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Abstract 

 This thesis deals with the role of microRNA (miRNA) regulating other 

epigenetic modifiers like DNA methyltransferase 1 (DNMT1), and histone 

methyltransferase myeloid/lymphoid or mixed-lineage leukaemia (MLL1) also known as 

Histone-lysine N-methyltransferase 2A. It also divulges the reason for aberrant expression 

of miRNAs (miR-152, miR-148a, and miR-193a) in breast and prostate cancer.  

 Silencing of the miR-152 gene due to promoter DNA methylation alter the 

expression pattern of several other genes. E-cadherin (CDH1) forms the core of adherent 

junctions between surrounding epithelial cells, link with the actin cytoskeleton and affects 

cell signalling. CDH1 gene is downregulated by promoter DNA methylation during 

cancer progression. In this investigation, we attempt to elucidate the correlation of miR-

152 and CDH1 function, as it is well known that the loss of CDH1 function is one of the 

primary reasons for cancer metastasis and aggressiveness of spreading. For the first time 

here it has been shown that loss of CDH1 expression is directly proportional to the loss of 

miR-152 function in breast cancer cells. mRNA and protein expression profile of DNMT1 

implicate that miR-152 targets DNMT1 mRNA and inhibits its protein expression. 

Tracing the molecular marks on DNA and histone 3 for understanding the mechanism of 

gene regulation by ChIP analyses leads to a paradoxical result that shows DNA 

methylation adjacent to active histone marking (enrichment of H3K4me3) silence miR-

152 gene. 

 This thesis also demonstrated that miR-148a remains downregulated in 

hormone-refractory prostate cancer compared to other healthy cells and its upregulation 

induce apoptosis in hormone-refractory and metastatic prostate cancer cells. Here for the 

first time, it was analyzed the role of miR-148a in the regulation of DNMT1 in prostate 

cancer cells. The ectopic expression of miR-148a shows a noticeable amount of 

programmed cell death and repression of cancer cell proliferation.  It also revealed the 

silencing of miR-148a in prostate cancer cells was done by DNMT1. This finding gives a 

new avenue to targeting prostate cancer cells and proved the role of miR-148a as a 

therapeutic. 



 

vii 
 

Moreover, other experiments also demonstrate the regulation of MLL1 by miR-193a.  

MiR-193a has been downregulated in prostate cancer by DNA methylation and help in 

MLL1 overexpression during prostate cancer progression. Most importantly it was found 

by inhibiting MLL1 it changes the global H3K4 methylation pattern increasing the mono-

methylation and decreasing trimethylation at H3K4 positions. H3K4 trimethylation is an 

active gene mark present in various oncogenes during cancer progression. By inhibiting 

H3K4, tri-methylation cancer progression can be repressed. Ectopic expression of miR-

193a results in cell death, inhibition of cellular migration, and anchorage-independent 

growth of cancer cells. 

 All together this thesis supports that miR-152, miR-148a, and miR-193a are 

regulated by DNA methylation, and they affect the expression of the various epigenetic 

modifiers. Hence these can be targeted for therapeutic intervention for breast and prostate 

cancer. 

 

 

Keywords: miRNA, miR-152, miR-148a, miR-193a, DNA methylation, DNMT1, E-

Cadherin, MLL1, Breast cancer, Prostate cancer, Apoptosis  
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1 Introduction 

In the last decade the term ‘epigenetics’ attracted much attention among 

researchers and scientists to unravel the clues hidden in the gene expression without 

changing the sequence of DNA. Epigenetics is a molecular mechanism which governs the 

expression of genes and converts genetic information to phenotypic expression. Although 

each cell inherites same genetic code yet the expression of genes are regulated by their 

‘epigenetics landscape’; the term which was coined by Conrad Hal Waddington [1, 2]. In 

many cases, epigenetic traits remain preserved through mitosis or even meiosis without 

altering the primary DNA sequence. Epigenetic marks not only regulate gene expression 

in a cell but also carry the heritable traits. Recent discoveries have helped us to 

understand the role of epigenetic modification as a contributor in the development of 

different lethal diseases including cancer. The covalent modification in cytosine base of 

DNA and modifications of histones change the nucleosome dynamics which forms the 

driving factors for epigenetic modifications. MicroRNA (miRNA) expression is also 

regulated by these modifications, and it can also act as an epigenetic modifier.  They 

together control cellular processes like DNA-protein interactions, cellular differentiation, 

embryogenesis, X-chromosome inactivation, genomic imprinting, and suppression of 

transposable element mobility. Methylation of cytosine base in the 5-carbone position of 

DNA is the most common phenomenon of gene regulation which was first discovered in 

calf thymus DNA in 1948 by Hotchkiss [3]. DNA methylation takes place in adenine and 

cytosine bases and recognized by the host restriction system to identify self and non-self 

DNA in prokaryotes. It also helps the DNA repair machineries to identify the mother 

strand during replication. But in eukaryotes, the methylation occurs only in cytosine 

residue and act as a repressive mark followed by transcriptional repression and silent 

chromatin formation [4, 5].  Eukaryotic DNA is organized into chromatin, which folds the 

genetic information that is essentially an array of nucleosomes or histone cores. The 

nucleosome is the fundamental and repeating unit of chromatin that is composed of 

repeated units of ∼147 bp of DNA wrapped around histone octamers consisting of two 

copies of each histone H2A, H2B, H3, and H4, which provides flexibility to the DNA and 

keeps it in a compact form.  In eukaryotes, the histone fold domain (HFD) [6] of each 

histone protein helps it to dimerize and help in pairs formation of H3 with H4 and H2A 

with H2B [7-10]. The linker histone (H1) binds to the linker DNA to stabilize the folding 

of the chromatin fiber and also seals the DNA turns at the nucleosome DNA entry/exit 

points [11]. miRNAs are a group of small non-coding RNAs (ncRNAs) of about 19–25 
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nucleotides (nt) in length that constitute an integral part of the post-transcriptional gene 

expression. miRNAs act as a binary switch for gene silencing by inhibiting translation 

and/or triggering degradation of their target mRNAs. The emerging role of miRNAs in 

different biological functions includes embryogenesis, developmental pattern formation, 

and apoptosis [12-14] . For example, brain development, including patterning, 

neurogenesis, neuronal differentiation, subtype specification, and neuronal activity is 

scripted via miRNAs. Furthermore, miRNAs are reported to be involved in many dreadful 

diseases, including cancer [15-19]. 

In multicellular organisms, epigenetic marks are transmitted to offspring because 

it generates multiple phenotypes from the same genotype [20-22] . The importance of 

epigenetic mark was understood when the incorrect mark was observed in diseased cells. 

For an example, DNA hypomethylation in p16INK4a, p14ARF, and MGMT genes was 

found in the early stage of tumorigenesis [23, 24]. 

 

1.1 Epigenetic modulation and modulating machineries 

For understanding the regulation of genes by epigenetic modification, they can be 

divided into three categories: DNA methylation, histone modification, and small RNA 

regulation. The combined effect of these factors is the regulatory system for gene 

expression.  

1.1.1 DNA methylation 

DNA methylation reaction is catalyzed by DNA methyltransferase enzymes 

known as DNMTs. The DNMT family mainly consist of three active enzymes DNMT1 

(maintenance methyltransferase), DNMT3A and DNMT3B (de-novo methyltransferase). 

It methylated cytosine residue in the presence of cofactor SAM (S-Adenosyl methionine), 

which donates the –CH3 group and gets converted to SAH (S-Adenosyl homocysteine) 

[24]. Methylation mostly occurs in CpG dinucleotide rich region of DNA. This cluster of 

CpG dinucleotides is defined as CpG islands which contain at least 50% GC contain in a 

region of 200 bases. Human gene promoters consist of 60% of CpG islands which are 

usually unmethylated in normal cells but become methylated in a tissue-specific manner 

during early development or in differentiated tissues [25]. CpG island methylation, in 

general, is related to gene silencing. It also plays a key role in the genomic imprint, X 

chromosome inactivation. Methyl-CpG-binding domain (MBD) proteins recognize 

methylated DNA region and facilitate the recruitment of histone modifiers and chromatin-

remodeling complexes that establish repressive histone marks, such as H3K27me3, 
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H3K9me3, etc. [26]. Moreover, DNA methylation also prevents binding of DNA binding 

proteins at their target sites and inhibits transcription. In contrast, unmethylated DNA 

CpG island is associated with active gene transcription. Unmethylated CpG promotes 

Cfp1/ Setd1 mediated H3K4 trimethylation (H3K4me3) enrichment which turns on the 

transcription process. Apart from CpG island DNA methylation also occurs in the CpG 

shore (close proximity, near about ~2 kb, of CpG islands) and gene body. A recent study 

explains that in CpG island shores, methylation is tightly associated with transcriptional 

inactivation of different genes such as Caveolin1 (CAV1) [27]. DNA methylation also 

plays a key role in chromosomal integrity. A significant fraction of methylation is found 

in repetitive elements which prevent reactivation of endoparasitic sequences, causes 

chromosomal instability, translocation and gene disruption [24]. Methylation on non-CpG 

has been described   in stem cells, and it was enriched in gene bodies which are directly 

correlated with gene expression and depleted in protein binding sites and enhancers [28]. 

The non-CpG methylation decreases during differentiation but again restored in induced 

pluripotent stem cells which suggest it plays a key role in origin and maintenance of 

pluripotency state of cells [28, 29]. In addition to 5-methylcytosines, 5-hydroxymethyl-2′-

deoxycytidine has also been observed in Purkinje cells (constituting 0.6% of total 

nucleotides) and in granule cells (constituting 0.2% of total nucleotides) but it is absent in 

present cancer cell lines. These newly identified DNA modifications are now being 

studied for their implication in healthy and diseased epigenetic regulation. 

1.1.1.1 DNA methyltransferases  

In mammalian system five members of DNMT family have been reported: 

DNMT1, DNMT2, DNMT3a, DNMT3b, and DNMT3L, but only DNMT1, DNMT3a, 

and DNMT3b have methyltransferase activity. 

DNMT1: 

DNMT1, the maintenance methyltransferase is essentially integral to the DNA 

methylation machinery as it accomplishes the majority of methylation copying to ensure 

that hemimethylated daughter strands in differentiated somatic cells faithfully maintain 

and propagate the proper DNA methylation pattern across successive cell generations 

[30]. DNMT1 is the first mammalian DNA methyltransferase enzyme to be cloned and 

biochemically characterized [31]. DNMT1 exhibits optimal methyltransferase activity on 

hemimethylated DNA rather than unmethylated DNA and localizes at the DNA 

replication foci during the S phase, properties that make it suitable for maintenance 

methylation. DNMT1 enzyme comprises a large N-terminal domain with regulatory 
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function and a smaller C-terminal catalytic domain. The regulatory domain harbors 

different motifs, like a charge-rich domain that interacts with the Dmap1 transcriptional 

repressor; a nuclear localization signal, a PCNA (proliferating cell nuclear antigen) 

interacting domain, replication foci targeting region and a cysteine-rich Zn
2+

 binding 

domain of the CXXC type. The C-terminal domain of DNMT1 contains all the conserved 

motifs characteristic for cytosine-C5-MTases and harbors the active center of the enzyme. 

The C- and N-termini are connected via a lysine-glycine repeat hinge region [32, 33]. 

DNMT1 is regulated by a number of intrinsic and extrinsic control points such as 

allosteric modulation, post-translational modifications, auto-inhibitory restraints, etc. 

which ensure dynamic stability and functional competence of the enzyme [34, 35]. The 

enzyme is focused to specific genomic loci in a cell-dependent manner, and its enzymatic 

activity is tightly controlled on accomplishing its duty as a transcriptional repressor [36]. 

DNMT1 plays a unique central role during embryogenesis for epigenetic reprogramming 

of germ-line and zygotic lineages. 

DNMT3A and DNMT3B: 

The DNMT3 family consists of DNMT3A and DNMT3B, which are highly 

related to one another with amino acid sequence and structural similarity but encoded by 

separate genes. Both proteins transfer methyl groups to hemimethylated and unmethylated 

substrates at equal rates and without evidence of intrinsic sequence specificity beyond the 

CpG dinucleotide; DNMT3A has also been reported to methylate CpA sites [31]. 

DNMT3A and DNMT3B are highly expressed in embryonic tissues and undifferentiated 

ES cells and down-regulated in differentiated cells. Similar to DNMT1, both DNMT3A 

and DNMT3B are indispensable for embryonic  development in mice [37]. Point 

mutations in human DNMT3B are responsible for the rare autosomal recessive human 

disorder known as ICF (immunodeficiency, centromere instability, and facial anomalies) 

syndrome. The general architecture of both DNMT3 enzymes resembles DNMT1; each 

possesses an N-terminal regulatory part and a C-terminal catalytic part harboring all the 

conserved C5 DNA MTase motifs. However, the N-terminal parts of DNMT1 and 

DNMT3A/3B are unrelated. In DNMT3A and DNMT3B this section contains two 

defined domains: a cysteine-rich region called the ADD (ATRX-DNMT3-DNMT3L) 

domain, also known as the PHD (plant homeodomain) domain, and a PWWP domain. 

The catalytic domains of DNMT3A and DNMT3B share approximately 85% sequence 

similarity and in contrast to the catalytic domain of DNMT1, are enzymatically active in 

their isolated form [38]. DNMT3A and DNMT3B mediate de novo methylation where 
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new methyl marks are added to previously unmethylated cytosine around the time of 

implantation and are maintained throughout the lifespan of the organism. During the 

development of the germ cells, another round of de novo methylation occurs, and the 

methylation imprints are established in a gender-specific manner [39].  

DNMT2: 

DNMT2 is a relatively small protein of 391 amino acids and lacks the large N-

terminal domains present in DNMT1 and DNMT3 families. DNMT2 is the most widely 

conserved DNMT protein with close homologs in plants, insects, 

and Schizosaccharomyces pombe, but there are no reports on the genomic sequence found 

in the genomes of Saccharomyces cerevisiae or Caenorhabditis elegans [40]. DNMT2 

contains all 10 sequence motifs that are conserved among m
5
C methyltransferases, 

including the consensus S-adenosyl-L-methionine-binding motifs and the active site 

ProCys dipeptide. The conservation of the catalytic (cytosine-5) DNA methyltransferase 

motifs strongly suggests a DNA methyltransferase activity; however, no catalytic DNA 

methyltransferase activity could be detected for this protein, which was attributed to the 

insertion of a serine residue into a critical proline-cysteine dipeptide that is essential for 

DNA methyltransferase activity in other enzymes. The possibility that DNMT2 may have 

additional enzymatic activities has now been confirmed experimentally proving that 

DNMT2 is a highly specific RNA methyltransferase (cytosine 38 of transfer RNA
Asp

) 

rather than a DNA methyltransferase. In fact, DNMT2 utilizes a DNA methyltransferase 

mechanism for RNA methylation [41-43]. DNMT2 is involved in genomic stability, 

organ development, metabolic processes, and aging via indirect regulation of metabolic 

pathways through RNA methylation. Recently, it has been shown that Dnmt2-mediated 

tRNA methylation interfere with stress-induced tRNA fragmentation, which suggested 

roles for DNMT2 during cellular stress responses [44]. 

 

1.1.2 Histone core complex 

The histone proteins are major elements in the chromatin core complex. 

Depending on the modifications in the histone proteins chromatin forms euchromatin or 

active form and heterochromatin or the silent form of chromatin. With the help of linker 

histones or heterochromatin associated-proteins, nucleosomes are arranged into a 

diameter of 30 nm compact fibers and high-ordered assemblies whose mechanism and 

structures are poorly understood. The hierarchical structure of nucleosome is a stable 

fundamental construction capable of expression and repression of genes by regulating the 
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activities of enzymes that requires direct access to the DNA template thereby regulating 

DNA replication, transcription, and translation that forms the primary foundation of a 

cellular function. Depending on cell condition and stage along with DNA methylation of 

its cytosine bases within CpG repeats, histones are subject to numerous modifications in 

their random coil N-terminal tails, and to a lesser extent within their C-terminal tails and 

globular domain that determine the access of different enzymes to the DNA template for 

multiple operation like replication, repair and transcription. 

 

1.1.2.1 Histone modifiers 

Establishment and deletion of H3K4 methyl mark are involved in euchromatin and 

heterochromatin rearrangement and formation. Histone modifying enzymes catalyze the 

accumulation or elimination of an array of covalent modifications of histones and non-

histone proteins. The expression of these two subclasses of enzymes is regulated by 

different signals at the various stages of cell development and also in disease states 

including cancer [45].  

In 1996, two groups first reported the histone modifying enzymes that have 

sequence homology to previously identified transcriptional regulators in Saccharomyces 

cerevisiae. Applying affinity chromatography, Schreiber, and colleagues isolated a 

mammalian histone deacetylase (HDAC) that harbors 60% of sequence identity with the 

yeast transcriptional repressor Rpd3 [46]. After that, different histone modifying enzyme 

were identified in human, including kinases [47, 48], lysine and arginine-specific 

methyltransferases [49] arginine deiminases [50, 51], ubiquitinases [52], deubiquitinases 

[53], and lysine- and arginine-specific demethylases [45, 54], etc. Till now 10 different 

types of reaction has been identified which are catalyzed by histone modifying enzymes 

including acetylation (hKAT1/5/7/8, hKAT2A/B, hKAT3A/B, hKAT6A/B, hKAT10/12), 

deacetylation (SIRT2, Sp Sir2), methylation (hKMT1A/B/C/D/E/F, 

hKMT2A/B/C/D/E/F/G/H, hKMT3A/B/C, hKMT4/6/7/8), demethylation (hKDM1 

hKDM2A/B, hKDM3A/B, hKDM4A/B/C/D, hKDM5A/B/C/D), deimination (PADI4), 

Proline Isomerization (Sc FPR4), phosphorylation (AuroraB, MSK1/2, HALPIN, CKII, 

MST1), ubiquitination (RNF20/RNF40, Bmi/Ring1A), ADP-ribosylation (poly-ADP-

ribose polymerase (PARP) , Sumoylation [55]. Acetylation of histone is a highly dynamic 

process that is regulated by the different action of two enzyme families, histone 

acetyltransferases (HATs) and histone deacetylases (HDACs). Using acetyl-CoA as 

cofactor HATs catalyze the transfer of an acetyl group to the ε-amino group of lysine and 
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neutralize the positive charge of Lysine that potentially weakens the interactions between 

histones and DNA. Till now two major classes of HATs has been recognized: type-A, 

normally associated with modifying histones that are incorporated into chromatin and 

located in the nucleus and type-B, predominantly cytoplasmic and acetylating free 

histones in the cytoplasm [56]. An HDAC enzyme reverses the lysine acetylation and 

restores the positive charge of the lysine. There are four classes of HDAC including class-

I (HDAC1, -2, -3 and -8), class-II (HDAC4, -5, -6, -7, -9 and -10), class-III (SIRT1–7), 

and class-IV (HDAC11) and mostly associated with gene repression [57]. There are two 

type of methyltransferase enzymes including histone lysine methyltransferase (HKMT) 

and protein arginine methyltransferase (PRMT). All methyltransferases catalyzed the 

transfer of a methyl group from S-adenosylmethionine (SAM) to a lysine's ε-amino group 

(in the case of HKMTs) and to a ω-guanidino group of arginine (in the case of PRMT) 

and facilitates differential function in the different cellular state [49, 58]. For example, 

Trithorax group (TrxG) family facilitate H3K4 methylation and NSD (Nuclear receptor 

SET-Domain) arbitrate H3K36 methylation that turn on gene expression. In contrast, 

polycomb group (PcG) members are associated with H3K27 methylation and H3K9 HMT 

mediated H3K9 methylation are usually allied with gene repression [59, 60].  Two main 

families of histone demethylases, the amine oxidases (utilize FAD as a cofactor) 

containing lysine-specific demethylase 1 (LSD1 or KDM1A) [61] and iron-dependent 

dioxygenases (using Fe(II) and α-ketoglutarate as co-factors) containing Jumonji C 

(JmjC)-domain, erase methylation marks [62, 63]. Every demethylase has their different 

action which is related to very specific methylation marks; for example, H3K4 –

monomethylation removed by KDM1A or LSD1, KDM1B, KDM5A, NO66; 

dimethylation  removed by KDM1A or LSD1, KDM1B, KDM5A, KDM5B, KDM5C, 

KDM5D and NO66; and  trimethylation removed by KDM2B, KDM5A, KDM5B, 

KDM5C, KDM5D and NO66 [64]. KMT and KDM proteins partly distinguish between 

the different methylation states, mono-, di- and tri-methylation for lysine and mono-, 

symmetrical and asymmetrical dimethylation for arginine residues. After recognition, 

they finally lead to recruitment of other proteins such as phosphorylated RNA polymerase 

II, which link individual histone marks to a specific output [65]. 

Histone phosphorylation is highly dynamic, and it takes place on serine, threonine, 

and tyrosine bases usually but not entirely, in the N-terminal histone tails. Till now very 

few histone kinases are known, and all of them transfer a phosphate group from ATP to 

the hydroxyl group of the target amino acid side chain. Their mode of action and their 
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recruitment to histone core is still not clear but this additional negative charge of 

phosphate group influence the separation of histone and DNA that leads to DNA-binding 

transcription factors recruitment and gene expression [66, 67]. Apart from these 

significant modifications which are mostly known and studied, very little is known about 

other types of modifications such as deamination, ADP-ribosylation, ubiquitylation and 

sumoylation which are also related to histone modification associated gene expression. 

Deamination is the process of conversion of an arginine to a citrulline group which 

neutralizes the positive charge of the arginine. Histones are mono- and poly-ADP-

ribosylated on glutamate and arginine residues and usually associated with positive 

regulation of gene expression [68]. During ubiquitylation, ubiquitin (a 76-amino acid 

polypeptide) is attached to histone lysines via the sequential action of three different 

enzymes, E1-activating, E2-conjugating, and E3-ligating [66, 69]. Sumoylation is quite 

related to ubiquitylation and also involves the covalent attachment of ubiquitin-like small 

molecules to histone lysines via the action of similar enzymes E1, E2, and E3 [70, 71].  

Mutations in the different genes of respective enzyme are associated with the 

development and progression of various cancers. For example, somatic mutation of 

Lysine acetyltransferase (KAT), p300 to diffuse large B-cell lymphoma and transitional 

cell carcinoma of the bladder [72-74] Somatic mutation in CBP (KAT) is associated with 

relapsed acute lymphoblastic leukaemia, diffuse large B-cell lymphoma and transitional 

cell carcinoma of the bladder [75]. Not only KAT but also a somatic mutation in Lysine 

methyltransferase, MLL2, NSD2, GLP helps in Non-Hodgkin lymphoma, 

medulloblastoma, Multiple myelomas, Medulloblastoma and ganglioglioma development 

respectively [76-79]. Abnormal JARID1C (Lysine demethylase) function due to somatic 

mutation is correlated with renal cell carcinoma progression [80].  

 

1.1.2.2 Histone tail modification and cellular function 

The histone core itself is not enough to uphold the regulation pattern of chromatin. 

Mainly chromatin remodeler mediated histone tails modifications are the main driver of 

histone core arbitrate gene regulation. The cell contains various chromatin remodeling 

activities that can modify histones or move nucleosomes [11]. From birth to death a cell 

pass through large genetic expression profile which is regulated by DNA and histone 

modifications. There are two types of chromatin in the genome, silent heterochromatin, 

and active euchromatin. Each of these chromatin patterns associates with a various set of 

chromatin marks, tagged on DNA and histones where miRNAs also participate  
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During the early stages of embryo development in mammals, changes occur in 

genome-wide DNA methylation and histone modification patterns. During embryo 

development Trithorax group (TrxG) and Polycomb group (PcG) proteins animatedly 

regulate Hox genes expression, which is involved in transcriptional regulation that 

maintains cell proliferation and differentiation in the stem and progenitor cells [81]. Often 

dysregulation of  TrxG, and/or PcG activity leads to aberrant Hox gene expression 

patterns in cancer [82]. CARM1 (also known as PRMT4), a histone H3 arginine (R) 

methyltransferase and transcriptional coactivator mediated H3 arginine methylation 

involved in tropho-ectoderm development, less H3 arginine methylation containing 4-cell 

stage blastomeres become tropho-ectoderm. Moreover, the pluripotency factors OCT4, 

NANOG and SOX2 also regulated by CARM1. H3R17 and H3R26 methylation in the 

promoter region by CARM1 increase expression of these pluripotency factors and 

maintain the cell pluripotency [83]. In 2006 Bernstein B E et al. reported a novel 

chromatin modification pattern call “bivalent domains” [84]. Bivalent domains consisting 

of the activating histone H3K4me3 and the repressive H3K27me3 mark is apparant in 

many promoters in embryonic stem (ES) cells. These bivalent domains are related to 

poise expression of developmental genes, such as transcription factors and allowing their 

activation when the time comes [84, 85]. 

The germ line and global cellular development and functions are maintained and 

regulated by histone modification pattern, in mammals; where the silent heterochromatic 

structure is maintained by low levels of acetylation and high levels of H3K9, H3K27, and 

H4K20 methylation. Not only the modification mark but also mark associated different 

protein group recruitment is associated with different structure. The recruitment of 

Polycomb group (PcG) proteins PC2 (a PRC1 protein complex) to H3K27me preserve the 

inactive state of X chromosome [86, 87]. Heterochromatin Protein 1 (HP1) recruitment to 

H3K9me is a requisite to maintain the pericentric heterochromatin. Three histone H3 and 

one H4 methylation sites are implicated in activation of transcription marks: H3K4, 

H3K36, and H3K79 and H4K16. H3K4me and H3K36me have been associated with 

transcriptional elongation. Not only lysine methylation but also H3S10 phosphorylations 

are related to transcriptional activation. Whereas, the three other histone lysine 

methylation sites (H3K9, H3K27, and H4K20) and Ubiquitylation of H2AK119 are 

accompanied by transcriptional repression [55, 88]. More detail of histone modification is 

explained in Table: 1.1.  
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It has already been clearly established that anomalies with epigenetic events are a 

significant regulator of cancer development and progression. Alterations in the function 

of histone-modifying complexes are believed to disrupt the pattern of normal function and 

consequently disrupt the control mechanism of chromatin-based routes, eventually headed 

to oncogenic transformation and cancer development [89]. Various research results 

suggest that deregulation of histone modifying enzymes are related to different cancer 

development such as HAT (P300, CBP, pCAF, MOZ, MORF, Tip60), HDACs 

(HDAC1/2/3/4/5/6/7/8, SIRT1/2/3/4/7), HMTs and PcG Proteins (MLL1-4, NSD1-3, 

EZH2, BLIMP1, RIZ1, EVI1, PFM9, MEL1, SUV39H1, ZMYND1, HCP1, LBP1, 

BMI1, SUZ12, CBX7), Histone Demethylase (GASC1, PUT1, LSD1) [90]. 

Overexpression of HDAC3, HDAC7, HDAC8, SMYD3, SUV39H1 associated with colon 

cancer development. SMYD3 mediated increase H3K4 trimethylation help to form 

complexes with HELZ (RNA helicase) and RNA pol-II, which directly form a network by 

binding with the promoter region binding motif 5'-CCCTCC-3'. This association 

facilitates transcription of cell proliferation inducing genes such as NKX2-8, in 

hepatocellular carcinomas, colorectal and breast cancers. Aberrant Wnt/β-catenin 

signalling mediated  SMYD3 overexpression leads to WNT10B upregulation in breast 

cancer development [65]. Apart from overexpression, downregulation of specific 

modulators is also associated with colon cancer development. pCAF, HDAC1, HDAC4, 

MLL3 are either downregulated or mutated in colon cancer. In breast cancer HDAC6, 

SIRT3, SIRT7, NSD3, HCP1 genes are overexpressed and correlated with oncogene 

expression [90]. Estrogen receptor (ER) related transcriptional activation is induced by 

SMYD3 overexpression in breast cancer. SMYD3 mediated increased the level of 

H3K4me2 and H3K4me3 at the promoter region of ER-targeted genes, which encourages 

cell growth related transcription in breast cancer [91]. Functional abnormality caused by 

LSD2 down-regulation increase H3K4 dimethylation and induces oncogene expression in 

various cancer including different types of leukemia, seminoma, and some classes of ER-

negative breast cancers [92].  During early stages of epithelial to mesenchymal transition 

(EMT), TGF-β activation and promoter CpG methylation reduces expressive H3K4me3, 

H3K9Ac marks and induces H3K27me3 marks in the promoter region of TSGs, which in 

turn results in low level of TSG expression including β1 and α4 integrin and E-cadherin 

expression [93, 94]. The interaction between cistrons and epigenomes play a crucial role 

in breast cancer development. Breast cancer–associated single nucleotide polymorphisms 

(SNPs) are enriched in cistrons of a transcription factor such as ESR1 and FOXA1, 
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binding sites and the epigenome of H3K4me1 in breast cancer. Altered binding affinity 

and transcriptional efficiency of ESR1 and FOXA1 promotes cancer progression [95]. 

