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 Abstract 

Aero-engines have high speed rotors carrying multi-stage turbine and compressor discs. 

Such systems need continuous monitoring during the operating regime. These rotors are 

mounted on ball bearings supported with squeeze film dampers and connected to stator 

casings. The motions of bearings and rotor are influenced by each other and therefore 

such a system requires structural dynamic studies. These rotors involve several nonlinear 

factors including contact forces, varying compliance vibration of ball bearing, nonlinear 

oil-film force of squeeze film damper etc Solving such nonlinear dynamic problems using 

the traditional transfer matrix method, modal synthesis approach, finite element method 

or impedance coupling technique is therefore a challenging task. 

Present work focuses on modelling of rotors using ball bearing nonlinearities along 

with nonlinear secondary transient excitations using finite element modelling. In order to 

validate the finite element model, preliminary dynamic analysis is carried out using linear 

spring-damper bearing elements. Results are illustrated both for LP rotor model and twin-

spool rotor. Initially, the natural frequencies obtained from the computer program based 

on Timoshenko beam elements are validated with ANSYS results. Further, the results are 

also validated with those obtained from impact hammer tests on a scaled dual disk rotor-

bearing system. To utilize this finite element model, the time and frequency-domain 

response studies are conducted with double-row ball bearing forces, rub-impact forces, 

Muszynska’s gas transients along with squeeze-film forces. In all the cases, differences 

from simple rotor supported by single-row ball bearings with only unbalance excitations 

have been reported. Using the fundamental frequency and its amplitude, an inverse 

modelling approach is applied to predict the parameters of rotor bearing system such as 

increased bearing clearance, changes in disc unbalances and the centralizing spring 

constants in squeeze-film damper. In this regard, a trained model of 3-layer perceptron 

neural network model is employed. In the second study, changes in dynamic response due 

to waviness and race-way defects in ball-bearings are first studied using modified contact 

force relations. Using this data, type of bearing fault is estimated from the statistical 

parameters of the time-domain signal by training an unsupervised Kohenen’s neural 

network model. Here, the simulated data is collected from the rotor over an operating 

speed range. In the third study, the additional stiffness of rotor due to rub-impact forces is 

identified from optimization modelling. Such identification of rotor stiffening effect using 

finite element modelling is a new concept.     

Two types of control studies are proposed to minimize the amplitudes of rotor 

during the critical operating conditions. Semi active electromagnetic damper design helps 

in reducing vibration amplitudes of the LP rotor over a frequency range of interest. Here, 



 

 

 

the damper comprises of an electro-magnet and a spring. The required current and spring 

stiffness are identified from the basic relations and the results of control are illustrated 

with a two-disc LP rotor model. In active controller design, an electromagnetic actuator 

model is employed. The nominal gap maintained between the rotor and actuator coils is 

used in computing the actuator force. A proportional derivative (PD) control strategy is 

used to estimate the required forces. A neural network based alternate control scheme also 

proposed to compute the required actuator forces.  

In overall, the work focussed on the dynamic analysis of dual disc rotor model 

subjected to parametric nonlinear bearing loads under the action of various external forces 

and some controller design aspects applicable to this rotor.  
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Chapter 1  

Introduction 

1.1 Background  

A jet engine system basically contains an impeller for suction of outside air, a 

single/multistage compressor for pressurizing the air, a combustion chamber for burning 

the fuel and mixing with pressurized air, a single/multi stage turbine for expanding the 

gases to drive the compressor and a nozzle to generate the thrust power. The engine rotor 

system is a very lengthy component carrying the impeller and compressor at one end and 

turbine at the other end. These rotor systems are mounted on multiple bearings supported 

over the engine casing. In real practice, there are two rotors in the system: (i) a low 

pressure (LP) rotor (ii) high pressure (HP) rotor. Both carry the compressor and turbine 

discs separately and are connected to each other by intermediate bearings. Both these 

rotors have different speeds of rotation. Further, in construction, LP rotor is a solid rotor 

passes through the hollow HP rotor system. This set-up is known as twin-spool rotor 

configuration.  Figure 1.1 shows a twin spool rotor configuration of aero-engine with low 

and high speed rotors.  

 

Figure 1.1: Twin Spool Turbojet 

Aero-engine rotor consists of several components having distinct functions with different 

materials, such as the fan disk, the compressor drum, the connecting shaft, and the turbine 

drum. The misalignment of mass centre axis to rotor rotating axis is often referred as 

unbalance. When the principal inertia axis of the rotor does not coincide with its 

High pressure compressor 

Low pressure compressor 

High pressure turbine 

Low pressure turbine 



Chapter 1  Introduction 

2 

 

geometrical axis, it results in synchronous vibrations and significant undesirable forces 

are transmitted to the mechanical elements and supports. These excessive forces will lead 

to malfunctioning of the rotating machine and results in rotor-stator contact events known 

as rub impact phenomenon. In a rotor, unbalance may not be nullified fully to zero level. 

Unbalance occurs due to the repetitive operation of rotors. For example, in aero-engine 

rotors, a diffuser blade loss event occurring from a bird impact raises the unbalance 

drastically. Unbalance increases with the rotor speed. Although the controlled imbalance 

response measurements commonly performed during shop testing provide information 

about the critical speed and the amplification factors, it is often desirable to confirm the 

support rotor dynamic properties in the test stand and in the field.  

Hydrodynamic bearings have been used extensively in almost all aircraft turbines 

designed since 1970 to dampen imbalance response and are probably a major contributor 

to the rarity of rotor dynamic instability encountered in these engines. The main 

disadvantages of these bearings are its passive nature, instability and very sensitive 

variability of performance with raise in temperatures and frequencies of the rotors. These 

bearings are now-a-days replaced with rolling contact bearings. Ball bearings as one of 

such simple alternative are extensively used for their load supporting ability in high 

speeds in combination with squeeze film dampers providing the necessary damping for 

vibration reduction. Both single-row and double-row bearing configurations are found 

frequently. Other forces include the rub-impact occurring at unbalancing disks and oil 

seals. There is a lubricating fluid-solid interaction in very close clearances of rotor/stator 

may cause seal forces, these forces are responsible for self-excited motion of the rotor. 

These seal forces sometimes help in supporting the rotor in the radial direction but in 

some occasions they may act in tangential direction and lead to severe vibrations in the 

system. Apart from bearing reactions and seal forces, aero-engine rotor is subjected to 

external excitations due to gas pressures and thermal effects in addition to unbalance and 

gravity.  

The faulty and damaged rolling element bearings plays a key role in the machinery 

breakdown, which leads to significant economic loses and even many human lives in 

some cases, such as aero-engine failures due to seizure of a bearing. Many research works 

are carried out in the field of ball bearings to understand the vibration generating 

mechanisms in the rolling element bearings.  

Numerous vibration generation mechanisms in rolling element bearings have been 

investigated by researchers. These mechanisms include varying compliance and defects in 

the bearings. The varying compliance is due to varying stiffness due to continuous 

movement of the balls in the bearings and the defects include due to fatigue of old 

bearings and manufacturers errors even in the new bearings. Fatigue of bearings leads to 
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cracks, pits, dents and spills. The manufacturer errors include distributed defects of 

waviness in the bearings.   

The effects of ball bearing dynamics on the overall dynamics of the system are 

ignored in low speed applications in the the previous studies due to presense of major 

contributions turbines and compressor dynamics. In simplified modeling of bearing 

systems these bearing dynamics are ignored. But these bearing dynamic forces are 

cosiderable as the unloaded rolling elements strike the bottom of the defect. 

The bearing fault modeling is very much useful in measuring  and analysing the 

nonlinear behaviour of bearing dynamics. Many authors are working to present a faulty 

model of a bearing system. Standard condition monitoring techniques are available to 

monitor the health of the bearings by measuring acceleration response at bearing nodes 

and conducting the time and frequency domain analysis and finding the faults at the peak 

impulses. The study of vibration generating mechanisms and understanding the 

mechanisms in designing of a new bearing system are very much useful for quality 

inspection and condition monitoring. To avoid catastrophic failures, the reliable and 

accurate identification of faults in the rotor bearing systems are very much necessary. 

Figure 1.2 shows the condition monitoring concept of rotor system using vibration 

signature. 

 

Figure 1.2: Condition monitoring strategy of rotor system 

Production and development of supercritical turbines in aerospace applications is 

helpful for energy economization, environmental protection, rise in efficiency and cost-

effectiveness. As an important component, a rotor-bearing assembly in such turbines 

requires a detailed study to understand several effects and instability states. An accurate 

model of the rotor assembly is essential in this regard. Accurate prediction and control of 

the dynamic behaviour (unbalance response, critical speeds and instability) is therefore, a 

vital requirement.  

The reduction of vibration amplitudes at critical operating speeds is important part. In 

addition to the safety requirement of avoiding rotor bend critical speeds within the engine 

running range, the response at many other modes of the rotors and engine structure 

system must be controlled to ensure acceptable levels of vibration. Control of vibration is 

essential in respect of the bearing loads, structural fatigue loads, rotor/casing tip 

clearances, casing and engine external responses, and transmission of vibration to the 
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frame. The concept of magnetic bearings is one of the developments in control of rotor 

vibrations. In these bearings, electromagnetic suspension system will provide the required 

force to levitate the rotor in the air by maintaining a constant air gap between the rotor 

and the stator. The currents in the electromagnetic coils produce the required time varying 

force in the system. The perfect way of levitation depends on the efficient positioning of 

the rotor in the electromagnetic field. Several passive and semi-active vibration control 

concepts are also famous in rotors. For example, use of electro and magneto-rheological 

fluids, electromagnetic, piezoelectric techniques come under the regional semi-active 

control approaches. The inverse principle of electromagnetic exciter via a power amplifier 

is in fact the concept of active control approach. A perfect understanding of all these 

concepts helps in condition monitoring and diagnostic studies of real time aero-engine 

rotor systems. 

 

1.2 Objectives and Scope 

Analysis of rotors mounted on rolling element bearings subjected to various nonlinear 

excitations is one of the important issues in the rotor design. Following are the important 

objectives of proposed work: 

The first task is to predict the natural frequencies, mode shapes and dynamic 

response of the rotordynamic models of LP and twin-spool systems. The rotor system is 

modelled by finite element analysis by employing the linear bearing elements with 

springs. In the next step, Hertzian bearing contact force model is used to obtain the 

dynamic response from the rotors. Upon validating it with experimental modal analysis 

results, effects of double-row bearing forces, squeeze-film damper forces, rub-impact 

forces and Muszynska transient model forces are predicted on the dynamic response of 

rotor. By considering three parameters of rotor-bearing system, viz., disk unbalance 

eccentricity, bearing radial clearance and squeeze-film damper central stiffness, the 

natural frequencies of rotor are recorded and this data is further used to train a neural 

network model inversely so as to predict the unknown system information from frequency 

and amplitude data. In next stage, different bearing faults are accounted and 

corresponding changes in Hertzian contact models are used to obtain the dynamic 

response from finite element model. The statistical data corresponding to these time-

domain graphs are used to distinguish the various fault states in bearing. The additional 

stiffness during rub-impact event is predicted by minimizing the difference of frequency 

responses of system with and without rub forces. The additional stiffness in each element 

is identified and reported using particle swarm optimization scheme.  
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In order to reduce the resonant amplitudes at critical speed of operation, the rotor 

system requires some control strategy. Passive methods are straight forward and are being 

implemented at several rotors. However, the situations where the requirement of vibration 

control over a specified frequency ranges with available power amplifiers and other 

sources in an automatic manner, semi-active and active control techniques are required. In 

present task, it is planned to implement two control strategies: semi-active and active. In 

semi-active control approach, electromagnetic damper system is designed to minimize the 

vibration amplitude within the required frequency band. Results are presented for LP 

model rotor.  

Following are the principal objectives of the present work. 

 To study the effect of bearing clearance, disc eccentricity and centralizing 

spring stiffness of SFD on the dynamic response of rotor and experimental 

validation. 

 To model the rubbing of the rotor with the stator as nonlinear excitation 

force model. 

 To incorporate the nonlinear Muszynska’s gas excitation forces in the 

system modelling at disk locations.  

 To distinguish different neural network models used for bearing fault 

identification. 

 To conduct studies on the shaft stiffening identification due to rub impact by 

proposing an optimization technique.  

 To design the semi-active and active control methodologies for reduction of 

amplitudes at critical speeds of operation. 

 To develop user-friendly programs with the nonlinear bearing forces to 

study further insights in the system and validate the solution obtained using 

the 3-D modelling of the system. 

 

1.3 Organization of thesis 

This thesis is organized into seven chapters.  

Chapter-2 presents the literature review on the dynamic analysis of aero-engine rotors. 

Here, the literature is grouped into following heads: (a) rolling element bearing issues, (b) 

rotor modelling considerations, (c) external forces, (d) rub-impact loads and (e) rotor 

vibration control studies.  

In chapter 3, the mathematical modelling of general rotor-bearing systems with associated 

nonlinear forces is presented.  
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Chapter 4 explores on the various solution methods employed in the present work for 

solving the dynamic equations including their interactive computer programs. Also the 

description of scaled rotor model fabrication and experimental work carried-out is briefly 

presented.  

In chapter 5, the mathematical modelling of semi-active and active control methods to 

reduce amplitudes of response are described.  

In chapter 6, the results of the numerical simulations are presented in following sequence: 

(i) Linear bearing model (preliminary studies) (ii) Rotor dynamic analysis with Hertzian 

contact force model subjected to unbalance, squeeze film forces, rub-impact excitations 

and transient Muszynska forces. (iii) Identification studies for bearing faults and rub-

impact stiffening of rotor. (iv) Program outputs from semi-active and active controller for 

the model rotors as frequency-domain plots.  

In chapter 7 concluding remarks and recommendations for future research scope are 

written.   
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Chapter 2  

Literature Review 

 

Typically aero-engine rotors are affected by exogenous or endogenous vibrations 

produced by unbalance, misalignment, resonances, material imperfections and cracks. 

Vibration caused by mass unbalance is a common problem in rotating machinery. Rotor 

unbalance leads to synchronous vibrations and significant undesirable forces transmitted 

to the mechanical elements and supports. Several works have been reported during the 

last two decades on the dynamic instability of rotors mounted on ball/roller bearings 

subjected to other nonlinear excitations. The literature on the dynamic analysis of these 

rotors is classified into the following headings and described in detail.  

2.1 Rolling element bearing issues  

Ball/ roller bearings play a vital role in the field of high speed rotating machineries like, 

aircraft engines and rocket turbopumps and so on. Ball bearing identification and defects 

have attracted considerable attention, due to the demand of high rotational speeds of the 

rotor systems. Ball bearings produce considerable undesired noise and vibration. Even 

though the ball bearings are geometrically and elastically perfect, due to the application of 

external load on them and involvement of numerous balls in the ball bearing lead to noise 

and vibration. 

Early in 1980, Sunnersjo [1] analyzed radial vibrations of radially loaded bearings 

having a positive radial clearance. Examples of theoretical solutions obtained through 

digital simulation were presented and made comparisons with experiments.  

Fukata et al. [2] used computer simulation to analyze the radial vibrations of ball 

bearings to overcome the experimental and theoretical difficulties. The results show that 

superharmoic, subharmonic, beat and chaos-like vibrations appear, in addition to 

harmonic vibration which synchronizes with ball passage.  

Hertizian contact stress theory defines the basic load deflection relation [3], [4] and 

the relative location of the rolling element is responsible for the load experienced by it. 

Lim and Singh [5]–[8] developed a first mathematical model for rolling element bearings 

from basic concepts.  
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The radial clearance also plays key role in the system stability. The loss of contact 

between balls and raceways occurs in ball bearings  and the radial internal clearance in 

the ball bearings [9]–[14] leads to varying bearing stiffness; this is the main parameter of 

ball loads along with the angular position of the cage, both of which leads to varying 

compliance [15]. The stiffness was presented for angular- contact bearings using neural 

network method [16].  

The rolling element bearing consists of different members like the rolling elements, 

inner and outer rings and the spacer and they are in contact under very high speeds and 

severe dynamic loads.  The defects in the bearings are investigated by Kiral and Karagulle 

[17]. Many other authors e.g. [18]–[21] analyzed the translational and angular 

displacement of the rotor supported over ball bearings as a function of waviness.  

Preloading is very much useful in reduce the clearance and obtain the correct 

dynamic requirements of the rolling element bearings and is the expression for a restoring 

force [22]. Sinou [23] in his studies obtained non-linear dynamic response of a flexible 

rotor supported by ball bearings. Finite element model composed of a shaft with one disk, 

two flexible bearing supports and a ball bearing element was employed. Non-linear 

behaviour of the bearing rotor was illustrated with the harmonic balance method. Non-

linear unbalance responses and the associated orbits of the bearing rotor were 

investigated. Villa et al. [24] modelled rolling bearing using harmonic balance method by 

considering the internal clearance and the Hertzian contact forces with kinematics of 

rolling elements. 

Shen et al. [25] studied the nonlinear dynamics and stability of the rotor–bearing–

seal system using Muszynska nonlinear seal force model and short bearing theory. The 

experimental system was simplified as a Jeffcott rotor. 

Cao and Xiao [26] developed a spherical roller bearing model by considering the 

speeds and the surface profiles of inner/ outer race and rollers contacting surfaces and 

also the contact surface waviness. Bonello and Hai [27] introduced an impulsive 

receptance method for the time domain analysis of structures. This approach was tested 

on a realistic twin spool aero-engine, and this method was faster around 40 times than a 

conventional implicit integration scheme. 

Wenhuia et al. [28] studied the rotor bearing system dynamic behaviour and the 

stability analysis was carried out with dual disk rotor imbalance. 

Bonello and Hai [29] proposed a receptance harmonic method for a whole engine 

for the first time to analyze frequency domain of such a structure. The twin spool engine 

was also simulated in this method and it was shown an excellent correlation. Chen [30] 

modelled an unbalanced rotor supported over ball bearings by considering the nonlinear 
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factors like the clearance of bearing, nonlinear Hertzian contact forces and the varying 

compliance vibrations.  

Chen [31] established a dynamic rotor ball bearing stator coupling system model to 

simulate the real aero-engine vibration. Rubbing effects were also considered in this 

model. Figure 2.1 shows a coupled model of rotor-bearing-stator system proposed here. 

 

Figure 2.1: Rotor-bearing-stator coupled model [31] 

Jacome et al. [32] developed a model with the finite element method for mechanical 

event simulations with the AlgorTM code to provide the spatial and time distributions of 

stress and stain values and nodal displacement at each time step.  

Rafsanjania et al. [33] proposed a model to analyze the nonlinear dynamic 

behaviour of rolling element bearing system including the surface defects due to local 

imperfections on raceways and rolling elements. Ricci [34] introduced an iterative 

computational procedure to calculate internal normal ball loads in statically loaded single-

row, angular-contact ball bearings, subjected to a known thrust load. 

Bai et al. [35] investigated the nonlinear dynamic behaviour of a flexible rotor 

supported over ball bearings system. An experimental test rig was prepared to analyze the 

nonlinear dynamic performance of the system and employed a finite element method and 

two degree of freedom dynamic model of a ball bearing to model the flexible rotor 

system. 

Ghafari et al. [36] investigated the balanced fault-free ball bearings vibrations by 

considering the lumped mass damper-spring model. Patil et al. [37] predicted the effects 

of a localized defect on the ball bearing vibrations using an analytical model. Non-linear 

spring considerations were used to design the contacts between the ball and the races. 

Tomovic et al. [38] proposed a vibration model of a rigid rotor supported by rolling 



Chapter 2  Literature Review 

10 

 

element bearing. The internal clearance value and number of rolling elements influence 

was analyzed on the system stability.  

Abbes et al. [39] studied the dynamic behaviour of ball bearing waviness effect using 

time integration techniques. Ashtekar and Sadeghi [40] investigated the dynamics of an 

angular ball bearing rotor system in a   high speed turbocharger test rig and developed a 

coupled dynamic model to correlate the experimental and analytical results. 

Aram et al. [41] presented a nonlinear model to show the effect of contact stress in 

the vibration behaviour of rotating components. The mass and nonlinear springs were 

used to model the system and the equations of motion were solved by using Lindstedt- 

Poincare method. Gupta et al. [42] investigated the instability and chaos were of a flexible 

rotor supported on two deep groove ball bearings system by developing a Timoshenko 

beam finite element formulation.  

Kankar et al. [43], [44] diagnosed the faults of a high speed rotor supported over 

rolling ball bearings by using artificial neural network, support vector machine methods. 

Various localized defects like spalls on rolling elements, inner and outer races considered. 

Kappaganthu and Nataraj [45] developed a rolling element bearing model for 

internal clearances between the races and deflections in different angular positions to 

identify the chaotic frequencies of the machine. 

Nataraj [46] reviewed the state of art in rolling element bearing defects and 

condition based maintenance through fault identification and estimation methods. The 

data collected from the experiments is very useful in identification of the system. Li et al. 

[47] proposed a model of nonlinear model of rotor / bearing / seal system based on the 

Hamilton principle for steam turbine systems in power plants. The nonlinear steam 

excitation and oil film forces were derived from Musznyska and unsteady bearing oil- 

film force models. Nakhaeinejad and Bryant [48] modelled a multibody dynamics of 

rolling element bearings using bond graphs by considering the localized faults, centrifugal 

and gyroscopic effects, bearing clearance forces and contacts slip and separations.  

Randall and Antoni [49] reviewed rolling element bearing to analyze the 

acceleration signals to diagnosis the health of bearings used in very high speed 

machinery. Sawahli and Randall [50] investigated the vibration signals of rolling element 

bearings at entry and exit of the spall. The life of the bearing might be extended by 

tracking spall position and by taking primitive actions.  

Zapomel and Ferfecki [51] studied the dynamic behaviour of a rotor by altering the 

parameters like operating speeds and the stiffness of supports. Chen [52] studied the 

bearing design parameters to suggest the optimal values of stability of the rotordynamic 

system. 
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Gunduz et al. [53] studied the importance of bearing preloads on the modal characteristics 

of a rotor supported over bearing system with a double row angular contact ball bearing. 

Initially, an analytical model was developed to study the effects of preload on the system 

characteristics.  

Kankar et al. [54] studied the effects of inner and outer races surface waviness and 

analyzed the rotor supported on ball bearing system nonlinear dynamic responses and 

modelled the system by considering stiffnesses of different elements of a bearing.  

Xin et al. [55], [56] presented a methodology to analyze the planar multibody 

system containing deep groove ball bearings with clearance by introducing a constraint 

force system by considering the contact stiffness point of raceways and rolling balls and 

bearing kinematics. 

Cong et al. [57] proposed a ball bearing fault signal model by considering  the 

dynamic load analysis of a rotor supported over ball bearing system. The system was 

analyzed by dividing the surface of the bearing where load is actually applied as alternate 

and determinate loads.  

Groves and Bonello [58] presented the squeeze film damper identification technique 

by using neural networks with a trained the experimental data to give the required 

information of the SFD clearance.  

Gunduz and Singh [59] proposed an analytical approach to analyze the double row 

ball bearings by taking the Hertzian theory for different arrangements like face to face 

and back to back and tandem positions. Five dimensional stiffness matrixes for double 

row ball bearing were compared with a commercial code. 

Kankar et al. [60] presented ball bearing fault diagnosis feature-recognition system 

by using the auto correlated the raw vibration signals and also a artificial neural network 

is used to classify the fault features. 

Lahriri and Santos [61] measured the contact bearing forces in two types of backup 

bearings during the impacts of the ball bearings. The whip and whirling motion were also 

studied. Muruganatham et al. [62] proposed a singular spectrum analysis method to 

deduce the bearing fault features in a rotor bearing system and one more method was 

proposed by considering energy of the principal components. Two methods were 

compared by using an artificial neural network method.   

Takabi and Khonsari [63] developed a mathematical model to analyze the ball 

bearing with provision for frictional heat generation, heat transfer processes and thermal 

expansion of bearing components. Tian et al. [64] investigated the influence of unbalance 
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on the nonlinear dynamic characteristics of turbocharger rotor-floating ring bearing 

system with the aid of run-up and run-down simulation method.  

Ye et al. [65]  analyzed the rolling element bearing load distribution and contact stresses 

by using quasi-dynamic and FEA methods by considering inner and outer rings tilted 

misalignment effects. There may be impact on the number of balls in the bearing to 

increase the loading properties of the bearing. 

Zhang et al. [66] presented a Jones-Harris stiffness model to understand the 

stiffness of the rolling element bearings considering five degrees of freedom. The 

stiffness is a time varying feature due to unbalance force and finite number of balls.  

Harrer et al. [67] investigated bearing system used in pharmaceutical and food 

industries, which are made up of ceramic materials. The ceramic bearing consists of Zro2 

rings and silicon nitrate balls. A premature wear was identified in the bearing system.  

Jacobs et al. [68] investigated the deep groove ball bearing system dynamics, when 

the system was supported on deep groove ball bearings and the effects of lubricant film 

formation were studied and also, the stiffness and damping properties of the bearing in the 

static bearing load direction were identified. The dynamic behaviour of the lubricant oil 

film in the bearing was measured by using an electrical resistance. There was an increase 

in the stiffness by 3.2% and damping by 24% due to the effective formation of the 

lubricant film was observed.  

Kogan et al. [69] proposed a three-dimensional rolling element bearing dynamic 

model to simulate the contact between the rolling elements and the cases by using classic 

dynamic and kinematic equations of Hertzian contact theory. The frictional force was 

determined with a hyperbolic-tangent function and also allows in simulating different 

faults in the bearing. Korolev et al. [70] developed a methodology to calculate the 

maximum load dependence on the balls at different contact positions of the balls and the 

races. 

Nonato and Cavalca [71] presented a deep groove ball bearing model, in which the 

lateral vibrations of elastohydrodynamic film effects were included as a set of equivalent 

nonlinear viscous damper and spring.  The proposed model and the finite difference 

results were compared. A finite element model of the rotor accounting for the lubricated 

bearing formulation adequately portrayed the frequency content of the bearing orbits 

observed on the test rig.  

Petersen and Howard [72] presented a method to estimate the bearing raceway 

defects size that are bigger than angular spacing between the adjacent balls. There was an 

effect of varying stiffness of the ball bearings due to re and de stresses in the entrance and 

exiting of the balls in these defects of the ball bearings. 
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Shah and Patel [73] reviewed the rolling element bearing dynamics due to presence and 

absence of different defects of the bearing and summarized the fault identification 

techniques. The presence of tiny defects in the bearings will leads to failure of even very 

high speed machinery with economical and personal losses. The health monitoring of 

bearings was very useful to prevent such dangerous conditions. 

Sheng et al. [74] explained the variation in the stiffnesses due to varying the speed 

of a rolling element bearing system by using Jones and Harris efforts and also proposed a 

model based on differentiation of implicit function to measure the speed varying stiffness 

of the system. The results of the proposed and literature methods were compared. 

Singh et al. [75] presented a physical mechanism by which defect-related impulsive 

forces, and consequently, vibrations were generated in defective rolling element bearings. 

A dynamic nonlinear finite element model of a rolling element bearing with an outer race 

way defect was numerically solved using the explicit dynamics finite element software 

package, LS-DYNA.  The dynamic contact forces between the rolling elements and the 

raceways of a bearing were reported. 

Zhou et al. [76] studied the two different floating ring squeeze film dampers, one 

has a single oil film, which was referred as floating ring squeeze film dampers, and the 

other has a double layer oil film, which is referred to as FSFDD. The dynamic 

characteristics of FSFDS and FSFDD of two rotor dynamic models were investigated and 

the coupling effect between rotor, ball bearing and FSFDS/FSFDD were considered.  

Zhuo et al. [77] established a three degrees of freedom model for a double-row self-

aligning ball bearing system and studied the dynamic behaviour of the system during 

starting process and constant speed rotating process. A mathematical model was 

developed to account the effects of damping, stiffness of the bearing, three dimensional 

applied load, centrifugal force of the rotor, etc.  

