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Abstract

In this report we discuss about the eigensolutions of an eigenvalue problem for
the p−Laplace operator by investigating the underlying variational problem.
Mostly the discussion is restricted to p = 1 case however it can be extended
to other values of p also. When we have constrained minimizers subject to
L1− norm, it is considered as the eigenvalue problem of 1−Laplace operator.
Several theorems are stated in the report which strongly support the exis-
tence of solutions to the variational problem, hence eigensolutions and also
the sequence of eigensolutions. Solutions are treated as critical points (for
the variational problem) in the sense of weak slope. Finally an additional
necessary condition is introduced which is derived using inner variations to
filter the non-eigensolutions of the problem. Basic concepts of functional
analysis and necessary prerequisites to understand the variational problem
and minimizers are also included.
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1 Prerequisites

We warm up with few definitions and results before discussing the problem.

Weak derivative: If v is a function in L2(Ω), then u is said to be a weak
derivative of v if, ∫ b

a

v(t)φ
′
(t)dt = −

∫ b

a

u(t)φ(t)dt

∀ φ ∈ C∞0 (a, b) with φ vanishing on the boundary. This is a generalisation
of derivative and precisely useful for functions which have no derivative in
classical sense.

Sobolev space: A Sobolev space W l,p(X) consists of the locally integrable
functions f : X → R, Dβf ∈ Lp(X) in the weak sense, for every |β| ≤ l.

LAX-MILGRAM theorem: Let M : V × V → R be a bi-linear form
where V is a Hilbert space and let F ∈ V ∗ be a continuous linear functional.
Then ∃ a unique v ∈ V such that M(v, u) = F (u), ∀u ∈ V .
Lax-Milgram theorem is a generalisation of Riesz-representation theorem.
Also, it gives a notion of the existence of weak solutions.

Gagliardo-Nirenberg-Sobolev inequality: Let 1 ≤ q < n, ∃ a constant
C which depends on q and n explicitly, such that,

‖v‖Lq∗ (Rn) ≤ C‖Dv‖Lq(Rn), ∀v ∈ C1
c (Rn)

where q∗ is the Sobolev conjugate of q.

1

q∗
=

1

q
− 1

n
, q∗ > q

Poincare’s inequality: Let X be a bounded open subset of Rn. Suppose,
v ∈ W 1,p

0 (X) for some 1 ≤ p ≤ n. Then,

‖v‖Lq(X) ≤ C‖Dv‖Lp(X)

for any q ∈ [1, p∗], the constant C depends on p, q, n and X only.
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1.1 Energy estimates

Theorem 1. There exist constants C,K > 0 and N ≥ 0 such that M(v, u)
is a bilinear form then,

(i) |M(v, u)| ≤ C‖v‖H1
0 (X)‖v‖H1

0 (X)

(ii) K‖v‖2
H1

0 (X) ≤M(v, v) +N‖v‖2
L2(X)

1.2 Existence of weak solutions

First existence theorem of weak solutions: We can always find a num-
ber a ≥ 0 such that ∀b ≥ a and for each function f ∈ L2(X) ∃ a unique weak
solution v ∈ H1

0 (X) of the BVP{
Lv + bv = f in X

v = 0, on ∂X

Second existence theorem for weak solutions: One of these statements
holds, either

∀f ∈ L2(X) ∃ a unique weak solution v of the BVP{
Lv = f in X

v = 0, on ∂X

or


∃ a weak solution v 6≡ 0 of the homogeneous problem{
Lv = 0 in X

v = 0, on ∂X
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2 Weak Formulations

2.1 p-Laplacian

The Laplace equation ∆v = 0 is the Euler Lagrange equation of the Dirichlet
integral

D(v) =

∫
Ω

|∇v|2dx

Extending this to pth power, the integral or the variational integral will be

I(v) =

∫
Ω

|∇v|pdx

and the pertaining Euler Lagrange equation is,

div(|∇v|p−2∇v) = 0

which is our p-Laplacian operator symbolised as ∆pv,

∆pv = div(|∇v|p−2∇v)

Let us review p = 1 case

∆1v = ∇ ·
(
∇v
|∇v|

)
= −H

where, H is called the mean curvature operator.

