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Abstract 

 

Breast cancer being multifaceted disease constitutes a wide spectrum of histological and 

molecular variability in tumors. Now, in the wake-up of the Human Genome Project 

(HGP) several evidences recommend a marked plasticity adopted by tumor cells in 

modulating the tissue invasion and progression during multiple stages of metastasis.  

However, the task for the identification of these casualties in a cancer genome is 

complicated by the interplay of inherited genetic and epigenetic aberrations. These 

aberrations are like two sides of the same coin. Therefore, in this thesis we provide an 

extrapolate outlook to the sinister partnership between genetic and epigenetic aberrations 

in relevance to breast cancer.  

 DNA methylation is a prototypical epigenetic parameter that lay ground in 

understanding the gene regulation and their intricate interactions in the normal and 

diseased state. However, when it is comprehended by the extensive study of the genomic 

and transcriptomic parameter, it leads to better understanding of complex trait 

architecture of disease aetiology. The key to our analysis holds in identification of 

effective model that enables in predicting the phenotypic traits and outcomes, elucidating 

the presence of diagnostic and prognostic biomarkers and generate an insight into genetic 

underpinnings of heritable complex traits. In view of this, we explored the emerging 

approaches based upon data integration and meta-dimensional analysis to deepen our 

understanding to the relationship between the genomic variations and human phenotypes. 

This integrated study comprised of Illumina 450 DNA methylation, Affymetrix SNP 

array and RNAseq dataset retrieved from the Cancer genome atlas (TCGA) portal which 

elaborated the biological and complex outlay in the diagnosis, prognosis and therapeutic 

implications of breast cancer. 

 Owing to the identification of diagnostic marker, the genetic determinants of 

DNA methylation pattern was extensively interrogated in tumor and matched normal 

samples. In lieu of this, an overall enrichment in significant CpG-SNP pairs were 

identified at 50 base pairs upstream and downstream of CpG site. The correlation between 

the genetic variant and the differential DNA methylation at specific loci was labelled as 

methylation quantitative trait loci (meQTLs). In a multistep approach to the identification 

of key drivers of the complex trait, the differentially methylated CpG sites were analysed 

for the association with the gene expression in unrevealing the differential expression of 

the tumor suppressor genes in tumor and matched normal sample. The integrated study of 

genetic variation characterised single nucleotide polymorphism, DNA methylation and 

gene expression led to the foundation for identification of novel biomarkers for diagnosis 

of breast cancer. This integrative analysis was further substantiated with the 

clinicopathological features to stratify the risk associated with the survival of the breast 

cancer patients. An intensive Cox proportional regression analysis established a 

significant association between differential methylation and the stratification of breast 

cancer patients into high and low risk, respectively. The innovative study interrogating 

the impact of differentially methylated CpGs and SNPs on the survival unwrapped a new 

horizon in the prognosis of breast cancer.       
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 In view of established study specifying DNA methylation works in concert 

with genetic variants, several modulators have been identified against the DNA 

methyltransferase (DNMTs) enzyme to revert malignancy. However, the inherited 

toxicity and the lack of specificity offer limitations. In the present study, we have 

identified a novel inhibitor that owes property to rejuvenate the expression of tumor 

suppressor genes and holds enhanced selectivity towards triple-negative breast cancer 

cells to normal cells. Thus, the recognition of DNA methylation as a significant 

contributor to normal and disease state has opened a new avenue for drug discovery and 

therapeutics in breast cancer.  

 

Keywords: DNA methylation; single nucleotide polymorphism; methylation quantitative 

trait loci; DNA methyltransferases; inhibitor; breast cancer 
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Chapter 1 

Introduction 

1.1 DNA methylation landscape in human genome 

DNA methylation is relishing a meteoric rise in the field of epigenetics from the euphoria 

surrounding the human genome project. This field of epigenetics holds a master key to 

unfold and unlock the mechanism concomitant with the profound alteration in gene 

expression in response to the environmental cues [1]. It provides a clue in understanding 

the tenacity and the genome plasticity associated with chromatin modifications and 

remodeling engines. Most of these epigenetic modulations known till date is characterized 

by the covalent and non-covalent modulation of DNA and histone proteins [2]. Of all the 

modulations, DNA methylation is a core molecular actor that play significant role upon 

the epigenetic stage influencing the epigenetic stability and heritability and subsequently 

retaining the integrity of the DNA [3].  

In the mammalian genome the primary target for methylation is the cytosine 

residue; the enzymatic attachment of the methyl to the 5̍ carbon of the pyrimidine ring 

creates 5-methylcytosine (5-MeC) [4-6]. This forgotten 5
th

 base being a cognate to 

cytosine undergoes complementary base pairing with guanine. Usually in mammalian 

genome, the targeted cytosine residue of methylation machinery resides within the 

palindromic sequence of the 5̍-C-p-G-3̍ dinucleotide. Nearly 70% of all CpG dinucleotide 

are methylated; however, the spatial distribution is non-random across the genome. 

Besides the irrational distribution, there is a small genomic region bearing the higher 

frequency of CpG dinucleotide at the closer proximity with an average of 1-2 kilobases 

forming CpG islands [6]. There are about 45,000 CpG islands. Most of the chromosome 

harbours 5-15 islands per MB being predominant at the promoter region of the genes or 

lie within the first exon of the genes [7]. These sporadic sequences associated with the 

epigenetic pattern have the maximal impression on growth and development. 

1.2 Significance of DNA methylation 

The functionality DNA methylation is integrated to regulate the gene expression in terms 

of positive correlation between the extent of methylation, transcriptional and 

recombinational quiescence. This correlation is most conspicuous in transposable 

elements prevalent across the mammalian genome. It maintains the host defense system 
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through the transcriptional silencing of these parasitic elements which is a threat to the 

structural integrity of the genome [8, 9].   

 The hypermethylation of bulk DNA holds the functional standpoint in the 

assembly of repetitive DNA into a heterochromatin which maintains the functional 

compartmentalization of genome into its active and inactive state [10]. While the 

primordial germ cells and the embryonic stem cells progress with the mitotic division 

without detectable DNA methylation, the cellular differentiation initiates with DNA 

methylation [11, 12]. Much of these cellular differentiations are established during the 

gastrulation stage of embryonic development.  

 DNA methylation has significant application in the somatic lineage of genes in 

genomic imprinting in-lieu of embryonic development and physical requirements [13]. 

The genomic imprinting is characterized by monoallelic or the uniparental expression of 

genes in the somatic cells [14]. These imprints are transmitted as unique methylation 

pattern of imprinted genes to the gonads during gametogenesis and after fertilization 

persists in the somatic cell. The acquisition and propagation of imprinted genes carrying 

differential methylation pattern play an intrinsic role in mammalian development [15].  

Besides, the differential methylation also guides to the transcriptional silencing of the 

majority of genes on one of the two X-chromosome in each somatic cell of the female. 

During the early embryonic development, one of the two X-chromosome is randomly 

selected for inactivation; also an example of parental imprinting [16, 17]. 

1.3 Catalytic mechanism of DNA Methylation 

The chemistry associated with the cytosine methylation hovers around the activity of the 

enzyme DNA methyltransferases (DNMTs) and the cofactor S-adenosyl-L-methionine 

(AdoMet), the source for a methyl group [18-20]. This enzymatic reaction brought about 

by DNMTs implicates via covalent mechanism coupled with acid/base catalysis. In the 

presence of the nucleophilic addition to the enzyme, the methyl-sulphur bond of AdoMet 

is destabilized which in turn renders the methyl group to the C5 position of cytosine 

molecule via the SN2 mechanism [21]. The stepwise mechanism initiates with transient 

covalent bond formation between C6 of the target cytosine and thiol group of Cysteine 

residue (Cys) forming a 6-Cys-S-cytosine adduct [22]. This nucleophilic addition at C6 

carbon is expedited by transient protonation of glutamic acid residue at N3 of cytosine 

establishing 4-5 enamine structure [5]. Thus, the stable covalent bond elevates the 

electron density at C5-postion promoting the displacement of methyl moiety of AdoMet 

molecule to provide 5-CH3-6-Cys-S-5 forming 6-dihydrocytosine complex [23, 24]. 

Finally, the deprotonation at C-5 position departs the cysteine residue subsequently 

resolving the covalent intermediate into methylated cytosine and s-adenosyl-L-
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homocysteine (AdoHcy) as a by-product [25]. The detailed mechanism is elaborated in 

Figure 1.1.  

 

Figure 1.1 Mechanism of DNA methylation: Motif IV of the enzyme active site constitute Cys 

residue such that the thiol attacks at C-6 of cytosine molecular which results in electron cloud at 

5-C. Simultaneously, proton donation (H
+
) by Glu-COOH apparently stabilizes the transition 

state. In step 2, 5C carbanion of cytosine molecule attaches at –CH3 of SAM forms an 

intermediate complex. In step 3, the abstraction of the proton from the enzyme followed by the β-

elimination results in the formation of 5C=6C double bond. In step 4, the methylation group is 

attached to 5-̍C forming stable complex and the enzyme in released by proton addition.   

1.4 DNA methylation machinery 

The cellular DNA methylation is established and maintained by the complex interplay of  

family of dedicated enzymes, called DNA methyltransferases (DNMTs) [26, 27]. These 

DNMTs constitute four members being grouped into two families having discrete 

structure and function. DNMT1, being the maintenance methyltransferase duplicates the 

existing methylation mark on the daughter strand of hemimethylated DNA successfully 

propagating across the successive generation [28] while, DNMT3 family actively 

participates in de-novo methylation during embryonic development [29-31]. This 

DNMT3 family constitute two active members as DNMT3A and DNMT3B and a 

regulatory component as DNMT3L [29, 32]. The structural machinery of the active 

members is integrated into the regulatory domain (N-terminal) and the catalytic domain 

(C-terminal) exclusively dependent on each other. The catalytic domain establishes nine 

out of ten conserved motifs being crucial for its function. Topologically the catalytic 

domain is grouped into two sub-domain [33]. The first half of the domain constitute 

structurally conserved motifs I-III which enables in co-factor (AdoMet) binding while, 
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the conserved motifs IV-VIII along with the partner domain is predominantly responsible 

for the catalytic mechanism [34]. The target cytosine binding site is enclosed within the 

conserved motif IV (ProCysGln), VI (GluAsnVal) and VIII (GlnXArgXArg) [26, 35, 36].  

 The large N-terminal domain bearing two glycine-rich loops is implicated in 

sequence-specific DNA recognition by DNMTs and flipping of target cytosine [37]. This 

terminal is accreted with the multi-functional domains; the nuclear localization sequence 

(NLS) domain that escorts in translocation of DNMT1 into the nucleus, replication foci 

targeting (RFT) domain enriched in glycine residue that recruits DNMTs to replication 

foci of DNA, the cysteine-rich (CXXC) domain also referred as zinc binding domain that 

forms interface for binding of unmethylated DNA and the two bromo-homology domain 

(BAH1 and BAH2) actively involved in protein-protein interaction thus, regulating the 

chromatin structure [27, 38, 39]. While the catalytic domain is conserved across the 

DNMTs, the N-terminal domain of DNMT3A/B contains a PWWP (pro-trp-trp-pro) that 

is functionally significant in non-specific binding with DNA [Figure 1.2] [37, 40, 41].  

 The subsidiary DNMT3L shares homology with DNMT3A and DNMT3B in both 

N and C-terminal domains while, it is deficient in conserved amino acid sequence 

prerequisite to catalytic activity. It is specifically expressed in germ cell and is essential 

for the establishment of a subset of methylation pattern in both male and female germ 

cells [42]. DNMT2 exemplified by divergent evolution shares structural homology with 

known DNA Mtase and its functionality corresponds to cytosine methylation of the 

anticodon loop of tRNA [43]. Structure elucidation of DNMTs is of considerable interest 

as its inhibition results in subsequent restoration of aberrantly silenced tumor suppressor 

genes in cancer.  
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Figure 1.2 Architecture of DNMT1, DNMT2, DNMT3A, DNMT3B and DNMT3L regulatory 

and the active site domain. Abbreviations: DMAP: DNMT1-associated protein, BAH1: Bromo 

adjacent homology domain, PWWP: Pro-Trp-Trp-Pro, ADD: ATRX-DNMT3-DNMT3L (related 

to the plant homology (PHD)-like domain of regulator ATRX); KG linker: Consists of Lys and 

Gly residues. 

1.5 DNA methylation profiling in cancer 

The mechanism of gene silencing induced by DNA methylation includes direct inhibition 

of transcriptional activity by blocking the binding of transcription factors to the 

methylated sites. In another method, methyl-CpG binding proteins (MBDs) recognizes 

the methylated DNA and recruits corepressors (HDAC) resulting into compact chromatin 

structure leading to gene silencing [44, 45]. Gene silencing is characterized by the unique 

profile of aberrant DNA methylation in different types of cancer. Hence, a myriad of 

biomarkers based on DNA methylation need to be identified for variable classes of 

neoplasia [46]. The variable methylation pattern in association with biomarkers is 

identified both in localized regions and across genome-wide offers platform in the 

diagnosis, prognosis, therapeutic implications and post-therapeutic monitoring. 

Aberration in DNA methylation is visualized in the early events of carcinogenesis, some 

being localized in precancerous lesions [47]. DNA methylation being active readout can 

be easily identified in tumors with low purity. Moreover, only small fraction of promoter 

regions of aberrantly methylated genes can be directly correlated with cancer initiation 

and progression [48, 49]. These epigenetically silenced domains carry a majority of 

methylated genes actively participating in cancerous stem cell progression [50-52]. In 

general, the aberration in DNA methylation occurs in higher percentage in tumors as 

compared to genetic variations, resulting in higher sensitivity.  

1.6 Techniques for DNA methylation profiling  

The variability in methylation pattern among the cell types and during development or 

diseases and sometimes in response to environmental cues offers considerable theoretical 

and technological challenges in comprehensive genome-wide mapping [53]. The standard 

molecular biology techniques such as cloning and polymerase chain reaction offer 

limitation as it wipes out the DNA methylation information. Moreover, the standard 

hybridization technique cannot detect the methyl group being located in the major groove 

of DNA. Thus, the methylcytosine pre-treatment method was developed to reveal its 

presence or absence both in the localized regions and genome-wide at cytosine residue. 

There are methods constituting methyl-sensitive restriction enzyme digestion, affinity 

enrichment and bisulphite conversion [54, 55]. These technologies based approaches are 

based upon their ability in discriminating the methylated to unmethylated cytosine. Once 
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the genomic DNA has undergone one of these methylation-dependent steps, molecular 

biology techniques, including sequencing and probe hybridization can be implemented to 

reveal methylated-cytosine loci. Finally, several computational methods and software 

tools applications can be applied for analysis and interpretation of DNA methylation 

profile [56]. Thus, in the plethora of techniques for determining DNA methylation and 

profiles is a consequence of the conjoint analysis of pre-treatment and analytical steps 

[57-59]. The following section details about the methods for DNA methylation profiling. 

1.6.1 Methylation-sensitive endonuclease digestion 

Methyl sensitive restriction endonuclease treatment is a powerful tool in the discovery of 

methylation marker associated with targeted candidate genes as well as systemic genome 

scanning [60]. There are sequence specific restriction enzyme having particular 

recognition for methylated CpG regions while, some of them are being inhibited from 

restriction digestion by 5meC. Some of these methylation-sensitive restriction enzymes 

for DNA methylation studies are HpaII and SmaI such that each of this constitute 

isoschizomer and neoschizomer that are not inhibited by CpG methylation  [61, 62]. 

Beside genome-wide studies, the method is also applicable for locus specific analysis 

having linkage with DNA methylation across multiple kilobases. This methyl-sensitive 

restriction digestion is followed by PCR, gel electrophoresis and hybridization on 

Southern Blotting [63, 64].  However, this method has some limitation as many a times 

the incomplete digestion results in a false-positive result.  

1.6.2 Affinity purification of methylated DNA 

Recent advancement in high-throughput technology constitutes protein affinity for the 

identification of methylated fraction of genomic DNA [65-67]. These methylated 

fragments are purified either through immunoprecipitation (MedIP26) by using an anti-

m5C antibody or by DNA binding domain specific to methyl-CpG-binding protein 

(MAP27) [68]. These methods are specific to high-density DNA methylation constituting 

enriched methylated CGIs. Recently, affinity purification using CXXC (CAP; X: any 

residue) have been introduced in specific to unmethylated DNA [69]. However, the 

uneven distribution of methylated cytosine or CpG sites offers limitation in terms of the 

composition of an array for hybridization as a consequence of which individual CpG sites 

cannot be identified [68].  