During prostate cancer development function of HDAC4, CBP, p300, LSD1 (KDM1), 

JHDM2A (KDM3A), or JMJD2C (KDM4C) enzymes are altered. H3K9me1, H3K9me2, 

and H3K9me3 are accompanied by the repression of AR target genes in LNCaP cells [96-

98]. It is known that overexpression of a demethylase KDM1, specific for H3K4me1 and 

H3K4me2, significantly decreases AR binding [99] and increased level of H3K4me3 in 

prostate cancer cells activates the expression of genes involved in cell growth and 

survival (FGFR1 and BCL2) [100]. Moreover, different cancers are associated with 

abnormal histone modification including ~10% of human acute leukaemia (acute myeloid 

leukaemia, acute lymphoblastic leukaemia, or mixed lineage leukaemia), Glioma, B cell 

lymphomas, Hematologic, pancreatic, ovarian, Thyroid and Squamous cell carcinoma 

[90].  
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Table 1.1 Lists of histone modifications 

Histone  modification  Function  Organism  Reference  

H2A on serine 1 

phosphorylation 

double strand breaks repair Mouse, human, yeast  [101] 

Acetylation of H2AX 

lysine 5 

TIP60-UBC13 complex mediated DNA double-strand break repair Human [102] 

H2A K5ac and K9ac TIP60-mediated acetylation of H2A at K5 and K9 facilitates H2A.Z 

incorporation catalyzed by the small complex and regulate chromatin 

transcription 

Human [103] 

acH2A.Z Associated active gene transcription Human [104] 

H2AK119 

Ubiquitylation 

Bmi/Ring1A mediated H2AK119 Ubiquitylation is associated with 

transcriptional repression 

Human [88] 

H2BK120 

ubiquitylation 

RNF20/RNF40 and UbcH6 mediated H2BK120 ubiquitylation activate 

transcription 

Human [105] 

H2BE2 ADP-

ribosylation 

(H2BE2ar1) 

Associated with transcription but specific function is unknown Human [106] 

H3 proline 

isomerization (H3P38) 

Catalyzed by enzyme, FPR4 and regulates the levels of H3K36 

methylation 

Budding  yeast [107] 

H3K4me3 than 

H3K4me2 

involving mutually exclusive histone modifications of the same histone 

residue (H3K4ac and H3K4me) 

Saccharomyces 

cerevisiae 

[108] 

H3K9me Chromodomain proteins (Chp1/Chp2/Swi6/Clr4) bind and regulate 

pericentric heterochromatin 

Fission  yeast [109] 

H3K4me3 than 

H3K4me2 

Sgf29, a histone acetyltransferase, recognizes H3K4 methylation marks 

and directs the SAGA (Spt–Ada–Gcn5 acetyltransferase) to its rightful 

position 

Humans   and yeast [110] 

H3K4methylation Downregulated by Class I HDACs by inducing specificity protein 1 

(SP1) signalling mediated RB binding protein 2 (RBP2) and JARID1 

family histone demethylases such as PLU-1 (lysine-specific demethylase 

5B), SMCX (lysine-specific demethylase 5C), and LSD1  expression 

Human  [9] 
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H3K4 acetylation HDAC3 remove acetylation at centromere regions and is also involved 

in centromeric chromatid cohesion.  

Human  [84] 

H3K4 acetylation H3K4 deacetylation facilitates Shugoshin1 (Sgo1) binding to the 

centromere and induces H3K4 dimethylation in CENP-A (Centromere 

protein A) rich kinetochore while the specific interaction between 

H3K4me2 and Sgo1 is not clear. 

Human  [84] 

H3K27me3 H3K4me3 Maintain bivalent chromatin structure and regulate gene expression in 

stem and progenitor cells 

Eukaryotes  [65] 

H3K27 di- and tri- 

methylation 

Helps to increase H3K4 methylation in the promoter region in active 

gene promoter. 

Eukaryotes [111] 

H3K4 methylation 

H3K27 me2/me3 

Recruitment of PRC1 and the monoubiquitylation of histone H2A at the 

promoter of HOX gene clusters are regulated by a member of the 

Jumonji C, UTX. UTX- mixed-lineage leukemia (MLL) 2/3 complexes 

increase H3K4 methylation level by decreasing the H3K27 me2/me3 

level 

Eukaryotes [112] 

Asymmetric 

dimethylation of 

histone H3R2 

(H3R2me2a) and 

H3K4me3 

Heterochromatic loci, inactive euchromatic genes  and transcriptionally 

poised or active promoters in the mammalian  genome regulation 

Eukaryotes [55] 

H3K4me1 MLL3/4-dependent H3K4 mono-methylation required for minor zygotic 

gene activation 

Mice  [113] 

H3K4me1 Recruit RSC chromatin remodeling complex to stress-responsive genes. Yeast [114] 

H3K9 methylation  essential for heterochromatin formation Eukaryotes  [115] 

H3K9me1/2 GLP-mediatedH3K9me1/2 establishment  helps in  Oct4 and Nanog 

silencing during differentiation 

Mouse  [116] 

H3K36me Accumulate at the 3′-end of active genes and is associated with 

elongation 

Human [117] 

H3K79 methylation Activation of HOXA9 and it has a role in maintaining heterochromatin Human  [55] 

H3S10 phosphorylation activate NFKB-regulated genes and “immediate early” genes such as c- Mammals  [118] 
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fos and c-jun. 

Arginines in H3 and 

H4 converted to 

citrullines 

(Deimination) 

Prevent arginine methylation Mammals  [50] 

H4K16 acetylation Negatively regulate the formation of a 30-nanometer fiber and the 

generation of higher-order structures 

Human 

 

[119] 

H4S1 phosphorylation 

(H4S1p) 

Catalyzed by Caesin kinase II and help in DNA double-strand break 

repair 

S. cerevisiae [120] 

H4K20me DNA double-strand breaks repair Yeast  [121] 

H4K12Ac DNA repair Yeast [122] 
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1.1.3 MicroRNA 

Ambros and colleagues (1993) identified lin-4, the first miRNA, which participates 

in regulating the development timing in Caenorhabditis elegans [123].  lin-4 was found to 

regulate the expression of lin-14 mRNA negatively through interaction with a 

complementary region in 3UTR of lin-14. With the advancement of technology, 

thousands of distinct miRNA in the human genome has been discovered.[124]. DNA 

methylation and histone modifications play a significant role in differential gene 

expression patterns which in turn is also controlled by miRNA.  miRNA plays a key role 

in regulating the gene expression globally for normal homeostasis. When this circuit is 

disrupted, it leads to various diseases and harmful manifestations. miRNAs are born from 

the cosmos of “dark genomic matter” encoded in intergenic or intragenic regions. The 

miRNA genes are transcribed by RNA polII into pri-miRNA [125], however, C19MC, the 

largest human miRNA cluster is transcribed by RNApolIII. The length of pri-mRNA 

which stretches between 1 kb - 3 kb is further processed by Drosha (ribonucleases) and 

DiGeorge syndrome (22q11.2 deletion syndrome) critical region 8 (DGCR8) or Pasha in 

the nucleus which forms 70 - 100 base pairs (bps) long hairpin structures “pre-miRNA” 

[126, 127]. Pre-miRNA, after being transported out of the nucleus by exportin-5, is further 

processed by an RNase named Dicer. This enzyme contains two RNase III domains, a 

helicase domain, dsRNA binding domain, a DUF283 domain and a PAZ (Piwi–

Argonaute–Zwille) domain [128]. This PAZ domain allows the weak interaction with the 

3ʹ end of ssRNA and 2-nucleotide at 3ʹ overhang of dsRNAs which is processed by 

Drosha [129]. This overhang is required for dicer activity. It has been found that the PAZ 

domain of Dicer finds the cleaved pre-miRNA by Drosha and helps the RNase III domain 

to chop out the stem and loop from the pre-miRNA and further processes it into variable 

length (18-25 nt) mature double-stranded miRNA [130, 131] , following which, the double 

strand gets separated into the guide and passenger strand. The guide or the mature strand 

gets incorporated into the RNA-induced silencing complex (RISC), whereas the passenger 

strand commonly denoted as a star (miRNA*) gets degraded. The RISC complex, which is 

the primary player of miRNA pathway, consists of miRNA, argonaute (Ago) proteins 

(Ago 1-4) and other protein factors. Ago proteins also play a vital role in miRNA 

biogenesis and maturation. The guide strand of miRNA unwound by helicase helps in the 

target recognition and binding of miRNA into the RISC complex [132, 133] (see Fig-1). 

miRNAs mainly bind to 3
ʹ 
untranslated region (3

' 
UTR) of the target mRNAs, but current 

studies have shown that it also binds to the coding regions and the 5
'
 UTR of mRNA. This 
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has been demonstrated that the “seed” region of 7-8 nt in the 5
'
 end of miRNA is necessary 

for its function [134]. Recent research reports show that miRNA regulate the gene 

expression probably by targeting the promoter associated ncRNA (paRNA) and direct 

transcriptional silencing [135]. Investigating the exact role of miRNA in cellular processes 

during tumorigeneses is a major area of interest.  The variation in miRNA profiling in 

human cancer indicates that it can act both as a classical tumour suppressive gene and an 

oncogene also. The profiling can also be used for prognosis and early diagnosis in cancer. 

The variation in the level of expression of miRNA can be utilized in the field of 

pharmacogenomics to develop anti-cancer drugs.  
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Figure 1.1: Biogenesis of miRNA: 

From the miRNA gene RNA polymerase II transcribed pri miRNA. Then it is further processed to 

pre-miRNA by Drosha and Pasha. Exportin5 then transports the pre-miRNA from nucleus to 

cytoplasm. Another ribonuclease namely Dicer further processes it into variable length (18-25 nt) 

mature double-stranded miRNA. Argonaute proteins play a vital role in miRNA biogenesis, 

maturation, and effector functions. The double strand gets separated into the guide and passenger 

strand (miRNA*). The guide strand of miRNA unwinded by helicase helps in the target 

recognition and binding of miRNA into the RISC complex. 

 

1.1.3.1 Emerging roles of miRNA in modulating gene function 

The precise mechanism of miRNA-mediated modulation of gene function in 

development and homeostasis has not yet been completely understood. The main function 

of miRNA is to repress any gene expression by translational inhibition or degradation of 

mRNA. However, activation, as well as upregulation of genes, are reported in some cases. 
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miRNA navigates its regulatory functions through two different pathways; one path leads 

to the formation of a large gene silencing complex known as RNA-induced silencing 

complex (RISC) or miRISC complex where Ago protein plays a vital role. This miRISC 

complex silences gene by binding with the 3ʹ UTR of the mRNA causing the initiation of 

translation. It has also been reported that guide miRNA binds with the open reading frame 

(ORF) of mRNA which splices the transcriptome by spliceosome [136]. When miRNA 

complementarily binds with the 5ʹ UTR of mRNA, activation of the transcriptome takes 

place instead of suppression.  In the other pathway miRNA binds with RNA binding 

protein and prevents them from binding to their target RNA [137] , which also modulates 

the target gene promoter by directly binding/changing the methylation signature [138].  

KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) is a known 

oncogene with various functions in melanoma.  This gene is the target of miR-221 which 

binds with the 3ʹUTR of the KIT and downregulates, but this gene is up-regulated in some 

cancers. A variant of a KIT oncogene is overexpressed during acral melanoma; since its 3ʹ 

UTR mismatches with the seed region of miR-221 so it cannot bind to that region. 

Therefore, without the regulation of miR-221 KIT expression increases up to four 

fold[139]. Apoptotic Fas-associated factor 1(FAF1) is a component of DISC that interacts 

with caspase 8 and FADD. The overexpression of FAF1 can induce apoptosis in the 

absence of extrinsic death signal [140, 141]. miR-24 has a seed region in the ORF of 

FAF1, which down-regulates the FAF1 so that the apoptosis is  not triggered, however,  

when the miRNA expression is blocked, apoptosis is re-induced [142]. Thus, miR-24 acts 

as an oncomiR which downregulates the apoptotic genes. Regulation by miRNA also 

involves binding with 5' UTR of mRNA and activating the translation as seen in the case 

of hepatitis C virus (HCV). The liver-specific miR-122 binds to the 5ʹ UTR of genomic 

RNA up-regulates its transcription and positively regulates its lifecycle. [143]. In another 

scenario when the cell is subjected to nutrition stress, it halts translation by blocking the 

synthesis of ribosomal proteins. After the stress is withdrawn, cell restores the ribosomal 

protein synthesis. miR-10a interacts with 5'
 
UTR of mRNA of ribosomal proteins and 

improves their translation. miR-10a binds downstream to the regulatory 5' TOP motif and 

globally enhances the protein translation [144]. The current studies have shown that 

expression of the gene can also be induced by miRNA. The miR-373 sequence is 

complementary to promoter site of E-cadherin (E-cad). By transfection, miR-373 induces 

E-cad expressions whereas knockdown of miRNA represses its expression. Eventually, it 

has been confirmed that induction of E-cad needed the mature miRNA, not the pre-
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miRNA. Another cold shock domain-containing protein C2 (CSDC2), which also contains 

a putative seed region in its promoter site, is also found to be readily induced by miRNA. 

miRNA helps the transcription by enhancing  the  binding of RNA polymerase II to the 

promoter of the E-cad and CSDC2 [145] (Fig.1.2). MiRNA controls the genetic 

expression in various circumstances of the cells. These regulations are crucial for the 

cellular development and normal physiology.  Thus,different mechanisms of regulating 

the gene expression impact miRNA a distinct role in genetic regulation.  

 

Figure.1.2: Mature miRNA regulate gene expression in different ways: 

KIT oncogene transcript degraded by miR-221 which has a seed region at the 3' UTR of the 

mRNA. The Fas-associated factor 1(FAF1) has the seed region of miR-24 in the open reading 

frame (ORF) of mRNA which is eventually degraded by the miRNA. miR-122 binds to the 5' UTR 

seed region of RNA, the genome of HCV and positively regulates its live cycle by activating the 

translation. miR-10a interact with the mRNA of ribosomal proteins 5ʹ UTR and improved their 

translation. The miR-373 sequence is complementary to promoter site of E-cadherin (E-cad), and it 

induced it expression. 

 

1.1.3.2 Currently known functional miRNA in the human cancer genome  

Recent explorations by next generation sequencing have led to the discovery of 

more than 24,000 miRNA (http://www.miRbase.org). For target prediction of miRNA 

different computational algorithms has been utilized. It considers the seed sequence and 

http://www.mirbase.org/
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the number of target sites surrounding mRNA sequence. The algorithms use the 

parameters like binding free energy to the target sequence and the secondary structure of 

the target binding sites which helps or prevents the binding of miRNA and mRNA. 

Through miRNA target prediction and validation has represented a small fraction which 

regulates 60% of human genes [146]. By improving the prediction algorithms, 

identification of new miRNA target will be more accurate and precise. As previously 

stated, miRNA is an inseparable part of cellular gene regulation. High-throughput studies 

proved that it also has a crucial role in human diseases like cancer. Here, we will try to 

explain the functional miRNA of the human genome which participates in cancer. The 

most prominent tumour suppressive miRNAs are miR-15/16. Their target includes BCL2 

which induces apoptosis in leukemic cell line model [147]. miR-16 down regulated 

theCOX-2 gene in colon cancer [148]. In fibroblast cells, miR-16 targets VEGF, VEGFR-

2, FGFR1, which governs the cell intrinsic angiogenic activity. Downregulation of miR-15 

and miR-16 promotes upregulation of FGF2 and FGFR1 gene in cancer associated 

fibroblasts [149, 150]. In multiple myelomas, deletion of miR 15/16 increases the level of 

FGFR1, P13KCA, MDM4, and VEGFa. In breast cancer, miR-16 regulates WIP1 

phosphatase during DNA damage response [151]. miR-15a/16 targets Bmi-1, which 

inhibits cellular proliferation in ovarian cancer [152]. In lung cancer, it induces cell-arrest 

by targeting CCND1, CCND2, and CCNE1 [153]. Another TS-miRNA, miR-34 also 

targets BCL-2, NOTCH, and HMGA2 in gastric cancer [154]. In fibroblast cells, it targets 

MYC and controls a set of cell cycle regulator during cellular senescence. Similarly, in 

ovarian cancer, it targets MET genes [155]. Another imperative family of miRNA is miR-

200 targets ZEB1 and CNNB1 which inhibit cellular growth migration and invasion in 

nasopharyngeal carcinoma [156]. In pancreatic carcinoma as well as in breast cancer, it 

targets BM1 and inhibits cellular metastasis. In endothermal cancer, it targets FN1, LEPR, 

and NTRK2 which inhibits cell mortality and resists anoikis [157]. miRNA let-7 family is 

the most significant miRNA which targets IL-6, in breast cancer, E2F2 in prostate cancer, 

BCL-XL in liver and MYC in Burkitt lymphoma which initially inhibits cancer 

progression [158]. The miRNA discussed above are the TS-miRNA, which remains 

downregulated in cancer cells due to hypermethylation or deletion of the genes. The 

further discussed miRNAs are the functional oncomiRs of the human genome. The cluster 

of miR-17/92 is the most active oncomiR cluster which plays a predominant role in cancer 

progression. In breast cancer, it targets HBP1 and regulates the invasion and activates 

WNT/ β-catenin pathway [159]. In myeloid cells, it targets p63 and increases the cell 
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proliferation. In fibroblast cells, it disrupts cellular senescence by inhibiting p21 [160]. 

Another family of oncomiRs, miR-222/221 targets p27 and stimulates cellular 

proliferation in glioblastoma [161]. In small cell lung cancer, its target is PTEN and thus 

induces TRAIL resistance [162]. In endothelial cells, it targets KIT and causes the 

formation of new capillaries and angiogenesis. The most upregulated miRNA in most type 

of cancer is miR-21. It targets multiple tumour suppressive genes like RECK in 

glioblastoma which resists the cancer cells against diverse therapeutics. MARKS gene in 

prostate cancer inhibits cellular apoptosis and induces cellular motility and invasion. In 

breast cancer, it targets TPM1 and PDC4 and influence tumour growth and suppresses 

cellular apoptosis [163]. miR-155 is overexpressed in lung cancer, breast cancer, acute 

myeloid lymphoma and CLL, Burkitts lymphoma and Hodgkin lymphoma. It targets 

HGAL, FOXO3A, SOCS1, JMJD1A in different cancers which contributes to tumour 

progression and resistance to the chemotherapy [158]. The dysregulation of miRNAs in 

cancer relative to normal tissue indicates the functional role of miRNAs in tumour cells. 

 

1.1.3.3 miRNA regulation of gene expression 

Till few years back it was thought that miRNA can only regulate gene expression 

by inhibiting the target mRNA and suppressing their protein synthesis. But in the light of 

recent exploration into the epigenetic regulation of a gene by miRNA shows its different 

paths of regulating genes. Here we briefly describe some of the pathways recently 

discovered by researchers which could enlighten the diversity of miRNA regulation study. 

 

Repression of translation initiation by miRNA 

The first case of miRNA repression was discovered in C. elegans. Initially, it was 

shown that lin-4 inhibits the translation of lin-14 without a reduction in the mRNA levels 

or modifications in polysomes. This discovery leads to the conclusions that miRNA 

inhibits mRNA at elongation step. The firstmiRNA-mediated repression of translation was 

observed in HeLa cells where cells were targeted by endogenous let-7 miRNA for mono 

and bicistronic reporter mRNA [164] . From this experiment, it was found that the level of 

reporter mRNA was not significantly decreased whereas the translation was inhibited 

[164]. These results were further supported by the observation in Huh7 where miR-122 

targets CAT-1 mRNA [165] and in HEK29 T-cells for a miR-16-targets reporter mRNA 

[166]. 
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Repression of cap-dependent translation 

The miRNA-mediated translational repression is frantically dependent on the 

mRNA capping. It has been reported that mRNA which contains 5' capping is more 

susceptible to the miRNA. In HeLa cells it has been observed that mRNA with non-

functional ApppG cap structure was less targeted than mRNAs with proper m7G capping 

[167].To understand the pathway for targeting mRNA with caps it has been found miRNA 

interfere with either eIF4E function or eIF4Erecruitment to the 5'-cap structure [164] . 

This pathway was supported by in vitro experiments in a cell-free system. It was then 

confirmed miRNA-mediated translational inhibition occurs during its initiation steps, 

recognizing the m7G cap of mRNA. These results were further supported by the inability 

of miRNA targeting IRES-dependent translation or translation from ApppG-capped 

mRNAs [168-170]. 

 

miRNA targeting by suppressing ribosomal assembly 

Wang et al. proposed that miRNA repress translational inhibition by inhibiting the 

joining of 60S subunit. They also found enrichment of 40S subunits in the miRNA-

mediated mRNA repression complexes in reticulocyte lysates. Another study concluded 

that the 60S ribosomal subunits accessory proteins like eIF6 prevent the joining with 40S 

and regulate translation[171]. These proteins were co-immunoprecipitated with the 

AGO2-Dicer- TRBP (TAR RNA-binding protein) complex [172]. Repression of eIF6 in 

human cells or in C. elegans inhibits the action of miRNA (let-7 or lin-4) which indicate 

miRISC complex with eIF6 inhibits 80S complex assembly [173]. 

 

Poly (A) tail mediated translation repression 

Previously it has been proved that Poly(A)-binding protein (PABP) enhances cap-

dependent translation of mRNA by interacting with the eIF4G of the eIF4F complex 

[174]. Deadenylation of mRNA increases the rate of miRNA-mediated translational 

inhibition. In HeLa cells, it has been shown that both 5’capping and poly(A) tails are 

required for optimal translation inhibition [167]. Deadenylation of mRNA increases the 

miRNA targeted translation inhibition which has been shown in HEK293 cells 

overexpressing AGO2 and GW182 proteins and  let- 7 miRNA [168]. Some groups found 

in mammalian and Drosophila cells miRNA-mediated mRNA translation inhibition occurs 

in both non-polyadenylated and polyadenylatedmRNAs, but non-polyadenylated are not 
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as strong as for polyadenylated mRNAs [175, 176]. From the above we can say miRNA 

works through both poly (A) tail–dependent and –independent mechanisms. 

 

Repression by miRNA at Post-Initiation Steps 

  Different research groups found that miRNA can inhibit translation at post-

initiation step. This analysis was led by the investigation on C. elagans that indicates the 

lin-14 and lin-28 mRNA which are the targets of lin-4 miRNA remains with translating 

polysomes instead its lower protein level in larval development [177, 178]. In mammals 

also it has been observed that repressed mRNA were in association with functional 

polysomes [179]. But the repression in postinitiation step by miRNA the pathway 

remained a mystery until it has been proposed that, may be, miRNAs antagonize 

translation elongation by causing premature termination and subsequent ribosome drop-

off.  This conclusion was made by metabolic labeling and ribosome run-off experiments 

led  by Petersen et al. [180] 

 

1.1.3.4 Regulation of signalling pathways by miRNA- an impact on development and 

normal physiology 

Various structural proteins and signalling pathways involving miRNA maintain a 

tight cooperation for control of development, including cell adhesion, neurogenesis, brain, 

eye, liver, and heart development and normal physiology.  miRNA-mediated neuronal, 

and neural stem cell differentiation and function are not clearly described till now. MiR-

9/9* and -miR-124 (miR-9/9*-124) -NEUROD2 encourage human fibroblast to convert 

into neurons. Neurogenic transcription factors such as ASCL1 and MYT1L, enhance this 

conversion process [181]. Compositional changes of SWI/SNF-like BAF chromatin-

remodeling complexes are guided by miR-9* and miR-124. During mitotic exit, a BAF53a 

subunit of the neural progenitor BAF is repressed by the miR-9* and miR-124 and 

contribute to the neural fate. The nuclear receptor TLX is a key controller of neural stem 

cell self-renewal and proliferation. Its interaction with miRNAs controls the neural stem 

cell differentiation and specification [17, 182, 183].  miR-9 and TLX expression is 

inversely proportional as the miR-9 expression are increased, and TLX expression is 

decreased during differentiation of neural stem cell, thus highlighting the fact that miR-9 

negatively regulates TLX expression.  

miR-132 and miR-134 have a very deep impact in mammalian neurogenesis. 

Transcriptional activation of CREB and MeF2 is followed by increased miR-132 and 
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miR-134 levels respectively. miR-132 represses p250 GTPase Activating Protein 

(p250GAP), and miR-134 suppresses the translational repressor Pumillio2 (Pum) 

expression, the two important factors of neurogenesis. p250GAP inhibition downregulates 

Rac activity which causes dendritic growth and branching [184, 185].  Brain development 

is interconnected with miRNA control mechanism. MiR-9 controls patterning, 

neurogenesis, and differentiation whereas miR-134 directs neurogenesis and spine growth 

[186]. The roles of individual microRNAs in vertebrate eye development remain a 

mystery but in Oryzia slatipes, miR-204 regulates multiple aspects of eye development. It 

targets the transcription factor Meis2 which controls lens formation and dorsoventral (D-

V) patterning of the retina which is related to optic fissure coloboma. The experimental 

data supports the fact that miR-204 also plays a major role in Pax6 pathway in eye 

development [187]. 

Involvement of miRNA function during liver development is emerging. miR-106a-

363 and miR-17-92 have a regulatory effect on embryonic liver cell proliferation, cell 

cycle, and apoptosis. In mature hepatocytes, let-7c and miR-23b inhibit cell proliferation 

and mediates cell cycle arrest. TGF-β signalling has a precious role in adult liver 

development. In the adult liver cell, let-7c controls TGF-β signalling by supervising the 

TGFBR1 expression [188]. 

Cardiomyocytes development and miRNA-signalling strictly depend on each 

other. In human miR-1, miR-20, miR-21, miR-26a, miR-92, miR-127, miR-129, miR-

130a, miR-199b, miR-200a, miR-335 and miR-424 play a vital role in heart development. 

miR-1 binds with the histone deacetylase 4 (HDAC4) which is a transcriptional inhibitor 

of muscle genes and induce myogenesis. The repression of serum response factor (SRF) 

by miR-133 resulted in myoblast proliferation [188-194]. Heart containing ‘non-

cardiomyocyte’ cells including, fibroblasts, smooth muscle cells, endothelial cells, and 

immune cells, have different miRNA expression pattern. miR-21, miR-16, miR-22, miR-

23a, miR-27a, miR-24 are highly expressed in skin fibroblasts and heart, whereas 

endothelial cells express let-7 family, miR-126, miR-221, and miR-222 [194]. 

Cell adhesion is interconnected with an expression of different miRNAs. Adhesion 

molecules expression and biochemical pathways involved in normal cellular adhesion are 

controlled by miRNA including miR-17, miR-29, miR-31, miR-124 and miR-200. 

Cytoskeletal dynamics, actin polymerization and depolymerization are controlled by 

specific small GTPases belonging to Rho superfamily, which includes the Rho, Rac and 

Cdc42 subfamilies [195]. These subfamilies are controlled by different miRNA pathways. 
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RhoA and Cdc42 expression can be repressed by miR-133 [196]. Moreover, miR-138 

leads to repression of RhoC and the downstream effector kinase ROCK2. These 

correlations indicate to the miRNA-mediated control of Rho signalling and as well as 

cytoskeletal dynamics [197]. Expression of Integrin, an essential cell–matrix adhesion 

molecule, is regulated by miRNA. For instance, Integrin β1 is governed by miR-124, 

miR183, miR-29, miR451, integrin α5 by miR-31, miR-92a, integrin β3 by miR-30, let-

7a. Cell-cell adhesion molecules are also controlled by miRNA-mediated silencing 

including, E-cadherin by miR-205, miR-200, miR9, miR-10a, miR-192, Intercellular 

adhesion molecule 1 (ICAM-1) by miR-221, miR-222, miR-339, miR-17 and E-selectin 

by miR-31, miR-10a [198]. Healthy development and physiology of cells are intimately 

related to miRNA regulation. Deregulation in the control of miRNA can lead to 

abnormalities in cellular physiology.  