Dirichlet problem and weak solutions:

Theorem 2. The below mentioned statements are equivalent ∀v ∈ W 1,p(Ω)
(i) v is minimizing:∫

|∇v|pdx ≤
∫
|∇u|pdx, when u− v ∈ W 1,p

0 (Ω).

(ii) first variation of the functional vanishes:∫
< |∇v|p−2∇v,∇µ > dx = 0, when µ ∈ W 1,p

0 (Ω).

Moreover, if ∆pv is continuous, then these statements are equivalent to ∆pv =
0 over Ω.
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Eigenvalue problem:

−div
(
Dv

|Dv|

)
= λ

v

|v|

OR

−div|Dv|p−2Dv = λ|v|p−2v on Ω

v = 0 on ∂Ω

This is the general form of eigenvalue problem for p-Laplace operator.

2.2 Variational problem

We try to put up analysis of general class of eigenvalue problems and in
particular our eigenvalue problem. It is general intuition to study these
problems in BV (Ω), they are studied in suitable subspaces BV (Ω) ∩ Lp(Ω).
Let Ω ⊂ Rn be open bounded having a Lipschitz boundary.
Consider the energy function

E(v) :=

∫
Ω

d|Dv|+
∫
∂Ω

|v∂Ω − v∂Ω
0 |dHn−1 −

∫
Ω

fvdx+ a

∫
Ω

|v − g|rdx

Here the variational problem is E(v) attaining its minimum over the consid-
ered domain, i.e.

Min (E(v)) , where v ∈ BV (Ω) ∩ Lp(Ω),∫
Ω

|v − h|qdx = 1

and suppose

v∂Ω
0 ∈ L1(∂Ω), f ∈ Ln(Ω), g ∈ Lr(Ω), h ∈ Lq(Ω),

n

n− 1
≤ p <∞, 1 ≤ r <∞, 1 ≤ q ≤ p, a ≥ 0

We know that, BV (Ω) is continuous embedded into L
n

n−1 (Ω) and that Ln(Ω)
is the dual of L

n
n−1 (Ω). We can clearly observe that minimisers of the func-

tional which grow linearly belong to BV (Ω) and need not necessarily belong
to W 1,1(Ω) which is the exact reason to study this problem in BV (Ω). In
general variational problems have boundary conditions, the operator v → v∂Ω
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on BV (Ω) has several properties showcasing weak continuity. It will be very
much restrictive while working with the usual notation of the trace operator
u∂Ω in BV (Ω). Let us consider an open ball B ⊂ Rn such that it covers the
closure of Ω and let the extension of each v ∈ BV (Ω) be

v(x) :=

{
v(x) on Ω,

0 on B \ Ω

Very clearly the extension is in BV (Ω) and

Dv0 = Dv − v∂ΩνHn−1∂Ω, |Dv|(B) = |Dv|(Ω) +

∫
∂Ω

|v∂Ω|dHn−1

where ν is the outward unit normal to the surface Ω. v ∈ Lp(B) since
v ∈ Lp(Ω), here the trace operator maps BV (B \ Ω) onto L1(∂B ∪ ∂Ω),
therefore we find our v0 in this domain whose trace is uΩ

0 on ∂Ω, hence the
extension which also belongs to BV (B)

v0(x) :=

{
0 on Ω,

v0(x) on B \ Ω

and

|D(v0 + v)|(B) = |Dv|(Ω) + |Dv0|(B \ Ω) +

∫
∂Ω

|u∂Ω − u∂Ω
0 |dHn−1.

Let us define

G(u) :=

∫
B

d|Du| −
∫

Ω

fudx+ a

∫
Ω

|u− g|rdx

for every u ∈ BV (B) ∩ Lp(B|Ω) in which,

Lp(B|Ω) := {u ∈ L1(B)|u|Ω ∈ Lp(Ω)}.

As an immediate effect we can see

G(v0 + v) = E(v) + |Dv0|(B \ Ω) ∀ v ∈ BV (Ω) ∩ Lp(Ω).