1.6.3 Bisulphite sequencing of methylated DNA 

The analysis of DNA methylation on treatment with sodium bisulphite spurred a 

revolution in the epigenome-wide associations study (EWAS) of the methylation pattern. 

The treatment with bisulphite differentially selects cytosine to 5-methylcytosine residues 
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that are deaminated to yield uracil and are amplified as thymine during PCR [70, 71]. 

This bisulphite treated DNA can be identified by methylation specific PCR [72], 

restriction digestion [73], or DNA sequencing [74]. In comparison to other methods, 

sequencing of subcloned bisulphite converted DNA is more reliable for the detailed study 

of methylation pattern associated with each CpG sites across the genome. Further ahead, 

it provides an explicit method for determination of methylation pattern for haplotypes in a 

qualitative and quantitative manner. Besides, the synergistic application of bisulphite 

conversion with sequencing aids in the genome-wide study of methylation pattern without 

being restricted by the presence of restriction enzyme or high CpG density. Genome-wide 

processing of bisulphite treated DNA follows several steps. 

 The bisulphite treated DNA results in the conversion of the majority of 

unmethylated Cs to Ts in the sequencing reads. The absolute DNA methylation level is 

calculated in terms of percentage of recurrence Cs and Ts frequency in the sequencing 

reads being aligned to the reference genome. Alignment of these reads is brought about 

by two alternative approaches. The wild card aligners BSMAP21 [75], RMAP25 [76], 

RRBSMAP26 [77], Methy-Pipe [78]) replaces Cs is the genomic DNA to wild letter Y 

which in turn matches to both Cs and Ts in the read sequence. In contrary, the three-letter 

aligners (Bismark28 [79], MethylCoder32 [80]) converts all Cs into Ts in the reads as 

well in the genomic DNA sequence. Once the alignment is done, the absolute methylation 

is determined in terms of frequency of alignment of Cs and Ts to each C in the genomic 

DNA sequence.  

 Once the data processing and normalization is accomplished, the next step 

constitutes visual inspection of methylated regions. The big-Bed format prompts in 

dynamic visualization of DNA methylation which is based on the colour coding of each 

CpG site [81]; while, big-Wig format represents methylation level of single CpG sites in 

terms of variable heights of interspersed vertical bars [82]. These binary files are then 

uploaded to the web-based genome browser mainly UCSC [83], Ensemble [84] or Human 

Epigenome [85]for visualization. These genome browser prompts in regions-specific 

visualization while, the global methylation pattern can be visualized through box plots, 

Hibert plot [86], scatter plots or tree-like diagrams. R/Bioconductor provides an interface 

for these plot constructions [87]. Mapping of genome-wide methylation pattern between 

the groups of samples helps in visualization of systemic differences between the tumor 

patients and healthy control group. Finally, statistical significance between differential 

methylation groups can be verified and validated through volcano plots, Q–Q plots or 

Manhattan plots [88]. 
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1.6.4 Array hybridization 

Array-based analysis of methylation pattern is coupled with enzymatic methods. The 

differential methylation sensitive and cutting of behavior of SmaI and XmaI is followed 

by methylated CpG island amplification (MCA) [89]. This method is further associated 

with representational difference analysis (RDA) or array hybridization [90]. However, the 

process based upon MCA is significant as it provides coverage of lower resolution. In an 

alternative approach, differential methylation hybridization (DMH) is based upon 

restriction digestion of pool of genomic DNA by methylation-sensitive restriction 

enzymes and mock digestion of another pool [91]. Consequently, the parallel pool of 

DNA is produced which is amplified and labeled with fluorescent dyes of cyan/red array 

hybridization [92]. The relative signal intensities of fluorescent dye are used to detect 

locus- specific DNA methylation. This method is referred as the microarray-based 

assessment of differential methylation pattern [93].   

1.6.5 Next Generation Sequencing 

Next-generation sequencing (NGS) offers a platform for harnessing massive-parallel 

short-read DNA sequences to digitally catechise genome-wide DNA methylation. Several 

NGS platforms developed so far constitute 1) 454 GS20 pyrosequencing (Roche Applied 

Science), 2) Solexa sequencing (Illumina) and 3) Supported Oligonucleotide Ligation and 

Detection: SOLiDTM (Applied Genes) [94-97]. These methods are based upon 

fundamental principle of immobilization of template DNA to solid surface and parallel 

sequencing of clonally amplified or single DNA template as a consequence of which 

thousand to billions of sequence reads are generated in single run [98, 99]. This 

technology has enhanced drastically thus, reducing the sequencing cost per base and 

enables genome-wide bisulphite sequencing of DNA methylation pattern in high 

throughput at a single base resolution in a very short span of time [100]. The large data 

generated are being co-ordinated by national and international consortia (The Cancer 

Genome Atlas, TCGA) for data analysis [101]. NGS is advantageous over microarray as 

it provides higher base resolution with relatively small artifacts such as noise in the form 

of cross hybridization without any limitation in the genome coverage. Moreover, larger 

dynamic range and high-coverage increases the efficiency of resultant data [102]. Thus, 

high throughput analysis based on NGS can be successfully implemented in identification 

of methylation signatures for diagnosis and prognosis of cancer.  

 The quantitative based analysis based upon above-mentioned approaches 

supersedes over the non-quantitative method for detection of aberrant methylation pattern 

in the clinical settings [96, 103]. These methodologies are even compatible with degraded 

DNA. Many types of cancer display variability among the patients with similar 

histopathology and disease stage. Technology based on the high-throughput analysis can 
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be implemented in molecular characterization of variable grades of a tumor. The digital- 

based approach in NGS will promote in early detection with minimal methylated residues 

in biomarker discovery. Finally, with the recent advancement in the technology, DNA 

methylation has undergone a revolution in the diagnosis, prognosis, therapeutic and post-

therapeutic implications of cancer. 

1.7 DNA methylation as therapeutic target in cancer 

There are plethora of genes and pathways being regulated by DNA methylation. It serves 

as the biomarker in the restoration of aberrantly silenced genes in cancers [104, 105]. 

These methylation patterns can be monitored by the introduction of several 

chemotherapeutic agents or epi-drugs. Epi-drugs can be defined as the modulators that 

can inhibit or activate epigenetic proteins associated with amelioration, cure or prevention 

of diseases [106, 107]. The expression of these epigenetic proteins is altered in many 

human diseases primarily in cancer. These alterations in protein expression are visualized 

in an early stage of cell transformation; thus, they can be considered as drivers rather than 

passengers in cancer [108, 109].  

Multiple inhibitors targeting DNMTs are deemed to be the most putative 

anticancer agent having the ability to revert the aberrant methylation pattern at the 

promoter region of tumor suppressor genes. These DNMTs co-ordinates in mRNA 

expression in normal tissue and are overexpressed in tumors [110]. The elevated 

expression has been reported in cancers of the liver, colon, prostate, breast cancer and 

leukemia. Thus, inhibitors against DNMTs promise anticancer agents as they restore the 

expression of epigenetically silenced tumor suppressor genes in these cancers. Two such 

FDA approved nucleoside DNMT inhibitors, 5-azacytidine (Vidaza) [111] and 5-aza-2̍-

deoxycytidine (Dacogen) [112] had been reported to be effective in the treatment of bone 

marrow disorder in myelodysplastic syndrome. These inhibitors get incorporated into 

DNA in place of cytosine. 5-aza-2̍-deoxycytidine (decitabine) when, co-administered with 

carboplatin reverses the platinum resistance in ovarian cancer-promoting in prolonged 

progression-free survival [113]. These inhibitors have been identified in activating the 

dormant gene expression of the p16 gene subsequently, decreasing the growth of cancer 

cells [114]. Besides regulation of gene expression through DNMTs, these nucleoside 

inhibitors also get incorporated into RNA thus, inducing ribosomal disassembly and 

preventing the expression of oncogenic proteins at the translation level. However, these 

nucleoside inhibitors offer some limitations [115, 116]. The ability of these inhibitors to 

get incorporated into DNA and RNA arrests the cell cycle forming DNA/RNA covalent 

protein-adduct is toxic [117]. Moreover, in aqueous solution these inhibitors are readily 

hydrolysed by cytidine deaminase. Thus, toxicity and instability of these inhibitors 

inevitably presents a challenge to their applications clinically. 
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1.8 DNA methylation in breast cancer 

Most of the epigenetic studies unravels the hypothesis behind the disease predisposition is 

a consequence of the mismatch between prenatal and postnatal environment [118]. This 

epigenetic mismatch because of DNA methylation is widely associated with the 

developmental origin of health and diseases mainly the non-communicable diseases such 

as diabetes, cardiovascular and neuro-developmental disorders [119]. Of all the diseases 

known till date, cancer remains elusive, and it is widely accepted that the co-ordinated 

effect of genetic and epigenetic disorders leads to cancerous state [120, 121]. 

 DNA methylation characterized by genome-wide hypomethylation of sparsely 

populated CpG sites in intergenic and repetitive sequences and hypermethylation of 

densely packed CpG islands at promoter regions leads to cancer [122]. Hypomethylation 

of the repetitive sequences primarily in the transposons causes genomic instability and 

DNA breakage, and the intergenic region of chromatin undergoes de-condensation [123]. 

In many cases, hypomethylation also results in loss of imprinting or demethylation of 

retrotransposon leading to cancer [124-127]. On the contrary, the hypermethylation of 

tumor suppressor genes at the promoter region leads to somatic aberrations in cancer 

[128]. The driving force associated with cancer is mainly focused on promoter 

hypermethylation of CpG islands as it clearly demonstrates the permanent gene silencing 

both physiologically and pathologically. This anomaly in gene silencing compels in the 

aberrant clonal expansion of cells subsequently fostering to tumor progression [Figure 

1.3] [129].  

 

 

Figure 1.3 DNA methylation-mediated gene silencing in cancer. 
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 Of all the cancers were known till date, breast cancer occupies the top most slot in 

morbidity and mortality of women in developed countries while, the developing countries 

are on a rise. In 2014, the invasive nature of breast cancer accounted for 232,670 newly-

diagnosed cancer cases and 40,000 cancer death in women in USA[130]. This high 

mortality rate is explicated by the histological and morphological heterogeneity of the 

disease. According to World Health Organization (WHO), the standard classification of 

breast cancer defines 18 different histological types [Table 1.1] [131, 132]. This 

histological variability contributes to the differences in prognosis and target-specific 

response in chemotherapy. Many a times these tumors offer resistance to drug treatment, 

as a consequence of which the disease relapse.  

 Subsequent studies have classified this heterogeneous group of disease into a 

spectrum of subtypes having distinct genotype and phenotype. This classification system 

is based upon presence of estrogen receptor (ER+), progesterone receptor (PR+) and 

human epidermal growth factor receptor 2 (HER2+); however, their mere absence results 

in triple negative breast cancers (ER/PR/HER2-) [133, 134]. Based on the presence of 

these receptors, patients are grouped into four major sub-groups of Luminal A (ER+ 

and/or PR+, HER2-), Luminal B (ER+ and/or PR+ , HER2+), HER2 (ER-, PR-, and 

HER2+) and triple-negative (ER-, PR-, HER2-) [135, 136]. Over last decade, several 

efforts have been sought to improve this stratification of breast cancer; however, there are 

still in the subject of controversy. Increasing shreds of evidences have substantiated the 

critical role of epigenetic deregulation in the early event of carcinogenesis and 

subsequently prompts to assess the epigenetic cause of breast cancer [108, 137]. More 

significantly, methylation signatures are regularly employed in the stratification of breast 

cancer patients in diagnosis and prognosis [138]. With recent advancement in technology 

like microarray and next generation sequencing associated with genome-wide DNA 

methylation profiling will guide new pavement in better understanding of breast cancer 

etiology [139].  

Table 1.1 Histopathological types of invasive breast carcinoma (Adapted from Weigelt et.al, 

2005) 

Histological types of invasive  

breast Carcinoma 

Frequency 10-year survival  

Rate 

Invasive ductal carcinoma 50-80% 35-50% 

Invasive lobular carcinoma 5–15% 35–50% 

Mixed type, lobular and ductal  features 4–5% 35–50% 

Tubular/invasive cribriform carcinoma 1–6% 90–100% 
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Mucinous carcinoma <5% 80–100% 

Medullary carcinoma 1–7% 50–90% 

Invasive papillary carcinoma <1–2% Unknown 

Invasive micropapillary carcinoma <3% Unknown 

Metaplastic carcinoma <5% Unknown 

Adenoid cystic carcinoma 0.1% Unknown 

Invasive apocrine carcinoma 0.3–4% Unknown 

Neuroendocrine carcinoma 2–5% Unknown 

Secretory carcinoma 0.01–0.15% Unknown 

Lipid-rich carcinoma <1–6% Unknown 

Acinic cell carcinoma 7 cases Unknown 

Glycogen-rich, clear-cell carcinoma 1–3% Unknown 

Sebaceous carcinoma 4 cases Unknown 

 

1.9 Work done so far in diagnosis of breast cancer 

The statistics of breast cancer is startling and calls for early diagnosis. Multifactorial 

etiology is characterized by constellations of risk factors. These risk factors are 

concomitant with genetic and epigenetic predispositions, loss of host immunological 

defense, viruses as well as other carcinogens. Hormonal imbalance in estrogen is 

considered to be one of the most significant promoters of carcinogenesis [140]. Despite 

the ongoing research in finding the cause of breast cancer, this avenue does not hold great 

promise in the scenario of combating this deadly disease. Besides, finding the cause, the 

most important aspect is the early diagnosis of the disease such that the prognosis for a 

cure will guide into appropriate therapeutic interventions.   

1.9.1 Methods for early diagnosis of breast cancer 

The association between survival and stage of disease diagnosis are two concomitant 

aspects in disease cure. If a patient is diagnosed in its early stage of tumor proliferation; 

an appropriate therapy and medication will lead to the long-term survival. As per the 

instruction of physician, the art of periodic breast examination preferentially in the 

patients with an increased risk (family history of breast cancer) will be judicious in early 

diagnosis and very often highly curable [141]. This early diagnosis can be associated with 

factors such as the common type of breast lesions, recurrence of such lesions, 

characteristic symptoms and family history. The most common lesions in women are 

characterized by fibrocyst, fibroadenoma, intraductal papilloma and duct ectasia while, in 
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men gynecomastia is more predominant [142]. While monthly breast examination is of 

great importance in early diagnosis, it can only identify palpable lesions. However, 

techniques based upon X-rays such as mammography or xerography can detect in the 

preclinical stage before lesions enter into the clinically palpable size. Thus, breast X-rays 

are implemented for identification of clinical lesions benign or malignant state. However, 

a great deal of concern is associated with exposure to radiation by X-rays. Moreover, 

women with high breast density are sensitive to mammography, resulting in only 24-46% 

of the detection of malignancies [143]. Similarly, Magnetic Resonance Imaging (MRI) 

has been useful in detecting aberrations associated with benign and malignant lesions but, 

its poor specificity results in unusual breast biopsies and associated uncertainties [144-

146]. Thus, the methods for early detection need to be fortified by the advent of molecular 

technologies related to cellular changes in genome or proteome. Since last decade, there 

had been a substantial advancement in biomarkers discoveries, having a decisive role in 

understanding the cellular and molecular mechanism oftransformation of the normal cell 

to a malignant state. 

1.9.2 Diagnosis based upon biological marker 

Biological markers offer a way around to the hurdles in this era of genomic medicine. 

These markers are characterized by an indicator that can measure normal biological 

process, pathogenic or pharmacological process in response to therapeutic interventions. 

It can be instigated at any stage of disease diagnosis, prognosis or predictive outcome. 

