the incoming edges to this node are examined.

Let cs be the label of one incoming edge into the slicing criterion node `s'. First the

algorithm checks for all incoming edges. If the current edge is a call or parameter in edge,

then the algorithm checks the status of the corresponding call-context stack SC. If SC is

empty, then the source node of the current edge is inserted into worklist W. If SC is not

empty, then the top element of SC is fetch and matched with the label of current edge, i.e. cs.

If both of them match, then only the source node of the current edge is inserted into W and

the top element of SC is removed. If the current edge is found to be a parameter out edge,

then the source node of the edge is inserted into W and SC. Similarly, the weaving edges are

handled by the context-sensitive slicing algorithm.

4.4.3 Working of Algorithm

Let us take node 19 as the slicing criterion, as shown in Figure 4.6. Initial values of W =

{19}, SC = {} and L = {}. Now, let us start traversing backward from node 19. The

status of various data structures when processing different nodes during construction of the

slice is given in Table-4.1. During traversal, first we reached at node 18 and the connecting

edge from node 19 to node 18 is a control dependence edge. As it is not a call, or weaving

edge, so no stack will be used, only we have to add node 18 into W. In the next step, node

18 is removed from W and added into L and its incoming edges are checked. One control

dependence edge (from node 16) and one data dependence edge (from node 17) are found.

Both the new nodes associated with these two edges must be added to W, as shown in the
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Algorithm 7 Context-Sensitive Slicing Algorithm

1: INPUT: EAOSDG = (V,E)
2: Slicing criterion s, s∈ V
3: OUTPUT: L- the list of nodes in the computed slice for s
4: W = {s} // initialize the worklist with s
5: L = {} // the slice set

6: SC = {} // the stack for maintaining context-sensitivity

7: repeat

8: W= W \ {n}
9: L= L

⋃
{n}

10: for allm →
e
n do // handle all incoming edges of n

11: Let CSe is the call-site of edge e
12: if e ∈ {parameter_in, call, weave_in}&& e has not been marked

then

13: if SC [TOP ] == φ then

14: W= W
⋃

{m}
15: mark e
16: end if

17: if SC [TOP ] == CSe then

18: W= W
⋃

{m}
19: mark e
20: POP(SC)
21: end if

22: else if e ∈ {parameter_out, weave_out}&& e has not been marked
then

23: W=W
⋃

{m}
24: SC.PUSH(m)
25: mark e
26: else//intra-procedural edges

27: if e has not been marked then

28: W=W
⋃

{m}
29: mark e
30: end if

31: end if

32: end for

33: until W == φ
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Table 4.1: Status of data structures during working of CS slicing algorithm

W Stack SC L

19 - -

18 - 19

17,16 - 19,18

16,14,15 - 19,18,17

14,15 - 19,18,17,16

15,9,1,26 9,14 19,18,17,16,14

9,1,26 9,14 19,18,17,16,14,15

1,26,7,8 9,14 19,18,17,16,14,15,9

26,7,8 9,14 19,18,17,16,14,15,9,1

7,8,25 9,14 19,18,17,16,14,15,9,1,26

8,25,6 9,14,6 19,18,17,16,14,15,9,1,26,7

25,6 9,14,6 19,18,17,16,14,15,9,1,26,7,8

6,23 9,14,6 19,18,17,16,14,15,9,1,26,7,8,25

23,3,4 9,14,6 19,18,17,16,14,15,9,1,26,7,8,25,6

.... ..... ....

third row of Table-4.1. Similarly, we delete one node at a time from W and add to L and

simultaneously change the status of stack SC. When W become empty, the algorithm stops

and the list of nodes included in the slice are present in L.

4.4.4 Correctness of Context-Sensitive (CS) slicing algorithm

In this section, we sketch the proof of correctness of our context-sensitive slicing algorithm.

Theorem4.6. Context-Sensitive (CS) slicing algorithm aways finds correct slice with respect

to a given slicing criterion.

Proof. An algorithm is said to be correct if it satisfy the properties of completeness,

correctness, and finiteness. The input to CS slicing algorithm is EAOSDG for an AOP.

In EAOSDG, there are two categories of edges present, i.e. inter-procedural edges and

intra-procedural edges. Our CS algorithm starts traversal from the given slicing criterion

node and checks all incoming edges. If it finds, call edge, parameter-in edge or weave-in

edge, then it fetch the top element from stack SC and matches it with the label on current

edge. When there is a match, the new node is added into slice. During traversal of EAOSDG

when it finds any parameter-out edge or weave-out edge, then the algorithm push the label

on current edge in stack SC. For any other intra-procedural edges, the CS algorithm adds the

unmarked node in slice. As, the CS algorithm handles all types of edges that may present in

an EAOSDG, hence it is complete.

To prove that our proposed algorithm computes correct slices, we assume that the given

EAOSDG is correct. Now, suppose s is the slicing criterion node in the given EAOSDG.

60



Chapter 4 Dynamic Slicing of Aspect-Oriented Programs

If there exists an edge from any other node p of the EAOSDG to node s, it means that

node s depends on node p for its execution. If the edge between node p and node s is

inter-procedural type edge, i.e. from one method to another method, then the algorithm uses

stack SC to maintain calling context-sensitive during traversal. If the edge between node p

and node s is an intra-procedural type edge, i.e. within the same method, such as control

dependence edge or data dependence edge, then the new node p will be added to the slice.

As, the context-sensitive property of slice computation is implemented through stack, it can

be concluded that our slicing algorithm computes correct slices for AOPs.

Our proposed slicing algorithm is based on a worklist W which holds nodes of a given

EAOSDG. First, we add the slicing node in the worklist W and repeatedly delete nodes

from W and add new dependent nodes in W. The algorithm iterates till the worklist W not

becoming empty. As the number of nodes and edges in an EAOSDG is finite, the worklist W

will become empty after finite number of iterations. So, we can conclude that our CS slicing

algorithm satisfy finiteness. This proves the Theorem. �

4.4.5 Complexity Analysis

In the following we discuss the space and time complexity of the Dynamic Context-Sensitive

slicing algorithm.

Space complexity: The CS slicing algorithm works on the input EAOSDG, as in case of

extended two-phase algorithm. In Section 4.3.4, we have already determined the space

complexity of EAOSDG. Hence, if the number of nodes in the EAOSDG is n and the number

of edges is e, the space complexity of storing the graph is of order O(ne).

Time complexity: Dynamic context-sensitive slicing algorithm is based on insertion and

deletion from a worklist W. For finding the worst case time complexity, suppose all the

nodes of EAOSDG are connected. Let the number of nodes in EAOSDG in n. While

processing any node s, we have to traverse rest (n − 1) nodes. As a result the outer loop

of CS slicing algorithm runs n ∗ (n − 1) times. So, the worst case time complexity of the

dynamic context-sensitive slicing algorithm is O(n2).

4.5 Implementation and Results

In this section, we briefly describe the implementation of our proposed slicing approaches.

The main motivation for our implementation is to verify the correctness and the preciseness

of our algorithms. For construction of EAOSDG of a given AOP, we have developed a tool.

First, we describe the overview of our developed tool. Then, we have applied our proposed

slicing techniques on five open source projects using our slicing tool. Finally, we present

the output of our experiment.
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Figure 4.7: Framework of the tool

4.5.1 Overview of Tool

We developed a tool for automatic construction of EAOSDG for an input AOP and to

compute slices using our proposed slicing algorithms. The framework of the tool is shown

in Figure 4.7. Developed slicing tool has two parts: EAOSDG Generator and Slicer. Our

tool takes the bytecode of an AOP. First, bytecode of the given AOP is given to EAOSDG

Generator package. This package is an extension of Java System Dependence Graph API 2.

• EAOSDGGenerator : This part of the tool extracts the information of all the classes

and methods of the program from the bytecode and sends it for matrix generation.

The different packages present in EAOSDG generator, are summarized in Table

4.2. The internal package analyses the byte code and generates information about

instructions, methods, classes, aspects etc. The graph.internal package uses the

fetched information by internal package and generates the data-structure for method

dependence graph (MDG) and aspect dependence graph (ADG). The com.graph

package checks the information provided and finds the dependencies between different

parts of the program. It maps all the dependencies and parameters of the program

and then stores it according to the data structures defined by com.util.datastructure

package. We have developed a package calledmain for collecting all information from

different packages and construct the EAOSDG and display it using an image editor.

The sketch of main package is shown in Figure 4.8. We have to provide the complete

path of the input AOP bytecode in inputFolderPath. EAOSDG generator construct

the graph and stores the graph in the folder whose path is given in outFolderPath.

2http://www4.comp.polyu.edu.hk/ cscllo/teaching/SDGAPI/
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//package main;
import com.graph.jsdg.*;
import convertor.data_store;
import java.io.File;
import java.io.IOException;
import java.lang.Object;

public class Main {
public static void main(String[] args) {

try {
String inputFolderPath="E:\\primenumber\\bin";
String outFolderPath="E:\\Output";
AspectSDGraph lvx = new AspectSDGraph(inputFolderPath);

...

...

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

Figure 4.8: Sketch of main package of EAOSDG Generator

• Slicer : After construction of EAOSDG for an input AOP, we want to compute slices

using our proposed algorithms. We have developed a package Slicer that takes input

the EAOSDG file and slicing criterion from the user.

4.5.2 Case Studies

We have downloaded five open-source programs for our experiment from the available

open-source repositories. In the absence of adequate number of open-source aspect-oriented

programs, some of the experimental programs (such as Elevator and ATM Simulation)

are developed as laboratory assignments. We constructed different EAOSDGs for these

programs and computed the time required by the tool to generate these EAOSDGs. Also,

the number of nodes and edges generated in the respective EAOSDG are shown in Table

4.3. This table contains the details of five case study project such as, Project name, project

description, LOC, details of EAOSDG, and EAOSDG generation time.

4.5.3 Experimental Results

In this chapter, we have proposed two slicing algorithms for AOPs, i.e. Extended Two-Phase

slicing algorithm and Context-Sensitive slicing algorithm. We want to compare the

performance of these two algorithms to know which algorithm gives more accurate results
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Table 4.2: Package Description for our EAOSDG generation tool.

Package Name Usage

com.asm.internal This package is used for representing the internal classes

which operate with ASM framework.

com.asm.internal.util This package is used for storing the utility classes which

operate with ASM framework.

com.graph This package is used for storing the common attribute of a

Graph.

com.graph.element This package is used for storing the basic element of a Graph.

com.graph.internal This package is used for storing the internal representation of

a Graph.

com.graph.Iterator This package is used for storing the different iterator for

different searching algorithm.

com.graph.pdg This package is used for storing the procedural dependence

graph related things.

com.graph.sdg This package is used for storing the system dependence graph

related things.

com.util This package is used for storing the common utility classes.

com.util.datastructure This package is used for storing the common data structure

classes.

and in little time. Based on the EAOSDGs generated for the different case study programs,

slices are computed using the proposed slicing algorithms. Different number of slices for

different programs are computed depending upon the input slicing criterion.

The details of the findings of our experiment is shown in Table 4.4. This table shows

comparison of the two algorithms based on average slicing time. It is observed from Table

4.4 that Context-Sensitive (CS) slicing algorithm computes slices 4% to 37% faster than

Extended Two-Phase slicing algorithm. Figure 4.9 shows the comparison of average slicing

time vs LOC for each proposed algorithms. It can be observed from Figure 4.9 that Extended

two-phase slicing algorithm always takes larger time to compute slices than CS slicing

algorithm.

4.5.4 Threats to validity

Below, we present some of the threats to the validity of our proposed approach.

1. As the slicing technique proposed in this chapter is only for AspectJ platform, it

may not work satisfactorily for other aspect-oriented programming languages such

as Aspect C++ and Aspect C#.

2. Through the five case studies, we have tested our proposed slicing technique for

computing precise and correct slices of projects upto 3856 LOCs. We believe, the
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Table 4.3: Case study projects details

Sl.

No

Project

Name

Project Description LOC No. of

Nodes

No. of

Edges

EAOSDG

Generation

Time

1 Server -

Client-13
This project uses socket

programming to create a

server-client connection in

between two systems

119 155 195 118 ms

2 Elevator-1 This project simulates elevator

system. This version is an

ordinary AspectJ program

540 583 997 302 ms

3 ATM

Simulation

This project simulates the

ATM system on a distributed

environment

887 944 1650 1391 ms

4 Tetris

Project

This is a very popular game,

where we arrange blocks

1027 1566 2317 1672 ms

5 GoF

Patterns-1

This is the AspectJ

implementation of GoF

design patterns

3856 4137 3752 2671 ms

Table 4.4: Comparative study of proposed slicing algorithms

Sl.

No.

Project LOC No. of

Slices

Average Slicing Time

(in ms)

Ext.

2-Phase

CS

1 Server-Client-1 119 8 1.75 1.10

2 Elevator-1 540 14 2.48 1.82

3 ATM Simulation 887 20 4.73 4.51

4 Tetris Project 1027 23 5.02 4.73

5 GoF Patterns-1 3856 22 5.98 5.56

Figure 4.9: Comparison of performance
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other larger projects can be handled through our slicing technique.

3. The proposed slicing technique is based on construction of EAOSDG, and if the

intermediate representation changes, then our slicing technique may not work properly.

4.6 Comparison with related work

Most of the work in the existing literature manually generates the SDGs to compute the

program slices, as they are silent about the graph generation process. Also, very little work

has been reported in slicing of AOP. Zhao [91] for the first time computed the slices for AOPs.

He has proposed an intermediate graph called Aspect System Dependence Graph (ASDG) to

represent an AOP. ASDG cannot represent around advice of any AOP. In the absence of all

features adequate number of different dependencies, the intermediate graph used to compute

the slices do not correctly distinguish the aspect and non-aspect parts of the program.

Braak [92] also gave an approach for aspect slicing based on an intermediate graph that

is also manually generated. Unlike the slicing algorithm extended by Zhao [91] and Braak

[92], our proposed extended two-phase algorithm extends the slicing algorithm in [6] by

introducing a third phase of traversal along the weaving edges. In the first two phases of the

proposed slicing algorithm, we slice the non-aspect part of the input program and traverse

the weaving edges in the third phase to slice the aspect parts.

Mohapatra et al. [71] has propose a Trace file Based Dynamic Slicing (TBDS) algorithm

for AOPs. As the name suggest, this approach is based on execution trace based. Storing

execution trace file is an overhead for slicing process. Also, needs to update trace file

for each execution of the program. They have use an intermediate graph called Dynamic

Aspect-oriented Dependence Graph (DAODG) for given AOP. The DAODG is not able to

represent all features of AOP such as pointcuts and around advice. In our proposed approach,

we have considered all these important features during computation of slices.

Ray et al. [27] have extended the work of Mohapatra et al. [71]. They have represented

pointcuts in the intermediate graph. But, for each execution of the given program, a new

graph has to build. This slows down the process of slicing. In our proposed slicing approach,

we have used EAOSDGwhich is generated at the time of execution of given program. Hence,

there is no extra time require to store execution trace and then construct the dependence

graph.

4.7 Summary

In this chapter, we have first proposed an intermediate representation called Extended

Aspect-Oriented System Dependence Graph (EAOSDG) for representing AOPs. Then,

based on the EAOSDG we have proposed two slicing algorithm for AOPs, i.e. Extended

Two-Phase slicing algorithm and Context-Sensitive (CS) slicing algorithm. We have
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developed a prototype tool for automatic generation and computation of slices for a given

AOP. We have compared the performance of proposed slicing algorithms by taking five

case studies. From the experiment, we found that, the context-sensitive slicing algorithm

computes more precise slices in comparison to the other algorithm. Also, context-sensitive

slicing algorithm takes significantly little computation time to generate the slices in

comparison to the other slicing algorithm.

The algorithms presented in this chapter cannot handle concurrency issues in AOPs. In

the next chapter, we extended our framework to consider concurrency issues in AOPs.
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Dynamic Slicing of Concurrent

Aspect-Oriented Programs

A multithreaded program contains two or more parts that can run simultaneously or

concurrently. Each such part of the program is called a thread. Multithreading is very

useful in real-time programming and parallel computing [93]. A multithreaded program

runs faster than a single-threaded program. The initiation of a thread can occur inside a

program in any sequence, but the termination of these threads must follow the same sequence

[72, 94]. Synchronization is the process to handle the creation and termination of threads in

right sequence. We can maintain a separate module that handles all thread synchronization

issues, so that overall complexity of the concurrent program will reduce [56]. But, the

synchronization module is scattered through several related modules that invoke threads.

When any module or concern is affecting many modules, then it is called cross-cutting

concern. OOP is not efficient to handle the cross-cutting concerns in a software [91]. AOP

is a new programming paradigm developed to handle these types of cross-cutting concerns

[91]. When an AOP is developed to handle thread synchronization issues, then these types

of AOPs are called concurrent AOPs (CAOP).

The computed slice of the CAOPs should be correct and precise. Finding a precise

slice in a CAOP is very difficult. In the existing literature, we found that there are very

few work done in the field of slicing of CAOP [14]. In this chapter, we propose a

dynamic slicing algorithm for CAOPs using context sensitive approach. We first propose

an intermediate graph called Multithreaded Aspect-Oriented Dependence Graph (MAODG)

to represent CAOPs. MAODG represents the features of a CAOP. Then, we have proposed

an algorithm to compute the dynamic context sensitive slice of CAOPs using MAODG. We

have compared the performance of our slicing algorithm with the context-insensitive slicing

algorithm and Ray et al.'s [14] algorithm. For comparison, we have considered slice size

and slicing time.

This chapter is organized as follows:

In Section 5.2, we present the description of concurrency model of AOP, used in

this thesis. Next, in Section 5.3 we present the details of our proposed intermediate

representation, MAODG, for CAOPs. Then, in Section 5.4 our proposed context-sensitive
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dynamic slicing algorithm for CAOP is described. We have implemented our slicing

approach and developed a concurrent AspectJ slicer. In Section 5.5, we discuss the details

of our implementation and the results. In Section 5.6, we compare our proposed work with

some existing related work. In Section 5.7, we summarize the chapter.

5.1 Basic Concepts

In this section, we present some basic concepts, which are most relevant and important for

understanding our proposed technique. First, we briefly discuss the slicing technique for

sequential programs and concurrent programs. Then, we present the concurrency model of

AspectJ which is used in our proposed program slicing technique.

5.1.1 Slicing of Aspect-Oriented Programs without threads

All the existing slicing techniques are graph-based slicing techniques. Zhao [29] proposed

a new intermediate representation for AOPs. He named this intermediate representation

Aspect-oriented System Dependence Graph (ASDG), which consisted of three parts: an

SDG for non-aspect part, a dependence graph for aspect part and some additional dependence

edges to connect the SDG and the dependence graph of the aspect part. Trivial SDG consists

of dependencies like control, data, call etc. The ASDG includes some additional types of

edges apart from the types of edges present in SDG. Some of them are (i) aspect-membership

edge, (ii) coordination edge etc. Aspect membership edges are drawn between the aspect

declaration node and the pointcut nodes or advice nodes. The connection between the

non-aspect SDG and the aspect graph is made through coordination edges. For example, the

AOP shown in Figure 5.1 checks whether a given number is prime or not. In this program,

the before advice prints the called method name before executing the method and the after

advice prints ``Returned Normally" after returning to the callee method. The ASDG for the

example AOP is shown in Figure 5.2. In the ASDG, the nodes represent the line numbers of

the program. Below, we give the formal definitions of some of the edges used in ASDG.

Now, for finding the slice for a given AO program, we need to apply a slicing algorithm

on the generated ASDG. In our survey, we found that most of the research work including

the work of Zhao [29], have used the two-phase slicing algorithm developed by Horwitz

[6]. In the first phase, the algorithm starts with the given slicing criterion node and traverses

backward along all the edges except parameter_out edges. All the nodes reached during this

traversal are marked and included in the slice. Then, in the second phase, the algorithm

traverses backward along all the edges except call and parameter_in edges. All the nodes

reached during both the traversals are included in the slice. The union of nodes marked in

phase one and phase two gives the slice of the given AO program with respect to a slicing

criterion.