Han and Chu [78] proposed a three-dimensional nonlinear dynamic model to 

predict the skidding behaviour of angular contact ball bearings under combined load 

condition. The centrifugal and gyroscopic effects induced by ball rotation and revolution, 

Hertz contact between the ball and inner/outer races, discontinuous contact between the 

ball and cage and elastohydrodynamic lubrication were considered in the model.  

Ahmadi et al. [79] presented a nonlinear dynamic model of defective ball bearings 

to generate contact forces and vibration responses. In this model accounts the responses 

of the line spall defects, when the ball enters the defect zone. 

Kurvinen et al. [80] presented guidelines for the appropriate selection of a suitable 

bearing model for three case studies and two ball bearing models were implemented. One 

considers high-speed forces, and the other neglects them. Both models were used to study 
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three structures, and the simulation results were compared. The bearing behaviour is 

studied at different shaft rotation speeds and the simulation results are used to determine 

when the model containing the centrifugal and gyroscopic forces should be used. 

Li et al. [81] proposed a general dynamic modelling method of ball bearing–rotor 

systems. Gupta’s bearing model was applied to predict the rigid body motion of the 

system considering the three- dimensional motions of each part (i.e., outer ring, inner 

ring, ball, and rotor), lubrication tractions, and bearing clearances. The finite element 

method was used to model the elastic deformation of the rotor. The dynamic model of the 

whole ball bearing–rotor system was proposed by integrating the rigid body motion and 

the elastic vibration of the rotor. This proposed model may provide guidance for 

structural optimization, fault diagnosis, dynamic balancing, and other applications. 

Petersen et al. [82] presented a method for calculating and analyzing the quasi-static 

load distribution and varying stiffness of a radially loaded double row bearing with a 

raceway defect of varying depth, length, and surface roughness. The method was applied 

to ball bearings on gearbox and fan test rigs seeded with line or extended outer raceway 

defects. When balls pass through the defect and lose all or part of their load carrying 

capacity, the load was redistributed between the loaded balls.  

Zhang et al. [83] proposed a five-degree- of-freedom load distribution model by 

considering the bearing preload and the loads due to the rotor imbalance. Utilizing this 

model, the variation of the bearing contact angle was investigated thoroughly. The 

comparisons of the obtained contact angle against the results from literature validate that 

the proposed load distribution model was effective. The main resonance regions for the 

rotor-bearing system shift to the lower speed ranges when the variation of contact angle 

was taken into account. 

2.2 Rotor modelling considerations  

Rotor modelling is one of the major issues before its fabrication. Both one and three 

dimensional models have become famous.  Early literature on modelling of rotors has 

started with famous Jeffcott rigid models.  

Nelson [84] established the shape functions of transverse shear effects by using the 

Timoshenko beam theory. The effects of rotatory inertia, gyroscopic moments, axial load, 

and internal damping are already included in the literature, but have not included shear 

deformation or axial torque effects. This was the first work recorded in this area. After 

Nelson proposed the finite element model for a flexible rotor using Timoshenko beam 

theory, several authors [eg.,[85], [86]] employed the concept of finite element modelling 

for several rotors.  
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Muszynska and Bently [87] described the perturbation techniques used for identification 

of rotating system dynamic characteristics. A comparison between two periodic 

frequency-swept perturbation methods applied in identification of fluid forces of rotating 

machines was presented. Kim and Noah [88] developed a alternating frequency time 

method to obtain quasi-periodic responses of a horizontal Jeffcott rotor with a bearing 

clearance. Two truncated double harmonic expansions were used for calculating accurate 

quasi-periodic responses. Mao  and  Qin [89]  developed  an approach for calculating  the 

dynamic  response  of multi-spool  rotor  systems with  several inter shaft  bearings  using 

the combined  methodologies  of the finite element  method, transfer  matrices and 

impedance  methods. Mao and Qin [90] developed a new shaft element model with 10 

degrees of freedom for coupled torsional - flexural vibration of rotor systems. The model 

was based on an extended Hamilton’s principle and includes the effects of translational 

and rotational inertia, gyroscopic moments, bending, shear and torsional deformations, 

internal viscous and hysteretic damping, and mass eccentricity. Figure 2.2 shows a virtual 

model of the rotor assembly within the engine. 

 

 

Figure 2.2: Schematic of Aero-Engine rotor 

Tiwari and Vyas [91] described a procedure for extraction of the linear and nonlinear 

stiffness parameters in rotors with multiple discs, supported in rolling element bearings. 

The analysis puts forth a technique, which could be employed on-line, for processing the 

rotor vibrations picked up at the bearing caps, as it does not require an a priori knowledge 

of the excitation force.  The problem was formulated for a multi-degree, nonlinear, 

balanced rotor system experiencing random excitations from the bearings, caused due to 

imperfections and deterioration of the rolling surfaces as well as from the other random 

sources, like inaccuracies in alignment, etc.  
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Nagasaka et al. [92] studied nonlinear phenomena caused by both of the nonlinear 

spring characteristics and an initial axial force in the vicinity of the major critical speed 

and twice in a very slender continuous rotor. When the rotor was supported horizontally, 

the difference in support stiffness and the asymmetrical non- linearity appear as a result of 

shifting from the equilibrium position. Tiwari et al. [93] studied effect of radial internal 

clearance of the ball bearing on the dynamic response of the rotor. The response of a 

balanced horizontal rigid motor rotor supported by a deep groove ball bearing was 

theoretically simulated.  

Ganguli [94] developed a fuzzy logic system for ground based health monitoring of 

a helicopter rotor blade. Structural damage was modelled as a loss of stiffness at the 

damaged location that can result from delimitation. A finite element model of the rotor 

blade was used to calculate the change in blade frequencies (both rotating and non-

rotating) because of structural damage.  

Zhou and Shi [95] presented an on-line estimation method that can simultaneously 

estimate the parameters and determine the significance of the non-linear and time variant 

effects in the rotor-bearing dynamic system is presented. This method is based on an 

order down dating algorithm, which can deal with all linear-in-the-parameter non-linear 

and time variant effects, such as the unsymmetrical shaft, the structural internal damping, 

and the non-linear elastic restoring force of the bearing.  

Zhou et al. [96] presented an active balancing method to offset the imbalance of the 

rotor system during acceleration by using an electromagnetic balancer. Qiu and Rao [97] 

presented a methodology for the fuzzy analysis of nonlinear rotor-bearing systems along 

with numerical results to demonstrate the computational feasibility of the methodology. 

Yang and Suh [98] presented results of applying instantaneous frequency to the 

interpretation and characterization of bifurcation and evolution of instability for a 

comprehensive rotor-journal bearing model incorporating translational and rotational 

inertia, bending stiffness, gyroscopic moments, shear deformation and disk imbalance.  

Lou et al. [99] presented a finite - element formulation of a Timoshenko beam 

subjected to a moving mass. The beam was discretized into a number of simple elements 

with four degrees of freedom each. The inertial effects of the moving mass were 

incorporated into a finite-element model. Shanmugam and Padmanabhan [100] developed 

a fixed–free interface component mode synthesis method for carrying out rotordynamic 

analysis with the gyroscopic effects being considered. This model was used to combine 

the advantages of the fixed interface method, known as the Craig–Bampton approach. 

Cheng et al. [101] investigated the non-linear dynamic behaviours of a rotor–

bearing–seal coupled system. The influence of parameters, such as the rotation speed, seal 
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clearance and eccentricity of rotor were analyzed. Peters et al. [102] developed a test rig 

for the rotor dynamic behaviour investigation and optimisation of the supercritical low-

Pressure Spool.  The test rig was built up to investigate mainly the non-linear behaviour 

of the rotor-bearing-system under extreme operating conditions like out of balance of the 

shaft and the turbine, oil of conditions, gyroscopic effects and additional tests. 

Santiago and Andres [103] presented an identification procedure that is suitable for 

implementation in the field and that relies on measurements of rotor synchronous 

response to calibrated imbalance. The method was extended to the typical case when the 

displacement measurements occur away from the bearing locations in flexible rotor 

systems.  Mei et al. [104] investigated the non-linear dynamic behaviours of a rotor-

bearing-seal coupled system and to analyze the influence of the seal and bearing on the 

nonlinear characteristics of the rotor system. Sun et al. [105] presented an approach for 

blade loss simulation including thermal growth effects for a dual-rotor gas turbine engine 

supported on bearing and squeeze film damper. A nonlinear ball bearing model using the 

Hertzian formula predicts ball contact load and stress, while a simple thermal model 

estimates the thermal growth so bearing components during the blade loss event. 

Yao et al. [106] studied the complicated dynamical behaviour of a flexible rotor-

bearing system. The unsteady oil-film force model described by three functions was 

considered. Kankar et al. [107] focused on accurate performance prediction, which is 

essential to the design of high performance rotor bearing system. It considers distributed 

defects such as internal radial clearance and surface waviness of the bearing components. 

In the mathematical formulation the contacts between the rolling elements and the races 

were considered as nonlinear springs, whose stiffnesses were obtained by using Hertzian 

elastic contact deformation theory.  

Lees et al. [108] gave an overview of the developments in this field of condition 

monitoring, which has considerable practical importance. Lu et al. [109] analysed the 

non-linear coupling dynamic behaviour of a hydrodynamic bearing- flexible rotor system 

and proposed a method, the iterations were executed only on non-linear degrees of 

freedom. The iteration process shown that, improved convergence by taking the 

prediction value as the initial value.  

Bai et al. [110] studied non-linear dynamic response of a flexible rotor supported by 

ball bearings. The finite element rotor system was composed of a shaft with one disk, two 

flexible bearing supports and a ball bearing element where the non-linearities were due to 

both the radial clearance and the Herztian contact between races and rolling elements.  

Ying et al. [111] investigated the effect of foundation excitation on the dynamical 

behaviour of a turbocharger, a dynamic model of a turbocharger rotor-bearing system was 
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established which includes the engine’s foundation excitation and nonlinear lubricant 

force. The rotor vibration response of eccentricity was simulated by numerical 

calculation.  

Taplak et al. [112] investigated the rotor bearing system behaviour and also implemented 

the vibration analysis of the vertical system. The spectrum graphs are used to diagnosis 

the health of the system.  by using vibration monitoring with trend analysis and spectrum 

graphs. 

Genta et al. [113] developed an annular finite element for the computation of 

second and higher order harmonics modes of bladed rotating discs. The elements take into 

account gyroscopic effect and stiffening due to centrifugal and thermal stresses. The 

displacement field was expressed by a truncated Fourier series along the angle and by 

polynomial shape functions in the radial direction. Karlberg [114] derived analytical 

expressions for such approximated pedestal stiffness coefficients by using such 

approximated pedestals in simple rotordynamical models; it was found that the eigen 

frequencies decrease significantly with clearance.  

Moore et al. [115] presented two approaches, including development of transfer 

functions of the casing and foundation, as well as a fully coupled rotor-casing-foundation 

model. The effect of bearing support compliance was captured, as well as the influence of 

casing modes on the rotor response.  

Sheng et al. [116] developed a rigid-flexible dynamic simulation software based on 

the available commercial software MSC.ADAMS/ SOLVER and simulated an aero-

engine main-shaft high speed cylindrical bearing's working dynamic performance by 

taking the cage's flexibility into consideration.  The  bearing's  dynamic  equations was 

established  using  a  modified  Craig-Bampton  substructure mode  synthesis  method.  

Wang and Jiang [117] developed enhanced and robust prognostic methods for 

aircraft engine including wavelet based method for weak signature enhanced for adaptive 

de-noising and correlation dimension based for incipient fault diagnosis. Gupta et al. 

[118]  analysed two sources of excitations rotating imbalance and self excitation due to 

varying compliance effect of ball bearing in a rotor bearing system. 

Hai and Bonello [119] applied impulsive receptance and the harmonic balance 

receptance methods are applied to a realistic three-spool engine and the aims are twofold: 

(i) to present some preliminary results of a parametric study into a three-spool aero-

engine assembly and (ii) to propose a technique that makes use of both in producing the 

speed responses under multifrequency unbalance excitation (from all three rotors) with a 

realistic speed relation between the rotors. 
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Jansson et al. [120] discussed the effects of inertia and the rotational energy of the fluid in 

the turbine on lateral transversal shaft vibrations of hydraulic generator units. There was a 

lack of agreement among engineers upon how fluid inertia of the turbine should be 

included in rotor models. The rotational energy of the fluid has a potential risk of feeding 

self- excited vibrations. A fluid-rotor model was presented that captures the effect of 

inertia and angular momentum of a fluid annulus on vibrations of an inner rigid cylinder.  

Li et al. [121] established a new dynamic model of a rotor system based on the 

Hamilton principle and the finite element method and analyzed the dynamic behaviour of 

the rotor system with the coupled effects of the nonlinear oil film force, the nonlinear seal 

force, and the mass eccentricity of the disk. The equations of the motion were solved 

effectively using the fourth order Runge-Kutta method in MATLAB.  

Cheng et al. [122] analysed the nonlinear model of rotor / bearing / seal system by 

considering the Muszynska’s non-linear seal fluid dynamic force model and non-linear oil 

film forces.  

Rodrigues et al. [123] investigated a single-plane automatic balancer that was fitted 

to a rigid rotor. Two balls, which were free to travel around a circular race, were used to 

compensate for the mass imbalance in the plane of the device. The experimental rig 

possesses both cylindrical and conical rigid body modes and the performance of the 

automatic balancer is assessed for a variety of different levels of imbalance. 

Sawicki et al. [124] investigated the modelling and analysis of machines with 

breathing cracks, which open and close due to the self-weight of the rotor, producing a 

parametric excitation. After reviewing the modelling of cracked rotors, the paper analysed 

the use of auxiliary excitation of the shaft, often implemented using active magnetic 

bearings to detect cracks. Sudhakar and Sekhar [125] applied equivalent loads 

minimization and vibration minimization methods for the identification of unbalance fault 

in a rotor system. Unbalance fault was identified using proposed methods by measuring 

transverse vibrations at only one location. 

Babu et al. [126] presented a nonlinear vibration analysis of angular contact ball 

bearings supporting a rigid rotor by considering the frictional moments (load dependent 

and load independent components of frictional moments) in the bearings. Six degrees of 

freedom of rigid rotor was considered in the dynamic modelling of the rotor-bearings 

system. Moreover, waviness on surfaces of inner race, outer race, and ball were 

considered in the model by representing it as sinusoidal functions with waviness orders of 

6, 15, and 25.  

Bai and Zhang [127] presented the modelling of rotor systems subjected to 

stochastical axial loads as stochastically excited and dissipated Hamiltonian systems. The 
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stochastic averaging method for quasi-integrable – Hamiltonian systems was applied to 

obtain the averaged equations and the expression for the largest Lyapunov exponent was 

formulated. The necessary and sufficient conditions for the almost sure asymptotic 

stability of the rotor system were presented approximately.  

Barad et al. [128] presented a Neural Network based approach for executing this 

task of combined health monitoring viz. mechanical and performance, with an example 

case study pertaining to a developmental power turbine. The various parameters used 

along with the trending methodologies both for steady state and transient operations were 

brought out. 

Didier et al. [129] investigated the quantification of uncertainty effects on the 

variability of the nonlinear response in rotor systems with multi-faults (such as unbalance, 

asymmetric shaft, bow, parallel and angular misalignments). To take account all 

uncertainties in this kind of nonlinear problem by using the Harmonic Balance Method 

with a polynomial chaos expansion is very much important. 

Lal and Tiwari [130] developed an identification algorithm to estimate parameters 

of multiple faults in a turbine – generator system model based on the forced response 

information. A simple discrete model of the system has been developed with the 

assumption of the rigid- rotor, flexible-bearings and the flexible-coupling. This was 

capable of describing the vibration resulting from coupling misalignments and rotor 

unbalances.  

Siqueira et al. [131] presented a linear parameter varying control design for a 

flexible shaft supported by plain journal bearings. The model used in the LPV control 

design was updated from unbalance response experimental results and dynamic 

coefficients for the entire range of rotating speeds were obtained by numerical 

optimization. 

Taplak et al. [132] performed the passive balancing of a rotating mechanical system 

having multi-discs. Reducing the bearing vibrations was considered an optimization 

problem, and the Genetic Algorithm approach was used for solving it under the 

appropriate constraints. Therefore, bearing amplitudes are formulated as an objective 

function, and the eccentricity directions of 2nd, 3rd... nth discs were defined as design 

variables relative to the first one.  

Wan et al. [133] investigated the dynamic response of a multi-disk rotor system 

with coupling misalignment theoretically and experimentally, considering the nonlinear 

oil film force. The rotor was simplified to a lumped mass model and the governing 

equations were derived considering the gyroscopic effect. The reacting forces and 

moments caused by misalignment were treated as excitations to the rotor system.  
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Han and Chu [134] studied the dynamic response of cracked rotor-bearing system under 

time-dependent base movements. Three base angular motions, including the rolling, 

pitching and yawing motions, were assumed to be sinusoidal perturbations superimposed 

upon constant terms. Both the open and breathing transverse cracks were considered in 

the analysis. The finite element model was established for the base excited rotor-bearing 

system with open or breathing cracks.  

Reimann et al. [135] focused on a strategy that uses the m-synthesis control 

technique to attenuate the oil whip instability effect of flexible hydrodynamically 

supported rotors and allows the rotor to operate in higher speeds. For the identified rotor 

model and the synthesized controller applied on a magnetic actuator, the control system 

stability and performance specifications were analyzed with regard to the model 

uncertainties and m-synthesis controlled vibration levels are compared to PID controller 

in vertical and horizontal directions. Sinha  and Elbhbah [136] adopted conventional 

practice uses a number of vibration sensors at a bearing pedestal of a rotating machine for 

the vibration based condition monitoring. The number of bearings in a machine is likely 

to be very high hence increasing sensors to a large number and reduced the number of 

sensors per bearing pedestals by enhancing the computational effort in signal processing. 

Sopanen et al. [137] investigated the complex rotor-bearing system of a tube roll of 

a paper machine supported by a hard-bearing-type balancing machine. Non-idealities of 

the rotor- bearing system were measured from the existing structure and the parameters of 

the real structure were emulated as accurately as possible in the simulation model.  

Taplak et al. [138] investigated the dynamic behaviour of a direct coupled rotor-

bearing system. Experimental vibration analyses in the vertical direction of the system 

were implemented. 

Vanini et al. [139] developed fault detection and isolation scheme for an aircraft jet 

engine and was based on the multiple model approach and utilizes dynamic neural 

networks to accomplish this goal.  

Jalili et al. [140] carried out the full dynamic analysis of a high speed rotor with 

certain geometrical and mechanical properties using 3D finite element model, one-

dimensional beam-type model and experimental modal test.  

Lee et al. [141] reviewed prognostics and health management field, followed by an 

introduction of a systematic prognostics and health management design methodology, 5S 

methodology, for converting data to prognostics information. This methodology includes 

procedures for identifying critical components, as well as tools for selecting the most 

appropriate algorithms for specific applications. 
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Li et al. [142] analyzed the stability of periodic motion of a rotor-bearing system with two 

unbalanced disks based on a multi-degree of freedom finite element model. Nonlinear 

effects of supporting oil-film and inertia distributions as well as shearing effect were 

taken into account.  

Ozsahin et al. [143] presented an analytical modelling and an analysis approach for 

asymmetric multi-segment rotor–bearing systems. Timoshenko beam model which 

includes the effect of gyroscopic moments was employed for modelling rotor segments. 

Cui et al. [144] presented a method for calculating and analyzing the quasi-static load 

distribution and varying stiffness of a bearing with a raceway defect of varying depth, 

length, and surface roughness.  

Tang et al. [145] proposed a mode separation method to separate the first and the 

second bending modes in rotor displacement and reconstruct the displacement signal 

nearby the first bending mode. Then, the original rotor displacement signal used by the 

digital controller was substituted by the reconstructed displacement signal and the 

amplifier current was reduced a lot when the rotor passes the first bending critical speed. 

Ghalamchi et al. [146] proposed model to describe the contact forces between bearing 

rolling elements and race surfaces as nonlinear Hertzian contact deformations, taking 

radial clearance into account.  

2.3 External forces 

Apart from unbalance force and bearing reactions, rotors are subjected to various forces 

including seal forces or harmonic loads. Exhaustive literature is available and some of 

them are summarized below.  

  Kim et al. [147] developed a structural model of a rotor system and integrated with 

the turbine flow model to examine the effects of the aerodynamic forces on the structural 

stability of the rotor system. Effects of the Alford force, and analytical/numerical methods 

had been chosen as methods for investigation.  

Li et al. [148] established the nonlinear model of rotor-labyrinth seal system using 

Muszynska’s nonlinear seal forces. We deal with dynamic behaviours of the unbalanced 

rotor-seal system with sliding bearing based on the adopted model and Newmark 

integration method. The influence of the labyrinth seal on the nonlinear characteristics of 

the rotor system was analyzed. 

Nataraj and Harsha [149] presented an analytical model to investigate the non-linear 

dynamic behaviour of an unbalanced rotor bearing system due to cage run-out. Due to 

run-out of the cage, the rolling elements no longer stay equally spaced. The mathematical 

model takes into account the sources of non-linearity such as Hertzian contact forces and 
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cage run-out, and the resulting transition from a state of no contact to contact between the 

rolling elements and the races. The contact between the rolling elements and races is 

treated as nonlinear springs and the system was analyzed for varying number of balls.  

Wang and Wang [150] presented the nonlinear coupling vibration and bifurcation of 

a high-speed centrifugal compressor with a labyrinth seal and two air-film journal 

bearings. The rotary shaft and disk were modelled as a rigid Jeffcott rotor. Muszynska’s 

model was used to express the seal force with multiple parameters.  

Mei Cheng et al. [151] investigated the nonlinear dynamic behaviours of an 

unbalanced rotor system supported on ball bearings with Alford force. In the rotor model, 

the rotor unbalance that varied with rotating speed, ball bearing clearance, nonlinear 

Hertzian contact force, varying compliance vibration, contact angle and Alford force were 

considered. Tiwari and Chakravarthy [152] proposed algorithm has the flexibility to 

incorporate any type and any number of bearings including seals.  

Jing Liu et al.  [153] proposed a dynamic simulation method to study ball bearing 

with local defect based on the coupling of the piecewise function and the Hertzian contact 

mechanism at the edge of the local defect. The ball bearing was modelled as a two-degree 

of freedom system. The impulse force was determined by the ratio of the ball size to the 

defect size and the contact deformation at the edge of the local defect was included.  

Moazenahmadi et al. [154] presented a nonlinear dynamic model of the vibrations 

generated and contact forces in bearings due to a rectangular shape surface defect in a 

raceway.  Singh et al. [155] explained the mechanisms of damaged bearing produced 

impacts from the numerical modelling using finite element analysis software.  

2.4 Rub – impact loads 

Due to extremely small clearances between the rotor and stator often provided by the 

designers to have a better efficiency, the rotor in course of time will be in contact with 

stator. This rub impact phenomenon will lead to rotor instability.  

Chu and Zhang [156] investigated non-linear vibration characteristics of a rub-

impact in Jeffcott rotor. The system is two-dimensional, non-linear and periodic. Fourier 

series analysis and the Floquet theory were used to perform qualitative global analysis on 

bifurcation and stability. After the rub-impact, three kinds of routes to chaos were found, 

that is, from a stable periodic motion through period doubling bifurcation, grazing 

bifurcation and a sudden transition from periodic motion to chaos. Quasi- periodic 

motions were also found. 

Chu and Lu [157] considered the rotor stiffness as a variable and the rub-impact 

effect was included in the dynamic stiffness. Based on simulation data the least-square 
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method was used to identify the dynamic stiffness at different positions along the rotor. It 

was found that the dynamic stiffness at the position where the rub-impact occurs 

increases. This method was found to be very effective in detecting the rubbing position. 

Lu et al. [158] considered the existence of rub-impact periodic motions in an eccentric 

rotor system. A criterion for the periodicity condition of n-periodic impacts was derived 

and other conditions for real rub-impacts were also discussed. A method consisting of 

analytical and numerical techniques was presented to solve the existence problem of rub-

impact periodic motions.  

Wan et al. [159] investigated the vibration of a cracked rotor sliding bearing system 

with rotor–stator rubbing using harmonic wavelet transform. Three non-linear factors, 

non-linear oil film forces, rotor–stator rubbing and the presence of crack, were taken into 

account. So the non-linear behaviour of the rotor will be much more complex. According 

to Newmark method, the dynamic response of the rotor was calculated. The effect of 

these non-linear factors is analyzed simultaneously in both time and frequency domain. 

Han et al. [160] proposed a quantitative identification procedure for local rubbing fault in 

rotor systems based on a hybrid model. The hybrid model combines finite element model 

of rotor and rigid discs, online identified oil film stiffness and elastic supports. The 

identification algorithm of oil film parameters was stated. The hybrid model based 

diagnosis process for local rubbing fault was described with assumption of periodic 

rubbing forces. These approaches have been tested on a test rig with single rotor double 

discs. 

Hua et al. [161] established the nonlinear model of the rotor–seal system using 

Muszynska’s nonlinear seal forces. An efficient and high-precision direct integration 

scheme was presented based on the 2 type algorithm for the computation of exponential 

matrices. The nonlinear phenomena in the unbalanced rotor–seal system were 

investigated using the adopted model and numerical integration method.  

Inoue and Ishida [162] investigated the dynamic characteristics of nonlinear 

phenomena, especially chaotic vibration, due to the 1 to (-1) type internal resonance at the 

major critical speed and twice the major critical speed. The Hopf-bifurcation and 

consecutive period doubling bifurcations possible route to chaos occur from harmonic 

resonance at the major critical speed and from subharmonic resonance at twice the major 

critical speed, and chaotic vibration from the combination resonance occurs at twice the 

major critical speed were studied theoretically and experimentally.  

Cheng et al. [163] investigated non-linear phenomena compressing periodic and 

quasi-periodic motion in the rotor–bearing–seal system and mathematical model and 

experimental results were compared. Jian and Chen [164] studied the dynamic analysis of 
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the rotor-bearing system supported by oil film journal bearings. An observation of a 

nonlinearly supported model and the rub-impact between rotor and stator was needed for 

more precise analysis of rotor-bearing systems. The periodic, quasi-periodic, sub-

harmonic and chaotic motion were demonstrated.  

Pennacchi and Vania [165] presented an actual case history of a large 

turbogenerator unit that was subjected to partial arc rubs.  The results were discussed 

along with the model-based diagnostic strategy employed to identify the fault severity and 

the location of the shaft cross-sections where the heaviest rubs occurred. Comparisons 

between experimental data and simulated vibrations caused by the identified fault were 

identified to validate the proposed methodology. 

Patel and Darpe [166] examined the vibration response of the cracked rotor in 

presence of common rotor faults such as unbalance and rotor stator rub. Numerical and 

experimental investigations were carried out and steady-state vibration analysis was 

presented. The investigation focused on directional nature of the higher harmonics for 

identification of rub in the cracked rotor. Shen and Zhao [167] investigated the stability 

and nonlinear behaviour of a  rotor-bearing-seal system both numerically and 

experimentally. Wang and Chen  [168] modelled rotor-support-casing structural features 

by using finite element beam method and the supports are modelled as lumped- mass 

models. Figure 2.3 shows the model rig employed in their work. 

 

Figure 2.3: Profile of aero-engine rotor test rig [168] 

Jeng et al. [169] introduced an alternative Poincare section method to analyze the 

dynamic behaviour of a rotor in rubbing. The response integration for analyzing high-

order harmonic and chaotic responses was used to integrate the distance between state 

trajectory and the origin in the phase plane during a specific period. The integration 

process was based on the fact that the integration value would be constant if the 

integration interval was equal to the response period.  



Chapter 2  Literature Review 

26 

 

Patel and Darpe [170] investigated the coast-up lateral vibration response of the 

rotor–stator rub. Rub detection at its initiation stage was attempted. Shift in resonance 

speed and the directional nature of the rub fault were observed. Potential of Hilbert–

Huang transform over wavelet transform was examined.  

Patel and Darpe [171] modelled and attempted the vibration signature analysis of 

rotor with rotor – stator rub, transverse fatigue crack and unbalance. The rotor–stator 

interaction effects on the response of a rotor were investigated in the presence/absence of 

a transverse crack. The torsional vibrations were investigated for their sensitivity to 

rubbing using finite element model that also accounts for cross coupling of stiffness 

introduced due to crack.  