These biomarkers can also be associated with changes in the environment and are referred 

as exposure biomarkers [147]. Thus, biomarkers antecedent to the disease are influenced 

by both genetic and epigenetic variations. Further ahead, these markers can be 

implemented in the stratification of individual based upon associated risk or prognosis 

and can be a surrogate endpoint in clinical trials [148, 149]. An ideal biomarker must 

compliment with clinically relevant information ideally across multiple individuals and 

populations. Typically, a molecular marker in breast cancer are obtained from breast 

epithelial cells which include primarily ductal lavage, periareolar fine-needle aspiration, 

fine needle biopsies or core-needle biopsies [150]. Herein we elaborate about the genetic 

and epigenetic biomarker primarily DNA methyl markers known till date in breast cancer.  

1.9.3 Diagnosis based upon genetic markers 

The autosomal inheritance of dominant allele exemplifies significant predisposing factor 

in 10% of women with breast cancer. BRCA1 and BRCA2 are identified to be the most 

susceptible genes linked to germline mutation and hereditary cause in most of the women. 

Women having mutation in either of these genes are associated with cumulative lifetime 

risk of 60-80% in development of breast cancer [151]. Understanding the normal 
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biological function and regulations of these two genes will lead to the study of molecular 

basis of heredity and will provide new driving force in disease diagnosis and therapeutic 

strategy. The functional characterization of these genes constitutes the maintenance of 

genome integrity by compromising unusual loss, duplication or chromosomal 

rearrangement of DNA. The developments of breast rely upon estrogen and progesterone 

for growth, differentiation, and homeostasis [152]. The inactivation or mutation of these 

genes results in estrogen-induced DNA damage. Thus, DNA damage results in error- 

prone DNA repair leading to global genomic instability and concomitant accrual 

functionality leading to tumorigenesis. Mutation in BRCA1 and BRCA2 causes repression 

of transcriptional activity of estrogen and progesterone receptors leading to the unusual 

proliferation of the epithelial cell and altered the hormonal response. Thus, the study of 

mutations associated with BRCA1 and BRCA2 is identified to be beneficial in diagnosis 

and treatment of breast cancer patients [153, 154]. Being a caretaker of genome integrity, 

it has been recognized as a prime target for therapeutic interventions. These genes also 

unfold the risk associated with the genetic context in different populations and historical 

groups. However, the inconsistency in mutation prevalence and penetrance brings about 

controversies in understanding the risk associated with each patient [155, 156]. 

Penetrance is defined as the percentage of individuals carrying particular variant of a gene 

may be associated with risk for cancer predisposition [157, 158]. Some of these genes 

having high penetrant include the following.    

 TP53 being tumor suppressor gene plays significant role in the regulation of cell 

growth. Germline mutation associated with this gene results in a spectrum of 

malignancies including sarcoma, adrenocortical, sarcoma and leukemias. Females 

carrying TP53 have a higher frequency of malignancy and susceptibility to Li Fraumeni 

syndrome [159]. Besides, Phosphate tensin (PTEN) homologs have been identified to be 

actively participating in phosphatidylinositol-3-kinase (PI3K) phosphatase activity [160] 

[161]. However, the dysfunction associated of this gene leads to cell cycle arrest, 

apoptosis, and anomalous cell survival. Germline mutation in PTEN results in Cowden 

syndrome (CS) and is characterized by multiple hamartomas and elevated malignant 

transformation [162]. In breast cancer, 50% women at an average age of 36-46 years are 

diagnosed with CS. Frequency of this multifocal and bilateral disease has been identified 

to be elevated in patient with ductal adenocarcinoma. More than 67% of women bearing 

CS are also associated with benign breast diseases, such as adenosis, adenosis, 

fibroadenomas and apocrine metaplasia [163]. Besides genes having high penetrant, there 

are some genes associated with moderate penetrance and the risk associated varies from 

1.5 to 5. Some of these genes and the associated risk are described in the following 

section.  
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Checkpoint kinase 2 (CHEK2) encoding for serine-threonine kinase are activated 

in response to damage caused by double-stranded DNA breaks (DSBs) and transmits 

signal for the repair of the proteins and the processors in the downstream [164]. It also 

phosphorylates BRCA1, expediting its role in DNA repair. However, female carrying 

CHEK2 mutations in the homozygous state have six-fold increase in bilateral or recurrent 

breast cancer [165]. Similarly, BRCA1-associated RING domain 1 (BARD1) encodes for 

a protein having structural and functional homology with BRCA1 [166]. Mutations in 

these genes are deleterious and results in aberration in DSB repair and arrest of apoptosis. 

However, the mutation in PALB2 gene conjointly with BRCA2 interrupts in DNA repair 

mechanism, leading to tumor suppression [167]. Some of the moderate penetrate genes 

having frequent mutation includes, ATM, RAD51C, MRN complex and others [168-170].   

In short, the mutation associated with the genes mentioned above results in 

successful screening and detection of malignancy, however, the complexity associated 

with its outcome, requires clarification as to whether these mutations act as driver or 

accelerator. Thus, the selection of the appropriate biomarker for particular settings and 

cohorts is very essential. Finally we would like to say that the selection of the most 

promising biomarker for specific settings and cohorts will lead to enhanced diagnosis.  

1.9.4 Single nucleotide polymorphism in breast cancer predisposition 

Identification of genetic risk associated with the allelic polymorphism, either at a single 

locus or epistatic effect will promote in screening and stratification of breast cancer. 

Several studies have revealed the presence of SNPs in association with DNA repair genes 

(PALB2, BRIP1, CHEK2, ATM, and RAD50) which can be implemented in screening and 

stratification of breast cancer. Genome-wide studies reveals the presence of SNPs 

associated with genes and loci (LSP1, TOX3, FGFR2, TGFB1, MAP3K1, 2q35, and 8q 

loci) in Ashkenazi Jewish ancestry accounting 80-90% of hereditary breast cancer [171]. 

Similarly, studies conducted by Johnson et al. in 437 patients bearing primary breast 

cancer disclosed the presence of 25 SNPs in association with BRCA1, BRCA2, ATM, 

TP53 and CHEK2 genes. Some of these SNPs associated with high risk include; 

(rs1799950, rs4986850, rs22279945, rs16942, and rs1799966) of BRCA1 gene, 

(rs766173, rs144848, rs4987117, rs1799954, rs11571746, rs11571747, rs4987047, 

rs11571833 and rs1801426) of BRCA2 gene, (rs3218707, rs4987945, rs4986761, 

rs3218695, rs1800056, rs1800057, rs3092856, rs1800058 and rs1801673) of ATM gene, 

rs1787991 of CHEK2 gene and rs1042522 of TP53 gene [172]. Similarly, Cox et al. 

genotyped 9 SNPs and found evidence for association of rs1045485 with CASP8-D302H 

in breast cancer [173]. Stacey et al. studied approximately 300,000 SNPs in 1,600 

individuals from Iceland and reported the presence of rs13387042 and rs3803662 on 

chromosome 2q35 and 16q12 respectively [174]. 
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 Zhang et al. studied the regulatory regions of ER-α gene in Chinese population 

and identified rs379857 to be predominant in 300 breast cancer patients [175]. Similarly, 

Abbasi et al. studied 150 Iranian patients and identified 3 SNPs associated with codon 10, 

235 and 594 in ER-α gene and other being associated with codon 392 of ER- β gene 

having additive effect in development of breast cancer [176]. Hosseini et al. also reported 

the elevated expression of ERα gene and down-regulation of ERβ gene in cancer tissues, 

having a significant role in breast cancer development. Thus, SNPs regulating the 

expression of genes in breast cancer can be a potential tool for diagnosis and therapeutic 

implications. Although the success of GWAS endorses the identification of genetic 

variants asociated with diseases, however, it requires complementary approaches for 

answering the unidentified variants.  

1.9.5 DNA Methylation: An epigenetic biomarker in diagnosis of breast 

 cancer  

Several studies conducted so far elucidate the gradual transformation of methylation 

pattern in normal, pre-malignant and malignant breast tissue. This gradation in 

methylation pattern promotes in early detection and classification of breast cancer 

subtypes. Hypermethylation in the promoters region of tumor suppressor genes primarily 

in APC, CCND2, CDKN2A (p16
ink4a

), HIN-1 (SCGD3A1), NES1 and RARB are best-

described methylation in breast cancer [177-182]. Several studies disclose that aberrant 

promoter methylation is largely associated with gene silencing and dysregulation of the 

cell cycle. Recent studies have also revealed that hypermethylation in developmental and 

differentiating genes mainly HOXB13, HOXA1, and HOXA9 and PAX6 are concomitant 

with breast carcinogenesis [183, 184]. Aberrant methylation pattern in polycomb-

regulated genes is implemented in identification of basal-like cancers. Significant CpG 

hypermethylation have been reported to be associated with genes ESR1, E-cadherin, 

CCND2, 14-3-3-σ, RASSF1A andSFRP1 in both ductal carcinoma in-situ (DCIS) and 

invasive ductal carcinoma (IDC) [185-187]. Cancer-specific methylations markers in 

conjunction with methylation-specific PCR (MSP) can be successfully implemented in 

the detection of breast cancer. Evron et al. identified three-gene panel of Cyclin D2, RARβ 

and TWIST for detection of malignancy by extracting ductal fluid and lavage [180, 188, 

189]. However, Fackler et al. improvised three-panel to nine-panel of gene RASSF1A, 

TWIST, HIN1, Cyclin D2, RARβ, APC, BRCA1, BRCA2 and p16 being associated with the 

detection of malignant cells in breast cancer [190].  

 According to Knudson's two-hit model theory, complete inactivation of tumor 

suppressor gene is characterized by loss-of-function of both the copies of the gene. 

Genetic mutation and epigenetic gene silencing characterized by hypermethylation, 

synergistically leads to the deactivation of tumor suppressor genes. Some of these genes 
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under the conjoint effect are p16INK4a, APC and BRCA1 [191]. Hypermethylation of 

p16INK4A promoter results in loss of function required for human mammary epithelial 

cell growth successfully bypassing cell senescence leading to malignancy. Similarly, 

genes such as, BRCA1 and MGMT associated with DNA repair undergoes DNA 

methylation mediated inactivation fostering the malignant transformation of the 

mammary gland. More recently, genes SFRP1 and WIF1 associated with WNT oncogenic 

pathway have been also identified to be hypermethylated in primary breast tumors [192].  

 Thus, from the above study it is apparent that cells in response to carcinogenic 

stimuli aggregate anomalous methylation pattern across the promoter region of tumor 

suppressor genes and are prone to be transformed into malignant cells. Once the patient 

have been diagnosed with breast cancer, the next question arises is the survival 

probability and recurrence of this deadly diseases. These two factors can be explained in 

terms of prognosis in breast cancer.  

1.10 Work done so far in prognosis of breast cancer 

If a woman is diagnosed with breast cancer at a younger stage of fewer than 50 years, the 

chemotherapy increases their 15-years of survival rate by 10% while, in older women the 

increase is only 3%. However, the chemotherapy substantially affects the patient leading 

to a wide range of acute and long-term side effects. Many a times it is not possible to 

accurately predict the risk associated with metastasis development and progression, as a 

consequence of which adjuvant therapy leads to relapse in 40% of patients and ultimately 

that die [193]. Thus, new prognostic markers are required to assess the patients who are at 

high risk of developing metastasis.  

1.10.1    Established and recent prognostic markers 

In oncology, prognostic markers are a clinical measure that enables to elicit patient’s risk 

associated with recurrence of disease after primary treatment. These markers play a vital 

role in distinguishing patients into different risk groups for which specific treatment 

strategies can be advised during patient counseling. They also have application in 

defining the strata in clinical trials in order to ensure comparability of treatment groups. 

In breast cancer, the risk of metastasis development is characterized by the presence of 

lymph node metastasis and the loss of histopathological differentiation. The vessel 

invasion in the patients with tumour-negative axillary lymph nodes results in distant 

recurrence [194]. However, many a time’s women bearing breast tumor without holding 

the spread in lymph node develop metastasis while, those having tumour spread to the 

lymph nodes do not develop distant metastases in 10 years after local therapy. Thus, 

markers to predict the metastasis loci are in scarcity. It has also been predicted that ER+ 

breast tumors metastasize to the bone while, the invasive lobular carcinomas recur with 
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increased frequency in ovaries and gastrointestinal tract [195, 196]. These traditional 

prognostic markers can identify the risk associated with approximately 30% of patients, 

while, the remaining 70% of patients require a new set of prognostic marker to classify 

patients into high and low risk.  In order to identify the potential novel marker, it should 

be tested retrospectively in large patient cohorts along with long follow-up period. The 

conjoint multivariate analysis of established and novel marker should be done in order to 

assess its significance. Some of these metastatic prognostic markers are enlisted in Table 

1.2. Among the enlisted markers, ERBB2 (epidermal growth factor receptor 2) has raised 

attention as a plausible prognostic marker. ERBB2, proto-oncogene codes for a 

transmembrane receptor with constitutive tyrosine kinase activity. This gene is 

overexpressed in 15-30% of breast cancer patients [197]. The prognostic potential was 

evaluated by Ros and colleagues in recently published literature, including 81 studies and 

27,161 patients. Most of the studies done so far has reported that the amplification of 

ERBB2 gene is associated with prognosis of patients with axillary lymph metastasis [198]. 

The increasing evidence based upon its response to adjuvant chemotherapy and endocrine 

therapy substantiate to its finding of the potential prognostic marker. However, its weak 

prognostic determinant in lymph-node-positive breast cancer, as declared by WHO, offers 

limitations and requires adequate studies to validate its prognostic significance.  

Table 1.2.  Metastatic prognostic marker in breast cancer 

Established 

Marker 

Clinical Study Metastatic Determinant Details 

Histological 

grade 

Established Grade 1 tumor: low metastasis 

risk; grade 2: intermediate 

risk; grade 3: high-risk 

metastasis 

Grading depends 

ontumor size [199] 

Tumour size Established Tumour size < 2 cm diameter: 

low risk metastasis; Tumour 

size 2-5 cm diameter: 

Intermediate risk; Tumour size 

> 5 cm diameter: High risk 

Independent 

prognostic marker 

[200] 

Axillary lymph 

node 

Established Absence of lymph-node 

metastases: low-risk 

metastasis; Presence of lymph-

node metastases: high-risk 

metastasis 

Depends upon tumor 

size [201] 
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Angio-invasion 

 

 

Established in 

patients having 

lymph-node-

negative tumor 

Tumour gets associated with 3 

blood vessels to undergo 

metastasis 

Localized in patients 

with lymph node-

negative tumors[202] 

Steroid receptor 

expression 

Established with 

adjuvant therapy 

decision 

Low steroid level is associated 

with metastasis 

Related to 

histological grade: 

short term metastasis 

[200] 

PAI1/uPA 

protein level 

Newly 

established 

High level of uPA and PAI1 

protein: high-risk metastasis 

Independent marker 

[203] 

ERBB2 genes Established ERBB2 amplification is 

associated with metastasis 

Patients with lymph 

node + tumor[204] 

1.10.2   Gene expression pattern based prognostic markers 

 The heterogeneity was taken into consideration, and the prediction of metastatic potential 

requires concurrent analysis of wide range of markers. The introduction of microarray 

technology and next generation sequencing has enabled in genome-wide analysis of gene 

expression and the associated mutations. Unsupervised analysis of gene expression 

pattern leads to the classification of breast tumors into four distinct subgroups as Luminal 

A, Luminal B, HER2 and Triple negative (TN). The basal-like subgroups (HER2 and TN) 

bearing estrogen-negative-receptor shows high expression of cytokeratin-5 and 

cytokeratin-17 [134]. However, estrogen-positive receptor subgroup Luminal A exhibits 

high-level expression of cytokeratin-8 and cytokeratin-18 while, luminal B has low 

expression of these genes. These findings reveal that the differential gene expression 

associated with subtypes holds characteristic clinical significance and are a potential 

prognostic target for therapeutic implications [205].   

In another approach, the supervised classification of gene-expression pattern can 

predict the clinical behavior of tumors. This classification method was based on the 

expression profile of 70 genes to predict the likelihood of distant metastasis in young 

patients (< 55 years of age) having lymph-node-negative tumors [206]. The primary 

breast tumors were classified as poor prognosis and good prognosis signatures based on 

the expression profile. Poor prognosis signature comprised of the genes that convoluted 

cell cycle, invasion, metastasis, angiogenesis and signal transduction. It also included the 

genes that are exclusively expressed in the stromal cells surrounding the epithelial cells in 

the tumor. Some of these genes constituting of MMP1 and MMP9 promotes in 
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extracellular matrix (ECM) degradation and tumor invasion. The upregulation of these 

genes in stromal cells offers significant prognostic signature for breast cancer metastasis. 