 

1.1.3.5 Regulation of signalling pathways by miRNA - an impact on cancer 

MicroRNA directly or indirectly involved in regulating a number of cell signalling 

pathways, including Wnt, Notch, Hedgehog, TGF-b/BMP, receptor tyrosine kinase 

(RTK), Jak/STAT, a nuclear receptor, Hippo pathways [199]. miRNAs upregulate or 

downregulate the Wnt pathway depending upon the stages of cell development. This tight 

regulation is entirely disrupted during tumourigenesis. miR-8 and miR-200c control Wnt 

ligand secretion by negatively regulating TCF and upstream positive modulators 

respectively in D. melanogaster and mouse cells. In mammals, miR-8 inhibit Wnt 

pathway by repressing the activity of Wingless (Wg) signalling [200]. However, miR-135 

activates Wnt signalling by targeting two negative regulators, Axin, and Notum of Wg 

signalling [201]. Wnt/β-catenin pathway is involved in cell proliferation, metastatic and 

tumourigenesis. Adenomatous polyposis Coli (APC) expression is down-regulated in the 

colorectal cancer cell, and this facilitates Wnt/b-catenin signalling. miR-135a and miR-

135b are the main culprits behind the repression of APC by targeting the 3′ UTR [202]. 

MiR-200a represses β-catenin activity in two different ways. One is the silencing of E-

cadherin repressor proteins ZEB1, ZEB2, which is followed by an increase in the level of 

E-cadherin and β-catenin binding and induction of epithelial to mesenchymal transition 

(EMT) by elevating nuclear β-catenin levels. Another way involves direct silencing of β-

catenin expression by binding to its 3ʹ UTR [203]. During medulloblastoma, miR-125b, 

miR-326 and miR-324-5p are down-regulated which direct over activation of the 

Hedgehog pathway [204] whereas miR-92, miR-19a and miR-20 are overexpressed [205]. 
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miR-430 and miR-214 are involved in zebrafish embryogenesis [206]. Akt pathway 

transmitted growth signals are manipulated by miRNA in glioma. MiR-7 arbitrated 

suppression of EGFR expression was inhibited by miR-7 downregulation and Akt 

pathway activation in glioma. Moreover, over-expression of miR-26a target phosphatase 

and tensin homolog (PTEN) result in Akt signal enhancement [207]. 3'-phosphoinositide-

dependent protein kinase-1 (PDK-1) is an essential component of Akt signalling and 

controls cancer cell survival and proliferation. MiR-375 mediated negative regulation of 

PDK-1 controls cell proliferation and suppressed tumourigenesis. This is the main reason 

behind miR-375 low expression in different cancer cells including pancreatic cancer and 

hepatocellular carcinoma [208]. MiR-146, miR-301a, miR-155, miR-181b, miR-21, 

miR223, miR15, miR16, miR199a are involved in Nuclear factor κβ (NFκβ) signalling 

and their deregulation mediates cancer. NFκβ signalling negatively regulates its signal 

status by IRAK1 and TRAF6 downregulation through MiR-146 up-regulation. Different 

cancers such as breast cancer, pancreatic cancer, anaplastic thyroid carcinomas, brain 

tumours, shows NFκβ/miR-146 regulation irregularity [209]. MiR-155, miR-301a, and 

miR-181b are positive regulators of NFκβ signalling. miR-181b-1 represses CYLD 

expression, a ubiquitinations, which is followed by the NFκβ activation [210]. MiR-181b-

1 overexpression in colon adenocarcinoma, prostate, and hepatocellular cancer is 

correlated with uncontrolled NFκβ signalling and carcinogenesis. Unlikely MiR-21 

represses NFκβ activity by targeting PDCD4 [211]. Increased notch signalling is an 

important change during medulloblastoma. The function of miR-199b-5p is misbalanced 

in medulloblastoma cell and leads to HES1 overexpression mediating Notch activation 

[212]. MiR-375 negatively regulates the Hippo pathway through yes-associated protein 

(YAP) down-regulation. The downstream target of YAP is the mRNA level of connective 

tissue growth factor (CTGF). YAP is a downstream regulator of hippo signalling pathway 

which helps in cell growth, proliferation, invasion and epithelial-to-mesenchymal 

transition. Lower miR-375 expression in hepatocellular carcinoma cells is followed by 

Hippo/YAP signalling over-activation [213]. Over-activation of Hippo and 

downregulation of a large number of tumour suppressor genes by miR-372/373 encourage 

testicular germ tumourigenesis [214]. C-Src/Mammalian target of rapamycin (mTOR) / 

fibroblast growth factor receptor 3 (FGFR3)/AKT mediated pathway, epidermal growth 

factor/Ras/mitogen-activated protein kinase (MAPK) pathway are a critical oncogenic 

pathway. miR-99a downregulation is directly correlated with the up-regulation of these 

pathways [215]. K-Ras and N-Ras arbitrate RTK/MAPK signalling pathway is controlled 
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by the let-7 during cancer cell differentiation [214]. miRNA regulation of different 

signalling pathway in cancer cell gives them a crucial role in the cell proliferation and 

differentiation. The oncomiR and tumour suppressive miRNA give the researcher a new 

dimension for an understanding of the complexity of deregulations of the genetic 

expression during carcinogenesis. 

 

 

 

Figure.1.3: miRNA regulation of different pathways in cancers: 

In cancer cells Hedgehog pathway by miR-125b, miR-326, miR-324-5p Wnt/ B-Catenin pathway 

by miR-135a, miR-135b Wnt pathway by miR-8, miR-200c, miR-135 RTK/MAPK pathway by 

let-7 Hippo pathway by miR-375, miR-372/373 Notch pathway by miR-199b-5p. Akt pathway by 

miR-7, miR-26a, miR-375, NFκβ pathway by miR-146, miR-181b-1, miR-21 is regulated. 

 

1.1.3.6 miRNA as therapeutic drug for cancer 

In the new generation of therapeutic approaches against cancer, miRNA plays an 

inherent part. miRNA can work as an oncomiR which downregulates the tumour 

suppressive gene  and as tumour suppressive miRNA (TS-miRNA) which downregulate 
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oncogenes [216]. By modulating, the expression of miRNA, it is able to regulate the 

cellular gene expression. For therapeutic uses there are mostly two kinds of miRNA; (a) 

miRNA mimics, and (b) anti-miRNA oligonucleotides (AMOs). 

 

miRNA mimics 

TS-miRNA is remaining down-regulated in cancer cell because it inhibits the 

expression of an oncogene. So it is possible that inhibition of dysregulated oncogenes by 

using synthetic miRNA mimics can be a very useful prognostic tool for cancer. Recently 

in AML cell lines e forced expression of miR-29a and -29b induced apoptosis as well as 

inhibit cell growth by downregulating Mcl-1 protein [217]. This data shows miR-29 role 

as a TS-miRNA and provide us a basic to use synthetic miR-29 as a novel therapeutic in 

the case of AML. miR-124 and miR-203 remains downregulated by hypermethylation in 

HCC which restores these miRNA by mimics significantly reduced the cell proliferation 

in all the HCC cell line tested. miR-124 transfected cell shows reduced CDK6, SET and 

MYND domain containing 3 (SMYD3), vimentin (VIM), and IQ motif containing GTPase 

activating protein 1 (IQGAP1) at protein level and   ATP-binding cassette, subfamily E, 

member 1 (ABCE1) and the protein level of CDK6 were decreased  in miR-203 

transfectants [218]. But their miRNA-mimic oligonucleotides have flaws that it has a 

transient effect. It is not stable, and it requires repetitive deliveries. Liang et al. reported 

miR-155 targets CXCR4 in MDA MB 231 and silenced it. This gene interacts with SDF-1 

and helps in the phosphorylation of Akt. The CXCR4 gene was completely silenced by the 

miRNA which cannot be reversed by additionally adding CXCR4. These data shows the 

effectiveness of synthetic microRNA mimics as therapeutics [219]. In another cancer 

miR-26a which is predominantly present on average level remain downregulated in human 

and murine liver tumours. It directly targets downregulated cyclinD2 and E2, inducing G1 

arrest in human cancer cells in vitro. A construction of miR-26a in scAAV vector system 

has been shown an improvement in the tumour treatment [220]. But their miRNA-mimic 

oligonucleotides have flaws that; it has a transient effect, it is not stable, and it requires 

repetitive deliveries. 

 

ANTI-microRNAs 2'-O-Methyl Anti-microRNA Oligonucleotides 

The premier and simplest way of oligonucleotides modification is 2'-O-methyl (2' 

OM) group addition. This group contributes to nuclease resistance and improve the 

binding affinity to RNA. This has been used earlier to knock down miR-125b in prostate 
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and cervical cancer cell line. The cell lines show reduced rate of proliferation [221]. In a 

library of 2'-O-methyl anti-microRNA oligonucleotide (OMe-AMO) inhibitors was used 

for screening and identifying of miRNA which are responsible for cell proliferation and 

apoptosis. It was validated by luciferase assay using vector barring the miRNA target site  

[222]. It can target and knock down miRNA with some limitation. First, a direct procedure 

to ensure the decrease of miRNAs is hard because it binds to the miRNA and sequester it 

from its target other than the degradation. Therefore, the only method to ensure the 

decrease in a number of miRNAs is to measure the level of expression of a reporter gene 

containing the target sequence of the miRNA. In addition, adding back miRNA in the 

presence of the 2'-O-methyl antisense oligonucleotide cannot rescue the knockdown 

phenotype. The most important drawback is that a single miRNA can target hundreds of 

gene so knocking down of a miRNA can cause off-target effect broadly in miRNA 

therapeutics [223]. 

 

 2'-O-Methoxyethyl Anti-microRNA Oligonucleotides 

2'-O-methoxyethyl (2'-MOE) groups of oligonucleotides possess higher affinity 

and specificity toward RNA than OME analogues.  Esau et al. showed that a panel of 86 

miRNAs in preadipocytes can be inhibited by using 2'-O-methoxyethyl anti-microRNA 

oligonucleotides (MOE-AMOs) which inhibit adipocyte differentiation [224]. The 

comparison study for miRNA expression profile in adipocytes (differentiated versus non-

differentiated) showed that miR-143 was involved in the differentiation by regulation of 

ERK5 protein. Transfection with MOE-AMO, complementary to miR-143 successfully 

inhibited the process compared with the miRNA negative control [224]. 

 

The Locked Nucleic Acid Antisense Oligonucleotides 

Locked nucleic acid (LNA) of antisense oligonucleotides has been successfully 

used to inhibit miRNA in different cancer cells. Knockdown of miR-21 using locked-

nucleic-acid-modified oligonucleotide (LNA-antimiR) shows effectiveness in breast 

cancer and reduced tumour growth [225].  Targeting miR-21 by LNA in glioblastoma and 

breast cancer cells which suppressed the cell growth and enhanced the caspase activity of 

cells [226, 227]. In spite of these recent developments, the effective and safe approaches 

for therapeutics miRNA still remain challenging for human trails. 
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microRNA Decoy  

Recent findings have undergone a revolution that an endogenous miRNA can be 

saturated by the vectors expressing miRNA target sites thwarting the downregulation of its 

natural target. This new technology has been named as decoy [228], sponge [229], eraser 

[230], and antagomiR utilizing various gene delivery systems incorporating plasmids and 

vectors based on adenoviruses, retroviruses, and lentiviruses [231]. High vector copy, 

active promoters, or stable transcript can facilitate in overexpression of a miRNA target. 

The pitfalls of antagomiR approach can be improved by using the sponge strategy in 

several ways. Primarily, the most powerful tool to identify miRNA and its function is 

through gene knock out approach, but these knockouts are very time-consuming and are 

limited to studies on mice. Secondly, maximum miRNA genes are present in functional 

protein-coding genes creating instability, and thirdly an effect of a miRNA family can be 

repressed by a single member due to the possession of same seed sequence. When the 

decoy vectors are based on lentiviral vectors they can efficiently antagonize a miRNA in 

the absence of multiple administrations just the reverse of oligonucleotide-based miRNA 

knockdown.  A recent stable miRNA sponge strategy was initialized by Valastyan et al 

(2009) to inhibit miR-31 in vivo in non-invasive MCF7-Ras cells using retroviral miRNA 

sponges that carried miR-31 recognition motifs in their 3' UTRs. This miR-31 sponge 

diminished the function of miR-31, 2.5 times without affecting the activity of other known 

anti-metastasis miRNAs [232]. This advancement in technique allowed the visualization 

of the ability of nonaggressive breast cancer cell to metastasize. But this decoy vector 

method also has some restrictions. The target genes often when overexpressed could be 

highly toxic for the cells and also the determination of the degree of miRNA inhibition 

mediated by a sponge vector is very uncertain and challenging. Therefore, gene-based 

knockout are approvable to detect a complete failure of miRNA activity [233]. 
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1.4 Motivation 

In this new era, epigenomics has taken the central character of the scientific 

research field. In the last decade, the extensive work has been done in this area. 

Groundbreaking discoveries in this area opened a new avenue for cancer research. The 

reason for aberrant expression of genes during diseases like cancer enticed lots of 

unanswered queries which are now solved by the epigenetics. But still, the lots of dark 

unsolved problem remain hidden in this mysterious side of the cell. To endeavor these 

questions, this research has been  stated. Here it was trying to correlate the path of 

different epigenetic modification and resolve the reason of aberration of epigenetic marks. 
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 2 Literature Review 

Epigenetics at the molecular level is mainly classified into two major classes DNA 

methylation and histone modifications. The current research added the non-coding RNAs 

in this field of epigenetics due to its role in gene regulation without hampering the DNA 

sequence. For cellular gene expression these three mechanisms regulate each other but the 

connections among them were not well studied. From this point of view this thesis is 

embedded with the correlation between miRNA functions and other epigenetic 

mechanisms events   

 

2.1 miRNA meets other epigenetics modifications 

miRNA itself is consider as an epigenetic tool which plays a significant role in 

regulating other epigenetic modifications like DNA methylation and Histone modification. 

On the other way, DNA methylation is a crucial factor for miRNA gene regulation. In the 

next three subsequent sections, we focus the connection between the epigenetic modifiers, 

miRNA and chromatin modifications. 

 

2.2 DNA methylation and its regulation by miRNA  

In the new era of epigenetics, the most comprehensively studied modification is 

probably DNA methylation in mammals. The methylation occurs in the cytosine residue 

of the CpG sequence [234-237]. In the human genome, there is unevenly distributed short 

stretches of CpG dinucleotides known as ‘CpG islands'. Most of the CpG islands are 

located at the 5ʹ end of the genes and conquer about 60% of the gene promoters [236-238]. 

Methyl layer in DNA is occupied by MBD causing silencing of transcription [235, 237, 

239]. Methylation represses gene expression, mainly by preventing or supporting the 

regulatory transcriptional proteins, activators, or repressors respectively by binding of 

MBD with the methylated DNA. In this scenario, the MBD proteins get access to the 

DNA after the removal of acetyl groups by histone deacetylases [9, 240]. It has been 

discussed earlier in this thesis. DNMT1 maintains the DNA methylation signature after 

replication by methylating the hemimethylated daughter strands of DNA; DNMT3A and 

DNMT3B act as de novo methyltransferases to generate replication-independent new 

methylation patterns [10, 241]. 

The DNMT family is regulated by different kinds of miRNA. It has been 

demonstastrated that miR-29 family regulates the DNMT3A and DNMT3B [242]. 

Overexpression of miR-29b decreases the expression of DNA methyltransferases 
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DNMT1, DNMT3A and DNMT3B in both RNA and protein level. This leads to the 

global hypomethylation of DNA, but this upregulates some gene in acute myeloid 

leukaemia (AML) cells. In AML, miR-29b directly target the 3' UTR DNMT3A and 

DNMT3B downregulates their expression, whereas for DNMT1 it targets its transactivator 

Sp1and reduces its expression [217] (Fig 2.1). In colorectal cancer, DNMT1 is over-

expressed and plays a crucial role by hypermethylated tumour suppressive genes like 

ADAM23, Hint1, RASSF1A, and RECK. MiR-342, which is found down-regulated in 

colorectal cancer directly, targets 3'UTR of DNMT1. Overexpression of miR-342 prevents 

the proliferation of cell and demonstrates inhibition of tumour invasion and metastasis in 

lung carcinoma in nude mice [243]. In human, glioma 524 hypermethylated and 104 

hypomethylated regions were identified, among which 216 hypermethylated and 60 

hypomethylated regions were of known gene promoters, whereas promoters of only eight 

genes (ANKDD1A, GAD1, HIST1H3E, PCDHA8, PCDHA13, PHOX2B, SIX3, and 

SST) were reported to be hypermethylated in initial stage of glioma. Overexpression of 

miR-185 reduced the global methylation pattern in glioma by directly targeting DNMT1 

[244]. DNA methylation not only plays a role in cancer but is also reported to be 

associated with other diseases, such as Systemic lupus erythematosus, a complex 

autoimmune disease which is caused by genetic and epigenetic disorders. MiRNA controls 

the gene expression by regulation of methylation by targeting DNMT1. Overexpression of 

miR-21 and miR-148a in CD4
+
 T cells enhanced hypomethylation by repression of 

DNMT1 in both patients with lupus and lupus-prone MRL/LPR mice [245]. In 

Scleroderma endothelial cells, the alteration of miRNA significantly changes the 

expression of DNMT1. Up-regulation of miR-152 reduced the expression of DNMT1 at 

mRNA and protein level while nitric oxide synthase 3 (NOS3) gets highly expressed. 

However, it was importantly noted that the reduced level of miR-152 expression improved 

DNMT1 expression with the reduction of NOS3 [246]. In breast cancer, miR-194 

regulates the expression of tumour suppressors, such as cyclin G2, p27Kip1, and 

ADAM23 by regulating DNMT3A. Studies show that in breast cancer cell line and 

patients, the level of miR-194 is related inversely to DNMT3A mRNA or protein level. 

MiR-194 inhibits breast cancer cell motility without modifying the cell cycle distribution. 

The results have been supported by breast cancer tissue array, quantitative real-time PCR, 

and immunohistochemical staining data [247]. Recent work describes that miR-143 

directly regulate DNMT3A by binding with the 3
/
UTR of DNMT3A in colorectal cancer 

[248]. The different splice variants of DNMT3b have a conserved region in the target site 
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of miR-148. This region is conserved in splice variants DNMT3b1, DNMT3b2, and 

DNMT3b4, but not expressed in variant DNMT3b3. miR-148a regulates DNMT3b1, but it 

does not control the expression of DNMT3b3 due to the lack of target sequence. This 

example reveals the importance of splice variant and miRNA specificity in gene 

regulation [249]. DNA methylation is an inseparable part of the epigenetic regulation. 

MiRNA regulates the DNMTs and maintains the cellular homeostasis of gene expression. 

 

Figure 2.1: miR-29 family regulates the DNA methyltransferase (DNMTs) expression: 
DNMT mediated DNA methylation repress transcription. MiR-29 family blocks translation of 

DNMTs by directly interacting with DNMT3A and DNMT3B mRNAs and indirectly affects 

DNMT1 mRNA, which results to passive demethylation of CpG island. Unmethylated CpG island 

induced transcription by RNA polymerase and other transcription factor binding at promoter 

region. Hence, miRNA indirectly induced expression by inhibiting methylation of various genes. 

 

2.3 miRNA gene regulation by DNA methylation 

The expression of miRNA in colon cancer cell line HCT 116 and its derivative, 

which has a double, knock down of DNMT1 and DNMT3B was monitored. It 

demonstrated that about 10% of miRNA expression is regulated by DNA methylation, and 

partial reduction of DNA methylation cannot re-express the miRNA. miR-10a, miR-200b, 

miR-222, and miR-130a were upregulated in the double knockdown cell line [250]. From 
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the analysis of the miRNAs methylation signatures in cancer metastasis and from different 

cancer cell lines it was confirmed that miR-148a, miR-34b/c, and miR-9 can be 

reactivated in cells by using 5-aza-2ʹ-deoxycytidine, which is the inhibitor of DNA 

methyltransferase [251]. miR-34b/c is mostly downregulated in multiple myelomas due to 

epigenetic repression by  promoter methylation [252]. miR-203 which is a tumour 

suppressive miRNA is inactivated in hematological malignancies by hypermethylation in 

the promoter region of the gene of miR-203 [253]. Another tumour suppressive miRNA 

also get repressed in different hematological cancer and solid tumour formation by 

methylation. miR-124-1 in many samples of haematological cancers, including acute 

myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), chronic myeloid 

leukaemia (CML), chronic lymphoblastic leukaemia (CLL), multiple myeloma (MM), B- 

cell, T-cell, and NK-cell NHLs [254] get repressed by hypermethylation. miR-29a 

methylation in Anaplastic large cell lymphoma leads to progression of cancer [255]. 

Philadelphia-negative (Ph-ve) myeloproliferative neoplasms (MPNs) comprise of more 

CpG island methylation of miRNA gene than normal cells. Homozygous miR-34b/c 

methylation is the cause of its repression in those cells. miR-34a, miR-124-1 and miR-203 

are also down-regulated by hypermethylation of promoter of the respective miRNA genes 

in Ph-ve MPN's cells [256] . Sometimes oncogene expression is enhanced by repression of 

miRNA. Oncogene MLL-AF4 expression is enhanced by methylation-mediated repression 

of miR-143. The miR-143 expression is epigenetically repressed by promoter 

hypermethylation in MLL-AF4-positive primary blasts and cell lines, but not in normal 

bone marrow cells and MLL-AF4-negative primary blasts, which was directly associated 

with expression of the MLL-AF4 oncogenes [257]. From this, it is apparent that all the 

epigenetics modifications are inter-related with others modifications. Epigenetic 

modifications not only directly regulate gene expression of cell but also it indirectly 

affects cellular gene expression by modifying other modifications. Such studies in both 

breast and prostate cancers are lacking so here this thesis try to focus on this aspect of 

epigenetics. 

 

2.4 Histone modification and its regulation by miRNA  

The histone coding pattern is regulated by enzymes that add or remove covalent 

modifications in a specific position of histones. Addition and  removal of acetyl group are 

done by enzymes, histone acetyl transferases (HATs) and histone deacetylases (HDACs) 

respectively, whereas methyl group addition or removal is done by histone 
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methyltransferases (HMTs) and histone demethylases (HDMs) [258, 259]. Several histone 

modifiers work together with DNA modifier for epigenetic regulation of genes like 

different HMTs including G9a, SUV39H1, and PRMT5, which can directly recruit 

DNMTs for methylation in specific gene promoter for stable silencing [260, 261]. DNMTs 

can also recruit HDAC and methyl-binding protein for chromatin condensation and gene 

silencing [262, 263] for example H3K9 methylation which leads to heterochromatin 

formation can be directed by MeCP2 recruited by DNA methylation [264]. 

Histone modifiers and microRNA (miRNA) make a networking circuit to control 

various gene expressions. In some cases, miRNA regulates gene expression by regulating 

the histone modifiers, whereas in other cases they both work together and control gene 

expression. In various cancers, HDACs are overexpressed which promote cell 

proliferation and help them in escaping apoptosis. It has been demonstrated that miR-449a 

was down-regulated in prostate cancer tissue, but when miR-449a was introduced into the 

cells, apoptosis, cell-cycle arrest, and senescence were enhanced.  Further analysis proved 

that HDAC 1 is a putative target of miR-449a which is frequently overexpressed in cancer 

[265]. miR-206 and miR-9* is hypothesized to regulate histone acetylation by targeting 

HDACs and HATs. In Waldenstrom Macroglobulinemia (WM) cells having over-

expressed miR-206 and down-regulated miR-9* are characterized by imbalanced 

expression of HDACs and HATs that leads to deacetylation in H3 and H4 by increased 

activity of HDAC. Restoration of miR-9, it downregulates HDAC4 and HDAC5 and 

promotes acetylation [266]. In lung cancer, HDAC1 has been found to be overexpressed 

which plays a crucial role in tumourigenesis. It is seen that the down-expression of miR-

449a/b is one of the main reason for that. miR-449a/b directly bind with the untranslated 

region of HDAC1 and down-regulates its expression thus inhibiting  cell growth and 

anchorage-independent growth of cancerous cells [267]. Alteration in C18 ceramide 

generation by repression of ceramide synthase (CerS1) results in drug-resistant tumour 

cells. HDAC1 and miR-574-5p are the key controller of CerS1 gene. The promoter region 

of the gene is repressed by HDAC1 through inhibition of the transcription factor Sp1, 

which is recruited in the GC box region and miR-574-5p targets the 3’UTR region of the 

mRNA to degrade it. In this scenario, HDAC and miRNA work together to control the 

gene expression [268]. Human pathogenic Kaposi’s sarcoma-associated herpesvirus 

(KSHV) targets the primary endothelial cells (LECs) and induces the expression of miR-

132 which regulates antiviral immunity by targeting p300 transcriptional co-activator. 

Inhibition of miR-132 re-establishes p300 expression that helps in innate antiviral 
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immunity [269]. In murine myogenic C2C12 cells, miR-26a induces creatine kinase 

activity which is evidently increased during myogenesis. Using in-silico approaches, it has 

been found that miR-26a targets the 3′ UTR of histone methyltransferase, Enhancer of 

Zeste homolog 2 (Ezh2) and down-regulates it [270]. In prostate cancer cells, miR-101 

inhibits Ezh2 expressions. The expression of miR-101 is also regulated by the androgen 

treatment and HIF-1α/HIF-1β induction [213] (see Fig-2.2 and Table-2.1). It is now well 

proved by scientists that deregulation of miRNA in cancer is also caused by epigenetic 

modification. Regulation of miRNA in cells attained a great attraction for scientists for 

understanding the epigenetic phenomena of controlling miRNA expression. 

 

 

Figure 2.2:  miRNA-mediated degradation of histone modifiers and transcriptional control: 
HATs, HDAC, HMT's and HDM's control gene transcription and heterochromatinization by 

different histone modifications. miRNA repress the expression of histone modifying enzymes. 

miR-449a, MiR-206 inhibits HDAC expression, miR-9*, miR-132 control HAT expression. 

miRNA arbitrated repression of HDAC, specific HMT (H3K9 methyltransferase, H3K27 

methyltransferase) and specific HDM induce transcription. miR-110 inhibits the expression of 

HMT's (Ezh2) in the different cancer cell. The miRNAs regulate chromatinization by modulating 

the chromatin modifiers 
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Table 2.1 Regulation of epigenetic modifiers by miRNA 

 

 

2.5 miRNA regulation of Chromatin remodelling 

The mystery of cellular functions is hidden behind the wrapping of a 2 m long 

DNA in every cell. This topologically impossible task is made possible by chromosomal 

remodelling. It comprises of a dynamic balance between the genomic accessibility and 

packaging. This intensive packaging is done by histone proteins and histone deposition, 

removal, and modification by a different subset of enzymes. These sets of proteins also 

Name of 

microRNA 

Type of cancer/cell Targeted gene Regulation Reference  

miR-342 Lung DNMT1 Downregulated [243] 

miR-185 Glioma DNMT1 Downregulated [244] 

miR-21 CD4
+
 T Cells DNMT1 Downregulated [245] 

miR-148a CD4
+
 T Cells DNMT1 Downregulated [245] 

miR-152 Scleroderma 

Endothelial Cells  

DNMT1 Downregulated [246] 

miR-194 Breast DNMT3A Downregulated [247] 

miR-143 Colorectal DNMT3A Downregulated [248] 

miR-148 Embryonic Stem 

Cells 

DNMT3B Downregulated [249] 

miR-29b AML DNMT3A, 

DNMT3B, 

Downregulated [217] 

miR-449a Prostate Cancer HDAC 1 Downregulation [265] 

miR-206 Waldenstrom 

Macroglobulinemia 

HATs Downregulation [266] 

miR-9* Waldenstrom 

Macroglobulinemia 

HDAC4 

HDAC5 

Downregulation [266] 

miR-449a/b Lung Cancer HDAC1 Downregulation [267] 

mR-132 Primary Endothelial 

Cells 

p300 Downregulation [269] 

miR-26a C2C12 Cells Ezh2 Downregulation [270] 

miR-101 Prostate Cancer Ezh2 Downregulation [213] 
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work in chromatin remodelling complexes [271]. These remodellers use the energy of 

ATP hydrolysis for opening, removing or reconstructing the nucleosome, the basic unit of 

chromatin [272, 273]. The chromatin remodeller complexes have been divided into four 

families. These complexes are different in the context of their domain, active site, and 

specialized purpose of remodeling, but they all have five basic properties. (a) They have 

more affinity for the nucleosome than DNA. (b) These remodeller complexes have a 

covalent histone modification recognition domain. (c) A DNA-dependent ATPase domain, 

which helps to break the DNA–histone contact.  (d) A regulatory domain which controls 

the ATPase activity. (e) Domains for interaction with other chromatin or transcription 

factors. Together, all these common properties permit the nucleosome for its selection, 

remodelling, and engagement. Although the remodeler families share common properties 

but depending on their unique flanking domain, they have been grouped [274]. 