Taking node 23 of the ASDG in Figure 5.2, as the slicing criterion, we have computed
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Figure 5.1: An example aspect-oriented program

Figure 5.2: ASDG for the example aspect-oriented program given in Figure 5.1
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the slice using the two-phase algorithm [6]. The resultant slice is shown in Figure 5.2, with

shaded nodes included in the slice. Initially the worklists W1 = {23},W2 = {}, and S =

{23}. Phase 1 starts from the slicing criterion and traverses backward along all the edges

except the parameter_out edges, while the source nodes of the encountered parameter_out

nodes are saved in a worklistW2. This phase visits the light gray nodes. Phase 2 starts from

all the nodes present in the worklist W2 and traverses backward along all the edges except

call and parameter_in edges. Because of the summary edges, there is no need to return from

a called procedure back to the callee. The resultant slice consists of all the nodes visited in

phases 1 and 2.

Algorithm 8 : Two-phase slicing algorithm

INPUT: ASDG G < V,E >, a slicing criterion s.
OUTPUT: The Slice S for slicing criterion s.
INITIALISE:WorklistsW1 = {s},W2 = {}, S = {s}.
1: whileW1! = Φ do . phase 1 starts
2: W1 = W1 − {n} . process the next node inW1

3: for all edge e betweenm → n do . handle all incoming edges of n
4: if e /∈ {po} then . if e is not a parameter_out
5: ifm /∈ S then

6: S = S + {m}
7: W1 = W1 + {m}
8: end if

9: else e ∈ {po}
10: W2 = W2 + {m}
11: end if

12: end for

13: end while

14: whileW2! = Φ do . phase 2 starts
15: W2 = W2 − {u} . process the next node inW2

16: for all edge e between v → u do . handle all incoming edges of u
17: if e /∈ {pi, call} then . if e is not a parameter_in or call edge
18: if v /∈ S then

19: S = S + {v}
20: W2 = W2 + {v}
21: end if

22: end if

23: end for

24: end while

5.1.2 Slicing of Aspect-Oriented Programs in presence of threads

Threads need particular attention during slicing. The presence of interference between

threads in a program, makes the dependence relationship non-transitive. Hence, there cannot

be any summary edges in the SDG for the concurrent programs [95]. As a result, when we

use the two-phase algorithm to compute the slices of a concurrent program, it may generate
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incorrect and imprecise slices. So, we need to develop a new slicing algorithm that takes care

of threads as well as the interference dependencies, if any, in CAOPs. We have designed a

method to represent the interference dependency using a special edge in the graph called

Interference edge. As the interference dependency arises during run-time and we cannot

predict the run-time behaviour in advance, we add the interference edge for all possible

scenarios during static analysis and graph generation. The construction of intermediate graph

for CAOPs is presented in Section 5.3 and computing context-sensitive slices in the presence

of threads, is explained in Section 5.4.

5.1.3 Concurrency model of AOP

There exists many programming languages for sequential implementation of AOPs. AspectJ

is one of them. In AspectJ, the modularized cross-cutting concerns are weaved with the

base code of the program to generate a sequentially executable program. Concurrency is

an important feature to improve the performance of a program. In our literature survey, we

found very few work [96–98] presenting models for concurrent AOP. Douence et al. [98]

have proposed a Concurrent Event-based AOP (CEAOP) model which is the extension of

sequential Event-based AOP (EAOP). In an EAOP, the aspects are defined in terms of events

which occur during execution of a program. The CEAOPmodel supports concurrent aspects

along with concurrent base program. As mentioned in [98], the CEAOP model is only an

initiation of building a full concurrent model for AOP. Also, for the implementation of the

proposed concurrent model, they have given only a JAVA prototype, which is little useful in

developing large software.

The concurrent model proposed by Allan et al. [97] is based on the execution trace

matching [99], for covering sequences of joinpoints. In their proposed model, there can

be several sequences of joinpoints that run concurrently. But, while an advice executes,

the base program is paused. So, this model can handle concurrent base programs, not

concurrent aspects. Another concurrency model is proposed by Andrews [96] for AOP

reflection. Reflection is the ability of a program to check and modify its own structure at

run-time. In the proposed AOP reflection, Andrews has designed a concurrent model where

the base program can run concurrently along with the metalevel code introduced through

reflection. Their work only presents a sketch of the AOP reflection concurrent model. Also,

their model is not directly related to the concurrent aspect model.

These existing models are not fully developed or evaluated models for CAOP. So, we

have used a simple pointcut model of AspectJ and examined all possible designs of AOPs

having threads. In our concurrent model, we have used the Thread class library provided by

Java, as AspectJ is an extension of Java programming language. The standard operations on

a thread such as start(), stop(), join(), suspend(), resume(), etc. are used along with AspectJ.

We have observed that only the presence of thread in AOP does not make it concurrent.

An example program is shown in Figure 5.3. In this program, the base class calls two
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Figure 5.3: An example (a) concurrent base program with (b) sequential advices in an

AspectJ program

methods and inside each method we create one thread. Within the thread we print Jai

five times using a for loop. We have declared an aspect called aspt which contains two

before advices for two methods of the base class. After executing this example program, we

observed that when the thread is present in the base program, and the aspect part does not

have any threads, then advices cannot run concurrently.

We found that when the advices contain threads, then only the advices can run

concurrently. Even if the target methods in the base program do not contain threads and

they execute sequentially, the advices that contain threads run concurrently, as shown in

Figure 5.4. In this program, base1 class has two methods that print the name of the method

called. We have declared an aspect called aspt1 that contains two before advices for the two

methods of the base1 class. These advices contain threads. Hence, we conclude that, when

in an AOP, the advices contain threads, then it can be called as CAOP.

5.1.4 Slicing of Concurrent AOPs

In the literature, we have found a work done by Ray et al. [14] which is the closely related

work with our proposed slicing technique. Ray et al. [14], have used an intermediate graph

called Concurrent Aspect-oriented System Dependence Graph (CASDG) in their slicing

technique. CASDG is created for each current execution trace, starting from scratch. Next
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Figure 5.4: An example (a) sequential base programwith (b) concurrent advices in an Aspect

in an AspectJ program

time, for a different execution trace another newCASDG is formed. They [14] have extended

the existing Node Marking Dynamic Slicing (NMDS) algorithm for OOPs, proposed by

Mohapatra et al. [28] to concurrent AOPs. In this chapter, we have compared our proposed

slicing algorithm with Ray et al.'s algorithm [14].

5.2 Multithreaded Aspect-Oriented Dependence Graph

(MAODG)

We propose an intermediate graph namedMultithreaded Aspect-Oriented Dependence graph

(MAODG), to represent CAOPs. TheMAODG is an extension of SDG (SystemDependence

Graph) for OOPs, proposed by Larsen and Harrold [10]. MAODG is a collection of method

dependence graphs (MDG), thread dependence graphs (TDG) and aspect dependence graphs

(ADG) and some special types of dependence edges. MDG is used to represent the methods

in the program and intra-method control and data dependencies. TDG is used to represent

each thread present in a concurrent AOP. ADG is used to represent the aspects, point-cuts

and advices in an AOP. We have used several dependence edges to connect all the MDGs,

TDGs, and ADGs. These dependencies are defined as follows:

Definition 5.1. Thread dependence edge: A thread dependence edge s
thread−−−→ t exists, if s
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is a thread calling node and t is the entry node of its run() method. This is also termed as

thread_start edge.

Also there is a thread dependency between the last statement of a thread and the

immediate next statement of the main thread from where this thread is called. This is called

thread_return edge. This dependency can be determined during run-time only.

Definition 5.2. Class/Aspectmembership edge: Classmembership edges are drawn between

the class node and all its data member nodes and method declaration entry nodes. Aspect

membership edges are drawn between aspect node and its pointcut nodes. For simplicity

of the MAODG, we have used the same notation to represent both the Class and Aspect

membership edges in MAODG, as shown in Figure 5.7. The dependence between the

pointcuts and advices are represented by control dependence edge, as the execution an advice

is controlled by its pointcut. Also, this will reduce the complexity of MAODG.

Definition 5.3. Weaving edge: A weaving edge p
weave−−−→ q exists, if p is a method call node

and q is its corresponding advice definition start node. It is also known asweave_start edge.
When a weaving edge is used to represent the return from an advice to its corresponding

method call node, then this type of weaving edge is called weave_retrun edge.

Definition 5.4. Interference dependence edge: Suppose there are two nodes n1 and n2 of

two different threads T1 and T2 respectively. If a variable v is defined at n1 and used by

n2, and both the threads T1 and T2 execute in parallel, then an interference dependence edge

n1
interference−−−−−−−→ n2 is drawn between node n1 and node n2.

5.2.1 Weaving the aspect and non-aspect parts in MAODG

The dependence graphs for non-aspect part of the AOP are constructed independently. Then,

the ADG for aspect part of the AOP is created separately. Now, in-order to complete the

MAODG construction, we need to add weaving edges between the SDG of non-aspect

part and the ADG. According to the AspectJ program execution process, the before advice

runs just after the call statement and before the called method's body execute. Therefore a

weaving edge from call node in the SDG should be weaved with the entry node of the before

advice in the ADG and then from last statement of before advice to the called method entry

node. Similarly, in AspectJ, the after advice runs just after the last statement of the called

method and before the control is transferred to the callee method. Hence, the weaving edge

must be drawn between the last node of the called method and the entry node of after advice,

and also between the last node of after advice and the call node.

5.2.2 MAODG Construction Algorithm

To construct the MAODG for a given CAOP, our algorithm first calls the CCA

(Concurrent Control-dependence Algorithm) for constructing the MAODGwithout any data

dependencies. This type of MAODG is incomplete and referred as partial MAODG and

denoted byMAODGP , because of the absence of data dependence edges. Then, it invokes
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the DDA (Dynamic Data-dependence Algorithm), which adds dynamic data dependencies

into the partial MAODG.

Algorithm 9 Dynamic MAODG Construction Algorithm

INPUT: P- Input program, I- Input set for P

OUTPUT: The MAODG for P

1: Invoke Concurrent Control-dependence Algorithm (CCA) for constructingMAODGP

having nodes and control dependence edges.

2: Invoke Dynamic Data-dependence Algorithm (DDA) for dynamic construction of

MAODG having data dependence edges.

Concurrent Control-dependence Algorithm (CCA)

The pseudo code for CCA is given in Algorithm 10. CCA creates the partial MAODG of

the given program. It first creates a node for each statement or predicate present in the

program. Some additional nodes are generated to satisfy the syntax of SDG, like actual

parameter-in/out, formal parameter-in/out nodes, etc. Next, control dependence edges are

inserted between the nodes if one node is controlling the execution of another node. Then,

call dependence, thread dependence and weaving edges are identified and added sequentially

into the graph. The resultant partial MAODG of the example program given in Figure 5.4 is

shown in Figure 5.5.

Dynamic Data-dependence Algorithm (DDA)

The pseudo code for Dynamic Data-dependence Algorithm (DDA) is given in Algorithm

11. After the construction of partial MAODG for the given program, we execute the given

program by providing the input values to find the run-time data dependencies. The input

variables are such variables in a program, whose values must be provided during run-time by

the user, like command line arguments in Java. To capture these dynamic dependencies, we

execute the example program given in Figure 5.4 and observe that the following statements

are executed: [2, 4, a4, a6, a7, b3, b5, b6, 7, 9, 5, a10, a12, a13, b3, b5, b6, 11, 13]. The nodes

that are involved in the execution are represented by shaded nodes in Figure 5.5. Dynamic

Data-dependence Algorithm uses dynamic analysis to determine actual data dependencies

during run-time. We add data dependence edges (if any) between the shaded nodes only. The

extra non-shaded nodes which are present in the partialMAODG are removed, as these nodes

will not affect the computation of dynamic slice with respect to the given input. This reduces

the space complexity and time complexity of the graph generation process. After removing

the extra nodes, we find the complete MAODG of the given program for a particular input.

The complete MAODG for the example program given in Figure 5.4 is shown in Figure 5.7.

In the MAODG shown in Figure 5.7, it can be observed that the labels of some nodes

such as node b5, are not matching with the program statements, because our tool works on
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Algorithm 10 Concurrent Control-dependence Algorithm (CCA)

1: INPUT: P- Input program

2: OUTPUT: MAODGP - Partially constucted MAODG

3: for each executable statement or predicate ∈ P do

4: Create a node in the MAODG

5: Create separate call nodes and actual-in/out nodes for each call site

6: Create method entry nodes and formal-in/out nodes for each method entry node

7: end for

8: \\ Add control dependence edges
9: if node j controls the execution of another node k then
10: add control dependence edge j → k
11: end if

12: \\ Add call dependence edges
13: if node n is a call node andm is the entry node for the method called at n then

14: add call dependence edge n → m
15: insert a label n on the call edge, i.e. n

n→ m
16: add parameter_in edges between actual-in and formal -in nodes

17: add parameter_out edges between formal-out and actual-out nodes

18: insert label n on each parameter edge

19: end if

20: \\ Add thread dependence edges
21: if node t is a thread start node and r is the entry node for the run method called at t then
22: add thread dependence edge t → r

23: insert a label t on the call edge, i.e. t
t→ r

24: end if

25: if node y is the last node of the run method for the run method called at t then

26: add thread dependence edge y → t

27: insert a label t on the thread edge, i.e. y
t→ t

28: end if

29: \\ Add interference dependence edges
30: if n is a node in the thread t1 which defines a variable var and m is a node in another

thread t2 which uses the variable var then

31: add interference dependence edge n → m
32: end if

33: \\ Add weaving edges
34: if v is the entry node of an advice target method and w is the starting node of before

advice then

35: add weaving edge v → w
36: insert a label v on the weaving edge, i.e. v

v→ w
37: end if

38: if node x is the last node of before advice then
39: add weaving edge x → v
40: insert a label v on the weaving edge, i.e. x

v→ v
41: end if

42: if node c is the last node of an advice target method and d is the starting node of after
advice then

43: add weaving edge c → d

77



Chapter 5 Dynamic Slicing of Concurrent Aspect-Oriented Programs

44: insert a label c on the weaving edge, i.e. c
c→ d

45: end if

46: if node g is the last node of after advice then
47: add weaving edge g → c
48: insert a label c on the weaving edge, i.e. c

c→ c
49: end if

50: if node a is the call node of an advice target method and b is the starting node of around
advice then

51: add weaving edge a → b
52: insert a label a on the weaving edge, i.e. a

a→ b
53: end if

54: if node c is the last node of around advice then
55: add weaving edge c → a
56: insert a label a on the weaving edge, i.e. c

a→ a
57: end if

58: if node p is a proceed() node inside around advice then
59: add weaving edge between p to the target method entry node
60: add another weaving edge between the last node of the target method and node p
61: end if

Figure 5.5: Partial MAODG for the example program given in Figure 5.4
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Algorithm 11 Dynamic Data-dependence Algorithm (DDA)

1: INPUT: MAODGP - Partially constructed MAODG

2: P- Input program

3: I- Values for input program variables

4: OUTPUT:MAODG- Completely constructed MAODG

5: for each variable v ∈ P do

6: initialize C(v) = φ \\ C(v)= cache variable to store recent definition of v
7: end for

8: while (! P terminate) do

9: for each statement s ∈ P do

10: execute statement s of P associated with I
11: for each variable v ∈ s do
12: if v is defined at s then
13: C(v) = s
14: end if

15: if v is used at s AND C(v) 6= φ then

16: add a data dependence edge C(v) → s toMAODGP

17: end if

18: end for

19: end for

20: end while

analysis of byte code. In byte code, all for loops are converted into while loop, hence our

graph will contain only while loop notations.

Theorem 5.5. Dynamic Data-dependence Algorithm (DDA) finds correct data dependence

in a given program.

Proof: A formal proof of the theorem and correctness of DDA can be constructed

through mathematical induction by following an approach similar to that given in the proof

of Theorem 4.5. �

5.2.3 Determining size of the MAODG

Slicing of CAOP is based on the MAODG. Hence, the size of the MAODG is very much

important. The size of the SDG for OOPs is given by Larsen et al. [10]. We have extended

their method [10] for calculating the size of our MAODG. In a concurrent program, when

a thread starts execution, the system calls the run() method defined for the thread. While

determining the size of MAODG, we consider the threads as methods. The aspect in an

AOP is similar to the class in an OOP. Hence, we consider the class and aspects as the same,

when determining the size of MAODG. Another feature of AOP is introduction, where we

can declare newmembers into an existing class. We have considered themethod introduction

as simple methods in a class.

The MAODG is a dynamic intermediate graph that contains only the nodes created at

the run-time. In Algorithm 3, we are creating the nodes for only executable statements in

79



Chapter 5 Dynamic Slicing of Concurrent Aspect-Oriented Programs

a given CAOP. But, it is very difficult to determine the exact size of the MAODG, because

we do not have any idea regarding which statements of the given CAOP will execute for

a particular execution. Hence, we want to give an approximation of the size of MAODG

based on the number of nodes in the graph. We have listed the quantifiers that contribute to

the size of MAODG, as shown in Table 5.1.

In CAOP, most of the statements belong to either a method, or a thread, or an advice.

There are some statements which are not under any of the above, but belong to a class (i.e.

class data members) or an aspect (i.e. through introduction). Those are not considered in

the construction of MAODG. So, we can say that, if a statement is executing during the

run-time of a program, it means that the statement must belong to a method, or a thread, or

an advice. The upper bound on the number of parameter vertices in a module mo, where mo

∈ {method, advice}, is given as follows:

ParamV ertices(mo) = Args+Globals+ LocalV ars (5.1)

If mo is a thread then there will be no parameter passing, so Args=0. Then, the number

of parameter vertices in a thread is given as follows:

ParamV ertices(mo) = Globals+ LocalV ars (5.2)

Using Equation 5.1, Equation 5.2 and the attributes given in Table 5.1, we compute the

upper bound on the size of any module mo as follows:

Size(mo) = O(|V ertices|+ |CallSites|+ 2 ∗ ParamV ertices(mo)

∗(1 + |DIP | ∗ |CallSites|))
(5.3)

Another unpredictable entity in a program is the number of times a module (which

includes method, thread and advice) executes in a particular run of the CAOP. Let us assume

that a module is called k times during the execution of a program. For k times, we are

not producing the nodes of a module. The nodes in a module are created only once in the

MAODG. Whenever a module is called, we only create the call node and parameter nodes.

Suppose, for each call to a module, we create 3 nodes (i.e. one call node, one parameter-in

node and one parameter-out node). For k calls to a module, total additional nodes created

will be 3k. Now, the number of nodes in the MAODG can be given as O(number of nodes

in all the modules + 3k). The number of nodes in all modules is determined by multiplying

the size of a module and the number of modules in a program.

Hence,

Size(MAODG) = O(number of nodes in modules + 3k)

= O(size(mo) * number of modules + 3k)

= O(size(mo) * module + 3k)

(5.4)
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As, the number of nodes created for calling the modules is very little as compared to the size

of module, we can ignore the 3k value from the size of the MAODG.

Now,

Size(MAODG) = O(size(mo) * module) (5.5)

Size(MAODG) is an approximate estimation based on the attributes that contribute to

the size of MAODG. The actual size of MAODG may be less than the approximated value.

Table 5.1: Parameters which contribute to the size of MAODG

Sl.

No.

Parameter Description

1 Vertices Maximum number of predicates or statements in a single method, thread or advice

2 Edges Maximum number of edges in a single method, thread or advice

3 Args Maximum number of formal parameters in a method or advice

4 Globals Number of global variables in the program

5 LocalVars Maximum number of local variables or objects in a class or aspect

6 CallSites Maximum number of call sites in a method, thread or advice

7 DIP Depth of inheritance

8 modules Number of methods, threads and advices

5.3 Context Sensitive Dynamic Slicing of AOPs

There are several approaches available for slicing of AOPs [14, 29, 36, 70], but there is a

scarcity of slicing techniques for CAOPs. In this chapter, we propose a context-sensitive

dynamic slicing algorithm for CAOPs. The context-sensitivity increases the precision and

correctness of the slice [16] and the dynamic slicing reduces the size of computed slice [8].

