
Array Failure Correction Using Different
Optimization Techniques

Project report submitted in partial fulfillment

of the requirements of the degree of

M.Tech Dual Degree

in

Electrical Engineering
(Specialization: Electronics System and Communication)

by

Sachin Sagoo
(Roll Number: 711EE1057)

based on research carried out

under the supervision of

Prof. K. Ratna Subhashini

July, 2016

Department of Electrical Engineering
National Institute of Technology Rourkela

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80148896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

An approach to synthesize array antenna is proposed on the context of detecting single and
multiple fault in any array of elements, analysis of radiation pattern degradation because
of the fault, and finding a recovery solution of the array, the recovered excitations fed to
the array of healthy elements to get the radiation pattern close to the original form , For
this a self-recoverable antenna array is created (SRA). The SRA concept and realization of
the different recovery algorithms challenges are discussed. The resulting radiation pattern
generated from the new excitation is found by three optimizing algorithm and compared.

Keywords: Self-Recoverable Array(SRA); radiation pattern; linear array; genetic
algorithm; differential evolution; particle swarm optimization; excitations.

Contents

Abstract ii

1 Introduction 1
1.1 Overview . 1
1.2 Objective . 1

2 Antenna Array Theory 2
2.1 Introduction . 2
2.2 Uniform Spacing, Non-Uniform N-Element Linear Array 3

2.2.1 Array Factor . 3
2.3 Dolph-Tschebyscheff Array . 4

2.3.1 Array Factor . 4

3 System Concept and Implimentation 6
3.1 SRA Concept . 6
3.2 Genetic Algorithm . 7
3.3 Differential Evolution . 7

3.3.1 Algorithm . 8
3.4 Particle Swarm Optimization . 9

3.4.1 Algorithm . 10

4 Simulation and Results 12
4.1 Genetic Algorithm . 12
4.2 Differential Evolution . 14
4.3 Particle Swarm Optimization . 15
4.4 Observations . 17

5 Conclusion 20
5.1 Conclusion . 20

References 21

iii

Chapter 1

Introduction

1.1 Overview

Due to a constantly increasing number of wireless standards, services, and subscribers who
want to enjoy it without disruption of services, preferably at any location, there has been
a constant need to offer more robust techniques and technologies that will cope with this
demand. In this, we discussed how these techniques will help to find the recovery solution
in the case of array element failure. It is desirable that the system has an ability to heal itself
as much and fast as possible, before the service crew arrives, which is especially of interest
for spaced-based systems or time-critical operations. It is known from antenna array theory
that a radiation pattern depends on the excitation magnitude and phase and the locations of
the antenna array elements. Due to arbitrariness of the array layout (especially in the case
of a random element failure), it is a challenging problem to tackle, even when numerical
approaches are utilized.

1.2 Objective

The objective of my project is find a solution to recover the radiation pattern of a faulty
antenna array using different optimization techniques.

Chapter 2

Antenna Array Theory

2.1 Introduction

Over the past few decades, since the concept of using antenna arrays instead of a single
element has been developed, the performance of a single-element antenna is somewhat
limited, researchers have taken on the challenge of providing various array designs to tailor
radiation characteristics according to system requirements. Synthesizing an array depends
on several factors, such as the requirements of the radiation pattern, the directivity pattern,
etc. The radiation pattern depends on the type and number of elements used, and the
physical and electrical structure of the array. Numerous variations of antenna structures, as
well as the type of elements are available, but for simplicity only one kind of element is
used in the whole array structure. In other words, an antenna array is composed of radiating
elements in an electrical or geometrical configuration . In an antenna array the total field is
calculated by vector addition of each individual element fields radiation. Five parameters
that can be use to control an antenna array to shape the pattern properly: the geometrical
configuration of the overall array, elements spacing, individual elements excitation
amplitude and, excitation phase, and the particular pattern of the individual elements. Many
communication applications require a highly directional antenna. Array antennas have
higher gain and directivity than an individual radiating element. A linear array consists of
elements placed with a uniform spacing in a straight line. The goal of synthesis of antenna
array geometry is to determine the physical layout of the array which produces a radiation
pattern that is closest to the desired pattern. For the synthesis of the radiation pattern
of antenna arrays, various analytical and numerical methods of optimization (End-Fire,
Broadside, Hansen-Woodyard, binomial, Dolph-Chebyshev, Neural, Genetic, etc.) were
developed and applied. Here, our focus is related to the various analytical methods. In
particular, the non-uniform Dolph-Chebyshev and binomial methods will be applied to the
synthesis of linear antenna arrays.