As a consequence our variational problem boils down to

Min (G(u)) , where u ∈ BV (B) ∩ Lp(B|Ω),∫
Ω

|u− h|qdx = 1,

u = u0 a.e. on B \ Ω

This can be interpreted as a boundary condition in weaker sense.
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2.3 Existence of minimizers

Eigenvalue problem: The variational problem

Min

(∫
Ω

|Dv|pdx
)
, where v ∈ W 1,p(Ω),

∫
Ω

|v|pdx = 1, v = 0 on ∂Ω

is rigorously studied for 1 < p <∞. If we use Lagrange multiplier technique
we will be directed to following Euler-Lagrange equation

−div(|Dv|p−2Dv) = λ|v|p−2v on Ω, v = 0 on ∂Ω

and this is exactly the eigenvalue problem(defined in section 2.1) for p-
Laplace operator. We know that the p = 1 case is highly singular. From
the earlier discussion, we understood that the solutions for this variational
problem p = 1 case reside in BV (Ω) and not in W 1,1(Ω). Similarly, there
were other discrepancies in Dirichlet boundary conditions as well. Besides
this, if we can visualise that the solutions may be piecewise constant we can
claim that this eigenvalue problem for p = 1 case is not well defined. So, it
will be rational to consider our variational problem

Min

(∫
Ω

d|Dv|+
∫
∂Ω

|v∂Ω|dHn−1

)
, where v ∈ BV (Ω),

∫
Ω

|v|dx = 1

So, for the case p = 1 in which the surface integral compensates the Dirichlet
data in a generalized way. Hence follows the existence theorem for any p.
Let us once again state Poincare’s inequality in the useful sense,
if there is a constant c > 0 3

‖u‖
L

n
n−1 (B)

≤ c|Du|(B) +

∫
∂B

|u∂B|dHn−1

∀u ∈ BV (B) and c is the constant from Gagliardo-Nirenberg-Sobolev in-
equality. Whenever the boundary conditions in the weaker sense are satified
by u then u∂B0 can be considered instead of u∂B in the integral.
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Theorem 3. Let the conditions mentioned in the initial variational problem
be satisfied and let c‖f‖Ln < 1 with c > 0 else let a > 0, r > n

n−1
.

(1) If q < n
n−1

= p, then the variational problem has a solution v ∈ BV (Ω).
(2) If n

n−1
≤ p ≤ r, q < r, a > 0, then the variational problem has a solution

v ∈ BV (Ω) ∩ Lp(Ω).
(3) If n

n−1
= p, then the variational problem(without side condition) has a

solution v ∈ BV (Ω).
(4) If p ≤ r, a > 0, then the variational problem(without side condition) has
a solution v ∈ BV (Ω) ∩ Lp(Ω).
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3 Necessary results to analyse the eigen value

problem

3.1 Necessary conditions for minimizers

Euler-Lagrange condition is the fundamental condition for minimizers of vari-
ational problem. Likewise, infinitely many Euler-Lagrange conditions ought
to be fulfilled for minimizers of a vast subclass of variational problems con-
taining the eigenvalue problem. Agian consider the energy functional,

E(v) :=

∫
Ω

d|Dv|+
∫
∂Ω

|v∂Ω|dHn−1 −
∫

Ω

fvdx+ a

∫
Ω

|v − g|rdx

also consider our variational problem

Min (E(v)) , where v ∈ BV (Ω) ∩ Lp(Ω),∫
Ω

|v − h|qdx = 1.

along with these assume the conditions

f ∈ Lp′ , g ∈ Lr(Ω), h ∈ BV (Ω) ∩ Lp(Ω),

n

n− 1
≤ p <∞, 1 ≤ q, r ≤ p, a ∈ R.

Theorem 4. Let v ∈ BV (Ω)∩Lp(Ω) be a minimizer of the above variational
problem with E as defined, satisfying the above conditions. Then ∃ some
λ ∈ R and some z ∈ L∞(Ω,Rn) with

‖z‖L∞ ≤ 1, ∇ · z ∈ Lp′(Ω),

∫
Ω

d|Dv|+
∫
∂Ω

|v∂Ω|dHn−1 = −
∫

Ω

u(∇ · z)dx,

in which ‖z‖L∞ = 1 if u 6= 0, such that:
(i) if q = r = 1, then

0 ∈ −∇ · z − f + aQ(v − g)− λQ(v − h) almost everywhere on Ω,

where Q(y) is set valued sign function

Q(y) :=


1 if y > 0,

[−1, 1] if y = 0,

−1 if y < 0.
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(ii) if either of q or r is greater than 1, then above implication from (i) holds
with |v − g|r−2(v − g) or |v − h|q−2(v − h) in place of Q(v − q) or Q(v − h),
respectively.
(iii) if h = 0 and a = 0, then λ = E(v), i.e. λ can be replaced by E(v) in
both (i) and (ii).