5.3.1 Context-sensitivity

During the literature survey, it was found that there are different types of techniques used

for obtaining the slices by various researchers [5, 55]. All such slicing techniques can be

broadly classified as either repeated backward data-flow analysis or traversal of a program

dependence graph (PDG). We have used graph traversal technique to compute the slice. Let

us consider the MAODG shown in Figure 5.6 for the example program given in Figure

5.4. Suppose we want to find the slice for node `9'. We apply a simple backward traversal

technique and found that the following nodes are included in the slice: 9, 7, 4, 2, 1, a7, a6,

a4, pca, aspt1, b6, while(i<5), i=0, i=i+1, b3, and also a13, a12, a10, pcb, 5. But it is clearly

observed that a13, a12, a10, pcb, and 5 must not be present in the slice, as in no means these

nodes affect node 9. This type of blind traversal is called context-insensitive slicing. In rest

of the paper, we will use context-insensitive backward slicing as CI slicing algorithm.

In order to find more precise and accurate slices, we must have to include

context-sensitivity. Context-sensitivity is a property of program slicing algorithm to preserve

the call-site during entry and exit of a method. In our proposed slicing approach, in order
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Figure 5.6: MAODG of the example program given in Figure 5.4, shaded nodes

represent context-insensitive slice w.r.t. node 9

to incorporate the context-sensitivity, we have labelled call site of each call edge, thread

edge, weaving edge and their corresponding return edges in the MAODG of a CAOP. The

context-sensitivity in our approach is maintained by three stacks. These three stacks are:

Method stack, Advice stack and Thread stack. Method stack keeps track of the call contexts

of the methods, Advice stack is used for monitoring advice calls in an aspect and Thread

stack keeps track of invocation of threads. Now for the same MAODG shown in Figure 5.6,

we have modified the call, thread, weaving and their corresponding return edges by adding

labels to them, and shown the modified MAODG in Figure 5.7.

Next, during the backward traversal, whenever we traverse any method return edge, we

push the label of the edge into the Method stack and continue the traversal. When we reach

the corresponding call edge, we pop from the Method stack and match the top of the stack

with the current call edge label. If there is a match, we consider the current edge for further

graph traversal; else we discard it. Similar process is followed for the advice and thread

edges. The slice obtained using this approach is shown as shaded nodes in Figure 5.7. We

can observe that now the nodes: a13, a12, a10, pcb, and 5, are absent in the slice.

5.3.2 Proposed Algorithm

The static slice is of large size than dynamic slice and also takes more computation time

[16]. We propose a dynamic slicing algorithm that uses context sensitivity to compute the

slices. We have named our algorithm Context-Sensitive Concurrent Aspect (CSCA) slicing
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Figure 5.7: Modified MAODG of the example program given in Figure 5.4,

shaded nodes represent context-sensitive slice w.r.t. node 9

algorithm. The pseudo code of the proposed CSCA slicing algorithm is given in Algorithm

12. Below, we briefly explain our proposed CSCA slicing technique for CAOPs.

Context-Sensitive Concurrent Aspect (CSCA) slicing Algorithm

The pseudo code for the proposed CSCA algorithm is given in Algorithm 12. The CSCA

slicing algorithm is responsible for maintaining context-sensitivity during computation of

slices. It takes the MAODG of a CAOP, as input and produces a list L which includes all

the nodes included in the computed slice, as output. It maintains three stacks, i.e. SC, ST,

and SA, for call-context, thread-context and advice-context, respectively. The algorithm is

based on a worklist. First, the worklist W is initialized with the slicing criterion node `s'.

The CSCA algorithm runs until the worklist W becomes empty. Repeatedly one node is

removed from W and added into L and all the incoming edges to this node are examined.

Let CS be the label of one incoming edge into the slicing criterion node `s'. First the

algorithm checks for method call related edges, such as call, parameter_in and parameter_out

edges. If the current edge is a call or parameter_in edge, then the algorithm checks the status

of the corresponding call-context stack SC. If SC is empty, then the source node of the current

edge is inserted into worklist W. If SC is not empty, then the top element of SC is fetched

and matched with the label of current edge. If both of them match, then only the source node

of the current edge is inserted into W and the top element of SC is removed. If the current

edge is found to be a parameter_out edge, then the source node of the edge is inserted into

W and SC.

When any edge during the traversal of MAODG is not found to be a call related edge,

then the algorithm checks it with thread related edges. To handle the thread related edges,

we use thread stack ST. If the current edge is a thread_start edge, then the algorithm checks
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the status of the thread stack ST. If ST is empty, then the source node of the current edge

is added into W. If ST is found to be non-empty, then the top element of ST is fetched and

matched with the label of the thread_start edge. When both of them match, then only the

source node of the thread_start edge is inserted into W and the top element is removed

from ST. When any thread_return edge is found during traversal, then its source node is

inserted into W and ST. If any inter-thread dependence is found, where a variable is defined

in one thread and used by another thread, then an interference dependence edge is added

from the variable definition node to the variable use node.

If an edge is still not processed by the algorithm, then it checks for the weaving edges.

Weave stack SA is used to maintain the context-sensitivity in presence of weaving edges in

MAODG.When aweave_start edge is encountered, the algorithm first checks the stack SA.

If SA is empty, then the source node of weave_start edge is directly added into W. If SA is

not empty, then the top element of SA is fetched and matched with the label of weave_start

edge. The source node of the weave_start edge is inserted into W, when there is a match.

When any weave_return edge is encountered, then its source node is added into W and also

into SA.

If any edge does not match with any of these types of edges, then it must be a control or

data dependence edge within one method. For these types of edges, the algorithm just adds

the source node of these edges into W. This completes one iteration of the algorithm. Then,

the same procedure is repeated by removing next element fromW and adding it into L. Then

all its incoming edges are examined. This process continues till the worklist W becomes

empty. Finally, the nodes in slice are present in list L, which is the output of our algorithm.

Working of CSCA algorithm

Below we present the working of our CSCA slicing algorithm. Let us take node 9 as the

slicing criterion, as shown in Figure 5.7. Initial values of W = {9}, L = {} and SC =

ST = SA = {}. Now, let us start traversing backward from node 9. The status of various

data structures when processing different nodes during construction of the slice is given in

Table 5.2. During traversal, first we reached at node 7. The connecting edge from node 9

to node 7 is a control dependence edge. As it is not a call, or thread or weaving edge, so no

stack will be used, only we have to add node 7 into W. In the next step, node 7 is removed

from W and added into L and its incoming edges are checked. One class membership edge

(from node base1) and one call edge (from node 4) are found. Both the new nodes associated

with these two edges must be added to W, as shown in the third row of Table 5.2. The label

of the call edge (i.e. 4) is added into call stack SC.

In the next iteration, we remove node 4 from W and add it to L. The incoming edges to

node 4 are traversed and the new nodes, i.e. node 2 and node `a7', are added into W. During

this traversal, we found presence of the weaving edge between node 4 and node `a7'. Hence,

we push the label of the weaving edge (i.e. 4) into the Weave stack SA. Then, node 2 is
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Algorithm 12 Context-Sensitive Concurrent Aspect (CSCA) Slicing Algorithm

1: INPUT: MAODG = (V,E)
2: Slicing criterion s, s∈ V
3: OUTPUT: L- the list of nodes in the computed slice for s
4: W = {s} // initialize the worklist with s
5: L = {} // the slice set

6: SC = {} // the stack for maintaining method call-context

7: ST = {} // the stack for maintaining thread start-context

8: SA = {} // stack for maintaining advice call-context

9: Unmark all the edges in MAODG
10: repeat

11: W= W \ {n}
12: L= L

⋃
{n}

13: for allm →
e
n do // handle all incoming edges of n

14: Let CSe is the call-site of edge e
//for handling method call related edges

15: if e ∈ {parameter_in, call}&& e has not been marked then

16: if SC [TOP ] == φ then

17: W= W
⋃

{m}
18: mark e
19: end if

20: if SC [TOP ] == CSe then

21: W= W
⋃

{m}
22: mark e
23: POP(SC)
24: end if

25: else if e ∈ {parameter_out}&& e has not been marked then

26: W=W
⋃

{m}
27: SC.PUSH(m)
28: mark e

//for handling thread related edges

29: else if e ∈ {thread_start}&& e has not been marked then

30: if ST [TOP ] == φ then

31: W=W
⋃

{m}
32: mark e
33: end if

34: if ST [TOP ] == CSe then

35: W=W
⋃

{m}
36: mark e
37: POP(ST)
38: end if

39: else if e ∈ {thread_return}&& e has not been marked then

40: W=W
⋃

{m}
41: ST.PUSH(m)
42: mark e

//for handling aspect related edges

43: else if e ∈ {weave_start}&& e has not been marked then

44: if SA [TOP ] == φ then

85



Chapter 5 Dynamic Slicing of Concurrent Aspect-Oriented Programs

45: W=W
⋃

{m}
46: mark e
47: end if

48: if SA [TOP ] == CSe then

49: W=W
⋃

{m}
50: mark e
51: POP(SA)
52: end if

53: else if e ∈ {weave_return}&& e has not been marked then

54: W=W
⋃

{m}
55: SA.PUSH(m)
56: mark e
57: else//intra-procedural edges

58: if e has not been marked then

59: W=W
⋃

{m}
60: mark e
61: end if

62: end if

63: end for

64: until W == φ

processed, and it is added to L. The incoming edge into node 2 is from node `base1', which

is already inside W. So, it is not inserted into W. Next, we process node `a7'. First it is added

to L and its incoming edges are examined. We found one data dependence edge from node

`a6' and another `thread_return' edge from `b6'. Both the new nodes are added into W. The

label of thread_return edge, which is `a7', is pushed into thread stack ST. We repeat this

process till worklist W becomes empty. At the end, the nodes included in the slice are listed

into L, which is the output of our algorithm. The nodes contained in the list L in the last row

and last column of Table 5.2, represent the resultant slice w.r.t. the slicing criterion 9.

5.3.3 Correctness of Context-Sensitive Concurrent Aspect (CSCA)

slicing algorithm

In this section, we sketch the proof of correctness of our CSCA slicing algorithm.

Theorem 5.6. Context-Sensitive Concurrent Aspect (CSCA) slicing algorithm always

computes accurate and precise slices for concurrent AOPs.

Proof: In this section, we sketch the correctness proof of CSCA slicing algorithm. The

main properties of an algorithm are completeness, correctness and finiteness. Hence, the

proof of our algorithm consists of three parts. First we prove that our algorithm is complete,

i.e. it covers all the possible cases. Secondly, we prove that the algorithm is correct. Finally,

we show that our algorithm terminates after finite number of iterations.
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Table 5.2: Status of various data structures during computation of the slice w.r.t. slicing

criterion 9

Processed

Node

W SC ST SA L

9 {7} {} {} {} {9}

7 {4, base1} {4} {} {} {9,7}

4 {2,a7,base1} {} {} {4} {9,7,4}

2 {a7,base1} {} {} {4} {9,7,4,2}

a7 {a6,a4,b6,base1} {} {a7} {4} {9,7,4,2,a7}

a6 {a4,b6,base1} {} {a7} {4} {9,7,4,2,a7,a6}

a4 {pca,b6,base1} {} {a7} {} {9,7,4,2,a7,a6,a4}

pca {aspt1,b6,base1} {} {a7} {} {9,7,4,2,a7,a6,a4,pca}

aspt1 {b6,base1} {} {a7} {} {9,7,4,2,a7,a6,a4,pca,aspt1}

b6 {b5,base1} {} {a7} {} {9,7,4,2,a7,a6,a4,pca,aspt1,b6}

b5 {b3,base1} {} {a7} {} {9,7,4,2,a7,a6,a4,pca,aspt1,b6,b5}

b3 {base,base1} {} {} {} {9,7,4,2,a7,a6,a4,pca,aspt1,b6,b5,b3}

base {base1} {} {} {} {9,7,4,2,a7,a6,a4,pca,aspt1,b6,b5,b3,base}

base1 {} {} {} {} {9,7,4,2,a7,a6,a4,pca,aspt1,b6,b5,b3,base,base1}

Suppose Γ is the set of types of edges present in MAODG. In our algorithm, Γ =

{control, data, call, thread, weaving}. Initially, the intended slice consists of only slicing
criterion node s. There can be two possibilities, i.e. s may be a root node or may not be a

root node. If s is a root node, then the slice will have only the slicing node. If s is not a root

node, then it must be connected to some other node through an edge e. According to our

algorithm e ∈ Γ, which is true, because all possible types of dependencies are covered in Γ

and are handled by the algorithm. This shows that our algorithm is complete.

We prove the correctness of our algorithm using method of induction. We assume that

the current computed partial slice Sp = {s1, s2, ..., si−1} is correct. We have to show that

after including the next node during the traversal, Sp retains its correctness. Suppose si is

the next node in the traversal and ei is the edge from si → si−1. If
{si−1, si} ∈ same method add si to Sp

si−1 ∈ callee, si ∈ called pop label from SC and match

si−1 ∈ called, si ∈ callee add si to Sp, push label into SC

(5.6)

First, we concentrate on the method call section of our algorithm. There can be three

possible locations of the two nodes, as shown in left hand side of Equation-5.6. According

to our algorithm, and as shown in Equation-5.6, if both nodes si and si−1 lie on the same

method, then we directly insert node si into the slice. When node si−1 belongs to the callee

method and node si is in the called method, then we check the calling context by performing

a pop operation on stack SC and matching the current edge label. If SC is empty, then also

we have to add the current node si into the slice. In the other case, when node si−1 belongs

to the called method and node si is in the callee method, then we need to match the current
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edge label and the top of the stack SC, so that the calling context can be preserved.

When the edge ei is not covered by the method call edge section, then the thread handling

section of our algorithm will be invoked. In this section, all thread dependence edges are

handled. Depending upon the position of nodes si and si−1, there can be three possible cases,

as shown in left hand side of Equation-5.7. If both the nodes of an edge are present in the

same thread, then it represents intra-thread dependence and the new node should be added

into the slice. According to our algorithm, this type of case arises only for control or data

dependence edges. In this case, the next node si is added into slice Sp. If node si−1 is present

in any method or advice part and new node si is present in a thread, then the edge ei must

be a thread_start edge. To preserve the context-sensitivity during MAODG traversal, we

must match the label on the edge ei and the top of thread stack ST. If both of them match,

then node si will be added into the slice Sp and the top element of ST must be popped. In

the reverse case, when the node si−1 is present in a thread and new node si belongs to a

method or advice, then the new context must be added into the thread stack ST. According

to our algorithm, we add the new node to the slice and push the new node into ST. Hence,

this situation is also handled correctly in the CSCA slicing algorithm.


{si−1, si} ∈ thread add si to Sp

si−1 ∈ method or advice, si ∈ thread pop label from ST and match

si−1 ∈ thread, si ∈ method or advice add si to Sp, push label in ST

(5.7)

If the current edge ei is still unattended, then the last section of our algorithm, which

deals with weaving edges, will handle it. In this case, only two situations are left, i.e. node

si−1 is in non-aspect part and the new node si is in aspect part, or vice versa. As shown in

Equation-5.8, in the first case, the type of edge ei must be weave_start edge. If during the

traversal of MAODG any weave_start edge is found, then the top element of weave stack

SA is checked. If the current edge label and the top of SA match, then the new node si will

be added into the worklist W. When node si−1 is present in any advice and the new node si is

in non-aspect part, then the new node si will be added into W and also pushed into SA. This

will preserve the context-sensitivity of weaving edges. In this way, our proposed algorithm

generates correct slices for any given concurrent AOP whose intermediate representation is

MAODG.

{
si−1 ∈ non− aspect part, si ∈ advice pop label from SA and match

si−1 ∈ advice, si ∈ non− aspect part add si to Sp, push label in SA
(5.8)

To prove the finiteness of our proposed algorithm, we assume that there is no cycle

present in the MAODG of the program. The graph is having finite number of vertices

{1, 2, 3, ..., n} and finite number of edges {e1, e2, e3, ..., ek}, where n and k are positive
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integers. Initially the user enters the slicing criterion. Suppose the user has entered a

slicing criterion node s and s ∈ {1, 2, 3, ..., n}. As there is no cycle in the graph, hence

the traversal of the MAODG will have finite steps. From this, we can conclude that our

algorithm terminates after executing finite number of steps. �

5.3.4 Complexity Analysis

In the following we discuss the space and time complexity of the CSCA slicing algorithm.

Space complexity: The CSCA slicing algorithm works on the input MAODG. In case of

MAODG, apart from common dependence edges present in EAOSDG,we have added thread

dependence edge. Suppose the number of statements in an input concurrent AOP is n, then

there will be n nodes in MAODG. Let the number of edges in MAODG is e. Then to store

MOADG, we need the space for storing information of n nodes and information of each edge

∈ e. Hence, the space complexity of storing the MAODG is of order O(ne).

Time complexity: Context-Sensitive Concurrent Aspect (CSCA) slicing algorithm is based

on insertion and deletion from a worklist W. For finding the worst case time complexity,

suppose all the nodes of MAODG are connected, i.e. MAODG is a fully connected graph.

Let the number of nodes in MAODG in n. While processing any node s, we have to traverse

rest (n − 1) nodes. As a result the outer loop of CSCA slicing algorithm runs n ∗ (n − 1)

times. So, the worst case time complexity of the context-sensitive concurrent aspect slicing

algorithm is O(n2).

5.4 Implementation and Results

In this section, first we discuss the implementation details of our slicing tool. We have

named our slicing tool Concurrent AspectJ slicer. Then, we present the details of the case

study projects that we have considered for our experiment. Finally, we compare our approach

with another closely related work and present the outcomes of the experiment.

5.4.1 Experimental Setup

Wehave developed a partial tool called Concurrent AspectJ slicer. For developing our slicing

tool and conducting the case studies, we have used, a personal computer having Intel Core i5

processor, clock speed 2.40GHz, primary memory 4 GB andWindows 7 Home Basic (32 bit)

operating system. The findings of our study may vary if some other system configuration is

used to replicate the implementation.

5.4.2 Overview of Concurrent AspectJ slicer

The architecture of concurrent AspectJ slicer is given in Figure 5.8. It consists of four

main parts: ASM framework, JSDG package, MAODG generator and slicer. The core of
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Figure 5.8: Architectural representation of Concurrent AspectJ slicer

the system is based on ASM 1 framework, which is a well known open source Java byte

code manipulation and analysis framework. ASM is a collection of several packages for

different analysis tasks. Two main packages of this collection are ``internal" package and

``graph.internal" package. The ``internal" package analyses the Java bytecode and generates

information about instructions, methods, classes, etc. The profiling is done by the internal

package of the ASM framework and this package automatically produces the required

dependence information. The ``graph.internal" package uses the information fetched by

``internal" package and generates the data-structure for method dependence graph (MDG)

and thread dependence graph (TDG). We have developed a ``JSDG" package which collects

all the information from ASM framework and generates the partial MAODG for a given

CAOP.

MAODG generator takes the input for the program's input variables and uses our

proposed DDA algorithm to find the dynamic dependences in the program. It then adds

the dynamic dependences in the partial MAODG, which is provided by JSDG package, to

create the complete MAODG. ``Graph Viewer" is a GUI designed to display the created

MAODG to the user. We have developed a package called ``Slicer" that implements our

context-sensitive dynamic slicing algorithm on the generatedMAODG. The slicing criterion

is also passed as input to the ``slicer". The ``slicer" package computes the dynamic slices of

the given CAOP and displays the resultant slice through a GUI.

5.4.3 Some related definitions

Before presenting the detailed case studies and discussions, we present below the definitions

of some of the frequently used terms. In the case studies, we have used these terms to

1`ASM Frameworks', http://www4.comp.polyu.edu.hk/ cscllo/teaching/SDGAPI/.
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compare our proposed slicing technique with some other existing slicing techniques.

Definition 5.7. Precise Dynamic Slice: A dynamic slice is said to be precise, if it is an

executable slice and it contains only that statements that affect the value of the variable at a

program point during execution.

Definition 5.8. Slice Size: Slice size is defined as the number of nodes of the dependency

graph which are present in the resultant slice.

Definition 5.9. Slicing Time: Slicing time is defined as the time taken by the slicing

algorithm to compute a slice. In our experiment we have considered the slice time in terms

of milliseconds.

Definition 5.10. Slicing criterion: Slicing criterion is a point of the program, w.r.t. which

we have to find the slice. For our experiment, we have taken the method return nodes of the

dependency graph, as the slicing criteria. This point is justified as we are showcasing the

context sensitivity while computing the slices and in a program the method return node is

the most critical point where we can notice the effect of context sensitivity.