2

Chapter 2 Antenna Array Theory

2.2 Uniform Spacing, Non-Uniform N-Element Linear
Array

In this section, broadside arrays with uniform spacing but non uniform amplitude distribution
will be considered (Dolph‐Tschebyscheff broadside arrays).

It has been shown analytically that for a given side lobe level the Dolph‐Tschebyscheff
array produces the smallest beamwidth between the first nulls. Conversely, for a given
beamwidth between the first nulls, the Dolph−Tschebyscheff design leads to the smallest
possible side lobe level.

• Uniform arrays usually possess the largest directivity. However, super directive
antennas possess directivities higher than those of a uniform array.

• Although a certain amount of super directivity is practically possible, super directive
array usually require very large currents with opposite phases between adjacent
elements. Thus the net current and efficiency of each array are small compared to
the corresponding value of an individual element.

2.2.1 Array Factor

An array of element number of isotropic elements 2M is positioned symmetrically along the
z-axis, as shown in figure 2.1.

The separation between the element d, and M element are placed on each side of the
origin.

the array factor for a broadside array with non uniform amplitude is given by

Figure 2.1: A N-ELement Linear array antenna

(AF)2M = 2
M∑
n=1

ancos[
(2n− 1)

2
kdcosθ] (2.1)

3

Chapter 2 Antenna Array Theory

normalized form

(AF)2M =
M∑
n=1

ancos[
(2n− 1)

2
kdcosθ] (2.2)

Where an’s are the excitation coefficients of the array elements.
array factor for odd(2M+1) number of elements is given by

(AF)2M+1 = 2
M∑
n=1

ancos[(n− 1)kdcosθ] (2.3)

(AF)2M+1 = 2
M+1∑
n=1

ancos[(n− 1)kdcosθ] (2.4)

The amplitude excitation of the centre element is 2a1. Equation (2.1) and (2.2) in
normalized form

(AF)2M(even) =
M∑
n=1

ancos[(2n− 1)u] (2.5)

(AF)2M+1(odd) = 2
M+1∑
n=1

ancos[2(n− 1)u] (2.6)

u =
πd

λ
cosθ (2.7)

2.3 Dolph-Tschebyscheff Array

The technique was initially presented by Dolph and researched a while later by others. It is
a balance between the binomial and uniform arrays. Its excitation coefficients taken from
Tschebyscheff polynomials. A Dolph‐Tschebyscheff array with no side lobes can be called
as binomial design.

2.3.1 Array Factor

Referring to (2.5) and (2.6), the array factor of odd or even number of elements is given by

(AF)2M(even) =
M∑
n=1

ancos[(2n− 1)u] (2.8)

(AF)2M+1(odd) = 2
M+1∑
n=1

ancos[2(n− 1)u] (2.9)

4

The largest harmonic of the cosine terms is one less than the total number of elements of
the array. Each cosine term, whose argument is an integer times a fundamental frequency,
can be rewritten as a series of cosine functions.
m = 0, cos(mu) = 1

m = 1, cos(mu) = cos(u)

m = 2, cos(mu) = cos(2u) = 2cos2u− 1

m = 3, cos(mu) = cos(3u) = 4cos3u− 3cosu

m = 4, cos(mu) = cos(4u) = 8cos4u− 8cos2 + 1

m = 5, cos(mu) = cos(5u) = 16cos5u− 20cos3 + 5cosu

m = 6, cos(mu) = cos(6u) = 32cos6u− 48cos4 + 18cos2u− 1

m = 7, cos(mu) = cos(7u) = 64cos7u− 112cos5 + 56cos3u− 7cosu

m = 8, cos(mu) = cos(8u) = 128cos8u− 256cos6 + 160cos4u− 32cos2u+ 1

m = 9, cos(mu) = cos(9u) = 256cos9u− 576cos7 + 432cos5u− 120cos3u+ 9cosu

if we let

z = cosu (2.10)

m = 0, cos(mu) = 1 = T0(z)

m = 1, cos(mu) = z = T1(z)

m = 2, cos(mu) = 2z2 − 1 = T2(z)

m = 3, cos(mu) = 4z3 − 3z = T3(z)

m = 4, cos(mu) = 8z4 − 8z2 + 1 = T4(z)

m = 5, cos(mu) = 16z5 − 20z3 + 5z = T5(z)

m = 6, cos(mu) = 32z6 − 48z4 + 18z2 − 1 = T6(z)

m = 7, cos(mu) = 64z7 − 112z5 + 56z3 − 7z = T7(z)

m = 8, cos(mu) = 128z8 − 256z6 + 160z4 − 32z2 + 1 = T8(z)

m = 9, cos(mu) = 256z9 − 576z7 + 432z5 − 120z3 + 9z = T9(z)

and each is related to a Tschebyscheff (Chebyshev) polynomial Tm(z).