Chen at al. [172] established a rotor-ball bearings-support-stator coupling system 

dynamic model with rubbing coupling faults for practical aeroengine. In the model, the 

rubbing fault was modelled, the stator motion was considered, the flexible support and 

squeeze film damper were established, and the nonlinear factors of ball bearing, such as 

the clearance of the bearing, the nonlinear Hertzian contact force between balls and races, 

and the varying compliance vibration because of the periodical variety of the contact 

position between balls and races, were modelled.  

Chu and Lu [173] investigated the dynamic model of the rubbing rotor system was 

established and the dynamics of the rubbing rotor. The parameter identification was used 

to process the vibration data obtained by numerical simulation and experimental test. The 

change in the transient stiffness of the rotor was analyzed and the stiffening effect of the 

rotor was investigated quantitatively. It was found that the change of the transient 

stiffness could effectively reflect the severity of the rub–impact. 

 Ma et al. [174] investigated the nonlinear dynamic characteristics of a single span 

rotor system with two discs under fixed-point and local arc rub-impact conditions. A 

twenty-degree- of- freedom model considering the gyroscopic effect was developed, the 

simple Coulomb friction model and piecewise linear spring model to describe the contact 

between the rotor and the stator. The vibration characteristics of the rotor system with two 

types of rub-impact forms were analyzed. Rad et al. [175] studied the effects of shaft rub 

on a rotating system’s vibration response with emphasis on heat generation at the contact 

point. A 3D heat transfer code, coupled to a 3D vibration code, was developed to predict 

the dynamic response of a rotor in the time domain. The shaft bow was represented by an 

equivalent bending moment and the contact forces by rotating external forces. The seal 

ring was modelled as a linear spring, which exerts a normal force to the rotor.  

Roques et al. [176] introduced a rotor–stator model of a turbogenerator investigate 

speed transients with rotor-to-stator rubbing caused by an accidental blade-off imbalance. 
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In order to assess the angular deceleration of the rotor due to rubbing, the angular position 

of its cross-section was considered as an unknown of the problem. Displacement fields 

are discretized through a finite element formulation.  

Shang [177] studied the global response characteristics of a general rotor/stator rubbing 

system, which takes into account the dominant factors in the process of rotor /stator 

rubbing, and the dry friction effect.   

Cao et al. [178] investigated the nonlinear dynamic characteristics of rub-impact 

rotor system with fractional order damping. The model of rub- impact comprises a radial 

elastic force and a tangential Coulomb friction force. The fractional order damped rotor 

system with rubbing malfunction was established. Various complicated dynamic 

behaviours and types of routes to chaos were found, including period doubling 

bifurcation, sudden transition and quasi-periodic from periodic motion to chaos.  

Cong et al. [179] installed an experimental setup which can simulate the rotor-to-

stator rub in a rotor system. A rub screw was used to simulate the condition of local rub–

impact fault. Based on the theory of elastic collision and energy conservation, an Impact 

Energy Model was proposed to evaluate the probability or severity of rub–impact fault. 

Hammer test and rub– impact fault validation were conducted to prove the model. 

Khanlo et al. [180] studied the chaotic vibration analysis of a rotating flexible 

continuous shaft-disk system with rub impact. The system was modelled as a continuous 

shaft with a rigid disk in its mid- section with Coriolis and centrifugal effects included. 

The governing partial differential equations of motion were extracted based on the Euler–

Bernoulli beam theory.  

Zhou et al. [181] proposed nonlinear model of a double disc rotor seal system based 

on the finite element method and the Lagrange equation with the coupled effects of the 

gravity force of the discs.  

Zapomel  and Ferfecki [182] developed a mathematical model by considering the 

shaft as flexible and the disks as rigid bodies and the model also includes the 

hydrodynamic bearings impacts and the nonlinear forces of couplings.  

Lahriri at al. [183] proposed a new unconventional backup bearing design in order 

to reduce the rub related severity in friction and centre the rotor at impact events. The 

analysis showed that the rotor at impacts was forced to the centre of the backup bearing 

and the lateral motion was mitigated. As a result, the rotor spin was kept constant. Lahriri 

and Santos [184] dealt with the theoretical study of a horizontal shaft, partially levitated 

by a passive magnetic bearing, impacting its stator. Rigid body dynamics were utilised in 

order to describe the governing nonlinear equations of motion of the shaft interacting with 
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a passive magnetic bearing and stator. Theoretical and experimental studies were 

compared.  

Ma et al. [185] established a lumped mass model of a rotor-bearing-seal system 

considering the gyroscopic effect. The graphite self-lubricating bearing and the sliding 

bearing were simulated by a spring-damping model and a nonlinear oil-film force model 

based on the assumption of short bearings, respectively. The seal was simulated by 

Muszynska nonlinear seal force model. Effects of the seal force and oil-film force on the 

first and second mode instabilities were investigated under two loading conditions. 

Olgac et al. [186] presented an alternative pathway in studying the ubiquitous 

blade/casing rub problem in turbomachinery. Bladed disks interfere with the stationary 

shroud (casing) for a variety of reasons, such as axial offsets, thermal expansions. Both 

components being compliant, time-varying interface characteristics, nonlinearities and 

uncertainties in the rub forces make this dynamics very complex to model and analyze.  

Ma et al. [187] studied the dynamic characteristics of a rotor rubbing with circular 

stator and four pin shape stators based on contact dynamics theory. Based on finite 

element method, the rotor system attached with two disks and pin shape stators were 

simulated by Timoshenko beam. The circular stator was simulated by a lumped mass 

model, and the rotor and stator were connected by one or more point–point contact 

elements to establish the dynamic model of the rotor–stator coupling system.  

Ma et al. [188] derived a rubbing model between a rotating blade and elastic casing 

based on the law of conservation of energy. In this model, the bending deflection of blade 

and the casing deformation during rubbing were taken into account and the influences of 

the penetration depth, casing stiffness, friction coefficient, blade physical dimensions 

(thickness, width and length) on the quasi-static normal rubbing forces were analyzed. 

Weaver et al. [189] examined a three-disk rotor analytically for nonlinear 

rotordynamic behaviour due to an unbalance driven rub. The rotordynamic solution was 

obtained using nonlinear and steady state finite element models to demonstrate the effect 

of the rub impact on the dynamic response of the machine[190]. A 

thermoelastohydrodynamic model of tilting pad journal bearing performance was also 

used to study the possible removal of the rub impact by making minor adjustments to 

bearing parameters including preload, clearance, pad orientation, and lubricant properties.  

2.5 Control studies 

Vibration control system of rotor dynamic system is very essential. Passive, semi-active 

and active control methods are available in this regard. Active magnetic bearings are very 
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appropriate in this line. However, due to cost economy requirements several alternative 

actuators systems are proposed.   

Rezvani and Hahn [191] analyzed the attenuation and stabilization of high speed 

rotating machinery with the aid of a squeeze film damper and also studied flexible 

horizontal rotor theoretically and experimentally. Khajepour and Golnaraghi [192] 

studied free and forced vibration suppression in a piezoceramic actuated flexible beam via 

the nonlinear modal coupling control. 

Chinta and Palazzolo [193] studied nonlinear forced response using imbalance force 

and non imbalance harmonic force. They have investigated the regimes of nonlinear 

behaviour such as jumps and subharmonic motion with the aid of different parameters i.e. 

rotor speed\ imbalance eccentricity\ forcing amplitude\ rotor weight\ and geometric 

coupling. Smith [194] developed a nonlinear optimal control methodology for 

magnetostrictive actuators. At moderate to high drive levels, the output from these 

actuators was highly nonlinear and contains significant magnetic and magneto-

mechanical hysteresis. 

Yu et al. [195] presented a description of the electromagnetic actuator for active 

vibration control of a flexible rotor bearing system. The transfer characteristics of the 

electromagnetic actuator were investigated theoretically and experimentally. The 

linearized relationship of the electromagnetic force/input control voltage could be 

achieved by employing the analogue square root control circuits. A control algorithm 

which allows the control force of the actuator to be computed to minimize the 

synchronous rotor vibration is discussed.  

Elmadany and Abduljabbar [196] developed an optimal control law design for the 

lateral vibration suppression and stabilization of a rotor system with anisotropic fluid-film 

bearings and fluid leakage. Evaluation of the degree of controllability and observability 

and synthesis of the optimal control law using linear quadratic regulator theory 

accompanied by an asymptotic state observer are performed.  

Vance et al. [197] described the requirements for bearing dampers to be used in an 

aircraft engine and discussed the pros and cons of various types of dampers that were 

considered for active control in aircraft engines.  

Fung et al. [198] formulated the rotating flexible-Timoshenko-shaft/flexible-disk 

coupling system by applying the assumed-mode method into the kinetic and strain 

energies, and the virtual work done by the eddy-current damper. From Lagrange’s 

equations, the resulting discretized equations of motion could be simplified as a bilinear 

system. 



Chapter 2  Literature Review 

30 

 

Ji [199] investigated the effect of time delays on the non-linear dynamical 

behaviour of a Jeffcott rotor with an additional magnetic bearing locating at the disc. The 

time delays were presented in the proportional and derivative feedback, respectively.  

Ahn et al. [200] investigated the performance of the squeeze film damper 

experimentally. When the applied current increased, the whirling amplitude greatly 

reduced at the critical speeds and damping ratio increased. Stability of a rotor system with 

a squeeze film damper using an electromagnet derived. 

Bonello et al. [201] modelled a rotor running in unsupported squeeze-film dampers 

housed in a flexible support structure using an integrated analytical technique. A modal-

based approach was then used for the analysis of the stability and bifurcation of these 

solutions, as well as the analysis of a periodic motion. The simulation correctly predicts 

the overall performance, including subharmonic motion, combination frequencies and 

subcritical superharmonic resonances. 

Clark et al. [202] discussed the advancement of gas turbine engines and the vitality 

of magnetic bearings, a brief comparison between magnetic bearings and other bearing 

technologies in both their advantages and limitations, and an examination of foreseeable 

solutions to historically perceived limitations to magnetic bearing.  

Horst And Wolfel [203] developed a structural model of a high speed rotor for the 

examination of active vibration control in rotor dynamics. Suppression of lateral bending 

vibrations of the elastic shaft is realized by means of surface-bonded piezoceramic 

actuator patches on the shaft surface. Models for actuator implementation were derived. 

Inthra and Gandhi [204] studied the potential of using a semi-active controllable 

damper, whose damping coefficient can be modulated in real time, for tonal vibration 

isolation applications. A frequency-domain control algorithm was developed for 

determining the damping coefficient variation (at twice the disturbance frequency) that 

minimizes the force transmitted to the support at the disturbance frequency.  

Kasarda et al. [205] proposed an active control solution utilizing active magnetic 

bearing technology in conjunction with conventional support bearings. The active 

magnetic bearing is utilized as an active magnetic damper at rotor locations inboard of 

conventional support bearings. Presented here were initial proof-of-concept experimental 

results using an active magnetic damper for vibration control of subsynchronous rotor 

vibrations in a high-speed single-disk laboratory rotor.  

Chen et al. [206] investigated a three-pole active magnetic bearing system with and 

without a motor. For the system without a motor designed and implemented three 

controllers: a linear state feedback controller, feedback linearization with a linear state 

feedback controller, and feedback linearization with an integral sliding mode controller.  
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Shin et al. [207] developed a system identification methodology for a linear time-

periodic system and applied to an experimental setup of an integrally twist-actuated 

helicopter rotor blade. Identification was conducted for a controller design, which 

alleviates vibratory loads induced in forward flight.  

Zhu [208] studied the dynamic behaviour of the disk-type MR fluid damper for 

attenuating rotor vibration under AC sinusoidal magnetic fields on a flexible rotor. It was 

shown that as the frequency of AC sinusoidal magnetic field increases, the capability of 

the disk-type MR fluid damper to attenuate rotor vibration significantly reduces.  

Changsheng [209] studied the controllability of the disk-type magnetorheological 

grease damper on the dynamic behaviour of a rotor system, the effectiveness of the disk-

type magnetorheological grease damper for attenuating the rotor’s vibration, and the 

suitability of the magnetorheological grease damper for a feedback vibration control of 

rotor systems in a flexible rotor. 

He et al. [210] proposed a pseudo self-optimizing support system for a rotor-bearing 

system based on shape memory alloy. A numerical simulation was given to verify the 

theoretical model.  

Hussain [211] investigated the response of an imbalanced rigid rotor supported by 

active magnetic bearing system. The mathematical model of the rotor-bearing system 

used in this study incorporates nonlinearity arising from the electromagnetic force-coil 

current-air gap relationship, and the effects of geometrical cross-coupling. The response 

of the rotor is observed to exhibit a rich variety of dynamical behaviour including 

synchronous, sub-synchronous, quasi-periodic and chaotic vibrations.  

Tonoli [212] modelled the dynamic behaviour of eddy current dampers and 

couplers and, by extension, of resistively shunted synchronous motors with permanent 

magnets. The modelling approach used Faraday’s law for the computation of the eddy 

current; the torque was then computed from the Lorentz force acting on the conductors. 

The electromechanical model was valid under rather general conditions and can be 

interfaced to the model of a mechanical structure to describe the coupled behaviour.  

Amati et al. [213] presented a model of electrodynamic bearings. The model takes 

into account the R-L dynamics of the eddy currents on which this type of bearing was 

based, making it valid for both quasistatic and dynamic analyses. Das et al. [214] 

proposed an active vibration control scheme for controlling transverse vibration of a rotor 

shaft due to unbalance and presented a theoretical study. The technique uses 

electromagnetic exciters mounted on the stator at a plane, in general away from the 

conventional support locations, around the rotor shaft for applying suitable force of 

actuation over an air gap to control transverse vibration. Electromagnets used for 
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vibration control do not levitate the rotor and facilitate the bearing action, which was 

provided by conventional bearings. Figure 2.4 shows the controller mounted on rotor 

system.  

 

Figure 2.4: EM actuator for control of rotor vibrations [214] 

Ji et al. [215] reviewed on the nonlinear dynamics of magnetic bearing systems and it 

provides background information on analytical methods, nonlinear vibrations resulting 

from a rotor contacting auxiliary bearings, and other active topics of research involving 

the nonlinear properties of magnetic bearing systems, such as nonlinear self-sensing 

magnetic bearings and nonlinear control of magnetic bearings.  

Lallart [216] studied Converging Input, Converging Output stability and robustness.   

This method was almost as effective as active techniques, but might generate instabilities 

and deals with instability problems. 

Tonoli et al [217] investigated the dynamic behaviour of transformer eddy current 

dampers integrated in a mechanical structure. The electromechanical system was 

modelled using the Lagrange approach in terms of the magnetic flux linkages in the 

electromagnets. 

Bonfitto et al. [218] investigated the potential of a self-sensing strategy in the case 

of an electromagnetic damper for the vibration control of flexible structures and rotors 

and studied performed in the case of a single degree of freedom mechanical oscillator 

actuated by a couple of electromagnets. The self-sensing system was based on a 

Luenberger observer. Two sets of parameters have been used: nominal ones (based on 

simplifications on the actuator model) and identified ones.  

Burrows et al. [219] reviewed the design of a smart rotating machine involves the 

integration of controllable bearings, actuators, and sensors to measure a defined set of 

physical variables, an on-line adaptive controller, a control algorithm to achieve the 

desired performance, and an algorithm to reconfigure the system in the event of faults.  
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Fan and Pan [220] presented a electromagnetic actuator technique to increase the 

stability regions in the fluid-film bearing by eliminating the oil and dry whips. Jiffri and 

Garvey [221] studied various actuation technologies such as piezoelectric, magneto-

strictive, electromagnetic, shape memory alloys and ultrasonic motors. Some of these 

technologies were considered in more detail as they show more potential of being 

implemented in a relatively uncomplicated configuration, in the intended application.  

Bouzidane and Thomas [222] studied the nonlinear dynamic behaviour of a flexible 

shaft supported by smart hydrostatic squeeze film dampers, which were filled with a 

negative electrorheological fluid (NERF). A new smart hydrostatic squeeze film damper 

was proposed to reduce the transient response of the shaft and transmitted forces by 

applying an electric field to the NER fluid, which results in modifying its viscosity.  

2.6 Summary 

This chapter has explored various developments in rotor dynamic analysis procedures 

especially for gas turbine and aero-engine rotors mounted on ball and roller bearings. Ball 

and journal bearing dynamics significantly influences the rotor stability. Single row, 

double row ball bearing analysis procedures were explained in detail. Also, various works 

illustrated the effects of localized faults such as inner race defect, outer race defect and 

ball defects on vibration response of rotor. The shaft modelling and its flexibility 

considerations are very important to realise the behaviour of actual rotor system.  Several 

earlier works focused on finite element modelling and illustrated unbalance response as 

an aid to identify the system. Also, the modelling of external forces using Alford and 

Muszyska’s models became a common issue in most of the literature. Several 

developments on modelling rub-impact analysis were summarised. The works related to 

control of rotor vibrations, have been classified into active, passive and semi-active 

techniques and several models were reported in a separate section. Present work focuses 

on the following broad issues relating to aero-engine rotors (i) Modelling experimental 

studies on LP and two spool rotor bearing systems with secondary faults including rub-

impact excitations, gas transients, and ball bearing faults. (ii) Numerical studies on semi-

active and active control of these rotors passing through critical speeds. The next chapter 

focuses on mathematical modelling of the proposed rotor bearing systems. 
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Chapter 3  

Mathematical modelling 

This chapter presents modelling of rotor-bearing system under consideration with various 

nonlinear forces involved in the system. Also, the analysis outcomes are implemented for 

identification of the entire rotor dynamic system.  

3.1 Dynamic Equations of rotor 

The rotor dynamic system, in the present study contains a generalized non-uniform shaft 

having cross section A (z) and moment of inertia I (z), with one or more disks having 

mass mi and the diametral and polar moments of inertia Jdi and Jpi supported over the 

rolling element bearings. Initially, the continuous systems of equations for shaft are 

described. Figure 3.1 shows the shaft configuration as a beam undergoing bending and 

torsional motions.   

 

 

Figure 3.1: Rotating Timoshenko beam with generalized coordinates 

Here w is the axial displacement, u and v are the lateral displacements and x, y and z are 

the rotations with respect to x, y and z axes, respectively. Based on the generalized 

coordinates considered, the kinetic and potential energies, T and U, of the spinning beam 

are given by, 
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Substituting these energy expressions in the Hamilton principle in the usual notation  

           
  

  
, (where t1 and t2 are the time intervals in the dynamic trajectory 

and   is the variational operator), the following set of equations are obtained: 
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where,   is the density, E is Young’s modulus, G is the shear modulus,   is the shear 

coefficient, and       is the rotational speed of the beam. The boundary conditions of 

the rotating  

By eliminating the bending rotations  x and  y, equation of motion of the rotating 

Timoshenko beam in y directions will take the following form 
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The same equation of motion can be written for the x direction as well.  

It is seen that the motion in two orthogonal planes are coupled with the last term. This 

equation cannot be solved by classical solution methods. Unlike the shaft, disks can be 

considered as rigid and have kinetic energy given as 
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The external work done by unbalance forces at the disk (mass md and eccentricity- e) are 

given as  

        
                                             (3.9) 
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Likewise, gravity forces in Y-direction would also contribute to the work expression. 

Unlike synchronous rotor motions, where the precession and rotation speeds are equal, in 

flexible rotors, the rotor motion is stable and synchronous below certain operating speed. 

Above this speed, there is a sub-synchronous component to the rotor motion. This onset 

speed of instability always exceeds the rotor first critical speed. As rotor rotates above 

this onset speed, the sub-synchronous component diverges exponentially with time. This 

type of motion is referred to as whirling. Forward and backward whirls occur and most of 

the synchronous whirling is due to the forward mode. Therefore, the first study in rotor 

analysis is to predict the critical speeds of operation. 

3.2 Bearing Dynamics 

Apart from the disk and shaft inertia and stiffness, the rotor dynamic system is subjected 

to reactions at the bearing nodes. Earlier studies considered these reactions as linear time 

invariant forces. However, depending on the type of bearing, later on, it was realized that 

these forces are highly nonlinear functions of bearing displacements and time. In present 

context, the ball/roller bearing dynamic forces due to dry friction contacts are often used 

from Hertz’s contact theory.  

Ball bearing consists of inner race, outer race, and rolling balls and cages as shown 

in Figure 3.2. The outer race acts on the inner race by rolling balls, and their interaction 

force is a restoring force, which is generated by the contact deformation between balls 

and races.  

            
       

         (a) CAD  model                                           (b) Line diagram 

 
Figure 3.2: Schematic diagram of ball bearing system 

In the rotor-ball bearing system, usually, the outer race of the ball bearing is fixed to the 

bearing housing and the inner race is rigidly fixed to the rotating shaft. During the 

working of ball bearing, the total stiffness and compliance of bearing vary periodically 

with variation in contact position between balls and races and the varying compliance 
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(VC) of bearing is a parametric excitation of the rotor-ball bearing coupling. This VC 

vibration is inherent and it always exists even if the bearing is newly installed and fault-

free.  

Due to these ball passing oscillations (VC), the frequency response of the rotor 

contains spikes at frequencies other than the critical operating modes of the rotor.  

3.2.1 Hertz’s contact deformation and forces 

Figure 3.3 shows the coordinate system of the ball bearing geometry for a deep groove 

ball bearing.  

            

Figure 3.3: The coordinate system of the ball bearing geometry 

The general displacement vector q is given by  

                
                   (3.10) 

Where          are the relative displacements in the x, y and z direction, and    and 

   are the relative rotations around the x and y axes. The bearing forces are defined as 

                      
                            (3.11) 

where                are the static force loads in the radial (x,y) and axial (z) directions, 

and Mx and My are the static moment loads around the x and y axes. The rotational 

displacement about z-axis is not included, as the shaft is allowed to freely rotate about z-

axis. For a bearing with pitch diameter Dp, an unloaded contact angle α0, a ball diameter 

Db, the resulting nominal cage speed c is given by 
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The angular position 
 
 of ball j is defined as  
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   j=1, 2… Nb                  (3.13) 

where 
 
   t, is the cage angular position and Nb is the number of balls.  

The Hertz’s contact force Qj associated with the contact deformation    is defined by the 

load-deformation by the load-deflection relation 

       
   ,                                (3.14) 

where the load-deflection factor Kb (units of N/m
1.5

) depends on the curvatures and 

material properties of the surfaces in contact defined as follows: 

    
 

 
 

   
 

 
  

  
 

   
 

 
  
 

 
  

                       (3.15) 

where         are ball-inner, ball-outer races contact stiffness values respectively.  

The contact force Qj acts along the loaded contact angle    which is defined as 
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where  
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are the components of loaded relative distance  

A=     
      

  .                        (3.18) 

Also, the effective displacement     and     of jth ball in the radial and axial directions are 

calculated from the relative bearing displacements vector {q} as 
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where rc is the radial clearance and rd is the radial distance of the inner raceway groove 

curvature centre.  

The contact deformation  j for ball j is given by 
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                            (3.21) 

where A and Ao are the loaded and unloaded relative distance between the inner and outer 

raceway groove curvature centres ai and ao (Figure 3.3) respectively.  

The loads carried by the ball are calculated by solving the following set of nonlinear 

algebraic equations as a function of the cage angular position j.  
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3.2.2 Simplified model with 2 degrees of freedom 

Based on the above formulation with five displacement components, the expressions for 

first two forces are employed frequently. During simplification, the contact angle αj is 

considered as zero leading to two contact forces only. This simplified contact forces are 

summarized below: 
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Where Heaviside function is defined as  
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Here,  j is total elastic deformation, given as 

          
        

   , with           , is total radial clearance between 

inner and outer races and ball, ub and vb refers to the relative displacements of inner and 

outer races along X and Y directions respectively. Also, the attitude angle for each ball is 

given by    
  

  
        

  

     
 , where  is speed of rotation of shaft, Nb is number 

of balls, ri and rc are inner and outer race radii respectively.  
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3.2.3 Double-row ball bearing forces 

Double-row bearings offer certain advantages over single-row bearings, as they are 

capable of providing higher axial and radial rigidity and carry bi-directional or combined 

loads. Consequently, double-row bearings are widely used in machine tool spindles, 

industrial pumps and air compressors, as well as in automotive, helicopter and aircraft 

applications such as gear boxes, wheel hubs and helicopter rotors. Compared to single-

row ball bearings, in double-row bearings, shaft is subjected to alternating load vector 

                   
 .               (3.26) 

Figure 3.4 shows the back-to-back and face-to-face bearings configurations respectively.  

 

 

                           (a) back-to-back             (b) face-to-face 

Figure 3.4: Possible arrangements of double-row ball bearings 

In former case, load lines (the lines that pass through the contact point of the balls) 

meet outside of the bearing, while in latter case; they converge toward the bore of the 

bearing. In general the effective load centre (spread) of the back-to-back arrangement is 

larger; thus, it has higher moment stiffness terms and a higher moment load carrying 

capacity. The vast majority of commercial double-row angular contact ball bearings are 

found in the back-to-back arrangement. It is considered that only the relative 

displacement between the bearing rings. Consider the j
th

 rolling element of the i
th

 row of 

a double-row angular contact ball bearing shown in Figure 3.5.  
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Here, A0 and Aj
i
 are respectively the unloaded and loaded relative distances 

between inner and outer race centre of curvatures. Assuming the outer ring to be fixed, 

the total elastic deformation of each ball is first obtained by using kinematics of balls in 

the double-row ball bearing. 

     

Figure 3.5: Schematic of double-row angular contact ball bearing 

The components of the resultant radial load are given by following equation: 
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where   = -1 for left row (i=1)and 

    = +1 for right row (i=2) 

And   
  is the axial distance between the bearing centre and ith row of the bearing. 

The elastic deformation   is given by    

 
 
(j

i
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=Aj

i
 –A0                                                                           (3.32) 

Here, H   
  is a Heaviside function similar to single-row case. The ball is unloaded, when 

A0 is greater than Aj
i
 and elastic deformation is considered as zero. Further, Aj

i
 is defined 
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in terms of radial and axial displacements (     
  and      

 ) and unloaded contact angle 

(  ) of the balls as follows:  
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where  

   
   

       
                                                           (3.34) 

   
   

       
                    

                                                                        (3.35) 

The radial and axial deflections are given by: 
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The loaded contact angle is given by:    
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where    is a dimensionless constant depending on ball configuration. For back-to-back 

configuration, 

    = +1 for i=1(left row)  

      = -1 for i=2(right row) 

For face-to-face configuration,  

   = -1 for i=1(left row) 

     = +1 for i=2(right row).  

The coefficient 
  is a dimensionless constant equal to -1 for i=1 (left row) and equal to 

+1 for i=2 (right row) and      
  defines an axial preload displacement on the i

th
 row 

obtained by bringing the inner and outer race ways closer together. It can have a positive 

value only if the radial clearance is eliminated. 

3.2.4 Ball bearing fault models 

The geometric imperfections are classified into two categories (1) relating to local defect 

in the balls and inner and outer races, which generate vibrations in ball-race contact. (2) 

Relating to the distributed defects like, surface roughness, waviness of rolling contact 

surfaces, misaligned races or off sized balls etc. which give continuous fluctuations in 

bearing reactions. Localized bearing defects occur in different forms, such as spalls, pits 
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and dents. Corrosion and oxidation pits and hard particle contamination dents would 

cause fatigue failures of bearings due to repeated cyclic stresses on the race surfaces. The 

bearing faults generate a series of impact vibrations every time a running ball passes over 

the surface of the defect. These impacts reoccur at bearing characteristic frequencies, 

which are estimated based on geometry of bearing, location of defect and the running 

speed of the shaft. As the impact generated by the bearing fault distributes its energy over 

a wide frequency range, the bearing characteristic frequency has relatively low energy 

and is contaminated by high energy noise. Often, these localized faults appeared in three 

different components: (1) Outer raceway (2) Inner raceway and (3) Rolling elements. The 

ball looses the contact suddenly once it enters the dent region and regains its contact 

instantly when it exits the area. This results in large impulse force. When ball rolls over 

the defect, normal motions of all bearing components will be disturbed resulting in either 

of the following effects. (i) Additional deflection due to material absence will be 

introduced. (ii)  Change of curvature radius of a raceway in a defect zone altering the 

Hertzian contact coefficients. The radial deformation of jth rolling element entering the 

spall is given as  

 j=         
          

     
 
                        (3.39a) 

Here,  j is a factor to be computed based on the type of fault and r is the depth of fault. 