Individually every family of protein complexes shares conserved regions from yeast to 

human, although slight variations have been found in protein sequence in deep protein 

sequencing. SWI/SNF family is composed of 8 to 14 subunits. In eukaryotes, SWI/SNF 

family remodeler consists of two related catalytic subunits. One is ATPase domain 

containing helicase-SANT and post helicase-SANT, and another is bromodomain. The 

main function of this family is to slide and eject nucleosome from many loci. But this 

complex does not help in chromatin assembly [275].  ISWI family of remodeler contains 2 

to 4 subunits. This family primarily promotes nucleosome assembly and represses 

transcription, whereas some complexes like NURF helps in RNAPII activation [276]. The 

CHD (chromodomain, helicase, DNA binding) family of remodelers consist of 1 to 10 

subunits. CHD remodelers enhance transcription by sliding or ejecting nucleosome [277].  

The INO80 (inositol requiring 80) family remodelers contain more than 10 subunits. This 

family of remodeler has various functions including DNA repair and transcription. It has a 

unique ability to reconstruct the nucleosome by removing canonical H2A-H2B dimers 

with H2A.Z-H2B dimers [278]. The recent intensive study shows miRNA regulation of 

chromatin remodeler complexes in different cancer. miR-221 binds in the 3’UTR of the 

CHD5 protein and down-regulates its protein expression in colon cancer cell line [279]. 

miR-9* and miR-124 promotes the replacement of SWI/SNF subunits, Baf45a, and 

Baf53a with Baf45b and Baf53b in mice which helps in post-mitotic differentiation in 

neurons [280]. Another miRNA miR-84 promotes regulation of development in 

Caenorhabditis elegans by regulating SWI/SNF proteins [281]. miR-99 family targets the 

SWI/SNF chromatin remodelling factor SNF2H/SMARCA5, which is a component of the 
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ACF1 complex [282]. Therefore, chromatin remodelling by miRNA gives us an overview 

of the direct and indirect intrinsic role in their genetic expression. 

 

2.6 In-silico Identification of miRNAs that targets DNMT1 and MLL1 using miRNA 

target prediction algorithms 

In animal system miRNAs are predominantly target the 3' untranslated regions 

(3'UTRs) of respective target genes. Occasionally, it also targets the 5' UTR ORF or 

promoter region of the gene [283] . The actual prediction of miRNA-mRNA interactions 

in the animal system remains challenging due to the complexity and incomplete 

knowledge of the principles of these processes. Hence, it is important to take advantage of 

the newest findings in miRNA biology and their targets prediction algorithms to find 

possible miRNA-mRNA interactions. In recent years various target prediction algorithms 

were developed exploring different approaches, and many methods were developed to 

experimentally validate them. The target sites of the miRNA in animals are not evenly 

distributed within the 3´ UTR rather they tend to cluster at both ends of the 3' UTR [284] . 

In the case of a gene having short 3' UTR, it remains in the 5' part of the 3' UTR [285]. 

There are also some miRNA having multiple target sites of the same miRNA [135, 286, 

287] . Multiple target sites enhance the degree of degradation of mRNA [288], and many 

target prediction algorithms use this feature for searching and scoring. If two miRNA 

same or different, target sites are located closely they can act synergistically [289] . It can 

be surely said that no single model can predict all miRNA-mRNA interactions due to their 

relative heterogeneity. The classification of defining miRNA targets is based on 

complimentary sequence within the 5'  and 3'  of miRNA and three types of sites: (1) 

canonical, (2) 3’-supplementary and 3) 3'- compensatory sites [124]. The canonical site is 

known to have a complete paring within the seed region which determines the certainty of 

the interaction. There are three types of canonical sites [290] : the 7mer1A, that has an 

adenine in position 1 at the 5' end of miRNA, the 8mer having matched adenine in 

position 1 and an additional match in position 8 and the 7mer-m8 that has a match in 

position 8. Most of the validated conserved targets are 7mer canonical sites which are 

highly conserved for miRNAs [146]. But the degree of gene silencing is higher with the 

adenine opposite position 1 of miRNA [291] . There are also known sites with shorter, 6-

nt seed, but they are thought to have limited functionality. All of these groups can have an 

additional pairing within 3´ part of miRNA and corresponding nucleotides of the transcript 

(3'-supplementary sites), but it usually has a less profound effect on target recognition and 
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its efficacy [287]. The effectiveness of miRNA-mRNA target predictions depends on at 

least 3-4 nucleotides consecutively paired in positions 13-16 of miRNA. Sometimes a 

mismatch in the seed can be compensated by additional extended pairing in 3´ part of 

miRNA (3´-compensatory sites). These algorithms not only depends on miRNA-mRNA 

sequence matching, it also takes account for the orthologous sequences alignment, UTR 

context or free energy of complexes’ for efficient target prediction [134]. It restricts their 

search in conservative sequences of human transcriptome with comparatively 

evolutionally distant species such as the mouse, the dog or the fish. It was based on the 

presumption that the target sites of miRNA will be kept unchanged by evolutionary force 

[146, 292]. MiRNA families are also highly conserved between closely related species, 

having many conserved targets [290]. 

In this scenario, various algorithms were used to find miRNA which can efficiently 

target DNA and histone H3 modifications in cancer. DNA methylation is the key 

epigenetic mechanism which facilitates cell-specific gene regulation  [293].  In other hand, 

MLL1 is a methyltransferase which methylates H3K4 and regulates gene expression 

[294].  DNMT1 works as a repressor of a gene and MLL1 work as an activator of genes. 

In cancer, both marks remain dysregulated and cause aberrant gene regulation. From this 

point of view, miRNA which can target DNMT1 and MLL1 in cancer were identified 

using in-silico approaches.   

2.6.1 miRanda algorithm predicted miRNA targeting DNMT1 and MLL1 

This algorithm compares the miRNAs complementarity to 3' UTR regions of the 

mRNA [295]. The final results depend on the binding energy of the duplex structure, the 

conservation of the whole target site and it’s positioning within the 3' UTR. Then the 

algorithm calculates the weighted sum of the match and mismatch scores based upon the 

base pairs and gap penalties. It doesn’t allow the wobble pairing in the seed region which 

is compensated by the matches at the 3' end of miRNAs. It promotes the miRNAs with 

multiple binding sites within the 3' UTR which help to increase the specificity, but it 

underestimates the miRNA with single but perfect base pairing. It takes into account the 

evolutionary relationships of interactions more globally focusing on the conservation of 

miRNAs, relevant parts of mRNA sequences, and the presence of a homologous miRNA-

binding site on the mRNA.  

For identifying the potential miRNA that target DNMT1 and MLL1 miRanda 

miRNA target identification tools were used. This algorithm, it predicts 15 potential 

miRNAs.hsa-miR-185, hsa-miR-148a, hsa-miR-148b, hsa-miR-152, hsa-miR-374b, hsa-
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miR-342-3p, hsa-miR-448, hsa-miR-153, hsa-miR-217, hsa-miR-155 207, hsa-miR-377, 

hsa-miR-379, hsa-miR-410, hsa-miR-140-5p, hsa-miR-340 which can be used for down 

regulating DNMT1. Then the target sequence was analyzed for the conserved region of 

DNMT1 3´ UTR. All the data were tabulated in this chapter.  From the list, those miRNAs 

were picked which target the conserved region of DNMT1 with the highest score 

predicted more than others by this tool.  Using this algorithm, four miRNA hsa-miR-185, 

hsa-miR-148a, hsa-miR-148b, hsa-miR-152 are fulfilling the criteria. For MLL1 it 

predicts more than 50 miRNAs. From the highest score and binding energy, three 

miRNAs were chosen for targeting MLL1, which are miR-148a, miR-152, and miR-193a. 

 

2.6.2 Targetscan algorithm predicts miRNA targeting DNMT1 and MLL1 mRNA   

These algorithms [290]  use different approach to the prediction of interactions of 

miRNAs with mRNAs. Its search for the full complementarity in the miRNA seed region, 

defined as 6-nt long (nucleotides 2-7) and then it extends search up to 21-23 nucleotide-

long fragments representing effective interactions. Then the outcome is classified into 

three groups on the basis of the exact matching of the length and occurrence of the adenine 

base at the first position of mRNA target site which seems to be evolutionarily conserved 

that act as an anchor for the RISC complex. Numerous parameters were identified in 

signal –to-noise outcomes based on the results of experimentally validated datasets. It 

considers seed matching, pairing contribution outside the seed region, AU content 30 nt 

upstream and downstream of predicted site and the distance to the nearest end of the 

annotated UTR of the target gene.  The fundamental importance of the outcome score 

depends on the conserved miRNA binding region among 3´ UTRs seed region. The 

newest version also predicts less conservative miRNA-mRNAs interactions with wobble 

pairings and bulges, especially within 5´ region of miRNA [296]. 

 Targetscan algorithm was used for identification of potential miRNAs which 

targets DNMT1 and MLL1.  This prediction tool uses the complementary region between 

miRNA and mRNA for prediction miRNAs. Using this tool, 3 highly conserved miRNA 

having seed region in the DNMT1 and MLL1 3' UTR was predicted. For DNMT1 all three 

miRNA has 8 mer binding sites in the UTR but for MLL1 only 1 miRNA-binding region 

was 8 mer and others are 7 mer. Those miRNAs also target the conserved region of 

DNMT1 and MLL1, which make these miRNA more potential target of DNMT1 and 

MLL1 in mammals. For DNMT1 the miRNAs which were further analyzed are miR-148a 

miR-152, miR-148b and for MLL1 miR-193a, miR-148a, miR-193b. 
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2.6.3 DIANA-microT algorithm predicted miRNA targeting DNMT1 and MLL1 

This algorithm [36] predicts target by using a 38 nt-long frame which moves along 

the 3´ UTR and analyses the minimum energy of predicted miRNA binding and 

mismatches. Then after every shift, it measured and compared the energy of 100 per cent 

complementary sequence bound to the 3´ UTR region with the predicted duplex. It 

searches for 7-9 nt long complimentary sites in 5’region of the miRNA with the canonical 

central bulge. It also considers 6 nt complimentary with 1 wobble pairing if it shows 

additional pairing in the 3´ region of the miRNA [60]. DIANA-mciroT consider both 

conservative alignment and considers non-conservative sites for scoring the duplex. It 

provides a unique signal-to-noise ratio (SNR) a ratio between a total of predicted targets 

by single miRNA in search 3´ UTR and a total of predicted targets by artificial miRNA 

with a randomized sequence in search 3´ UTR. It also gives the percentage probability of 

the presence of the results by its pairing and conservation profile. 

This tool predicted more than 27 miRNA targeting DNMT1 3´ UTR. The cut-off 

value was set at 0.9 to more specific results. These miRNA has more than one binding site 

in 3´ UTR of DNMT1. From those miRNAs, few miRNAs were used for further work 

which binds to the conserved region and predicted similarity by different other algorithms. 

But when MLL1 searched with this algorithm does not show any potential miRNA with 

higher cut-off score. So when the cut-off score has been lowered, it shows miRNA which 

has a potential binding site in MLL1 3' UTR. All the results were analyzed and further 

processed for experimental validation.  

From the pools of miRNAs, miR-152, miR-148a, and miR-193a were chosen for 

further works. On the view of this following objective are decided to execute.
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Objectives 
As demonstrated in the introduction and literature review sections the study of 

molecular epigenetics is at a juncture where DNA methylation aspect is beginning to 

settle, histone modification aspects are in progress, and miRNA related phenomenology’s 

are beginning to emerge. Introduction of a new thesis in the field of epigenetics is 

thrilling, for there are ample scope to decipher the epigenome and interaction of miRNA 

and chromatin modifiers.  In view of the prevailing concepts and lacunae in the knowledge 

of these fields the objectives of this THESIS are   

 

 

 How the microRNA, miR-152 gene is regulated and modulates the expression of 

DNMT1and DNMT1target genes in breast cancer. 

 

 

 How the microRNA, miR-148a gene is regulated and targets DNMT1and other 

genes in human prostate cancer progression. 

 

 

 To decipher the role of miR-193a in regulation of histone modifier MLL1 and a 

comparison with DNA methylation in prostate cancer 
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3 How miR-152 gene is regulated and influences the expression of DNMT1 and 

DNMT1 target genes in breast cancer 

3.1 Introduction 

 MiRNAs, DNA methylation, and DNMT1 impact gene expression by destroying 

mRNA, silencing transcription and coordinating DNA – histone crosstalk signalling. 

Breast cancer is one of the most abundant cancers and leading cause of cancer related 

deaths in women [297]. In last few decades, it has been reported that breast cancer 

progression has been coupled with signalling pathways and specific molecular 

transcriptional processes [298, 299]. To develop new approaches for prevention, detection, 

and treatment of the disease, we tried to understand the aberrant expression of genes in 

breast cancer.  

Breast cancer cells lacking estrogen receptor (ER), progesterone receptor (PR) and 

epidermal growth factor receptor 2 (HER2) are known as the triple-negative breast cancer 

(TNBC) cells [300-302]. Nearly 20.8% of young breast cancer patients develop TNBC. In 

most of the cases due to its poor prognosis, it rapidly metastasizes within three years 

leading to the death of the patient. More than 90% of cancer-related death is due to 

metastasis. The primary tumours tissues break away from the neighboring cells and 

detached cells enter the circulation system and invade other distant tissues and organs 

directly or through lymph nodes. This metastasis process is regulated by both proteins and 

miRNAs. This is a multistep process initiated by different signalling pathways, causing 

carcinoma cells to undergo an epithelial–mesenchymal transition (EMT) [303].  

miRNAs are small non-coding RNAs consisting of 18-25 nucleotides, regulate 

gene expression by binding to the 3' UTR region of mRNAs, and subsequently, lead to its 

degradation [12, 134, 304]. A single miRNA can target hundreds of mRNAs, and 

eventually down-regulates corresponding protein expression. Regulation of miRNA gene 

by aberrant promoter hypermethylation is an emerging field [305]. miRNA which actively 

down-regulates the oncogenes in cells are regarded as tumour suppressive miRNA (TS-

miRNA). Although many miRNAs are encoded in the intragenic regions of genes, there 

are miRNA encoded by the respective genes. Among different extensive ongoing research 

works, epigenetic modifications in cancer cells is a fascinating one and a challenging topic 

[306, 307]. DNA hypermethylation of tumour suppressor genes, alteration in histone 

modifications and miRNA-mediated gene regulation cause the early manifestation of 

cancer [308]. Recent research elicited that high degree of DNA methylation present in the 
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CpG islands of miR-152 gene. miR-152 remains down-regulated in breast cancer cell lines 

in comparison to the immortalized breast epithelial MCF-10A cells [309] .  However, the 

role of miR-152 in cancer progression or regression or cell death is not clearly understood. 

In gastric cancer, it was illustrated that tumour size and stage depends on the extent of 

down-regulation of miR-152. Recently, miR-152 gene down-regulation was reported to be 

associated with tumour stage and lymph node metastasis in breast cancer [310]. miR-152 

act as a tumour suppressive miRNA by targeting IGF-IR and IRS1, which leads to 

inhibition of PI3K/AKT and MAPK/ERK signalling pathways, HIF-1a and VEGF 

expression in breast cancer. miR-152 regulates various genes, including estrogen receptor 

α gene by destroying/inactivating DNMT1 mRNA [311]. E-cadherin (CDH1) is a 

transmembrane glycoprotein that forms the core of adherent junctions between adjacent 

epithelial cells and linked with actin cytoskeleton [312, 313]. Down-regulation of CDH1 

promotes metastasis, enabling the dissociation of carcinoma cells from one another in the 

tumour. This role of CDH1 has been demonstrated by both in-vitro and in-vivo 

experiments [314-316]. We searched databases and have experimentally demonstrated 

earlier that DNMT1 regulates gene expression by DNA hypermethylation-mediated 

silencing mechanism in breast cancer [317].   

In view of this and to focus a better molecular logic in light of epigenetic tools we 

attempt to elucidate the correlation of miR-152, DNMT1, and CDH1 function. Results 

observed in this study, illustrate that, CDH1 downregulation is directly proportional to the 

suppression of miR-152 function in breast cancer cells. Reduced expression of DNMT1 in 

terms of mRNA and protein levels were observed owing to upregulation in expression of 

miR-152, which might be due to loss of DNMT1 mRNA through physical association of 

miR-152 and mRNA of DNMT1. Recently we have shown that CAV1 gene is regulated 

by histone modifications irrespective of DNA methylation switch in breast cancer [318]. 

Therefore, we traced the modification markers on DNA and histone 3 surrounding the 

promoter DNA of miR-152 gene by ChIP analyses. Stunning results were obtained, 

implicating that there might be a paradoxical role of DNA methylation immediately 

adjacent to histone 3 lysine 4 trimethylation (enrichment of H3K4me3) active marks to 

silence the miR-152 gene. Additionally, when DNMT1 protein function is blocked by 

application of inhibitor, miR-152 expression prevails and destroys the residual of DNMT1 

mRNA. In this condition there will be no DNMT1 protein. Thus DNMT1 target genes will 

be expressed which was shown here as DNMT1/miR-152 switches for on/off of DNMT1 

target genes. Further to this setup, it was defined that DNMT1 downregulation mediated 
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upregulation of CDH1 (hereafter, DNMT1/CDH1 axis) in the presence of overexpressed 

miR-152, prevents migration of TNBC cells. Our data provides novel insights into the 

epigenetic regulation mechanism of transcription of both microRNA and mRNA coding 

genes and enhances the amplitude of cancer epigenome. 

 

3.2 Materials and methods 

 

3.2.1 Search for miR-152 target 

The previous report implicated that miR-152 plays a tumour suppressor role and 

remains silenced by DNA hypermethylation in endometrial cancer [319]. To understand 

the potential molecular mechanism of the miR-152 function we searched for the potential 

target using different databases for miRNA predictions tools such as TargetScan 

(http://www.targetscan.org/), PicTar (http://pictar.mdc-berlin.de/) and microRNA.org 

(http://www.microrna.org/microrna/home.do). Among the approximately 100 targets 

predicted by the prediction depending on the miRNA binding sites with at least 8 mer 

seed-pairing, high context++ score percentile (98) [296] and certain free energy for the 

miRNA binding to be predicted targets of miRNAs we have found that miR-152 

potentially targets the 3′ UTR of the DNMT1 mRNA. 

 

3.2.2 Analysis of DNMT1 and CDH1 expression in breast cancer 

We have collected information from different databases to analyze the expression 

of miR-152 in breast cancer tissue samples and to find out the role of miR-152 in cell 

survival. The effect of miR-152 on cell survival was plotted in Kaplan-Meyers plot. The 

plot was drawn from miRNA database MIRUMIR [320]. To understand the correlation 

between DNMT1 mRNA and extent of DNA methylation of genes we explored different 

online databases. For methylation analysis of genes we extracted data from MethHC 

database [321] and for correlation between DNA methylation and DNMT1 mRNA 

expressions, we have used IST online database (http://ist.medisapiens.com/). The stage-

specific expression of DNMT1 was also analyzed. The correlation graph between DNMT1 

and CDH1 has been established using cBioportal databases (http://www.cbioportal.org/) 

[322, 323]. 

 

 

 

http://ist.medisapiens.com/
http://www.cbioportal.org/
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3.2.3 Cell Culture  

MDA-MB-231, MCF-7, and BT-474 breast cancer cell lines were obtained from 

National Centre for Cell Sciences, Pune (NCCS), India. The cells were grown in 

Leibovitz's L-15 Medium, Minimum Essential Media and Dulbecco’s modified Eagle’s 

medium (GibcoAuckland, New Zealand,) respectively, supplemented with 10% fetal 

bovine serum (FBS) (16000–44; Gibco, Carlsbad, CA), and 100 U Penicillin & 0.1 mg 

Streptomycin in a humidified atmosphere of 5% CO2 at 37°C. 

 

3.2.4 Construction of vectors for luciferase assay 

3′-UTRs of DNMT1 containing an entire miR-152 recognition sequence was 

amplified by PCR from genomic DNA. The PCR product was subcloned into a pcDNA 

Luciferase Vector (A gift from Dr. Patha Sarathi Ray, IISER-Kolkata, West Bengal, 

India). A pcDNA luciferase construct containing the mutations in the seed sequence of 

DNMT1 3′-UTR was synthesized using GeneArt® Site-Directed Mutagenesis System 

(Catalog number: A13282, Thermo fisher scientific). The wild-type construct containing 

the seed sequence was “CAUGCACUG”. In the mutated constructs, three nucleotides 

within the seed sequence “CAUCGUCUG” were mutated, which was denoted in italics. 

All constructs were confirmed by sequencing and transfected as previously mentioned 

procedure.  

 

3.2.5 Luciferase reporter assay 

The cells were transiently transfected with 100 ng of reporter plasmids alone or co-

transfected with different concentrations of (10nM, 20nM and 30nM) miRNA mimics 

using Lipofectamine 2000 according to the manufacturer’s protocol (Invitrogen) in 96 

well plates. The activities of reporter genes with Renilla luciferase and the internal 

standard firefly luciferase were quantified by a Dual-Luciferase Reporter Assay System 

(Promega). Independent triplicate experiments were done for each plasmid construct. 

Three independent experiments were done to calculate the P value and validate the results 

(mean±S.D, P < 0.05). 

 

3.2.6 Transfection with miR-152 mimics, DNMT1 siRNA, and DNMT1 

overexpression vectors independently and in the desired combination  

 For analyzing the effect of miR-152 on cell survival and the existence of DNMT1 

mRNA, miR-152 mimics (Qiagen) was used. Variable concentrations of miRNA mimics 



Chapter-3                                                                                                                           Objective-1                                                                                                               

48 
 

were used to analyze the effective concentration of miR-152 for transfection. Apparently, 

30nM of miR-152 efficiently inhibits the expression of DNMT1 at the protein level. To 

observe the role of DNMT1, DNMT1 siRNA (DNMTi) (Santa Cruz Biotechnology, Inc.) 

was used to suppress the expression of DNMT1. To overexpress, DNMT1, pcDNA3/Myc-

DNMT1 vector (Addgene) was used. miR-152 mimics, DNMTi, the pcDNA3/Myc-

DNMT1 vector, was used to transfect MDA-MB-231 cells along with Lipofectamine 2000 

transfection reagent (Invitrogen) and optimem transfection media (Invitrogen).  Further, 

cells were incubated at 37°C, 5% CO2 for 48 h to carry out different assays. As a control, 

we used control miRNA mimics, siRNA control, and pcDNA3/Myc vectors. 

 

3.2.7 RNA extraction and quantitative reverse-transcription (qRT)-PCR 

Total RNA was extracted using TriReagent (Sigma) according to the 

manufacturer’s instructions. qRT-PCR was performed utilizing the cDNA prepared from 1 

μg of total RNA by RevertAid First Strand cDNA Synthesis Kit (Fermentas) and SYBR® 

Green JumpStart™ TaqReady Mix in the Realplex4Eppendorf system. The PCR were 

carried out using standard protocols, and the cDNA was amplified under the following 

conditions: 95 °C for 2 min, 40 cycles of 95 °C for 30 s, 59.8 °C for 30 s and 72 °C for 30 

s. We analyzed DNMT1 and CDH1, after transfection with miRNA mimics, siRNA, and 

vectors. The mRNA level was normalized to the expression of Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) as housekeeping gene. miRNA was isolated by using 

miRVana™ miRNA Isolation Kit, with phenol (Invitrogen) following manufacturer’s 

protocol. From the isolated miRNA, cDNA of miRNA was prepared using NCode™ 

VILO™ miRNA cDNA Synthesis Kit (Invitrogen) followed by analysis using qRT-PCR. 

For qRT-PCR of miRNA, primers were designed by Invitrogen miRNA primer designing 

protocol. The qRT-PCR of miRNA was done by NCode™ SYBR® Green miRNA qRT-

PCR Kit (Invitrogen.) The cDNA of miRNA was amplified under the following condition 

50
o
C for 2 min, 95

o
C

 
for 2 min 40 cycles of 95

o
C for 15 s, 60

o
C for 30 s. Then all the 

results were interpreted using Eppendorf qRT PCR software. Expression of miR-152 was 

analyzed by normalizing with the expression of U6 small RNA. All the primers sequences 

are mentioned in Table 3.1 Three independent experiments were done to calculate the P 

value and validate the results (mean±S.D, P < 0.05). 
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Table 3.1 Primer list 

Gene Forward Primer Reverse Primer 

DNMT1 CCATCAGGCATTCTACCA CGTTCTCCTTGTCTTCTCT 

CDH1 CGAGAGCTACACGTTCACGG GGGTGTCGAGGGAAAAATAGG 

β-actin CTGGAACGGTGAAGGTGACA AAGGGACTTCCTGTAACAACGCA 

miR-152 CCGTCAGTGCATGACAGAACTTGG Universal Reverse Primer for miRNA 

U6 CGCTTCGGCAGCACATATAC TTCACGAATTTGCGTGTCAT 

 

3.2.8 Chromatin immunoprecipitation (ChIP) assay 

ChIP assay was done using H3K4me1 Rabbit anti-Human Polyclonal Antibody 

(Invitrogen, 49-1003), H3K4me2 Rabbit anti-Human Polyclonal Antibody (Invitrogen, 

49-1004), H3K4me3 Rabbit anti-Human Polyclonal Antibody (Invitrogen, 49-1005), 

Rabbit anti-Human Polyclonal H3K9me3 (49-1008, Invitrogen), rabbit Anti-Histone 

H3K27me3 antibody (ab6002, Abcam), and the experiment was performed according to 

the manufacturer’s instructions of Imprint Chromatin Immunoprecipitation Kit (Sigma). 

PCR and Real-time PCR techniques were used to analyze ChIP precipitated DNA. For 

RT-PCR (Realplex
4
Eppendorf) analysis SYBR® Green JumpStart™ TaqReadyMix 

(Sigma) was used. Sonicated DNA was used as PCR template and analysis with PCR 

condition 95°C for 2 min, followed by 40 cycles of 95°C for 20s alternating with 58°C for 

30s annealing and 72°C extension for 30s. miR-152 5'-AGAGGAGGCCTGTCCTGAGT-

3′ (sense) and 5'-CGGGTAGACTCCAGAAGCAT-3' (antisense) and GAPDH 5'-

CAATTCCCCATCTCAGTCGT-3' (sense) 5'-TAGTAGCCGGGCCCTACTTT-

3'(antisense) were amplified for analysis. Anti-mouse IgG precipitated DNA was used as a 

template for negative control. Nonspecific antibody (mouse IgG) precipitated DNA was 

used for normalization. % Input has been calculated by following formulas: ΔCt 

[normalized ChIP] = (Ct [ChIP] - (Ct [Input] - Log2 (Input Dilution Factor)) 

Where, Input Dilution Factor = (fraction of the input chromatin saved)
-1

 

The default Input fraction is 1% which is a dilution factor of 100 or 6.644 cycles (i.e. log2 

of 100). Thus, subtract 6.644 from the Ct value of the 1% Input sample as mentioned in 

the equation above. % Input = 2 
(-ΔCt [normalized ChIP])

 

 



Chapter-3                                                                                                                           Objective-1                                                                                                               

50 
 

3.2.9 Confocal microscopic analysis of DNMT1 and CDH1 expression 

For confocal microscopic observations, MDA-MB 231 cells were grown on 18 

mm coverslips. Cells were transfected with miR-152 mimics, DNMTi, pcDNA3/Myc-

DNMT1 vector; To analyze DNMT1 and CDH1 expression, the cells were then fixed with 

ice cold methanol for 10 min, permeabilized with 0.1% Triton X-100 in PBS (PBST) and 

blocked with 1% BSA-PBST for 30 min at RT. For DNMT1 and CDH1 protein 

localization, cells were incubated with anti DNMT1 primary antibody [Dnmt1 (H-300) sc-

20701 Santa Cruz Biotechnology] and anti-E Cadherin antibody [(ab15148)Abcam] at 

1:500 dilution in 1% BSA in PBST for 1h at RT, followed by staining with goat anti-

rabbit IgG-FITC [goat anti-rabbit IgG-FITC  sc-2012, Santa Cruz Biotechnology] for 30 

min. After wash, cells were stained with DAPI and dry coverslips mount with ProLong® 

Gold Antifade Mountant (Thermo fisher) and observed by Laser scanning confocal 

microscope (Leica) with 63x magnification and digital zoom. Three independent 

experiments were done to validate the results (mean±S.D, P < 0.05). 