Since the array factor of an even or odd number of elements is a summation of
cosine terms whose structure is the same as the Tschebyscheff polynomials, the unknown
coefficients of the array factor can be determined by equating the series representing the
cosine terms of the array factor to the appropriate Tschebyscheff polynomial.

Chapter 3

System Concept and Implimentation

3.1 SRA Concept

The flowchart of the principle steps of SRA.

Figure 3.1: The flowchart of the principal steps in the SRA code.

From (2.5)-(2.6), it is known that if any array element fails to deliver power due to some
malfunctioning, the radiation pattern of the array will change, possibly severely. For the
computation purpose, the array element is considered entirely failed (i.e., its magnitude
coefficient equal to zero), even if it actually works at some reduced power. To be able

6

Chapter 3 System Concept and Implimentation

to analyse the damage due to a given failure, the original set of excitations (magnitudes and
phases) is stored. The location of the array elements are considered fixed, which is the case
with most arrays in practical use. Thus, when the information about the flawed element is
received, the SRA first computes the radiation pattern of the faulty array by (2.1)–(2.2) and
compares it to the original radiation pattern. The average cumulative error between the two
patterns is defined by

e =

ϕend∑
j=ϕstart

wj.|Ejo − Ejf | (3.1)

If the e is greater than some tolerance level (1.5 dB), the SRA starts exploring for a new
set of excitations that will feed the properly working elements of the array and generate the
radiation pattern that will be as close as possible to the original radiation pattern. If e < tol,
the remaining original excitations are maintained.

3.2 Genetic Algorithm

In my Main Project thesis work the genetic algorithm has been used for the optmization of
the antenna excitation to provide the self-recovery solutions. Results are displayed in the
next chapter.

3.3 Differential Evolution

In evolutionary computation, differential evolution (DE) is a method that optimizes a
problem by iteratively trying to improve a candidate solution with regard to a given measure
of quality. Such methods are commonly known as metaheuristics as they make few or
no assumptions about the problem being optimized and can search very large spaces of
candidate solutions. However, metaheuristics such as DE do not guarantee an optimal
solution is ever found.
DE is used for multidimensional real-valued functions but does not use the gradient of the
problem being optimized, which means DE does not require for the optimization problem to
be differentiable as is required by classic optimization methods such as gradient descent and
quasi-newton methods. DE can therefore also be used on optimization problems that are not
even continuous, are noisy, change over time, etc. [9]
DE optimizes a problem by maintaining a population of candidate solutions and creating
new candidate solutions by combining existing ones according to its simple formulae, and
then keeping whichever candidate solution has the best score or fitness on the optimization
problem at hand. In this way the optimization problem is treated as a black box that merely
provides a measure of quality given a candidate solution and the gradient is therefore not

7

Chapter 3 System Concept and Implimentation

needed.

3.3.1 Algorithm

A basic variant of the DE algorithm works by having a population of candidate solutions
(called agents). These agents are moved around in the search-space by using simple
mathematical formulae to combine the positions of existing agents from the population.
If the new position of an agent is an improvement it is accepted and forms part of the
population, otherwise the new position is simply discarded. The process is repeated and
by doing so it is hoped, but not guaranteed, that a satisfactory solution will eventually be
discovered.

Formally, let f : Rn → R be the cost function which must be minimized or fitness
function which must be maximized. The function takes a candidate solution as argument in
the form of a vector of real numbers and produces a real number as output which indicates
the fitness of the given candidate solution. The gradient of f is not known. The goal is to
find a solution m for which f(m) ≤ f(p) for all p in the search-space, which would mean
m is the global minimum. Maximization can be performed by considering the function
h := −f instead.

Let x ∈ Rn designate a candidate solution (agent) in the population. The basic DE
algorithm can then be described as follows:

• Initialize all agents x with random positions in the search-space.

• Until a termination criterion is met (e.g. number of iterations performed, or adequate
fitness reached), repeat the following:

For each agent x in the population do:

• Pick three agents a, b, and c from the population at random, they must be distinct from
each other as well as from agent x.