Thus, multivariate analysis of gene-expression signatures holds strong prediction for 

metastasis-free survival and overall survival. During the analysis of 151 patients having 

lymph-node-negative tumors, 60% of the patients were in high metastatic risk (poor-

prognosis) while, 40% of the patients were in low metastatic risk (good prognosis). 

However, after 10 years of the follow-up period, 56% of the patients had poor-prognosis, 

and only 13% were with good prognosis [207]. Recently, studies based upon RT-PCR 

analysis of 21 genes exhibited the metastatic potential to be associated with an expression 

ratio of HIXB13 and IL17BL genes [208]. Thus, gene-expression profiling defines the 

prognostic classification of breast cancer, however, many a times the presence of 

mutations and polymorphism in the proximity of gene expression offers limitations to its 

potential prognostic significance. 

1.10.3   Analysis of mutations including single nucleotide polymorphisms 

for identification of prognostic biomarkers 

Identification of numerous breast cancer predisposition factors associated with single-

locus or epistatic effects can be largely used for breast cancer risk assessment [209]. The 

conjoint effect of multiple genetic risk loci increases the risk prediction accuracy and 

eventually upholds in developing population-based risk screening and stratification 

programs [210]. These genetic loci are associated with germline DNA variations mainly 

the SNPs and copy number variations. Several studies have demonstrated that a germline 

mutation in BRCA1 and BRCA2 genes results in a translational shift and aberrantly 

spliced site leading to premature truncation of encoded proteins [211]. However, the 

germline mutation associated with BRCA1 and BRCA2 genes are very rare, and the 

predisposition of these 2 genes could explain only 15-20% of the genetic risk in overall 

populations [212, 213]. Similarly, germline mutations associated with TP53 and PTEN 

genes exhibit moderate penetrance for breast cancer predisposition [214-216]. 

With the advancement in genotype technologies and completion of Human 

Genome, Hap Map and 1000 Genomes projects, the paradigm shift of genetic association 

with limited candidate genes has expanded to the genome-wide investigation of genetic 

variants. Thus, GWAS investigation have identified >4,500 low-penetrance SNPs 

associated with >700 different diseases or traits [217]. Studies conducted by Easton et al. 

evaluating breast cancer cases in United Kingdom have identified 4 SNPs associated with 

the genetic loci of FGFR2, TNRC9, MAP3K, and LSP1 [218]. Furthermore, Ghoussaini et 

al. conducted a large-scale replication study in European women based upon multiple 

independent breast cancer GWAS and identified 3 novel loci susceptible to breast cancer 

on chromosome 12p11, 12q24 and 21q21.While, SNPs on 12q24 and 21q21 loci were 
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strongly linked to ER+ breast cancer, SNPs located on 12p11 chromosome offered risk 

for both ER+ and ER- breast cancer [219]. More recently, the Collaborative Oncological 

Gene- Environment Study (COGS) conducted by Michailidou et al on the largest GWAS 

study constituting > 100,000 breast cancer individuals of European ancestry, identified 41 

novel loci susceptible to breast cancer susceptible located on chromosomes 1-14, 16, 18, 

19 and 22. These variants were associated with high, moderate and low penetrance genes 

and explained about 50% of the familial risk of breast cancer. Thus, the genetic loci 

harboring the risk variants included MDM4, TET2, TERT, KLF4, POU5F1B, RAD51B, 

and BABM1 genes [220]. Importantly, these results shared genetic susceptibility for 

breast, ovarian and prostate cancer, providing evidence that the development and 

progression of these hormone-related cancers share common genetic etiology. Besides, 

the identification of prognostic marker based upon genetic variants, the epigenetic 

modulation does hold large significance in the detection of the risk associated loci across 

the genome.  

1.10.4  Risk associated with DNA methylation in prognosis of breast   

 cancer  

Aberrant epigenetic regulations in breast cancer are emphasized on the molecular 

mechanism of cancer development, prediction of aggressiveness and potential epigenetic 

therapeutic implications. The investigation carried out so far is propounded on the 

identification of novel biomarkers to predict the risk associated with survival of breast 

cancer patients. There are many pieces of evidence that the hypermethylation of tumor 

suppressor genes in breast cancer plays a decisive role in cell-cycle regulation, tissue 

invasion, apoptosis, metastasis, and angiogenesis [221-224]. Thus, the aberrant 

methylation profiles of these genes are highly associated with cancer staging and 

prognosis.  

            Esteller et al., identified the significant role of BRCA1, p16, GSTP1 and CHD1 in 

tissue invasion and metastasis. In addition, ADAM23 gene responsible for cell adhesion 

process exhibited increased promoter hypermethylation [225]. Similarly, Fang et al. 

analyzed 39 primary breast tumor specimen using Infinium 27K platform identified DNA 

methylation signatures concomitant with breast cancer metastasis. The methylation 

signature of three genes, primarily, rho guanine nucleotide exchange factor (ARHGEF7), 

ALX homeobox 4 (ALX4) and RAS-protein-specific guanine nucleotide releasing factor 2 

(RASGRF2), holds strong determinant for metastasis-free survival and overall survival. In 

particular, these signatures shared common prognostic space in gliomas, colon, and breast 

cancer [226]. In another study carried by Dedeurwaerder et al., profiling 248 breast 

cancer samples recognized immune genes holding significant prognostic value. In 

particular, the promoter hypermethylation of lymphocyte transmembrane adaptor1 
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(LAX1) and CD3D genes strongly determined the survival in breast cancer subtypes 

[227]. In recent study, Conway et al. evaluated 935 CpG sites in 517 invasive breast 

tumors from Carolina Breast Cancer study. Array-based DNA methylation profiling led to 

the identification of 266 differentially methylated CpG loci associated with hormone 

receptor (HR+ and HR-), luminal A and p53 wild-type and mutant breast cancer. 

Hypermethylation of FABP3, FGF2, FZD9, GAS7, HDAC9, HOXA11, MME, PAX6, 

POMC, PTGS2, RASSF1, RBP1, and SCGB3A1 genes were associated with the CpG loci 

of HR+, luminal A and p53 wild-type breast cancer. Similarly, highly methylated loci in 

HR-, basal-like and p53 mutant tumors comprised of BCR, C4B, DAB2IP, MEST, RARA, 

SEPT5, TFF1, THY1, and SERPINA5 genes. Hypermethylated luminal-tumours were also 

enriched for homeobox and developmental genes (ASCL2, DLK1, EYA4, GAS7, HOXA5, 

HOXA9, HOXB13, IHH, IPF1, ISL1, PAX6, TBX1, SOX1, and SOX17) [228]. These 

differentially methylated genes had a substantial role in establishing and maintaining 

tumor phenotypes and clinical outcomes. Methylome sequencing in triple-negative breast 

cancer carried out by Stirzaker et al. identified distinct methylation cluster associated with 

17 differentially methylated regions holding a strong association with overall survival. 

Notably, these DMRs predominantly overlapped with conserved transcription factor 

binding regions and DNAase 1 hypersensitive regions. Of the genes enlisted, many were 

associated with WT1 (Wilson Tumour 1), WT1-AS (Antisense WT1), DMRTA1 (DMRT-

like family A1) and HOXB13 (Homeobox gene family) [229].   

 Besides, the exclusive analysis of genetic and epigenetic aberration, the integrated 

study will embark on a contextual framework for unraveling the cryptic details of 

recurrence and overall survival. Once the diagnosis and prognostic markers have been 

identified the next step follows is to identify suitable inhibitor which can minimise the 

load of this deadly disease. Herein we enlist the inhibitors that have been implemented 

against breast cancer. 

1.11 Molecular targets and inhibitors known till date for 

treatment of breast cancer 

Our therapeutic armamentarium presents several chemotherapeutic agents against breast 

cancer. However, the vast majority of patients develop resistance and eventually 

capitulate to the disease. Inhibitors targeting specific molecular target in breast cancer 

holds promise for improving clinical outcomes. The large success of lapatinib and 

trastuzumab is treating HER2-overexpression in combination with endocrine therapy 

against positive hormone receptor exemplify this [230, 231]. 
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1.11.1   Targeting genetic regulators 

Basic research concerned with the better understanding of the biology underlying the 

malignant progression of breast cancer has motivated us to identify promising molecular 

targets in breast cancer. Advancement in the modern oncology has expanded the spectrum 

of potential molecular targets. However, the intra-tumour heterogeneity in the 

microenvironment presents a biased assessment to the complete spectrum of genomic 

alterations of the corresponding cancers. The complete spectrum of targets can be 

visualised according to the cellular component targeted, namely, breast cancer cells 

[Table 1.3], breast cancer stem cells [Table 1.4] and the breast cancer tissue 

microenvironment [Table 1.5]. Most of these genetically regulated targets and the 

therapeutic agents are specific to malignant cells and possess higher therapeutic index 

than the conventional chemotherapeutics. However, toxicity is the major concern. 

Table 1.3 Targeted genetic agents against breast cancer cells 

Cellular Target Therapeutic 

Agents 

Application on Patients Clinical Study 

mTORC1/2  INK128  

 

AZD2014  

Advanced or metastatic solid 

tumors 

ER+ or advanced MBC 

Phase I  [232] 

 

Phase I    [233] 

Dual PI3K–mTOR 

 

XL765  

 

BEZ235  

 

GDC-0980  

GSK2126458  

HR+, HER2– recurrent or 

MBC 

HR+ MBC,  HER2+ locally 

advanced MBC  HER2+ MBC 

ER+ locally advanced or MBC 

Solid tumors or lymphoma 

Phase I–II   [234] 

 

Phase I        [235] 

 

Phase II      [236] 

Phase I        [235] 

Pan-PI3K  XL147  

BKM120 

GDC-0941 

HER2+, MBC, HR+, HER2 

HER2–, HR+, MBC 

ER+ locally advanced or MBC 

Phase I-II    [237] 

Phase II       [238] 

Phase II       [236] 

PI3Kα  BYL719 

GDC-0032 

Advanced solid malignancies 

Locally advanced or metastatic 

solid tumors 

Phase I        [239] 

 

Phase II       [240] 

PI3Kβ  GSK2636771 Advanced solid tumors with 

PTEN deficiency 

Phase I-II a [241] 
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AKT  MK-2206 

 

 

AZD5363 

ER+, MBC, Advanced BC 

with a PIK3CA mutation 

and/or PTEN loss 

Advanced ER+ BC 

Phase I        [242] 

 

 

Phase I       [243] 

IGF-1R  Cixutumumab 

 

Dalotuzumab 

Locally recurrent or MBC 

HER2+ previously treated BC 

ER+ BC 

Phase I-II    [244] 

 

Phase II       [241] 

Multitargeted 

FGFR  

Dovitinib 

 

E-3810 (EOS) 

HR+, HER2– BC 

Locally advanced or metastatic 

solid tumors 

Phase I-II   [245] 

 

Phase I       [246] 

MET pathway  Onartuzumab 

Foretinib 

Cabozantinib 

TNBC  

HER2+ MBC, TNBC 

HR+, HER2– BC 

Phase II     [247] 

Phase I-II  [248] 

Phase II     [249] 

Cyclin-

dependentkinase 

PD0332991 

Dinaciclib 

Seliciclib 

MBC,  HR+ advanced BC  

Metastatic TNBC 

Advanced solid tumors 

Phase I        [248] 

Phase I        [250] 

Phase I        [250] 

MAPK pathway  AZD6244 

 

GSK1120212 

TAK-733 

Locally advanced or metastatic 

solid tumors 

Advanced solid tumors 

Advanced solid tumors 

Phase I        [251] 

 

Phase I        [252] 

Phase I        [253] 

EGFR–HER3  MEHD7945A Locally advanced, or 

metastatic epithelial 

malignancies 

Phase I        [254] 

Aurora kinases  ENMD-2076 Locally advanced or metastatic 

TNBC 

Phase II       [255] 

Androgen receptor Bicalutamide 

 

Abiraterone 

 

Androgen receptor-positive, 

HR– MBC 

ER+ MBC progressing after 

letrozole or anastrozole 

Phase II       [256] 

 

Phase II       [257] 

Prolactin receptor  LFA102 Metastatic Breast Cancer  Phase I        [258] 

Table 1.4 Target agents against breast cancer stem cells 

Cellular Target Therapeutic 

Agents 

Application on Patients Clinical Study 

 γ- secretase  MK-0752 Metastatic or locally advanced Phase I      [233] 
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RO4929097 

BMS-906024 

solid tumor 

HER2– unresectable or MBC 

Advanced or metastatic solid 

tumors 

 

Phase I      [259] 

Phase I      [260] 

Delta-like ligand 4  MEDI0639 Advanced solid tumors Phase I      [261] 

Smoothened 

receptor  

XL139 

Vismodegib 

PF-04449913 

LDE225 

TAK-441 

LEQ506 

Solid tumors, Advanced or 

metastatic solid tumors 

HER2– unresectable or MBC 

Advanced or metastatic solid 

tumors 

Advanced tumours 

Advanced solid tumors 

Advanced solid tumors 

Phase I   [262] 

Phase I    [263] 

Phase I    [264] 

Phase I    [265] 

Phase I    [266] 

Phase I    [267] 

Frizzled receptor  OMP-18R5 

OMP-54F28 

Advanced or metastatic solid 

tumors 

Advanced or metastatic solid 

tumors 

Phase I    [268] 

Phase I    [245] 

β-catenin  PRI-724 Advanced solid tumors Phase I    [269] 

Porcupine  LGK974 Melanoma (except uveal), 

lobular or triple-negative BC, or 

pancreatic adenocarcinoma  

Phase I    [270] 

 

Table 1.5 Targeted Agents against breast cancer microenvironment 

Cellular  

Target 

Therapeutic 

Agents 

Application on Patients Clinical Study 

PD-1  Nivolumab 

 

AMP-224 

Locally advanced or 

metastatic solid tumors 

Advanced cancer 

Phase I   [271] 

 

Phase I   [258] 

PD-L1  BMS-936559 

MPDL3280A 

Relapsed breast cancer 

Advanced solid tumors 

Phase I   [272] 

Phase I   [244] 

Lysyl oxidase  Simtuzumab Advanced solid tumors Phase I     [273] 

Chemokine 

receptor  

PLX3397 Advanced solid tumors Phase I    [231] 
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Integrin  Cilengitide 

 

PF-04605412 

 

IMGN388 

Unresectable solid tumors, 

excluding lymphoma 

Advanced or metastatic solid 

tumors 

Advanced solid tumors 

Phase I    [274] 

 

Phase I    [246] 

 

Phase I     [225] 

Hypoxia  EZN-2968 

TH-302 

Advanced solid tumors 

Advanced solid tumors 

Phase I    [275] 

Phase I   [276] 

1.11.2  Targeting epigenetic regulators for breast cancer therapy 

Epigenetic aberrations characterized by DNA methylation, histone modifications, miRNA 

downregulation and chromatin remodeling offer new therapeutic targets in breast cancer 

[277, 278]. HDAC inhibitors have shown the reactivation of ESR1 and PGR gene 

expression in ER-negative breast cancer cells [279]. Some of these inhibitors primarily 

vorinostat, entinostat, and panobinostat have already passed through the clinical trials. 

Triple-negative breast cancer cells, when targeted with HDAC inhibitors in combination 

with aurora kinase inhibitors, enhances the antitumor activity [280, 281]. HDAC 

inhibitors also restore the sensitivity to trastuzumab through small molecule acting as 

EGFR/HER2 inhibitor [282].  Phase II trial assessing the inhibitory effect of entinostat in 

combination with exemestane in ER+ breast cancer shows reduced risk of progression of 

breast cancer [283, 284]. DNA methyltransferases inhibitors, specifically 5-azacytidine 

and decitabine have been successfully implemented in the treatment of hematological 

malignancies have also shown efficiency in treating metastatic breast cancer [285-287]. 

Transient low doses have exhibited antitumor efficacy in the in-vivo condition in a breast 

cancer xenograft model and restoration of expression of hypermethylated genes. 