(a) Outer raceway defect 

Figure 3.6 (a) shows the outer raceway defect and when the ball passes through the outer 

race defect.  

 

(a) Outer raceway defect (spall)                  (b) Inner raceway defect (dent)   

Figure 3.6: Outer and Inner race defects 

Let the angle spanned by the defect be  
 
 and the angular position of the defect is ϕD.  

The switch value  j here may be written as: 
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 =1, if 

 
 <

 
<

 
  

 
 

     =0, otherwise          (3.39b) 

It results in a characteristic frequency equal to  

     
  

 
 


  
    

  

  
   α                  (3.40) 

Here, Db and DP are ball and pitch diameters.  

(b) Inner raceway fault (dent) 

When defect of depth r is on inner race as shown in Figure 3.6 (b) the defect angular 

position changes as  


 

    
  

                (3.41a) 

where, 
  

is initial angular position of the defect. 

Here ,    

   
 
 =1, if 

 
ϵ  

 
 

 
  

 
  

           =0, otherwise         (3.41b) 

When the ball passes through the inner race defect, it has following characteristic 

frequency: 

     
  

 
 


  
    

  

  
                 (3.42) 

(c) Ball defect  

When a ball with spall rotates about an axis normal to the plane containing centres of 

inner race and outer race as shown in Figure 3.7, it comes in contact with inner and outer 

races at regular intervals. Assuming the response is different for contact on inner and 

outer races, there will be a periodicity based on rotation of the ball. The additional 

deflection     is obtained as a sum of deflections during contact of ball with inner and 

outer rings. 

Here,    =1,          
 
               

 
                   (3.43) 

     =0 otherwise 
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    (a) Inner race and ball bent contact        (b) Outer race and ball bent contact 

Figure 3.7: Dent on the rolling element  

In summary, the additional deflection due to these three type of faults is given as 

   =  ×   . Where,        , if        

                       = 0, otherwise 

Where x is given from the Table 3.1given below 

Table 3.1: Types of faults 

Type of fault X 

Outer race     θ       
  

 
       

  
 where θ   

  

 
      ω    

Inner race     θ       
  

 
       

  
  

where θ   
  

 
       ω  ω    

Ball fault     θ       
  

     θ         
  

   

 

   ,    ,     are initial angular offset of detect to first ball and initial angular offset of 

defect to inner race at   =0. 

The radial force of the jth ball, when it coincides with defect angle is given by 

              
         

       
               (3.44) 

The total restoring force components in X and Y directions can be computed as  
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                          (3.45)   

             
  
                    (3.46) 

 

3.2.5 Effects of waviness 

Sometimes, the wavy surface on inner or outer races would also affect the contact forces. 

Surface peaks and valleys influence the rolling contact forces. This generated force due to 

surface texture is related to frequency of surface waves as shown in Figure 3.8 (waviness 

and roughness). Imperfection of waviness with varying amplitudes present across the 

circumference of the inner and outer races of the bearing surfaces. This waviness is the 

main source of vibration.  

                             

Figure 3.8: Schematic of waviness in bearing 

The radial elastic deformation in the restoring force equation due to waviness is modified 

as 

 j=         
          

                       (3.47) 

where wj is the wave at the contact angle corresponding to j
th

 ball represented as  

                
 
                (3.48) 

Here, wp is maximum amplitude of the wave, wo is the initial wave amplitude. Number of 

waves Nw = D/, where  is the wave length of roughness, D is diameter of outer/inner 

race. The common wavelength, measured by bearing manufacturers is 0.8mm.  

(a) Inner race waviness 

When the ball is moving round the inner race, it follows the rolling surface contour 

continuously. It is assumed that there exists no slip condition, i.e., ball is always in 

o 
wct Outer race 

i
th

 ball 

Inner race 
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contact with inner race and also it is assumed that the inner race surface has a 

circumferential unevenness. The amplitude of uneven surface is often measured with 

respect to the central point at a certain angle from the reference axis.  

Considering the waviness of inner race, an additional deformation in the contact 

deformation becomes 

              
  

  
                                                                                           (3.49) 

where m is the order of harmonic of waviness in the inner race, and Am is the amplitude 

of these harmonics. 

(b) Outer Race Waviness 

The outer race unevenness is usually of the same order of magnitude as inner race 

unevenness. The outer race surface also has circumferential uneven surface. By assuming 

the outer race to be fixed, an additional term in the contact deformation becomes 

              
  

  
                               (3.50) 

where n is the order of harmonic of waviness in the outer race, and An is the amplitude of 

these harmonics.  

 

3.3 Squeeze film damper forces 

Figure 3.9 shows the outer race of the bearing supported over a SFD with the help of 

centralizing springs. It is assumed that the outer race of ball bearing serves as a journal 

for the squeeze-film damper.  

                                

Figure 3.9: Schematic of SFD system 

In obtaining additional forces due to SFD, a short bearing approximation based on 

Reynolds equation for incompressible flow is considered and the cavitation is modelled 

x 

Centralizing spring (ka) 

y Housing 

oil film 

Journal 
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as a -film and therefore the contribution below ambient pressure to the oil-film force is 

negligible. The instantaneous oil pressure distribution p is given from the solution of the 

following incompressible Reynolds equation: 

 

  
 

 

  
    

  

  
        

                                                          (3.51) 

Here h is the varying film thickness as a function of  . e and    are the displacement and 

velocity of the journal in the radial direction respectively, θ is the angular coordinate 

measured from the position of maximum film thickness in the direction of rotor angular 

speed. Then the oil film force components are obtained explicitly with cavitated (-film) 

short bearing approximation as: 

   sinFcosFF trx                                 (3.52a) 

 cosFsinFF try                                  (3.52b) 

where 

   212

3

II
c

RL
Fr 


          (3.52c) 

 322

3

II
c

RL
Ft 


          (3.52d) 

 







 

X

Y1tan           (3.52e) 

where (X,Y) is the displacement of SFD in the fixed co-ordinate system, μ is the oil 

viscosity, Rs is the radius of SFD, L is the land length of SFD, c is the radial clearance of 

SFD, ε is the non-dimensional eccentricity ratio with c, that is: ε  
        

 
,˙   is the 

angular velocity of SFD, tanϕ = X/Y.. As outer race of ball bearing is floating in the 

damper, the values of X and Y are respectively taken as x0 and y0 of the outer race. 

The bearing integrals I1, I2 and I3 are obtained from the Somerfield transform as follows:   

    
     

           
  

    

  
                                 (3.53a) 

    
           

           
  

    

  
            (3.53b) 

    
     

           
  

    

  
                (3.53c) 

         
  

   
                          (3.53d) 
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These are evaluated analytically in closed form. Further, in order to arrest outer-race 

rotation in the damper, a centralizing spring of stiffness ka connecting outer race with the 

casing of damper is often employed as shown in the Figure 3.10. 

 

 

Figure 3.10: Rotor modelling with SFD forces (mo is the outer race mass) 

The stiffness of this spring affects the rotor response considerably. While modelling SFD 

forces with rotor model, a semi-finite element description of the system is employed in 

present work. 

3.4 External loads  

In addition to unbalance of the disk and bearing reactions, the rotordynamic system is 

subjected to various forces including rub-impact loads between rotor and stator, or 

between rotor and seals, the periodic excitations, transient gas forces etc. 

3.4.1 Rub-impact excitation 

It is assumed that there is an initial clearance of   between rotor and stator. Compared 

with one complete period of rotating, the time during rub-impact is very short; therefore, 

an elastic impact model is used. Also the Coulomb type of frictional relationship is 

assumed in the analysis. When rub happens as shown in Figure 3.11, the radial impact 

force FN and the tangential rub force FT can thus be expressed as    

         
                                      
                            

      

                        (3.54) 

   

mo 

Fbr 

Fs ka 

mo 

Fbr 

Fs ka 

1 2 3 4 
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Figure 3.11: Schematic of rub and impact forces 

where   the initial static clearance between rotor and stator, f is is the friction coefficient 

between rotor and stator, kc is the radial stiffness of the stator and           is the 

radial displacement of the rotor. These two forces can be written in x–y co-ordinates as 

                        

                        
                     (3.55) 

(or) 

 
  

  
        

       

 
 
   
   

  
 
                            (3.56) 

where H:IR     IR is the Heaviside function, that is, 

      
        
     

                (3.57) 

This equation indicates that when the rotor displacement e is smaller than  , there will be 

no rub-impact interaction and the rub-impact forces are zero while the rub-impacting will 

happen if the rotor displacement e is bigger than   . 

3.4.2 Muszynska’s gas forces 

Among various computing models, Muszynska’s force model is widely recognized 

because it is able to describe the nonlinear characteristic of excitation force nicely. The 

nonlinear seal-fluid force expression is given as  

 

 
   

   
    

      
       

           
      

       

        
  

  
  
   

   

   
  

  
  
                         

  (3.58)  
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Muszynska’s model assumes that the fluid force which results from averaging the 

circumferential flow is rotating with angular velocity , where  is the shaft rotational 

speed and  is the key variable of Muszynska’s model, which represents the fluid average 

circumferential velocity ratio. In above Equation, kg, Dg and mg are fluid stiffness, 

damping and inertia coefficients respectively. The factors Kg, Dg and  vary with increase 

in rotor eccentricity and can be written as: 

              ,                          (3.59) 

Where 

    =0.5-3,   
 
       , where 0< n2 <1 and 

 
< 0.5. Here, 

s

22

c

yx 
 is the relative 

eccentricity at the seal; cs is seal clearance, n1, n2 and 0 vary for different types of seal 

materials; Characteristic factors K0, D0 and mg can be obtained from Childs equation. 

2

32 fg Tm  ,               (3.60) 
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         

Here, the parameters of Eq. (3.61) are as follows:  

=0.1, no=0.0079, mo=-0.25, v=1.5×10
-5

Pa S (dynamic viscous coefficient of air).   

3.5 Finite element modelling of the rotor 

3.5.1 Shaft model 

The finite element model of the rotor/ ball bearing/seal system is established using two-

node Timoshenko beam elements as shown in Figure 3.12. Viscous damping and 

gyroscopic effects are added in the element damping matrix. Each node has four Degrees 

of Freedom (DOF) including two rotations and two translations. 

 

Figure 3.12: Timoshenko Beam element 

According to the finite element method, the translations and rotational displacements of a 

typical cross section of the shaft unit can be approximated by the following equations: 

}q{
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Here, {qe}
T
={u1  v1  x1  y1  u2  v2  x2  y2} is nodal displacement vector. The detailed 

expressions for shape functions N1, N2,.. and D1, D2,.. are given below with shear 

deformation consideration. 

   
 

  
                             

 

  
    



 
   

  

 
       

   
 

  
                                     
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  

 
               (3.64) 

        
 

     
                              

 

  
               

   
 

  
                                         

    

     
         (3.65) 

These shape functions or interpolation functions are predetermined known functions of 

the independent variable  and these functions describe the variation of the field variables 

(bending displacements and slopes) within the element. For the beam element idealizing 

the shaft such a shape function is often a cubic polynomial as described above. More 

details of these shape functions are found in open literature [84]. 

Element mass matrix:-     

            
 

 
     

    
 

 
               (3.66) 

Element stiffness matrix:- 

                  
 

 
                          

   
  

    
 

 
      (3.67) 

Gyroscopic matrix:  

        
  

   
  

    
 

 
              (3.68) 

Equation for shaft element   

                                   (3.69) 

3.5.2 Modelling of a disk 

Each disk node has four degrees of freedom, including two translations of mass centre (x, 

y) and two rotations of the plane of disk (x, y). The finite element formulation of disk is 

written as: 

0dddd  qq GM               (3.70) 

The element mass and gyroscopic matrices corresponding to that disk node are written as: 
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Here, Id and Ip are respectively diametral (about x and y axes) and polar (about z-axis) 

moments of inertia of disk, while m
d
 is mass of disk and  is the speed of rotor. 

Matrix equations for whole rotor are     

                                (3.72) 

where M, C, G and K are assembled systems of matrices, q and F are global 

displacements and force vectors.  

3.6 Concluding remarks 

This chapter presented brief mathematical preliminaries of rotor modelling. Initially rotor 

was modelled by using Timoshenko beam theory. The bearing dynamics are imparted for 

the designed rotor by taking Hertz’s contact deformations and forces. Then the model was 

extended for two row ball bearing system with the bearing forces afterwards the bearing 

faults are introduced into the system. The external forces like rub impact and 

Muszynska’s forces are also included in the system.  
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Chapter 4  

Solution Methodology 

4.1 Introduction 

The dynamic equations of the rotor bearing system are highly nonlinear and are difficult 

to solve by exact solution approaches. Numerical and approximate solution techniques are 

often employed. The effect of the bearing parameters, rub impact forces and nonlinear 

excitations on the natural frequencies and mode shapes cannot be predicted merely by 

solving eigenvalue equations. The dynamic response should be obtained by solving the 

equations in time-domain and the frequency domain responses are obtained from Fourier 

transforms. Approximate solution techniques reduce the partial differential equations into 

an equivalent ordinary differential equation /algebraic form, which can be conveniently 

solved for the response. This chapter explores on the various methods employed in the 

present work for solving the dynamic equations including their interactive computer 

programs. Also the experimental approach carried out to validate the natural frequencies 

and illustrate the rub impact effect on dynamic response.  

4.2 Formulation of the rotor model 

This section deals with modelling of two disk rotor system idealising an LP rotor 

considered in the present work using continuous system model, lumped parameter model 

and finite element model.  

Figure 4.1 shows the proposed model of the LP rotor. Left and right disks 

respectively indicate compressor and turbine systems, while the rotor is supported over 

two ball bearings.  

 
Figure 4.1: Distributed parameter model of the rotor 
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The formulation of equation of motion and boundary conditions of the rotor with disk and 

bearings as per the nomenclature given in the earlier chapter is first presented for each 

bending direction.  

     
   

   
      

   

   
    

    
   

   
     

     
   

    
  

        
  

  
  

     
      

   

   
     

     
   

    
                                (4.1) 

     
   

   
      

   

   
    

    
   

   
     

     
   

    
          

  

  
  

     
      

   

   
     

     
   

    
                                   (4.2) 

where 

      
 

                                (4.3) 

      
 

                           (4.4) 

      
 

            
                    (4.5) 

      
 

            
                    (4.6) 

    is Dirac delta function for showing concentrated shear forces (due to two discs). 

Its definition with derivative is given as 

                  
 

  
                        (4.7) 

                     
 

  
                      (4.8) 

   helps in defining the moment contribution term. 

Boundary conditions  

At z=b1 and z= b2: 

 
   

   
   

   

   
     

   

          
   

                                   (4.9) 

where  

    and     are the bearing force components in X and Y directions in terms of 

coordinates x and y. Also,  

   

   
      

   

   
        , 

   

   
      

   

   
                        (4.10a) 
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        , 

   

   
      

   

   
                        (4.10b) 

Most of the approximate solution techniques for solving the nonlinear dynamic equations 

are based on the mode summation approaches. Commonly, method of separation of 

variables (time and spatial) is employed. Here, the spatial terms are expressed in terms of 

mode shapes of the system based on the boundary conditions. Galerkin technique belongs 

to this category.  The equations (4.1) and (4.2) have to be discretized in order to solve 

numerically. Assumed modes method can be used to do this discretization as follows. 

Here, the bending displacements are written as 

             
 
         =X

T
(z) (t)                     (4.11a) 

             
 
        ==Y

T
(z) (t)                 (4.11b) 

where p is the number of modes considered for the discretization,  and  are the 

generalized coordinate vectors. Also, X and Y are the basic functions or vectors of 

assumed mode often selected as mode shape functions which depend on the boundary 

conditions on the system. For example for simply-supported end condition Xi(z)=Cisin iz 

and Yi(z)=Disin iz with  i as frequency parameter and z is axial coordinate. When n 

modes are considered, it forms n reduced equations in time domain. 

By substituting the expression for u and v into the governing equations, the following 

coupled non-linear ordinary differential equations are obtained: 
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                               (4.13) 

Multiplying the above equation respectively by       and        and integrating over x in 

the range [0, L] and employing the orthogonality conditions, a set of partially decoupled 

non-linear ordinary differential equations are obtained. For example, in X- direction we 

have 

       ω 
              

      
      

 
      

 

   

  
   

 
 

             

 
   

 

   

    

                                                          (4.14) 
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4.2.1 Lumped parameter model 

The three segments of the rotor shown in Figure 4.2 (a) are represented with three springs 

of stiffness ks1, ks2 and ks3 respectively, whose magnitudes are predicted from the length 

and cross section of each segment. Figure 4.2 (b) shows the 3 segmented rotor simplified 

lumped parameter model considered in the present work. Here, the suffices b and d refer 

to the bearings and discs. 

                            

(a) 3-segmented rotor                                 (b) lumped parameter model 

Figure 4.2: Simplified model 

There are unbalance force and rub excitations at the disk masses md1 and md2, while 

bearing forces fb1 and fb2 at the bearings act on journal portion of shaft. The masses mb1 

and mb2 are equivalent masses at the bearings. The term cD is aerodynamic damping due 

rotation. The equations of motion in terms of radial coordinates at each mass are given 

below: 

 

ti

dbdsdddd eem)rr(krcrm  2

1111111
                           (4.15) 

 

121311111 bbbsdbsbb f)rr(k)rr(krm                (4.16) 

 

ti

dbdsdddd eem)rr(krcrm  2

2222222
            (4.17) 

 

212322222 bbbsdbsbb f)rr(k)rr(krm             (4.18) 

 

These four equations have two components in two bending directions(r=x+iy) resulting in 

total 8 equations, which are represented in the form M  +C  +KX=F. In y-direction, 

gravity loads also act. A computer program is developed to obtain the response at the 
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bearings, by solving the differential equations simultaneously using fourth-order Runge-

Kutta method.  

The squeeze film damper forces are considered by adding another mass (outer race mass 

mo) to the above system along with a centralizing spring of stiffness ka connecting outer 

race mass to the fixed casing. It results in the effective degrees of freedom of the system 

to be 12.  

 

4.3 Finite element modelling  

In finite element modelling the rotor in its simplest form has 4 nodes connected by 3 

circular beam elements representing each segment stiffness and inertia. The disks are 

considered as rigid and rotor equations of motion are written as 

                                            (4.19) 

where                                      is the displacement vector relating to the 

four nodes, M, C , G  and K  are respectively distributed symmetric mass matrix, system 

damping matrix, gyroscopic matrix of shaft and  stiffness matrix of assembly. {F} is 

external force vector consisting of gravity, unbalance and active force terms. Figure 4.3 

shows the two models containing different number of elements.  

 

 

(a) Three element model 

 

 

(b) Six element model with forces 

Figure 4.3: Meshing of the rotor bearing system. 
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These matrices are assembled and using Guyan’s reduction (static condensation scheme), 

the rotational degrees of freedom {x1, y1, x2, y2, x3, y3 …….} are eliminated  and the 

following governing equations of motion for the system are obtained: 

  }F{}q]{K[}q]{G[}q]{C[}q{M rrrr                          (4.20) 

where {qe}
T
={u1  v1 u2  v2........} are the overall translational degrees of freedom 

corresponding to four element model and [Mr], [Cr], [Gr] and [Kr] are reduced mass, 

viscous damping, gyroscopic and stiffness matrices respectively. For five element case 

the force vector can be written as:  

 Tybxbgygxybxb FFmgtsinmeFtcosmeFFF}F{ 0000 22                

              (4.21) 

4.3.1 Computation of global matrices  

In the finite element analysis, assembly of matrices generally follows these steps 

1. Set up n×n and n×1 null matrices (zero matrix), here n is the number of system 

nodal variables. 

2. For one element, transform local element equations to global coordinates, if these 

two coordinates systems are not coincident. 

3. Now, any necessary matrix operations can be performed. 

4. Using the established correspondence between local and global numbering 

schemes, change to global indices. 

5. Insert these terms into the corresponding n×n and n×1 master matrices in the 

locations designed by their indices. Each time a term is placed in a location where 

another term has already been placed, it is added to whatever value is there. 

6. Return to step 2 and repeat this procedure for one element after another until all 

elements have been treated. The result will be an n×n master matrix K of stiffness 

coefficients and an n×1 column matrix {R} of resultant nodal actions. The 

complete system equations are then  

                     

where {X} is the column matrix of nodal unknowns for the assemblage. 

The very definite advantage of this assembly process is, once a computer program for the 

assembly process has been developed for the solution of one particular class of problems 

by the finite element method, it may be useful for finite element solutions of other classes 

of problems. A part of the model program developed in the Matlab software is given 

below. 
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Model code: Assembly of global matrices  

% Initializing global matrices as null matrices 

Kf1=zeros(4*(n),4*(n));Mf1=zeros(4*(n),4*(n));Gf1=zeros(4*(n),4*(n)); 

for ii=1:8 

     i=ne(ii);% nodal connectivity 

    for jj=1:8 

       j=ne(jj);% nodal connectivity 

       Kf1(i,j)=Kf1(i,j)+ke(ii,jj); 

       Mf1(i,j)=Mf1(i,j)+me(ii,jj); 

       Gf1(i,j)=Gf1(i,j)+ge(ii,jj); 

     end 

  end 

 

4.3.2 Matrix reduction scheme 

In discretization process, it is necessary to divide the rotor into large number of elements. 

When these elements are assembled, the number of degrees of freedom becomes quite 

large, resulting in very large dimensional matrices. It makes difficulty in computing the 

natural frequencies and dynamic responses of such a system. It is desirable to reduce the 

sizes of matrices to obtain the solutions quite economically.  

There are two schemes in this regard (i) Static condensation (ii) Dynamic condensation 

The static condensation employed in present work is described below: 

Static condensation eliminates certain degrees of freedom which are called slaves 

and the retained degrees of freedom are called masters. Generally retained degrees of 

freedom coincide with the bending deflections at various nodes including lumped disks, 

bearing locations and other external force locations. Slave degrees of freedom include 

degrees of freedom which are non-crucial or difficult to measure; like rotational degrees 

of freedom. Let the original equations of motion be written as: 

 
      

      
  

   
   

   
      

      
  

  

  
     

      

      
  

   
   

   
  

  
                        (4.22) 

where p and s are master and slave degree of freedoms respectively. By assuming, no 

external force is applied to slave degree of freedoms, the transfer matrix 

 
  

  
   

 
    

     
                                                                                                                                                                                                  

=                    (4.23) 

where      is static transfer matrix between full degree of freedom vectors and reduced 

master degree of freedom vector. Therefore, we can write after static transformation:  

                                                          (4.24) 
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where          
         

         
                                    (4.25) 

         
                             (4.26) 

         
                         (4.27) 

are condensed matrices of rotor substructure. 

4.4 Solution Techniques 

Finite element method resolves the continuous system model described in the form of 

partial differential equations into a multi degree of freedom model in time-domain. In 

order to solve these equations, various numerical approaches are available. In present 

work, the free vibration analysis of rotor bearing system is employed for obtaining 

Campbell diagrams and for validation with experimental data. Subspace iteration scheme 

is employed for eigenvalue problems, which requires the reduced stiffness, resultant mass 

and gyroscopic matrices. The forward and backward whirl modes are obtained from 

complex conjugate eigenvalue sets at different speeds of operation. As presented in 

Chapter-3, the total stiffness of the rotor is sum of the stiffness of the shaft and bearings at 

common nodes. However, the bearing stiffness is found to be time varying and it is only 

approximate, if one considers the problem as a free vibration type. Static load bearing 

capacity is therefore different from dynamic load bearing conditions.  

4.4.1 Eigenvalue analysis 

The dynamic analysis of any rotordynamic system will starts from the finding out its 

natural frequencies and mode shapes. The natural frequency and mode shapes will 

characterize the dynamic behaviour of the rotor bearing system and also shows the 

response of system under dynamic loading. The natural frequency gives the vibrating 

tendency of the structure under applying external disturbances. Mode shapes and natural 

frequencies depend on the boundary conditions and the structural properties of the 

system. The main reason of determining natural frequencies is to estimate the dynamic 

stability of the system under different operating conditions. 

The equation of motion of the rotating system for mode shapes and natural 

frequencies should in a reduced form of free vibration as follows. 

                         (4.28a) 

 (or)                  (4.28b) 

with  
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 ,    

 
  
                                                                    (4.28c) 

The above matrix A is skew-symmetric when C is non-proportional damping matrix such 

as gyroscopic matrix and A has complex conjugate eigenvalues from which the natural 

frequencies and damping ratios are obtained. 

For undamped system, the harmonic solution is assumed as  

      ω               (4.29) 

where   is the mode shapes or eigenvector set and   is the natural frequency of the 

system. Campbell plot is constructed from the eigenvalue analysis at various operating 

speeds. It indicates critical speeds of operation at various engine harmonics.  

4.4.2 The subspace iteration method 

The generalized eigenvalue problem is as follows 

                   (4.30) 

The smallest eigenvalues   , i=1,2,…..,p, and the respective eigenvectors   , i=1,2,…..,p, 

with the ordering 

0 <    ≤    ≤…≤                 (4.31) 

which satisfy    
 
     

 
, i=1,…,p and the Knonecker delta relationships  

 
 
   

 
     ,   

   
 
                           (4.32) 

 If the smallest value is zero, the shift can be used to reach the Eq. (4.31). 

The basic equations used in the subspace iteration method are, for k=1, 2…, 

                                  (4.33) 

          
                              (4.34) 

          
                             (4.35) 

                                           (4.36) 

                                    (4.37) 

In practice, it is effective to order the iteration vectors in Xk naturally from the first to the 

last columns such that these correspond to increasing eigenvalues. Then the first vector in 

Xk corresponds to the eigenvector approximation of    and the q
th

 vector to the 

eigenvector approximation of   . The calculated approximations to the eigenvalues are 

given in     .  
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4.5 Dynamic response computations 

Dynamic response in time-domain of a multi-degree of freedom system like rotor bearing 

assemblies is obtained in two different approaches: (i) Implicit time integration (ii) 

Explicit time integration. Optional time steps and computational procedure is the main 

contrast between explicit and implicit time integration methods. In explicit time 

integration methods, determining the unknown values at the present time step is based on 

the evaluated values of displacement, velocity and acceleration in the previous time step. 

Where as in the case of implicit time integration method, the unknown values of any time 

step is based on the value of the previous time step and the current time step values. Due 

to this reason, implicit solution algorithms need assembling and solution of algebraic 

equations.  

 In present work, both the approaches are implemented to validate response 

histories. As the dynamic forces are highly nonlinear, variable time steps are required 

during the solution. Under implicit time integration, Wilson theta and its variants are 

proposed for the present problem, while variable time step Runge-kutta fourth order 

method is considered under explicit method. A brief description will be provided first. 

4.5.1 Wilson Theta method 

The Wilson Theta method assumes that the acceleration of the system varies linearly 

between two instants of time as shown in Figure 4.4. The acceleration is assumed to be 

linear from time to time t between ti= i∆t to time ti+ = ti+∆t, where 1.0.   

 

Figure 4.4: Linear variation of acceleration 

If τ is the increase in time t between t and t + ∆t (0 ≤ τ ≤ ∆t), then for time interval t to 

t+ ∆t, it can be assumed that 

          
 

  
                                         (4.38) 

           
        

           
t 
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Successive integration for above Eq. gives the following expressions for       and      : 

               
  

   
                                    (4.39) 

             
 

 
    

  
  

   
                                     (4.40) 

Substituting   =    into the above Eqs. (4.38) and (4.39), we obtain the following 

expressions for    and X at time    t: 

           
  

 
                                     (4.41) 

               

    

 
                                    (4.42) 

Solving the above two equations for        and        in terms of       , we get 

         
 


    

               
 

  
                                   (4.43) 

         
 

  
                      

  

 
                                    (4.44) 

Since accelerations vary linearly, a linear projected force vector is used such that   

                                                                     (4.45a) 

where  

                           .          (4.45b) 

By substituting the expressions for          and          from above equations in 

equilibrium Eq.(4.45) and simplifying, we get 

                                             (4.46) 

Where the effective mass matrix      and the effective force vector          are given by  

   
 


    

  
 

  
                              (4.47) 

                  
 


    

  
 

  
        

 

  
               

  

 
         

                           (4.48) 

The solution of Eq.(4.46) gives         which is then substituted into the following 

relationships to obtain the displacements, velocities, and accelerations at time     . 