• Pick a random index R ∈ {1, ...n} (n being the dimensionality of the problem to be
optimized).

• Compute the agent’s potentially new position y = [y1....yn] as follows:
For each i , pick a uniformly distributed number ri ≡ U(0, 1)

If ri < CR or i = R then set yi = ai+F × (bi− ci) otherwise set yi = xi (In essence,
the new position is outcome of binary crossover of agent x with intermediate agent

8

Chapter 3 System Concept and Implimentation

z = a+ F × b− c) .)

If f(y) < f(x) then replace the agent in the population with the improved candidate
solution, that is, replace x with y in the population.

Pick the agent from the population that has the highest fitness or lowest cost and return
it as the best found candidate solution. Note that F ∈ [0, 2] is called the differential
weight and CR ∈ [0,1] is called the crossover probability, both these parameters are
selectable by the practitioner along with the population size NP ≥ 4.

The choice of DE parameters F, CR and NP can have a large impact on optimization
performance. Selecting the DE parameters that yield good performance.

3.4 Particle Swarm Optimization

particle swarm optimization (PSO) is a computational method that optimizes a problem by
iteratively trying to improve a candidate solution with regard to a given measure of quality.
It solves a problem by having a population of candidate solutions, here dubbed particles,
and moving these particles around in the search-space according to simple mathematical
formulae over the particle’s position and velocity. Each particle’s movement is influenced
by its local best known position but, is also guided toward the best known positions in the
search-space, which are updated as better positions are found by other particles. This is
expected to move the swarm toward the best solutions.

PSO is originally attributed to Kennedy, Eberhart and Shi [10] and was first intended for
simulating social behaviour, [11] as a stylized representation of the movement of organisms
in a bird flock or fish school. The algorithm was simplified and it was observed to be
performing optimization.

PSO is a metaheuristic as it makes few or no assumptions about the problem being
optimized and can search very large spaces of candidate solutions. However, metaheuristics
such as PSO do not guarantee an optimal solution is ever found. More specifically, PSO does
not use the gradient of the problem being optimized, which means PSO does not require that
the optimization problem be differentiable as is required by classic optimization methods
such as gradient descent and quasi-newton methods.

9

Chapter 3 System Concept and Implimentation

3.4.1 Algorithm

A basic variant of the PSO algorithm works by having a population (called a swarm) of
candidate solutions (called particles). These particles are moved around in the search-space
according to a few simple formulae. [12] The movements of the particles are guided by
their own best known position in the search-space as well as the entire swarm’s best known
position. When improved positions are being discovered these will then come to guide
the movements of the swarm. The process is repeated and by doing so it is hoped, but not
guaranteed, that a satisfactory solution will eventually be discovered.

Formally, let f : Rn→R be the cost function which must be minimized. The function
takes a candidate solution as argument in the form of a vector of real numbers and produces
a real number as output which indicates the objective function value of the given candidate
solution. The gradient of f is not known. The goal is to find a solution a for which
f(a) ≤ f(b) for all b in the search-space, which would mean a is the global minimum.
Maximization can be performed by considering the function h = −f instead.

Let S be the number of particles in the swarm, each having a position xi ∈ Rn in the
search-space and a velocity vi ∈ Rn. Let pi be the best known position of particle i and let
g be the best known position of the entire swarm. A basic PSO algorithm is then: [13]

• For each particle i = 1, ..., S do:

• Initialize the particle’s position with a uniformly distributed random vector:
xi~U(blo, bup), where blo and bup are the lower and upper boundaries of the
search-space.

• Initialize the particle’s best known position to its initial position: pi←xi

• If (f(pi) < f(g)) update the swarm’s best known position:g←pi

• Initialize the particle’s velocity: vi~U(−|bup − blo|, |bup − blo|)

Until a termination criterion is met (e.g. number of iterations performed, or a solution with
adequate objective function value is found), repeat:

• For each particle i = 1, ..., S do:

• For each dimension d = 1, ..., n do:

• Pick random numbers: rp, rg~U(0, 1)

10

• Update the particle’s velocity: vi, d←ωvi, d+ ϕprp(pi, d− xi, d) + ϕgrg(gd − xi, d)

• Update the particle’s position: xi←xi + vi

• If (f(xi) < f(pi)) do:

• Update the particle’s best known position: pi←xi

• If (f(pi) < f(g)) update the swarm’s best known position: g←pi

• Now g holds the best found solution.

The parameters ω, ϕp, and ϕg are selected by the practitioner and control the behaviour
and efficacy of the PSO method.