 

3.2.10 Western blotting 

The cells were grown up to 80–85% confluence and then transfected with miRNA 

mimics, siRNA, and vectors for 24 hours before harvesting. The cells were then harvested, 

washed with PBS and lysed using RIPA buffer (Sigma). Then the cells were kept in 4
o
C 

for 10 min to complete the cell lysis, and lysate was centrifuged at 8000 g for 10 min at 

4
o
C. Same amount of protein was loaded in 10% SDS-PAGE for electrophoresis. Then 

separated proteins were transferred onto PVDF membrane. After blocking the membrane 

with 5% BSA in PBST solution, the membrane was incubated with specific primary 

antibody [Dnmt1 (H-300) sc-20701 Santa Cruz Biotechnology and anti-E Cadherin 

antibody (ab15148) Abcam] overnight at 4
o
C. Subsequently, the membrane was washed 

three times; 10 min/each time with PBST buffer, and incubated again with an appropriate 

HRP conjugated secondary antibody [Goat anti-rabbit IgG-HRP sc-2004 Santa Cruz 

Biotechnology] at 37°C for 2 h. The membranes were washed with PBST buffer and were 

developed by Supersignal West Femto-chemiluminescent substrate (Thermo Scientific). β 

Actin protein levels were used as a control for adequacy of equal protein loading. Three 

independent experiments were done to calculate the P value and validate the results 

(mean±S.D, P < 0.05) 

 

 

http://www.scbt.com/datasheet-20701-dnmt1-h-300-antibody.html
http://www.scbt.com/datasheet-20701-dnmt1-h-300-antibody.html
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3.2.11 Analysis of cell migration by wound-healing assay 

For analysis of cell migration, cells were plated onto the 60-mm dish to create a 

confluent monolayer and incubated at 37 °C, allowing cells to adhere and spread on the 

substrate completely. The cells grew up to 90% confluence, and then a scratch was made 

on a uniform layer of cells using a sterile micropipette tip. The debris was removed, and 

the edge of the scratch was smoothed by washing the cells once with 1 ml of the growth 

medium and then replaced with 3 ml of medium specific for the in vitro scratch assay. To 

obtain the same field during the image acquisition markings were created to be used as 

reference points close to the scratch. The reference points can be made by etching the dish 

lightly with a razor blade on the outer bottom of the dish or with an ultra fine tip marker. 

After the reference points had been made, the plate was placed under a phase-contrast 

microscope, and reference mark was left on the image capture field but within the 

eyepiece field of view. The first image of the scratch was taken at 0 hours. The dish was 

incubated 24 h for different concentration of miR-152 mimics. After the incubation, the 

dish was placed under a phase-contrast microscope; the reference point was matched; the 

photographed region was aligned to acquire the second image. Three independent 

experiments were done to calculate the P value and validate the results (mean±S.D, P < 

0.05). 

 

3.2.12 Chromatin condensation assay 

After treatment with different concentration of miR-152 mimics for the specific 

time, cells were stained with Hoechst 33342 stain (1 mg/ml) and incubated for 10 min at 

37 °C. Images were observed under ~460 nm emission of Hoechst 33342 dye using 

Epifluorescent Microscope (Olympus IX71). Three independent experiments were done to 

calculate P value and validate the results (mean±S.D, P < 0.05). In each condition, 5000 

cells were counted to analyze the result. 

 

3.2.13 Statistical analysis 

All data are presented as mean ± SD. Statistical analysis was performed using the 

Student’s t- test by SPSS software. Values of P < 0.05 were considered as significant 

value. 
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3.3 Results  

3.3.1 Database screening for expression profile of miR-152, DNMT1, and CDH1 in 

clinical samples and cell lines 

To test the impact of TS-miR-152 in cell survival, we have searched the expression 

pattern of miR-152, DNMT1, and CDH1 in breast cancer database. We have analyzed the 

miR-152 level and survival rate from those breast cancer samples by Kaplan-Meir survival 

analysis. We find that the high expression of miR-152 is correlated with increased survival 

of patients (Fig.3.1 A).  

Thereafter, we have analyzed the miR-152 level in Luminal A, Luminal B, and 

basal subtype cell lines, MDA-MB-231, which is an invasive TNBC cell line. It is 

apparent that miR-152 was significantly downregulated in breast cancer tissues and in all 

the three cell lines. The extreme level of down-regulation is noticed in MDA-MB-231, 

which is critical for breast cancer progression. Extent of downregulation of miR-152 was 

1.3, 2.1and 5.4 folds MCF-7, BT474 and MDA-MB-231 cell lines respectively, keeping 

HaCaT cell line as control (Fig.3.1 B).  

 

Figure 3.1: miR-152 expression and breast cancer development: 
[A] Overall survival was analyzed by Kaplan–Meier plot. [B] miR-152 expression level in BT-

474, MCF-7 and MDA MB 231 cell lines compared to HaCaT cells, (n=3 independent 

experiments, mean±S.D.), P < 0.05. 
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3.3.2 Poor prognosis is associated with higher DNMT1 expression 

To define the role of DNMT1 in breast cancer according to the current objectives 

we have analyzed DNMT1 mRNA expression status from the clinical samples utilizing 

Genesapience database. The results implicate that DNMT1 expression is highly stage-

specific as breast cancer progresses. It is also noticed that trend of DNMT1 expression 

increases as breast cancer progresses from stage 1 to stage 3 (lower grade to higher grade). 

We have analyzed further that, although the expression of DNMT1 increases with the 

grade of cancer, it exhibits differential expression pattern in basal, Her2, Luminal A and 

Luminal B stages of breast cancer. DNMT1 expression increases with the lower grade to higher 

grade cancer stage. With respect to normal cells, the DNMT1 expression gradually increases in 

luminal A, Luminal B and basal type of breast cancers. DNMT1 expression is highest in basal type 

cells. The association of DNMT1 and aberrant DNA methylation in cancer progression is 

beyond doubt; however, apart from DNA methylation, how DNMT1 controls the 

expression of a distinct set of genes as cancer progresses from one stage to other remains 

to be resolved (Fig. 3.2 A). 

 

3.3.3 DNMT1 and CDH1 expression are inversely correlated with breast cancer 

progression 

CDH1 expression was reported to be inversely proportional to the DNMT1 in 

breast cancer. CDH1 gene remains silent in metastatic cells. Most of the publicly available 

database (Fig. 3.2 B) and heat map expression analysis in most of the cases confirmed that 

where DNMT1 is highly expressed, CDH1 is downregulated (Fig. 3.2 C). Highest level of 

CDH1 downregulation was observed in basal type cells with respect to normal, luminal A, 

Luminal B-type cells. This is also associated with poor survival rate. Moreover, analysis by 

correlation curve established that DNMT1 and CDH1 expression is inversely proportional 

in breast cancer cells. Correlation curve of DNMT1 and CDH1 expression in clinical breast 

cancer samples shows that higher CDH1 expression was correlated to lower DNMT1 level (Fig. 

3.2 D).  From these analyses, it was further confirmed that in breast cancer DNMT1 plays 

a crucial role to downregulate CDH1 gene (Fig. 3.2). miR-152 was also downregulated in 

breast cancer, but no report direct or indirect was there on the involvement of miR-152 in 

CDH1 gene regulation; the link was missing. We hypothesize that CDH1 is regulated by 

miR-152/DNMT1 switch in breast cancer. To evaluate the hypothesis, we performed 

several experiments with MDA-MB-231, the same cell line which exhibited lowest miR-

152 level. 
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Figure 3.2: DNMT1 and CDH1 expression and their correlation: 

Panel [A] Database analysis of DNMT1 expression in different stages of breast cancer. The 

differences are analyzed statistically, and P value is highly significant P< 0.001.  [B] Database 

analysis of CDH1 expression in different stages of breast cancer. [C] Heat map expression analysis 

of DNMT1 and CDH1 expression in prostate cancer samples. [D] Correlation curve of DNMT1 

and CDH1 expression in clinical breast cancer samples. CDH1 expression (x- axis) correlated to 

DNMT1 level (y-axis). P value is highly significant P< 0.001 

 

3.3.4 H3K4 tri-methylation (H3K4me3) is not sufficient to overcome the repressive 

DNA methylation signal of the miR-152 gene promoter  

In quest of the correlation between miR-152 and DNMT1 expression, first, it was 

demonstrated that DNMT1 expression is very high in MDA-MB-231 cell line at both 

mRNA and protein levels, while miR-152 gene remains silent. To understand the reason 

and mechanism of silencing of the miR-152 gene we evaluated the promoter DNA 

methylation and occupancy of modified histone 3 marks. DNMT1 is a well-established 

enzyme for its ability to methylate DNA and silence gene expression [29]. 

http://methhc.mbc.nctu.edu.tw/php/index.php database analysis confirms that promoter 

region of miR-152 is methylated in clinical breast cancer samples. This database has 
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stored information regarding the correlation between expression of genes and DNA 

methylation % at promoter region. Data mining from above database indicates a negative 

correlation value. The -0.11 correlation value represents that % of DNA methylation at 

promoter region, and miR-152 expressions are inversely correlated. Further, the P value 

(P= 0.005) is confirming that our evaluation is statistically highly significant (Fig. 3.3).  

To clearly focus on the histone marks enrichment at miR-152 gene promoter 

region, ChIP analyses on H3K4me, H3K4me2, H3K4me3, H3K9me3 and H3K27me3 

revealed that miR-152 gene remains silent along with the enrichment of H3K4me3 

expressive mark in the promoter region [32]. Surprisingly, the occupancy of the repressive 

marks, H3K9me3 and H3K27me3 were low. The level of H3K4me, H3K4me2, 

H3K4me3, H3K9me3, and H3K27me3 marks were 0.11, 0.11, 1.19, 0.06 and 0.18 folds 

respectively (Fig. 3.3 A and B). From these observations, it was concluded that miR-152 

gene is regulated mainly by its promoter DNA methylation. However, it was essential to 

confirm that DNMT1 activity is essential to regulate the miR-152. Hence, MDA-MB-231 

cells were transfected with DNMT1 siRNA to knock down the DNMT1 expression and 

found that the miR-152 expression restored (Fig. 3.3 C and D).  These results on the role 

of DNMT1 in repressing miR-152 gene are validated by DNMT1 overexpression upon 

transfection of cells with DNMT1 vector. DNMT1 overexpression associated 

downregulation of the miR-152 gene is apparent (Fig. 3.3 E). The expression levels of 

miR-152 were 5.49 and 0.55 in DNMT siRNA treated and pcDNA3/MycDNMT1 

transfected cells, respectively. Results of these crucial experiments validate that miR-152 

gene remains silent by DNMT1 overexpression in breast cancer apparent (Fig. 3.3 F). 

. 
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Figure 3.3: Epigenetic regulation of miR152 by DNMT1: 

[A] Histone posttranslational modifications, H3K4me1, H3K4me2, H3K4me3, H3K9me3, and 

H3K27me3, in the promoter region of miR-152 was analyzed by PCR amplification. Where mouse 

IgG precipitated DNA used as negative control. [B] RT-PCR analysis of H3K4me1, H3K4me2, 

H3K4me3, H3K9me3, and H3K27me3 occupancy in the promoter region of miR-152. (mean±s.e., 

n=3 independent experiments with 3 replicas in each experiment). P < 0.05. [C] MDA-MB-231 

cells were transfected with control siRNA, DNMT1 siRNA, pcDNA3/Myc, pcDNA3/Myc-

DNMT1 and DNMT1 expression were anlyzed by western blot. β-actin was used to confirm equal 

protein loading. [D] Relative DNMT1 expression represented graphically (n=3 independent 

experiments, mean±S.D.), P < 0.05. every western blot images were analyzed by Image J software. 

[E] Bioinformatic analysis of promoter DNA methylation and miR-152 expression in clinical 

breast cancer samples from http://methhc.mbc.nctu.edu.tw/php/index.php database. [F] 

Transfected MDA-MB-231 cells were analysed for miR-152 expression by RT-PCR where the 

miR-152 level in control siRNA for DNMT1 siRNA and pcDNA3/Myc for pcDNA3/Myc-

DNMT1 transfected cells was normalized to 1, (n=3 independent experiments, mean±S.D.), P < 

0.05. 

 

 

3.3.5 miR-152 expression restores CDH1 expression via DNMT1 downregulation 

DNMT1 overexpression and miR-152 gene downregulation are associated with 

invasive breast cancer progression. To explore the functional consequences of DNMT1, 

miR-152 and CDH1 different experiments was done using miR-152 mimics. To determine 

the effective concentration of miR-152 mimics, three different concentrations of mimics 

http://methhc.mbc.nctu.edu.tw/php/index.php
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were used for transfection to downregulate DNMT1. We noticed that all three different 

concentrations 10 nM, 20 nM and 30 nM of miR-152 mimics gradually decrease the level 

of DNMT1 expression in respect to control mimic-treated cells. The DNMT1 mRNA level 

was decreased up to 0.78, 0.55 and 0.25 folds in 10 nM, 20 nM and 30 nM of miR-152 

mimics treated MDA-MB-231 cells respectively (Fig. 3.4 A). Further, no change in 

cellular morphology was observed by most effective concentration (30 nM) of miR-152 

mimics. Hence, cellular extracts from treatment of cells at 30 nM of miR-152 mimics was 

used for protein expression analysis. Significantly, there was negligible DNMT1 protein 

expression (Fig. 3.4 B and C). 

To validate that miR-152 physically interacts with DNMT1 mRNA, luciferase 

activity assay was performed. MDA-MB-231 cells were co-transfected with control mimic 

or miR-152 mimics and luciferase DNMT1 3'UTR or luciferase mutated 3'UTR of 

DNMT1 vectors (Fig. 3.4 D). After 24 hours of transfection, luciferase activity was 

measured from 10 nM, 20 nM and 30 nM of the miR-152 mimics where no distinct 

expression was noted in mutated 3'UTR vector and miR-152 (30nM) co-transfected cells 

with control (Fig. 3.4 A). However, control mimic transfected both types of cells (DNMT1 

3'UTR and DNMT1 mutated 3'UTR containing cells) exhibited no variation (Fig. 3.4 B 

and E). 

CDH1 gene is downregulated in MDA-MB-231 TNBC cell line. At the above-

mentioned concentrations of miR-152 mimics, MDA-MB-231 cells were treated for RT-

PCR and western blotting analysis of CDH1 gene products. The mRNA levels of CDH1 

gene was increased by 1.5, 3.0, and 6.39 with respective dosages of 10, 20 and 30nM of 

miR-152 mimics (Fig. 3.5). The CDH1 protein level at 30nM of miR-152 mimics 

treatment caused 9.47 folds overexpression (Fig. 3.5 C and D). It is worthwhile to note 

here that miR-152 does not have any seed region in the CDH1 mRNA, so one can easily 

predict that miR-152 treatment induced upregulation of CDH1 is caused via 

downregulation of DNMT1. Inactivation/downregulation of DNMT1 release the DNA 

methylation stress and helps in the expression of CDH1; which was confirmed by reverse 

experiments, where cells were transfected with DNMT1 siRNA and DNMT1 

overexpression vector, and CDH1 gene expression was analyzed. 
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Figure 3.4:  DNMT1 expression is regulated by miR-152: 

Panel [A] DNMT1 mRNA level was measured by RT-PCR in control miR-mimic and miR-152 

transfected MDA-MB-231 cells. The DNMT1 level in control miR-mimic treated cells was 

normalized to 1, (n=3independent experiments with 3 replicas in each experiment, mean±S.D.). P 

< 0.05.  [B] DNMT1 expression level in miR- control mimic and miR-152 mimic-treated cells was 

observed by western blot analysis. β-actin was used to confirm equal protein loading. [C] 

Graphical representation of relative DNMT1 expression was analyzed by Image J software (n=3 

independent experiments, mean±S.D.). P < 0.05. [D] Three different luciferase vector were 

constructed by using specific sequence in luciferase vector. Seed region of wt-DNMT1-UTR was 

used to construct DNMT1 3′ UTR WT (5'-CAUGCACUG-3'), has-miR-152 (5'-GUACGUGAC-

3') and DNMT1 3′ UTR-MUT (5'-CAUCGUCUG-3') luciferase vectors. Red colour indicated the 

mutated bases in mut-DNMT1 UTR vector. [E] Luciferase activity was measured in microRNA 

mimics and pcDNA expression constructs co-transfected MDA-MB-231 cells. Renilla luciferase 

activity was normalized first to firefly luciferase activity and then to the values measured for the 

parental vector pcDNA. (n=3 independent experiments, mean±S.D.). P < 0.05. 

 

3.3.6 In vitro analysis of DNMT1 and CDH1 expression after DNMT1 vector, 

DNMT1 siRNA, and miR-152 transfection 

DNMT1 and CDH1 expressions in MDA-MB-231 and MCF-7 cells were analyzed 

after transfecting the cells with pcDNA3/Myc-DNMT1 vector, DNMT1 siRNA and miR-

152 (30nM). After 48 h of treatment cells were visualized under a confocal microscope, 

and it is distinctly noticeable that after transfection with DNMT1 vector, DNMT1 protein 
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expression was higher than pcDNA3/Myc transfected cells (Fig. 3.6).  After treatment 

with DNMT siRNA DNMT1 expression level was much lower than control siRNA-

transfected cells (Fig. 3.6). Similarly, after treatment with miR-152 mimics cells also 

exhibit a lower level of DNMT1 expression (Fig. 3.6). The expression pattern of CDH1 is 

also visualized after the respective treatment as mentioned above. It was noted that, miR-

152 (Fig. 7) and DNMT1 siRNA (Fig. 3.7) treatment induced expression of CDH1 than 

respective control cells. Noticeably, in DNMT1 overexpressing cells (pcDNA3/Myc-

DNMT1 transfected cell) CDH1 expression was not significant compared to the respective 

control cells (Fig. 3.7). Collectively, these data clearly demonstrated that DNMT1 

downregulation restores CDH1 mRNA and protein expression and DNMT1 

overexpression repress CDH1 gene. 

To confirm these findings MCF-7 cells were used where CDH1 expression is 

present. When cells were transfected with DNMT1 vector it supresses CDH1 expression 

but DNMT1 siRNA and miR-152 mimics shows higher expression than control cells. It 

confirms that CDH1 expression is regulated by DNMT1 and can be restored by inhibiting 

DNMT1 expression.  

 

Figure 3.5: CDH1 is regulated by DNMT1 and miR-152 expression: 

Panel [A] CDH1 mRNA level was analysed by RT-PCR on treatment with control miR-mimics 

and miR-152 mimics at 10, 20 and 30nM concentrations in MDA-MB-231 cells. The CDH1 level 

in control miR-mimic treated cells was normalized to 1, (n=3 independent experiments with 3 

replicas in each experiment, mean±S.D.), P < 0.05. [B] MDA-MB-231 cell was transfected with 

control siRNA, DNMT1 siRNA, pcDNA3/Myc, pcDNA3/Myc-DNMT1 and was analysed for 

CDH1 mRNA expression by RT-PCR. The CDH1 level in control siRNA for DNMT1 siRNA and 

pcDNA3/Myc for pcDNA3/Myc-DNMT1 transfected cells was normalized to 1 (n=3 independent 
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experiments with 3 replicas in each experiment, mean±S.D.). P < 0.05. [C] Control miR-mimic, 

miR-152 mimic (30nM), control siRNA, DNMT1 siRNA, pcDNA3/Myc and pcDNA3/Myc-

DNMT1 transfected MDA-MB-231 were subjected for western blot analysis to observe the CDH1 

level. β-actin was used to confirm equal protein loading. [B] Graphical representation of CDH1 

protein expression with respective control was analysed by Image J software (n=3independent 

experiments, mean±S.D.) 

. 

 

Figure 3.6: Immunofluorescence imaging of DNMT1 in MDA-MB-231 expression by 

confocal microscopy: 

Panel DNMT1 expression were analysed after transfected with pcDNA3/Myc-DNMT1, DNMT1 

siRNA, and miR-152 mimic. DNMT1 expression is in green (FITC conjugated secondary anti-

rabbit antibody), and DAPI standing shows nucleus in blue. 
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Figure 3.7: Immunofluorescence imaging of CDH1 in MDA-MB-231 expression by confocal 

microscopy: 

CDH1 expression  were analysed after transfected with pcDNA3/Myc-DNMT1, DNMT1 siRNA, 

and miR-152 mimic. CDH1 expression is in green (Alexa fluor 488 conjugated secondary anti-

rabbit antibody) and DAPI standing shows nucleus in blue. 
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Figure 3.8: Immunofluorescence imaging of CDH1 in MCF-7 expression by confocal 

microscopy: 

CDH1 expression  were analysed after transfected with pcDNA3/Myc-DNMT1, DNMT1 siRNA, 

and miR-152 mimic. CDH1 expression is in green (Alexa fluor 488 conjugated secondary anti-

rabbit antibody) and DAPI standing shows nucleus in blue. 

 

3.3.7 Ectopic expression of miR-152 inhibits cellular migration of MDA-MB-231 

Based on our bioinformatics search and experimental results, that miR-152 is 

functionally linked with the restoration of CDH1 protein; our next goal was to sort out the 

role of miR-152 in cellular migration. The cancer cells exhibit migration properties which 

cause the progression of the disease [33]. In MDA-MB-231 cells the CDH1 gene is fully 

suppressed. This cell line shows a higher migratory rate than other breast cancer cell lines, 

MCF-7, and BT-474. All these cell lines were transfected with different concentration of 

miR-152 mimics, and migration efficiency of the cells are visualized. At 30mM of miR-

152 mimics, highest inhibition is traced. These data demonstrated that miR-152 mimics 

can inhibit cell migration effectively (Fig.3.8 A and B).  

 

 



Chapter-3                                                                                                                           Objective-1                                                                                                               

63 
 

3.3.8 Chromatin decondensation level increases after miR-152 mimics treatment  

It was previously reported that chromatin condensation increase the rate of cellular 

migration [324]. So, observing that miR-152 is inhibiting cellular migration by DNMT1 

downregulation and CDH1 upregulation, it was determined that the effect of miR-152 on 

chromatin condensation. As previously described, the cells were transfected with different 

concentration of miR-152 mimics and observed the chromatin condensation using Hoechst 

33342 stain. We found out that the rate of decondensation was highest at 30nM of miR-

152 mimics (Figure 3.8 C and D). 

 

 

Figure 3.9: Effect of miR-152 on wound healing and chromatin condensation 
MDA-MB-231 after transfected with three different concentrations (10nM, 20nM, 30nM) of miR-

152 mimic. After 48h results were analysed.  [A] The wounded areas and [B] condensed chromatin 

were analysed under 100x and 200x respectively with an inverted microscope. The representative 

images of Hoechst 33342 stained highly condensed nuclei (red arrow) are shown.Panel [C] 

Quantity of migrated cells that presents an average from three independent experiments was 

counted. Statistical analysis (n=3, mean±S.D.) P<0.05. [D] Percentage of condensed nuclei in 

miR-152 mimic transfected MDA-MB-231 cells represented graphically [A] (n=3 independent 

experiments, mean±S.D.). P < 0.05. 
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3.4 Discussion  

During the last two decades, discoveries on epigenetic regulation of genes by DNA 

and histone methylation, histone acetylation and other types of molecular modifications of 

the euchromatin has strengthened the understanding of tumour development and cancer 

progression. Investigations on the role of the epigenetic factors in regulating the onset and 

progression of TNBC is also given major emphasis; since this type of cancer accounts for 

highest mortality among the breast cancer patients. Prime factor for cancer progression is 

aberrant DNA methylation; genome-wide hypomethylation and gene-specific promoter 

hypermethylation of tumour suppressor genes. This hypermethylated part of the genomic 

DNA makes complex with MBD proteins to precipitate as inactive chromatin and thus 

facilitates gene repression, tumour development, and aggressive progression of cancer [9, 

94, 325]. In the case of leaky transcription of the genome, mRNAs are destroyed by 

second line of the guard, the miRNAs. The role of miRNA and underlying molecular 

mechanism in regulating the progression of cancer has drawn special attention. Previous 

reports on the breast, and hepatocellular carcinomas clearly depicted the role of miR-152 

as a putative tumour suppressor that destroys DNMT1 mRNA [309, 326]. Moreover, 

inhibition of cell proliferation, motility, and induction of apoptosis by Wnt-1, ERK1/2, 

AKT and TNFRS6B signalling was linked with miR-152 function [326]. However, the 

mechanism of silencing of miR-152 during breast cancer progression was an unexplored 

issue (Fig. 3.1). In this study, it was reported that molecular epigenetic regulation pattern 

of miR-152 in light of DNMT1 knockdown and overexpression conditions (Fig 3.2 and 

Fig. 3.3). Results obtained on luciferase assay suggest that miR-152 is a potent as well as a 

direct modulator of DNMT1 in MDA-MB-231 cell line (Fig.4). It is well established that 

hypermethylation of genes is associated with high DNMT1 expression and silencing of the 

miR-152 gene.  

In many cases, cancer progression is associated with the aberrant expression of the 

developmental genes, and upregulation of housekeeping genes. The aberrant expression of 

epithelial to mesenchymal transition (EMT) related genes is well documented in 

tumourigenesis [327]. EMT genes provide us a new basis for understanding cancer cell 

progression during metastasis. CDH1 gene is one of the essential genes for EMT, which 

plays a crucial role as a ‘gatekeeper of the epithelial cells'. The partial loss of CDH1 gene 

expression was observed due to aberrant DNA methylation in various forms of breast 

cancer. Thus, restoration of CDH1 gene expression can be crucial for controlling the 

cancer progression and metastasis [328]. It was previously reported that CDH1 gene is 
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repressed by promoter DNA methylation [329]. It was hypothesized that DNA 

demethylation of CDH1 gene promoter might enhance CDH1 protein expression. The 

decrease of DNMT1 protein by an increase of miR-152, inactivation of enzymatic 

function of DNMT1 would be alternative ways of reducing DNA methylation of genes, 

which is known as passive demethylation of DNA [237, 330]. Analysis of CDH1 promoter 

using bioinformatics tools showed that DNA hypermethylation is associated with CDH1 

down-regulation in breast cancer (Fig. 3.2). In light of these, it was tried to establish that 

the relationship between CDH1 gene methylation and DNMT1 protein expression. In 

TNBC MDA-MB-231 cell line, CDH1 gene is repressed. The expression levels of CDH1 

gene after the ectopic expression of miR-152 were analyzed. Results directly indicated 

that increasing concentration of miR-152 mimics helps in the restoration of CDH1 gene 

expression dose dependently at both mRNA and protein levels (Fig.5). To further 

strengthen the findings, CDH1 expression after DNMT1 overexpression and DNMT1 

downregulation were analyzed. It is apparent that down-regulation of DNMT1 helps in 

restoration of CDH1 gene expression, whereas, in DNMT1 overexpression condition 

CDH1 gene remain silent (Fig. 3.5 Panel C, Figs. 3.6 & 3.7). It was concluded that in in 

vivo conditions miR-152 helps to restore CDH1 function via modulation of DNMT1 

enzymatic activity. This result also implicates additional functions, other than DNA 

methylation, is played by DNMT1 in TNBC. 

Confirmation of CDH1 protein function is demonstrated directly by inhibition of 

cellular migration and also, indirectly, by chromatin de-condensation. CDH1 acts like 

bridges between adjacent cells that hold cells together and prevent motility. During cancer 

progression, loss of CDH1 function is directly proportional to the ability of cell migration 

[331].  In this chapter, it is reported that increasing amount of miR-152 mimics 

proportionately decrease DNMT1 protein, increase CDH1 protein expression, and inhibit 

cell migration (Fig 3.8). This data confirms that loss of CDH1 function in TNBC is not 

due to mutation but by reversible DNA methylation. Inhibition of cell migration is 

accompanied with chromatin de-condensation. De-condensation of chromatin was also 

observed after ectopic expression of miR-152, comparison to the control (Fig 3.8). 
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4. How the microRNA, miR-148a gene is regulated and targets DNMT1 and other 

genes in human prostate cancer progression. 