         
 


    

               
 

  
         

 


                           (4.49) 

               
  

 
                                         (4.50) 
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                      
   

 
                                       (4.51) 

When = 1.0, the method reduces to the linear acceleration scheme (Newmark). The 

method is unconditionally stable for linear dynamic systems when   1.37 and a value of 

= 1.4 is often used for nonlinear dynamic systems. It may also be noted that no special 

starting procedures are needed, since X,    and    are expressed at time      in terms of 

the same quantities at time   only. The summary of the algorithm used in the Wilson 

Theta method is given in the below  

 

(a) Initial Computations: 

1. Form stiffness K, mass M and damping C matrices 

2. Initialize {X0},       and compute       using  

                                   (4.52) 

3. Select the time step    and set  = 1.4.  

4. Form effective stiffness matrix: 

       
 

     
  

 

  
         (4.53) 

(b) For each time step: 

1. Calculate effective force vector at time     : 

                              
 

     
     

 

    
          

    

   
 

  
            

  

 
   

               (4.54) 

2. Solve displacements at time      according to the following 

                               (4.55) 

3. Calculated { X },      and      at time      as follows 

         
 


    

               
 


   

         
 


                (4.56a) 

               
  

 
                      (4.56b) 

                         
     

 
                                           (4.56c) 

A part of Matlab program developed is shown in Algorithm below: 

Model code: Wilson theta solver 

define X0=[1e-6;1e-6;0;0;0;0;0;0;1e-6;1e-6]; 

X0d=[0;0;0;0;0;0;0;0;0;0]; 

F0=[0;0;0;0;md*ecc*omega^2;-md*g;0;0;0;0]; 

X0dd=inv(Mr)*(F0-Cr*X0d-Kr*X0); 

theta=1.4; 
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a0=6/(theta*dt)^2;a1=3/(theta*dt);a2=2*a1; 

a3=2;a4=(1/2*theta*dt);a5=-a2/theta; 

a6=1-3/theta;a7=dt/2;a8=dt^2/6; 

Kb=Kr+a0*Mr+a1*Cr; 

i=1; 

for t=dt:dt:ti 

    i=i+1; 

    Ft=F0+Mr*(a0*X(:,i-1)+a2*Xd(:,i-1)+a3*Xdd(:,i-1))  +Cr*(a1*X(:,i-1)+a3*Xd(:,i-1)+a4*Xdd(:,i-

1))+theta*(F-F0); 

    Xt(:,i)=inv(Kb)*Ft; 

    Kb=Kr+a0*Mr+a1*Cr; 

    Xdd(:,i)=(a0/theta)*(Xt(:,i)-X(:,i-1))+a5*Xd(:,i-1)+a6*Xdd(:,i-1); 

    Xd(:,i)=Xd(:,i-1)+a7*(Xdd(:,i)+Xdd(:,i-1)); 

    X(:,i)=X(:,i-1)+dt*Xd(:,i-1)+a8*(Xdd(:,i)+2*Xdd(:,i-1)); 

    F0=F; 

end 

 

4.5.2 Fourth order Runge-Kutta method 

In order to solve n second order differential equations, conventional Runge- Kutta method 

initially converts the problem into 2n state space (first order) equations which require 2n 

initial conditions. In the present work, the second order equations are solved as it is, using 

the following formulation. The matrix equations of motion are used to express the 

acceleration vector as 

                                                             (4.57) 

By treating the displacements as well as velocities as unknowns, a new vector,      is 

defined as 

    

 












tX

tX
tY                         (4.58) 

So that  

       
 

  
   

  

             
            (4.59) 

The above equation can be rearranged to obtain 

         
  

          
  

    

     
   

 
       

                     

            = AY+G 

            = g(Y,t)            (4.60) 

With this, the recurrence formula to evaluate       at different grid points ti can be 

obtained as follows 
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                                                (4.61) 

where  

                                    (4.62) 

          
 

 
      

 

 
                          (4.63) 

          
 

 
      

 

 
                        (4.64) 

                                  (4.65) 

where h=dt, is the step size,  

A simple computer program can be developed for a given set of system matrices with 

initial conditions as follows: 

Model code:: Fourth-order Runge-Kutta for multi-degree system  

for t=0:h:T 

   blade_dis(i)=Y(2); 

   %X(:,i)=Y; 

   %fprintf('%f\t%f\t%f\n',t,Y(1),Y(2)); 

   K1=h*f(Y,t);  

   K2=h*f(Y+0.5*K1,t+h/2); 

   K3=h*f(Y+0.5*K2,t+h/2); 

   K4=h*f(Y+K3,t+h); 

  Y=Y+(K1+2*K2+2*K3+K4)/6; 

  i=i+1; 

end 

4.5.3 Fourier transforms 

Fourier transforms convert the time-domain data into frequency domain signal. Often, 

Fourier series data contains the constants which are shown against frequency to form a 

histogram or frequency response. Here, number of sampling points is very important. 

Fourier series expression in exponential form is expressed as: 

   X(t)= 


n

tin

neC 
         (4.66) 

Where   


T

tin

n dtetX
T

i
C

0

)(            (4.67) 
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When periodic function X(t) is supplied only at N equally spaced time-intervals (t=T/N), 

the integral may be approximated by the summation (discrete Fourier transform) 

   

)/(21

0

)(

NnjiN

j

jn etX
N

i
C





 , n=0, 1, 2, .... (N-1).     (4.68) 

These coefficients Cn have been limited to 0 to (N-1) in order to maintain symmetry of 

transforms. Here, the frequencies increase with increasing index n up to n=N/2. For 

n>N/2, the corresponding frequencies are equal to the negative of frequencies of order 

N=n. This fact restricts the harmonic components that may be represented in the series to 

a maximum of N/2. The frequency corresponding to the maximum order is known as 

Nyquist frequency. To avoid distortion in lower harmonic components of series, often 

number of sample points N should be at least twice the harmonic components present in 

the function.  

Fast Fourier Transforms (FFT) is a numerical approach for increasing the speed of 

computations in discrete form of Fourier series. In 1965, Cooley and Tukey presented the 

FFT algorithm. Currently, the FFT has an important role in digital signal processing. In 

applying FFT, the expression for X may be written as: 

X(j)=




1

0

0 )(
N

n

jn

NWnX                      (4.69) 

where Wn= N

i

e

2

. Evaluation of sum will be efficient if the number of time increments N 

into which the period T is divided is a power of 2, viz., N=2
M

, where M is the integer. 

Ex., if M=3, N=2
3
=8, we write: 

 X(j)=   
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W)n(X         (4.70) 

A model program for computing FFT spectrum is given below: 

Model code: FFT from time-domain  

Fs =1/dt;                      % Sample frequency 

L = length(xx(:,5));                 % Length of time-domain signal 

NFFT = 2^nextpow2(L); % Next power of 2 from length of fx 

Xf1 = fft(xx(:,5),NFFT)/L; 

fre = Fs/2*linspace(0,1,NFFT/2+1); 

plot(fre,(2*abs(Xf1(1:NFFT/2+1)))); 

xlabel('frequency (Hz)'); 

ylabel('X_3 amplitude (m)'); 
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4.6 Rotor Identification Schemes  

In many instances, changes in rotor bearing parameters are to be obtained from the overall 

vibration response. Since, it is difficult procedure to identify these bearing parameters or 

rotor unbalance using conventional methods, often inverse-based approaches are used 

with the help of measured or simulated vibration responses. 

 

Figure 4.5 shows the three different identification studies carried out in the present work. 

Here, both neural networks and the optimization schemes are employed during the 

procedure.   

 

Figure 4.5: Identification studies carried out 

4.6.1 Basic parameter identification 

After validation of FE model using an experimental modal analysis, the model is 

employed to generate a set of frequency response data corresponding to different rotor 

bearing parameters of the system. Due to strong nonlinear relationship between the rotor 

bearing parameters, disc unbalance and squeeze-film damper parameters on the overall 

transient response of the system, it is planned to study the effect of commonly used 

parameters like: bearing radial clearances, disc eccentricities and centralizing spring 

stiffness of SFD on the fundamental frequencies and their amplitudes. Rotor is allowed to 

rotate at rated speed (2000 rpm) and the three input parameters are varied in three levels. 

The corresponding frequencies and amplitudes are recorded from FFT plots in each case.  

For modelling inverse relationship, a 3-layer feed-forward neural network model is 

employed with frequencies and amplitudes as inputs and the corresponding bearing 

clearance, disc eccentricity and stiffness constant of centralized spring are obtained as 

outputs. Figure 4.6 shows the block diagram of neural network based system 

identification. In the neural network model under consideration, input or feedback delay 

concepts do not arise as this trained with error-back propagation algorithm for updating 

the weights and bias terms between the two layers. 
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Figure 4.6: Neural network based parameter identification scheme 

 

Brief introduction to the neural network models is given in this section: Artificial neural 

networks (ANN) are established by referring to the structure and characteristics of human 

brain, which is interconnected with a large number of simple processing units called 

neurons. And ANN is a nonlinear dynamical system to realize large-scale parallel 

distributed information processing. Compared with conventional information processing 

methods, ANN has some characteristics including structure variability, high nonlinearity, 

self-learning and self-organization, etc. Figure 4.7 shows the output computation step in 

between two layers of neurons.  

 

 

Figure 4.7: Nonlinear model of neuron 
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The connecting links, called synapses, specify the connection between a signal xj at the 

input of the sample j, and a neuron k, through a weighing factor, wkj. An adder sums up 

the input signals weighted by the respective synapses of the neuron. The operation is 

similar to that of a linear combiner. The activation function limits the amplitude of the 

output of the neuron. The, model includes an externally applied bias b that has the effect 

of lowering the net input of the activation function. The activation function,  (.), defines 

the output of a neuron in terms of the activity level at its input. The sigmoid function is 

the most common activation function used in the construction of the artificial neural 

networks. It is defined as the logistic function.         

                            (4.71) 

where a is the slope parameter of the sigmoid function. Mathematically, the neuron has 

been described as  

         
 
   ,         (4.72) 

         .         (4.73) 

(a) Multi-layer perceptron neural network 

In the year of 1986, Rumelhart et al. proposed back-propagation (BP) algorithm, which 

has been one of the most widely used network algorithm nowadays for feed-forward 

models. Error back-propagation divides the learning process to two stages. The first stage 

is forward propagation, where the input vectors reach the output layer via hidden 

(intermediate) layer. This results in an actual input in forward pass using randomly 

selected connection strengths known as weights. The second stage is back propagation. In 

the output layer these actual outputs are compared against the expected set and the error 

formed as the difference between the two outputs is calculated recursively for every new 

input set. Then this error is used to adjust the initial connection strengths or weights 

between the layers. The structure of BP neural network is shown in Figure 4.8 

 

Figure 4.8: Structure of a BP neural network. 
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It is proved that a BP neural network with hidden layers can approximate any nonlinear 

continuous function with any accuracy. BP neural network is defined with L hidden 

layers and n units in each. Each unit just receives the outputs of previous layer and 

outputs to the units of the next layer. In order to simplify the network, assume there is one 

output y for the whole network. Define m samples (xk, yk) (k = 1, 2 . . . m), and the output 

oi of any unit i. For an input xk, the output of the unit is oik and the output of the network 

is yk. Define unit j of layer l, and the input of unit j with k samples inputs is shown in the 

following equation: 




j

l

jk

l

ij

l

ij owP 1            (4.74) 

where w
l
ij is the weight coefficient, and 

1l
jko 

represents the output of unit j on the layer i−1 

with k input samples. Then the output of unit j on the layer i, 
l

jko can be calculated in the 

following equation: 

 l

jk

l

jk pfo              (4.75) 

Here, f(x) is a called sigmoid function defined as f(x)=1/(1+e
x
) (known as logarithmic 

sigmoid function for target outputs to be between 0 to 1 

Define the error function Ek in the following equation: 

 
2

l

lklkk yy
2

1
E             (4.76) 

where 
lky  is the real output of unit j on the layer l. Then the total mean error Et is 

computed in the following equation: 





m

1k

kt E
m2

1
E             (4.77) 

BP neural network algorithm is implemented in following steps:  

(i) Determine initial values of weight coefficients.  

(ii) Compute: 
1l

jko 
,

l
jkp  and 

ky  for forward propagation are computed, while k = 

2..., m.  

(iii) And 
l
jk is calculated for back propagation from the layer l − 1 to layer 2.  

(iv) Then the weight coefficient is corrected by the following equation: 

0



 ,

w

E
ww

ij

ijij , where  is learning rate      



Chapter 4  Solution Methodology 

74 

 

Above steps repeated until the total error Et < ς, where ς is the specified precision. Figure 

4.9 shows the input-output configuration of the neural network. 

 

Figure 4.9: Three layer feed-forward neural network 

A Matlab neural network toolbox program is shown below. The following statements are 

used to execute the above set of equations:   

Model code: Neural network toolbox program 

% let P be the input vector, T be the target vector 

% n is number of hidden nodes, o is number of output nodes 

mnet=newff(minmax(P),[n o], {'logsig','logsig'},'traingd'); 

mnet.trainParam.epochs=1000; 

mnet.trainParam.goal=0; 

mnet.trainParam.lr=0.4; 

mnet.trainParam.show=25; 

mnet=train(mnet,P,T); 

(b) Radial Basis Function Neural Network 

Radial basis function (RBF) network is another supervised model where, both input and 

target training vectors are supplied. Figure 4.10 shows the radial basis function neural 

network.  

 

Figure 4.10: Structure of RBF neural network 

Here, there are only three layers: (i) input (ii) hidden and (iii) output layers. The 

connections between input and hidden are not weighted, instead hidden nodes are 

supplied with central vectors C
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denoted by vector xi and neurons in the hidden layer implement the Gaussian activated 

function to extract the features from the input vector xi. The output of the hidden layer is 

obtained as: 

 yi=exp( 2

2



iji cx 
 )         (4.78) 

The vector yj is output of the j
th

 neuron of the hidden layer (j=1, 2, .....h ), cij is the central 

vector of the Gaussian function,  is called width of the function. The output layer has 

output z obtained as linear combination of yj as follows: 

  zk=yj wjk + bk          (4.79) 

where wjk is the weight matrix of linear output layer and bk is vector of bias. The values 

of C, , W and b are determined throughout the training.  

4.6.2 Bearing fault identification 

The concept of feature extraction for accurately assessing bearing performance 

degradations is a critical task towards realizing an online bearing condition monitoring 

platform. When a rotor has faulty ball bearing, its response has distinct properties 

compared to the original signal. The time-domain or frequency-domain signal obtained is 

very difficult to distinguish, in what form the signal is different from the baseline 

response. Therefore, often some statistical parameters are employed to define the signal 

features. Traditional statistic features are a powerful tool which characterizes the change 

of bearing vibration signals when faults occur. The benefits of these features are the 

simplicity of implementation and the low computational time. Heng and Nor defined six 

important statistical parameters of time-history:  

(i) Waveform factor (Xw); It indicates the shift in time waveform and determined as: 

 Xw=
          

          
 

(ii) Crest factor: It shows the indication of peak height in time waveform and is 

determined as: Xc=
            

         
   

(iii) Impulse factor: It shows indication of shock in time-waveform and is given as: 

 Xi=
            

          
 

(iv)  Allowance factor: It is defined as: Xa= 
            

  
, where Xr= 

 

 
         

      

(v)  Skewness is the third moment, while kurtosis is fourth moment of signal distribution 

time-domain and both are sensitive indicators for the shape of the signal. Skewness is 
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defined as follows: Xs=M3/
s
, where M3=

 

 
            

    and = 

 
 

 
            

    
   

. Likewise, Kurtosis is defined as: Xk=M4/
4
, where 

M4=
 

 
            

   . For sine wave, the Kurtosis value is 1.5. 

Table 4.1 shows the summary of these important statistical parameters. By considering 

the time-domain signals from rotor with five cases of bearing conditions: (a) no-fault 

(b)outer race waviness (c) outer race dent (d) inner race dent and (e) ball spall, a set of 

above statistical parameters are recorded. In each condition of the bearing, 201 sets are 

recorded by changing the speeds of operation of the rotor from 500 rpm to 2500 rpm 

Table 4.1: Summary of time domain features  
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Objective is to identify the class in which the given vibration signals fits-in. In this regard, 

two supervised neural network models and one unsupervised neural network model are 

employed to test the accuracy of classification result. In addition to 3-layer back 

propagation neural network, another neural network called probabilistic neural network 

(PNN) is also employed in this regard. It is first described below: 

(a) Probabilistic Neural Network (PNN) 

A PNN (Probabilistic neural network) is designed to fault diagnosis in ball bearing system 

and input/output nodes are same as in BP network. In PNN, weights do not alter with 

training samples. As number of hidden nodes represent the training samples. The 

connection between the input and hidden layers are initial weighing coefficients which 

indicates the symptom sets of training samples as shown in Figure 4.11.  
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Figure 4.11: Architecture of probabilistic neural network 

The connection between hidden and output layers indicates the fault sets of the training 

samples. The output neuron decision in hidden layer is expressed by [223] 
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where m is the total number of the training patterns, X=(x1,x2,x3….xp)
T
 is the input 

pattern vector. XAi is the ith training pattern of the category A, P is the dimension of the 

metric space,  is the smoothing factor (the standard deviation). The output layer is the 

decision layer which makes the final network decision.  

It was proved that PNN is easy to train and it can be used in real-time applications. 

Compared with other classification methods, PNN has prominent advantages in 

timeliness. Furthermore, the relevant calculation of PNN is very simple and convenient. 

Above all, PNN can almost get the best classification effect if the training data is enough. 

(b) Kohonen self organization model  

Self-organization model (SOM) is a class of unsupervised neural networks that is trained 

to produce discretized representation of the input space of the training samples, called a 

map. Precisely, it is a nonlinear, ordered, smooth mapping of high dimensional input data 

onto the elements of a regular, low-dimensional array. SOM maps can be used for 

classification and visualizing of high-dimensional data.  

Unlike many other types of NNs, the SOM doesn't need a target output to be specified. 

Instead, weights are selected close to the inputs at the end of training. From an initial 
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distribution of random weights and over much iteration, the SOM eventually settles into a 

map of stable zones. Each zone is effectively a feature classifier. The standard Kohonen 

learning algorithm is an unsupervised training process. It produces a vector quantizer by 

repeat updating the prototypes of the class- units. After initialization of: prototypes 

(Wi(t)), learning rate ((t)) and neighbourhoods (Ni(t)), all patterns are presented to the 

SOM network. For each pattern Xp, the distances pii X)t(Wd   to the prototypes of 

the class- units are computed and the winning class- unit j is chosen. The prototypes of 

the class- unit j and the class- units inside the neighbourhood Nj (t) are then updated. 

Figure 4.12 shows the Kohonen’s SOM network. 

 

Figure 4.12: Kohonen’s self-organization map (One of output node only fires at a time) 

The basic steps in Kohonen algorithm are: 

1. Initialize the network: number of class- units C, prototypes Wi, learning rate (t), 

neighbourhoods  Ni(t), i=1…C, maximum number of epochs Tmax and accuracy ε 

2. Present a pattern Xp to the network 

3. Determine the winning class- unit j, the one closest to pattern Xp: 
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d
j
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

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
       (4.81) 

4. Update prototype of the winning class-unit j and class-units inside the 

neighbourhood Nj(t) according to following formula: 

    )()()()1( tNitWXtt
i

Wt
i

W jip   ,       (4.82) 

5. Update the learning rate as (t)=0.9(1-t/tmax) and the neighbourhoods Ni(t+1), 

i=1…C 

6. Repeat steps 2-5 until either the changes in prototypes in two consecutive epochs 

fall below ε, or the maximum number of epochs Tmax is reached 

To determine the best matching unit, one method is to iterate through all the nodes and 

calculate the Euclidean distance between each node's weight vector and the current input 

vector. The node with a weight vector closest to the input vector is tagged as the best 

matching unit. As the learning rate (t) reduces, the system cannot learn new patterns and 

W 
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gives the results from already learnt patterns. Kohonen SOM is very well suited for 

classification applications. 

In present context, SOM is provided with the four statistical parameters 

corresponding to 5 different types of bearing signals. As per the trends of these 

parameters for each type of fault, the outputs are categorized into one of the five classes.  

4.6.3 Identification of transient stiffness due to rub 

Due to rubbing of rotor during highly unbalanced conditions, the shaft stiffness 

tremendously increases along with speed. In order to identify this increased rotor 

stiffness, an optimization scheme is proposed in this work. The rotor dynamic equations 

of the system with unbalance, rub and gravity forces along with bearing nonlinear forces 

reproduced as  

  bgru FFFFXXX  KGCM  )(      (4.83) 

where, Fu, Fr, Fg and Fb are respectively the unbalance, external rub-impact, gravity and 

bearing force vectors. Now, the effect of rub-impact on the rotor system is reflected by 

the transient stiffness. Therefore, the rotor system can be considered as a system without 

rub-impact interaction and differential equations describing the system may be written as: 

bgu FFFXXX  e
KGCM  )(       (4.84) 

where K
e
=K+K is effective stiffness of the system as a result of rubbing effect. Here, 

the objective is to obtain K by knowing the experimental or simulated response of rotor 

with rub-impact on one or all the discs by suitable approach. In present formulation, the 

responses are converted into frequency-domain and with rub-impact forces, the FFT 

spectrums Xi() are obtained at 5 different speeds of operation using finite element 

model. This data is considered as the required response data. With randomly selected 

stiffness coefficients of diagonal stiffness matrix K corresponding to all the elements, a 

response X
e
( ) is derived by solving eq.(4.94). The correct sets of elements of K are 

obtained by minimizing the average difference between the required response and derived 

response. That is 

  Minimize f(k1, k2, ….)=E=
 

  
                 

        (4.85) 

where, Ns is sampling points considered and this mean error in discrete domain is 

computed under the constraints of variables ki. For this particle swarm optimization 

scheme is considered, which is described below: 
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Particle swarm optimization Scheme 

Particle Swarm optimization (PSO) is a stochastic optimization method based on the 

simulation of the social behavior of bird flocks and was originally developed by Kennedy 

and Edberhart. In this algorithm, the system is initialized with a population of random 

solutions and each potential solution is also assigned a randomized velocity. The potential 

solutions, called particles, are then “flown” through hyperspace. And each particle will 

change the velocity toward its best previous value pbest and global best value gbest locations 

according to its own flying experience and its companion’s flying experience. In a d-

dimension space, the velocity and location of particle k are updated by following 

equations: 

         sxPCsxPCswvsv d

k

d

g

d

k

d

k

d

k

d

k  211       (4.86) 

   svxsx d

k

d

k

d

k 1           (4.87) 

where s   is the iteration step of PSO; 
d

kx  and  svd

k are the position and velocity of 

the kth  particle at s step; ξ is a random number uniformly distributing in the range [0, 1]; 

c1 and c2 represent the weighting of the stochastic acceleration terms that pull each 

particle toward its best previous value and overall best value positions; the inertia weight 

w=(wmax-wmin*s/N) plays a role of balancing the global and local search, it can be a 

positive constant or a positive linear or nonlinear function of time; d

kP is the best previous 

position of the k
th

 particle and 
d

gP  is the swarm’s best position. The steps for 

implementing PSO algorithm are simply shown in   

 

Figure 4.13: Basic steps of PSO. 

Generate initial swarm and velocities randomly 

Evaluate the initial swarm, using the initial performance as the initial 

personal best and using it to find the initial neighbourhood best 

Update the velocities and positions of the particles respectively 

Find the new personal best for each particle 

and use it to find the neighbourhood bests 

 

Last iteration? 
No Yes 

End 
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Chapter 5  

Design of Control system  

5.1 Introduction   

The reduction of vibrations of aero-engines is an important part of rotor dynamics. In 

addition to the safety requirement of avoiding rotor bend critical speeds within the engine 

running range, the response of the many other modes of the rotors and engine structural 

system must be controlled to ensure acceptable levels of vibration. Control of vibration is 

essential in respect of the bearing loads, structural fatigue loads, rotor/casing tip 

clearances, casing and engine external responses, and transmission of vibration to the 

airframe. Hydrodynamic bearings have been used extensively in almost all aircraft turbine 

designs since 1970 to dampen the imbalance response and are probably a major 

contributor to the rarity of rotor dynamic instability encountered in the engines. The main 

disadvantages of these bearings are their passive nature, instability, and very sensitive 

variability of performance with raise in temperatures and frequencies of the rotors. Rotor 

damping at the bearings is mostly needed near critical speeds and is relatively ineffective 

at other speeds. Use of smart synthetic fluids, which change their viscosity from liquid to 

semi-solid state within milliseconds, due to sufficiently strong electric or magnetic field 

have been employed as alternative to hydrodynamic bearings. But, such fluids are not also 

fit for resolving all the above mentioned drawbacks. 

As a recent technology active/semi-active magnetic dampers have several advantages 

in respect of amplitude control. The difference between active magnetic bearings (AMBs) 

technology and active magnetic dampers (AMD) is rather small. In case of AMB, the 

shaft is completely supported by electromagnets, which achieve levitation and vibration 

control at the same time. In the latter case, the rotor is supported by mechanical means 

and the electromagnetic actuators are used only to control the shaft vibrations. In AMBs, 

both stiffness and damping forces must be provided by the electromechanical interactions 

increasing the mass of coils and hence the overall size of the system. Hence, they cannot 

be used in aeronautic applications. 

Semi-active and active control methods are introduced to reduce or attenuate very 

high amplitudes of vibrations in any rotating machinery. Balancing is done with a proper 

adjustment of correction mass, stiffness and damping of rotating shaft of machinery is 

known as passive control. In this type of control the induced centrifugal forces and 

unbalance will be cancelled out due to correction masses like inertial disks.  

The main objective of controller design is to identify the critical speeds of idealized 

low-pressure (LP) stage in aero-engine rotor shaft and design a damper mechanism that 

becomes active within the critical speed regions.  
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5.2 Semi- Active methods 

Semi-active vibration control is very useful in different settings and being implemented 

and investigated. Semi-active devices make changes in the system properties like stiffness 

and damping in the running conditions only. This is an analysis of open loop response 

control scheme.  These are very useful control schemes due to its adaptability of active 

control without of having very large sources of power and are very popular in the recent 

years. Semi-active methods to Control of vibrations at critical speeds are described below.  

In order to minimize the vibration amplitudes at the critical speeds of operation of 

the rotor, it is proposed to design the electromagnetic dampers, which are to be laid at the 

two support bearing locations. Basically, these dampers have an electromagnet and a 

mechanical spring. In absence of electromagnet, it works as a hysteretic damper and 

damping action occurs with respect to the rotor speed. In a magnetic damper the 

reluctance of the magnetic circuit is influenced by the speed of the moving part in the 

circuit. This produces a flux variation and generates a back EMF and ultimately eddy 

currents in the coils. There are two effects of this eddy current: 

1. Generating a force that increases with decrease in air gap, responsible for a 

negative stiffness.  

2. Generation of damping force acting against the speed of the moving element. 

In semi-active type of magnetic damper (SAMD) implemented in present work, voltage in 

the coil is kept constant and no closed loop position feedback is necessary as only current 

in the coil is monitored. Energy dissipation takes place in the stator. We can define the 

transfer function between the speed of rotor and electromagnetic force (FEM) in terms of 

pole frequency RL as: 
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EMEM
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                 (5.1) 

where kEM=
RL

2

2

RG

V2


 is negative stiffness coefficient and pole frequency RL=R/L0; here 

L0=
G2

AN 2
0

is inductance of each electromagnet at nominal air gap G, ‘s’ is Laplace 

variable, q  is speed of the moving part of magnetic circuit. R is total resistance (coil 

resistance and additional resistance to tune the electric circuit pole). Also Nt is number of 

turns of each winding, A is area of magnetic circuit at the air gap and 0 is magnetic 

permeability of vacuum.  