Moreover, the hypermethylation of tumor suppressor genes including BRCA-1, E-

cadherin, and MASPIN are also restored in breast cancer [288]. DNMT inhibitors also 

sensitize breast cancer lines to chemotherapeutic agent doxorubicin by inducing tumor 

necrosis factor related apoptosis inducing ligand (TRAIL) [289]. Moreover, the conjoint 

effect of HDAC and DNMT inhibitors induces enhanced expression of ESR1 gene [290]. 

The ongoing research elucidates the novel combination strategies of epigenetic modifiers 

with tamoxifen, aromatase inhibitors, trastuzumab and other cytotoxic agents in breast 

cancer treatment. A number of early phase ongoing or completed clinical trials for early 

phase solid tumor diagnosis are included in table 1.6. 
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Table 1.6 Epigenetic modifiers in breast cancer 

Cellular  

Target 

Agent Application on patients Clinical Trials 

HDACs  Vorinostat 

 

Vorinostat + tamoxifen 

 

 

Vorinostat + aromatase 

 

Entinostat + exemestane 

 

 

Entinostat + Anastrozole 

 

Vorinostat + paclitaxel + 

bevacizumab  

 

Vorinostat/placebo + 

nabpaclitaxel 

+ carboplatin 

Vorinostat + ixabepilone 

 

Vorinostat + trastuzumab 

 

Vorinostat + lapatinib 

 

Advanced breast cancer, median prior chemotherapy cycles 

 

Advanced ER-positive breast cancer 

hormone-resistant 

 

Advanced ER-positive breast cancer 

 

Advanced ER-positive breast cancer, progression on prior non-

steroidal AI 

 

Primary operable triple-negative breast cancer 

 

Primary operable triple-negative breast cancer 

 

 

Advanced breast cancer 

 

 

Primary operable breast cancer, triple-negative or high-grade ER-

positive 

Advanced breast cancer 

 

Advanced HER2-positive breast cancer 

 

Phase II [291] 

 

Phase II  [292] 

 

 

Phase II   [283] 

 

Phase II   [293] 

 

 

Phase II    [294] 

 

Phase I-II  [283] 

 

 

Phase II  [295] 

 

 

Phase I  [296] 

 

Phase I-II [297] 

 

Phase I-II [298] 
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Entinostat + lapatinib 

 

Advanced solid tumors and advanced HER2-positive breast 

cancer 

Phase I-II [299] 

DNMTs  AZA single agent 

 

 

AZA + entinostat 

 

Decitabine + panobinostat 

+/− tamoxifen 

 

AZA + nab-paclitaxel 

Primary operable breast cancer “window trial”, 

a triple-negative breast cancer 

 

Advanced breast cancer: triple-negative and hormone-resistant 

 

Advanced triple-negative 

breast cancer 

 

Advanced solid tumors and breast cancer 

 

Phase II   [300] 

 

 

Phase I-II  [266] 

 

Phase II    [301] 

 

Phase I-II  [302] 
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1.11.3  Other molecular targets 

There are numerous other molecular target agents also being under clinical trial. These 

include the compounds targeting SRC complex, a tyrosine kinase regulating numerous 

oncogenic targets, primarily cell proliferation, survival, induction of angiogenesis and 

promoting cell migration or invasive phenotype (dasatinib, bosutinib, and saracatinib) 

[303-305]. Interestingly preclinical studies substantiate the conjoint effect of anti-SRC 

agents and trastuzumab. SRC complex are activated in cells despite acquired and de-novo 

trastuzumab resistance, and acts in the downstream of trastuzumab resistance which in 

turn can be pharmaceutically reversed. Similarly, HER3 has emerged as potential drug 

target candidate against U3‑1287 and MM‑121 inhibitors have been identified [306, 

307]. Targeting HER3 is of greater significance in HER2+ metastasis breast cancer, as the 

data have disclosed that the formation of HER2-HER3 dimer promotes the malignant 

progression of HER2+ breast cancer cells [308]. Another group of targeting agents 

corresponds to the androgen receptor or prolactin receptor. The inhibitors targeting these 

receptors are bicalutamide, enzalutamide and abiraterone [256]. Molecular 

characterization of triple negative breast cancer spectacles the presence of luminal 

androgen receptor subtypes. Targeting these receptors is of greater significance as it 

simulates the growth of tumor cells in context with the stimulation of WNT and HER2 

oncogenic pathway.  

Identification of genetic and epigenetic aberrations described so far has led to the 

development of targeted therapeutics in breast cancer. However, the clinical results 

obtained so far do not meet the requirement for treatment of intra-tumor heterogeneity in 

breast cancer. With the advent of next-generation sequencing techniques, the 

interrogation of large-scale genomic alterations regulating DNA methylation will 

significantly expand to the new therapeutic arsenal. On targeting the DNA 

methyltransferase enzyme (DNMTs) will cause the reversal of the differential 

methylation (hypermethylation) opening a new window to the therapeutic intervention in 

breast cancer.  

1.12 Lacuna in the understanding of the problem 

With the advent of whole genome sequencing program, several human cancers have come 

up with an explicated results that the mutated genes associated with epigenome can 

remodel the complete cellular programming leading to cancerous state. The presence of 

these associated mutations was unknown and overlooked, however the analysis of 1,000 

of cell lines by whole exome sequencing disclosed the presence of large number of 

potential mutations regulating epigenetic modifications, preferentially DNA methylation 

[309]. Genome-wide association studies (GWAS) have identified the presence of these 
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mutations in the form single nucleotide polymorphism (SNPs) holding an increased risk 

in several diseases including cancer [310]. Surprisingly, cancer associated SNPs are 

highly enriched in  the defined region of functional enhancers and alter the chromatin 

landscape [311]. Moreover, several genome-wide expression quantitative trait loci are 

linked to genetic variations and changes in gene regulations [312]. More recently, these 

genetic variants have been identified to be strongly associated with transcription factor 

binding site, there-by leading to differential gene expression. Although many studies have 

revealed allele-specific DNA methylation and gene expression related to genome 

imprinting and X-chromosome inactivation, recent studies have shown that these allele-

specific phenomena are involved in other cellular activities [313]. Notably, most of the 

allele-specific DNA methylation are strongly correlated with SNP genotypes affecting the 

binding of transcription factors and long-range chromosome structure. Conversely, the 

presence of SNPs in the vicinity of CpG site can create or delete the loci, subsequently 

influencing the binding of transcription factor and methyl-binding proteins (MBDs) [314].  

Further studies need to be associated with epigenetic variation (epigenotype), genetic 

variation (genotype) and trait or disease (phenotype) to explain the functional causality of 

diseases [Figure 1.4] [315]. Moreover, there are increasing the number of nucleosides, 

and non-nucleoside analogs being studied as anti-cancer drugs. Inhibition of DNA 

methyltransferase (DNMTs) by 5-azacytidine (Vidaza; azacitidine) and 5-Aza-2̍-

deoxycytidine (Dacogen; decitabine) have been approved by FDA for cancer treatment 

[316]. However, owing to their genotoxic effect in high dose offers limitation for further 

implementation in clinical settings. 

Ever growing evidence of epigenetic alterations characterized by DNA 

methylation in cancer, offers a chance to enhance the increased sensitivity and specificity 

in its diagnosis and therapy. Several genome-wide consortia such as 1000 Genome 

Project, IHEC, and Roadmap projects are blueprints for methylome mapping [317-319]. 

These databases constitute massive data for reference in research and clinical trial. 

Integration and management of these data from several “omics” approach mainly 

genomics, transcriptomics, and epigenomics will lead to the production of predictive 

models for identification of novel epigenetic biomarkers and signatures [Figure 1.4]. 

Moreover, combinations of hypermethylated biomarkers in breast cancer will enhance the 

sensitivity of detection and prediction of tumor progression. Implementing high-

throughput study of next generation sequencing and statistical analysis will increase in the 

characterization of cancer subtypes. Owing to the lacunae in the analysis based upon 

exclusive genetic and epigenetic aberrations, our present work elaborates the conjoint 

study of genetic and epigenetic anomalies that will be effective in diagnosis, prognosis 

and therapeutic implication in breast cancer. 
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Figure 1.4: Epigenetic and genetic aberrations synergistically regulate the cellular function 

leading   to carcinogenesis. 

1.13 Objectives 

In many instances genetic and epigenetic aberrations have been thought to be an 

independent entity relishing an active participation in carcinogenesis. However, with the 

recent outcome of complete genome sequencing of thousands of human cancer have 

resulted in an unexpected findings of many mutations that control the epigenome. Of all 

the epigenetic process, the imbalance in DNA methylation conspires with the mutation to 

drive the process of cancer development and progression. Thus, it offers a daunting 

challenge to identify a stochastic change in genome-wide DNA methylation and 

associated mutations in revealing the anomalies in breast cancer. Moreover, the active 

participation of DNA methyltransferases in differential methylation needs to be targeted 

to slow down its hyperactivity leading to therapeutic interventions. Keeping these views 

in mind, we have designed objectives as follows:  

 

1. To understand how differential allelic distribution regulates CpG methylation in 

 tumor and normal samples leading to the diagnosis of breast cancer.  

2. To decipher how single nucleotide polymorphisms affect DNA methylation at 

 nearby CpGs and impact breast cancer prognosis among individuals. 
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3. To identify novel inhibitor(s) targeting DNA methyltransferases for therapeutic  

  intervention in breast cancer. 

 The success of genome-wide association studies has been successfully 

comprehended with the epigenome-wide association studies in identification in capturing 

the disease association epigenetic variant primarily differential DNA methylation in the 

diagnosis, prognosis and therapeutic implications of breast cancer. 

1.14 Overview of this thesis 

Integration of genetic and epigenetic marks holds the key to the understanding the 

underlying biology of the complex interaction of inherited trait and environmental cues in 

the catastrophe of the deadly disease like cancer. This interplay between the two layers of 

information reveals correlation between single nucleotide polymorphism (SNPs) and the 

DNA methylation at a particular site leading to the identification of methylation 

quantitative trait loci (meQTL). In chapter 2, we begin with genotype-epitype interactions 

and the associated phenotypes in identification of diagnostic marker in breast invasive 

carcinoma (BRCA) samples obtained from TCGA database. Realizing the fact that the 

large section of cancer-related SNPs resides in the noncoding region and holds incredible 

functional impact, we look forward to identify novel diagnostic biomarkers with respect 

to the presence of these meQTLs. Once we have established a platform for diagnosis, we 

also need to analyze the longevity related to breast cancer patient survival. Chapter 3 

details about the epigenome-wide association analysis (EWAS) of the myriad of meQTLs 

in association with the risk to the survival of breast cancer patients. In our study, we 

mainly reveal the complex interplay of genetic and epigenetic variants in predisposing the 

diagnosed BRCA patients to a lethal stage. Comprehensive assessment of these risk 

variants at different stages will lead to the identification novel biomarkers in breast cancer 

prognosis. Once we have identified the biomarkers in association with diagnosis and 

prognosis, the next step follows therapeutic implications. In chapter 4, we describe the 

pharmacological manipulation of key epigenetic enzyme DNA methyltransferase in breast 

cancer reprogramming. In light of emerging concept of chemoinformatics, molecular 

docking, and simulation studies have been employed to accelerate the development of 

novel DNMT inhibitors having medicinally relevant space. The in-silico analysis has 

been comprehended by an in-vitro study to visualize the effect of the novel inhibitor 

inhibiting DNMT activity and the ability to restore the expression of silenced tumor-

suppressor gene devoid of being toxic to normal cells.  

The strategy for the effective treatment can be based upon the combinatorial 

analysis. If we can integrate candidate-altered genetic and epigenetic profile into a 

predictive model in conjunction with novel therapeutic implications, it will lead to the 

low-dose and customized high-impact treatment we seek. 
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Chapter 2 

 
To understand how differential allelic distribution 
regulates CpG methylation in tumor and normal 
samples leading to the diagnosis of breast cancer 
 

2.1 Introduction 

The susceptibility to inherit breast cancer is estimated to be 25-50% however, only 5-10% 

of cases are explained by the genetic variant in association with BRCA1, BRCA2, and 

TP53 genes [320]. In some instances, it is characterized by the conjoint effect of multiple 

genetic variant loci [321]. Thus, heredity is not the only cause for genesis in most of the 

breast cancer. It is a consequence of a gradual accumulation of mutational load, telomere 

dysfunction, and epigenetic gene silencing with developing age [322]. Exposure to 

estrogen hormone causes an anomalous change in breast epithelial stem cell subsequently 

propagating cell to divide. Besides the direct stimulation of epithelial cells development, 

growth hormone also influences stromal microenvironment for tumor cell development 

leading to profound tumor progression. During metastasis, this microenvironment is 

regulated largely by paracrine signaling between epithelial and neighboring stromal 

fibroblast [323]. This eccentricity in breast development leading to the cancerous ailment 

is affected by variability in environmental cues associated with epigenetic aberrations. 

Thus, it can be inferred that genetic variations in conjunction with epigenetic anomalies 

regulate the aberrant division of epithelial and stromal cells leading to breast cancer.   

 Elucidating the genetic and non-genetic determinants in the diagnosis of breast 

cancer is one of the principal challenges in the field of biomedical research. Despite 

GWAS discloses > 800 SNPs in several diseases, still a substantial portion of the 

causality remains enigmatic [324]. The epigenomic equivalent of GWAS characterized by 

epigenome-wide association studies (EWAS) presents novel opportunities in confounding 

the factors and follow-up influencing the disease etiology. DNA methylation is a 

significant epigenomic marker that represents a molecular phenotype that links to the 

genotype in resolving disease complexity. This variation in the genotype is characterized 

by the presence of SNPs in the vicinity of CpG sites which in turn disrupts methylation 

status at each CpG sites. These SNPs form major class of methylation quantitative trait 

loci (meQTLs) [325, 326]. It has also been reported that these SNPs are associated with 
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CpG sites within consensus sequence of methyl-CpG binding proteins; thus, it can be 

hypothesised that strategies focusing on the identification of SNPs for genotyping will 

contribute in elucidating the genetic epidemiology of breast cancer. 

 The dynamic characterization of DNA methylation facilitates the determination of 

diagnostic biomarker by considering inter and intra-individual variations. The SNPs 

associated with each CpG sites influences the methylation pattern leading to differentially 

methylated regions (DMRs) [327]. These DMRs across the healthy individual and the 

cancerous tissue helps in estimating the variance across particular CpG site located in the 

intergenic or intragenic regions. However, the loci constituting unstable methylation 

pattern are precluded as false positive hits. Nowadays reference data set consortia such as 

1000 Genome Project has been created based on the epigenomic profiles of stem cells and 

developmental somatic tissue profile from healthy individuals [138]. Systemic screening 

of these reference data set obtained from different individuals enables in identification 

and exclusion of variable CpG sites and regions facilitating in biomarker selection. 

 Methylation at any CpG site is quantified in terms of beta value that is defined as 

the ratio of intensities between methylated (M) and unmethylated (U) allele. Thus, beta 

value is given by the equation 1:  

                                           𝑏𝑒𝑡𝑎 =
max (M,0)

max(M,0)+max(U,0)+100
                               (Equation 1) 

Where, M and U codes for signal A and B produced by two different beads in Illumina 

methylation assays. Here the constant 100 has been used to normalize the beta value 

provided the value with respect to M and U are comparatively small [328]. The beta value 

of any locus range from 0 (unmethylated) to 1 (completely methylated). While, Illumina 

platform corroborates with the genome-wide association of beta values at each CpG site, 

the genotypic information with respect to allele frequency distribution can be excavated 

from Affymetrix high-throughput SNP array database. For each SNP,  the intensities of 

two alleles denoted as A and B are measured as four sets of perfect match probe from 

sense and antisense strands, denoted as +/-. The intensities are normalized by excluding 

background noise as mismatch probes (MM) [329, 330]. TCGA database repository 

supports the platform for Illumina DNA methylation 27/450 and Affymetrix genome-

wide human SNP array 6.0 data covering 33 cancer types [331]. Thus, beta value and 

genotypic details across the breast cancer and matched normal patients can be assembled 

in the identification of meQTLs as the diagnostic marker.  