5.4.4 Case Studies

We have verified the efficiency and preciseness of our proposed slicing approach by

comparing it with two existing approaches. For our first comparison, we have considered

the context-insensitive (CI) slicing approach [42]. Then, we have compared our approach

with a closely related approach proposed by Ray et al. [14]. We have implemented all these

three approaches, i.e context-insensitive (CI) approach, the approach proposed by Ray et

al., and our CSCA slicing approach, using our developed tool. All these three approaches

are tested on five open source aspectJ projects, i.e. Elevator-2 project2, Red-Black Tree-13,

online auction system 4, Tetris game project 5 andGoFPattern-2 6. These projects are written

in AspectJ and contain concurrency features such as threads. The details of the case study

projects are given in Table 5.3. We have generated the MAODG for these projects using our

tool and the values of the attributes of the MAODG are shown in Table 5.4.

First we have constructed the MAODG for each case study project. Next, all these three

algorithms (CI, Ray et al. and CSCA) are applied on the above five projects considered for

our experiment. The slicing process starts with determining suitable slicing criteria. It is

known that there are five most popular slicing criteria used by several researchers, which

are called output-variables [100]. Hence, we have chosen these output variables from the

programs and computed the slices by taking these output variable nodes as slicing nodes.

We have shown the concrete slices computed for the Red-Black Tree program, in Table 5.5.

In this table, we have shown some selected slices only, as displaying all the thirty computed

2http://courses.cs.washington.edu/courses/cse142/03wi/projects/project2/StarterFiles/ElevatorController.java
3http://sir.unl.edu/php/showfiles.php
4http://lgl.epfl.ch/research/fondue/case-studies/auction/problem-description.html
5http://www.guzzzt.com/coding/aspecttetris.shtml
6https://www.cs.ubc.ca/labs/spl/projects/aodps.html
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Table 5.3: Details of the attributes of the Case Study Projects

Sl.

No.

Project # Classes # Aspects LoC Description

1 Elevator-2 5 3 352 Elevator control system. This

version is a concurrent AspectJ

program implementing Elevator

system

2 Red-Black Tree-1 1 2 565 Implementation of Red-Black

Tree data structure

3 Tetris 15 4 1027 Implementation of the popular

game Tetris

4 OAS 21 9 1623 Online Auction System

5 GoF Patterns-2 30 14 3964 Implementation of GoF design

patterns

Table 5.4: The values of the attributes of the MAODG of the Case Study Projects

Sl.

No.

Project No. of Nodes No. of Edges Time to generate MAODG

1 Elevator-2 540 997 302 ms

2 Red-Black Tree-1 785 1187 749 ms

3 Tetris 1667 2209 1432 ms

4 OAS 1783 2759 1140 ms

5 GoF Patterns-2 4205 3854 2568 ms

slices will take lots of space in the thesis. The second column of Table 5.5 shows, the node

number of the MAODG for the given program, which is considered as slicing criterion node.

The third column of Table 5.5 indicates the name of the slicing algorithm used, fourth column

shows the list of nodes included in the slice, followed by the slice size and slice computation

time in the last two columns. The comparative study of all the three slicing algorithms for

each case study is done by taking the average slice size of all the computed slices for that

case study. The average slicing time is also considered for comparing the effectiveness of

the slicing algorithms. The average slice size and average slicing time obtained by using the

three algorithms (CI, Ray et al., CSCA) on the above five case study projects are shown in

Table 5.6 and Table 5.7 respectively.

Case Study-1: Elevator-2

This is an elevator simulator controller program. This controller generates a sequence

of signals for the people arriving and changes the state of the system as directed by the

ElevatorAlgorihm. The responsibilities of the controller include loading people on the

elevator, unloading people, and moving the elevator to a specific floor. This is an open

source Concurrent Java program and we have added three aspects into it to add some more

functionalities. The detailed attributes of the Elevator controller program is given in Table
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Table 5.5: Details of slices computed for Red-Black Tree-1 case study

Sl.

No.

Slicing

Criterion

Node

Slicing

Algorithm
Nodes in Generated Slice

Slice

Size

Slicing

Time

(in ms)

1 37

CI
[1,32,33,35,36,37,86,87,89,90,110,111,112,113,114,115,

116,117,118,123,188,189,191,192]
24 5

Ray et al. [1,32,35,37,110,111,112,113,114,115,116,117,118,123] 14 5

CSCA [1,32,35,37,110,111,112,113,114,115,116,117,118,123] 14 5

2 91

CI
[1,32,33,35,36,86,89,90,91,110,111,112,113,114,115,116,

117,118,123,188,189,191,192]
24 8

Ray et al. [1,86,89,91,110,111,112,113,114,115,116,117,118,123] 14 5

CSCA [1,86,89,91,110,111,112,113,114,115,116,117,118,123] 14 4

3 108

CI [1,94,98,102,106,108,124,126,129] 9 5

Ray et al. [1,102,106,108,124,126,129] 7 4

CSCA [1,102,106,108,124,126,129] 7 4

4 193

CI
[1,32,33,35,36,86,87,89,90,110,111,112,113,114,115,116,

117,118,123,188,189,191,192,193]
24 5

Ray et al. [1,110,111,112,113,114,115,116,117,118,123,188,191,193] 14 5

CSCA [1,110,111,112,113,114,115,116,117,118,123,188,191,193] 14 4

5 342

CI [1,32,33,35,36,86,87,89, . . . . . , 766,772,778,784] 228 15

Ray et al. [1,130,145,148,155,158, . . . . . , 336,338,339,340,342] 39 7

CSCA [1,130,145,148,155,158, . . . . . , 336,338,339,340,342] 39 5

. . . . .

. . . . .

. . . . . .

. . . . . .

5.3. The Elevator controller program was given as input to our tool and it generated the

MAODG for the program. Table 5.4 contains the details about the different attributes of the

MAODG for the program. We have applied all the three slicing algorithms, i.e. CI, Ray

et al. [14] and CSCA, to compute the slices of the Elevator controller program. We have

computed 15 slices for this Elevator controller program using each algorithm and found that

the average slice sizes by using our CSCA and Ray et al.'s algorithm [14] are almost same.

But, the average slice size obtained by using CI algorithm is 47% more than that of CSCA

and the algorithm of Ray et al. [14]. While comparing the average slicing time, we found

that, our CSCA algorithm runs 36.25% and 42.16% faster than that of Ray et al. and CI

algorithm, respectively.

Case Study-2: Red-Black Tree-1

Red-Black tree is a balanced binary tree where each of the nodes are painted either red or

black color. We have implemented the Red-Black tree using AspectJ. The detailed attributes

of Red-Black tree program are given in Table 5.3. The MAODG generated for this project

using our tool contains 785 nodes and 1187 edges. We have implemented three slicing

algorithms, i.e. CI algorithm, Ray et al. and our CSCA algorithm on this case study. We

have computed 30 slices by providing different slicing nodes to our tool. We found that the

average slice sizes computed by our CSCA and Ray et al. algorithms are almost same. But
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the average slice size obtained by using CI algorithm, is 32.71.5% more than that of our

CSCA and Ray et al.'s algorithm [14]. Also, we found that the average slicing time of our

CSCA algorithm is 31.56% and 58.55% faster than that of the Ray et al.'s Algorithm [14]

and CI algorithm, respectively.

Case Study-3: Tertis

This is a very popular game. The goal is to pack the blocks so that they become lines.

The lines are then deleted so that the user can add more blocks. The blocks are randomly

generated at the top of the game board and are slowly dropped down until they reach the

bottom. The game ends if the blocks reach to the top of the game board. This project is the

re-implementation of existing concurrent Java project by introducing AOP concepts.

We have computed 46 slices by providing 46 different slicing criteria to our tool. We

have implemented three algorithms, i.e. context-insensitive (CI), Ray et al.'s algorithm and

our CSCA algorithm, on this case study. We have noted the slice size and slicing time for all

the slices computed. It was observed that, out of 46 slices for each algorithm, 21 slices are

found to be equivalent for each algorithm. Hence we are not considering these slices for our

study. Rest 25 slices are compared w.r.t. their size and computation time for each algorithm.

Figure 5.9a shows the comparison of slice size using the three algorithms. From Figure 5.9a,

it can be observed that the average size of slices computed using CSCA is 13.32% less than

the average slice size of Ray et al.'s algorithm and 68.88% less than the average slice size

of CI algorithm. Figure 5.9b shows the comparison of slicing times of the three algorithms.

From Figure 5.9b, it can be observed that the average slicing time of CSCA is 29.83% and

47.95% less than the Ray et al.'s algorithm [14] and CI algorithm, respectively.

(a) Comparison of slice size

(b) Comparison of slicing time

Figure 5.9: Findings of Case Study-3 (Tetris)
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Case Study-4: Online Auction System (OAS)

OAS is an application software for buying and selling of goods through auction over internet.

It allows the users of this system to negotiate over the buying and selling price of their goods.

The OAS has 65 methods, and we have considered the parameter_out node of each method

as our slicing criteria. Only 45 methods have parameter_out node in theMAODG and hence

we have computed 45 slices by supplying different slicing criteria and input values to our

tool. We have implemented all three algorithms as explained above and computed 45 slices

by using each method. Carefully examining the outcome of the experiment, we observe that,

in 22 out of 45 slices, we are getting the same slice size and slicing time for all the algorithms.

Hence we have excluded them from our further analysis. The comparative study of rest 23

slices computed by each algorithm is given in Figure 5.10a, for slice size and in Figure 5.10b,

for slicing time. From Figure 5.10a, it can be observed that the slices computed by using

CSCA and Ray et al.'s algorithm are of same size. But, the average slice size of CSCA and

Ray et al.'s algorithm is 9% less than the average slice size of CI algorithm. From Figure

5.10b, it can be observed that CSCA compute slices 13.24% faster than Ray et al.'s algorithm

[14] and 55.57% faster than CI algorithm.

(a) Comparison of slice size

(b) Comparison of slicing time

Figure 5.10: Findings of Case Study-4 (OAS)

Case Study 5: GoF Patterns-2

This is the implementation of very famous GoF (Gang of Four) patterns by using AspectJ.

23 GoF design patterns are used in different programming languages, but a number of GoF

patterns involve crosscutting structures in the relationship between roles in the pattern and
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classes in each instance of the pattern. These patterns are implemented in AspectJ to improve

modularity. We have individually considered each pattern and performed slicing on them

using CI, Ray et al. and our CSCA algorithms.

We have computed 39 slices by providing different slicing criteria to our tool. First

we had applied CI algorithm, and computed 39 slices. After this we had used Ray et al.

algorithm to compute 39 slices by providing the same slicing criteria. Lastly, our CSCA

slicing algorithm was used to compute a set of 39 slices. Figure 5.11a shows the comparison

of the average slice sizes using the three algorithms and it is visible that the slice sizes for

most of the slices are remains same for all the three algorithms. It can be observed that, our

CSCA slicing algorithm compute slices of same size as that of Ray et al.'s algorithm. But,

the average slice size of CI is 15.28% more than CSCA and Ray et al.'s algorithms. Figure

5.11b displays the comparison of the slicing times taken by the three algorithms. The average

slicing time of CSCA slicing algorithm is 27.9% and 27.36% less than the average slicing

time of CI and Ray et al.'s algorithm, respectively.

(a) Comparison of slice size

(b) Comparison of slicing time

Figure 5.11: Findings of Case Study-5 (GoF Patterns-2)

5.4.5 Result Analysis

After completing the above experiments with five case studies, we have analysed the

outcome to explore the hidden treasure. To produce a fair comparison of the performance of

the three slicing algorithms, we have calculated the average slice size and the average slicing

time for each case study.
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Table 5.6: Comparison of Slice Size

Sl.No. Project
Avg. Slice Size Percentage Change

CI algo.

[42]

Ray et al.'s

algo. [14]

CSCA

(proposed)

DCR1 DCR2

1 Elevator-2 102 54.73 54.06 47% 1.22%

2 Red-Black Tree-1 79.26 53.33 53.06 32.71% 0.5%

3 Tetris 109.52 39.32 34.08 68.88% 13.32%

4 OAS 13 11.83 11.83 9% 0%

5 GoF Patterns-2 19.82 17.02 16.79 15.28% 1.35%

In Table 5.6, we have used DCR1 and DCR2 whose definition is given below:

DCR1 = (CI − CSCA)/CI ∗ 100 (5.9)

where, DCR1 is Percentage decrement of avg. slice size in CSCA algorithm as compared

to CI algorithm.

DCR2 = (Rayetal.− CSCA)/Rayetal. ∗ 100 (5.10)

where, DCR2 is Percentage decrement of avg. slice size in CSCA algorithm as compared

to Ray et al.'s algorithm.

Table 5.6 shows the comparison of average slice size. In the first case study

(i.e.Elevator-2 project), the CSCA algorithm and Ray et al.'s algorithm compute slices of

same average size, but smaller than CI by 47%. In the second case study (i.e. Red-Black

tree-1), we find the same result that our CSCA algorithm and Ray et al.'s algorithm computes

similar results and average slice size is 33% less than CI slicing algorithm. For the third case

study (i.e. Tetris project), the average slice size in our algorithm is 6% less than that of Ray et

al.'s algorithm. The average slice size of CI is more than double than that of CSCA and Ray

et al.'s approach. In the fourth project (i.e. OAS), our CSCA algorithm and the algorithm of

Ray et al. give same average slice size and the average slice size obtained by CI algorithm

is 9% more than these algorithms. Last case study is the GoF patterns, and the average slice

size obtained by using of our approach is 1% less than that of Ray et al.'s approach. In this

case study, the CI algorithm computed average slice size which is 18% more than that of our

approach. From this, it implies that our CSCA algorithm and Ray et al.'s algorithm generate

slices of almost same size and CI algorithm always gives very large size slices.

In Table 5.7, we have used DCR3 and DCR4 whose definition is given below:

DCR3 = (CI − CSCA)/CI ∗ 100 (5.11)

where, DCR3 is Percentage decrement of avg. slicing time in CSCA algorithm as

compared to CI algorithm.

DCR4 = (Rayetal.− CSCA)/Rayetal. ∗ 100 (5.12)
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where, DCR4 is Percentage decrement of avg. slicing time in CSCA algorithm as

compared to Ray et al.'s algorithm.

Table 5.7: Comparison of Slicing Time

Sl.No. Project
Avg. Slicing Time (in ms) Percentage Change

CI algo.

[42]

Ray et al.'s

algo. [14]

CSCA

(proposed)

DCR3 DCR4

1 Elevator-2 8.3 7.53 4.8 42.16% 36.25%

2 Red-Black Tree-1 14.96 9.06 6.2 58.55% 31.56%

3 Tetris 9.76 7.24 5.08 47.95% 29.83%

4 OAS 14.16 7.25 6.29 55.57% 13.24%

5 GoF Patterns-2 4.05 4.02 2.92 27.9% 27.36%

Now, when we compare the three algorithms considering the average slicing time, as

shown in Table 5.7. We observe that, our CSCA algorithm computes slices much faster

than Ray et al. algorithm and CI algorithm. In the Elevator-2 project, our CSCA algorithm

computes slices faster than CI algorithm and Ray et al.'s algorithm by 42.16% and 36.25%

respectively. For Red-Black Tree case study, the average slice computation time of our

CSCA is 58.55% less than CI algorithm and 31.56% less than Ray et al.'s algorithm. In

the Tetris case study, the average time taken to compute the slice using our CSCA is less

than CI algorithm and Ray et al.'s algorithm by 47.95% and 29.83% respectively. Similarly

in the case of OAS project, our slicing algorithm runs faster than that of CI algorithm and

Ray et al.'s algorithm, by 55.57% and 13.24% respectively. Also, in the GoF pattern case

study, the average slicing time of CSCA is 27.9% less than CI algorithm and 27.36% less

than Ray et al.'s algorithm. Slice of smaller size makes the other side effects lesser. Most

important is the slicing time, as the slices are used in other software development phases like

debugging and testing. If the slicing time reduces, then the time and cost of debugging and

testing will be ultimately reduced.

Form the above discussion, we can infer the followings:

• The proposed CSCA algorithm generates slices of almost same size or smaller size

than that of Ray et al.'s algorithm. Hence it is more precise.

• CSCA algorithm produces sufficiently smaller slices in comparison to the CI

algorithm.

• The time taken to generate the slices is always found to be minimum by using CSCA

algorithm in comparison to Ray et al.'s algorithm and CI algorithm. Hence CSCA

algorithm is faster than Ray et al. algorithm and CI algorithm.

5.4.6 Threats to validity

Below, we present some of the threats to the validity of our proposed approach.
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1. As the slicing technique proposed in this chapter is only for AspectJ platform, it

may not work satisfactorily for other aspect-oriented programming languages such

as Aspect C++ and Aspect C#.

2. We have addressed some of the dynamic features of AspectJ like around and proceed.

But, some other dynamic features like cflow, target/this, if etc., are not considered in

this work.

3. Through the five case studies, we have tested our proposed slicing technique for

computing precise and correct slices of projects upto 4000 LOCs. We believe, the other

larger projects with similar structure in the same platform, may be handled through our

slicing technique.

4. The proposed slicing technique is based on construction of intermediate representation

(IR), and if the IR changes, then our slicing technique may not work properly.

5.5 Comparison with related work

There are many research work present in the field of concurrent object-oriented programs

(OOPs), out of which the work of Zhao [69] is most efficient. Zhao proposed an intermediate

representation called System dependence Net (SDN) to represent OOPs. But, SDN is no

useful in representation of AOPs, because it cannot handle AOP features. So, in another

work, Zhao [29] had extended SDN and proposed an intermediate representation for AOPs

named Aspect-oriented SystemDependence Graph (ASDG). It has special dependence edges

for representing features of AOPs such as aspect, advice etc. But, Zhao had not developed

any slicing algorithm for computing slices. Also, the proposed ASDG of Zhao is not capable

of representing concurrent AOPs.

Ray et al. [14] presented a slicing approach for concurrent AOPs. Ray et al. [14]

has developed intermediate representation Concurrent Aspect-oriented System Dependence

Graph (CASDG) to represent concurrent AOPs. CASDG is constructed for a particular

execution trace and next time if another execution trace is given then a new CASDG is

constructed. This process is time consuming. In the work of Ray et al. [14], the concurrency

model of AOP is not discussed. There are many concurrency models are present such

a pointcut model, joinpoint model etc. In our proposed slicing approach, we have used

the pointcut model given by Douence et al. [101]. Their slicing algorithm works on

marking-unmarking of nodes during graph traversal. The marking-unmarking is very time

consuming that makes the slice computation slow. In our proposed algorithm, we compute

slice at the time of execution of input program, so not require to mark-unmark any node and

it makes our algorithm faster then Ray et al. algorithm.
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5.6 Summary

We proposed an intermediate graph called Multithreaded Aspect-Oriented Dependence

Graph (MAODG) to represent CAOPs. MAODG represents the features of a CAOP.

Based on this intermediate representation, we designed a context-sensitive dynamic slicing

algorithm for CAOPs. To evaluate our proposed algorithm, we have designed a slicer. We

presented five case studies of open source projects. We have implemented our approach, the

context-insensitive (CI) slicing approach and the approach of Ray et al. [14]. Using the case

studies, we have compared the efficiency of all the three approaches in terms of slice size

and slicing time. We found that our CSCA slicing algorithm generated on an average 3%

smaller slices than the approach of Ray et al. [14]. The CI approach is found to generate

very large slices, i.e. more than double, in comparison to the other two techniques. We have

also compared the slicing time of all the three algorithms and found that our CSCA slicing

algorithm runs faster than the approach of Ray et al. and CI approach by 27% and 46%

respectively. So, we conclude that our slicing technique computes more precise slices in

little time. Hence, our proposed dynamic slicing technique for CAOPs is better than Ray et

al.'s algorithm and CI algorithm.