         In semi-active magnetic damper a mechanical spring of stiffness km (where km 

is greater than -kEM) is added in parallel to the electromagnet, driven by constant voltage.  

A better insight can be obtained by studying the mechanical impedance of the damper in 

parallel to the spring. i.e., for SAMD transfer function will become 
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where keq=km+kEM  and Z = RL(keq /km). It is possible to identify following three 

different frequency ranges: 

1) Equivalent stiffness range ( << Z), where the system acts as a spring of 

stiffness keq 

2) Damping range (Z <  < RL), where system behaves as a viscous damper with 

c=km / RL. 

3) Mechanical stiffness range ( >> RL), where system acts as a mechanical spring 

of stiffness km. 

Figure 5.1shows the mechanical equivalent diagram of SAMD. 

 

 

 

 

 

 

Figure 5.1: Mechanical Equivalent of eddy-current transformer damper  

A sort of constant bandwidth product km=cRL characterises damping range of the EM 

damper. 

5.2.1 Specifications  

The knowledge of the resonant frequencies at which the dampers should become effective 

and the maximum acceptable response, allows in specifying the needed value of the 

damping coefficient (c).  The pole and zero frequencies (RL, Z) have to be decided so 

that the relevant resonant frequencies fall within the damping range of the damper. 

Additionally, tolerance and construction technology considerations impose the nominal 

air gap G. Electrical power supply considerations lead to the selection of the excitation 

voltage V. 

5.2.2 Definition of the SAMD parameters  

The mechanical stiffness can be obtained as km=cRL, once the pole frequency (RL) and 

the damping coefficient (c) are given by the specifications. The electromechanical 

parameters of the damper viz., the electromechanical constant Nt
2
A and the total 

resistance R can be determined as follows: 

km 

-kEM 
c 
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a. The required electrical power V
2
/R is obtained from V

2
/R=0.5G

2
RL km (1-

z/RL). The knowledge of the available voltage V allows them to determine the 

resistance R. 

b. The electromechanical constant Nt
2
A is then found using L0=R/RL=

G2

AN 2
0

. 

 

5.3 Active methods 

In active control of vibrations, active devices or actuator are used to change the dynamical 

properties of the system by measuring instantaneous operating conditions with sensors. 

This system can be useful at different load conditions and configurations. 

Piezoelectric actuators are used as a pusher in the rotating machines as an active 

vibration controller in 90’s. Later, they are modelled as dampers and springs. Then, these 

piezoelectric actuators are developed as an adaptive hydrodynamic bearing to reduce the 

high frequency amplitudes of vibrations. Generally active magnetic bearings are used as 

active vibration controllers and are very extensively used in industrial applications. 

Active magnetic bearings are recently used as lubrication free and non-contact bearings 

with a feedback control. 

5.3.1 Conventional PD controller 

To minimize the vibration amplitude of system appropriate magnetic force should applied 

by the actuator force should act in the opposite direction of motion and should increase 

with displacement. The magnetic force, on the other hand, depends upon the pole winding 

current of an electromagnet, so by controlling pole winding currents, the system response 

can be controlled. Proportional-Derivative (PD) control is generally used for faster 

response. Proportional control increase the control input in proportion to the error e(t) 

within the acceptable range of error. Derivative control changes the control input in 

proportion rate of change of error. Equation of control output of PD controller can be 

given as 

                                                          (5.3) 

The controlled output is control currents and the error signal. Here x and y are the 

displacements in the two lateral directions at the LP compressor disk location. Hence, the 

control currents for pole pair in vertical direction (i1) and in the horizontal direction (i2) 

are: 

                                 

                                        (5.4) 

 

5.4 Design of Electromagnetic Actuator 

The control system has an actuator placed very close to the plane of the disks and oriented 

along two orthogonal radial directions. Due to the arrangement of poles in the actuator, 

the components of magnetic control force along X and Y directions are obtained 

independent of each other. The magnetic force is controlled by both the current and 
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displacement.  Tuning of current varies the stiffness of the rotor. Figure 5.2 shows 

schematic of four-pole electromagnetic actuator. The  magnetic flux fn for each pole is 

given by:   

   
       

       
       (n=1- 4)                       (5.5) 

where    denotes the permeability of free space (4×10
-7

 H/m),    be the effective cross 

sectional area of air gap, Nt the number of turns of winding coil around a pole,  In the 

control current through the coil, G is the nominal gap size of air,   is the half angle 

between the two adjacent poles (22.5
0
) and d the displacement of shaft at the horizontal 

and the vertical directions. The magnetic force, Fn, can be obtained as follows 

 

   
      

   
     

          
      (n=1- 4)                          (5.6) 

 

 

Figure 5.2: Schematic of four pole electromagnetic exciter 

From this equation, it is seen that the magnetic force is proportional to the square of the 

control current of an electromagnetic exciter and inverse to the displacement of a rotor. Fn 

is nonlinear function.  For the sake of controlling, it is linearized. The PD controller first 

provides a bias current and then adds a small variable control current. Therefore, it is 

defined as:  

In=Ib+in                                (5.7) 

where Ib and in  are the bias current and the control currents respectively. Replacing In 

(n=1 - 4) in Eq. (5.6)  

   
     

            α

       α  
.                      (5.8) 

Let i1= -i3 and i2= - i4 (see Figure 5.2) and then the magnetic forces in the x- and the y-

direction are obtained as:  
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The Taylor series is used to expand these equations.  As the x- displacement and y-

displacement and the control current in  are small variances, the higher terms can be 

ignored in this equation. Consequently, the equation is obtained as 
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(or) 

                                      (5.12) 

                             (5.13) 

Where  

   
      

      α

    , and      
      

   
     α

     .  

Here, the currents i1 and i2  are given by: 

            ,                              (5.14) 

where   and    as well as i1 and i2 are the proportional gains, the derivative gains and the 

currents of the controller in the x- and y-directions, respectively. Figure 5.3 shows the 

block diagram of control system logic. 

 

  

Figure 5.3: Proportional-Derivative control strategy for controlling vibrations at a disk 

Here, the proportional and derivative gains kp and kv are selected as 10 and 0.1 

respectively.   Other parameters include: Ag=240 mm
2
, N=106, =22.5

o
, G=0.9 mm and 

Ib=3 A. The instantaneous current components i1 and i2 depend on the displacements x 

and y at the disk node-1.  
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5.4.1 Neural network based controller 

As seen from Eq.(5.9), it is observed that the control forces are nonlinear functions of the 

radial displacements and velocities of rotor. So, an inverse dynamic model of the system 

is used as a controller, by training a radial basis neural network with instantaneous 

transient response as inputs and corresponding currents and forces as outputs. Figure 5.4 

shows the present methodology employed in this work. 

 

 

Figure 5.4: Flowchart of the methodology 
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Chapter 6  

Results and Discussions 

6.1 Introduction 

Finite element analysis is employed initially to model the rotor. Effects of bearing 

stiffness, double-row ball bearing, squeeze film damper parameters, bearing faults, rub 

contact stiffness on unbalance response are studied. For identification and classification 

tasks, inverse modelling is employed to predict the parameters from given vibration 

response. Figure 6.1 shows the overall approach followed during the computer 

programming.  

 

Figure 6.1: The Schematic of various studies carried-out 
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The experimental responses of the system were used in identifying the effective 

parameters of the system. Different ball bearing considerations such as variations in 

double row bearings, ball bearings supported over squeeze-film dampers, as well as 

bearing faults are accounted. The external nonlinear forces such as gas force transients 

idealized by Muszynska’s model, rub-impact forces modelled by point contact force 

model are employed to study their effects on dynamic response of rotor. By using this 

data, the parameters are identified from known dynamic responses using inverse 

modelling and with the help of neural networks.  

Finally, control results of the dual-disk rotor bearing system using a semi-active 

magnetic actuation approach and active electro-magnetic actuator are presented for 

attenuation of the critical response amplitudes. The chapter is classified into primary and 

secondary studies. While the primary studies deal with the linear models and used to 

validate the finite element model, the secondary studies describe effects of various 

parameters and their identification from a given vibration responses by considering the 

real-time nonlinearities at bearings and forces.  

6.2 Preliminary modelling of rotor bearing system  

Present study considers the finite element modelling of the rotor using Timoshenko beam 

theory. Disks are considered as a rigid, while the flexible shaft model accounts two 

bending deflections. Computer programs are developed for assembling the element 

matrices and also their sizes are reduced to eliminate the rotational degrees of freedom. In 

the primary case, the bearings are idealized as spring-dashpot models with different 

stiffness cases. In other words, the bearing stiffness is considered as static and time 

invariant idealising as a complete linear model. User of the present program can select 

two cases of rotors.   

6.2.1 Dual disk LP rotor 

Figure 6.2 shows a simplified LP aero-engine rotor model having a turbine and 

compressor disks supported on rolling element bearings in between the disks. 

Finite element modelling of the rotor system is the first step. A convergence study for 

optimum number of elements is carried out and it was found that six elements are giving 

relatively constant results for the first four modes. Each of the three segments is divided 

into two equal elements. Thus, the model having six element and seven nodes is 

employed through-out the work. 
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Figure 6.2: Finite element model of a two disk rotor 

Two disks are located at node 1 and 7. The bearings are located at nodes 3 and 5. The 

system has in total 28 degrees of freedom represented by q=[v1 w1 x1 y1 ………. . v7 w7 

x7 y7]
T
. The reduced matrices are used in computing the eigenvalue problem which 

results in a set of complex conjugate eigenvalues. At different speeds of the operation of 

the rotor, these eigenvalues are recorded. Campbell diagrams are plotted and critical 

speeds of operation are initially computed for three different bearing stiffness conditions. 

The bearing damping is not considered and the system damping is expressed in terms of 

modal damping factor of 0.001. Table 6.1 depicts the dimensions of the rotor-bearing 

system and its material properties.  

Table 6.1: Material properties and geometric parameters of rotor and bearings 

Parameter Dimension 

Shaft diameter (mm) 20 

Disk diameters (mm) 110(R), 90(L) 

Disk thickness (mm) 10 

Density of shaft and disk (kg/m
3
) 2700 

Elastic modulus (GPa) 70 

Shear Modulus (GPa) 27 

Total shaft length (mm) 650 

 

For analysis consideration, the segmental lengths considered as l1=200 mm, l2=250 mm, 

l3=200 mm. Table 6.2 shows the first six natural frequencies in comparison with the 

commercial FE program Ansys corresponding to bearing stiffnesses kxx=kyy=1×10
7 

N/m. 

Program is written in batch mode using ANSYS (v13) APDL environment by considering 

3-D beam elements (BEAM188), 3-D mass elements (MASS21) and bearing elements 

(Combi214) is chosen. Combi214 has springs and dampers in four different directions 
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(xx, yy, xy and yx). The spring and damper constants are declared by real constants in 

Ansys. 

Table 6.2: First six natural frequencies (Hz) 

S.No Present Finite element analysis Ansys (1-D) 

1 80.66 82.44 

2 106.92 109.69 

3 734.74 759.94 

4 845.86 878.49 

5 934.29 974.23 

6 1721.17 1755.62 

 

The natural frequencies obtained from present code are slightly smaller compared to 

Ansys values as the approach considers the shear deformation and rotary inertia effects. 

Figure 6.3 shows the corresponding unbalance response at the bearing node obtained by 

solving the linear system of differential equations. As the bearing dynamics is not 

included, the resulting peaks are due to rotor natural frequencies only without any sub-

harmonics. 

 

Figure 6.3: Unbalance response 

Figure 6.4 shows the mode shapes of the dual disk rotor bearing system at different 

natural frequencies obtained from Ansys. 
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(a) First mode          (b) Second mode  (c) Third mode      

 

(d)  Fourth mode            (e) Fifth mode   

Figure 6.4: Mode shapes of the dual disk rotor bearing system in Ansys 

Figure 6.5 shows the mode shapes of a dual disk rotor bearing system using present 

finite element analysis code. As seen, symmetrical modes are found in two bending 

directions. 

 

 

Figure 6.5: Mode shapes of the dual disk rotor bearing system using FEA 

Figure 6.6 shows the Campbell plots obtained for three different bearing stiffness values.  
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(a) Bearing stiffness values of kb=1e5N/m. 

  

(b) Bearing stiffness values kb=1e6 N/m. 

 

(c) Bearing stiffness values kb=1e7 N/m. 

Figure 6.6: Campbell diagrams from beam element analysis. 
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It is observed that at the bearing stiffness kb=1e5N/m, the first backward whirl (BW) 

speed is approximately at 1900 rpm and the first forward whirl (FW)  speed at 2000 rpm 

and the second backward whirl is at approximately 3500 rpm and the second forward 

whirl speed is at approximately 3600rpm. Likewise, at the bearing stiffness kb=1e6N/m, 

the first BW speed is at 4200 rpm and the first FW speed is at 4500 rpm and the second 

BW is at 5000 rpm and the second FW speed is at 5200rpm. Also, at the bearing stiffness 

kb=1e7 N/m, the first BW speed is at 4800 rpm and the first FW speed at 5000 rpm and 

the second BW speed is at 6400 rpm and the second FW speed is at 6900rpm. There is 

42% and 44% of increase in the backward whirl speed and forward whirl speed due to 

increase the bearing stiffness value kb from 1e5 to 1e6 N/m. Also, there is 82% and 91% 

of increase in backward whirl and forward whirl speeds due to the change in the stiffness 

value from 1e5 to 1e7 N/m. It is concluded that, due to increase in the bearing stiffness 

there is a significant increase in critical speeds of operation.  

For further validation, using Ansys software, the dual disk rotor is analysed by 

meshing with 3-D brick elements (20-noded 3 degree of freedom per node) (SOLID187) 

and the bearing nodes are connected with spring-damper elements (COMBIN14) to the 

ground. Figure 6.7 shows the 3-D finite element model of rotor system. The resultant first 

few natural frequencies (evaluated for kxx=kyy=1.75e7N/m) are 67.872 Hz, 74.019 Hz, 

139.62 Hz, 155.02 Hz, 363.89 Hz and 602.01 Hz. This model cannot give torsional 

frequencies of rotor. Moreover, the 3-D FE analysis consumed numerous computational 

times to get the final results.  

 

Figure 6.7: 3D finite element model 

6.2.2 Two-spool rotor model 

Like an LP rotor model, the support effects on a twin-spool rotor are next presented. 

Figure 6.8 shows a simplified finite element model of the twin-spool rotor assembly 

[100]. It consists of four bearings and four disks, two each on inner and outer spools 

respectively. As seen in figure, the node 4 of inner spool and node 10 of outer spool are 
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connected by the intermediate fourth bearing element. It has total 10 nodes and 40 

degrees of freedom. Variable speed ratios are considered.   

 

Figure 6.8: The finite element model of two-spool rotor system 

Table 6.3 shows the dimensions of the two-spool rotor-bearing system and its 

material properties.  

Table 6.3: Geometric and material data for rotor 

Node 
Axial dist. 

(mm) 
dInner (mm) dOuter (mm) Disc mass(kg) IP (kgm

2
) 

1 0 0 30.4 - - 

2 76.2 0 30.4 10.51 0.0859 

3 323.85 0 30.4 - - 

4 406.4 0 30.4 - - 

5 457.2 0 30.4 7.01 0.0678 

6 508 0 30.4 - - 

7 152.4 38.1 50.8 - - 

 8 203.2 38.1 50.8 7.01 0.0429 

9 355.6 38.1 50.8 3.5 0.0271 

10 406.4 38.1 50.8 - - 

 

The material for the spools is steel with elastic modulus E=210 GPa and density 

 =7800 kg/m
3
. All four disks have polar moment of inertia (IP) twice the diametral mass 

moment of inertia (ID). Further, an unbalance of 10 microns is considered in the disks. 

Initially the conventional problem with linear spring-damper bearing elements (with 

k1=0.279e8 N/m, k6=0.175e8 N/m, k7=0.175e8 N/m and kintermediate =0.875e7 N/m) is 

attempted to know the approximate values of natural frequencies and corresponding 

unbalance response. The resultant stiffness, mass, damping (damping ratio of 0.01) and 

gyroscopic matrices are used and the set of first few natural frequencies are obtained. The 

proposed Matlab code simplifies the analysis procedure by reducing the size of the 

problem with the help of condensation through eliminating rotational degrees of freedom. 

Table 6.4 shows the comparison of first few modes obtained from present analysis along 

with Ansys results by employing BEAM188 element. Here, the gyroscopic and damping 

matrices are not considered. The corresponding mode shapes are shown in Figure 6.9. 

 

1 
2 

3 4 
5 

6 

7 
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Table 6.4: Natural frequencies (Hz) of twin spool rotor under consideration 

Mode Present code Ansys (Beam model) % deviation 

1 90.7 91.945 1.354 

2 217 186.75 16.19 

3 227.9 --- --- 

4 277.2 270.73 2.389 

5 280.1 --- --- 

6 378.5 321.47 17.74 
 

It is seen that the first mode obtained using present code is well matching with Ansys 

result. At higher modes, the percentage deviations are relatively more. The possible 

reason for this may be due to the reduction process of matrix sizes by using static 

condensation scheme.  

 

    

(a) First mode f1=91.945 Hz   (b) Second mode f2=186.75 Hz 

     

(c) Third mode f3=270.73 Hz   (d) Fourth mode f4=321.47 Hz 

Figure 6.9: First four mode shapes of two-spool rotor 

Figure 6.10 shows the Campbell diagram of the rotor obtained with a viscous 

damping (0.1%).  The following Matlab code is employed for computing total damping: 

Model code: Campbell diagram program 

  Aq=inv(Mr)*Kr; 

    [v2,w2]=eig(Aq); 

    mult=sqrt(v2'*Mr*v2); 

    for i=1:np 

       omn(i)=sqrt(w2(i,i)); 

       Phi(:,i)=v2(:,i)/mult(i,i); 

    end 

    zi=0.001; 

    Cv=zeros(np,np); 

    for i=1:np 

       Cv(i,i)=2*zi*omn(i); 

    end 

    Cq=inv(Phi')*Cv*inv(Phi); % CONSTANT DAMPING DUE TO RAYLEIGH 

    Ce=Gr+Cq; %The total damping with shaft, disk gyroscopic matrix 
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Figure 6.10: Campbell diagram of the rotor with bearings idealized as linear springs 

It is seen that there is a vital effect of speed on the higher natural frequencies in this 

rotor even at lower operating range.  

Figure 6.11(a) shows the unbalance response when eccentricity of 1 micron is 

considered in all the disks. A speed of 5000 rpm is considered. Results are validated with 

the harmonic analysis in Ansys as seen Figure 6.11 (b).  

     

(a) Present program (=0.001)                (b) ANSYS harmonic analysis 

Figure 6.11: Unbalance response due to forces at all discs 

Effect of multi-frequency unbalance forces on the dynamic response is in good 

agreement for this linear model indicating that the present code can be further used in 

nonlinear analysis. In above study, a speed-ratio of 1.5 is maintained.     

 For analyzing the rotor using 3-D modeling, the rotor configuration is developed in 

Ansys (as shown in Figure 6.12) and analyzed using 3-D solid elements (Solid 186-20 
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node element). At the bearing nodes, spring elements are considered. The above results 

are compared and there is a considerable coincidence of values. 

 

Figure 6.12: Two-spool rotors with compressor and turbine disks  

The HP and LP stages are connected by means of intermediate bearing at node 4, 

the LP rotor supported at node 1 and node 2 and the HP rotor supported at bearing node 3 

to the external stationary member. 

6.3 Bearing nonlinear forces 

Upon studying rotordynamic system using spring damper models, the finite element 

model of the rotor system is employed to study the effects of nonlinear bearing forces 

dynamic response of the system. There are four different case studies illustrated in order 

to understand the bearing parameter effects on dynamics. These are (i) Single row ball 

bearings (ii) Double row ball bearings (iii) Ball bearings with SFD (iv) Bearing fault 

modelling.  

6.3.1 Single row ball bearing model 

In order to illustrate the dynamics of single-row bearing, two cases are considered. In first 

case dual disk LP rotor and its experiment work is explained. This is followed by the 

numerical analysis if twin spool rotors. In addition to unbalance and gravity at the disks, 

the system is subjected to parametric bearing forces. Table 6.5 shows the bearing 

parameters considered in the analysis.  

Table 6.5: Geometric details of ball bearing 

Parameter Dimension 

Number of balls  8 

Outer race radius(mm) 31.953 

Inner race radius(mm) 20.046 

Radial clearance (mm) 20e-3 

 

1 

3 4 
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(a) Dual disk LP rotor model 

Unbalance response are studied at different speeds of operation, bearing contact stiffness 

values and radial clearances. Initially, a contact stiffness of kb=3.527×10
9 

N/m
3/2

 is 

employed to know the effect of operating speeds on the unbalance response. A part of 

Matlab code for computing the ball bearing forces is given below. 

Model code: Ball bearing force 

R=31.953e-3;r=20.04681e-3;rc=20e-6;c1=3.527e9;Nb=8; 

rb=(R-r-rc)/2;wc=r*omga/(R+r); 

Fby1=0;Fbz1=0; 

Fby2=0;Fbz2=0; 

 for j=1:Nb 

    th=wc*t+2*pi*(j-1)/Nb; 

    y1=xx(6)+(r+2*rb)*sin(th); 

    z1=xx(6)+(r+2*rb)*cos(th); 

    delta1=sqrt(y1^2+z1^2)-R; 

        if delta1>0 

        Fby1=Fby1-c1*delta1^1.5*sin(th); 

        Fbz1=Fbz1-c1*delta1^1.5*cos(th); 

    else 

        Fby1=Fby1; 

        Fbz1=Fbz1; 

     end 

    end 

 

Finite element model is used in the modelling of the rotor bearing system. By 

considering the rotor and disk configurations to be same as earlier LP rotor, replacing the 

spring model with bearing contact forces some studies are carried out first. Rayleigh’s 

material damping parameters =0.1485 and  =8.24210
-6

 are considered in the analysis 

for computing the proportional damping matrix.  

Figure 6.13-Figure 6.16 shows the effect of operating speeds on dynamic response, time 

histories and FFT plots in each case are obtained to analyse the system behaviour. 
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Figure 6.13: Time-response and frequency plot at the left bearing (500 rpm) 

 

Figure 6.14: Time-response and frequency plot at the left bearing (1000 rpm) 

 

Figure 6.15:  Time-response and frequency plot at the left bearing (1500 rpm) 
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Figure 6.16: Time-response and frequency plot at the left bearing (2000 rpm) 

It is seen from FFT plots that as the speeds increase from 500 to 2000 rpm, the peak 

resonance mode shifts from 25 Hz to 55Hz except at 1500 rpm where-in there is no 

appreciable peak observed. The effect of speed on stability of rotor is a highly nonlinear 

problem well studied in open literature. The stability at different operating speeds 

depends on the system rigidity and the stiffness. It can be observed that as the speed 

increases the frequencies are also increases as shown above.   

 

Figure 6.17: Frequency response of a single row ball bearing at a speed of 2000rpm 

At a period of 2000 rpm, the presence of both the rotational speed (33Hz) and the varying 

compliance frequency (58Hz) are seen in the frequency spectrum and also interaction of 

these two frequencies produce sum and difference combination frequencies shown in 

Figure 6.17. 
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As another parameter of study, the contact stiffness between the ball and races is varied 

from 3.52710
7
 to 3.52710

0
 in three levels and are shown in Figure 6.18-Figure 6.20. 

These corresponds to rotor speed of 2000 rpm and rc=20 m. 

       

Figure 6.18: Time responses and FFT plot at left bearing (kbc=3.527e7 N/m
1.5

) 

 

Figure 6.19: Time responses and FFT plot at left bearing (kbc=3.527e8 N/m1.5) 

 

Figure 6.20: Time responses and FFT plot at left bearing (kbc=3.527e9 N/m1.5) 
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As the contact stiffness kbc depends on the geometric and material parameters of races, in 

practice, its value is required to be correctly predicted while designing a rotor bearing 

system. The stiffness of the system purely depends on the support bearings. The ball 

contact angular position is responsible for the stiffness of the system. As the contact 

stiffness increases the critical speeds also increases. From the above plots it can be clearly 

observed that, increase in the first natural frequency levels. In general, the bearing contact 

stiffness is varying as the ball moves in the groove with different angular positions and 

contact locations.   

Next effect of internal radial clearance of ball bearings is studied on the rotor response. 

Figure 6.21-Figure 6.23 shows the dynamic response at three different values of rc. Here, 

speed N=2000 rpm and kbc=3.52710
9
 N/m

1.5
 are employed.  

 

Figure 6.21: Time response and FFT plot at left bearing (rc=20 m) 

 

Figure 6.22: Time response and FFT plot at left bearing (rc=40m) 
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Figure 6.23: Frequency response of a left bearing at a rotor speed of 2000 rpm and at rc=60e-6 

Bearing radial clearance is the one of the key factors affecting the dynamic 

characteristics of the system responses. There is a significant influence of the bearing 

clearances on the overall dynamic characteristics of the rotor bearing system. From the 

above responses it is observed that as the radial clearance of ball bearings increases at the 

rotor support leads to decreases in the natural frequencies of the system which is also 

shown in the literature. From above plots, the maximum level of the amplitude and 

frequencies are recorded at different radial clearances. At the radial clearances rc=20, 40 

and 60m the corresponding frequencies are 53.73Hz, 36.13Hz and 34.18 Hz. The critical 

speeds decreasing as the radial clearances increase in the system.  

The single ball bearing forces are modelled by using lumped parameter modelling 

and the following Figure 6.24- Figure 6.28 shows the comparative frequency responses at 

the left bearing node when the rotor is operating at four different speeds (500, 1000, 1500 

and 2000 rpm), the bearing radial clearance (rc) is 20e-6 and the rolling element bearing 

contact stiffness is taken c1=3.527e9. The masses of the disks are mD1=4; mD2=6 and the 

mass of the left bearing mB1=0.25 and right bearing mB2=0.25 and the stiffnesses of the 

shaft, bearing and the disk are ks1=1e6, ks2=0.25e6 and ks3=2e6 respectively.  
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Figure 6.24: Time History and FFT at the left bearing at a rotor speed of 500 rpm 

 

Figure 6.25: Time History and FFT at the left bearing at a rotor speed of 1000 rpm 

 

Figure 6.26: Time History and FFT at the left bearing at a rotor speed of 1500 rpm 
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Figure 6.27: Time History and FFT at the left bearing at a rotor speed of 2000 rpm 

 

Figure 6.28: Time History and FFT at the left bearing at a rotor speed of 2500 rpm 

It is seen from these simulations, as the speed increases amplitudes gradually increase 

along with formation of sub-harmonics and super-harmonics at the first mode of rotor 

found earlier. It is observed from above diagrams that both the time and frequency 

domains are sensitive to changes of the operational speeds. 

(b)  Experimental analysis 

A scaled model of the rotor system is prepared for simulation. The compressor and the 

turbine are considered as disks installed on a rotor supported by ball bearings at the 

middle of the rotor. 

A three phase AC induction motor was attached by coupling perfectly aligned to the 

rotor as shown in Figure 6.29 (a) and the schematic shown in Figure 6.29 (b). The 

dimensions of the rotor considered in present work are also shown. 
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(a) Experimental set up 

 
(b) Dimensional schematic 

Figure 6.29: Experimental setup of a rotor with two discs 

Technical specifications employed are as follows: 

Three phase AC induction motor of 1HP power and 2820 rpm (Maximum speed), length 

of the shaft (L) = 650mm, diameter of shaft (d) = 20mm, Diameter of disc-1 (d1) = 

110mm, diameter of disc-2 (d2) = 90mm, mass of disc-1(w1) = 0.7kg, mass of disc-2(w2) 

= 0.5kg, thickness of the discs = 10mm and the material is Aluminium alloy. 