 The present study unravels the combinatorial effect of meQTLs and gene 

expression in tumor growth and development. The contribution of genetic variants (SNPs) 

in regulating DNA methylation and gene expression illuminate their potential function in 

unfolding the complexity of deadly disease like cancer. Many studies conducted till date 

already discloses the significance of SNPs in the disease phenotype. Besides, targeting the 
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CpG sites in protein-coding regions, SNPs were also identified to influence the non-

coding regions mainly the promoters, introns, alternates spliced regions and the intergenic 

regions. The complete analysis is based on recently developed statistical methodology at 

R-interface, overarching the confounding paradigm of differential methylation, single 

nucleotide polymorphism and gene expression in the diagnosis of breast cancer. In 

summary, we have demonstrated the systematic assessment of methylation and expression 

data being influenced by genetic variations in breast cancer and the analysis were based 

on enriched publically accessible TCGA cohort. Thus, the combinatorial effect of 

differential methylation and gene expression will be a gateway towards the understanding 

of the underlying mechanism behind breast cancer pathogenesis. 

2.2 Materials and Methods 

2.2.1 Dataset retrieval from TCGA repository  

The Cancer Genome Atlas (TCGA) in a national research consortium spearheaded by 

National Cancer Institute (NCI) in collaboration with National Human Genome Research 

Institute (NHGRI). The database offers comprehensive profiles of cancer genomes 

through the application of high-throughput technologies, primarily microarrays and next 

generation sequencing. It is affluent with more than 6000 patients’ tumor and matched 

normal samples profiles, extending up to 37 types of genotypic and phenotypic data 

across 33 cancer types. The data generated are categorized based on data type and data 

level. This categorised data include level 1 (Raw, non-normalized), level 2 (processed 

data), level 3 (segmented/normalised) and level IV (summarised) data. These data 

integrate samples details as “TCGA barcode describing the participants and biospecimens 

(blood, tissue) [332]. We downloaded the Level-III DNA methylation and RNA seq and 

Level-1 SNP array data of breast invasive carcinoma (BRCA).  

2.2.2 Illumina 450 k DNA methylation data 

Illumina has established Infinium-based Human Methylation microarray assay for 

quantitative analysis of methylation across the genome. This high-throughput assay 

Human Methylation450 (450K) Bead Chip consists of 485,577 probes that cover 482 421 

CpG sites, 3091 non-CpG sites and 65 random SNP. The level 3 methylation normalized 

dataset for BRCA encompasses the detail for 746 tumors and 96 matched normal 

samples. Of the total, 740 tumor samples were obtained from the primary tumor, while 

remaining 6 samples pertaining to metastatic class were filtered out. Each of these 

normalized data sheets incorporated the details for genomic coordinates and beta-values 

for each CpG sites, while the associated gene information was optional. 65 non-random 

SNPs were excluded and 485,512 CpG sites were processed for further studies. These 
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methylation files were processed to interrogate the SNPs associated with each CpG loci. 

The entire set of SNPs information was based upon the Affymetrix Genome-Wide Human 

SNP Array 6.0 genotypic platform.   

2.2.3 Affymetrix SNP arrays dataset preparation  

Affymetrix system offers series of microarray platform feasible for exploring biological 

mechanisms such as genotyping, copy number variations and the differential expression, 

on the whole genomic scale. In our present study, we mainly focus on SNP based 

microarrays for high-throughput genotyping in genome-wide association studies. Level 1, 

raw SNP array data for 1076 for BRCA tumor, 137 matched normal and 975 blood 

samples were downloaded from TCGA Data Portal. Data normalization and genotype call 

for each sample were performed by “Corrected Robust Linear Model with Maximum 

likelihood distance” algorithm [333]. CRLMM algorithm estimates the genotype based 

upon two-stage hierarchical model (M) for log ratio of IA and IB (M = log2 (IA/ IB). The 

model follows the empirical Bayes approach in which the mean conditioned on genotype 

has multivariate normal distribution while the variance has an inverse gamma 

distribution. Based upon the information for mean and variance, CRLMM computes the 

posterior probabilities for each genotype given the observed log ratio M. The algorithm 

estimates the genotype using linear mixture model and for each SNP-genotype 

combination, the uncertainty parameter is corrected using HapMap samples. In order to 

process the large data set, the crlmm-package was substantiated with ff package to reduce 

memory footprint (http://cran.at.r-project.org/web/packages/ff/index.html). The algorithm 

was implemented to decode the genotype calls for SNPs as 1 (AA/Reference allele), 2 

(AB/Heterozygous allele) and 3 (BB/Alternate allele). The genotype calls at the threshold 

of 0.05 were filtered while, those having more than 25% low confidence calls was 

excluded. The complete process of data normalization and data filtering resulted in 

905,422 SNPs for further analysis.  

2.2.4 RNAseq dataset preparation 

Direct sequencing of the transcriptome by RNA-sequencing (RNA-seq) method is now 

possible with the advent of next generation technology. Sequence data from RNA-seq 

method can be used to identify (de-novo assembly of transcripts) and quantify the 

expressed transcripts. RNA-seq data also facilitates detection of transcript fusion and 

alternate splicing of isoforms. TCGA Data Portal offers enormous resource for 

identification of differentially expressed genes between different tissue types (for 

example, cancer vs. normal or different cancer types) [334]. Methodology for RNAseq 

data development involves the alignment of the fragmented transcript (short reads) to the 

reference genome. RNASeqV2 level 3 released gene expression for RNAseq were 

http://cran.at.r-project.org/web/packages/ff/index.html
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downloaded from TCGA. The dataset constitutes the details for 1056 tumor and 112 

matched normal samples. The data processing and quality control was done by Broad 

Institute TCGA workgroup [http://gdac.broadinstitute.org/]. The reference for gene 

transcript was based upon HG19 UCSC track 

(http://hgdownload.cse.ucsc.edu/downloads.html). The Map-Splice was used to do the 

alignment and the quantification was carried by RSEM [335, 336]. We downloaded the 

upper quantile normalized RSEM count estimates.  

2.2.5 R statistical programming software 

The complete statistical analysis detailed in the study was carried out at R-interface 

[http://www.R-project.org/]. R is acquainted with the substantial collection of the 

statistical algorithms for easy handling of data and well-designed extension system and 

excellent visualization platform. It constitutes several integrated modules and packages 

while, new modules can be submitted to the central repository of the Comprehensive R 

Archive Network (CRAN) or to, the Bioconductor [337].  

2.2.6 Procedure for the identification of regulatory CpG-SNP candidates 

associated with breast cancer diagnosis 

Figure 2.1 is a detailedoutline of the procedure for identification of regulatory Cp-SNP 

candidates involved in thediagnosis of breast cancer. We describe the details in the 

following steps. 



39 
 

 

Figure 2.1 Detailed outline for identification of CpG-SNP pair candidates in the diagnosis of 

breast cancer. Complete study is based upon DNA methylation, SNP-array and RNAseq dataset.  

Step 1. The “BED” format file of DNA methylation and SNP array data constituting 

485,512 CpG sites and 905,422 SNPs, respectively were prepared as an input to the 

OverlapSelect program from UCSC Kent source library. This data integration is based on 

genomic positions that find all the SNPs lying in the vicinity of the CpG sites. The 

program was used to search the neighboring SNPs of the chosen CpG site using the 

following command:  

overlapSelect -selectFmt=bed -selectRange -inRange -mergeOutput CpG.bed, SNP.bed 

output.bed. 

Note: Only unique CpG-SNP pairs were analyzed for further studies.  
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Step 2. For each of the CpG-SNP pair obtained in step 2, we extracted the corresponding 

beta value for each CpG site and the genotype with respect to each SNP genotype from 

the common patient samples (731 samples in breast cancer). We applied the Analysis of 

Variance (ANOVA) to assess the statistical significance between the beta-values and the 

neighboring genotype [338]. 

Step 3. For each of the significant CpG site obtained from Step 2 was evaluated for 

differential methylation in tumor and matched normal samples in breast cancer. The beta 

value associated with CpG site in the tumor and matched normal samples sharing 

common space (86) were assembled. The significant difference in beta-values associated 

with respect to CpG site was computed based on paired t-test. The mean beta value 

associated with each significant CpG site across the sample was calculated. All the 

significant CpG site having mean beta value across the tumor sample greater than normal 

were retained, and the remaining were filtered out.  

Step 4: For each significant SNP obtained in step 2, the frequency associated with major 

and minor allele in tumor sample were calculated using Hardy-Weinberg equation as 

follow [339]. 

𝑝2 + 2𝑝𝑞 + 𝑞2 = 1                               Equation 1 

𝑝 + 𝑞 = 1     Equation 2 

Here in the above equation  𝑝 and 𝑞 corresponds to major and minor allele, respectively. 

The respective allele frequency for each SNP in normal sample was obtained from “1000 

genome population” database (http://www.1000genomes.org/). Moreover, the differential 

allelic distribution in tumor was compared with respect to normal in order to identify the 

percentage of germline and somatic mutation associated with each SNP. 

Step 5.  Finally, the differentially methylated sites obtained from step 3 were studied for 

their effect on gene expression. Spearman correlation test was implemented to study the 

significant association between DNA methylation and gene expression in tumor and 

normal sample, respectively. The complete analysis was carried at threshold p-value of 

0.05 and correlation coefficient was computed. Moreover, the average value of expression 

of the gene associated with DNA methylation was calculated in tumor and normal 

sample. 

 

 

 

 

http://www.1000genomes.org/
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2.3 Results 

2.3.1 Interpretation of genotype, methylation and gene expression dataset 

in breast cancer 

To study the correlation between the genetic and epigenetic codes in breast cancer 

comprehensively, Affymetrix genome-wide SNP array and Illumina Methylation450 

dataset were merged for analysis. Prior to the processing of conjoint methylation and 

genotypic data, an intermediate step of pre-processing was carried out to filter non-

significant CpG site across the genome. One dimensional matrix was constructed to 

compare the overall methylation pattern associated with 485, 5512 CpG sites across 740 

tumors and 90 normal samples, respectively [Figure 2.2 a]. All the statistical parameters 

were set to compute the variance across these samples at the provided R-interface. Of the 

total 485, 5512 CpG sites, 448, 2886 CpG sites bearing zero variance across the samples 

were filtered out, and the remaining 37,2626 methylated CpG loci were processed for 

subsequent analysis. Illumina file, level 3 data substantiates β-value for given CpG site. 

Beta-value was then converted to M-value based on equation 2. M-value imparts better 

Detection and True Positive Rate (TPR) for both methylated and unmethylated CpG 

probes. Moreover, minimal threshold difference imposition enhances the performance of 

M-value in comparison to beta-value application.  

                                                              𝑀𝑖 =  𝑙𝑜𝑔2(
𝛽𝑖

1−𝛽𝑖
)                                  (Equation 2) 

The heterogeneity in methylation was processed for CpG sites positioned on each 

chromosome, and it was evident that the variation expanded profoundly in tumor samples 

to normal samples [Figure 2.3]. This hypervariability in the methylation pattern is 

characterized by the quantitative difference in aberrant methylation associated with CpG 

islands in different individual tumors. This increased variability across tumor sample was 

striking feature as it largely distinguished cancer from the normal cells. Polymorphism in 

allele distribution surrounding the CpG site may define the cause for the variation in 

methylation pattern. Thus, an integrative analysis based upon the identification of 

significant CpG-SNP pair was carried out for 731 tumor samples sharing a common 

interface for methylation and SNP array data [Figure 2.2b]. Finally, differentially 

methylated regions (DMRs) were correlated with the differential gene expression for 86 

samples constituting both methylation and RNAseq data as obtained from TCGA [Figure 

2.2a].  



42 
 

 

Figure 2.2 Venn diagram details about the BRCA dataset. (a) DNA methylation holds 

information for 740 tumors (T) and 90 matched normal (N) sample. RNAseq dataset constitutes 

details for 1156 tumor and 112 matched normal samples. There are 86 samples which share 

common space in both tumors and normal samples for DNA methylation and RNAseq dataset. (b) 

DNA methylation and SNP array datasetshare 731 tumor samples in the overlapping zone. 

 

Figure 2.3 Genome-wide variation in methylation pattern associated with each chromosome in (a) 

Tumor samples b) Matched normal samples. Variation in methylation level has been identified to 

be comparatively high in tumor in comparison to normal population.  
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2.3.2 Mapping of significant CpG-SNP pairs in the identification of 

meQTLs 

Screening of epigenomic modification at high resolution has disclosed a direct correlation 

between the underlying genetic variation and differential methylation pattern, 

subsequently defining the presence of meQTLs. In an attempt to identify SNPs 

genetically influencing methylation pattern, we integrated 905,422 SNPs and 372,626 

CpG sites using ucsc tool-overlapSelect. Distribution of CpG-SNP pairs around the CpG 

site were identified within a base interval of 100-bases and the sliding window of 50-

bases extending to the maximum boundary of 5000-bases in the upstream and 

downstream region. Beta value and the genotype associated with each CpG-SNP pairs 

were mapped across 731 samples sharing a common interface for SNP array and 

methylation data. An integrated two-dimensional matrix was generated for each CpG-

SNP across the samples, and statistically significant CpG-SNP pairs were mapped based 

upon non-parametric one-way analysis of variance “ANOVA” [340]. There were a few 

instances in which multiple SNPs were mapped to a single CpG site. Figure 2.4 shows a 

bell-shaped distribution of CpG-SNP pairs by applying a sliding window. From the 

figure, it is evident that CpG-SNP density is high across 50-bps upstream and 

downstream of CpG-site. The overlapselect file constituting 7970 CpG-SNP pairs at 50-

bps interval were evaluated for further analysis. The rationale for selecting the loci 

starting with 50-bases is to minimize the probe effect [341]. Illumina 450K methylation 

chip is identified to have a “probe effect” i.e SNP within 10bp of the CpG probe may be 

enriched in methylation quantitative loci (meQTLs). Moreover, DNA methylation locus 

are primarily associated with promoter regions (besides, inter/intra-genic regions), thus 

localization of SNP/SNPs may interfere the interaction of DNA methyltransferases 

enzyme (DNMTs) with CpG loci leading to anomalous DNA methylation [342].   

Now considering the presence cis-acting elements mainly the enhancers mostly 

localized as far 5000bp. Presence of SNPs on enhancer may deregulate its functional 

property as well as its interaction with the promoter region. Moreover, the presence SNPs 

in the vicinity of histone marks (H3K4me3, H3K9-14Ac and H3K36me3) associated with 

active promoters, enhancer and transcriptionally active regions, interferes with the DNA 

methylation distribution leading to aberrant pattern.  
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Figure 2.4 Significant distribution of CpG-SNP pairs around a given CpG site. The CpG-SNP 

density is identified to be high at 50 bases upstream and the downstream region. 

2.3.3 Identification of differentially methylated regions in tumor and 

matched normal samples 

Identification of DNA differential methylation distribution between the tumors and the 

normal cells is a landmark in understanding the processes underlying tumorigenesis. 

Studying of such differentially methylated region upholds in identification of diagnostic 

and prognostic marker. Specifically, the aberration in methylation pattern of a particular 

gene (or group of genes) is beneficial for the early detection of breast cancer and or 

stratification of tumors into subtypes. Extensive studies have been invested in identifying 

aberrantly methylated regions and correlating with tumor development or phenotype. 

However, studies done so far have focused on small sets of loci. Here, we have 

investigated the genome-wide pattern of differential methylation distribution based on a 

comprehensive study in breast cancer tissue and matched normal dataset. Localisation of 

differentially methylated regions (DMRs) have been investigated with respect to the 

polymorphism (SNPs) associated with each CpG sites. Influence of this local genetic 

variation in DNA methylation is called as cis-meQTLs. In order to examine the difference 

in methylation level in tumor with respect to normal, beta values associated with each 

7970 significant CpG sites across was analyzed based upon student t-test. The statistical 

significance was set at threshold p-value < 0.05. The significant difference in methylation 

level across 86 tumor and matched normal sample led to the identification of 997 CpG 

sites of potential interest. These regions were distributed across all 
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chromosomes. Significant distribution of 997 differentially methylated CpG sites in order 

of their chromosomal location and –log 10 p-values have been depicted in Manhattan plot 

[Figure 2.5]. The mounting p-value in the plot beyond the threshold led to the 

identification of those CpG loci holding marked difference in methylation pattern in 

tumor with respect to normal. This differential methylation pattern was a consequence of 

the variation in allelic distribution. The quantile-quantile (Q-Q) plot in terms of –log10 (p-

values) clearly depicts the association between the variable allelic distribution and 

differential methylation   [Figure 2.6]. The major and the minor allelic frequency for each 

SNP was computed in tumor and normal samples by following HWE and 1000 genome 

project of population genetics, respectively. We enlisted the top 3 CpG-SNP pairs 

strongly associated with differential methylation as; cg02058408:rs9891975, 

cg05388880:rs4421026 and cg25198340:rs17235834 [Table 2.1]. Differential 

methylation pattern in tumor with respect to normal was a consequence of difference in 

major and minor allele frequency. While the minor allele frequency associated with SNP 

rs9891975 and rs4421026 was high, elevation in major allele frequency was seen with 

respect to SNP rs17235834.  In the upcoming section, we elaborate the detailed study of 

the correlation between differential methylation, allelic distribution and the gene 

expression. 