The algorithm proposed in this chapter is not suitable to be applied to distributed AOPs

running on several nodes connected through a network. In the next chapter, we are extending

our framework to compute dynamic slices of distributed AOPs running on several nodes as

is common in Client-Server applications.
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Chapter 6

Dynamic Slicing of Distributed

Aspect-Oriented Programs

The processing time taken for a single system to complete a task is larger than that of the

processing time taken by more than one system performing the same task [102]. This is

one of the advantages of distributed computing. Also, the reliability of the whole system

increases by using distributed system, which makes the system more fault tolerant. In

a distributed system, more than one computer is connected to a common network. The

main task of an algorithm is divided into a finite number of small independent sub-tasks

and assigned to different computers for execution of that small sub-tasks [103]. The most

common example of a distributed system is the client-server computing. In this case, one

computer acts as a server and rest of the computers act as clients. As the roles of the server

and client are different, we have to write separate programs for the server and clients.

The programs written to perform some task in distributed manner are called distributed

programs. In this chapter, we concentrate on Distributed Aspect-Oriented Programs

(DAOPs). The basic program that performs all the intended computing for fulfilling the

given task is written in a distributed manner. The basic distributed programs run on

different computers connected to a network. The most expensive and tedious task in

distributed programming is to handle the communication between the network nodes (i.e.

computers). In the traditional object-oriented distributed programs, the distributed modules

of the program communicate with each other by sending and receiving messages. But,

the message can be passed to another computer at any point of time. Hence the codes

for communication are scattered throughout the program. This type of code or section

scattered throughout the program is called crosscutting concern [34]. AOP is a well-known

programming paradigm, where all the crosscutting concerns are identified and bundled

together in the form of an Aspect [34]. This Aspect module is responsible for the message

passing between different modules running on different computers of the distributed system.

This type of Aspect-Oriented Programs is called distributed AOPs. These distributed AOPs

are very complex and difficult to understand. The rest of the activities in the Software

Development Life Cycle (SDLC) apart from coding, rely on the complexity of the program.

If a program is difficult to understand, then it will be very difficult to test it and debug the

101



Chapter 6 Dynamic Slicing of Distributed Aspect-Oriented Programs

faults present in the program. Hence, there is a necessity of a program analysis tool that can

reduce the complexity of a given distributed AOP. Program slicing is one of such techniques

that work for the improvement of the understandability of a program by impact analysis. In

our approach, we are interested in generating the executable slice, so that it can be used in

program debugging and testing.

The rest of the chapter is structured as follows: Section 6.1 presents some basic

concepts of distributed AOP. Section 6.2 contains the details of the proposed intermediate

representation, called Distributed Aspect Dependence Graph (DADG) for distributed AOPs.

Our proposed parallel context-sensitive dynamic slicing algorithm is also described in

Section 6.3. We have implemented our slicing approach and developed a distributed AspectJ

slicer. In Section 6.4, we present the implementation of our approach, the experimental

study, the architecture of the slicer, and seven case studies. In Section 6.5, we present the

comparison of our work with some related work. In Section 6.6, we summarize the chapter.

//MyClient.java
1 import java.net.*;
2 import java.io.*;
3 public class MyClient{}
4 public static void main(String [] args){
5 BufferedReader input=new BufferedReader(new

InputStreamReader(System.in));
6 try {
7 Socket client = new Socket("localhost", 9093);
8 OutputStream outToServer = client.getOutputStream();
9 DataOutputStream out = new DataOutputStream(outToServer);
10 System.out.println("Enter a number");
11 String N=input.readLine();
12 out.writeUTF(N);
13 InputStream inFromServer = client.getInputStream();
14 DataInputStream in =

new DataInputStream(inFromServer);
15 System.out.println("Factorial= " + in.readUTF());
16 client.close();
17 }catch(IOException e)

{
18 e.printStackTrace();

}}}

Figure 6.1: An example client program for calculation of factorial of a number

6.1 Basic Concepts

In this section, we introduce a few basic concepts and definitions that would be used in our

proposed algorithm.
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6.1.1 Distributed Aspect-Oriented Programs

Distributed computing is the concept of independent processors connected through

communication links. After establishing the distributed architecture, the next step is

to develop the programs that can run on a distributed environment [103]. These

programs consist of several concurrently executable parts allocated to different processors

for simultaneous execution. The distributed systems rely on message passing for

communication between all the computers [78]. This message passing makes the distributed

programs more complex. Here, the advantages of aspects can be availed to reduce the

complexity of the distributed programs. The code that handles message passing between

two computers can be identified and kept in a separate module as an aspect. These types of

programs are called Distributed Aspect-Oriented Programs.

Among all the known architecture of distributed computing, the client-server architecture

is the simplest and most commonly used architecture [102]. In Figure 6.1, we have

considered an example distributed program for calculation of factorial of a given number.

In Figure 6.1, MyClient.java is a client program, which first establishes the connection

with a server program by calling Socket() method. Then it asks the user to enter a number

through a keyboard and stores it in a variable. Then, using getOutputStream()method the

number is then sent to the server. At the end, the client program receives the result from the

server program and prints the result.

In Figure 6.2,MyServer.java is a server program, which is responsible for calculating

the factorial of a given number. When it starts execution, it waits for a client program to send

some data. Once the server program receives a number from the client program through

getInputStream() method, it then calculates the factorial of the input number. Then, it

sends back the computed factorial of the number to the client that had sent the input number.

Now, we can observe that the server program is always running, once it starts execution.

But, while observing the output, it is not understood when the server becomes ready for

use. Similarly, when the work of the server is over, before closing the server program, all

clients must be notified that the server is going to be closed so that no client should send

new data. To incorporate these modifications, again we have to change the existing code.

Another alternative way is to design a separate program that can handle all these additional

requirements without changing the existing programs. We have created an aspect program

using AspectJ [33] programming language to achieve this.
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//MyServer.java
S1 import java.net.*;
S2 import java.io.*;
S3 public class MyServer extends Thread
S4 { private ServerSocket serverSocket;
S5 public void run()
S6 { try
S7 { serverSocket = new ServerSocket(9093);
S8 }catch(IOException e) {
S9 e.printStackTrace();}
S10 while(true)
S11 {try
S12 {System.out.println("waiting for the client");
S13 Socket server = serverSocket.accept();
S14 DataInputStream in =new
DataInputStream(server.getInputStream());
S15 String N=in.readUTF();
S16 System.out.println("data received from client "+N);
S17 int n=Integer.parseInt(N);
S18 int f = 1, i;
S19 if (n == 0)
S20 { f=1; }
else
S21 { for (i = 1; i <= n; i++)
S22 { f = f * i; }
}
S23 N=Integer.toString(f);
S24 System.out.println("Process Completed");
S25 DataOutputStream out =new
DataOutputStream(server.getOutputStream());
S26 out.writeUTF(N);
S27 server.close();
S28 }catch(IOException e) {
S29 e.printStackTrace();
S30 break;
} } }
S31 public static void main(String [] args)
S32 { Thread t = new MyServer();
S33 t.start();}}

Figure 6.2: An example server program

The AspectJ program is shown in Figure 6.3. We have developed an aspect called

MyServer_Aspect.aj as shown in Figure 6.3, which has one poincut and two advices.

The pointcut PC() captures the execution of run() method in MyServer.java program

shown in Figure 6.2. The before() advice executes before the run() method is executed

and the after() advice executes after the run() method is executed. As a result, we can

print the status of the server program, i.e. when it starts and when it completes.
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//MyServer_Aspect.aj
A1 public aspect MyServer_Aspect {
A2 pointcut PC():execution(void MyServer.run());
A3 before():PC(){
A4 System.out.println("Server is starting...");}
A5 after():PC(){
A6 System.out.println("Server is closed!");} }

Figure 6.3: An example AOP for the server program

6.2 Intermediate Program Representation

Before computing the slice of a given DAOP, we have to represent it in the form of

some dependence graph. The existing dependence graphs such as PDG, SDG, EAOSDG

or MAODG, are not suitable to represent the features of DAOPs like message passing,

synchronization, etc., because they do not have edges to represent these additional features

of DAOPs. Hence, we have developed an intermediate representation named Distributed

Aspect Dependence Graph (DADG) for DAOPs. In this section, we describe in brief about

DADG.

6.2.1 Distributed Aspect Dependence Graph (DADG)

For developing an efficient program slicing technique, a suitable intermediate representation

of the given program is required. Most of the researchers have used the dependence

graph as intermediate representation and then proposed their slicing algorithms based on

the dependence graph [43, 53]. We have proposed a dependence graph for representing

the distributed AOPs accurately and precisely. We have considered various features of

distributed AOPs, such as pointcuts, advices, inter-thread communications, etc. while

constructing the intermediate graph representation. We have named this intermediate graph

Distributed Aspect Dependence Graph (DADG). DADG is a dynamic dependence graph

whose different dependencies are added to the graph depending upon the present execution

of the given program. DADG is a collection of Distributed Dependence Graphs (DDGs) for

the non-aspect part and Aspect Dependence Graphs (ADGs) for the aspect parts. For each

component of the distributed programs, we construct a DDG separately. We combine all the

DDGs and ADGs to build the final DADG by using several special dependence edges. In

DADG, we have developed one special node as defined below:

Definition 6.1. R-Node: Let P = (P1, P2, ..., Pn) be a distributed program, where

Pn is the nth component program. We construct the DADG for the distributed

program P by constructing a DADG for each component program represented by

DADG=(DADG1, DADG2, ..., DADGn). If a statement `s' in a component program Pi

is a message send statement and statement `r' in Pj is the corresponding message receive

statement, then we denote the node representing statement `r' in the DADGj as an R-node.
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The R-node is different from rest of the nodes of DADG because it stores the corresponding

message send node (process-id and node number) in it.

For example, suppose that while generating the DADG for a component program P , we

found that its process-id isP1, and it has a node named node10which receives somemessage

from another program Q which is running on another computer. Now, let the process-id of

program Q is P2 and it has a node named node12 which is the corresponding message send

node for node10 in P . Now, we have to add an R-node in the DADGP in-place-of node10

and store the pair (P2, 12) in the R-node.

Algorithm 13 Dynamic DADG Construction Algorithm

INPUT:

P- Distributed A-O program

P = (P1, P2, ..., Pn), where Pi is a component program

I = (I1, I2, ..., In), where I is the input set for P
OUTPUT: The DADG for P

1: Invoke Distributed Control-dependence Algorithm (DCA) for construction of the partial

DADG (DADGP ) having all the nodes and control dependence edges.

2: Invoke Distributed Data-dependence Algorithm (DDA) for adding data dependence

edges into DADGP .

6.2.2 DADG Construction Algorithm

In our proposed DADG, we have categorized the different types of edges into two categories.

Broadly, the control, call, thread and weaving edges are categorized as control dependence

edges. Data dependence edges are kept under separate category from control dependence

edges. In our approach, we construct all control dependence edges statically, and data

dependence edges dynamically. Hence, our proposed DADG construction algorithm has

two parts. For the construction of the DADG of a given distributed AOP, our algorithm

first calls the Distributed Control-dependence Algorithm (DCA) for the construction of the

partial DADG. Then, it invokes the Distributed Data-dependence Algorithm (DDA), which

adds dynamic data dependencies into the partial DADG.

Distributed Control-dependence Algorithm (DCA)

The pseudo code for Distributed Control-dependence Algorithm (DCA) is presented in

Algorithm 14. The DCA algorithm creates a partial DADG (DADGP ) of the given program.

It first creates a node for each statement or predicate present in the program. Some additional

nodes are generated to satisfy the syntax of SDG, like actual parameter-in/out, formal

parameter-in/out nodes, etc. Next, control dependence edges are inserted between the nodes

if one node is controlling the execution of another node. Then, step-wise call dependence,

thread dependence, and weaving edges are added to the graph.
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Algorithm 14 Distributed Control-dependence Algorithm (DCA)

1: INPUT: P- Distributed A-O program

P = (P1, P2, ..., Pn), where Pi is a component program of P

2: OUTPUT: DADGP - Partially constructed DADG

3: Let Pe ={Pi | Pi is a component program that executes in present scenario}
4: for each Pi ∈ Pe do

5: for each executable statement or predicate ∈ Pi do

6: Create a node n in the DADG

7: if n is a call node then

8: Create separate actual-in and actual-out nodes for each call site

9: else if n is a method entry node then

10: Create formal-in and formal-out nodes for each method entry node

11: else if n is a receive node then

12: Rename the node as R-node

13: Create a dashed circle node to represent R-node

14: end if

15: end for

/∗ Add control dependence edges ∗/
16: if node j controls the execution of other node k then
17: add control dependence edge j → k
18: end if

/∗ Add call dependence edges ∗/
19: if node n is a call node andm is the entry node for the method called at n then

20: add call dependence edge n → m
21: insert a label n on the call edge, i.e. n

n→ m
22: add parameter-in edges between actual-in and formal -in nodes

23: add parameter-out edge between formal-out and actual-out nodes

24: insert label n on each parameter edge

25: end if

/∗ Add thread dependence edges ∗/
26: if node t is a thread start node and r is the entry node for the run method called at t

then

27: add thread dependence edge t → r

28: insert a label t on the call edge, i.e. t
t→ r

29: end if

30: if node y is the last node of the run method for the run method called at t then

31: add thread dependence edge y → t

32: insert a label t on the thread edge, i.e. y
t→ t

33: end if

/∗ Add weaving edges ∗/
34: if v is the entry node of an advice target method and w is the starting node of before

advice then

35: add weaving edge v → w
36: insert a label v on the weaving edge, i.e. v

v→ w
37: end if

107



Chapter 6 Dynamic Slicing of Distributed Aspect-Oriented Programs

38: if node x is the last node of before advice then
39: add weaving edge x → v
40: insert a label v on the weaving edge, i.e. x

v→ v
41: end if

42: if node c is the last node of an advice target method and d is the starting node of
after advice then

43: add weaving edge c → d
44: insert a label c on the weaving edge, i.e. c

c→ d
45: end if

46: if node g is the last node of after advice then
47: add weaving edge g → c
48: insert a label c on the weaving edge, i.e. c

c→ c
49: end if

50: end for

Figure 6.4: DADG for the example program given in Figure 6.1
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Figure 6.5: DADG of the server example program given in Figure 6.2 and Figure 6.3

Distributed Data-dependence Algorithm (DDA)

The pseudo code for Distributed Data-dependence Algorithm (DDA) is given in Algorithm

15. After the construction of partial DADG (DADGP ) for the given program, we execute the

input program to find its execution trace. For example, the execution trace for the example

client program given in Figure 6.1 is found as: [3, 4,5,6,7,8,9,10,11,12,13,14,15,16].

Similarly, we found the execution trace of the server program shown in Figure 6.2 as

[S31,S32,S33,S5,S6,S7,S10,S11,S12,S13,S14,S15,S16,S17,S18,S19,S21,S22,S23,S24,S25,

S26,S27]. The execution trace of the aspect code given in Figure 6.3 is

[A2,A3,A4,A2,A5,A6]. The DCA has added all control dependence edges into the DADG.

Distributed Data-dependence Algorithm (DDA) uses dynamic analysis to determine the

actual communication and data dependencies during runtime. We add data dependency

edges (if any) between the nodes of DADG by using DDA. The actual communication

dependence between all the component programs of a distributed AOP is determined at

run-time. In each of the DADG, we search for the R-nodes and store the pair (Ps, s), where

Ps is the process-id of sender program and `s' is the sender node in the R-nodes. This

helps in handling the communication dependence. We do not add any communication edge

explicitly between the receiver node and sender node, which reduces the space complexity

and time complexity of the graph generation process. Also, it helps us to find the dynamic

slice of individual DADG parallely by applying our proposed slicing algorithm. The

complete DADG for the example program of Figure 6.1 is shown in Figure 6.4. The DADG

for the server program and aspect program of Figure 6.2 and 6.3 is shown in Figure 6.5.
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Algorithm 15 Distributed Data-dependence Algorithm (DDA)

1: INPUT: DADGP - Partially constructed DADG

2: P- Distributed A-O program

3: I = (I1, I2, ..., In), where I is the input set for P
4: OUTPUT: DADG for the given P

5: for each Pi ∈ Pe do

6: for each variable v ∈ Pi do

/∗ Let C(v) present the statement of the current definition of the variable ∗/
7: initialize C(v) = null
8: end for

9: while (! Pi terminate ) do

10: for each statement s ∈ Pi do

11: execute statement s of Pi associated with Ii
12: if s represents a R− node in the DADGi then

13: store (Px, x)
/∗ where Px is the process-id of sender and `x' is the sender node ∗/

14: end if

15: for each variable v ∈ s do
16: if v is defined at s then

17: C(v) = s
18: end if

19: if v is used at s and C(v) 6= null then

20: add a data dependence edge C(v) → s to DADGP

21: end if

22: end for

23: end for

24: end while

25: end for
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Theorem 6.2. Dynamic Data-dependence Algorithm (DDA) finds correct data dependence

in a given distributed program.

Proof: A formal proof of the theorem and correctness of DDA can be constructed

through mathematical induction by following an approach similar to that given in the proof

of Theorem 4.5. �

6.2.3 Determining size of the DADG

The size of DADG can be calculated in similar manner as we have calculated the size of

MAODG in Section 5.2.3 of Chapter 5.

6.3 Proposed Algorithm: Parallel Context Sensitive

Dynamic Slicing

There are several approaches available for slicing of AOPs [11, 36, 104], but there

is a scarcity of slicing techniques for distributed AOPs. Here, we propose a parallel

context-sensitive dynamic slicing algorithm for distributed AOPs. The context-sensitivity

increases the preciseness and correctness of the slice [16] and the dynamic slicing reduces

the size of computed slice [105]. Finally, the parallelism increases the slice computation

speed.

6.3.1 Context-sensitivity

There are different types of techniques used to obtain the slices by various researchers

[16, 29, 82] All such slicing techniques can be broadly classified as either repeated backward

data-flow analysis or traversal of a program dependence graph (PDG). We have used

graph traversal technique to compute the slices. To find precise and accurate slices, we

have considered context-sensitivity during slicing [16]. Context-sensitivity imparts that

the call-site must be preserved during entry and exit of a method. To incorporate the

context-sensitivity in our proposed slicing algorithm, we have labelled each call , thread,

weaving edges and their corresponding return edges in the DADG of a distributed AOP.

Then, we use three stacks to preserve the context-sensitivity in our approach. These three

stacks are: Method stack, Advice stack and Thread stack. Method stack keeps track of the

call contexts of the methods, Advice stack is used for monitoring advice calls in an aspect

and Thread stack keeps track of invocation of threads.

6.3.2 Parallelism

An algorithm can be divided into some independent tasks (component tasks) that can be

concurrently executed, and then these individual tasks can be assigned to different computers

connected to a network, for achieving faster processing time. Now, the component tasks can
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be carried out on separate computers; as a result the execution time of the overall algorithm

reduces. In our proposed slicing algorithm, we ensure accuracy and preciseness of the

resultant slices by introducing context-sensitivity. Further, the slice computation time can

be reduced by introducing parallelism into the slicing algorithm. The slicing algorithm is

dependent on the intermediate graph used for representing the given input program. We have

developed our intermediate graph i.e. DADG in such a way that it can support a parallel

slicing algorithm. As shown in Figure 6.4 and Figure 6.5, we generate separate DADGs

for all component programs of a distributed AOP. Finally, to perform parallel slicing, we

need different slicing criteria for individual component programs. In our proposed slicing

algorithm, we generate a new concurrent sub-task, when we get any new slicing criterion

and a separate DADG.

6.3.3 Proposed Algorithm

The context-sensitive slicing algorithm always generates more accurate and precise slices as

compared to the context-insensitive slicing algorithms [16]. Moreover, the introduction of

parallelism in the slicing algorithm makes the slice computation faster than the sequential

slicing algorithms [103]. We propose a dynamic slicing algorithm to compute slices for a

distributed AOP, which is a context-sensitive as well as parallel algorithm. We have named

our proposed algorithm Parallel Context-Sensitive Dynamic Slicing (PCDS) algorithm. We

present the pseudo code of our proposed slicing technique for distributed AOPs in Algorithm

16. Below, we explain our proposed PCDS algorithm.

Parallel Context-Sensitive Dynamic Slicing (PCDS) Algorithm

The proposed PCDS algorithm is a parallel slicing algorithm. In PCDS algorithm, we

traverse all the nodes of DADG starting from the slicing criterion node. A worklist W is

used for storing initial slicing criterion node. In each step, one node fromW is deleted and

processed by adding it in a list L. After processing of each node, it's neighbor nodes are

inserted intoW . During the traversal, if we encounter any R-node (i.e. Receive node) then,

the PCDS algorithm automatically generates a new thread and starts computing the slice for

the new component program with a new slicing criterion using the same PCDS algorithm.