Chapter 4

Simulation and Results

The simulation is done in MATLAB 2015a on PC with Core i5 processor. The recovery
solution is generated by optimizing the excitations of the antenna array. The methodology
is implemented on uniform spaced Non-uniform(Dolph-Tschebyscheff) linear array antenna
to recover the lost radiation pattern. Here the element spacing (d = λ/4 , d = λ/2) is
taken for implementation. For fault analysis one and two element at fault are considered
separately and then SRA is implemented on them.

4.1 Genetic Algorithm

The following parameters of genetic algorithm are taken into consideration :
Population size = 70
Generation = 1000
Crossover Probability = 90%
Mutation Rate = 1%
The resulting radiation pattern is plotted as shown in figures.

Element Spacing = λ/4
Recovered results when single element is stimulated as flawed.

Elements = 5

Table 4.1: Recovered excitations for 5-element Linear array antenna with d = λ/4 when
fault occur in single element

Elements 1 2 3 4 5
AOrig 1 2.4123 3.1396 2.4123 1
Arecov 2.391 0 4.682 1.733 1.164

12

Chapter 4 Simulation and Results

Figure 4.1: A recovery solution for 5-element linear array antenna

Element Spacing = λ/2

Table 4.2: Recovered excitations for 5-element Linear array antenna with d = λ/2 when
fault occur in single element

Elements 1 2 3 4 5
AOrig 1 2.4123 3.1396 2.4123 1
Arecov 0.203 0.031 0 0.250 0.388

Figure 4.2: A recovery solution for 5-element linear array antenna

13

Chapter 4 Simulation and Results

4.2 Differential Evolution

The following parameters of Differential Evolution are taken into consideration :
Population = 50
Generation = 1000
The resulting radiation pattern is plotted as shown in figures.

Element Spacing = λ/4

Recovered results when single element is stimulated as flawed.

Elements = 5

Table 4.3: Recovered excitations for 5-element Linear array antenna with d = λ/4 when
fault occur in single element

Elements 1 2 3 4 5
AOrig 1 2.4123 3.1396 2.4123 1
Arecov 2.391 0 4.681 1.735 1.163

Figure 4.3: A recovery solution for 5-element linear array antenna

Element Spacing = λ/2

Table 4.4: Recovered excitations for 5-element Linear array antenna with d = λ/2 when
fault occur in single element

Elements 1 2 3 4 5
AOrig 1 2.4123 3.1396 2.4123 1
Arecov 0.204 0.032 0 0.250 0.388

14

Chapter 4 Simulation and Results

Figure 4.4: A recovery solution for 5-element linear array antenna

4.3 Particle Swarm Optimization

The following parameters of Particle Swarm Optimization are taken into consideration :
Bird in swarm=50
velocity clamping factor=2
cognitive constant=2
social constant=2
Min Inertia weight=0.4
Max Inertia weight=0.9
max iteration=1000

The resulting radiation pattern is plotted as shown in figures.
Element Spacing = λ/4

Recovered results when single element is stimulated as flawed.

Elements = 5

Table 4.5: Recovered excitations for 5-element Linear array antenna with d = λ/4 when
fault occur in single element

Elements 1 2 3 4 5
AOrig 1 2.4123 3.1396 2.4123 1
Arecov 2.392 0 4.680 1.737 1.162

15

Chapter 4 Simulation and Results

Figure 4.5: A recovery solution for 5-element linear array antenna

Element Spacing = λ/2

Table 4.6: Recovered excitations for 5-element Linear array antenna with d = λ/2 when
fault occur in single element

Elements 1 2 3 4 5
AOrig 1 2.4123 3.1396 2.4123 1
Arecov 0 0 0 0 0.315

Figure 4.6: A recovery solution for 5-element linear array antenna

16

Chapter 4 Simulation and Results

4.4 Observations

SRA Recovery Analysis

From all the tests so far, it was noticed that besides the the antenna type, the number of
flawed elements and their locations in the array, the fitness of self-recovery solutions also
depends on the values of the Algorithm(GA,DE and PSO) parameters and the type of the
array excitation.

A classic Dolph–Chebyshev linear array design with an SLL of -30 dB is used as a
reference.

After optimization of the antenna array by GA, DE and PSO techniques the following
cumulative errors are recorded.