Figure 2.5: Manhattan plot presents the association with -log10 (P-values) for each differentially 

methylated CpG sites (y-axis) in the tumor in comparison to normal samples in the order of 

chromosomal position. The red and the blue line indicates the threshold -log10 (1 × 10
–4

) and –

log10 (0.2), respectively, for genome-wide statistical significance. 
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Figure 2.6:  Quantile-Quantile (Q-Q) plot with respect to observed versus expected p-values. Q-Q 

plot of –log10 (p-values) depicts the association between differential methylation (DMRs) and the 

allelic variation associated with SNPs. The observed quantile is higher than the expected value, 

disobeying the null hypothesis. 
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Table 2.1 Allelic distribution with respect to top 3-SNPs and its effect on methylation in tumor and normal sample 

S.No. CpG ID SNP ID P-value Mean-

value 

Tumor 

Mean-

value 

Normal 

Difference Gene Allele 

Frequency 

Normal 

Allele Frequency 

Breast Cancer 

Major Minor Major Minor 

 

1 cg02058408 rs9891975 1.29E-31 0.57997 0.16217 0.41865 

 

Intergenic 

A  

 92% 

G  

 8% 

A  

4 % 

G  

96% 

 

2 cg05388880 rs4421026 1.18E-25 0.81975 0.51601 0.30373 

 

DCTD 

C 

99% 

T 

1% 

C 

0.6% 

T 

99.4% 

 

3 cg25198340 rs17235834 2.25E-45 0.84669 0.54799 0.29870 IL17RD 

G 

98% 

A 

2% 

G 

4% 

A 

96% 
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2.3.4 Establishing the correlation between allelic distribution, differential 

methylation and gene expression in the diagnosis of breast cancer 

Finally, the significant association between genetic variations and DNA methylation was 

extended to gene expression by incorporating the RNA-seq dataset. The association 

between differential methylation and gene expression was measured by Spearmen 

correlation coefficient [343]. A complete analysis was carried out for 86 samples 

overlapping with methylation and RNA-seq data set. All data were quantile normalized 

prior to analysis.  Of the total 997 significant CpG-SNP pairs influencing differential 

methylation, 713 had associated gene information while, the remaining were localized in 

the intergenic regions. The relationship between DNA methylation and gene expression 

were analysed in terms of beta values and log2-transformed fold change in gene 

expression for both tumor and normal samples.  

 From the conjoint analysis, 16 of total 713 CpG-SNP pairs showed a significant 

nominal correlation between differential methylation and gene expression. Interestingly, 3 

CpG-SNP pairs; cg08710564:rs4929917, cg08306955:rs16890134 and 

cg14482998:rs9387025 holds high negative correlation with gene expression of ST5, 

CMAH and FYN genes, respectively. Further ahead, we disintegrated the above analysis 

in order to have a clear vision of the individual factors (SNP, methylation and gene 

expression) being correlated. The variable pattern in the allelic frequency distribution is a 

remarkable feature in understanding the disease etiology. For example; major allele T of 

SNP rs4929917 was associated with increased methylation level of CpG site cg08710564. 

Major and the minor allele frequency associated with SNP rs4929917 in normal 

population was identified to be 5% and 95%, respectively while, in breast cancer the 

allelic frequency flipped to 96% and 4%, respectively [Figure 2.7a]. The difference in the 

allelic distribution led to variation in methylation pattern in tumor and normal samples. 

Methylation distribution with respect to the CpG loci cg08710564 in tumor ranged from 

65-85% and was higher than the normal sample [Figure 2.7b]. This differential 

methylation in tumor led to downregulation of ST5 gene. Based upon the spearman 

correlation analysis, we found a significant inverse correlation between differential 

methylation and fold change in mRNA expression of ST5 gene in breast cancer 

(coefficient r = -0.42, p < 0.0001) [Figure 2.8a]. An average fold change in gene 

expression in tumor with respect to normal is shown Figure 2.8b. In another example, 

very high frequency of minor allele T associated with SNP rs16890134 led to the 

differential methylation of the CpG site cg08306955. The frequency of allele “T” is 

identified to be as high as 99% in the breast cancer patients however, the frequency was 

low (1%) in the normal population [Figure 2.9a, b]. This differentially methylated CpG 
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site located at 5̍ UTR region was responsible for downregulation of CMAH gene, and the 

correlation coefficient was identified to be -0.44 at p-value < 0.0001 in tumor sample 

[Figure 2.10a]. Figure 2.10b shows the mean fold change in gene expression of CMAH 

gene in tumor and normal sample. Finally, we also identified that nearly equal distribution 

of major and minor allele can also affect methylation as well as gene expression. The 

frequency allele A and G associated with the SNP rs9387025 in breast cancer was found 

to be 57% and 43%, respectively [Figure 2.11a]. This allelic distribution in breast cancer 

was linked to the hypermethylation of CpG site cg14482998 associated with the intron 

variant of FYN gene [Figure 2.11b]. Integrated analysis of DNA methylation and FYN 

transcriptome revealed a reverse correlation between differential methylation and mRNA 

expression (r = - 033, p-value < 0.01) in tumor sample [Figure 2.12a]. Average fold 

change in gene expression in the tumor and matched normal sample is shown in Figure 

2.12b. Moreover, the genotypic distribution of these SNPs (rs4929917, rs16890134, 

rs9387025) in tumor and matched normal revealed that most of these mutations are 

germline while, only smaller percentage fall under somatic mutations [Figure 2.13]. 

 

Figure 2.7 (a) Major and minor allele frequency distribution of “C” and “T” associated with SNP 

rs4929917 in breast cancer and normal population. Major allele frequency is comparatively high 

in tumor as compared to normal sample. (b) The methylation associated with CpG site 

cg08710564 in tumor ranges from 65%-82%, while, in normal the distribution ranges from 48-

52%.  
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Figure 2.8 Spearmen correlation with respect to fold change in gene expression and DNA 

methylation in breast cancer in comparison to a normal cell. (a) Fold change in gene expression of 

ST5 gene has a negative correlation with respect to DNA methylation (cg08710564) in a breast 

cancer while, it is positive in normal sample. The correlation coefficients were identified to be -

0.42 (p < 0.0001) and 0.49 (p < 0.001), respectively. (b) Average fold change in gene expression 

of ST5 gene in tumor and normal was 6.9 and 7.4, respectively.  

 

Figure 2.9 Major and minor allele frequency distribution of “A” and “T” associated with SNP 

rs16890134 in breast cancer and normal population. Minor allele frequency is comparatively high 

in tumor in comparison to the normal samples. (b) The methylation associated with CpG site 

cg08306955 in tumor ranges from 55%-80%, while, in normal the distribution ranges from 55-

65%. 
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Figure 2.10 Spearman Correlation with respect to fold change in gene expression and DNA 

methylation in breast cancer in comparison to a normal cell. (a) Fold change in gene expression of 

CMAH gene has a negative correlation with respect to DNA methylation (cg08306955) in a breast 

cancer while, it is positive correlation in normal sample. The correlation coefficients were 

identified to be -0.44 (p < 0.0001) and 0.13 (p < 0.1), respectively. (b) Average fold change in 

gene expression of CMAH gene in tumor and normal is 5.3 and 5.7, respectively. 

 

Figure 2.11: Major and minor allele frequency distribution of “A” and “G” associated with SNP 

rs9387025 in breast cancer and normal population. Both Major allele and Minor allele holds 

nearly equal frequency in breast cancer and in the normal population. (b) The methylation 

associated with CpG site cg14482998 in tumor ranges from 78%-88%, while, in normal the 

distribution ranges from 65-75%.  

Tumor

r 
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Figure 2.12 Spearman correlation with respect to fold change in gene expression and DNA 

methylation in breast cancer in comparison to normal cells. (a) Fold change in gene expression of 

FYN gene has a negative correlation with respect to DNA methylation (cg14482998) in breast 

cancer while, it is positive correlation in normal sample. The correlation coefficients were 

identified to be -0.33 (p < 0.01) and 0.46 (p < 0.0001), respectively. (b) Average fold change in 

gene expression of FYN gene in tumor and normal is 6.2 and 6.8, respectively. 

 

Figure 2.13 Somatic and Germline Mutation: Differential genotypic analysis (Tumor with respect 

to Normal) of the SNPs (rs4929917, rs9387025, rs16890134) identified from the above studies 

shows that the mutations are inheritable (germline) in comparison to the somatic.  
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2.4 Discussion 

The inter/intra-tumor heterogeneity in breast cancer possess an important impediment to 

the targeted therapy [344-346]. Fuelled by Darwinian Theory of evolution regulating the 

disease, these variability leads to the emergence of resistance in breast cancer cells when 

being subjected to the selective pressure [347-349]. Indeed, the analysis of a cohort of 

candidate genes in population-based and in the pedigree analysis would allow in tracing 

possible clause in the pathway analysis of the specific type of cancer [350, 351]. 

Identification of common pathway associated with genetic heterogeneity would lead to 

the identification of novel targets for the early diagnosis of cancer [352-354]. 

 Comprehensive mapping of a genetic variant of the genome between individuals 

discordant for certain phenotype has revealed a plethora of SNPs having a significant 

association with the diverse phenotype, including cancer [355, 356]. Despite the success 

of GWAS in identification of variable loci in disease diagnosis, a substantial proportion 

of the causality remains inexplicable. On a similar account, epigenetics studies 

characterized by DNA methylation also provides novel insight into low-frequency drivers 

of breast cancer [357-359]. DNA methylation reflects phenotypically significant 

difference in gene transcription making the profile based diagnostic test to be more 

substantial and reproducing. However, several studies reflect that the diagnostic analyses 

based on methylations were interrupted by mutations.  

 Till date, the presence of these mutations were overlooked while, it is surprising in 

view that more than 1,000 of cell lines recently being analysed reveal the presence of 

numerous mutations being associated with epigenetic modifiers (DNA methylation) 

[309]. The fact that pinnacle of the hierarchy of genes is being regulated by the 

epigenome,, the mutations in these genes will probably affect multiple pathways in 

relevant to the cancer phenotype. Consequently, we added layer information connecting 

polymorphism and variance in gene expression. We introduced epigenetic-mediated gene 

regulation as a potential intermediate connecting genotype-phenotype association. The 

high-resolution DNA methylation data was integrated with single nucleotide 

polymorphism resulting in a catalog of genotype-epitype association for identification of 

diagnostic marker in breast cancer. 

  Taken together, the massive integration of Affymetrix SNP array data and 

Illumima 450 DNA methylation data, we identified polymorphic sites potentially 

regulating CpG methylation in breast cancer. Most of these polymorphic alleles (SNPs) 

are predominantly located in a noncoding region depicting their close association with 

epigenetic modification primarily DNA methylation and aids in understanding its 

functional significance in etiology of breast cancer. In our present study, we have mainly 

observed the cis-regulation of CpG site by the genetic variant. The genome-wide study of 



54 
 

methylation pattern across 37, 2626 CpG sites showed an extensive range of variability in 

methylation distribution in the order of the chromosome. This increased variability across 

tumor sample was striking feature as it largely distinguished cancer from the normal cells. 

The variable pattern of methylation was analyzed across 740 tumors, and 90 matched 

normal sample obtained from TCGA cohort. Of the total 485, 5512 CpG site, only 37, 

2626 methylated site displayed significance variance across the data set, was considered 

for further analysis. This variance in methylation was explained by associated SNPs in the 

vicinity of CpG site. Thus, allelic polymorphism (SNPs) having significant influence 

DNA methylation is called DNA methylation quantitative trait loci (meQTLs). The 

presence of statistically significant CpG-SNP pair around a given CpG site was 

interrogated at a base interval of 100nt with an overlapping window of 50nt extending to 

5000nt in the upstream and downstream regions. The maximum density of CpG-SNP pair 

hovered around 50-bps upstream and downstream region of each CpG site. Of the total, 

7970 CpG-SNP pairs were significantly associated with CpG site at a base interval of 50-

bps both in upstream and downstream regions. These 7970 CpG sites were further 

evaluated to identify how many of them are associated with differential methylation level 

in tumor with respect to matched normal samples. Out of the total, 997 CpG sites loci 

exhibited remarkable difference in methylation pattern. This differential methylation was 

explained by the variable allelic distribution associated with each SNPs in the vicinity of 

CpG loci. The flipping of major and minor allele frequency in breast cancer and the 

normal population was an incredible feature that explained underlying differential 

methylation in tumor and normal sample. We enlisted the top 3 SNPs; rs9891975, 

rs4421026 and rs17235834, strongly regulated methylation level of CpG sites 

cg02058408, cg05388880, and cg25198340, respectively. However, these differential 

methylated CpG sites did not have significant effect on gene expression. Therefore, in our 

subsequent analysis, we extended our study to see the effect of differential methylation on 

gene expression in tumor and normal samples. Taking SNP, DNA methylation, and gene 

expression together, we identified 16 genes being influenced by difference in the 

methylation level. However, 3 genes showed a strong negative correlation with increase 

in DNA methylation in tumor sample. In particular, we identified 3 major class of allelic 

distribution which could regulate methylation pattern which in turn affected gene 

expression. In the first case, we have the example of SNP rs4929917, where the increase 

in frequency of major allele “C” was associated with increased methylation of CpG site 

cg08710564 in tumor sample. This increase in methylation resulted into the decreased 

expression of ST5 gene. However, the increase in methylation level was associated with 

increased expression of ST5 gene in normal sample. Suppression of tumorigenicity 5 

(ST5) gene is located on chromosome 11 and has the ability to suppress tumor of Hela 

cells in nude mice [360]. This gene encoded a protein such that its C-terminal shares 
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homology with Rab 3 family of small GTP-binding proteins. This protein preferentially 

binds to SH3 domain of the c-Ablkinase and acts as a regulator of the MAPK1/ERK2 

kinase, contributes in reducing the tumorigenic phenotype in cells [361]. From the 

previous studies, it has been reported that aberrant silencing of this gene is of great risk in 

breast, lung and cervical cancer development [360-362]. In the second case, the elevation 

in minor allele frequency has been identified to be of high risk in breast cancer. The high 

frequency of minor allele “A” associated with SNP rs16890134, located in the 

downstream region causes hypermethylation of CpG site cg08306955, subsequently leads 

to down-regulation of CMAH gene in the tumor sample. Cytidine monophosphate-N-

acetylneuraminic acid hydroxylase (CMAH) gene having loci on chromosome 6 encodes 

for the sialic acid which a component of carbohydrate chains of glycol-conjugates and 

actively participates in ligand-receptor and cell to cell interactions [363, 364]. The 

carbohydrate is actively synthesized and secreted by oral and mammary carcinoma cells 

promoting to malignancy [365-368]. Finally we also identified that nearly equal 

distribution of major and minor alele can have signficant effect of differential methylation 

pattern in tumro wiith repsect to normal sampele. SNP rs9387025 having nearly equal 

allele frequency for “A” (57%) and “G” (43%) causes increase methylation level of CpG 

site cg14482998 in tumor sample. The increased methylation level resulted in decreased 

expression of FYN (tyrosine kinase) gene. The gene holds dual property of oncogene and 

tumor suppressor gene. FYN tyrosine kinase gene located on chromosome 6 has been 

reported new candidate tumor suppressor in prostate cancer and gastric cancer [369-371]. 

The SNP mentioned so far have been identified to be germline in comparison to somatic 

mutation.  