Here, the new slicing criterion is the respective send node of the R-node that we found during

the traversal of the initial program. Also, the proposed algorithm uses three stacks that are

responsible for maintaining context-sensitivity during the computation of slices. It takes

the DADG for a component of a distributed AOP, as input. It maintains three stacks, i.e.

S1, S2, and S3, for call-context, thread-context, and advice-context, respectively. The push

operation is performed on stack S1 when we encounter any parameter-out edge during the

backward graph traversal. When we find any parameter-in or call edge during the traversal,

we pop from stack S1 and match the top of S1 with the current edge context. We consider the
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current edge to be included in the slice only if there is a match occurred. A similar approach

is adopted for handling thread and weaving edges.

Algorithm 16 PCDS(DADGi, Pi, n)

1: INPUT: DADGi = (V,E)
2: Slicing criterion < Pi, n >
3: OUTPUT: Li is the list of nodes in the computed slice, final slice

L will be union of all Li

4: W = {n}, Li = {} // initialize the worklist and slice set

5: Declare S1, S2 and S3 // the stacks for tracking method, thread and advice call-sites
6: Unmark all the edges in DADGi

7: while W ! = null do
8: Remove n from W and add to Li

/∗ Process communication dependence and generating parallel process ∗/
9: if n is a receive node (R-node) then

10: Retrieve communication pair < Ps, ns > from n

11: spawn PCDS(DADGs, Ps, ns)
12: end if

13: for all edge e between m to n do // handle all incoming edges of n
14: if e has not been marked then

15: mark e

16: Let CSe is the call-site of edge e
17: if e ∈ {control, data} then

18: W.add(m) // insert the node m in W

/∗ Process method call related edges ∗/
19: else if e ∈ { parameter-in or call edge } then

20: if (S1.top==CSe)|| (S1.top==null) then

21: W.add(m) // insert the new node m in W

22: S1.pop() // delete the node in top of S1
23: end if

24: else if e ∈ {parameter − out} then

25: W=W
⋃

{m}
26: S1.push(n)

/∗ Process thread related edges ∗/
27: else if e ∈ {thread_start} then
28: if (S2.top==CSe)|| (S2.top==null) then

29: W=W
⋃

{m}
30: S2.pop()
31: end if

32: else if e ∈ {thread_return} then

33: W=W
⋃

{m}
34: S2.push(n) /∗ Process aspect related edges ∗/
35: else if e ∈ {weave_start} then

36: if (S3.top==CSe)|| (S3.top==null) then

37: W=W
⋃

{m}
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38: S3.pop()
39: end if

40: else if e ∈ {weave_return} then

41: W=W
⋃

{m}
42: S3.push(n)

/∗ Process intra-procedural edges ∗/
43: else

44: W=W
⋃

{m}
45: end if

46: end if

47: end for

48: end while

49: sync

50: Compute final slice L = L1

⋃
L2

⋃
...
⋃
Le

Working of PCDS algorithm

Let's consider node S23 of the DADG given in Figure 6.5, as the slicing criterion. This

is the first part of the slice, so we take i = 1. Initial values of W = {S23}, L1 = {}
and S1 = S2 = S3 = {}. Now, start traversing backward from node S23. The status

of data structures when processing different nodes is given in Table 6.1. In Table 6.1,

we can observe that Stack S1 always remains null, because in our example no call edge

is involved. During slice computation of the server program, when we found that S15

is a R-node, and it is included in the slice, at this point, our PCDS algorithm generates

another thread and starts computing another parallel slice of the client program with

slicing criterion node12, as this is the corresponding send node in Figure 6.4. After this

point, according to our algorithm, two slices are computed parallely. The resultant slice

for MyClient program is shown in Table 6.2. The final slice of the distributed AOPs

given in Figure 6.1, Figure 6.2 and Figure 6.3, with respect to slicing criterion S23 is

the union of the resultant slices shown in Table 6.1 and Table 6.2, i.e. Slice (S23) =

{S23,S21,S11,S19,S10,S17,S5,S16,S33,A4,S15,S32,S31,A3,S14,S3,A2,S13,A1,S7,S6,S4,

12,11,6,9,5,4,8,3,7}. The nodes included in the resultant dynamic slice are also shown in

shaded nodes in Figure 6.6 and Figure 6.7. The nodes included in computed slice, are

shaded with gray color, and the nodes not included in slice are left unshaded. Figure 6.6

shows the slice of server program given in Figure 6.2 and Figure 6.3, w.r.t. slicing criterion

S23. Similarly, Figure 6.7 shows the slice of client program given in Figure 6.1, w.r.t. slicing

criterion node12.
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Table 6.1: Status of different data structures while finding the slice of MyServer program

w.r.t. ``node S23"

Processed Node W S1 S2 S3 L1

S23 {S21,S11} {} {} {} {S23}

S21 {S11,S19} {} {} {} {S23,S21}

S11 {S19,S10} {} {} {} {S23,S21,S11}

S19 {S10,S17} {} {} {} {S23,S21,S11,S19}

S10 {S17,S5} {} {} {} {S23,S21,S11,S19,S10}

S17 {S5,S16} {} {} {} {S23,S21,S11,S19,S10,S17}

S5 {S16,S33,A4} {} {S33} {A4} {S23,S21,S11,S19,S10,S17,S5}

S16 {S33,A4,S15} {} {S33} {A4}
{S23,S21,S11,S19,S10,S17,S5,

S16}

S33 {A4,S15,S32,S31} {} {} {A4}
{S23,S21,S11,S19,S10,S17,S5,

S16,S33}

A4 {S15,S32,S31,A3} {} {} {A4}
{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4}

S15 (R-node) {S32,S31,A3,S14} {} {} {A4}
{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4,S15}

S32 {S31,A3,S14} {} {} {A4}
{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4,S15,S32}

S31 {A3,S14,S3} {} {} {A4}
{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4,S15,S32,S31}

A3 {S14,S3,A2} {} {} {}
{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4,S15,S32,S31,A3}

S14 {S3,A2,S13} {} {} {}
{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4,S15,S32,S31,A3,S14}

S3 {A2,S13} {} {} {}

{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4,S15,S32,S31,A3,S14,

S3}

A2 {S13,A1} {} {} {}

{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4,S15,S32,S31,A3,S14,

S3,A2}

S13 {A1,S7} {} {} {}

{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4,S15,S32,S31,A3,S14,

S3,A2,S13}

A1 {S7} {} {} {}

{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4,S15,S32,S31,A3,S14,

S3,A2,S13,A1}

S7 {S6,S4} {} {} {}

{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4,S15,S32,S31,A3,S14,

S3,A2,S13,A1,S7}

S6 {S4} {} {} {}

{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4,S15,S32,S31,A3,S14,

S3,A2,S13,A1,S7,S6}

S4 {} {} {} {}

{S23,S21,S11,S19,S10,S17,S5,

S16,S33,A4,S15,S32,S31,A3,S14,

S3,A2,S13,A1,S7,S6,S4}
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Table 6.2: The resultant slice of MyClient program w.r.t. slicing criterion ``node 12"

Processed Node W L2

{12} {}

12 {11,6,9} {12}

11 {6,9,8} {12,11}

6 {9,5,4} {12,11,6}

9 {5,4,8} {12,11,6,9}

5 {4,8} {12,11,6,9,5}

4 {8,3} {12,11,6,9,5,4}

8 {3,7} {12,11,6,9,5,4,8}

3 {7} {12,11,6,9,5,4,8,3}

7 {} {12,11,6,9,5,4,8,3,7}

Figure 6.6: Updated DADG of the example programs given in Figure 6.2 and Figure 6.3,

shaded nodes represent context-sensitive slice w.r.t. node S23
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Figure 6.7: Updated DADG of the example program given in Figure 6.1, shaded nodes

represent context-sensitive slice w.r.t. node 12

6.3.4 Correctness of Parallel Context-Sensitive Dynamic Slicing

(PCDS) algorithm

In this section, we sketch the proof of correctness of our PCDS algorithm.

Theorem 6.3. Parallel Context-Sensitive Dynamic Slicing (PCDS) algorithm always

computes correct slices for a given distributed AOP.

Proof:In the proof of the correctness of any algorithm, we must follow the steps of

completeness, correctness, and finiteness. Hence, the proof of our algorithm consists of

three parts. First, we prove that our algorithm is complete, i.e. it covers all the possible

cases. Secondly, we prove that the algorithm is correct. Finally, we show that our algorithm

terminates after a finite number of iterations.

For the proof of completeness of our algorithm let's consider Γ is the set of types of edges

in the DADG. In our algorithm, Γ = {control, data, call, thread, weaving}. Initially, the
intended slice consists of only the slicing criterion node s. There can be two possibilities,

i.e. s may be a root node or may not be a root node. If s is a root node, then the slice will

contain only the node representing the slicing criterion. If s is not a root node, then it must be

connected to some other node through an edge e. According to the representation of DADG,

the edge e must be of any type ∈ Γ. This is also true in our algorithm, because all possible

types of dependencies ∈ Γ, are covered in the algorithm. To handle the communication

dependence during the slice computation, our algorithm uses R-node. When any R-node is

found during slicing, the algorithm first extracts it's corresponding sender process-id (Ps) and

sender node number (ns), which are stored at R-node during the construction of DADG.Next,

our algorithm starts a new thread and begins slice computation taking the corresponding
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DADG for the process-id Ps and slicing criterion as ns. Hence, our algorithm can handle all

possible types of dependencies that may be present in a distributed AOP.

We prove the correctness of our algorithm by method of mathematical induction. We

assume that the current computed partial slice Sp = {s1, s2, ..., si−1} is correct. We have

to show that after including the next node during the traversal, Sp retained its correctness.

Suppose si is the next node in the traversal, which is connected from si−1 with an edge ei.

First, we concentrate in the method call section of our algorithm. There can be three possible

locations of the two nodes (i.e. si and si−1), as shown below-
{si−1, si} ∈ same method add si to Sp

si−1 ∈ callee, si ∈ called add si to Sp, push label

si−1 ∈ called, si ∈ callee pop label and match

(6.1)

According to our algorithm, and as shown in Equation 6.1, if both nodes si and si−1 lie

on the same method, then we directly insert node si into the slice. When si−1 node belongs

to callee method and si node lies in the called method, then our algorithm checks the calling

context by performing a pop operation on the stack and matching the current edge label. If

the stack is empty, then also we have to add the current node si into the slice. In the other case,

when si−1 node belongs to the called method and si node is in the callee method, then our

algorithm matches the current edge label and the top of the stack so that the calling context

can be preserved. Similarly, we can show that our algorithm covers all the possible cases

and finds the correct slice.

We assume that there is no cycle present in the DADG of the program. The graph is

having finite number of vertices {1, 2, 3, ..., n} and finite number of edges {e1, e2, e3, ..., ek},
where n and k are positive integers. Initially, the user enters the slicing criterion. Suppose the

user has entered a slicing criterion node s and s ∈ {1, 2, 3, ..., n}. As there is no cycle in the
graph, hence the traversal of the DADG will have finite steps. From this, we can conclude

that our algorithm terminates after executing a finite number of steps. This completes the

proof. �

6.3.5 Complexity Analysis

In the following we discuss the space and time complexity of the Parallel Context-Sensitive

Dynamic Slicing (PCDS) algorithm.

Space complexity: The PCDS algorithmworks on the input DADG. DADG is the collection

of individual DADGsmade for each component program for distributed AOP. Suppose there

are p number of component programs exist in an input distributed AOP. Let the number of

statements in each component program is n, then there will be n nodes in the DADG for each

component program. Let the number of edges in each DADG is e. Then to store one DADG,

we need the space for storing information of n nodes and information of each edge ∈ e.

The space for storing DADG of one component program is of order O(ne). But, we have
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p number of component programs in a given distributed AOP, then the space complexity of

total distributed AOP is p ∗O(ne).

Time complexity: PCDS algorithm is a parallel algorithm which works on insertion and

deletion from a worklist W. For finding the worst case time complexity, suppose the given

DADG is a fully connected graph. As, PCDS algorithm traverses the given DADG, the worst

case time complexity of PCDS algorithm should be O(n2). Suppose, there are m number

of parallel slicing task on different DADGs are executing simultaneously. Then, the time

complexity of whole slicing process will reduce to O(n2)/m.

6.4 Implementation and Results

In this section, first we present our implementation details of the developed slicing tool

named D-AspectJ slicer. Then, we discuss the details of the case studies that we have

considered for our experiment. At last, we compare our proposed approachwith some closely

related work and present the outcomes of the experiment.

6.4.1 Setup

We have developed a partial slicing tool called D-AspectJ slicer. To develop our slicing tool

and conduct the case studies, we have used, three personal computers having Intel Core i5

processor, clock speed 2.40GHz, primary memory 4 GB andWindows 7 Home Basic (32 bit)

operating system. The two computers are connected through ethernet. The findings of our

study may vary if some other system configuration is used to replicate the implementation.
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Figure 6.8: Architectural overview of D-AspectJ Slicer
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6.4.2 Overview of D-AspectJ slicer

The architecture of our tool D-AspectJ slicer is given in Figure 6.8. A distributed AOP

consists of three parts - a non-aspect distributed part, an aspect part and a set of dynamic

communication dependencies. The input to D-AspectJ slicer is a distributed AOP. The same

input distributed AOP is given to three main components of D-Aspect slicer, that are- ASM

Framework, Aspect Analyzer and Dynamic Code Instrumentor. The ASM Framework is

an open source JAVA code analyzer. ASM Framework is a collection of many predefined

packages that perform different analysis tasks. Among them, the ``internal" and ``graph"

packages are the most important packages. The ``internal" package analyzes the basic

JAVA code and gathers information about instructions, methods, classes, etc. The ``graph"

package uses the information provided by ``internal" package and generates the intermediate

representation for the whole JAVA program.

We have designed a package called ``Aspect Analyser" that fetches the Aspect part

of the given distributed AOP and generates the Aspect Dependence Graph (ADG). Then

the ``Aspect weaver" combines the non-aspect part and ADG to form a partial DADG

(DADGP ). The DADGP is incomplete because it does not contain any data or

communication dependence information. To get the dynamic data and communication

dependence information, the distributed AOP is supplied to the Dynamic Code Instrumentor.

It is a program that adds appropriate JAVA code into the original program such that the

data and communication dependence between the statements can be captured at run-time.

Then the instrumented program is compiled and executed to find the dynamic data and

communication dependence information. Finally, a DADG generator accepts the DADGP

and the dynamic dependence information to generate the complete DADG for the given

distributed AOP. This DADG is then stored in a DADG file for future use.

When the user wants to compute a slice of the given distributed AOP, he gives the

process-id and slicing criterion at the Slicer GUI. Then this information are forwarded to the

Parallel Process Manager package. This package then searches the corresponding DADG

from the DADG file using the given process-id. It then provides the DADG of the program

and slicing criterion to the PCDS module. This package is responsible to implement our

proposed slicing algorithm. The PCDS module starts computing the required slice. In

the meanwhile during the slice computation, if the PCDS module finds any receive node

(R-node) then it extracts the process-id of the sender node and new slicing criterion from the

R-node and sends these to the Parallel Process Manager. The Parallel Process Manager then

generates another concurrent or parallel process and searches the corresponding DADG from

the DADG file. The similar process of slice computation starts again, but concurrently with

the original slicing process. When all the component programs of the distributed AOP that

are involved in the present slice computation are processed, the Slice Collector combines all

the sub-slices of the component programs and generates the final slice of the given distributed
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AOP.

Table 6.3: Details of the attributes of the Case Study Projects

Sl.

No.

Project Description No. of

Classes

No. of

Aspects

LoC

1 Sliding-Window Implementation of Sliding-Window

protocol of data transfer

2 2 90

2 Server-Client-2 An example of server-client

communication

6 1 103

3 FTP Program for File Transfer within a

network

3 2 161

4 Chess Game Network Chess game 7 2 388

5 Online

Chatting

Online chatting software 13 5 631

6 Tic-Tac-Toe Implementation of a very popular

game Tic-Tac-Toe

12 4 1107

7 Article Implementation of a very popular

messenger

12 2 1334

Table 6.4: The values of the attributes of the DADG of the Case Study Projects

Sl.

No.

Project No. of

Nodes

No. of

Edges

No. of

R-Nodes

Time to generate

DADG (in ms)

1 Sliding-Window 114 186 2 119

2 Server-Client-2 160 207 1 263

3 FTP 232 319 3 557

4 Chess Game 566 728 2 622

5 Online Chatting 934 1184 17 1726

6 Tic-Tac-Toe 1124 1580 4 1140

7 Article 1765 2287 4 2933

6.4.3 Case Studies

The credibility of a proposed slicing algorithm is established when it is applied and evaluated

using standard case studies. As the distributed AOP is a new trend in software development,

it is very difficult to find open source programs. However, we have used seven standard open

source distributed JAVA projects. After analyzing all projects, we have modified and added

some new Aspects into these projects, depending upon the complexity of communication

among their component programs. The open source JAVA projects considered for our

experiment are: Sliding-Window Protocol Implementation1, Server-Client-22, FTP Program

1http://code-worm.blogspot.in/2012/10/82-java-program-fro-sliding-window.html
2This program is presented in [106]
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3, Chess Game4, Online Chatting5, Tic-Tac-Toe game project 6 and Article project 7. The

working of D-AspectJ Slicer and our slicing technique are then tested on the modified open

source distributed AOP projects. The details of the case study projects are given in Table

6.3. All these case studies are open source projects and can be downloaded from the sources

provided as foot notes. We have generated the DADG for these projects using our tool, and

the values of the attributes of the DADG are shown in Table 6.4. It includes the number of

nodes and edges in the DADG, the number of R-nodes present in each program and time

taken to generate the DADG by our D-AspectJ Slicer tool.

We have computed the slices by proving different slicing criteria to our developed tool.

We have implemented three algorithms, i.e. PADS algorithm proposed by Ray et al. [13],

Contradictory Graph Coloring Algorithm (CGCA) proposed by Barpanda et al. [82] and our

PCDS algorithm. In our experiment, we have used each algorithm to find 5-10 slices of the

individual programs. We have noted the slice size and slicing time to compute the slice, for

all the computed slices. Then, we have computed the average slice size and slicing time for

each case study using the three different algorithms.

Figure 6.9: Comparison of average slice size

6.4.4 Implications

After completing the above experiments and case studies, we have analyzed the outcome

to explore the hidden treasure. To produce a fare comparison of the performance of the

three slicing algorithms, we have calculated the average slice size and the average slice

computation time for each case study. First, we have computed number of slices using PADS

algorithm [13] by taking different slicing criteria. Then, we have calculated the average slice

size and average slicing time. Similarly, by taking the same slicing criteria as above, we

3http://www.sourcecodesworld.com/source/show.asp?ScriptID=708
4http://www.szic.pk/cs/chess/chess.php
5http://pirate.shu.edu/wachsmut/Teaching/CSAS2214/Virtual/Lectures/chat-client-server.html
6http://freesourcecode.net/javaprojects
7http://www.codeproject.com/Articles/524120/A-Java-Chat-Application
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have computed slices using CGCA [82] and our proposed PCDS algorithm. Then, average

slice size and average slicing time is also calculated for the two algorithms. Figure 6.9

shows the comparison of average slice size for above three algorithms. From Figure 6.9,

we observe that the average slice size computed by PCDS algorithm is always smaller than

PADS algorithm [13] and CGCA [82].

Table 6.5: Comparison of Slice Size

Sl.No. Project
Avg. Slice Size Percentage Change

PADS

[13]

CGCA

[82]

PCDS

(proposed)

DCR1 DCR2

1 Sliding-Window 20.6 20.04 20.04 2.71% 0%

2 Server-Client-2 12.34 11.71 11.71 5.1% 0%

3 FTP 14.22 12.9 12.45 12.44% 3.48%

4 Chess Game 11.83 11.83 11.83 0% 0%

5 Online Chatting 19.82 17.02 16.29 17.81% 4.28%

6 Tic-Tac-Toe 18.94 17.33 16.58 12.46% 4.32%

7 Article 13.89 12.9 11.76 15.33% 8.83%

In Table 6.5, we have used DCR1 and DCR2 whose definition is given below:

DCR1 = (PADS − PCDS)/PADS ∗ 100 (6.2)

where, DCR1 is Percentage decrement of avg. slice size in PCDS as compared to PADS.