 

4.1 Introduction  

Prostate cancer is the most common cause of death due to cancer among men. It 

was estimated that 180,890 new cases of prostate cancer would appear in 2016, as 

reported this year, among them 26,120 deaths are predicted in the US according to NIH 

report. Currently, prostate-specific antigen (PSA) testing, digital rectal examination and 

histopathological evaluation of prostate needle biopsies are in use for detection and 

monitoring the progression of cancer. Prostate cancer Gleason score (Gleason grading 

system) was evaluated by the degree of loss of normal glandular tissue architecture of the 

cancer patient. However, sometimes prostate cancer varies and behaves uniquely than 

their corresponding Gleason score group [332]. In the current era of epigenetics, it has 

been emerged that, post-transcriptional regulation of genes by miRNA plays a vital role in 

translational biology that regulates physiological functions. miRNAs are small non-coding 

RNA that consists of 18-25 nucleotides, which binds to the target mRNA and in most of 

the case degrades it or in few cases increase its self-life. miRNA can bind in the 3' UTR or 

protein coding region where it degrades it and inhibits protein expression or in 5' UTR 

where it helps in the protein expression. miRNA regulates some biological process 

including development, proliferation, differentiation and apoptosis. The dysregulation of 

miRNA expression and functions has been observed in various cancers. The miRNAs that 

targets oncogenes are known as tumour suppressive miRNA and remain downregulated 

during tumour development and cancer progression. There are oncomiR which targets 

tumour suppressive genes are upregulated in cancers. Previously it was suggested that 

miRNA can act as a diagnostic marker for cancer which shows a specific profile [333]. 

But more studies discover that miRNA can be used as therapeutic agents for cancers 

treatment [334]. In solid tumours like colon [335], breast [336], bladder [337] and 

pancreatic cancer, miRNA expression follows a specific pattern. But in the case of 

prostate cancer, miRNA profiles are inconsistent and shows occasional upregulation and 

in general downregulation [338]. While more than 50 miRNAs have been linked with 

prostate cancer, only a few of them are related to disease pathogenesis [339]. miR-148a is 

reportedly downregulated in several cancers like breast and gastric cancers [340, 341]. 

DNA hypermethylation has been associated with silencing of miR-148a in different 
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metastatic cell lines, like colon, head, and neck cancers suggesting its role in cancer 

progression. miR-148a directly targets different growth factors like TGFB induced factor 

homeobox 2 (TGIF2), DNA (cytosine-5-)-methyltransferase 3 (DNMT3b) and pregnane X  

receptor (PXR) [249, 251, 342]. Nevertheless, its definite role in prostate cancer is yet to 

decipher. A major group of the prostate cancer patients initially respond to the androgen 

ablation, but after continuation, they become resistant to the treatment. However, patients 

diagnosed with hormone-refractory prostate cancer are usually treated with taxane anti-

cancer drugs, such as docetaxel and paclitaxel, but the results were not satisfactory. From 

this scenario, it is urgent to find the reasons and develop new therapeutic approaches for 

the patients with hormone-refractory, drug-resistant prostate cancer. In this chapter, it was 

demonstrated that miR-148a has been remaining downregulated in hormone-refractory 

prostate cancer compared to other normal cells. Then the effect of miR-148a has been 

observed by ectopic expression of miR-148a in malignant phenotypes of hormone-

refractory prostate cancer PC3 cells and metastatic prostate cancer cells DU-145 where it 

shows its apoptosis inducer role. DNMT1 is one of the major methyltransferases which 

regulates several genes in prostate cancer. The role of DNMT1 is still ambiguous in 

different cancers, but the aberrant DNA methylation in prostate cancer makes it an 

attractive therapeutic target for the disease. Inhibition of DNMT1 shows suppression of 

cell proliferation [343]. Recent studies have suggested that miR-148a serves as a tumour 

suppressor by targeting DNMT1 in the bladder and gastric cancer where ectopic 

expression of miR-148a suppresses cellular proliferation and also to downregulate 

DNMT1 [344, 345]. In this chapter, the repression of miR-148a and its potential role as a 

novel therapeutic target for treatment of hormone-refractory prostate cancer has been 

described. 

 

4.2 Material and methods 

 

4.2.1 Cell Culture, Plasmids, siRNA, and Transfections 

PC3, and DU145 human prostate cancer cells, and the human immortalized 

keratinocyte cell line, HaCaT, were purchased from NCSS, Pune and maintained in Ham's 

F-12 Nutrient Mixture and Dulbecco's modified Eagle's medium (DMEM) respectively; 

all medium supplemented with 10% fetal bovine serum. For analyzing the effect of miR-

148a on cell survival and the existence of DNMT1 mRNA, we used miR-148a mimics 

(Qiagen). Variable concentrations of miRNA mimics were used to analyze the effective 
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concentration of miR-148a for transfection. Apparently, 30nM of miR-148a efficiently 

inhibits the expression of DNMT1 at the protein level. To observe the role of DNMT1 we 

used DNMT1 siRNA (DNMTi) (Santa Cruz Biotechnology, Inc.) to suppress the 

expression of DNMT1. To overexpress DNMT1, we used pcDNA3/Myc-DNMT1 vector 

(Addgene). We used miR-148a mimics, DNMTi, pcDNA3/Myc-DNMT1 vector to 

transfect PC-3 and DU-145 cells along with Lipofectamine 2000 transfection reagent 

(Invitrogen) and optimem transfection media (Invitrogen).  Further cells were incubated at 

37°C, 5% CO2 for 48 h to carry out different assays. As a control, we used control miRNA 

mimics, siRNA control, and pcDNA3/Myc vectors. 

 

4.2.2 RNA Extraction and Quantitative PCR 

Total cellular RNA was extracted using TriReagent (Sigma) according to the 

manufacturer’s instructions. qRT-PCR was performed utilising the cDNA prepared from 1 

μg of total RNA by RevertAid First Strand cDNA Synthesis Kit (Fermentas) and SYBR® 

Green JumpStart™ TaqReady Mix in the Realplex4Eppendorf system. The PCR were 

carried out using standard protocols, and the cDNA was amplified under the following 

conditions: 95 °C for 2 min, 40 cycles of 95 °C for 30 s, 59.8 °C for 30 s and 72 for 30 s. 

We analyse DNMT1 after transfection with miRNA mimics, siRNA, and vectors. The 

mRNA level was normalized to the expression of Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) as housekeeping gene. miRNA was isolated by using 

miRVana™ miRNA Isolation Kit, with phenol (Invitrogen) following manufacturer’s 

protocol. From the isolated miRNA, cDNA of miRNA was prepared using NCode™ 

VILO™ miRNA cDNA Synthesis Kit (Invitrogen) followed by analysis using qRT-

PCR.ForqRT-PCR of miRNA, primers were designed by Invitrogen miRNA primer 

designing protocol. The qRT-PCR of miRNA was done by NCode™ SYBR® Green 

miRNA qRT-PCR Kit (Invitrogen.) The cDNA of miRNA was amplified under the 

following protocol 50
o
C for 2 min, 95

o
C for 2 min 40 cycles of 95

o
C for 15 s, 60

o
C for 30 

s. Then all the results were interpreted using Eppendorf qRT-PCR software. We analyse 

the expression of miR-148a, normalized to the expression of U6 small RNA. All the 

primers sequence was mentioned in Table 4.1. Three independent experiments were done 

to calculate the P value and validate the results (mean±S.D, P < 0.05). 
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Table 4.1 Primer List 

Gene Forward Primer Reverse Primer 

DNMT1 CCATCAGGCATTCTACCA CGTTCTCCTTGTCTTCTCT 

β-actin CTGGAACGGTGAAGGTGACA AAGGGACTTCCTGTAACAACGCA 

miR-148a AAAGTTCTGAGACACTCCGACT Universal Reverse Primer for miRNA 

U6 CGCTTCGGCAGCACATATAC TTCACGAATTTGCGTGTCAT 

 

4.2.3 Cell Viability Assays  

Approximately 500 cells/well were seeded in 96 well plates for cell viability assay. 

After 24 hrs cells were transfected with miR-148a mimics at 5nM, 10nM 20nM, 30nM 

and 50nM concentration with lipofectamine and using optimem medium. After 6 hrs 

transfection media was removed and fresh media was added. To detect the cell viability 

MTT [3-(4, 5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] working solution 

was prepared by diluting the stock solution (stock 5mg/ml PBS, PH 7.2) in growth 

medium without FBS to the final concentration of 0.8mg/ml.100 μl of MTT working 

solution was added to each well and incubated for 24 hrs in CO2 incubator. After 

incubation, the media was removed carefully without disturbing formazan precipitate and 

dissolved in 100 μl of 100% DMSO. An incubation of 15 min was carried out in the dark 

and the colorimetric estimation of formazan product was observed at 570nm in a 

microplate reader. The data was plotted against drug concentration, and non-linear 

regression curve fitting was performed using software to calculate the optimal growth 

inhibitory concentration (LC50) of the drugs. 

 

4.2.4 Colony Formation Assay 

The colony-forming potential of adherent cells was deliberate as previously 

described[346]. After the transfection of cells with miR-148a mimics, cells were re-seeded 

onto 12-well plates at 200 cells/well. After 2 weeks, colonies were fixed with 100% 

methanol for 15 min and stained with crystal violet for 20 min. After taking photographs, 

the number of colonies with a diameter more than 1.5 mm was counted. Only adherent 

cells were used for the colony-forming potential experiment. Plating efficiency (PE) and 

the number of colonies that arise after treatment of cells, surviving fraction (SF) was 

measured by following formulas.  
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PE= (no. of colonies formed/no. of cells seeded) x 100 

SF= [(no. of colonies formed after treatment/(no: of cells seeded x PE)] x 100 

Three independent experiments were done with three replicas to calculate the P value and 

validate the results (mean±S.D, P < 0.05). 

4.2.5 Soft agar assay 

PC3 Cells (10
4
) were mixed with 0.3% agarose in growth medium, plated on top of 

a solidified layer of 0.5% agarose in growth medium, in a 6-well plate, and fed every 3 

days with growth medium. After 2 weeks, the colonies were dyed with Cristal Violet 

(0.01% solution), washed with PBS, and imaged by using Epifluorescent Microscope 

(Olympus IX71). Three independent experiments were done with three replicas to 

calculate the P value and validate the results (mean±S.D, P < 0.05) 

4.2.6 Construction of vectors for luciferase assay 

PCR from genomic DNA of HaCaT cells amplified the 3′ UTRs of DNMT1 

(1526bp) containing an entire miR-148a recognition sequence and the PCR product was 

subcloned into a pcDNA Luciferase Vector (A gift from Dr. PathaSarathi Ray, IISER-

Kolkata, West Bengal, India). A pcDNA luciferase construct containing the mutations in 

the seed sequence of DNMT1 3′ UTR was synthesized with using GeneArt® Site-Directed 

Mutagenesis System (Catalog number: A13282, Thermo fisher scientific). The wild-type 

construct contains the seed sequence “CAUGCACUG” In the mutated constructs, three 

nucleotides within the seed sequence “CAUCGUCUG” were mutated which is denoted in 

italics. All constructs were confirmed by sequencing and transfected as previously 

mentioned procedure.  

 

4.2.7 Luciferase reporter assay 

The cells were transiently transfected with 100 ng of reporter plasmids alone or co-

transfected with different concentrations of (10nM and 30nM) miRNA mimics using 

Lipofectamine 2000 according to the manufacturer’s protocol (Invitrogen) in 96 well 

plates. The activities of reporter genes with Renilla luciferase and the internal standard 

firefly luciferase were quantified by a Dual-Luciferase Reporter Assay System (Promega). 

Independent triplicate experiments were done for each plasmid construct. Three 

independent experiments were done to calculate the P value and validate the results 

(mean±S.D, P < 0.05). 
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4.2.8 Western Blot 

The cells were grown up to 80–85% confluence and then transfected with miRNA 

mimics, siRNA and vectors for 24 hours before harvesting. The cells were then harvested, 

washed with PBS and lysed using RIPA buffer (Sigma). Cells were kept in 4
o
C for 10 min 

to complete the cell lysis, lysate was centrifuged at 8000 g for 10 min at 4
o
C. Same 

amount of protein was loaded in 10% SDS-PAGE for electrophoresis. Then separated 

proteins were transferred onto PVDF membrane. After blocking the membrane with 5% 

BSA in PBST solution, membranes were blocked with 5% BSA in PBS-T and left to 

incubate with primary antibody overnight at 4
o
C. The following day, membranes were 

incubated with secondary antibody conjugated to HRP and development was carried out 

using Supersignal West Femto-chemiluminescent substrate (Thermo Scientific). Loading 

was assessed by ß-actin. The following antibodies were used: cleaved PARP (Abcam, 

USA), BCL-2 (Abcam, USA), and BAX (Abcam, USA), DNMT1, and actin (Santa Cruz 

Biotechnology, Dallas, Texas). 

 

4.2.9 Immunocytochemistry of DNMT1 after miRNA transfection 

For immunocytochemistry, PC-3 cells were grown on 18 mm coverslips. Cells 

were transfected with two different concentrations (10nM and 30nM) miR-148a mimics; 

To analyse DNMT1 expression, the cells were then fixed with ice cold methanol for 10 

min, permeabilized with 0.1% Triton X-100 in PBS (PBST) and blocked with 1% BSA-

PBST for 30 min at RT. For DNMT1 protein localization, cells were incubated with anti-

DNMT1 primary antibody [Dnmt1 (H-300) sc-20701 Santa Cruz Biotechnology] at 1:500 

dilutions in 1% BSA in PBST for 1h at RT, followed by staining with secondary antibody 

conjugated to HRP for 30 min. The development of protein was done using 3, 3′-

Diaminobenzidine (DAB) mount with DPX and observes in bright-field of Epifluorescent 

Microscope (Olympus IX71). Three independent experiments were done to calculate P 

value and validate the results (mean±S.D, P < 0.05).  

 

4.2.10 Flow cytometry 

For cell cycle analysis, 10
5
–10

6
 PC-3 cells were incubated and then trypsinized, 

followed by centrifugation (500 x g) for five minutes at 4°C. Next, cells are washed twice 

with PBS and fixed at -20°C in 90% ice cold methanol. After 1 h of incubation, cells were 

centrifuged and suspended in PBS with RNaseA (500 U/mL) to digest the residual RNAs 

followed by PI (10 μg/mL) staining and incubation at 37 °C for 30 minutes. The analysis 
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was performed on Becton-Dickinson fluorescence-activated cell sorter (FACS). Three 

independent samples of treated samples were analyzed, and descriptive statistics of the 

results are reported as (mean±S.D, P < 0.05).  

 

4.2.11 Chromatin condensation assay 

After treatment with different concentration of the miR-148a mimics for the 

specific time, the cells were stained with Hoechst 33342 stain (1 mg/ml) and incubated for 

10 min at 37 °C. Images were observed under ~460 nm emission of Hoechst 33342 dye 

using Epifluorescent Microscope (Olympus IX71). Three independent experiments were 

done to calculate the P value and validate the results (mean±S.D, P < 0.05). In each 

condition, 5000 cells were counted to analyse the result. 

 

4.2.12 Statistical analysis: 

All data are presented as mean ± SD. Statistical analysis was performed using the 

Student’s t- test by SPSS software. Values of P < 0.05 were considered as significant 

value. 

 

4.2.13 Ethical Approvals 

This study was deemed exempt from ethics approval from the National Institute of 

Technology and consent was not required due to use of cell lines 

 

4.3 Results  

 

4.3.1 MiR-148a plays an important role in prostate cancer patient cell survival, and 

recurrence remains downregulated in prostate cancer cell lines  

Previously it was observed that miR-148a remain downregulated in different 

cancer types [347, 348]. Here it is shown that, the altered miR-148a shows an effect in 

prostate cancer patient survival and reoccurrences. In the case of survival, the patient with 

altered miR-148a expression shows the 35% decrease after 40 months and without altered 

patient survives more than 110 months. In case of disease-free survival of altered miR-

148a expression group the recurrence occurs after 70 months but with normal expression 

of miR-148a can stop the recurrence until 160 months (Fig.4.1 A). In the overall survival 

of the prostate cancer patient miR-148a help to survives for the patient. The expression 

level of miR-148a in PC3 and DU-145 hormone-refractory prostate cancer cell lines 
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remained downregulated by 6.3 folds and 8.9 folds respectively with respective to the 

expression of miR-148a in HaCaT human immortalized keratinocyte cell line (Fig. 4.1 B) 

 

Figure 4.1: Kaplan–Meier analysis plot and mRNA expression of miR-148a: 

 [A] Overall patient survival was analysed by Kaplan–Meier plot. Total 62 numbers of samples 

were analysed from miRumiR GEO database. P- value was highly significant [p= 0.0963]. [B] 

mRNA level expression of miR-148a was analyzed in PC3 and DU-145 cell lines compare to 

HaCaT cell line. (n=3 independent experiment, mean±S.D.) P < 0.05. 

 

4.3.2 Ectopic Expression of miR-148a Inhibited Cell Growth in PC3 Cells 

For analysing the effect of decreased expression of miR-148a in malignant 

phenotypes of prostate cancer the ectopic expression of miR-148a was done in PC3 cells. 

Cells were transfected with miR-148a mimics and observed the effects after 24 hrs. It was 

clear from results that miR-148a overexpression inhibited the cell growth (Fig. 4.2). The 

increased level of miR-148a mimics represses the growth of PC3 and DU-145 cells. For 

further analysis of inhibition by miR-148a colony formation assay was performed.  The 

results of colony formation assay of PC3 cell line clearly show the inhibitory effect of 

miR-148a; the number of colonies reduced in PC3 cells transfected with miR-148a 

compared with those transfected with a controlled precursor (Fig. 4.3 A and B ).  

 

4.3.3 Ectopic Expression of miR-148a inhibits anoikis independent cell growth 

The programmed cell death that occurs after they detach from the surrounding 

extracellular matrix (ECM) of anchorage-dependent cells is known as anoikis. 

Transformed cells have the ability to grow independently of any solid surface. Using soft 
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agar colony assay the malignant transformation of cells can be measured [349]. The PC3 

cells were transfected with miR-148a and soft agar assay were done, and the results show 

the miR-148a transfected cells formed less colony than control cells [Fig 4.3.A]. This 

indicates that miR-148a plays an important role in inhibition of cell growth and initiates 

anoikis cells [Fig 4.3.C]. 

 

Figure 4.2: Concentration-dependent effect of miR148a mimic on PC3 and DU-145 viability: 
Cells were transfected with various concentrations of miR148a mimic for which cell viability was 

measured using MTT assay. Cell viability decreased with increase concentration of miR-193a. 

(n=3 independent experiment with three replica, mean±S.D.) P < 0.05. Cell viability is represented 

in terms of absorbency. 

 

Figure 4.3: Clonogenic and anchorage-independent survival analysis:  
[A] Clonogenic survival was analyzed after transfection with miR-148a 10nM and 30nM. [B] 

Graphical presentation of clonogenic efficiency (n=3 independent experiment, mean±S.D.). P < 

0.05. [C] Colony formation of PC3 cell lines on semisolid soft agar plates were examined after 3 

weeks culture. Then colonies were stained and visualized microscopically. A representative view 
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of each condition is shown. (D) Quantification of colony formation data derived from colonies was 

counted in a colony counter. Results from one representative experiment are shown. (n=3 

independent experiment, mean±S.D.). P < 0.05. 

 

4.3.4 DNMT1 is overexpressed in prostate cancer patients and cell lines 

For better understanding, the role of DNMT1 in prostate cancer the mRNA level of 

DNMT1 was analysed from the clinical sample database Genesapience.  The results 

analysis shows that DNMT1 expression was higher in prostate cancer tissue sample than 

the normal tissue sample. This increase of DNMT1 expression follows a pattern. With 

respect to normal cells, the DNMT1 expression gradually increases in Stage T2 to stage T3 

cancers. Moreover, during lymph node (N0 to N1) and distance (M0 to M1) metastasis DNMT1 

expression also increase with higher metastasis rate. Higher DNMT1 expression is also associated 

with prostate cancer recurrence.  The increase of DNMT1 is related with the progression of 

cancer. It also shows different expression in hormone refractory cells. DNMT1 expression 

also depends on the family history of the disease. This dataset suggests DNMT1 can be 

used for the prognostic marker. The highest expression is observed in the metastatic stage 

of cancer. Differential expression of DNMT1 is responsible for aberrant DNA methylation 

and disruption of normal gene expression (Fig 4.4.A). The survival curve analysis shows 

disease-free survival of the patient with altered DNMT1 expression is higher than the wild-type 

DNMT1 expressing patients.  Aberrant DNMT1 expression associated where less survives 

than without alteration of DNMT1 expression patients. After obtaining the expression 

pattern from datasets DNMT1 expression at transcriptome level were analysed in prostate 

cancer cell lines where it was found that both PC3 and DU-145 cell lines overexpress 

DNMT1 in comparison to HaCaT cell line (Fig. 4.4C) and Benign prostatic hyperplasia 

(BPH) [10]. 
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Figure 4.4: DNMT1 expression and disease free survival analysis: 

[A] Database analysis of DNMT1 expression in different stages of prostate cancer samples. [B] 

Overall prostate cancer patient survival was analyzed by Kaplan–Meier plot. P value is P < 0.459. 

[C] mRNA level expression of DNMT1 were analysed by RT-PCR in PC3 and DU-145 cell lines 

compare to HaCaT cell line. mRNA level of DNMT1 in HaCaT cell line is normalized to 1 (n=3 

independent experiment, mean±S.D.) P < 0.05. 

 

4.3.5 miR-148a downregulates DNMT1 expression by targeting the 3′ UTR of 

DNMT1 gene  

The initial analysis showed that, DNMT1 is overexpressed in metastatic prostate 

cancer and prostate cancer cell lines. This indicates DNMT1 play an oncogenic role in 

development of prostate cancer. For identification of DNMT1 as potential target, different 

target algorithms were used, and found miR-148a is having highest score among the 

predicted miRNAs. It has an 8 mer binding site without any wobble. Additionally, the 

predicted DNA sequence of miR-148a target site within DNMT1 3' UTR was highly 

conserved among species including chimpanzee, rhesus rabbit, and mouse (Fig 4.5 C). 

This in-silico data suggested that miR-148a could be involved in regulation of DNMT1 in 

prostate cancer. Downregulation of miR-148a and upregulation of DNMT1 in prostate 

cancer this inverse correlation is apparent in PC3 and DU-145 cells as well. As shown in 
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Fig 4.6 A, B when PC3 and DU-145 cells were transfected with miR-148a mimics in 

10nM and 30nM, and it downregulates DNMT1 protein expression. In both the cell lines 

increasing the miR-148a mimic concentration reduces DNMT1 protein expression and the 

graphical representation shows that DNMT1 expression is lowest in 30nM miR-148a transfected 

cells in both cell lines. In PC3 cell line immunocytochemistry was done after transfection 

with miR-148a mimics and  it also shows downregulation of DNMT1. To prove that miR-

148a directly targets DNMT1 a firefly luciferase reporter gene containing the DNMT1 3' 

UTR (DNMT1 3′ UTR WT) with predicted target sites was prepared. Another mutant 

version was also prepared with a mutation in the target sites (DNMT1 3′ UTR MT). Co-

transfection of miR-148a mimics with reporter vectors in PC3 cells decreased the relative 

luciferase activity in increasing miR-148a concentration. But the DNMT1 3′ UTR MT 

shows no such effects with miR-148a transfection. This assay confirms that, DNMT1 is a 

potential target of miR-148a (Fig 4.7).  
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Figure 4.5: Characterization and binding site of the DNMT1-3'-UTR with miR-148a: 

[A] CSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly view of 3'UTR of 

DNMT1. The highlighted area shows the binding site of miR-148a with 3' UTR of DNMT1. [B] 

Enlarged view of the highlighted area. The 3' UTR has a 8mer binding site for miR-148a 

(chr19:10,244,288-10,244,295). [C] The 8mer conserve site of 3'-UTR of DNMT1 in different 

vertebrates. The conserved region is highlighted in white. 
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Figure 4.6: DNMT1 expression analysis: 

[A] Immunocytochemistry analysis of DNMT1 expression in miR-148a transfected cells. Scale 

Bar = 40 μm. [B] DNMT1 protein expression and quantification were measured by Western blot in 

PC3 and DU-145 cells after 10nM and 30nM miR-148a mimic, control miRNA mimic 

transfection. [C] The band intensity was measured by ImageJ software. Beta-actin used as loading 

control. (n=3 independent experiment, mean±S.D.) P < 0.05  
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Figure 4.7: Functional analysis of the DNMT1-3' UTR and miR-148a binding: 

[A] Schematic representation of DNMT1-3'-UTR, which was inserted downstream of Renilla 

luciferase gene in the pcDNA3.1 vector. Complementarity between miR-148a and the DNMT1 3'-

UTR site target. The side directed mutation was located within the ‘seed region’ of the miR-148a 

binding site (red star). [B] Luciferase activity was measured in transfected PC3 cell. The luciferase 

activity of each construct was normalized against the negative control miRNA-transfected with 

control miRNA mimic. Renilla luciferase activity was normalized first to firefly luciferase activity 

and then to the values measured for the parental vector pcDNA. (n=3 independent experiments, 

mean±S.D.). P < 0.05. 

 

4.3.6 MiR-148a overexpression increases the apoptosis in prostate cancer cell lines 

 On the basis of cell survival assay, it was hypothesized that overexpression of 

miR-148a can induce apoptosis in prostate cancer cells. For analysing the effect of miR-

148a on DNA damage, the comet assay was done. Comet assay is a well-established and 

sensitive method for detecting DNA breaks and apoptotic nuclei [350]. The assay was 

done in both PC3 and DU-145 cell lines, whereby transfecting cells with miR-148a 

mimics with 10nM and 30nM shows DNA damage. The results were analysed in ImageJ 

software and found in control cells the DNA damage was lesser than 10nM and 30nM 

mimics transfected cells. The tail lengths were measured, and miR-148a induced DNA 

damage it shows in both the cell lines. In case of PC3, tail lengths were 15, 25 and 75 in 

case DU-145 tail lengths were 29,104 and 156 of control mimics, 10nM miR-148a 

mimics, and 30nM miR-148a mimics transfected cells respectively (Fig 4.8). 
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Figure 4.8: DNA damage analysis by comet assay: 

DNA damage was studied by comet assay in [A] PC3 and [B] DU-145 after transfection with 

control miRNA and miR-148a mimic (10nM and 30nM). [C] Tail length in each experiment 

conditions were measured in 500 cells and represented graphically. Scale Bar = 40 μm. (n=3 

independent experiment, mean±S.D.) P < 0.05. Tail length was increased with increase 

concentration of miR-148a mimic. 

 

One of the unique properties of apoptosis was morphological changes and 

chromatin condensation which leads to the formation of crescent-shaped masses 

aggregating at the membrane. In parallel the nucleolus dissolves [351]. After the cells 

were transfected with miR-148a mimics the number of chromatin condensed cell were 

increased in both the cell lines. This clearly indicates miR-148a induced chromatin 

condensations, which eventually initiate cell apoptosis. For further confirmation cell cycle 

analysis were done (Fig 4.9).  
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Figure 4.9: Chromatin condensation analysis: 
[A] PC3 cells were stained with Hoechst 33342 after transfection with 10nM and 30nM of miR-

148a mimic and control miRNA mimic. [B] Condensed nuclei containing cells represent 

graphically (n=3 independent experiment, mean±S.D.). P < 0.05. Scale Bar = 20 μm. The graph 

represented the induction of chromatin condensation after miR-148 overexpression. 

  

The cell cycle analysis shows that, cells transfected with miR-148a does not effect 

the S phase but it reduces the population in G0 phase in both PC3 and DU-145 cells. In 

both the cell lines it induces apoptosis with increasing concentration of miR-148a (Fig 

4.10).  