A variable frequency drive is used to get different speeds of the rotor. Disk masses 

and diametral and polar moment of inertia of disks is computed based on diameter and 

thickness values.  

Modal analysis was carried out with an impact hammer having a load cell attached 

to its head and an output cable is connected to vibration analyzer through data acquisition 

(DAQ) system as shown in Figure 6.30. 

  The laser-Doppler vibrometer, a precision optical transducer is used for determining 

vibration velocity and displacement at a fixed point. It has the specified velocity 

resolution of 0 to 22 kHz. The sampling frequency is set at 10 kHz during the 

experimentain and it is a single-point frequency analysis with VibSoft Data Acquisition 

Software. It calculates FFT with upto 12,800 lines of resolution and it can be extended 

resolution up to 8,19,200 lines. VibSoft Data processing exports data in ASCII and also 

provides direct access to binary data for processing in MATLAB and LabView using the 

PolyFile Access open data interface (Microsoft COM standard).  

200 200 250 
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Figure 6.30: Experimental set up for Modal analysis 

The impact generates an electric signal that is given to vibration analyzer with DAQ 

which analyzes the signal, compares with the signal received from Laser Doppler 

Vibrometer (LDV) focusing the laser beam at a point on the bearing location.  Both force 

and response information are used to develop FRF (Frequency Response Function) and 

finally the natural frequencies of the structure are found. 

In obtaining the response measurements along the rotor in all conditions, Polytec 

Laser Doppler Vibrometer (PDV-100) is employed (as shown in Figure 6.31 ) along with 

the post processing VibSoft software installed in a laptop. The acceleration, velocity and 

displacement histories are obtained in addition to their FFT plots at various locations 

along the shaft.  

       

Figure 6.31: PDV-100 Portable Digital Laser Doppler Vibrometer 

Table 6.6 shows the comparison between the experimental results of natural 

frequencies and in-house code values. It is seen from the table that, experimental values 

are matching closely to the results obtained from simulations in some modes. 
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Table 6.6: First five natural frequencies 

S.No 
Experimental In-house code 

1 23.42 24.56 

2 40.98 ----- 

3 52.69 56.79 

4 64.4 ----- 

5 81.97 87.42 

Figure 6.32 shows the FRF plot obtained from the test, first five natural frequencies.  

 

Figure 6.32: The FRF plot of modal test 

In the next phase, a series of tests are carried out at variable speeds of the rotor in order to 

predict the response using LDV. Initially acceleration signals are obtained and the 

corresponding integrals namely velocity and displacement data are also recorded in the 

software and the data is imported into MS-Excel. The phase diagrams are then plotted. 

Figure 6.33-Figure 6.37 shows the FFT response and phase plane diagrams at different 

rotational speeds of the rotor from 500 rpm -2500 rpm taken at left bearing.  
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  (a) Displacement FFT plot    (b) Experimental Phase diagram 

Figure 6.33: Records at left bearing (500rpm) 

      

 (a) Displacement FFT plot          (b) Experimental Phase diagram 

Figure 6.34: Records at left bearing (1000rpm) 

      

(a) Displacement FFT plot          (b) Experimental Phase diagram 

Figure 6.35: Records at left bearing (1500rpm) 

-0.0015 

-0.0005 

0.0005 

0.0015 

0.0025 

-50 -40 -30 -20 -10 0 10 20 30 40 50 

V
el

o
ci

ty
 

Displacement 

Phase diagram at left bearing  

-0.0015 

-0.001 

-0.0005 

-2E-17 

0.0005 

-13 -3 7 
V

el
o
ci

ty
 

Displacement 

Phase diagram at left bearing  

-13 

-8 

-3 

2 

7 

12 

17 

-0.00075 -0.00025 0.00025 0.00075 0.00125 

V
el

o
ci

ty
 

Displacement 

Phase diagram at left bearing  



 

Chapter 6  Results and Discussion 

111 

 

   

    (a) Displacement FFT plot             (b) Experimental Phase diagram 

Figure 6.36: Records at left bearing (2000rpm) 

    

(a) Displacement FFT plot    (b) Experimental Phase diagram 

Figure 6.37: Records at left bearing (2500rpm) 

The quasi periodic motions are identified from the projections of phase trajectories 

and FFT plots. The fractal structure is observed in the phase trajectory projections at the 

lower operation speeds (500 rev/min) and as speed increases the motion leads to more 

chaotic motion to chaotic motion and then stability motion.   

As the next case, the experimental studies were conducted at a fixed speed of the 

rotor at 2000rpm and the laser was focused at different node locations along the rotor 

length and the FRF response using LDV with inbuilt Vibsoft software are plotted. Figure 

6.38 (a)-(e) shows the FFT response at different nodes along the length. 
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(a) Node 1     (b) Node 2 

         

(c) Node 3          (d) Node 4 

          

(e) Node 5              (f) Node 6 

    

(g) Node 7 

Figure 6.38: The FRF response at different nodes along the length 
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The responses of the rotor are shown in the form of FFT plots at a constant rotating speed 

along the length of the rotor at seven nodal positions. At bearing nodes 3 and 5, the 

frequency lower than other nodes due to rigidly supported by bearings and other nodes 

the frequency values are increased due to the boundary conditions. 

(c) Twin spool 

Bearing force effect is now illustrated with a twin spool rotor. 

Speed ratio: An Aero-engine twin-spool rotor, consisting of high pressure and low 

pressure spools operating coaxially at different speeds. There is a fixed ratio of speeds to 

the high pressure spool to the low pressure spool. By rotating the model at different speed 

ratios, time response at the LP disk and HP disk and FFT are shown in Figure 6.39-Figure 

6.44. 

 

  

Figure 6.39: Time response at LP disk, HP disk and FFT at left bearing at a speed ratio of 1 

 

    

Figure 6.40: Time response at LP disk, HP disk and FFT at left bearing at a speed ratio of 1.5 
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Figure 6.41: Time response at LP disk, HP disk and FFT at left bearing at a speed ratio of 2 

     

Figure 6.42: Time response at LP disk, HP disk and FFT at left bearing at a speed ratio of 2.5 

   

Figure 6.43: Time response at LP disk, HP disk and FFT at left bearing at a speed ratio of 3 

  

Figure 6.44: Time response at LP disk, HP disk and FFT at left bearing at a speed ratio of 3.5 
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From above responses it is observed that there is a significant influence of the spool 

speed ratios in the overall dynamics of the rotor system. Figure 6.44 shows the unbalance 

responses at the left bearing node, it is seen that due to multi-frequency unbalance 

forces, the response is shooting-up to a very high value. It is seen that there is a marked 

difference in amplitudes. As the speed ratio increases the frequency domain values are 

increasing. The LP rotor speed is fixed at 2000 (Rev/min) and the HP rotor speed is 

increasing with increasing the speed ratio. The responses are recorded at both LP and HP 

disks. 

6.3.2 Double row ball bearing force modelling 

For implementing the solution methodology, six second-order equations are decomposed 

into state-space form and the program is implemented such that in each time interval, the 

time dependant bearing forces and disc unbalance excitations are evaluated by separate 

function. Table 6.7 shows the dimensional parameters of the rotor-bearing system 

employed in present work for computation of dynamic response.   

Table 6.7: Parameters of rotor-bearing system. 

Parameter Value Parameter Value 

ri 

ro 

Nb 

rc 

40 mm 

64 mm 

8 

20  m 

Kb 

e 

 x= y 

A0 

13.34×10
9
 N/m

3/2
 

18.2mm 

0 

0.65 mm 

All the initial conditions are set close to zero and back to back configuration is 

considered in order to illustrate the effect of double-row bearing. The programs are 

simulated in a Matlab R2009a version software in Dell 2GB ram laptop. A part of Matlab 

code for computing the double row ball bearing forces is given below. 

Model code: Double row ball bearing forces 

Fby1=0;Fbz1=0; 

Fby2=0;Fbz2=0; 

r=40e-3;R=64e-3; 

Nb=8;rc=20e-6;cb=13.34e9;g=9.81; 

wcage=omga*(r/(R+r)); 

  dz=18.20e-3; 

  betax=0; betay=0; 

  A0=0.65e-3; %unloaded distance between inner and outer race curvature centres% 

  rb=(R-r-rc)/2; 

  alpa=pi/6;%acos(1-rc/(r+R-2*rb)); %%35*pi/180;%unloaded contact angle% 

  delz0=0;z=0; 

 for i=1:2 

     if i==1 

         mu1=-1; 

         nu=1;%back to back configuration% 

     else 

         mu1=1; 
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         nu=-1; 

     end 

     for j=1:Nb 

        X2=xx(5);Y2=xx(6); 

        X3=xx(9);Y3=xx(10); 

        th1=wcage*t+(2*pi/Nb)*(j-1); 

        X2d=X2+mu1*dz*betay; 

        Y2d=Y2-mu1*dz*betax; 

         X3d=X3+mu1*dz*betay; 

        Y3d=Y3-mu1*dz*betax; 

        delr1=(X2d*cos(th1)+Y2d*sin(th1)-rc*1e-3); 

        delr2=(X3d*cos(th1)+Y3d*sin(th1)-rc*1e-3); 

        delrstar1=delr1+A0*cos(alpa);delrstar2=delr2+A0*cos(alpa); 

        delz1=z+(rb+r)*(betax*sin(th1)-betay*cos(th1)); 

        delz2=delz1; 

         delzstar1=delz1+nu*(A0*sin(alpa)+delz0); 

        delzstar2=delzstar1; 

        alpa1=atan(delzstar1/delrstar1);%loaded contact angle%% 

        alpa2=atan(delzstar2/delrstar2);%loaded contact angle%% 

                Ab1=sqrt(delzstar1^2+delrstar1^2); 

                Ab2=sqrt(delzstar2^2+delrstar2^2); 

        del1=Ab1-A0;del2=Ab2-A0; 

        if del1>0 

            H1=1; 

        else 

         H1=0;                         

        end 

        Fbz1=Fbz1-cb*del1^(3/2)*H1*cos(th1)*cos(alpa1); 

        Fby1=Fby1-cb*del1^(3/2)*H1*sin(th1)*cos(alpa1); 

               if del2>0 

            H2=1; 

        else 

         H2=0;                         

        end 

        Fbz2=Fbz2-cb*del2^(3/2)*H2*cos(th1)*cos(alpa2); 

        Fby2=Fby2-cb*del2^(3/2)*H2*sin(th1)*cos(alpa2); 

  end    

  end  

 

By considering the rotor and disk configurations to be same as earlier LP rotor, replacing 

the spring model with bearing contact forces some studies are carried out first. Rayleigh’s 

material damping parameters =0.1485 and  =8.24210
-6

 are considered in the analysis 

for computing the proportional damping matrix. Figure 6.45-Figure 6.47 shows the effect 

of operating speeds on dynamic response, time histories and FFT plots in each case are 

obtained to analyse the system behaviour 
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Figure 6.45: Plots of a left bearing at a rotor speed of 500 rpm, at rc=20e-6 

 

Figure 6.46:  Plots of a left bearing at a rotor speed of 1000 rpm, at rc=20e-6 

 

Figure 6.47: Plots of a left bearing at a rotor speed of 1500 rpm, at rc=20e-6 m 
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Figure 6.48: Plots of a left bearing at a rotor speed of 2000 rpm, at rc=20e-6m 

The vibration amplitude of the rotor increased with the increase of clearance, time 

and frequency domain projections becomes more and more complicated due to increase in 

rotating frequency of the rotor.  

In the next simulation, the radial clearance of the bearing is varied in three steps (i.e 20e-

6, 40e-6 and 60e-6mm) and the time histories and the Frequency responses are shown in 

the Figure 6.48-Figure 6.50.   

 

Figure 6.49: Plots of a left bearing at a rotor speed of 2000 rpm, at rc=40e-6m 

From the plots, it can be observed that the clearance of ball bearing plays very important 

role in the system life and this will increase the stiffness of the system. 
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Figure 6.50: Plots of a left bearing at a rotor speed of 2000 rpm, at rc=60e-6m 

The radial clearance is an important parameter of study and the effect is studied in this 

section. For lower radial clearances, the lower amplitudes are identified. The super 

harmonics develops with the higher radial clearances. The reason behind this is the 

varying compliance frequency component develops strongly for higher internal clearances 

and it leads to higher values of amplitudes and frequencies 

6.3.3 Single row with SFD Modelling 

The nonlinear excitation force of squeeze film damper is introduced in the modelling. 

Generally the squeeze film dampers are lubricated elements providing viscous damping in 

the high speed engine rotors. To arrest the relative motion between the rotor and stator, a 

centralizing spring was used and different stiffness values of centralizing spring was 

studied.  

 

(a) No fault case     (b) with SFD force 
Figure 6.51: Response of a single row ball bearing with and without SFD force (rc=10e-6 mm) 
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Figure 6.51 shows the FFT responses of without SFD and with SFD modelling. The 

squeeze film dampers in high speed rotating engines reduce the amplitudes and also 

provide the required structural isolation to suppress the instability in the rotordynamic 

system. 

Parametric studies are carried out at different stiffness values and various viscosity 

values.  Figure 6.52-Figure 6.54 shows the responses at left bearing at a constant rotor 

speed of 2000 rpm and at centralizing spring stiffness of ka=3e4, 3e5 and 3e6 

respectively. 

 

Figure 6.52: Responses at left bearing at a rotor speed of 2000 rpm and at ka=3e4 N/m 

 

Figure 6.53: Responses at left bearing at a rotor speed of 2000 rpm and at ka=3e5N/m  
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Figure 6.54: Responses at left bearing at a rotor speed of 2000 rpm and at ka=3e6 N/m  

 

The response of the system also studied of a LP rotor at different viscosity values as 

shown in Figure 6.55-Figure 6.57 . It can be observed above plots that the vibration 

energy dissipation as the amplitudes is decreasing as the stiffness values increasing and its 

leads to improve the dynamic stability. 

These plots are taken at left bearing at a constant rotor speed of 2000 rpm and at 

different viscosity values of mu1=2e-3,5e-3 and 10e-3 respectively. 

 

Figure 6.55: Responses at left bearing at mu1=2e-3 
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Figure 6.56: Responses at left bearing at mu1=5e-3 

 

Figure 6.57: Responses at left bearing at mu1=10e-3 

The relative motion between the rotor and stator drags the lubricant by the aid of 

viscous forces into the converging gap between the moving and stationary surfaces. It is 

observed that at low viscous lubricants will lead to high frequencies. The effect of 

lubricant viscosity is mainly depends on the clearances between the surfaces in contact. 

6.3.4 Ball bearings with faults  

Two types of faults are found in the bearings as mentioned in the Chapter 3. Local and 

distributed faults are analyzed in the study. Frequency responses of inner and outer 

bearings at different waviness are plotted.   

(a) Inner race waviness 

Figure 6.58(a)–(c) shows FFT response of inner race waviness at different values of 

waviness configuration constant A=0.5e-6, 1e-6 and 1.5 e-6 m at a constant speed of 

500rpm.  
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(a) A=0.5micron       (b) A=1micron      (c) A=1.5micron 

Figure 6.58: Inner race waviness (m=1) on left bearing at a speed of 500 rpm 

(b) Outer race waviness 

Likewise, the effectiveness of this waviness on the outer race also considered and 

the responses are shown in the Figure 6.59(a)–(c) under same considerations. 

  

(a) A=0.5micron       (b) A=1micron      (c) A=1.5micron 

Figure 6.59: Outer race waviness (m=1) on left bearing at a speed of 500 rpm 

As the next phase of work, the effectiveness of the he waviness constant values 

(A=1) and (m=1) are studied at different speeds of the rotor and corresponding frequency 

responses are plotted from 500rpm - 2500 rpm as shown in Figure 6.60(a)–(e). 

 

(a) At a rotor speed of 500 rpm   (b) At a rotor speed of 1000 rpm 
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(c) At a rotor speed of 1500 rpm           (d) At a rotor speed of 2000 rpm 

 

(e) At a rotor speed of 2500 rpm 

Figure 6.60: Inner race waviness (A=1micron, m=1) on left bearing at different speeds 

The frequency responses at outer waviness are plotted at different speeds of the rotor 

from 500rpm -2500 rpm as shown in Figure 6.61 (a) – (e). 

 

 

(a) At a rotor speed of 500 rpm        (b) At a rotor speed of 1000 rpm 
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(c) At a rotor speed of 1500 rpm  (d) At a rotor speed of 2000 rpm 

 

(e) At a rotor speed of 2500 rpm 

Figure 6.61: Outer race waviness (A=1micron, m=1) on left bearing at various speeds 

Figure 6.62 and Figure 6.63 shows the FFT response of outer race waviness (A=1micron, 

m=1) on left bearing at a speed of 5000 rpm and 3000 rpm respectively. 

 

Figure 6.62: Outer race waviness (A=1micron, m=1) on left bearing at a speed of 5000 rpm 
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Figure 6.63: Outer race waviness (A=1micron, m=1) on left bearing at a speed of 3000 rpm 

The effects of waviness on the overall dynamics of the system are shown. With the 

increase in the speed the amplitudes of the system are decreases.  

(c) Inner race fault 

The faults are studied in this section these are generally three types of localized faults are 

considered the system. They are outer race fault, inner fault and ball defects. The 

localized seeded defects are considered in the analysis with dent heights 1, 3 and 5 

microns. Initially, The seeded defect of dent is analyzed in the inner race of the bearing, 

then the effects of the dent in the outer race and spall on the ball are illustrated in the 

frequency plots using in house Matlab codes.    

 

(a) Dent height he=1e-6         (b) Dent height he=3e-6 
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(c) Dent height he=5e-6 

Figure 6.64: Inner race waviness (A=1micron, m=1) on left bearing at a speed of 2000 rpm 

As the dent height increases the critical speeds operation. From the above Figure 6.64, it 

can be observed that the dent height is an important parameter effecting on the overall 

dynamic characteristics of the rotor bearing system. 

(d) Outer race fault  

The effect of the outer race dent height was analyzed with different dent heights at a 

constant rotor speed of a 2000 rpm. The response of the outer race dent height was shown 

in Figure 6.65(a)-(d).  

 

(a) Dent height he=1e-6m    (b) Dent height he=3e-6m 
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(c) Dent height he=5e-6m     (d) Dent height he=7e-6m 

Figure 6.65: FFT response of an outer race fault with different dent heights at a constant 

speed of 2000 rpm 

The dent height of the inner and outer races of the bearing plays very vital role on 

the overall dynamics of the system. The frequencies are increasing as the depth size 

increases.  

(e) Ball fault  

The stiffness of the bearing varies with the angular location of the ball in the ball 

bearing. The effect of the ball fault is twice the effect of inner or outer bearing faults as 

the ball hits inner and outer race in one revolution of the ball. Number of ball and the 

radial clearance of the bearings also important in the analysis of the ball fault. 

 

(a) Ball dent height 1e-6         (b) Ball dent height 3e-6 
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(c) Ball dent height 5e-6 

Figure 6.66: FFT response at three sets ball dent heights 

The ball bearing stiffness also depends on the load applied on the system. The 

variation in bearing stiffness due to the defect produces parametric excitations of the 

bearing assembly as shown in the Figure 6.66. The qualitative character of the vibration 

response correlates to the character of the stiffness variations. 

 

6.4 Parameter prediction from inverse modelling   

With various parametric studies, it was found that the bearing radial clearance, disc 

eccentricity along with stiffness coefficients of bearing and squeeze film damper have 

significant influence on the overall response within the operating speeds. So, these three 

input variables varied at three levels each are selected at different levels and the 27 design 

of experiments are carried out to obtain the fundamental frequency and corresponding 

amplitudes. 

 The bearing parameters like radial clearance of the ball bearings, mass eccentricity 

of the disk and the centralizing spring stiffness of the squeeze film damper play a very 

vital role in the stability and health of the system. From the analysis, it was found that the 

bearing radial clearance, disc eccentricity along with stiffness coefficients of bearing and 

squeeze film damper have significant influence on the overall response within the 

operating speeds.  

The estimation of these parameters is attempted by taking 27 different experiment 

sets of values using inverse modelling approaches. The frequency responses and the 

amplitudes are used from the Matlab simulations.  

Table 6.8 shows the data collected from FFT diagrams.  
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Table 6.8: Measured data from FE model 

Exp 

No 

Radial 

clearance 

(rc) (m) 

Disc 

eccentricity 

(e) (m) 

Centralizing 

spring stiffness 

(ka) (kN/m) 

Natural 

frequency 

(Hz) 

Amplitudes 

(dB) 

1 20 1 300 51.757813 -101.934218 

2 20 3 300 51.757813 -103.684734 

3 20 5 300 51.757813 -104.374457 

4 20 1 600 33.200000 -111.800000 

5 20 3 600 51.757813 -111.088333 

6 20 5 600 30.273438 -111.556593 

7 20 1 900 31.250000 -111.687714 

8 20 3 900 53.710938 -111.189207 

9 20 5 900 54.687500 -114.927748 

10 40 1 300 21.484375 -103.294575 

11 40 3 300 40.039063 -103.056293 

12 40 5 300 42.968750 -101.662825 

13 40 1 600 26.367188 -102.340111 

14 40 3 600 44.920000 -105.200000 

15 40 5 600 23.437500 -104.781279 

16 40 1 900 39.060000 -105.600000 

17 40 3 900 27.343750 -103.243682 

18 40 5 900 23.440000 -105.400000 

19 60 1 300 22.460938 -97.8353140 

20 60 3 300 20.510000 -100.800000 

21 60 5 300 21.484375 -98.7253440 

22 60 1 600 27.460938 -97.9027790 

23 60 3 600 21.484375 -101.096655 

24 60 5 600 41.020000 -101.900000 

25 60 1 900 29.300000 -104.790000 

26 60 3 900 31.250000 -102.500000 

27 60 5 900 26.367188 -100.621837 

 

Among 27 experimental sets, the first set is used as a basis for calculating average 

values. Four more experimental sets are reserved for testing. Learning rate = 0.4, along 

with 5000 epochs are taken. The best training performance of the three layer network 

(back-propagation) is shown in the Figure 6.67 for different values of hidden nodes. 
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(a) Hidden nodes= 3 and the error 0.0791    (b) Hidden nodes= 4 and the error 0.0931 

         

(c) Hidden nodes= 5 and the error 0.0759    (d) Hidden nodes = 6 and the error 0.0541 

         

(e) Hidden nodes= 7 and the error 0.0598    (f) Hidden nodes= 8 and the error 0.0533 

Figure 6.67: Performance graph 

As seen, simulations are carried out by changing the hidden nodes and the error is 

identified in MLP neural network program and with hidden nodes = 8, lowest error is 

observed and the estimation of parameters are carried out using this architecture.  

The performance of neural network on the four test patterns is shown in the bar charts 

(Figure 6.68 (a)-(c)). 
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(a) Radial clearance estimation 

 

(b) Centralizing spring stiffness estimation 
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(c) Eccentricity estimation 

Figure 6.68: The performance of neural network for test samples (two inputs) 

In the above figures, true value refers to the target value specified corresponding to given 

input pattern. Actual values are the outputs obtained from the neural network after 

simulation with computed weights. It is observed that the actual values are matching with 

true values in all three parameters. The 3-layer back propagation neural network code 

written along with the neural network toolbox commands using MATLAB is given in 

Appendix. The parameters are also estimated by using radial basis function neural 

network code. The same 27 experimental sets data was used in this supervised network. 

There is a well agreement between true and actual values of these three parameters. From 

the above plots it is observed that the error between the true and the actual value is 

relatively small. The radial clearance estimated coincides with true value for all the 

samples except one. The centralizing spring stiffness is also estimated and is in good 

agreement and the same comparison is identified in the eccentricity values. Table 6.9 

shows the comparison of true and actual values of bearing parameters. 

Table 6.9: Comparison of true and actual values of neural networks 

Case  
Radial clearance (rc) 

Centralising spring 

stiffness (ka) 
Eccentricity 

True Actual True Actual True Actual 

1 0.000020 0.00001966 600000 832470 0.000001 0.00000190 

2 0.000020 0.00001956 900000 807940 0.000003 0.00000301 

3 0.000040 0.00004531 300000 633030 0.000003 0.00000304 

4 0.000040 0.00005044 900000 862330 0.000003 0.00000280 

0 

0.0000005 

0.000001 

0.0000015 

0.000002 

0.0000025 

0.000003 

0.0000035 

0.000004 

1 2 3 4 

E
cc

en
tr

ic
it

y
 v

al
u
es

 (


m
) 

Cases 

Eccentricity 

TRUE 

ACTUAL 



 

Chapter 6  Results and Discussion 

134 

 

It is observed that the output errors of three layer back propagation network are 

much smaller compared to those obtained from RBF networks. This may be due to 

limited training features of RBF.  

6.4.1 Bearing fault prediction  

With different faults in one of the ball bearings, the dynamic response of the rotor is 

observed in time domain. Five cases are considered: one without fault and other four 

cases representing outer race waviness, outer race fault, inner race fault, and ball fault 

respectively.  As the time responses and their FFT in all the cases are observed to be 

difficult to distinguish. Each time response is represented with statistical characteristics 

such as mean, variance and other higher order moments.  Thus a single signal is 

equivalent to a finite number of statistical parameters. Corresponding to each fault a set of 

such statistical parameters is obtained at different operating speeds. Figure 6.69 shows the 

variation of four statistical parameters corresponding to different fault condition (Peak to 

peak-ptpx, Crest factor-cfx, Skewness -skewx and Kurtosis-Kurtox).  

  

(a) No fault case                              (b) outer waviness 

   

(c) Inner fault case                (d) Inner case fault case 
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(e) Ball fault case 

Figure 6.69: Variation of four statistical parameters corresponding to different fault condition 

The number of hidden nodes is varied. The total 1005 samples are taken and some 

of the samples kept aside for predicting the outputs.  After successful training of the 

neural network, it can identify the faults in the bearings.  

          In the next phase, identification studies are performed to quantify the faults in the 

system. Initially the response of a Matlab program is considered to calculate the faults at 

different speed of the rotor and the statistical quantities are identified and the plots are 

shown below.  Figure 6.70 shows the statistical quantities of inner race fault, outer race 

fault and outer race waviness respectively. 

   

(a) Crest factor                     (b) Peak to peak factor 
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(c) Skewness factor                (d) Kurtosis factor 

 Figure 6.70: Statistical quantities  

The four statistical parameters are considered in the analysis and the individual 

plots are shown in the plots. In Skewness and Kurtosis plots, the inner race fault and ball 

fault are coinciding. This might be due to very low effects of the inner race faults on the 

overall dynamics of the system.  

A total number of 505 patterns with five classes are used in training and testing the neural 

networks. Unsupervised Kohonen’s network and Probabilistic neural network are used to 

classify the patterns. The results of analysis are shown in the form of confusion matrix 

given in Table 6.10. 

Table 6.10: PNN identification table (Confusion matrix) 

 
No fault 

Outer race 

waviness 

Outer race 

fault 

Inner race 

fault 
Ball fault 

No fault 16 00 00 02 02 

Outer race 

waviness 
2 14 00 01 03 

Outer race 

fault 
00 02 12 02 04 

Inner race 

fault 
00 01 00 15 01 

Ball fault 02 03 05 00 10 

PNN is easy to train and it can be used in real-time applications. The best classification 

effect depends on the best input training data. The PNN is one of the best classifier which 

classifies the faults very efficiently and accurately. Same input values are provided to all 

the pattern layers. The output of each layer depends on the multiplication factor of 

previous weight vector and the input value. The faulty samples are randomly altered and 
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the given to the network to classify the faults. The fault classification is very effective in 

no fault, outer race waviness and ball faults and shown in the above table.  

Along with the PNN, a self organized network is used to classify the faults in the 

bearings. A Kohonen’s self organization network is used for fault classification without 

the target data. Outputs of Kohonen’s self organization networks are also given in the 

Table 6.11 as a confusion matrix. The input nodes are taken as m=5 and output nodes are 

taken as n=6, number of epochs =500, number of patterns for training =100, Initial 

learning rate 0=0.9. 