DCR2 = (CGCA− PCDS)/CGCS ∗ 100 (6.3)

where, DCR2 is Percentage decrement of avg. slice size in PCDS as compared to CGCA.

Table 6.5 shows the comparison of average slice size. It shows that, average slice size

of slices computed by our PCDS algorithm is 0% to 17.81% smaller than that of PADS

algorithm [13]. Also, we observed that the average slice size of slices computed by our

PCDS algorithm is 0% to 8.83% smaller than that of CDCA [82]. Based on the average

slice size given in Table 6.5, we compare the efficiency of all three algorithms. We found

that, our proposed PCDS algorithm generates on an average 9.4% smaller slices than PADS

algorithm [13]. Also, PCDS algorithm generates 2.98% smaller slices than CGCA [82].

Figure 6.10 shows, comparison of average slicing time for PADS algorithm [13], CDCA

[82] and our PCDS algorithm. We found that our PDPS algorithm computes slices much

faster than PADS algorithm and CGCA algorithm, as shown in Figure 6.10.

We compare the three algorithms with respect to the average slice computation time.

Table 6.6 shows the comparison of average slice computation time. We find the percentage

decrease in average slicing time of proposed PCDS algorithm in comparisonwith the average

slicing time of PADS algorithm [13] and CGCA [82]. From Table 6.6, we find that PDPS

algorithm generates slices 7.85% to 24.54% faster than PADS algorithm [13]. Also, we find
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Figure 6.10: Comparison of average slice time in milliseconds

that the proposed PDPS algorithm compute slices 5.33% to 20.82% faster than CGCA [82].

From Table 6.6, we find that on an average our PCDS algorithm compute slices 14.68%

faster than PADS algorithm and 11.51% faster than CGCA.

Table 6.6: Comparison of Slicing Time

Sl.No. Project
Avg. Slicing Time (in ms) Percentage Change

PADS

[13]

CGCA

[82]

PCDS

(proposed)

DCR3 DCR4

1 Sliding-Window 34.6 35.2 31 10.4% 11.93%

2 Server-Client-2 34 33.83 31.33 7.85% 7.38%

3 FTP 37.72 36.54 31.54 16.38% 13.68%

4 Chess Game 65.08 63.21 59.84 8.05% 5.33%

5 Online Chatting 48.16 45.9 36.34 24.54% 20.82%

6 Tic-Tac-Toe 68.33 65.85 59.17 13.4% 10.14%

7 Article 35.55 31.19 27.66 22.19% 11.31%

In Table 6.6, we have used DCR3 and DCR4 whose definition is given below:

DCR3 = (PADS − PCDS)/PADS ∗ 100 (6.4)

where, DCR3 is Percentage decrement of avg. slice size in PCDS as compared to PADS.

DCR4 = (CGCA− PCDS)/CGCS ∗ 100 (6.5)

where, DCR4 is Percentage decrement of avg. slice size in PCDS as compared to CGCA.

From the above discussion we, can infer the following:

• The proposed PCDS algorithm generates slices of smaller sizes or almost same sizes,

than the slices produced by PADS algorithm and CGCA algorithm. Hence PCDS

algorithm computes more precise slices.
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• The time taken to generate slices is always found to be minimum while using PCDS

algorithm. Hence it is faster than PADS and CGCA slicing algorithms.

• We observed that when a distributedAOP project havemore number ofR−nodes in its

DADG, then our PCDS algorithm works more efficiently than the rest two algorithms.

6.4.5 Threats to validity

In this section, we present some of the threats to the validity of our proposed approach.

1. As the slicing technique proposed in this chapter is only for AspectJ platform; it may

not work for other aspect-oriented programming languages such as Aspect C++ and

Aspect C#.

2. Through our experimental study, we have tested our proposed slicing technique for

computing precise and correct slices of projects upto 1400 LOCs. We believe that, the

other larger projects with similar structure in the same language, may be handled with

our slicing technique.

3. The proposed slicing technique is based on the construction of intermediate

representation (IR), and if the IR changes, then our slicing technique may not work

properly.

6.5 Comparison with related work

In-order to establish the efficiency of our proposed slicing algorithm, we have implemented

and compared our proposed slicing approachwith twomost closely related slicing techniques.

First, we compare our work with the Parallel Aspect-Oriented Dynamic Slicing (PADS)

algorithm proposed by Ray et al. [13]. Their algorithm is based on marking and un-marking

of the edges of a Distributed Aspect-oriented Program Dependence Graph (DAPDG). Our

proposed algorithm is based on a dynamic graph DADG, which is smaller in size than the

static dependence graph proposed by Ray et al. [13]. Also they created a new logical node

called C-node to represent the communication dependence between the component programs

of a distributed program. There are two disadvantages of this approach. First, some new

extra C-nodes are created, and second they are using extra communication edges. Whereas,

in our DADG, we neither use any extra node nor create any communication edge. Also, our

algorithm is a parallel and context-sensitive algorithm which can compute precise slices in

little time.

Next, we have compared our proposed work with a slicing approach proposed by

Barpanda et al. [82] called Contradictory Graph Coloring Algorithm (CGCA). Their

algorithm is a sequential algorithm. Hence much time consuming. Also, they have not

considered aspect-oriented features and context-sensitivity in their proposed algorithm. We
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have extended CGCA to handle AOP features, so that we can compare our proposed

technique with it. We have implemented all the three approaches; i.e, our slicing approach,

Ray et al. approach [13] and the approach proposed by Barpanda et al. [82], using our

developed tool.

Ray et al. [13] have proposed a dynamic slicing algorithm for distributed AOPs. They

have used an intermediate graph called Distributed Aspect-oriented Program Dependence

Graph (DAPDG) to represent the aspect-oriented features. DAPDG is created for each

current execution trace, starting from scratch. Next time for a different execution trace,

another new DAPDG is formed. In our approach, we use the previously available

information of the DADG. They [13] have proposed a Parallel Aspect-oriented Dynamic

Slicing (PADS) algorithm that extends the existing NodeMarking Dynamic Slicing (NMDS)

algorithm, proposed by Mohapatra et al. [106]. But, the PADS algorithm does not represent

the non-determinism behavior of the distributed AOPs. Also, the size of DAPDG is large

because it stores the relative local slice on each node of the graph. The work of Ray et al.

is most closely related to our proposed slicing technique. Hence, we have implemented the

approach of Ray et al. and compared it with our proposed approach in Section-6.4.

6.6 Summary

In this chapter, we proposed an intermediate graph called Distributed Aspect Dependence

Graph (DADG) to represent distributed AOPs. DADG represents the features of a DAOP.

Based on this intermediate representation, we designed a Parallel Context-sensitive Dynamic

Slicing (PCDS) algorithm for distributed AOPs. To evaluate our proposed algorithm, we

have designed a D-AspectJ slicer. We presented seven case studies of open source projects.

We have implemented our approach, PADS algorithm proposed by Ray et al. [13] and

CGCA proposed by Barpanda et al. [82]. Using the case studies, we have compared the

preciseness of all the three approaches in terms of slice size and slicing time. We found that

our PCDS algorithm generated on an average 9.4% smaller slices than the PADS algorithm

and 2.98% smaller than the CGCA slicing algorithm.

We have also compared the slice computation time of all the three algorithms and we

found that our PCDS slicing algorithm runs faster than the approaches of Ray et al. [13] and

Barpanda et al. [82] by 14.68% and 11.51% respectively. So, we conclude that our slicing

technique computes more precise slices in little time for distributed AOPs.

Program slicing has many applications such as debugging, testing, software maintenance,

software refactoring etc. In the next chapter, we present an approach for software refactoring

using program slicing.
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Chapter 7

Software Refactoring using Program

Slicing

Any software in the real-world emerges by acquiring new requirements, new techniques,

and newly changed scenarios. In the early days, the need for change in software arised at

long intervals of time. But in the present days, the requirements change at small intervals

of time. In order to incorporate all these changes, the code of the software undergoes many

modifications and additions. As a result, the code of the software becomes more and more

complex and drifts away from its original design [31]. This drifting of code from design

affects all the descendant activities, like testing, maintenance, etc., to be followed correctly.

In order to solve the above-said problem, we need a technique that will incorporate all the

evolving requirements and changes, and simultaneously ensure the quality of the software

[86]. One such technique is software refactoring. Software refactoring as defined in [31] is

``the process of changing an object-oriented software system in such a way that it does not

alter the external behaviour of the code, yet improves its internal structure". In this process,

we redistribute the classes, variables and methods, to make the overall software low complex

and of better quality.

But, refactoring of the full software is a tedious task in terms of time and cost involved

in it [31]. There exists many research papers dealing with the refactoring techniques [86, 87,

107]. However, these papers do not reveal the techniques used to select the target methods

for refactoring. We observe that instead of refactoring all the modules of the software, we

should refactor only that modules that need refactoring. Also, we know that the software

quality can be evaluated using software metrics [108]. Hence, we use slice-based cohesion

metrics [42] to identify that modules that need refactoring. We compute the cohesion of each

module in the software and then check their cohesion metric values. If some modules has

less cohesion metric value than the acceptable threshold, then that module is restructured. In

this chapter, we address the modules fit for restructuring as target modules.

Now the problem is to develop a technique to refactor the target modules such that it

reduces their complexity. Here, program slicing and Aspect-Oriented Programming (AOP)

come into the picture. Each target module is sliced into a number of slices by taking the

output variables [109] as slicing criteria. Then, among the resultant slices, the most similar
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slices are combined to form a new module. The new modules that are obtained are defined

as advices of an aspect. As a result of this technique, the target module will produce the

same output at a reduced complexity.

The primary objective of this paper is to develop a technique for code refactoring. We

need to identify that methods, which need refactoring. We show that the slice-based cohesion

metrics are useful in this task. The division of one method into two partitions is a difficult

task. In this chapter, we show that program slicing is useful for partitioning a method and

how AspectJ programs are used to restructure the method code into different methods.

This chapter is structured as follows: In Section 7.1, we discuss the basic concepts to

understand our work. Section 7.2 introduces our proposed refactoring approach. Also in

this section, we propose the refactoring algorithms and present the working of our proposed

refactoring algorithm along with an example. In Section 7.3, we discuss the experimental

evaluation of our proposed refactoring approach by taking some JAVA projects. In Section

7.4, we present the comparison of our proposed approach with some related works. Section

7.5 present the summary of work done in this chapter.

7.1 Basic Concepts

In this section, we present the basic concepts that are required to understand our proposed

approach. Below, we present the concept of slice-based cohesion metrics.

7.1.1 Slice-Based Cohesion Metrics

Software metrics are used to quantify the complexity of software [32]. Slice-based cohesion

metrics were proposed by Weiser [42]. He informally presented five slice-based metrics:

Tightness, Coverage, Overlap, Parallelism, and Clustering. Out of these five, Parallelism

and Clustering are highly co-related with tightness, coverage, and overlap. Hence, we can

drop these two metrics [32]. Two more metrics: MinCoverage and MaxCoverage were

proposed by Ott and Thuss [110]. The formalization of the five metrics are shown below

[32]:

Tightness(M) =
|SLint|

lenght(M)
(7.1)

MinCoverage(M) =
1

lenght(M)
mini |SLi| (7.2)

Coverage(M) =
1

|Vo|

|Vo|∑
i=1

|SLi|
lenght(M)

(7.3)

MaxCoverage(M) =
1

length(M)
maxi |SLi| (7.4)
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Overlap(M) =
1

|Vo|

|Vo|∑
i=1

|SLint|
|SLi|

(7.5)

whereM is the module under consideration, Vm is the set of variables inM , Vo is the set of

output variables, SLi is the slice obtained for vi ∈ Vo, and SLint is the intersection of SLi

over all vi ∈ Vo.

After analyzing 63 programs, Meyers et al. [32] stated that there is a strong correlation

between tightness and minCoverage, between minCoverage and overlap and between

tightness and overlap. Hence, it is not necessary to compute all the metrics. Depending

upon this analysis, they [32] gave benchmark values for overlap that lies between 0.6908

and 1.0, and the benchmark value for tightness lies between 0.2973 and 0.3039. We use

these values in Section 7.2 for explaining our refactoring approach.

7.2 Our Proposed Approach

In this section, we present our proposed refactoring approach. First, we describe the

proposed refactoring approach with the help of a block diagram. We explain the function

of each component of the block diagram. Then, we present the proposed algorithm for

refactoring of a given program. Our proposed algorithm is a collection of three algorithms.

The first algorithm is the main algorithm that in turn calls the other two algorithms. The

second algorithm calculates the cohesion metrics for a given method and the third algorithm

splits the target method into two parts- an advice and a method.

7.2.1 Block Diagram of our proposed approach

The block diagram of our proposed approach is given in Figure 7.1. This is a collection of

seven basic blocks of our approach, and it shows the stepwise flow of activities that must be

carried out to perform code refactoring.

As shown in Figure 7.1, the class file of the JAVA program i.e. the byte code of the

program, is given as input. The SDG Constructor (Block-1) produces the SDG for the whole

JAVA class. The SDG consists of representations for all the methods in the class. But, we

need SDG for each method individually. So, we give the SDG of the whole class to the

Modularizer.

Modularizer component (Block-2) takes the SDG of JAVA class file as input and

produces the Procedure Dependence Graph (PDG) for individual methods in the class. Then,

we need to compute the slice-based cohesion metrics for each method. Using Equations

7.1-7.5 given in Section 7.1 [32], the METRICS CALCULATOR computes the values of the

different slice-based cohesion metrics (Block-3). According to the research carried out in

[32], among the five slice-based cohesion metrics, tightness and overlap are most important

and if these two are computed, then rest three can be covered. Hence, in our approach, we
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JAVA Class files

SDG Constructor1

MODULARIZER

METRICS

CALCULATOR
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SDG for Class

PDG of individual method
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SDG Output & Variables

Generated Slices

Slicer

AspectJ

Modularizer

END

2

3
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5

6

7

Figure 7.1: Block Diagram of our approach, where NOP*: No Operation
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consider tightness and overlap to simplify the technique and decrease the computation time.

Now, the values of the computed cohesion metrics are compared with the threshold

benchmark values (Block-4), to find the methods that need refactoring. According to the

research conducted by [32], the tightness of any method should not be less than 0.3039.

Similarly, the value of overlap should not be less than 0.6908. Hence in our approach, we

have taken those values (i.e. 0.3039 for tightness and 0.6908 for overlap) as threshold values

to identify the methods that require refactoring.

In refactoring, we consider each method identified during the above process. We first

fetch the number of output variables present in the method. For simplification, we have

considered only the printed variables as output variables. If the number of output variables

is greater than 1 (Block-5), then only refactoring is possible. Then, the output variables and

SDGs of the methods are supplied to the Slicer component (Block-6). The Slicer component

computes the slices of the input method w.r.t. the output variables.

Now, the computed slices are given as input to the AspectJ Modularizer component

(Block-7). The main task of AspectJ Modularizer is to increase the cohesion by creating

an Aspect and fitting the computed slices into the Aspect. Here, we create an aspect using

AspectJ program. Aspects can contain advices, which are similar to the methods in Java.

So, we accommodate the computed slices into the aspects as their advices. After creation of

the aspects, we remove the codes in the slice from the original method. After removing the

codes from the original method, we get the modified method.

After completion of the above mentioned steps, we are at the end of one iteration of the

refactoring process. Again, we have to compute the values of the cohesion metrics for all

the methods using Equation 7.1-7.5 and check whether these values agree with the threshold

values or not. We repeat the above steps again till the cohesion metrics of all the methods

satisfy the threshold benchmark values. If all the methods satisfy the prescribed threshold

benchmark values, then the process of refactoring is stopped.

7.2.2 Proposed Algorithm for Software Refactoring

In this section, we discuss our methodology for refactoring of object-oriented software.

We propose a Refactoring algorithm (i.e. Algorithm 17), that takes the SDG of the target

program (that we want to refactor) and the threshold values for slice-based cohesion metrics,

as input. It then forms the PDG by deleting the call and parameter passing edges from

the given SDG. Then the algorithm calls Compute_Cohesion algorithm (i.e. Algorithm 18),

which takes the PDG, n, and output as the input and calculates the slice-based cohesion

metrics for each PDG. These computed cohesion metrics values are returned to Refactoring

algorithm (Algorithm 17).

After checking the cohesion metrics values (tightness and coverage) for each method,

against the corresponding threshold values, the Refactoring algorithm decides which

methods must be refactored. It then calls another algorithm called Binary_Refactoring
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Algorithm 17 Refactoring (SDG, threshold)

Algorithm 18 Compute_Cohesion (PDG,n,output)
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Algorithm 19 Binary_Refactoring (PDG,n)

(Algorithm 19). The Binary_Refactoring algorithm then splits the identified methods into

two parts, one of which is a new advice in an aspect program, and the other is the given

module itself having low complex code. This process is recursively carried out till the

cohesion metrics values (tightness and coverage) of the resultant modules are greater than

the corresponding threshold values.

7.2.3 Working of the Algorithm

We have considered an example program shown in Figure 7.2, that calculates the values of

five cohesion metrics, i.e. tightness, minCoverage, coverage, maxCoverage, overlap, and

also displays their values [109]. The byte-code of the class Metrics is given as input to

the SDG Generator Tool (Block-1). Our tool analyses the byte-code of the class file and

produces the SDG for the given program, as shown in Figure 7.3.

Now the user has to enter the threshold values for the cohesion metrics. The benchmark

values for only tightness and overlap are maintained in [32]. In our approach, we consider

the threshold values for tightness as 0.3039 and for overlap as 0.6908.

Working of Refactoring Algorithm

We supply the generated SDG and the threshold values for tightness and coverage, as

input to the Refactoring algorithm.

The algorithm first searches for the class dependence edges, call edges and

parameter edges in the given SDG. It deletes all Class and Parameter edges and separately

generates Procedure Dependence Graphs (PDG) for each method present in the program, as

shown in Figure 7.4.

Then the algorithm processes all PDGs one-by-one. It first identifies all the output nodes
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Figure 7.2: An example program for calculating the values of cohesion metrics
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Figure 7.4: PDGs of the example program given in Figure 7.2

from the PDG of the current method. For simplification of explanation, we consider the

output nodes as that nodes which have out-degree=0. The algorithm counts such nodes and

stores them in a variable n.

Then, Refactoring algorithm calls Algorithm 18 (Compute_Cohesion algorithm) to

compute the tightness and coverage of each method. Once it gets that values, then it

compares them with the threshold values provided by the user. If the values of the metrics

for a method, are less than the corresponding threshold values, then it refactors that method

by calling Binary_Refactoring() algorithm.

Working of Compute_Cohesion Algorithm

The cohesion metrics for a method are computed by calling Compute_Cohesion()

algorithm. The Compute_Cohesion algorithm takes the following as input: the PDG of

the current method, n and the output nodes. It then computes the slices from the PDG by

taking each output node as the slicing criterion. Hence, we get n number of slices which

are stored in an array called List[]. The detailed analysis for all the three methods in the

example program is shown in Table 7.1. Then, the algorithm computes the tightness and

overlap values according to the equations given in Section 7.1. Table 7.2 shows the computed

metrics values for the example program. These values are returned to the callee algorithm,

i.e. Refactoring().
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Table 7.1: Analysis of node-based intraprocedural slices

Method

name

length(no.

of nodes in

PDG)

Output

node

Nodes in the slice List [ ] SLi Intersection

nodes

SLint

calcMetrics 31 40 {14, 30, 16, 17} 4

41 {14, 31, 16, 18, 21, 28, 15, 22, 23} 9

42 {14, 38, 16, 19, 25, 15, 22, 24, 23, 18} 10

43 {14, 39, 16, 20, 27, 15, 22, 26, 23, 18} 10

44 {14, 37, 36, 32, 34, 17, 33, 15, 35, 18} 10 {14} 1

calcOverlap 11 49 {45, 55, 48, 50, 53, 46, 47, 51, 52} 10 All 10

main 11 None 0 0 0 0

Table 7.2: Original Slice-based Metrics calculated for the methods of the example program

given in Figure 7.2

Metrics main() calcMetrics() calcOverlap()

Tightness 1 0.032 1

Coverage 1 0.213 1

Min-Coverage 1 0.129 1

Max-Coverage 1 0.322 1

Overlap 1 0.132 1

Working of Binary_Refactoring Algorithm

Now, after checking the values of cohesion metrics of all methods, we observed that

only calcMetrics() fails to satisfy the threshold values. Hence, it must be refactored. Now,

the Refactoring algorithm calls Binary_Refactoring() algorithm for the method calcMetrics.