Western blot analysis of cleaved PARP demonstrated that, cells transfected with 

miR-148a mimics activates apoptosis in both PC3 cell lines. Previously it was reported in 

pancreatic and colorectal cancer cells that, miR-148a induces apoptosis by targeting the 

anti-apoptotic oncogene BCL-2. However, it differs in case of bladder cancer where miR-

148a doesn’t affect the expression BCL-2. Moreover, in prostate cancer miR-148a 

decreases the protein expression of BCL-2. It also affected the expression of apoptotic 

gene BAX and increased its expression. To find if these results are related to DNMT1 

downregulation DNMT1 siRNA was transfected in the PC3 cell line. The western blot 

analysis shows a similar effect on inducing apoptosis-like miR-148a. This suggests miR-

148a induce apoptosis by downregulating DNMT1. These data suggested overexpression 

of miR-148a has a predominant role in activation of apoptosis (Fig 4.11). 

 



Chapter-4                                                                                                                           Objective-2                                                                                                               

83 
 

 

Figure 4.10: Apoptotic population and cell cycle analysis by flow cytometry: 

 miR-148a mimic transfection [A-B] PC3 and [C-D] DU-145 cell increase apoptotic population. 

[C-D] Graphical representation of apoptotic population and different cycle stage population in [C] 

PC3 and [D] DU-145 cells are represented. (n=3 independent experiment, mean±S.D.). P < 0.05 
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Figure 4.11: BCL2, BAX and cleaved PARP expression: 

[A] BCL2, BAX and cleaved PARP protein expression and quantification were measured by 

Western blot in PC3. β-actin was used to confirm equal loading. The graphical representation of 

relative protein expression was measured by comparing with respective control. [B] A control 

miRNA transfected cells were used as a control for miR-148a transfected cells and [C] control 

siRNA transfected cells were used as a control for siDNMT1 transfected cells. Band intensity was 

measured by ImageJ software. (n=3 independent experiment, mean±S.D.). P < 0.05. 

 

4.3.7 miR-148a expression is regulated by DNMT1 in prostate cancer 

In pursuit,of the connection between downregulation of miR-148a and 

overexpression of DNMT1 in prostate cancer the promoter of miR-148a was analysed. It 

was previously stated that DNMT1 can silence any tumour suppressor by methylation of 

DNA and silence gene expression [29]. http://methhc.mbc.nctu.edu.tw/php/index.php 

database analysis confirms that promoter region of miR-148a is methylated in clinical 

prostate cancer samples. This database has stored information regarding the correlation 

between expression of genes and DNA methylation % at promoter region. Data mining 

from above database indicates a negative correlation value which confirms miR-148a 

expression is regulated by DNA methylation. To confirm the role of DNMT1 in the 

regulation of miR-148a in prostate cancer PC3 and DU-145 cells were transfected with 

DNMT1 siRNA and its help in the restoration of the miR-148a expression. Then to 

ascertain the role of DNMT1 in repression of miR-148a PC3 and DU-145 cells were 
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transfected with pcDNA3/MycDNMT1 overexpression vector shows repression of miR-

148a (Fig 4.12).  

 

Figure 4.12: miR-148a expression analysis after DNMT1 overexpression and knockdown: 
DNMT1 protein level was measured by western blot after transfection with pcDNA3/Myc-

DNMT1 vector and siDNMT1 in PC3 and DU-145 cells. DNMT1 protein expression and 

quantification were measured in [A-C] PC3 and [D-F] DU-145. β-actin was used to confirm equal 

loading. The graphical representation of relative protein expression of DNMT1 compare to 

respective control is represented in [B and C] for PC3 and [F and G] for DU-145. The band 

intensity was measured by ImageJ software. [G] Expression level of miR-148a in PC3 and DU-

145-145 cells after transfection with siDNMT1 and vDNMT1 (n=3 independent experiment, 

mean±S.D.). P < 0.05 

 

4.4 Discussion  

The dual roles of miRNA as tumour suppressors or oncogenes create a great 

mystery about its nature and function in cancer. These phenomena of miRNAs were also 

applicable for prostate cancer [352-355]. Still, the large portion of miRNAs function in 

hormone-refractory prostate cancer is unknown. MiRNA expression profiling of prostate 

cancer patient and cell lines now has been documented [356-358]. Previous microarray 

data analysis reported by Mattie et al. [356] revealed miR-148a remain silenced in the 

advanced prostatic tumour (Gleason score 8) and prostatic lymph node metastasis than the 

normal adjacent tissues. Another group Porkka et al. [357] showed the expressional 

difference between prostate carcinoma samples and benign prostatic hyperplasia (BPH) 

where it was acknowledged that miR-148a remain downregulated in hormone-refractory 

carcinomas compared with BPH. In this chapter, it was shown that the miR-148a 
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expression was downregulated in PC3 and DU-145 cell lines than normal immortalized 

keratinocyte cell line HaCaT by RT- PCR. In order to identify the down-regulated miRNA 

that acts like tumour suppressor and can be a viable therapeutic target for hormone-

refractory prostate cancer here, miR-148a has been studied. Previous studied already 

identified the downregulation of miR-148a is not due to a defect in p53 in PC3 cells [348]. 

In primary breast cancer tissue samples and metastasized lymph node derived cell line 

shows aberrant hypermethylation of the CpG island in the promoter causes the silencing of 

miR-148a [4, 359]. But the exact mode of silencing of miR-148a in prostate cancer is still 

not studied. Ectopic expression of miR-148a in head and neck cancer SIHN- 011B cells 

inhibits cell motility and proliferation.  It also reduced the tumour size and inhibits 

metastasis in xenograft models [4]. In this study, it is demonstrated that ectopic expression 

of miR-148a induces apoptosis in part by downregulating DNMT1. This results suggested 

that dysregulation of miR-148a can initiate the metastatic potential of PC3. DNA 

methyltransferase plays a significant part in the aberrant gene expression related to tumour 

initiation and progression [360]. Previously it was reported miR-148a directly targets 

DNMT3b in MCF-7 and Hela cell line. In PC3 cells downregulation of DNMT3b inhibits 

cell migration and cell growth which suggest the gene responsible for the inhibition of 

migration and growth may be silenced by DNMT3b [361]. 

This study proves that ectopic expression of miR-148a leads to initiation of 

apoptosis in part by targeting DNMT1 the maintenance DNA methyltransferase.  

Variation of DNMT1 expression level modifies the global transcriptomes because 

downregulation of DNMT1 de-repress the silenced genes. The overall effect of the global 

change is cell context dependent. The previous study on bladder cancer shows DNMT1 

expression was increased in stage-dependent manner [362]. Additionally, it also reported 

that it inhibit cell proliferation and induce apoptosis [363]. Dhawan et al. demonstrated in 

canine model targeting DNMT1 can be used a viable therapeutic model for future 

discoveries [364]. Here it was shown from the patient databases in prostate cancer 

DNMT1 expression was also dependent on the stages of cancer. The metastatic stages 

show a higher level of DNMT1 expression. The de-regulation of DNMT1 plays a dynamic 

role in prostate cancer progression, but the cause remains unknown. In this chapter, it was 

also shown that the survival of the patient depends on the DNMT1 expression. Repression 

of miR-148a plays an imperative protagonist in prostate cancer progression. Previously it 

was reported miR-148a increase the chemosensitivity of PC3 cells [348]. This study 

reveals targeting DNMT1 by miR-148a increased cellular apoptosis in cells. Previously in 
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colorectal cancer, it was reported miR-148a repress the expression of BCL2 [365]. This 

study reveals in prostate cancer cell line PC3 miR-148a inhibits BCL2 and induces 

apoptosis. It also increases the expression of BAX and cleaved PARP. Here it was also 

shown that the increasing level of miR-148a in prostate cancer helps in survival and delay 

cancer recurrence.  miR-148a inhibits cell proliferation and inhibits cell growth was 

determined by cellular assays. It causes cell death by anoikis is also evidenced by this 

study. From this, it can be concluded that miR-148a inhibit metastasis by causing the 

death of cells by anoikis. This report suggests miR-148a target DNMT1 in a region which 

is conserved, and it was proved by luciferase assays. In cell cycle analysis the results 

indicate it affect the cellular apoptosis and reduce the cells in G0 phase. The increasing 

rate of apoptosis was also observed when PC3 cells were transfected with DNMT1 

siRNA. So the role of DNMT1 in prostate cancer can be defined as an oncogene. Then the 

cause of silencing of miR-148a was revealed by inhibiting and overexpressing DNMT1 by 

siRNA and vector. Targeting DNMT1 induces miR-148a expression whereas 

overexpression downregulated its expression. From this results it can be concluded miR-

148a remain downregulated in PC3 and DU-145 by repression of miR-148a gene by 

DNMT1. These results demonstrate miR-148a has a potential as a novel therapeutic agent 

in the treatment of hormone-refractory prostate cancer. Not only targeting DNMT1 its role 

can be extended as an apoptosis inducer. MiRNA has the ability to target multiple mRNA 

targets simultaneously, and it gives it a cutting edge advantage to the fight with cancer. In 

conclusion here in this chapter the role of miR-148a has been elucidated for a novel 

therapeutic for prostate cancer. 
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5. To decipher the role of miR-193a in regulation of histone modifier MLL1 and a 

comparison with DNA methylation in prostate cancer 

 

5 .1 Introduction  

Cancer is a group of diseases developed due to multiple genetic and epigenetic 

changes that cause aberrant gene expression and exhibit uncontrolled growth. Prostate 

cancer is one of the most common cancers in men and increasing significantly worldwide 

[366]. Androgen receptors are essential for initiation and progression of prostate cancers. 

So androgen –ablation therapies has been a primary treatment option for androgen –

dependent prostate cancer. However, when prostate cancer progress to a late stage it 

become a fatal castration-resistant disease. Recent studies on epigenetic changes during 

prostate cancer opened a new avenue in understanding the mechanisms leading to the 

onset of prostate cancer and prognosis, diagnosis and treatment of the disease would be 

facilitated further.  Epigenetic changes involve multiple chemical modifications of 

chromatin including DNA methylation, covalent modification of histone tails and small 

RNA interference. Histones are not only DNA packaging proteins; a large no of 

posttranslational modifications of histone including acetylation, methylation, 

phosphorylation, ubiquitylation, sumoylation, ADP ribosylation, deimination and proline 

isomerization are associated with gene regulation.  In a recent study, it was indicated that 

presence of bivalent domains (when histone marks are present at multiple positions and 

dictates apparently opposite functions) in prostate cancer cell line PC-3 in which the 

bivalent mark genes are activated [367] . Some studies show overexpression of H3K4me1 

and H3K4me2 demethylase KDM1 significantly decreases AR binding [99] other study 

shows increased H3K4me3 in prostate cancer cells related  to activation of genes involved 

in cell growth and survival (e.g., FGFR1 and BCL2) [100]. Since the increased active 

chromatin marks like H3K4 methylations in prostate cancer facilitate activation of proto-

oncogene and other genes involved in cell growth and survival, it is possible that increased 

repressive histone marks in prostate cancer lead to tumour suppressor gene silencing. So 

in this study, the focus was on H3K4 methylation mark and its methyltransferase. Using 

in-silico tools miRNA were searched, which remains downregulated in prostate cancer 

and targets histone methyltransferase. Those searches identified that more than 25 miRNA 

remain downregulated in prostate cancer. Out of them, miR-193a have seed region in 

MLL1, which is the key methyltransferases for H3K4 trimethylation mark. Ectopic 

upregulation of miR-193a significantly decrease global H3K4me3 in prostate cancer cell 
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line. This study also found miR-193a plays a major role in cell death cellular migration, 

anchorage-independent growth of cancer cells. In this study, the changes in expression of 

miRNA and its effect on histone code in prostatic carcinogenesis have been showed.  

 

5.2 Material and methods 

 

5.2.1 Tissue samples and immunohistochemistry  

25 Formalin-fixed paraffin-embedded (FFPE) prostate cancer tissue sample were 

collected from Drs.Tribedi & Roy Diagnostic Laboratory (Kolkata, India). FFPE 

specimens were sliced into 0.5μm and subjected to antigen retrieval with tris-EDTA 

buffer, an endogenous peroxidase blocking and rinsed with tris-buffered saline (TBS) 

containing 0.025% Triton X-100 (TBS-T). Mouse monoclonal antibody against MLL1, 

rabbit polyclonal antibody against H3K4me1, H3K4me2, and H3K4me3 were used as 

primary antibodies. The secondary antibodies used were Alexa flour 647 conjugated anti-

mouse (Abcam) and FITC conjugated anti-rabbit antibody (Santa Cruz Biotech) solution 

for 1 h. Then the samples incubated with DAPI (1 mg/ml) for 10 min. Finally, cells were 

washed three times with TBS and slides were mounted with a mount with ProLong® Gold 

Antifade Mountant (Thermo fisher) and observed under Epifluorescent Microscope 

(Olympus IX71).  

 

5.2.2 Cell culture  

PC-3 and DU-145 prostate cancer cell lines and HaCaT immortal keratinocyte cell 

line were obtained from The National Centre for Cell Sciences, Pune (NCCS), India. PC-3 

cells were grown in Ham's F-12 Nutrient Mix (Gibco Auckland, New Zealand,) and DU-

145 and HaCaT cells were Dulbecco’s modified Eagle’s medium (Gibco Auckland, New 

Zealand,) supplemented with 10% fetal bovine serum (FBS) (16000–44; Gibco, Carlsbad, 

CA), and 100 U Penicillin & 0.1 mg Streptomycin in a humidified atmosphere of 5% CO2 

at 37
0
C. 

 

5.2.3 Transfection of cells with miR-193a vector 

The effect of miR-193a on cell survival and apoptosis are analyzed by miR-193a 

vector which was obtained from Genecopoeia (HmiR0277-MR04). PEZX-MR04-hsa-

miR-193a and pEZX-MR04 GFP vector were used to transfect PC3 cells along with 

Lipofectamine 2000 transfection reagent (Invitrogen) and optimem transfection media 
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(Invitrogen).  Further cells were incubated at 37 °C, 5% CO2 for 48 h to carry out different 

assays. As a control, CmiR0001-MR04 vectors from Genecopoeia were used. GFP 

expression was analyzed by ImageJ software. Corrected total cell fluorescence (CTCF) 

was calculated by this formula = Integrated Density – (Area of selected cell X Mean 

fluorescence of background readings). 

 

5.2.4 RNA extraction and quantitative reverse-transcription (qRT)-PCR 

Total cellular RNA was extracted with TriReagent (Sigma) according to the 

manufacturer’s instructions. qRT-PCR was performed using cDNA prepared from 1 μg of 

total RNA by RevertAid First Strand cDNA Synthesis Kit (Fermentas) and SYBR® Green 

JumpStart™ TaqReadyMix in the Realplex4Eppendorf system. The PCR were carried out 

using standard protocols, and the cDNA was amplified under the following conditions: 

95°C for 2 min, 40 cycles of 95°C for 30 s, 59.8°C for 30 s and 72°C for 30 s. The 

expression level of MLL1 was analyzed after the cells were transfected with miR-193a 

vector. For apoptosis analysis, BCL2 and BAX mRNA were also analyzed. The mRNA 

level was normalized to the expression of Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) as housekeeping gene. To quantify the level of miR-193a in cell lines miRNA 

was isolated by using miRVana™ miRNA Isolation Kit, with phenol (Invitrogen) by 

following the protocol of the kit. From the isolated miRNA, cDNA of miRNA was 

prepared using NCode™ VILO™ miRNA cDNA Synthesis Kit (Invitrogen) followed by 

analysis using qRT PCR. 

For qRT-PCR of miRNA, primers were designed by Invitrogen miRNA primer 

designing protocol. The qRT-PCR of miRNA was done by NCode™ SYBR® Green 

miRNA qRT-PCR Kit (Invitrogen). The cDNA of miRNA was amplified under the 

following the temperature cycle 50
o
C for 2 min, 95

o
C for 2 min 40 cycles of 95

o
C for 15 s, 

60
o
C for 30 s. Then all the results were interpreted using Eppendorf qRT-PCR software. 

We analyze the expression of miR-193a, normalized to the expression of U6 small RNA. 

All the primers sequence was mentioned in Table 5.1  

 

Table 5.1 Primer List 

Gene Forward Primer Reverse Primer 

MLL1 AATCCTAGCCGTTAGGCCG TTGGGGCAGGTTTGGGTTA 
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BCL2 CCTGTGGATGACTGAGTACC GAGACAGCCAGGAGAAATCA 

BAX TTCATCCAGGATCGAGCAG CGCTCAGCTTCTTGGTGG 

β-actin CTGGAACGGTGAAGGTGACA AAGGGACTTCCTGTAACAACGCA 

miR-193a CATGGGTCTTTGCGGGCGAGAT

GA 
Universal Reverse Primer for miRNA 

U6 CGCTTCGGCAGCACATATAC TTCACGAATTTGCGTGTCAT 

 

5.2.5 Western blotting  

The cells were grown up to 80–85% confluence and then transfected with miR-

193a. The cells were then harvested, washed with PBS and lysed using RIPA buffer 

(Sigma). Then the cells were kept in 4
o
C for 10 min to complete the cell lysis. Then the 

lysate was centrifuged at 8000 g for 10 min at 4
o
C. Same amount of protein was loaded in 

10% SDS-PAGE for electrophoresis. Then separated proteins were transferred onto PVDF 

membrane. After blocking the membrane with 5% BSA in PBST solution, the membrane 

was incubated with specific primary antibody Mouse monoclonal antibody against MLL1, 

rabbit polyclonal antibody against BCL2; BAX cleaved PARP, H3K4me1, H3K4me2, and 

H3K4me3 were used as primary antibodies overnight at 4
o
C. Subsequently, the membrane 

was washed three times; 10 min/each time with PBST buffer, and incubated again with an 

appropriate HRP conjugated secondary antibody [Rabbit anti-mouse IgG-HRP, Goat anti-

rabbit IgG-HRP Santa Cruz Biotechnolog] at 37°C for 2 h. The membranes were washed 

with PBST buffer and were developed by Supersignal West Femto-chemiluminescent 

substrate (Thermo Scientific). β Actin protein levels were used as a control for adequacy 

of equal protein loading. 

 

5.2.6 Luciferase miRNA target reporter assay 

3′ UTR of MLL1 gene (1536 bp), containing predicted binding sites of miR-193a, 

were amplified by PCR HaCaT DNA and inserted into the pcDNA3.1luc immediately 

downstream from the stop codon of Firefly luciferase (pcDNA3.1- MLL1 3’-UTR WT). 

Deletion of the first 3 nucleotides corresponding miR-193a seed region complementary 

site was inserted in mutant constructs using, GeneArt® Site-Directed Mutagenesis System 

(Catalog number: A13282, Thermo fisher scientific) according to the manufacturer’s 

protocol. (pcDNA3.1- MLL1 3’-UTR MUT).  PC3 cells were cultured in 96-well formats 

and cotransfected with 100 ng of pcDNA3.1luc vector 20 ng of pRL-TK Renilla luciferase 
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control vector (Promega) and 600ng and 800ng per miR-193a vectors well with negative 

control miRNA using Lipofectamine 2000. Firefly and Renilla luciferase activities were 

measured consecutively using the Dual-Luciferase Reporter Assay System (Promega) 24 h 

after transfection. All the experiments were done in triplicate and repeated at least twice 

on different days. 

 

 5.2.7 Analysing cell viability, morphology, and cytotoxicity  

For analyzing cell viability, MTT assay was performed. Cells are seeded at a 

density of 5000 cells per well in 96 well plates to assess the minimum inhibitory 

concentration (IC50). After 24 hours of treatment, cells were washed with PBS and 100 μl 

of MTT was added in serum-free media at a concentration of 0.8 mg/mL prepared freshly 

from a stock of 5 mg/ml. After treatment with MTT, cells were incubated for 4 hours in 

the dark CO2 chamber. The medium was then aspirated, and 100 μl of DMSO was added 

to each well and left again for a period of 15 minutes in dark at room temperature. The 

plates were mixed gently until a clear purple color appears. Optical density (OD) was 

measured at 595 nm using an ELISA plate reader, and the % of cell viability was 

calculated using the following formula: Inhibition rate (%) = (Average OD value of 

experimental group-Average OD value of the control group)/Average OD value of the 

control group x 100%. Morphological analysis of cells was performed in bright field 

microscopy using Epifluorescent Microscope (Olympus IX71).  

 

5.2.8 Flow-cytometry analysis for cell cycle 

For cell cycle analysis, 10
5
–10

6
 PC-3 cells were incubated and then trypsinized, 

followed by centrifugation (500 x g) for five minutes at 4°C. Next, cells are washed twice 

with PBS and fixed at -20°C in 90% ice cold methanol. After 1 h of incubation, cells were 

centrifuged and suspended in PBS with RNase A (500 U/mL) to digest the residual RNAs 

followed by PI (10 μg/mL) staining and incubation at 37 °C for 30 minutes. The analysis 

was performed on Becton-Dickinson fluorescence-activated cell sorter (FACS). Three 

independent samples of treated samples were analyzed, and descriptive statistics of the 

results are reported as mean ± SEM. 

 

5.2.9 Analysis of Reactive oxygen species (ROS) production by flow cytometry  

PC3 cells were (5 × 10
5
) cultured in a 6 well culture plate up to 70% confluency after 

transfected with miR-193a vector for 24 h. Cells were washed with fresh medium twice 
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and resuspended in 1× binding buffer at a concentration of 1 × 105 cells/mL. The cell 

suspension (100 μL) was transferred to a 5 mL culture tube for analysis. For ROS 

detection, cells were treated with DCFH-DA (2′,7′-dichlorofluorescein-diacetate). Cells 

were analyzed in a Becton Dickinson FACScan flow cytometer using Ex/Em 490/525 nm 

for the oxidative stress. Negative controls included untreated cells and cells treated only 

with Lipofectamine and control vector. 

 

5.2.10 Cell Viability Assays  

Approximately 500 cells were seeded in 96 well plates for cell viability assay. 

After 24 hrs cells were transfected with miR-193a vectors in 1µg/ml, 2µg/ml, 4µg/ml, 

6µg/ml and 8µg/ml concentration with lipofectamine and using optimem medium. After 

6hrs transfecting media was removed and fresh media was added. To detect the cell 

viability MTT [3-(4, 5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] working 

solution was prepared by diluting the stock solution (stock 5mg/ml PBS, PH 7.2) in 

growth medium without FBS to the final concentration of 0.8mg/ml. 100 μl of MTT 

working solution was added to each well and incubated for 24 hrs in CO2 incubator. After 

incubation, the media was removed carefully without disturbing formazan precipitate and 

dissolved in 100 μl of 100% DMSO. An incubation of 15 min was carried out in the dark, 

and the colorimetric estimation of formazan product was observed at 570nm in a 

microplate reader. The data was plotted against drug concentration, and non-linear 

regression curve fitting was performed using software to calculate the optimal growth 

inhibitory concentration (LC50) of the miR-193a vector. 

 

5.2.11 Soft agar colony and invasion assays for the effect of miR-193a  

For studying cellular transformation process in the presence of miRNA soft agar 

assay was performed as described previously [349]. In this assay first, a base agar/media 

mix was added to 6-well plates (final concentration of 0.5% agar) to coat the plate and 

allowed to polymerize. Then cell suspensions were made up of 100 cells/ml in media/agar 

mix (final concentration of 0.3% agar). On the top of the base agar, 1.5 ml of the cell 

suspension is added to each well and allowed to polymerize. After complete 

polymerization, 2 ml complete media were added on top of the agar once again, and the 

plates were put in 37°C, 5% CO2, and overlay media was changed every 3–4 days. 

Cultures were grown until a few colonies were visible by eye and stained with crystal 

violet. 
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5.2.12 Colony Formation Assay 

The colony-forming potential of adherent cells is demonstrated as previously 

described [346]. After the transfection of cells with miR-193a vector cells were re-seeded 

onto 12-well plates at 200 cells/well. After 2 weeks, colonies were fixed with 100% 

methanol for 15 min and stained with crystal violet for 20 min. After taking photographs, 

the number of colonies with a diameter more than 1.5 mm was counted. Only adherent 

cells were considered for the colony-forming potential experiment. Plating efficiency (PE) 

and the number of colonies that arise after treatment of cells, surviving fraction (SF) was 

measured by following formulas.  

PE= (no. of colonies formed/no. of cells seeded) x 100 

SF= [(no. of colonies formed after treatment/(no: of cells seeded x PE)] x 100 

Three independent experiments were done with three replicas to calculate the P value and 

validate the results (mean±S.D, P < 0.05). 

 

5.2.13 Chromatin condensation assay and nuclear staining with PI 

After treatment with different concentration of the miR-193a vectors for the 

specific time, the cells were stained with Hoechst 33342 stain (1 mg/ml) and P1 (10µg/ml) 

and incubated for 10 min at 37 °C. Images were observed under ~460 nm emission for 

Hoechst 33342 dye and ~617nm emission for PI using Epifluorescent Microscope 

(Olympus IX71). Three independent experiments were done to calculate the P value and 

validate the results (mean±S.D, P < 0.05). In each condition, 5000 cells were counted to 

analyze the result. 

 

5.2.14 Statistical analysis 

All data are presented as mean ± SD. Statistical analysis was performed using the 

Student’s t- test by SPSS software. Values of P < 0.05 were considered as significant 

value. 

 

5.2.15 Ethical Approvals 

This study was deemed exempt from ethics approval from the National Institute of 

Technology and consent was not required due to use of cell lines. 
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5.3 Results  

 

5.3.1 Analysis of survival potential based on miR-193a expression in clinical samples 

and cell lines 

To find out the effect of miR-193a on prostate cancer patients survival Kaplan- 

Meier plot of prostate cancer clinical samples were drawn. The survival curve, retrieved 

from Kaplan- Meier plot analysis show that higher expression of miR-193a is associated 

with the increased survival of the patients with a significant P-value (Fig. 5.1 A).  

The expression level of miR-193a in prostate cancer cell line was analyzed, using 

PhenomiR [368] database. It was observed that in PC3, DU-145, PPC-1, LNCaP and Tsu-

Pr1 cell lines miR-193a remain downregulated. For validating, the data acquired from the 

dataset miR-193a expression level was analyzed by RT-PCR analysis in PC3, DU-145 cell 

lines where it shows miR-193a expression was downregulated in PC3, DU-145 cell lines 

3.81, 4.67 fold respectively when compared HaCaT cell line (Fig. 5.1 B). 

. 

Figure 5.1: Kaplan–Meier analysis plot and mRNA expression of miR-193a: 
[A] Overall patient survival associated with miR-193a was analyzed by Kaplan–Meier plot. Total 

61 numbers of samples were analyzed from miRumiR GEO database. P- Value is [p= 0.0963]. [B] 

RT-PCR analysis of mRNA level expression of miR-193a expression in PC3 and DU-145 cell 

lines. 
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5.3.2 MLL1/KMT2A overexpression is associated with prostate cancer progression 

Database analysis shows that unlike miR-193a, MLL1 overexpression is associated 

with prostate cancer patient death. mRNA expression level analysis by cBioPortal 

database shows the expression level of MLL1 is very high in prostate cancer patients 

population (Fig. 5.2 A). Overall patient survival decreased with increase in MLL1 

expression. GEO dataset of 61 patients was analyzed by Kaplan- Meier survival plot from 

prostate cancer clinical samples. The survival curve shows an antagonistic role of MLL1 

expression in patient survival (Fig. 5.2 B). Moreover, MLL1 expression is inversely 

related to prostate cancer recurrence. The cancer recurrence plot demonstrates that MLL1 

expression positively regulates the prostate cancer recurrence. Although the P-value is not 

very highly significant in recurrence, curve but it gives a view towards the correlation of 

MLL1 expression and prostate cancer recurrence (Fig. 5.2 C). Altogether, the cancer 

supportive role of MLL1 is crystal clear. 
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Figure 5.2: MLL1 expression and patient survival analysis: 

MLL1/KMT2A mRNA expression plot in prostate cancer patients. [B] Overall patient survival 

was analyzed by Kaplan–Meier plot and the P-value is 0.392. [C] The cancer recurrence plot basis 

on the MLL1 expression in the prostate cancer patients and the P-value is 0.930.  