Consider a situation where h, f = 0, a = 0, q = 1, p = n
n−1

and if we apply
this theorem to the eigenvalue problem we end up at our variational problem

Min

(∫
Ω

d|Dv|+
∫
∂Ω

|v∂Ω|dHn−1

)
, where v ∈ BV (Ω),

∫
Ω

|v|dx = 1

and the theorem facilitates a necessary condition that

−∇ · z ∈ λQ(v) a.e. on Ω, λ = E(v) > 0

where z ∈ L∞(Ω,Rn), here the vector space z need not be unique, some z
satisfying the following conditions

‖z‖L∞ = 1, ∇ · z ∈ Ln(Ω), E(v) = −
∫

Ω

v(∇ · z)dx.

Our necessary condition gives an implication that there exists a function
w(measurable) of Q(v) i.e., w(x) ∈ Q(v(x)) a.e. on Ω, such that

−∇ · z = λw a.e. on Ω

It’s trivial to claim that this relation is exactly in the form of our eigenvalue
problem for the 1−Laplace operator, in-fact this is a generalisation, recall

−div
(
Dv

|Dv|

)
= λ

v

|v|
on Ω
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3.2 Existence of a vector field z

Generally expressions in this eigenvalue problem are not well defined since
these minimizers v are either constant or will vanish on a set of non zero mea-
sure. Theorem below ascertains a suitable substitute for eigenvalue problem.

Theorem 5. Suppose v ∈ BV (Ω) is a minimizer of the constrained varia-
tional problem

E(v) := Min

(∫
Ω

d|Dv|+
∫
∂Ω

|v|dHn−1

)
, v ∈ BV (Ω),

∫
Ω

|u|dx = 1.

Then for every measurable selection w(x) ∈ Q(v(x)) a.e. on Ω the exists a
vector field z ∈ L∞(Ω,Rn) with

‖z‖L∞ = 1, ∇ · z ∈ Ln(Ω),∫
Ω

d|Dv|+
∫
∂Ω

|v|dHn − 1 = −
∫

Ω

v(∇ · z)dx

so that
−∇ · z = λw a.e. on Ω, λ = E(v).

We have already discussed in detail that, there are infinitely many Euler-
Lagrange equations as necessary conditions for the minimizer of v which can
be visualised here in the above equation too. And these conditions should be
satisfied for any arbitrary selection of w(measurable). This discussion gives
us an idea about the eigenvalue problem for the 1-Laplace operator. Any
solution v is called the eigenfunction corresponding to the eigenvalue λ.

Theorem 5 assures the existence of vector fields z which satisfies the stated
equations (coupling conditions) in the theorem. It would have been very use-
ful if we had more or any details about these vector fields and appositeness
of the coupling conditions for this vector field. We are only fortunate to an
extent of establishing their existence as of now. Even for a particular v and
when w is given we have no concrete method to determine z.
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3.3 Weak slope

Definition 1. Let Y be a metric space with metric m and let h : Y → R be
a continuous function, and suppose v ∈ Y. Denote by |dh|(v) the supremum
of the γ ∈ [0,+∞) such that ∃ an ε > 0 and a continuous map

H : B(v, ε)× [0, ε]→ Y

such that, for every
u ∈ B(v, ε), ∀s ∈ [0, ε]

it leads to
m(H(u, s), u) ≤ s, h(H(u, s)) ≤ h(u)− γs.

The extended real number |dh|(v) is called the weak slope of h at v.

Lemma 1. Let g : Y → R be a continuous function. Then, for every
(v, ζ) ∈ epi(g), we have

|dGg|(v, ζ) =

{ |dg|(v)√
1+(|dg|(v))2

, if g(v) = ζ and |dg|(v) ≤ +∞,

1, if g(v) ≤ ζ or |dg|(v) = +∞.

Now, the weak slope of a lower semi-continuous function g can defined by
using |dGg|(v, g(v)). More precisely, we have the following

Definition 2. Let g : Y → R be a lower semi-continuous function. For
every v ∈ Y such that g(v) ∈ R, let

|dg|(v) =

{ |dGg |(v,g(v))√
1−|dGg |(v,g(v))2

, if |dGg|(v, g(v)) < 1,

+∞, if |dGg|(v, g(v)) = 1.