Binary_Refactoring algorithm takes the PDG of the method calcMetrics and the number of

output variable nodes (n) as the input and computes the slices of the PDG for the method

calcMetrics.

As the name suggests, this algorithm divides the given method into two parts. According

to this algorithm, we compute the value of m, as the lower bound of n/2. Now, we have to

choose m number of slices, that are having most common nodes. Then, we find the union of

these m slices and store the result in an array ListAspect. Now, we have to create an aspect

using any aspect-oriented programming language. We have used AspectJ for creating the

aspects. Then, within the aspect, we declare an advice after(), that handles the call of the

target method. Initially, advice after() does not contain anything.

Next, we have to identify the codes, in the target method, that are represented by nodes

of ListAspect in the PDG. Move all the codes from the body of the method, into the advice

after(). After the execution of Binary_Refactoring() algorithm, the newly created aspect will

look like the code as shown in Figure 7.5. The code for the modified calcMetrics is shown

in Figure 7.6. We have calculated the slice-based cohesion metrics for the newly created

advice after() and the modified calcMetrics(), as shown in Table 7.3 and found that now all

cohesion metrics values are within the threshold. It completes one iteration of refactoring
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Figure 7.5: The newly created aspect for the method calcMetrics of the example program

given in Figure 7.2, after refactoring

and it repeats again.

Table 7.3: Updated Slice-based Metrics for calcMetrics() and after() after one iteration of

refactoring

Metrics calcMetrics() after()

Tightness 0.04 0.333

Coverage 0.306 0.588

Min-Coverage 0.16 0.588

Max-Coverage 0.4 0.588

Overlap 0.153 0.571

Theorem 7.1. Refactoring algorithm proposed in this thesis is correct and terminates after

finite time.

Proof: The main controlling algorithm in our approach is Refactoring() algorithm

(Algorithm 17). In the proof of the correctness of any algorithm, we must follow the steps

of completeness, finiteness, and correctness. Hence, the proof of our algorithm consists of

three parts. First, we prove that our algorithm is complete, i.e. it covers all the possible cases.

Secondly, we show that our algorithm terminates after a finite number of iterations. Finally,

we prove that the algorithm is correct.

For the proof of completeness of our algorithm, let's assume that the SDG for a given

program is generated and readily available to us. Refactoring() algorithm takes this SDG as

input. All the call edges of SDG are removed, in order to get the PDGs. Suppose, we get p

number of PDGs out of the given SDG after removing all call edges. Each PDG represents

one method in the input program. It means that there are p number of methods in the given

input program. Refactoring algorithm repeats the intended process for p times. It shows

that all the methods present in a given program are handled by our algorithm. Hence, our

proposed refactoring algorithm is complete.
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Figure 7.6: Code for the modified method calcMetrics after refactoring
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Refactoring algorithm itself terminates after p iterations, as shown above. Refactoring

algorithm calls two more algorithms, i.e. Compute_Cohesion() and Binary_Refactoring().

Compute_Cohesion() algorithm does only the calculation of different slice-based cohesion

metrics values, and it terminates after the computation. The other algorithm is

Binary_Refactoring(), which computes the slices of the given PDG and groups them into

two modules. As there are finite number of slices computed by this algorithm, we can assure

that after finite time the Binary_Refactoring() algorithm terminates. As a result the whole

refactoring process terminates after finite execution time.

We prove the correctness of our algorithm by Proof by Cases. In the Refactoring()

algorithm, first we compute the cohesion metrics of a method and then check whether the

method needs refactoring or not. Depending upon the computed cohesion metrics values

of a given method and the input threshold values provided by the user, there can be three

possible cases. Our proposed algorithm handles these three cases as explained below:

Case 1: Threshold > computed cohesion metrics values

According to the main aim of refactoring, the cohesion metrics values for a method

should be less than the standard threshold metrics values. When the given threshold values

are greater than the method's cohesion metrics values, then the method needs refactoring.

In our Refactoring() algorithm, it calls the Binary_Refactoring() algorithm that refactors the

given method. So, this case can be handled correctly by our algorithm.

Case 2: Threshold < computed cohesion metrics values

When the given threshold cohesion metrics values are less than the method's computed

cohesion metrics values, the method remains unchanged. In the proposed Refactoring()

algorithm, the same thing happens. In the algorithm, when it finds that the given threshold

values are less than the method's cohesion metrics values, it does nothing and proceeds for

next iteration.

Case 3: Threshold == computed cohesion metrics values

Any method's cohesion metrics values should be greater than or equal to the threshold

values provided by the user. So, when the given threshold values are equal to the method's

coheson metrics values, then the method needs no refactoring. In the proposed Refactoring()

algorithm, when this situation arises, the algorithm does nothing and the given method

remains as it is.

Form the above cases, it can be deduced that our proposed refactoring algorithm works

correctly in all the possible conditions and hence, the algorithm is correct. This proves the

Theorem. �

7.3 Implementation and Results

In this section, we explain the implementation of our proposed algorithm. For

implementation of our technique, we have developed a tool named JSlicer for the
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construction of SDG of Java programs and to compute the slices. The basic part of the

tool is based on a Java SDG generation API, that is an open source API. This API generates

SDG according to the representation proposed by [111]. Our tool analyses the byte-code of

the class file and produces the SDG for the given program.

We have applied our proposed refactoring technique on some benchmark open-source

Java projects to evaluate the effectiveness of our approach. For our study, we have taken

11 open source Java projects 1, whose size ranges from 100 to 1000 lines of code. In the

study, the values of cohesion metrics for 651 methods are calculated. A total of 5000 lines

of code are analysed. The details of the case study projects are given in Table 7.4. Table 7.4

shows the project name, Lines of Code (LOC), number of classes and methods present in a

particular project, number of slicing criteria considered for refactoring, average size of the

slices computed, and average slice computation time.

Table 7.4: Details of the case study projects

Sl. No. Project Name LOC No. of

Classes

No. of

Methods

No. of

Slicing

Criteria

considered

Avg. Slice

Size

Avg. Slice

Computation

Time (in ms)

1 Alarm Clock 125 6 20 12 7.44 3.08

2 Binary Search Tree 130 4 23 6 12.37 5.25

3 Cruise Control 261 4 32 17 9.10 2.61

4 Groovy 361 2 34 14 5.91 2.79

5 Daisy 883 22 106 28 17.33 4.05

6 Deos 838 24 133 15 10.07 3.18

7 Double Linked List 277 1 32 6 15.14 2.85

8 Elevator-3 934 12 97 11 7.29 2.10

9 Lang 990 4 101 21 24.51 6.39

10 Vector 254 1 49 7 15.45 4.98

11 Red Black Tree-2 334 1 24 8 6.02 3.27

Results

We have calculated the values of cohesion metrics of all 651 methods. It is very difficult to

display all 651 method's cohesion metrics values, hence we have shown only the average

1http://sir.unl.edu/portal/index.php

Table 7.5: Details of change in cohesion metrics due to refactoring

Sl. No. Project Name
Tightness Coverage Max-coverage Min-coverage Overlap

before after before after before after before after before after

1 Alarm Clock 0.44 0.51 0.66 0.73 0.66 0.69 0.55 0.61 0.61 0.69

2 BST 0.66 0.73 0.75 0.76 0.83 0.85 0.66 0.71 0.75 0.78

3 Cruise Control 0.25 0.32 0.53 0.63 0.625 0.73 0.44 0.53 0.531 0.68

4 Groovy 0.42 0.53 0.66 0.69 0.83 0.83 0.5 0.63 0.66 0.71

5 Daisy 0.57 0.66 0.71 0.73 0.71 0.76 0.71 0.76 0.71 0.76

6 Deos 0.5 0.66 0.75 0.77 0.83 0.85 0.66 0.7 0.74 0.78

7 Double Linked List 0.333 0.52 0.66 0.68 0.666 0.69 0.66 0.73 0.666 0.69

8 Elevator-3 0.07 0.12 0.2 0.38 0.28 0.36 0.1 0.38 0.21 0.46

9 Lang 0.11 0.32 0.37 0.46 0.27 0.39 0.44 0.52 0.37 0.67

10 Vector 0.19 0.35 0.34 0.44 0.35 0.42 0.32 0.47 0.34 0.58

11 Red Black Tree-2 0.26 0.47 0.47 0.58 0.52 0.63 0.42 0.57 0.47 0.684
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(a) Comparison of Tightness values

(b) Comparison of Coverage values

(c) Comparison of Max-Coverage values

(d) Comparison of Min-Coverage values

(e) Comparison of slice Overlap values

Figure 7.7: Effect of refactoring on Slice-based Metrics
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metrics value of the overall project, in Table 7.5. In our study, we considered only that

methods for refactoring whose tightness and overlap values are less than the threshold

values. On that selected methods, we have applied our proposed refactoring algorithm.

After refactoring, we got the modified methods and we have again calculated their cohesion

metrics. We found that the values of the cohesion metrics of all the methods have increased,

as shown in Table 7.5. The effect of refactoring on tightness, coverage, max-coverage,

min-coverage and overlap are also shown in Figure 7.7 (a)-(e). From Figure 7.7(a), it can

be observed that there is 56.39% (approx.) increase in Tightness after refactoring takes

place. Similarly, Figures 7.7(b)-7.7(e) show that there is 13.47% increase in Coverage,

19.48% increase in Max-Coverage, 0.6% increase in Min-Coverage, and 35.3% increase in

Overlap after refactoring. From these plots, we clearly observe that, we achieve significant

improvement in the values of cohesion metrics by applying our proposed refactoring

approach.

The results from this study from the chapter's three main contributions:

• First, the result of our study indicates that refactoring of methods improves overall

quality of the project.

• Second, slice-based cohesion metrics are very effective in quantifying the

cohesiveness of the methods, for code refactoring.

• Finally, this study shows that cohesion of a method increases by refactoring it.

7.3.1 Refactoring Impact Analysis

We have conducted experiments with EclEmma plug-in for Eclipse to check the effect of

our proposed refactoring technique on the behavior of the case study projects. EclEmma

is an open source code coverage analysis tool that comes as an Eclipse plug-in. For any

Java application executed in Eclipse, EclEmma collects coverage data and automatically

calculates code coverage percentage as soon as the application terminates. EclEmma

analyses each class and method of a project during its execution. We have used EclEmma

plug-in for eclipse to show the effect of our proposed refactoring technique on execution

of overall project. We have first designed some JUnit test suit for each case study project.

Before applying the proposed refactoring technique, we have noted the code coverage of

each case study project. Then, we applied our proposed refactoring technique on each

of the project and again calculated the code coverage percentage of each project. The

findings of our testing is provided in Table 7.6. Table 7.6 contains the name of projects,

EclEmma code coverage percentage before and after refactoring, and finally the percentage

of change in code coverage. We found that, there is negligible change in the code coverage

percentage in each of the case study projects ranging from 0.02% to 3.43%. It shows that

our refactoring technique only changes the structure of programs, and does not affect their
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original functionality. The increase in code coverage percentage is due to the fact that, during

refactoring we are dividing one method into two methods and some statements are added as

the header of newly created method. When the test cases are applied on the module after

refactoring, then more number of program statements will be executed. Hence, there is an

increase in code coverage percentage after refactoring of a software.

Figure 7.8: Screen shot of EMMA coverage analyzer

7.3.2 Threats to validity

In this section, we present some of the threats to the validity of our proposed approach.

1. We have considered method return and print statements as output variables. We have

not considered all types of Output variables during the slicing criterion selection of

our experiment. We believe that our refactoring approach will produce similar results

even after altering the type of output variable.

2. Our proposed technique is developed by keeping in view Java and AspectJ

programming languages. We have not tested our technique with other languages.

However, we belive that our algorithm may work fine for C++ and AspectC++ after

making suitable changes in the SDG construction, considering the relevant features of

C++ and AspcetC++.
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Table 7.6: Impact of refactoring on code coverage

Sl. No. Project Name Percentage of

code coverage

before

refactoring

Percentage

of code

coverage after

refactoring

Percentage

of change

in code

coverage

1 Alarm Clock 69.2 71.5 3.32

2 Binary Search Tree 87.5 88.7 1.37

3 Cruise Control 66.6 66.9 0.45

4 Groovy 46.5 47.2 1.50

5 Daisy 40.7 42.1 3.43

6 Deos 24.3 24.8 2.05

7 Double Linked List 74.6 74.9 0.40

8 Elevator-3 21.4 22.0 2.80

9 Lang 30.1 30.8 2.32

10 Vector 67.8 69.0 1.76

11 Red Black Tree-2 76.7 76.9 0.02

7.4 Comparison with related work

Many work is done in the field of Software refactoring [31]. Wang et al. [112] have

developed a tool called SEGMENT to insert blank line in program to increase readability

of that program. But, the internal structure and complexity of the program is not changing.

Bavota et al. [86] have proposed a refactoring approach for complex class. They have used

semantic analysis to identify the relationship between method and class. But, they have not

developed any fully automated tool, that can automatically perform refactoring based on

some predefined formula. We have used the slice based cohesion metrics to quantify the

formula for fully automate our proposed refactoring approach.

Monteiro et al. [88] have developed an approach to convert OOPs into AOPs. They

have used 17 existing refactoring techniques to find the crosscutting concern from a given

object-oriented program and then move the crosscutting concern to an aspect. But, they have

not proposed any new type of refactoring technique. Sward et al. [89] have proposed that

some software metrics such as cohesion, coupling, cyclomatic complexity etc. can be used

in refactoring to improve the quality of software. They have considered some fixed example

and perform refactoring to show that it reduces complexity. They have not implemented their

proposed approach. We have developed a tool that perform refactoring of a given program.

7.5 Summary

In this chapter, we presented a technique for code refactoring using slice-based cohesion

metrics and AOP. We clearly mentioned the cohesion metrics benchmark values, that should
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be satisfied for refactoring. We presented a detailed process for refactoring a given program.

To explain our proposed technique, we considered an example Java program. In order to

verify the working of our refactoring approach, we considered 11 open-source Java projects.

We have observed that the increase in Tightness is 56.39% and increase in Coverage is

13.47% after refactoring.
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Conclusions

The primary aim of our work was to develop efficient dynamic slicing algorithms for

aspect-oriented programs. In the following, we summarize the important contributions of

our work. Finally, some suggestions for future work are given.

8.1 Contributions

In this section, we summarize the important contributions of our work. There are four

important contributions, Slicing of Aspect-Oriented Programs, Context-Sensitive Slicing

of Concurrent Aspect-Oriented Programs, Parallel Context-Sensitive Dynamic Slicing of

Distributed Aspect-Oriented Programs, and Software Refactoring using Program Slicing.

8.1.1 Slicing of Aspect-Oriented Programs

We first developed an intermediate representation for representing simple Aspect-Oriented

Programs . We have named this intermediate representation Extended Aspect-Oriented

System Dependence Graph (EAOSDG). We statically construct EAOSDG only once before

the program starts execution. Then, we present three dynamic slicing algorithms for

aspect-oriented programs. The first one is the Pointcut- Table (PT) slicing algorithm, second

one is Extended Two-Phase slicing algorithm and the third one is the Context-Sensitive

(CS) slicing algorithm. We have developed a prototype tool for automatic generation

and computation of slices for given AOP. We want to compare our three proposed slicing

algorithms and therefore we have preform seven case studies. From the experiment we

found that, CS slicing algorithm computes more precise slices in comparison to rest two

algorithms. Also, CS slicing algorithm takes significant little computation time to generate

slices in contrast with other two slicing algorithms.

8.1.2 Context-Sensitive Slicing of Concurrent Aspect-Oriented

Programs

Due to the presence of inter-thread synchronization and communication, some control and

data flows occurring in the threads of a Java program, are interdependent. To be able

to capture this aspect, we have proposed an intermediate graph named as Multithreaded
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Aspect-Oriented Dependence Graph (MAODG). Having introduced MAODG as an

intermediate representation for concurrent aspect-oriented programs, we presented a

dynamic slicing algorithm for concurrent aspect-oriented programs. We named this

algorithm Context-Sensitive Concurrent Aspect (CSCA) slicing algorithm for concurrent

aspect-oriented programs. The CSCA slicing algorithm uses MAODG as the intermediate

representation and is based on preserving call-site using three stacks maintained for

context-sensitivity. We have shown that CSCA slicing algorithm computes correct dynamic

slices with respect to any slicing criterion. We have developed a slicing tool to verify the

correctness and preciseness of our MBDS algorithm. Using five open source case study

project, we have compared our proposed slicing algorithm with Context-Insensitive slicing

algorithm and Ray et al. [14] slicing algorithm. The results obtained from this tool shows

that our CSCA slicing algorithm performs much batter than rest two algorithms.

8.1.3 Parallel Context-Sensitive Dynamic Slicing of Distributed

Aspect-Oriented Programs

In distributed aspect-oriented programs, each component program might communicate

with another, by using sockets. Our MAODG representation can not model this type of

communication. In order to represent this type of communication dependency, we have

modified our MAODG. We introduce the notion of R-node to represent communication

among component programs by using sockets. We call the modified intermediate

representation Distributed Aspect Dependence Graph (DADG). We extended our CSCA

slicing algorithm for dynamic slicing of distributed aspect-oriented programs. We named

our algorithm Parallel Context-Sensitive Dynamic Slicing (PCDS) algorithm for distributed

aspect-oriented programs. To achieve fast response time, our PCDS algorithm can run in

a parallel manner, rather than running sequentially as in CSCA slicing algorithm. We have

shown that PCDS algorithm computes correct dynamic slices with respect to any slicing

criterion. We presented seven case studies of open source projects. We have implemented

our approach, the PADS algorithm proposed by Ray et al. [13] and the CGCA proposed by

Barpanda et al. [82]. The advantage of our algorithms is that when a request for a slice is

made, it is running as parallel process. This results in substantial reduction in the response

time for slice extraction.

8.1.4 Software Refactoring using Program Slicing

Software restructuring is essential for maintaining software quality. It is a usual practice that

we first design the software and then go for coding. After coding, if there is any change in

the requirement or if the output is incorrect, then we have to modify the code again. For each

small code modification, it is not feasible to alter the design. These minor changes made to

the code causes decay in the software design. Software refactoring is used to restructure the
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code to improve the design and quality of the software. We have proposed an approach for

performing code refactoring. We have used slice-based cohesionmetrics to identify the target

methods that require refactoring. After identifying the target methods, we used program

slicing to divide the target method into two parts. Finally, we have used the concept of

aspects to alter the code structure in a manner that does not change the external behavior of

the original module.

8.2 Future Work

In brief, we outline the following possible extensions to our work.

• Though we have developed our approach for AspectJ language, it can easily be

extended for computing dynamic slices of any other aspect-oriented languages such

as AspectWerkz, JMangler, Hyper/J, MixJuice, PROSE, ArchJava and JAC because

these frameworks support AOP with Java.

• In our work, we have not considered the synchronized inter-process communication

methods such as wait(), notify() and notifyAll() while computing dynamic slices

of concurrent aspect-oriented programs. Our work can be extended to handle the

synchronized methods by developing a suitable framework.

• In our work we have not considered composite data types such as arrays while

computing dynamic slices of Concurrent aspect-oriented programs. Our work can

be extended to handle composite data types by developing a suitable framework.

• In our work, we have showcased only one application of program slicing, i.e. Software

Refactoring. There are several other applications of program slicing such as Test Case

generation, Unit Testing, Reverse Engineering, automatic bug detection etc. There

require more research works in such fields.
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