 

5.3.3 Identification of conserved miR-193a target sites within the 3'-UTR of MLL1 

Above results confirm that miR-193a is downregulated in prostate cancer. Still, the 

miR-193a mediated regulatory mechanism was unknown in the prostate. Previously 

several groups reported that MLL1 overexpression is associated with different type of 

cancer development [369]. MLL1 is not only acting as H3K4 methyltransferase but also 

connected with other genes expression. Using String database, the connections of MLL1 

with other genes have been shown (Fig. 5.3). Nevertheless, none explains the relation 

between miRNA-mediated regulations of MLL1 in cancer development.  First time in this 
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study the regulation of MLL1 was connected to miR-193a expression. UCSC genome 

browse search shows the binding region of miR-193a to the 3’UTR of MLL1 (Fig. 5.4 A). 

The 7mer-8m conserve site of 3’-UTR of MLL1 for miR-193a is also conserve among 

different vertebrates (Fig. 5.4 B). On the basis of this information it was considered that 

the 3’-UTR of MLL1 gene is regulated by miR-193a during transcription. To evaluate this 

hypothesis future experiments were conducted. 

. 

 

Figure 5.3: String databases analysis:  
Correlation of MLL1 with another protein is shown. From this database, it shows MLL1 forms a 

network with other chromatin modifier enzymes like MLL2, smarca4, smarcd1 etc. This analysis 

shows the importance of MLL1 in cellular gene expression.   
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Figure 5.4: Characterization and binding site of the MLL1-3'-UTR with miR-193a: 

[A] UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly view of 3' UTR of 

MLL1 or KAT2A. The highlighted area shows the binding site of miR-193a with 3' UTR of 

MLL1. The 3’UTR has a 7mer-8m binding site for miR-193a (chr11:118,395,511-118,395,517). 

[C] The 7mer-8m conserve site of 3'-UTR of MLL1 in different vertebrates. The conserved region 

is highlighted in white. 

 

5.3.4 Validation of MLL1 as a direct target of miR-193a  

To validate the correlation between miR-193a-3p and MLL1 expression was 

analyzed in PC3 cells after miR-193a overexpression. In these experiments, 

overexpression of miR-193a was achieved by transfecting cells with pEZX-MR04-hsa-

miR-193a vector with relative to CmiR0001-MR04 transfecting cells. The efficient 

overexpression of miR-193a in PC3 cells are shown in Fig. 5.6. Increase GFP intensity 

with increase vector concentration proves the successful transfection of miR-193a vector 

(Fig. 5.5 A and B).  Increased vector concentration simultaneously increases the miR-193a 

expression which was analyzed by RT-PCR.  Cellular miR-193a levels were increased 

approximately 20-fold when PC3 cells were transfected with vectors (Fig. 5.5 C)  
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Figure 5.5: pEZX-MR04-hsa-miR-193a transfection and miR-193a overexpression: 

[A] GFP expression after transfection with GFP vector pEZX-MR04-hsa-miR-193a (3µg and 4 

µg) and pEZX-MR04 transfected cells. [B] The fluorescence intensity is represented in terms of 

CTCF. [C] The miR-193a expression was analysed by RT-PCR after transfection.  miR-193a level 

in pEZX-MR04 transfected cell is normalized to 1 (n=3 independent experiment, mean±S.D.) P < 

0.05. 

5.3.5 miR-193a binds to 3' UTR of MLL1 to regulate the MLL1 expression 

 To confirm that, miR-193a targets the 3' UTR of MLL1 the luciferase reporter 

assays was done using 3' UTR of MLL1. Wild type (WT) and mutated (MT) 3' UTR of 

MLL1 was cloned separately into luciferase vector pCDNA3.1-LUC (Fig. 5.6 A and B). 

Cells were co-transfect the pCDNA3.1-LUC- MLL1-3'UTR WT or pcDNA3.1-LUC- MLL1 

3’-UTR MUT and pEZX-MR04-hsa-miR-193a (3µg and 4µg) with Renilla luciferase 

vector and as control co-transfect luciferease-3' UTR-MLL1 and CmiR0001-MR04 (4µg) 

in PC3 cells. To confirm miR-193a binds to the predicted seed region of MLL1 3' UTR, 

the mutated pCDNA3.1-LUC-3'UTR-MLL1MUT was also transfected with pEZX-MR04-

hsa-miR-193a. After measuring the Firefly: Renilla luciferase ratio it was found, that 

increasing concentration of miR-193a lowers the luciferase expression in the case of 

pCDNA3.1-LUC-3' UTR-MLL1WT transfected cells respective to control. But in the case 

of pCDNA3.1-LUC- MLL1-3' UTR MT transfected cells does not show any significant 

changes (Fig. 5.6 C). It confirms that miR-193a regulates MLL1 expression by binding in 

the 3' UTR region of the mRNA. 
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Figure 5.6: Functional analysis of the MLL1-3' UTR and miR-193a binding: 

[A] Schematic representation of MLL1-3’-UTR, which was inserted downstream of Renilla 

luciferase gene in the pcDNA3.1 vector. [B] Complementarities between miR-193a and the MLL1 

3’-UTR site target is shown. The side directed mutation was located within the ‘MRE’ region of 

the miR-193a binding site (red star). (C) The luciferase activity measured by luciferase assay. 

Renilla luciferase activity was normalized first to firefly luciferase activity and then to the values 

measured for the parental vector pcDNA. (n=3 independent experiments, mean±S.D.). P < 0.05. 

 

5.3.6 miR-193a regulates global H3K4 methylation by targeting MLL1 

To determine the regulatory level at which miR-193a affected MLL1 expression, 

we examined the expression of MLL1 mRNA in pEZX-MR04-hsa-miR-193a and 

CmiR0001-MR04 cells. It is found that overexpression of miR-193a affects the MLL1 

expression at mRNA levels in PC3 cells (Fig. 5.7). As anticipated, overexpressing miR-

193a significantly decreased the MLL1 protein levels in PC3 cells.  
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Figure 5.7: MLL1 expression after pEZX-MR04-hsa-miR-193a transfection: 

3µg and 4 µg pEZX-MR04-hsa-miR-193a transfected cells were subjected to RT-PCR analysis for 

MLL1 mRNA level study.  MLL level in pEZX-MR04 transfected cells is normalized to 1 (n=3 

independent experiment, mean±S.D.) P < 0.05. 

 

Above results thus demonstrated that miR-193a downregulate the MLL1 

expression in transcriptional level. Protein level analysis confirms that miR-193a regulates 

MLL1 expression at the both transcriptional and translational level. The graphical 

representation of western blot shown that relative MLL1 and MLL2 protein expression 

decrease after miR-193a overexpression. MLL1 protein level decreases up to 1.34 and 

14.28 fold in 3µg and 4 µg pEZX-MR04-hsa-miR-193a transfected cells respectively with 

compared to control cells. It was also observed when miR-193a targets MLL1 

simultaneously downregulated MLL2 expression at both mRNA and protein level. MLL2 

does not have any seed region for miR-193a but its expression gets affected by MLL1 

downregulation (Fig. 5.8 A and B). 

Histone methyltransferase activity of MLL1 is specifically related to H3K4 

methylation. H3K4 mono‐, di‐ and trimethylation (H3K4me1, H3K4me2, and H3K4me3, 

respectively) are mostly connected with euchromatin formation and active gene 

expression [370]. Global H3K4 methylation pattern was elucidated after finding that miR-

193a targets MLL1 and repress its expression. To understand the alteration in the global 

H3K4 methylation level PC3 cells were transfected with miR-193a vector. The protein 

level analysis of global H3K4 methylation shows that H3K4me3 and H3K4me2 level has 

been decreased in 3µg and 4 µg miR-193a clone transfected cells compare to control cells. 
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But surprisingly global H3K4me1 level has been increased. Previously it was studied that 

increased H3K4me3 in prostate cancer cells compared with normal prostate cells is 

correlated with activation of genes like FGFR1 and BCL2 which contributed to  cell 

growth and survival [100]. These findings suggest miR-193a regulates the global H3K4 

methylation mark by targeting MLL1 (Fig. 5.8 C and D). 

. 

 

Figure 5.8: MLL1 and global histone modification analysis: 

[A] MLL1 protein expression and quantification were measured by Western blot in PC3 cells after 

transfecting with 3µg and 4 µg pEZX-MR04-hsa-miR-193a. [B] The band intensity was measured 

by ImageJ software. β-actin was used as loading control. (n=3 independent experiment, 

mean±S.D.) P < 0.05. [C] Global H3K4me1, H3K4me2, and H3K4me3 marks were analyzed by 

western blotting in the PC3 cell line. [D] Protein quantification analyszed by ImageJ. Histone H3 

was used as loading control. (n=3 independent experiment, mean±S.D.) P < 0.05. 

 

5.3.7 Expression of MLL1 and global H3K4 methylation marks in prostate cancer 

tissue samples  

During tumour development and cancer progression, modifications of lysine at 

various positions in histone 3 are predominant. To provide a rational view of what 

happens during physiological (in vivo) cancer development, 25 FFPE prostate cancer 

tissue samples were analyzed. H3K4 mono-, di- and trimethylation and MLL1 expression 

were evaluated by immunofluorescence staining. Among all the FFPE samples expression 

level of MLL1, H3K4me2, and H3K4me3 was high, and the percentage was 84%, 60%, 
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and 92% respectively whereas H3K4me1 level was low in prostate cancer samples, 36% 

(Table 5.2 and Fig. 5.9). 

Table 5.2: Global protein expression in prostate cancer samples 

Name  

Number of 

Clinical prostate 

cancer sample 

Protein expression (%) 
Absence of protein 

expression (%) 

MLL1 25 84% (21 sample) 16% (4 sample) 

H3K4me1 25 36 % (9 sample) 64% (11 sample) 

H3K4me2 25 60% (15 sample) 40% (10 sample) 

H3K4me3 25 92% (23 sample) 8% (2 sample) 

 

 

 

 

Figure 5.9: Fluorescent immunohistochemistry analyses of prostate cancer tissue samples: 

MLL1 (red), H3K4me1 (green), H3K4me2 (green), and H3K4me3 (green) expression was 

analyzed. Scale Bar = 10 μm 

 

5.3.8 Overexpression of miR-193a suppress anchorage-independent growth and 

induces apoptosis in prostate cancer cells 

After confirming that, miR-193a is targeting MLL1 and changing the global 

histone H3K4 methylation we evaluate whether miR-193a would regulate MLL1 to 
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modulate cell proliferation, Anchorage-independent growth, and apoptosis in prostate 

cancer cells.  

Anchorage-independent growth is the ability of transformed cells to grow 

independently of a solid surface and is a hallmark of carcinogenesis. pEZX-MR04-hsa-

miR-193a and CmiR0001-MR04 transfected PC3 cells were subjected to soft agar assay. 

Observation reveals the inhibitory effect of miR-193a on anchorage-independent growth. 

3 µg and 4 µg pEZX-MR04-hsa-miR-193a cell exhibit lower colony formations than 

control cells (CmiR0001-MR04 cells) (Fig. 5.10 A). Graphical representation shows the 

increasing concentration of miR-193a gradually decrease the colony number. In 3 µg and 

4 µg transfected cells exhibits 330 and 108.33 number of colonies whereas in control 

condition 544.67 colonies were found. This result clearly indicates towards an antagonistic 

role of miR-193a on anchorage-independent growth in prostate cancer (Fig. 5.10 B).

 

Figure 5.10: Anchorage-independent survival analysis: 

 [A] Colony formation of PC3 cell lines on semisolid soft agar plates were examined after 3 weeks 

culture in 3µg and 4 µg of  pEZX-MR04-hsa-miR-193a and pEZX-MR04 transfected cells. Then 
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colonies were stained and visualized microscopically. A representative view of each condition 

with different magnification is shown. Scale Bar = 10 μm in 100x, Scale Bar = 20 μm in 200x and 

Scale Bar = 40 μm in 400x. (D) Quantification of colony formation data derived from colonies was 

counted in a colony counter. Results from one representative experiment are shown. (n=3 

independent experiment, mean±S.D.). P < 0.05. 

 

To assess the role of miR-193a cellular proliferation MTT assay has been done by 

using PC3 cells. As we thought, transfection of PC3 cells with a higher concentration of 

pEZX-MR04-hsa-miR-193a reduces cellular proliferation compare to CmiR0001-MR04 

transfected PC3 cells. This data clearly showed the cytotoxicity effect of miR-193a on 

PC3 cells (Fig. 5.11). 

 

Figure 5.11: Concentration-dependent effect of miR-193a on PC3 cell viability: 
Cells were transfected with various concentrations of pEZX-MR04-hsa-miR-193a for which cell 

viability was measured using MTT assay. As control pEZX-MR04 transfected cells were used. 

(n=3 independent experiment with three replica, mean±S.D.) P < 0.05. Cell viability is represented 

in term of absorbency. 

 

Finally, cell cycle and apoptotic population was investigated using flow cytometry 

analysis. The results showed that the percentage of apoptotic cells was significantly higher 

in PC3 cells transfected with pEZX-MR04-hsa-miR-193a vector compared to control 

cells. In control cell, there were only 2.5% apoptotic cells but after transfection with 

pEZX-MR04-hsa-miR-193a vector, it increases with increasing concentration of vector 

6.5% to 7.7% in average respectively (Fig. 5.12 A and B).  
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Figure 5.12: Apoptotic population analysis by flow cytometry:  

[A] FACS analysis of 3µg and 4 µg of pEZX-MR04-hsa-miR-193a vector transfected cells. Above 

row shows the total population of gated cells. The lower row is the histogram of the gate 

population and percentage of different cell cycle stage and apoptotic cell population [B] Graphical 

representation of the apoptotic population in PC3 is represented. (n=3 independent experiment, 

mean±S.D.). P < 0.05 

 

To confirm that, miR-193a inducing apoptosis cells were stained with propidium 

iodide (PI) and ROS production was analyzed of miR-193a transfected PC3 cells. Nuclear 

changes of PC3-miR193a cells demonstrated by PI staining. Within 36 hours after pEZX-

MR04-hsa-miR-193a and CmiR0001-MR04 transfection, a large proportion of PC3-

pEZX-MR04-hsa-miR-193a cells displayed nuclear fragmentation compared to PC3-

CmiR0001-MR04 transfected cells (Fig 5.13 A) which clearly shows the loss of nuclear 

DNA content. DNA degradation was increased with increased miR-193a expression. The 

number of apoptotic cells were 39.20 and 48.89 in 3µg and 4 µg of pEZX-MR04-hsa-

miR-193a transfected cells respectively where as in control cells it was 1.91 (Fig 5.13 B). 

Along with chromatin damage, production of ROS was also measured by FACS to 

observe the effect of miR-193a on cells. During apoptosis, the ROS level increased, and it 

also induces further apoptosis. Higher levels of ROS-induced DNA damage and inhibit 

cell proliferation by Ca
2+

 potential [371]. Overexpression of miR-193a induced higher 

ROS production in the PC3 cells. The cells were transfected with 3µg and 4 µg of MR04-
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hsa-miR-193a and pEZX-MR04 as control. It was found in control cells that, the level of 

ROS was lower than the treated cells (Fig.5.13 C). The ROS production in terms of 

fluorescence intensity was significantly higher in miR-193a over expressing cell than 

control cells (Fig. 5.13 D).  

. 

 

Figure 5.13: chromatin damage and ROS production analysis: 
[A] PC3 cells were stained with PI in   pEZX-MR04-hsa-miR-193a (3µg and 4 µg) and pEZX-

MR04 transfected cells. Bright red dots indicated the fragmented DNA during apoptosis Scale Bar 

= 40 μm. [B] Cells were stained with DCFDA after transfection with 3µg/ml and 4 µg/ml of 

pEZX-MR04-hsa-miR-193a and pEZX-MR04 and the fluorescence intensity was measured by 

FACS. Here vector was treated with 2 ml of media, so the concentration of vector shows double. 

(n=3 independent experiment, mean±S.D.). P < 0.05. 

 

To confirm that cells death is apoptotic in nature the apoptotic markers were 

analyzed. Well established apoptotic markers, BCL2, BAX, and cleaved PARP were 

analyzed by qRT-PCR and western blotting. The mRNA level of pre-apoptotic molecule 
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BAX was increased up to 4.47 and 8.51 fold in 3 µg and 4 µg pEZX-MR04-hsa-miR-193a 

cells respectively whereas BCL2; anti-apoptotic molecule level was decreased (Fig. 5.14 

A). Not only transcriptional level but also in translational level BAX increased 3.05 and 

3.95 fold in 3 µg and 4 µg pEZX-MR04-hsa-miR-193a cells respectively. BCL2 decreased 

by 0.74 and 0.29 in 3 µg and 4 µg pEZX-MR04-hsa-miR-193a cells respectively. 

Additionally, cleaved PARP also significantly increases after miR-193a overexpression in 

PC3 cells. This above results together established that miR-193a induced apoptosis in PC3 

cells (Fig. 5.14 B and C). 

 

 

Figure 5.14: BCL2, BAX and cleaved PARP expression: 

[A] mRNA level of BCL2 and BAX was analysed by RT-PCR after transfected with pEZX-MR04 

and (3µg and 4 µg) of pEZX-MR04-hsa-miR-193a. [B] BCL2, BAX and cleaved PARP protein 

expression and quantification were measured by Western blot in PC3. β-actin was used to confirm 

equal loading. [C] The graphical representation of relative protein expression was measured by 

comparing with respective control. pEZX-MR04 transfected cells were used as a control for miR-

13a transfected cells. Band intensity was measured by ImageJ software. (n=3 independent 

experiment, mean±S.D.). P < 0.05. 

 

5.4 Discussion 

In the family of six mixed-lineages leukaemia (MLL) of histone methyltransferase 

(HMTs), MLL1 is one the most important in mammals [372]. It methylates H3K4 through 
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evolutionarily conserved SET domain. Both MLL1 and H3K4me are spread through the 

genes promoter and transcriptional start sites and initiate transcription of target genes 

[373]. From the cBioportal database, MLL1 duplication and amplification was observed in 

the prostate cancer patient. miR-193a plays a tumour suppressor role in different cancer. 

Previous studies in ovarian cancer indicated that miR-193a regulates cell cycle and 

apoptosis by controlling different genes including ARHGAP19, CCND1, ERBB4, KRAS, 

MCL1, expression [374]. In prostate cancer also, miR-193a inhibits KRAS gene that acts 

as an oncogene. Although different studies implicated the role of miR-193a during cancer 

progression; but there is no data is available on miR-193a mediated regulation of MLL1 

and/or histone H3 marks. For the first time, this study clearly demonstrated the relation 

between miR-193a and MLL1 mediated H3K4 methylation. 

 Here, observations from database analysis and experiments implicated that miR-

193a downregulation in prostate cancer cell lines as well as in prostate cancer tissue 

samples is directly proportional to prostate cancer patient survival (Fig. 5.1). On the other 

hand, MLL1 expression was increased in prostate cancer samples, and the total patient 

survival decreased with increase in MLL1 expression. Moreover, prostate cancer 

recurrence is also facilitated by MLL1 overexpression (Fig. 5.2).  

In-silico target findings show MLL1 gene has an MRE (miRNA recognition 

element) region for miR-193a in 3’UTR (Fig. 5.4). For analysis the effects of this 

microRNA, miR-193a overexpressing transient PC3 cell line were prepared. Co-

transfection of pEZX-MR04-hsa-miR-193a overexpressing vector and pcDNA3.1-MLL1 

3’-UTR WT or pcDNA3.1- MLL1 3’-UTR MT confirm that miR-193a bind to the MLL1 

3’-UTR region and decrease MLL1 level (Fig. 5.6).  To find the effect of miR-193a on 

MLL1 mRNA expression, MLL1 mRNA (Fig. 5.7) and protein content was analyzed 

wherein downregulation in MLL1 mRNA and protein level was observed (Fig. 5.8). 

Protein-protein interaction database shows that MLL1 makes a complex with MLL2, 

hence when MLL1 has been downregulated by miR-193a, MLL2 was also downregulated 

(Fig. 5.8 A and B). These results create inquisitiveness about the effect of miR-193a on 

global H3K4 methylation pattern (Fig. 5.8 C and D). Apart from western blot analyses, 

immunohistochemical staining of FFPE samples confirmed that MLL1 overexpression is 

associated with prostate cancer progression (Fig. 5.9).  

In FFPE samples as well as in prostate cancer cell line, it was observed that H3K4me3 

expression is higher than both H3K4me and H3K4me2. However, ectopic overexpression 

of miR-193a does not have much effect on H3K4me2 but H3K4me3 was significantly 
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decreased, and H3K4me was increased. It was known H3K4me3 mark act as an activation 

mark of the genes. This mark is mostly present on the proliferating genes during cancer 

progression.  

It has been previously reported that presence of H3K4me3 in the promoter region 

of anti-apoptotic Bcl-2 implicated that miR-193a may affect cellular apoptosis. Therefore, 

to gain a comprehensive insight into the regulation of apoptosis by miR-193a, further 

experiments were executed. Result elucidates that over-expression of miR-193a negatively 

regulate anchorage-independent survival which is a key cellular transformation during 

cancer progression (Fig. 5.10). Moreover, it was observed from cell cycle analysis that 

overexpression of miR-193a ignites apoptosis population in PC3 cells (Fig. 5.12). It was 

confirmed by overproduction of ROS in miR-193a overexpressed cells as compared with 

control. Chromatin condensation and nuclear staining show a higher level of DNA damage 

in miR-193a overexpressed cells. The colony formation assay and MTT assay shows miR-

193a plays a role in the inhibition of cellular proliferation (Fig. 5.13). To confirm the role 

of miR-193a in apoptosis, western blotting was done of apoptotic and anti-apoptotic 

markers. These results show miR-193a downregulates anti-apoptotic gene BCL2, which 

was overexpressed in cancer cells, whereas it upregulates apoptotic gene BAX and 

cleaved PARP (Fig. 5.14). From the above results, it can be concluded that miR-193a 

regulates MLL1 gene in prostate cancer which eventually changes the global H3K4 

methylation pattern and initiate apoptosis.  
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6. General discussion and Conclusions  

In this thesis, an attempt to find out the difference between epigenetic 

modifications in the healthy state compared to disease state is sought for. The cellular 

mechanisms are very tightly regulated, and every modulation is strictly monitored.  Still, 

sometimes there exist certain lacunae in cellular signalling mechanism causing disease. 

Here we studied the epigenetic mechanisms from DNA methylation to histone 

modification and miRNA regulation. Primarily it was thought that the gene which is 

methylated remained silenced, and it disrupts the whole pathway.  DNA methylation is the 

key regulator of the expression of a number of genes. DNMT1 maintain the methylation 

pattern from the mother to daughter cells. But during disease state DNMT1 overexpressed 

and broke the pattern and hypermethylated several other genes. DNMT1 not only 

methylate other genes but binds to the methylated region with MBD proteins and form a 

complex, which stop the gene expression. This study demonstrated how miRNA can 

downregulate DNMT1 and again restores the gene expression which was silenced by 

DNMT1. It was previously discovered that, during cancer progression TS-gene got 

methylated, and its expression is blocked. Different drugs were used to overcome the 

methylation but due to toxic effects, other healthy cells got affected. Here miRNAs were 

used to target DNMT1 and suppress its expression. miRNAs are cells last line of defense 

to prevent unwanted and aberrant gene. However, during cancer miRNAs expressions are 

reported to be suppressed by other epigenetic modulators. Cancer cell first corrupts the 

methyltransferase which eventually silenced miRNA expression. MiR-152 is a tumour 

suppressor miRNA which targets different growth factor stimulating and proliferative 

genes. In this study, it reported that DNMT1 is the culprit enzyme which suppresses miR-

152 expression in cancer cells. The presence of H3K4me3, an active histone mark in the 

miR-152 promoter inhibits expression of miR-152. This finding helps to understand the 

complexity of the epigenetic regulation. From this, it can be concluded that the expression 

of genes sometimes depends on both the epigenetic factors. Then using miRNA mimics 

miR-152 was overexpressed in breast cancer cell line to find out the fate of DNMT1. It 

was observed that higher concentrations of miR-152 mimics can successfully 

downregulate DNMT1 expression. Besides, miR-152 is observed to be repressing 

migration of cancer cells. Cellular migration is one of the characteristics of the metastatic 

cancer cell. Therefore, the genes responsible for the inhibition of migration were studied. 

From the database analysis, it was found that, CDH1 gene remain downregulated during 

cancer progression. It also depicted that, DNA methylation is the reason for the 
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downregulation of CDH1. Thus, when DNMT1 got downregulated by miR-152, 

downstream genes start to express. To conclusively prove this theory, cells were 

transfected with DNMT1 siRNA and DNMT1 overexpression vector along with miR-152 

mimics. Results showed, when DNMT1 got downregulated by siRNA, the similar results 

like miR-152 mimics obtained. But the overexpression vector further silenced the gene. 

Thus, it was concluded that CDH1 gene was remain downregulated by DNMT1, and when 

miR-152 inhibits DNMT1 expression, CDH1 gene starts to express again. Therefore, by 

targeting DNMT1, other genes which are actively repressed by DNMT1 can be re-

expressed. 

Thereafter, another miRNA responsible for the repression of DNMT1 in prostate 

cancer was investigated. From the in-silico study, it was predicted that miR-148a can also 

target DNMT1. The effect of miR-148a on DNMT1 was investigated in prostate cancer 

cells. It is reported miR-148a remains downregulated in prostate cancer cells. The cell line 

in which this study was done was highly metastatic and AR-negative. For analysis of the 

effect of miR-148a, cells were transfected with miR-148a mimics. The ectopic expression 

of miR-148a shows a complete suppression of DNMT1. miR-148a suppresses DNMT1 in 

both in mRNA and protein level. From this study, it is also proved miR-148a remain 

downregulated in prostate cancer cells by DNMT1. Upon downregulating DNMT1 by 

siRNA improves the expression of miR-148a simultaneously overexpression of DNMT1 

downregulates its expression. Then the effects of ectopic expression of miR-148a were 

studied where it shows induction of apoptosis of the cancer cells. This conclusion was 

obtained by different apoptotic assays along with an analysis of the expression of 

apoptotic protein markers. Hence, it can be concluded that miR-148a has a tumour 

suppressor role in prostate cancer, and restoration of miR-148a can be used for a 

therapeutic purpose.   

After studying the effects of miRNAs which targets DNMT1, our next goal was to 

study how miRNA affect histone marks. MLL1 gene was selected for this study because 

of its H3K4 methyltransferase activity. Histone methylation study is a fascinating field of 

epigenetics. H3K4 methylation has 3 states of methylations mono-, di-, and tri-

methylation. H3K4me was found basically in the activator sites of the genes, and 

H3K4me3 is located in the promoter regions.  From the in-silico analysis, it was found 

miR-193a has a “seed” region on the 3' UTR of MLL1 gene. miR-193a reported to remain 

downregulated in prostate cancer cells. miR-193a overexpression vector was used for 

ectopic expression of miR-193a.  Previously it was analyzed that in prostate cancer, 
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H3K4me3 mark is present in different oncogene and anti-apoptotic gene promoters. When 

miR-193a was ectopically expressed, it targets MLL1 and downregulates its expression. 

miR-193a not only directly downregulate MLL1, but it also indirectly downregulates 

MLL2; another histone methyltransferase which works in a complex with MLL1. These 

results excited us further to study its effect on global H3K4 methylation pattern. Analysis 

of the protein level of the H3K4 mark, confirmed that overexpression of miR-193a 

downregulates H3K4me3 mark and simultaneously upregulates H3K4me mark, but does 

not affect H3K4me2 marks. Thus, it was confirmed that MLL1 only methylate H3K4me 

to H3K4me3 but does not affect H3K4me2. Then the role of miR-193a in cellular 

apoptosis was analyzed, and it shows a tremendous promising role to induce apoptosis. 

Besides, miR-193a was found to initiate apoptosis by DNA fragmentations.  

The link between miRNA functions and chromatin modifying enzymes governing 

cellular physiology and function are established here, at least in part. This is an important 

collection of miRNA regulation of DNMT1 and MLL1 gene transcripts with experimental 

evidence. This thesis resolves the boundaries between epigenetic modifier genes DNMT1, 

MLL1, and miRNAs like miR-152, miR-148a, and miR-193a. In addition, DNMT1 

regulates the expression of these miRNAs to nullify their functional effects. On the other 

hand, miR-193a regulates histone methyltransferase MLL1, which eventually regulates 

H3K4 di and tri-methylation an active gene mark. These interactions prove that cells 

always have a backup plan for gene regulation. But in the diseased state, these regulations 

work against each other and create chaos. 
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