From the above notion we can imply

Definition 3. Let Y be a metric space and g : Y → R∪{+∞} a lower semi-
continuous function. Any v ∈ dom(g) is a critical point of g if |dg|(v) = 0.
One can claim that b ∈ R is a critical value of g if there exists a critical point
v ∈ dom(g) such that g(v) = b.

15



3.4 Existence of a sequence of eigensolutions

Again, if we look back to Theorem 5 in which v is a solution of the 1-Laplace
operator, the (v, λ) is the first eigensolution of the 1-Laplace operator. We
also verified that the Euler-Lagrange equation should be satisfied for all pos-
sible selections of w(measurable). We claim that there exists more critical
points of the variational problem which can be considered as eigensolutions
of the 1-Laplace operator. Critical points definition in the sense of weak
slope may be used since it works for both continuous and some lower semi-
continuous functions.

Theorem 6. There is always a sequence (vk,−vk) where k ∈ N and each
vk ∈ BV (Ω), these are pairs of critical points for the variational problem

E(v) :=

∫
Ω

d|Dv|+
∫
∂Ω

|v|dHn−1

with the constraint ∫
Ω

|v|dx = 1,

where E(vk) <∞ ∀k ∈ N. Also, for every critical point vk ∈ BV (Ω) and for
some choice of q such that 1 < q < n

n−1
there certainly exists a measurable

selection wk(x) ∈ Q(vk(x)) a.e. x ∈ Ω and a vector field zk ∈ L∞(Ω,Rn)
satisfying

‖zk‖L∞ = 1, ∇ · zk ∈ Lq∗(Ω),

E(vk) = −
∫

Ω

vk(∇ · zk)dx

such that
−∇ · zk = λkwk a.e. on Ω, λk = E(vk).

Also, λk →∞ as k approaches infinity.

This Theorem 6 is very much similar to Theorem 5 strongly supporting the
existence of an infinite sequence of eigensolutions. Here we have to notice
that unlike Theorem 5 the Euler-Lagrange equation may not be satisfied for
all possible measurable selections of wk(x) ∈ Q(wk(x)). Here the choice of
q < n

n−1
ensures the compact embedding of BV (Ω) into Lq(Ω).
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4 Eigenvalue problem for the 1−Laplace op-

erator

As stated earlier in this document,

−∇ · |Dv|p−2Dv = λ|v|p−2 on Ω,

v = 0 on ∂Ω

is the general form of eigenvalue problem for p−Laplace operator in relation
with the variational problem

Min

(∫
Ω

|Dv|pdx
)

in W 1,p
0 (Ω)

with ∫
Ω

|v|pdx = 1.

We know for the case p = 1

−∇ · Dv
|Dv|

= λ
v

|v|

We can observe that no solutions exist in W 1,1
0 (Ω) due to which have to

look for a better space i.e. BV (Ω) with boundary conditions having weaker
notions, leading us to

Min

(∫
Ω

d|Dv|+
∫
∂Ω

|v|dHn−1 in BV (Ω) subject to

∫
Ω

|v|dx = 1

where, Ω ⊂ Rn is taken to be open and bounded with a Lipschitz boundary.
Hence by the conventional methods existence of minimizer is followed.
The Euler-Lagrange equation

−∇ · Dv
|Dv|

= λ
v

|v|

has to be appropriately interpreted since it doesn’t give required informa-
tion. We use Lagrange multiplier rule to find a minimizing condition. Also,
by computing the convex sub-differentials of the functions in our variational
problem we obtain that for an arbitrary minimizer v ∈ BV (Ω)

∃ w(x) ∈ Q(v(x)) a.e. on Ω and ∃ z ∈ L∞(Ω,Rn)

17



satisfying

|z(x)| ≤ 1 a.e., ∇ · z ∈ L∞(Ω), E(v) = −
∫

Ω

v(∇ · z)dx

(The variational problem is called single equation if it is based on the above
two equations)
such that

−∇ · z = λw a.e. on Ω, λ = E(v),

(the variational problem is called multiple equation if it is related to this
equation). (Also, refer Theorem 5)

In the Euler-Lagrange equation, v
|v| is replaced by w and Dv

|Dv| is replaced

by z. Further analysis (shown in section 3.2) assures that for every measur-
able selection w(x) ∈ Q(v(x)) there exists a vector space z, (which need not
be unique) satisfying the variational problem, i.e. the problem has infinitely
many necessary conditions (section 3.1).