Table 6.11: Kohonen’s neural network outputs  

 No fault Outer race 

waviness 

Outer race 

fault 

Inner race 

fault 

Ball fault 

No fault 83 00 7 00 20 

Outer race 

waviness 
00 78 2 16 4 

Outer race 

fault 
15 5 64 6 10 

Inner race 

fault 
4 10 06 72 8 

Ball fault 20 00 00 1 79 

On running of different simulation the confusion table was prepared. The classification 

was done very nicely by Kohonen’s network.  

Figure 6.71 shows the convergence trend of mean error while training the Kohonen’s 

network. 

 

Figure 6.71: Convergence trend of Kohonen’s network 
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6.5 Nonlinear transient excitation 

This section deals with effect of nonlinear external forces on the dynamics of the rotor. 

Along with the regular bearing forces on the system, additional external excitations like 

Muszynska’s forces and the rub forces are introduced in the system.  

6.5.1 Muszynska’s gas forces 

Table 6.12 shows the parameters used in the Muszynska’s gas force model in the Matlab 

simulation. 

Table 6.12: Parameters of Muszynska’s force model [185] 

 

Matlab code to evaluate the external forces in the system is shown below: 

Model code: External forces calculating program 

%%% EXTERNAL FORCES %%%%%% 

function [Fxg Fyg]=musz(x,y,xd,yd,xdd,ydd,t) 

global N  

m0=-0.25; 

cseal=1.5e-3; 

zeta=0.1; 

Rs=43e-3; 

eta=1.5e-5; 

n0=0.079; 

delp=0.1e5; 

lseal=18e-3; 

n3=2.5;n4=0.5; 

tou0=0.25; 

omega=2*pi*N/60; 

v=0.3*omega; 

Ra=(2*v*cseal)/eta; 

Rv=(Rs*omega*cseal)/eta; 

f=n0*Ra^m0*(1+(Rv/Ra)^2)^(1+m0)/2; 

sigma=f*lseal/cseal; 

Ea=(1+zeta)/(1+zeta+2*sigma)*0.5; 

mu0=(2*sigma^2)/(1+zeta+2*sigma)*(Ea*(1-m0)); 

B=2-(Rv/Ra)^2-m0/(Rv/Ra)+1; 

mu1=(2*sigma^2)*(Ea/sigma+B*(1/6+Ea)/2)/(1+zeta+2*sigma); 

mu2=sigma*(1/6+Ea)/(1+zeta+2*sigma); 

mu3=(pi*Rs*delp)/f; 

Parameter Value Parameter Value 

 0.1 cf 1.5mm 

m0 -0.25 n 2.5 

Rf 43 mm b 0.5 

n0 0.079 lf 18 mm 

p 0.1×10
5
 Pa V 0.3×omega 

V 1.5×10
-5

Pa S τ 0.25 
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k0=mu0*mu3; 

caret=lseal/v; 

d0=mu1*mu3*caret; 

mf=mu2*mu3*caret^2; 

e1=sqrt(x^2+y^2)/cseal; 

    kf=k0*(1-e1^2)^-n3; 

    df=d0*(1-e1^2)^-n3; 

    tou=tou0*(1-e1)^n4;    

    Fxg=(-kf+mf*tou^2*omega^2)*x-(tou*omega*df)*y-df*xd-2*tou*omega*mf*yd-mf*xdd; 

    Fyg=(tou*omega*df)*x-(kf-mf*tou^2*omega^2)*y+2*tou*omega*mf*xd-df*yd-mf*ydd;     
 

Figure 6.72 and Figure 6.73 shows FFT responses at a constant speed of 2000rpm with 

and without Muszynska’s forces at right and left bearings respectively. 

 

(a) With Muszynska’s force     (b) Without Muszynska’s force 

Figure 6.72: FFT responses at (2000rpm) right bearing  

 

(a) With Muszynska’s force     (b) Without Muszynska’s force 

Figure 6.73: FFT responses at (2000rpm) left bearing  

In addition to the ball bearing dynamic forces, an external excitation Muszynska’s 

force is introduced in the system. The amplitudes are raised rapidly due to insertion this 
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force in the system. The external gas excitation forces are modelled as Muszynska’s 

forces. It can be observed from the above plots that the effect of Muszynska’s force will 

lead to system to unstable condition. At left and right bearings the recording are taken and 

the forces are acting at the disk nodes. 

6.5.2 Rub impact effects  

The solutions of equations of motion are obtained from MATLAB ode45 solver. All the 

initial conditions are set to zero and damping at the bearings is ignored.  

A part of the Matlab code for computing the rub force on a disk is given below. 

 

Model code: Rub forces computing program 

function [frx,fry]=rub(x,y,t) 

delx=1e-6;dely=1e-6;%Distance between rotor and stator centres  

del4=50e-6;ks=45e6;mu=0.1;%del4 is nominal clearance, ks is rub stiffness, mu is the coefficient of friction 

 rg1=sqrt((x-delx)^2+(y-dely)^2); 

cp1=((x-delx)/rg1);sp1=((y-dely)/rg1); 

if rg1<=del4 

    Fn1=0; 

else 

    Fn1=ks*(rg1-del4); 

end 

Ft1=mu*Fn1; 

frx=(-Fn1*cp1+Ft1*sp1); 

fry=(-Fn1*sp1-Ft1*cp1); 

 

Figure 6.74-Figure 6.76 shows the FFT diagrams at different rub stiffness values of stator 

at a constant speed of 2000rpm.  

 

Figure 6.74: Rub response when the stiffness is ks=5e6 N/m 
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Figure 6.75: Rub response when the stiffness is ks=45e6N/m. 

   

(a) ks=100e6 N/m    (b) ks=1000e6 N/m 

Figure 6.76: FFT responses at rub forces at different stiffness values 

Due to the excessive unbalance in the system the rotor may hit the stationary casing. 

The unbalance may be due to misalignment or separation of one of the wanes of the rotor. 

Due to hitting of rotor, a huge force will act on the system. At that point where rub is 

taking place large stiffness will be introduced in the system. Due to increase in the 

stiffness at a particular point leads to quasi-periodic motion of the system can be observed 

from the above plots. As the stiffness increases amplitudes of the motion also increase. 

Figure 6.77 (a) and (b) are showing the FFT responses at clearance value of 120e-6 mm 

and 50e-6 mm and at a constant rub stiffness of 45e6 N/m and the response is from both 

left and right bearing nodes.  
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(a) ks=45e6N/m, clearance 120e-6m 

     

(b) ks= 45e6N/m, clearance=50e-6m 

Figure 6.77: FFT responses at rub forces at different clearance values 

As the clearance decreases at a constant stiffness value the system becomes 

unstable. The amplitudes are increasing by reducing the radial clearance and the chance 

of rub is very obvious when there is a very small clearance between rotor and stator.   

6.5.3 Rub- Experiment 

The experiment is carried out by setting up the vibrometer and giving the node at distinct 

positions on the rotor. The vibrometer records the transverse vibrations of the rotor in x- 

direction and y- direction of the rotor at each node. The rubbing positions of the disc have 

been set up as shown in the Figure 6.78. 
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Figure 6.78: Experimental rub-impact setup 

Figure 6.79 shows the rub inducing set up. A combination of nut and bolt are used to 

induce the rub on the disk by changing the angular positions of the screw. The rub of the 

rotor has been intentionally induced at various positions on circumference of the disc, the 

time velocities and FFT’s are recorded by vibrometer. The rotor with rub impact setup is 

analyzed at the different rotor speeds starting from 500rpm to 2500rpm. 

 

Figure 6.79: Rub induced positions of the disc 

The rub is induced at various positions and FFT and phase diagrams are plotted at each 

angular position.  Figure 6.80-Figure 6.84 shows the FFT and phase diagrams at each 

rubbing position on the disk at a constant speed of 2000rpm.  

   

(a) Displacement FFT plot   (b) Experimental Phase diagram   

Figure 6.80: Records at a disk of rub position 1 (2000rpm) 
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(a) Displacement FFT plot   (b) Experimental Phase diagram 

Figure 6.81: Records at a disk of rub position 2 (2000rpm) 

         

          (a) Displacement FFT plot    (b) Experimental Phase diagram 

Figure 6.82: Records at a disk of rub position 3 (2000rpm) 

At a rub position 4, we can observe the maximum frequency form the plots. At different 

locations the rub responses differently, it may appear as 2 dimensional but in fact the 

effect of rub will be in 3 dimensional one. For this reason, the response may differ due to 

the locations of the rub.  
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(a) Displacement FFT plot        (b) Experimental Phase diagram 

Figure 6.83: Records at a disk of rub position 4 (2000rpm) 

                    

(a) Displacement FFT plot   (b) Experimental Phase diagram 

Figure 6.84: Records at a disk of rub position 5 (2000rpm) 

 Even though the rotor is rotating at constant speed the response is different in 

different rub locations. At the location 4 small increment of the rub will leads to unstable 

condition of the system.  

6.5.4 Identification of added stiffness 

The vibration response of the system was recorded initially with rub forces on the 

left disk at different speeds of operation. In the next step, without rub forces and with 

randomly added stiffness and damping to the shaft the response data is collected in 

frequency domain in both X and Y directions. The resultant error between the original 

response and actual response by adding random stiffness and damping is minimized over 

a frequency range. This is done with particle swarm optimization method.  

The following variable constraints are selected X(1)=∆k  [1000,1e6]N/m, 

X(2)=∆c  [100,1e4] Ns/m. 
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The diagonal matrices with ∆k and ∆c as diagonals are added to the original 

stiffness and damping matrices of the shaft, so as to get equivalent stiffness and damping 

due to rub effect. Six different speeds at which the rubbing excitation acting on the 

system are considered during the estimation of ∆k and ∆c. Figure 6.85 shows the rub 

effect on amplitudes of response at left bearing node in different speeds. 

 

(a) 2000 rpm    (b) 4000 rpm 

      

(c) 5000 rpm    (d) 5500 rpm 
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(e) 6000 rpm     (f) 7000 rpm 

Figure 6.85: Effect of rub  

Figure 6.86 shows the peak amplitude variation as a function of speed during rub impact. 

 

Figure 6.86: Peak amplitude variation in different speeds of operations. 

It is seen that, the maximum amplitudes increase from 4000 rpm to 6000 rpm and 

decreases thereafter. Hence, the shaft stiffness will be added during this region only.  

While optimizing the difference between the radial deflection at left bearing node with 

and without rub forces, the following PSO parameters are considered. 

Number of variables=2, Swarm size=10, Number of generations =50. Figure 6.87(a) 

shows the convergence graph during PSO at 4000 rpm rotor speed. At each speed the 

error is minimized separately and altogether six speeds are considered and corresponding 

identified added stiffness is shown in the Figure 6.87(b). 
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(a) Fitness convergence trend in PSO              (b) Identified added stiffness 

Figure 6.87: Convergence trend and Identified added stiffness in PSO 

Likewise, the damping can also be identified. 

6.6 Control studies  

In this section two types of control strategies are used to attenuate the critical speeds 

of operations. Semi-active and active controls are used in the simulation to reduce the 

amplitudes of high amplitude motions. 

6.6.1 Semi-active electromagnetic damper  

The entire finite element analysis process starting from generation of nodal connectivity 

and element matrices, assembly together with static condensation for elimination of 

rotational degrees of freedom and posing boundary conditions is performed by an 

interactive computer program written in MATLAB. Further, the Campbell diagram for 

the rotor illustrating variation of its natural frequencies as a function of speed  and time-

domain characteristics using Wilson-theta implicit time-integration scheme (with step 

size=1e-4 s) are obtained for the reduced-order system before and after implementing the 

proposed electromagnetic damper. Main parameters of rotor considered include:  

Rotor Shaft:  

Outer diameter =25 mm, Inner diameter =15 mm, Material (alloy steel): Elastic 

modulus E=207 GPa, density  =7840 kg/m
3
, Poisson ratio =0.3, eccentricity of centre of 

masses (e)=10 microns, shear correction factor k=0.65. 

Ball bearings for LPT and LPC sides:  
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Number of ball N=8, radial clearance rc=20 microns, inner race radius r=20.046 

mm, outer race radius R=31.95 mm, contact stiffness at balls Cb=3.52710
9
 N/m

3/2
, ball 

radius rb=(R-r-rc)/2=5.94 mm 

Stiffness at both rotor supports on casing=300 kN/m.  

Other geometrical data of rotor rig is depicted in Table 6.13. 

Table 6.13: Data for the rotor dynamic rig under consideration (+ bearing nodes) 

Node Number Axial distance (mm) 
Disk dimensions(mm) 

Diameter Thickness 

1 0 -- -- 

2 (LPT disk) 10 150 10 

3
+
 70 -- -- 

4 195 -- -- 

5
+
 320 -- -- 

6 (LPC disk) 390 150 10 

7 400 -- -- 

Figure 6.88 shows the Campbell diagram of the rotor supported on the casing. As 

can be seen, the first two critical speeds (about 2684 rpm and 3767 rpm) are in the 

operating range, while the third is far above.   
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Figure 6.88: Campbell Diagram for supported rotor 

Figure 6.89 shows the unbalance response of rotor at the LPT and LPC disks in x and y 

directions respectively. Figure 6.90 shows the corresponding frequency response curve at 

the LPT disk in the zone under consideration.  

4.1 Electromagnetic Damper Design 

During the design of actuators, the following parameters are taken as inputs:  

Resonant frequencies at which the dampers should be effective=2500 rpm to 4000 rpm,  

Supporting stiffness ks=300 kN/m 
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LPC support Damper 

Total resistance R=1.1 ohms 

Air gap G=0.5 mm,  

Number of turns Nt=345,  

Wire diameter=0.5 mm, 

Coil inductance at nominal air gap/electromagnet L0=2.5 mH 

 RL=electromechanical pole frequency=1.110
3
/2.5=440 rad/s (~ 4201 rpm) 

Equivalent damping ratio= 0.0043  

Support mass of LPC side mc=0.287 kg,  

Damping coefficient cc=0.0043 287.0/10300 3 =4.396 Ns/m. 

Mechanical stiffness km=ccRL=1934.24 N/m 

Supply voltage V=0.2 volts 

 

Figure 6.89: Time histories at turbine (suffix 2) and compressor disks (suffix 6) under 2680 rpm 
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Figure 6.90: Frequency spectrum before application of actuators 
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LPT support damper  

Total resistance R=1.85 ohms 

Air gap G=0.5 mm,  

Number of turns Nt=352,  

Wire diameter=0.5 mm, 

Coil inductance at nominal air gap/electromagnet L0=3.7 mH 

 RL=electromechanical pole frequency=1.8510
3
/2.5=500 rad/s (~ 4774 rpm) 

Equivalent damping ratio= 0.003  

Support mass mt=0.19 kg,  

Damping coefficient ct=0.003 19.0/10300 3 =3.7696 Ns/m. 

Mechanical stiffness km= ctRL=1884.84 N/m 

Supply voltage V=0.242 volts  
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Activating the two damper systems in respective speed ranges, an unbalance 

response as shown in Figure 6.91 is obtained. It is seen that outside the selected region, 
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the amplitudes are not much affected. Figure 6.92 shows the time-varying damping forces 

acting on the supports so as to attenuate the vibration amplitudes in first two critical 

speeds regions. 

 

 

Figure 6.91: Unbalance response with the actuator system 

 

Figure 6.92: Corresponding damping forces 

The system is under the action of equivalent spring keq from 0 to Z rad/s and under the 

mechanical stiffness km in the range beyond RL. The spring forces can also be likewise 

plotted to show their effective ranges. 

6.6.2 Active EM actuator 

The dimensional properties of the rotor used in the analysis shown in Table 6.14. The 

material for the spools is steel with elastic modulus E=210 GPa and density  =7800 

kg/m
3
. All four disks have polar moment of inertia (IP) twice the diametral mass moment 

of inertia (ID). Further, an unbalance of 10 microns is considered in the disks. The 
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resultant stiffness, mass, damping (damping ratio of 0.01) and gyroscopic matrices are 

used. The values of  is set as 200 rad/s and angular acceleration  is varied.  

Table 6.14: Geometric and material data for rotor 

Node Axial dist.(mm) douter (mm) dinner (mm) Disc mass(kg) IP (kg-mm2) 

1 0 30.4 0 - - 

2 76.2 30.4 0 4.904 0.02712 

3 323.85 30.4 0 - - 

4 406.4 30.4 0 - - 

5 457.2 30.4 0 4.203 0.02034 

6 508 30.4 0 - - 

7 152.4 50.8 38.1 - - 

8 203.2 50.8 38.1 3.327 0.01469 

9 355.6 50.8 38.1 2.227 0.0972 

10 406.4 50.8 38.1 - - 

 

Figure 6.93 shows the frequency response plot for the system with and without 

considering ball bearing forces. It is seen that there are multiple ball passing 

frequencies (VC) along with harmonics in the system. 

 

(a) Bearings as spring damper system [22]    (b) Bearings with forces considered 

Figure 6.93:  Frequency response of the rotor at 2000 rpm 

Figure 6.94 shows the transient analysis results at different acceleration 

conditions in terms of frequency responses. It is obvious that there are multiplicities 

of ball passing frequencies increase with acceleration of rotor. This may be due to a 

randomly changing bearing excitation. In order to minimize the amplitude levels, the 

following electromagnetic actuator parameters are considered: Ag=240 mm
2
, N=106, 

=22.5
o
, G=0.9 mm and Ib=3 A. The instantaneous current components i1 and i2 

depend on the displacements x and y at the disk node-1. 
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Figure 6.94: Effect of acceleration of rotor at LP compressor disk 

Computer program is modified such that the right hand side force vector carries 

additional magnetic force compoents at the disk-1 node. Figure 6.95 shows the 

frequency response of the rotor computed with and without control. It indicates that 

the amplitudes from second mode have reduced drastically and the ball passing 

frequency amplitudes have been dropped. The methodology can be extended for other 

nodes of interest also. 

. 

Figure 6.95: Amplitude reduction with controller 

Linearly predicted unstable modes are helpful to obtain deeper insights into the nonlinear 

simulated results.  
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Figure 6.96 shows the multi-frequency unbalance response as the phase-diagram and 

Poincare map at compressor disk node, when the rotor is running at 500 rpm. It is seen 

that the motion is of period 3 non-synchronous vibratory nature.  

 

 

Figure 6.96: Phase diagram and Poincare map at compressor disk node (=500 rpm) 

As the rotor speed increases the motion becomes multi-periodic as seen in Figure 

6.97. The motion becomes of quasi-period as the rotor speed reaches 40000 rpm as seen 

from Figure 6.98.  

In order to minimize the vibration amplitudes at the compressor disk over the 

entire operating speed range, electromagnetic actuator is designed such that a null value 

of displacement and velocity should be achieved at the node. Here all the initial 

conditions are taken zero and static condensation is employed to eliminate the rotational 

degrees of freedom. Effect of axial deformation is not considered during modeling.  

 

(a) 2000 rpm     (b)20000 rpm 

Figure 6.97: Time domain response at compressor (left) disk node 
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Figure 6.98: Poincare map (closed curve) at node 1 in x-direction (40000 rpm) 

Figure 6.99 shows the block diagram of control system logic.  

 

Figure 6.99: Proportional-Derivative control strategy for controlling vibrations at a disk 

Here the proportional and derivative gains kp and kv are selected as 10 and 0.1 

respectively.   Other parameters include: Ag=240 mm
2
, N=106, =22.5

o
, G=0.9 mm and 

Ib=3 A. The instantaneous current components i1 and i2 depend on the displacements x 

and y at the disk node-1. Computer program is modified such that the right hand side 

force vector carries additional magnetic force compoents at the disk node.   
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(a) Before                  (b) after 

Figure 6.100: Time histories before and after control 

Figure 6.100 shows the non-dimensional time response at the compressor node in the x- 

direction with and without control. It is seen that initial chaotic motion has reduced in 

addition to amplitude reduction.     

    Figure 6.101 shows the corresponding frequency response of the rotor computed with 

and without control. In absence of control, it is obvious that the rotor resonates at 450 Hz 

and after that the unstable motion persists due to the rotary force generated by internal 

damping of the shaft.  

  

Figure 6.101: Amplitude reduction at critical speed without and with controller 

From the above plots, it can be observed that with the aid of proportional derivative 

the high amplitudes are reduced to the reasonable levels. The main advantage of control is 
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to attenuate high amplitudes in the operations and to prevent the rotor from the dangerous 

damaging conditions. 

6.7 Concluding remarks 

Dynamic modelling of a rotor supported over ball bearings presented initially and 

the disk- shaft bearing system has been analyzed using Timoshenko beam elements by 

considering ball bearing contact forces and Muszyska’s force at seal disk interface and the 

model was simulated as a real time system. Gyroscopic effects due to both shaft and disks 

were taken into account and unbalance was considered for both the disks. Secondly, a 

hollow aero- engine rotor supported over engine housing with compressor and turbine 

was modelled and a semi active technique for vibration attenuation through 

electromagnetic actuator has been presented. 
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Chapter 7  

Conclusions and Future scope 

Dynamic analysis of low pressure and twin spool rotors supported over the bearings is 

presented using finite element modelling. The results are presented in terms of natural 

frequencies, mode shapes and Campbell diagram plots and these results are compared 

with the Ansys models.  The nonlinear dynamic Hertzian contact bearing forces and the 

squeeze film damping forces were accounted in the modelling.  

A scaled prototype of low pressure rotor supported over ball bearing system is 

fabricated and its modal characteristics were obtained using impact hammer test. The 

responses of this scaled rotor were compared with the nonlinear single row ball bearing 

model at various speeds and the single row ball bearing with SFD model is further 

simulated to carry out parametric studies. After validating these results, this model was 

further extended to double row ball bearing nonlinear force model. A rub inducing set up 

was prepared on scaled rotor. The simulation of this rub was performed by advancing the 

nut and bolt mechanism at different angular positions around the left disk. The nonlinear 

Muszynska’s gas excitation forces are also introduced in the system at disk locations. The 

simulation of this rub was performed by advancing the nut and bolt mechanism at 

different angular positions around the left disk.  

As next piece of work, different faults are considered in the modelling the bearings. 

Two types of faults considered in the modelling. Firstly, local faults like dents and spills 

in the bearings and races and secondly, distributed waviness of the races also considered 

in the modelling.  Parameter identification of rotor carried out by taking frequency and 

the time history of the rotor as inputs and the radial clearance, unbalance and centralising 

spring stiffness as the output parameters. Bearing fault classification was also carried out 

in the research. Additional stiffness of rotor due to rub was identified through 

optimization scheme.  

Finally, control of the rotor was performed by two approaches in the work. First one 

is Semi active magnetic damper (SAMD) and the other is active magnetic control. The 

effectiveness of different parameters of EM damper was studied on control using 

electromagnetic excitation. User-interactive programs developed in this work help in 

selecting the condition of the rotor bearing systems and allow in incorporating appropriate 

control scheme for the rotor.  
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7.1 Summary  

Following brief conclusions are drawn out of the work 

 The effect of bearing clearance, disc eccentricity and centralizing spring stiffness 

of SFD have marked effect on the dynamic response of rotor. 

 The rubbing of the rotor with the stator was modelled as nonlinear excitation 

forces in the model. 

 The nonlinear Muszynska’s gas excitation forces are also introduced in the system 

at disk locations.  

 In active control methodology, an existing proportional-derivative (PD) control 

approach is studied and a neural network based controller for prediction of 

electromagnetic actuator coil currents is designed and tested for twin-spool rotor 

system. 

 Of all the neural network models used for bearing fault identification, the PNN 

and self organization map networks have given reliable results. 

 Identification of shaft stiffening due to rub impact by the proposed optimization 

has given interesting results. 

 The control schemes proposed can be applied any kind of rotors using simple 

simulation codes. 

 A user-interactive program has been developed to incorporate the nonlinear 

bearing forces. 

 

7.2 Future Scope 

As a future scope of the work, 3D modelling of rub impact using contact theory may be 

attempted to validate the present results. Further, the gas forces effect on a disc (rotor as a 

whole) has to be studied experimentally by injecting high pressure compressed air on to 

the disc surface on the fabricated model. Also, as a last study the active magnetic exciter 

system studied theoretically in this work must be fabricated and mounted over the rotor 

surface to see the controlled responses in the rotor.  
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Appendix 

This appendix provides the computer program written in Matlab for 3-layer back 

propagation neural network. The code requires input-target patterns in normalized form 

supplied from a text or data file. User specifies the epochs and number of hidden nodes, 

so that the trained weights and error convergence graph come as outputs. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

m=4; % Number of inputs 

n=8; % Number of hidden nodes 

p=3; % Number of outputs 

MAX=500; % Maximum cycles 

PAT=25; % Number of patterns or examples presented 

%% INITIALIZATION OF WEIGHTS 

for i=1:m 

   for j=1:n 

      w(i,j)=rand; 

   end 

end 

for i=1:n 

   for j=1:p 

      v(i,j)=rand; 

   end 

end 

%%%%%%%%%%%%%%%% 

for epoch=1:MAX 

   fid=fopen('Input.txt','r'); 

   error=0; 

   for pat=1:PAT 

      for k=1:m 

         I(k)=fscanf(fid,'%f',1); 

      end 

      for k=1:p 

         T(k)=fscanf(fid,'%f',1); 

      end 

  % Input at the Hidden layer 

   for j=1:n 

   K(j)=0; 

   for i=1:m 

      K(j)=K(j)+w(i,j)*I(i); 

   end 

   end 

 

   for j=1:n 

   H(j)=tanh(-K(j)); %%% SIGMOID FUNCTION 1/(1+exp(-K(j))); 

   end 

   for j=1:p 

   S(j)=0; 

   for i=1:n 

      S(j)=S(j)+v(i,j)*H(i); 

   end 

   end 

   for j=1:p 
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   Y(j)=tanh(-S(j)); %%%% SIGMOID FUNCTION 1/(1+exp(-S(j))); 

   end 

 

   E=(T-Y); 

   beta=0.3; 

  % Adjustment of connection weights between hidden & output layer 

   for i=1:n 

   for j=1:p 

      v(i,j)=v(i,j)+beta*Y(j)*E(j)*H(i); 

   end 

   end 

 

   for i=1:n 

   sig(i)=0; 

   for j=1:p 

      sig(i)=sig(i)+E(j)*v(i,j); 

   end 

   end 

   for i=1:n 

   sigma(i)=sig(i)*H(i)*(1-H(i)); 

   end 

   alpha=0.3; 

% Adjustment of connection weights between input and hidden layers 

   for i=1:m 

   for j=1:n 

      w(i,j)=w(i,j)+alpha*sigma(j)*I(i); 

   end 

   end 

 

% Error 

for i=1:p 

   error=error+0.5*E(i)*E(i); 

end 

 

end 

fclose(fid); 

err(epoch)=error/PAT; 

fprintf('\n\n'); 

end 

fprintf('Actual outputs:\n'); 

disp(Y); 

fprintf('Target outputs:\n'); 

disp(T); 

 

q=1:MAX; 

plot(q,err); 

xlabel('Number of cycles'); 

ylabel('MSE'); 

%%% RESULTANT WEIGHT MATRICES 

disp(w); 

disp(v); 

%%% Training is completed  %%%% 

 

%%%% Testing with obtained weights 

 

 

 



   

                                                                                                                        Appendix 

179 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

The Matlab code with neural network toolbox functions is given below: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc; clear all; close all; 

% Training data: input patterns and output patterns 

%%% enter x and y as patterns 

% Create a NN and initialize weights 

net=newff(minmax(x),[8 3],{'tansig','tansig'},'traingdx');  

% Training functions: traingd, traingdm, traingda, traingdx 

% output of NN with initial weights 

ycap1=sim(net,x); 

 

% Train the NN 

net.trainparam.goal=0.005; 

net.trainparam.epochs=500; 

net.trainparam.show=50; 

net.trainparam.lr=0.01; 

[net,tr]=train(net,x,y); 

% Output of NN 

% Generalization : input vector is different  

% from the one used for training 

%% Enter test input x2 

ycap2=sim(net,x2); 

 

% Weights and Biases of the trained network 

w=net.IW{1,1} 

bw=net.b{1} 

v=net.LW{2,1} 

bv=net.b{2} 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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