Table 4.7: Cumulative Error found after optimization by GA,DE and PSO when element
spacing d = λ/4

Optimization
Techniques

No. of
Elements

No of Faulty
Elements

Cumulative
Error

GA 5 1 0.0141800
DE 5 1 0.0319818
PSO 5 1 0.0482042

A. 5 Element array at d = λ/4, 1 element failure correction.
Fig. 4.7(b) depicts the fitness progress curves, Notice that convergence is observed for all
the above cases before 1000 generations. The cumulative error after 600 generations is the
lowest.

From the Table 4.7 shows the fitness value of the technique used for optimization. From
the table we concluded that all three technique have provided nearly same fitness value.
convergence graph show that GA and DE technique have fast convergence rate as compared
to PSO. The new recovery solution is plotted in fig 4.7(a)

17

Chapter 4 Simulation and Results

Figure 4.7: Comparison between the recovery solution for 5-element found by GA,DE and
PSO at d = λ/4

B. 5 Element array at d = λ/2, 1 element failure correction.

Table 4.8: Cumulative Error found after optimization by GA,DE and PSO at d = λ/2
Optimization
Techniques

No. of
Elements

No of Faulty
Elements

Cumulative
Error

GA 5 1 0.7169122
DE 5 1 0.7169144
PSO 5 1 0.7467602

Fig. 4.8(b) depicts the fitness progress curves, Notice that convergence is observed for
all the above cases before 1000 generations. The cumulative error for GA and DE after 200
generations is the lowest. But PSO conversed on to the local optimal solution.

18

Figure 4.8: Comparison between the recovery solution for 5-element found by GA,DE and
PSO at d = λ/2

From the Table 4.8 shows the fitness value of the technique used for optimization.
From the table we concluded that GA and DE have provided better fitness value than PSO.
Convergence graph show that GA and DE technique have fast convergence as compared to
PSO and PSO fail to find the recovery solution as the distance between increases. The new
recovery solution is plotted in fig 4.8(a).

Chapter 5

Conclusion

5.1 Conclusion

i. A recovery solution for different number of elements has been obtained by optimizing
the excitation of linear array antenna by three different algorithm.

ii. GA and DE have proven usefull for finding the better recovery solution.

iii. SRA is bounded by element spacing d.

iV. PSO fails to find the recovery solution as the element spacing increases above λ/2.

References

[1] T. J. Peters, “A conjugate gradient-based algorithm to minimize the sidelobe level of planar arrays with
element failures,” Antennas and Propagation, IEEE Transactions on, vol. 39, no. 10, pp. 1497–1504,
1991.

[2] R. J. Mailloux, “Array failure correction with a digitally beamformed array,” Antennas and Propagation,
IEEE Transactions on, vol. 44, no. 12, pp. 1543–1550, 1996.

[3] B.-K. Yeo and Y. Lu, “Array failure correction with a genetic algorithm,” Antennas and Propagation,
IEEE Transactions on, vol. 47, no. 5, pp. 823–828, 1999.

[4] D. Marcano and F. Durán, “Synthesis of antenna arrays using genetic algorithms,” Antennas and
Propagation Magazine, IEEE, vol. 42, no. 3, pp. 12–20, 2000.

[5] J. Rodriguez, F. Ares, H. Palacios, and J. Vassal’lo, “Finding defective elements in planar arrays using
genetic algorithms,” Progress In Electromagnetics Research, vol. 29, pp. 25–37, 2000.

[6] S. Nakazawa, S. Tanaka, and T. Murata, “Evaluation of degradation of shaped radiation pattern caused
by excitation coefficient error for onboard array-fed reflector antenna,” in Antennas and Propagation
Society International Symposium, 2004. IEEE, vol. 3. IEEE, 2004, pp. 3047–3050.

[7] M. Joler, “How fpgas can help create self-recoverable antenna arrays,” International Journal of Antennas
and Propagation, vol. 2012, 2012.

[8] R. L. Haupt and S. E. Haupt, Practical genetic algorithms. John Wiley & Sons, 2004.

[9] P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE
Antennas and Propagation Magazine, vol. 53, no. 1, pp. 38–49, 2011.

[10] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Evolutionary Computation
Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International
Conference on. IEEE, 1998, pp. 69–73.

[11] J. Kennedy, “The particle swarm: social adaptation of knowledge,” in Evolutionary Computation, 1997.,
IEEE International Conference on. IEEE, 1997, pp. 303–308.

[12] Y. Zhang, S. Wang, and G. Ji, “A comprehensive survey on particle swarm optimization algorithm and
its applications,”Mathematical Problems in Engineering, vol. 2015, 2015.

[13] M. Clerc, “Standard particle swarm optimisation,” 2012.

21