The higher eigensolutions (section 3.4) cannot be defined in terms of an
eigenvalue equation, unlike the trivial cases. As we know the defined single
equation has many solutions, but after interpreting the problem in terms of z
and w, i.e. multiple equation, we see that minimizers are the only solutions.
Hence, eigensolutions are visualised as critical points of the variational prob-
lem. Critical points are defined in the sense of weak slope (section 3.3) since
the curve is not smooth.

Theorem 6 states that there exists eigenfunctions vk, ∀k ∈ N along with
corresponding eigenvalues λk, i.e. (vk, λk) satisfy the variational problem as
a single equation. As we know that single equation has too many solutions
(apart from eigensolutions), a stronger necessary condition is derived using
inner variations which is,∫

Ω

〈z,Dµ · z〉 − (∇ · µ) d|Dv| = −λ
∫

Ω

|v| (∇ · µ) dx ∀µ ∈ C∞0 (Ω)

where λ = E(v) and z based on the polar decomposition of the total variation
measure i.e. z|Dv| = Dv. This additional necessary condition eliminates
solutions of our single equation which are non-critical points. It is yet to be
discovered if all the solutions obtained by applying both the conditions are
eigensolutions of the 1−Laplace operator.
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Conclusion

The notion of eigensolutions is given by the weak slope (section 3.3). In the
above discussion we considered L1− topology, however BV−topology may
also be used to study the above problem. The eigensolutions may also be
defined in terms of strong slope (DeGiorgi) or any other alternative concepts
of slope. When we consider the case where Ω = (0, 1) ∈ R then the eigensolu-
tions are determined precisely for each choice of slope and topology, where we
can observe that the set of solutions are really different for different choices.
Amidst all this discussion, we can claim that the definition of eigensolution
in the notion of weak slope using L1−topology was an appropriate approach
for analysing the eigensolutions of 1−Laplace operator.

19



References

[1] Critical point theory for nonsmooth functionals. Nonlinear Analysis:
Theory, Methods Applications, 66(12):2731 – 2741, 2007.

[2] Melvyn S Berger. Critical point theory for nonlinear eigenvalue problems
with indefinite principal part. Transactions of the American Mathemat-
ical Society, 186:151–169, 1973.

[3] KUNG CHING CHANG. The spectrum of the 1-laplace operator. Com-
munications in Contemporary Mathematics, 11(05):865–894, 2009.

[4] L.C. Evans. Partial Differential Equations. Graduate studies in mathe-
matics. American Mathematical Society, 1998.

[5] Giannoni Fabio (i-cam mp. 3. m.degiovanni and m.marzocchi: A critical
point theory for nonsmooth functionals, ann. mat.

[6] BERND KAWOHL and FRIEDEMANN SCHURICHT. Dirichlet prob-
lems for the 1-laplace operator, including the eigenvalue problem. Com-
munications in Contemporary Mathematics, 09(04):515–543, 2007.

[7] Z. Milbers and F. Schuricht. Some Special Aspects Reated to the 1-
Laplace Operator. Preprint. Techn. Univ., 2008.

[8] Z. Milbers and F. Schuricht. Existence of a sequence of eigensolutions
for the 1Laplace operator. Journal of The London Mathematical Society-
second Series, 82:74–88, 2010.

[9] Z. Milbers and F. Schuricht. Necessary Condition for Eigensolutions of
the 1-Laplace Operator by Means of Inner Variations. Preprint. Techn.
Univ., 2010.

[10] Friedemann Schuricht. An alternative derivation of the eigenvalue equa-
tion for the 1-laplace operator. Archiv der Mathematik, 87(6):572–577,
2006.

[11] Marco Squassina. Weak solutions to general euler’s equations via non-
smooth critical point theory. Annales de la Facult des sciences de
Toulouse : Mathmatiques, 9(1):113–131, 2000.

[12] Marco Squassina. On ekeland’s variational principle. Journal of Fixed
Point Theory and Applications, 10(1):191–195, 2011.

20



[13] MARCO SQUASSINA. Radial symmetry of minimax critical points for
nonsmooth functionals. Communications in Contemporary Mathemat-
ics, 13(03):487–508, 2011.

21