The positive correlation between DNA methylation and gene expression in the 

normal sample is condition-specific [342, 372, 373]. Several studies have established the 

concept of negative correlation between DNA methylation and gene expression at 

transcription start sites (TSSs). However, the explained concept cannot be extrapolated 

for CpGs located in the intergenic and intragenic regions. DNA methylation and gene 

transcription follows a non-linear equation. In general the DNA methylation has been 

identified to block the initiation of the transcription but not the elongation. In fact several 

inter/intragenic nucleosomes are associated with histone tri-methylation marks 

H3K36me3 which recruits DNMTs facilitating the methylation of inter/intragenic regions 

[374]. Besides, DNA methylation also regulates gene transcription by incorporating 

molecular mechanism through alternative promoter, enhancer and non-coding RNA. 

More recently, several studies have observed positive correlation between inter/intragenic 

DNA methylation and gene expression in context of cellular development, differentiation 

and in cancer cells [67, 372, 375-378].  
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Our results reveal the new findings based upon genetic variability contribute to 

differential methylation and gene expression in breast cancer. Differential expression of 

ST5, CMAH and FYN gene and the associated CpG-SNP pair will contribute to the major 

finding in the early diagnosis of breast cancer. These results will lead to the discovery of a 

novel mechanism that determine gene-specific DNA methylation and the functional 

effects of polymorphism on disease phenotypes including cancer.  
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Chapter 3 

 
To decipher how single nucleotide polymorphisms 
affect DNA methylation at nearby CpGs and 
impact breast cancer prognosis among individuals 

 

3.1 Introduction 

The variation in the gene expression transforms the cellular programming from normal to 

a diseased state. The multiple genetic circuits within a cell creates a characteristic 

signature profile of gene expression endorsing each cell a unique identity. The gene-

expression-based signatures have been successfully implemented in classifying the breast 

cancer into different subtypes [379, 380]. Similarly, approaches based upon genome-wide 

DNA methylation profiling identified breast-cancer-specific methylation signatures that 

correlate  with specific clinical outcomes [44]. In addition to the diagnostic potential, 

aberrations in DNA methylation profile regulates gene expression dictating tumor 

recurrence and overall survival in breast cancer and their subtypes [229, 381-385]. The 

prognostic potential of genes mainly FLRT2 and SFRP1 have been identified to be 

regulated by DNA methylation and are enriched in ER1/luminal B of breast cancer. 

However, the expression of specific genes linked to immune function such as CD3D, 

CD79B, CD6, HCLS1, HLA-A and lAX1 have been identified to be consistently associated 

with recurrence-free survival (RFS) and overall survival (OS) in ER2/HER22 subtypes of 

breast cancer [386-388]. Further ahead the combination of methylated genes such as 

GSTP1, FOXC1, and ABCB1 has been correlated with respect to the survival of the 

patients [389]. The downregulation of DNA methylation have been significantly 

correlated with the expression of BCAP31 and OGG1 genes and have shown significant 

association with the survival in a large cohort of breast cancer patients [390]. Besides, the 

differential methylation of CpG islands proximal to the genes regulating cell cycle and 

proliferation (HDAC4, KIF2C, Ki-67, and UBE2C), angiogenesis (BTG1, KLF5, VEGF) 
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and cell fate determination (LHX2, LXH2, OLIG2, SPRY1) possess significant prognostic 

values independent of subtypes and clinical features [391]. 

 GWAS have identified a large number of genomic variants associated with 

complex diseases, including breast cancer [356, 392, 393]. However, most of the disease-

associated genomic variants that have been reported in the literature so far are 

predominantly located in the intergenic or intronic regions of the genome [394]. 

Furthermore, numerous studies have noted that GWAS haplotypes are enriched in 

regulatory elements that are concordant with the disease phenotypes [395]. Therefore, it is 

highly likely that most of the disease-causing genomic variations act by altering gene 

regulation, such as transcription factor binding and DNA methylation, rather than directly 

affecting protein function. 

  Despite the advances in sequencing and availability of multi–omics datasets [332, 

396], finding causative and prognostic genetic variants for complex diseases, such as 

breast cancer, remains challenging. Thus, a robust method of associating genomic 

variants, such as SNPs, in regulatory regions, such as CpG islands, with corresponding 

DNA methylation alterations is required [397]. The influence of these genetic variants on 

DNA methylation level was referred to as cis-methylation quantitative trait loci (cis-

meQTLs) [342, 398]. Here, we report the joint effect of meQTLs on clinicopathological 

variables for identification of prognostic biomarkers, their clinical validity and the extent 

to which they capture the pathological difference between breast cancer prognostic groups 

using these external independent studies.  

3.2 Materials and Methods 

Details for Illumina 450K methylation, SNP array and RNAseq TCGA dataset 

incorporated in the present study have been detailed in the previous section of the 

diagnostic analysis.   

3.2.1 Clinical data 

A central premise of cancer treatment resides in deciphering the genotypic information 

into phenotypic expression. The clinicopathological data from TCGA aids in investigating 

the risk associated with polymorphism and associated phenotypic aberration. These 

clinical data have been collected by Biospecimen Core Resource (BRC) with respect to 

the participant sample.  The data are available in XML and flat file biotab format. We 

obtained the biotab file for BRCA that spanned the detail for 1035 tumor patients. The 

clinical data recapitulates; age, gender, menopause status, race and ethnicity, history of 

neoadjuvant treatment, histopathological subtypes and tumor stage corresponding to each 

patient as major details. Length of survival of each patient was measured from the date of 

treatment to the date of last follow-up or death. Vital statistics enumerated the death status 
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of breast cancer patients. Patients alive on the last follow-up date were considered as 

censored. 

3.2.2 Procedure for the identification of CpG-SNP pair associated with 

the prognosis in breast cancer 

Figure 3.1 shows an outline of the procedure for identification of regulatory CpG-SNP 

pair involved in the risk associated with the survival of breast cancer patient. We describe 

the details in the following steps. 

 

Figure 3.1 Detailed outline for identifying significant effect of CpG-SNP pair on the overall 

survival. It also includes in finding the candidate risk SNPs in the breast cancer prognosis.  The 

individual CpG sites and SNPs have also been correlated with the gene expression. This process 

utilizes DNA methylation, SNP-array, RNAseq and clinical data.  
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Step 1: In order to study the synergistic effect of methylation and the associated 

polymorphism in regulating the survival of the breast cancer patients, 660 samples 

sharing the common space between DNA methylation, SNPs and clinical dataset were 

randomly split into training and test model [Figure 3.2 a]. The caret package of R 

(http://caret.r-forge.r-project.org/) was implemented to group the ¾ of the samples (486) 

into training and ¼ (164) as testing based on the vital status of the patients from the 

clinical data [Figure 3.2 b]. 

 

Figure 3.2 (a) Venn diagram details about the DNA methylation, SNP array and clinical samples 

across the tumor patients. (b) The tumor sample overlapping across the three datasets is grouped 

into the 75% training, and 25% test set based on the vital status. 

Step 2: For each of the 7970 CpG-SNP pair located at 50-nt upstream of downstream of 

CpG site (as described in step 1 of diagnostic section), the training model was built across 

486 samples. The beta value associated with each CpG site and the variable genotype 

(AA, AB, BB) with respect to each SNP were selected as the features in the training 

model. The findings in the training model were validated across 164 samples in an 

exclusively independent test model. 

Step 3: The significant association between the beta-values or the proportion of 

methylation at each CpG site and the variable genotype associated with each SNP was 

computed based upon non-parametric one-way analysis of variance (ANOVA). Here the 

β-values were modeled as a linear function with respect to alleles (AA, AB, BB). The 

complete analysis was carried out at R-interface at threshold p-value of 0.05. Each of the 

SNP having a significant association between DNA methylation was labeled as meQTLs. 

The finding of these meQTLs in training model was validated in the test model. 
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Step 4: For each of the significant CpG-SNP pairs from step 3, we analyzed the 

significant association between beta-value with respect to each CpG and the gene 

expression. We extracted the corresponding beta-values with respect to each CpGs and 

log2-tranformed fold change in gene expression (tumor w.r.t normal) for 86 patient 

samples. The association between the DNA methylation and the fold change in gene 

expression was analysed based upon Spearman-correlation test. 

Step 5:  For each of the CpG-SNP pair from step 3, we also studied the significant effect 

of the allelic polymorphism on the gene expression. We extracted the variable genotype 

(AA, AB, BB) associated with each SNP and log2-tranformed fold change in gene 

expression.  We then applied ANOVA to assess the statistical significance between each 

SNP genotype and its neighboring gene expression [399]. Moreover, the mean fold 

change in gene expression was calculated with respect to the genotype associated with 

each SNP.  This association between the differential gene expressions with respect to 

allele was labeled as expression quantitative trait loci (eQTLs).  

Step 6: For each of the significant CpG-SNP pair (test set) from step 3, the differentially 

methylated CpG sites were assessed for the risk associated with the survival of the breast 

cancer patients. The complete analysis was based on the univariate and multivariate Cox 

Proportional Hazard (PH) model [400-402]. It is a regression model which describes the 

relation between the event incidence expressed as hazard function and a set of covariates. 

The hazard parameter is denoted by h (t) or λ (t) and is defined as the risk associated with 

the survival of the diagnosed cancer patient in a given time t. Mathematically the Cox 

Model is represented as;  

 

ℎ (𝑡) =  ℎ0(𝑡)   × exp{𝑏1𝑥1 +  𝑏2𝑥2 + ⋯ 𝑏𝑛𝑥𝑛} 

 

where, the hazard function ℎ (𝑡)  is determined by a set of n covariates (𝑥1, 𝑥2 … . . 𝑥𝑛) and 

the impact of each variable is measured by the respective coefficients (𝑏1, 𝑏1 … . . 𝑏𝑛). 

Here in the equation ℎ0 is the baseline hazard, while, ℎ (𝑡) is the hazard function variable 

over time t. The Kaplan-Meir survival curve was plotted to classify the patients into high 

and low risk, respectively.  

Step 7: Besides, the SNPs were also analysed to study their effect on overall survival. We 

extracted the variable genotype details associated with each SNP and clinical details 

including the vital status (patient alive or dead) and the date of the last follow-up. The 

training model was built for each of the SNP across 486 patients. The findings in the 

training model were validated in the test model. A complete analysis was carried out 

based on the log-rank test [403, 404]. All the significant SNPs identified in the test model 
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were subjected to multivariate Cox regression analysis to visualize their cumulative effect 

on overall survival.  

3.3 Results 

3.3.1 Identification of methylated probes or loci differing in genotypes 

In the previous section of our study, we have described the polymorphism linked to the 

CpG loci results in differential DNA methylation in tumor versus normal cells. However, 

the accumulation of genetic variations on certain chromosome remains dormant and needs 

to be excavated for identification of meQTLs linked to disease progression. In our present 

analysis, we mainly elaborate the pattern of polymorphic allele distribution (AA, AB, and 

BB) and their influence of differential methylation exclusively in breast cancer patients. 

Considering the close proximity between the genetic variability and DNA methylation, 

the comprehensive analysis of the overlapping layers expands our knowledge in 

understanding the association of genetic variability with disease etiology. Realizing the 

fact that a large portion of cancer-related SNPs ispositioned in the noncoding region holds 

substantial functional impact, the coaxial analysis of genotype-epitype interactions will 

facilitate identification of novel prognostic markers.  

 In order to determine the association of genotype-epitype interactions 

comprehensively, we integrated the high-resolution Affymetrix SNP array and Illumina 

450k DNA methylation platforms, analyzing 905,422 SNPs and 485,512 CpG sites. The 

training data set comprising of 486 samples was constructed across the CpG-SNP pairs. 

For each of the benchmark data set, its training and test were used as exclusive subsets. 

The predictive model was built in training data set and validated in the test data set 

bearing 164 samples. Based on the analysis carried out by overlapSelect tool, a total of 

7970 CpG-SNP pairs were identified at a base interval of 50bps upstream and 

downstream across given CpG loci. Of the total 7970 CpG-SNP pairs, 1820 CpG loci 

were identified to be influenced by the variable genotype resulting into differential 

methylation patterns in the predictive training model. These loci are called as methylation 

quantitative trait loci (meQTLs) and have influence the methylation pattern across the 

extended genomic regions. Out of the total 1820 meQTLs in the training model, 489 

polymorphic alleles were identified to be significantly associated with differential 

methylation in the test data set (P < 0.05). However, only 392 and 243 SNPs were 

detected to be significantly associated with differential methylation pattern at astringency 

of 0.01 and 0.001, respectively. The majority of these meQTLs were mapped to the 

intronic regions (50-60%) though a limited number were associated with synonymous 

(1.2-1.7%) or non-synonymous coding SNPs (3-4%). Some of these SNPs being 

associated with one or more CpG loci suggest that they not only influence the methylation 

status to the associated CpG loci but also affect the surroundings at very close distance. 



63 
 

Genome-wide localization of meQTLs identified in test model (p < 0.05) and their loci on 

the respective chromosome have been depicted by Manhattan plot [Figure 3.3].  

 

Figure 3.3 Dots within the Manhattan plot displays the identification of significant SNPs in the 

vicinity of CpG site leading to the meQTLs in the test model; the x-axis represents genomic 

position of SNPs, while the y-axis represents the –log p-value of the association between the 

SNPs and CpG site. The red and the blue line indicates the threshold -log10 (1 × 10
–4

) and –log10 

(0.2), respectively, for genome-wide statistical significance. 

In particular, the association of breast risk alleles, rs1570056 and rs11154883 with 

DNA methylation levels (cg18287222) of MAP3K5 gene (p < 0.001), is an interesting 

case because the gene encodes for mitogen-activated protein kinase protein that activates 

signalling cascade. The downstream protein kinases that are activated include MAPK or 

extracellular signal-regulated kinase (ERK), MAPK kinase (MKK or MEK), and MAPK 

kinase (MAPKKK). These kinases are highly conserved, and the homologs exist in yeast, 

Drosophila, and mammalian cells [405]. While, the differential distribution of major (T) 

and minor allele (C) (SNP: rs1570056) regulates the DNA methylation of the CpG site 

cg18287222 [Figure 3.4 a], the mutation in the allele G -> A associated with SNP 

rs1154883, simultaneously regulates the same CpG loci. These alleles influenced DNA 

methylation at a p-value of 5.8 x 10
-5 

(< 0.001) and 0.0002, respectively [Figure 3.4 a, b]. 

Thus, it presents an interesting fact that the alleles of the respective SNP act in a 

differential manner in regulating DNA methylation. Finally, we examined the overlap in 

regulatory variation affecting both methylation and gene expression based on RNAseq 

data. 

The differentially methylated CpG site was identified to be negatively associated 

(r = -0.53) with the expression of MAP3K5 gene at p-value < 0.01 [Figure 3.5]. We also 

tested the association of these SNPs with the expression level of the gene. The variable 
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allele associated with each SNP regulated the quantitative expression of MAP3K5 gene at 

p-value of 0.028 and 0.012 for rs1570056 and rs11154883 SNP, respectively [Figure 3.6 

a, b]. The polymorphism associated with differential mRNA expression level is referred 

to as expression quantitative trait loci (eQTLs). In summary, our result clearly 

demonstrates that the genetic variants (SNPs) significantly overlay with both meQTLs 

and eQTLs.  

 

Figure 3.4 Breast cancer risk SNP rs1570056 and rs11154883 is associated with differential CpG 

Methylation. Cis-association between the SNPs (a) rs1570056 (b) rs11154883 regulates the 

methylation of CpG site cg18287222. These SNPs have loci as an intron-variant of MAP3K5 

gene. The box plots show the distribution of the methylation levels with respect to each genotype 

category with error bars representing the 25 and 75% quantiles. 

 

Figure 3.5 Spearman Correlation with respect to fold change in gene expression and DNA 

methylation in breast cancer. (a) DNA methylation residuals at loci cg18287222 is negatively 

associated (r = -0.53) with MAP3K5 expression in breast cancer patients at p-value < 0.01. The 
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regression line (red line) depicts the linear association between DNA methylation residuals and 

gene expression residuals.  

 

Figure 3.6 Fold changes in gene expression with respect to variable genotype associated with 

SNPs   was identified to be significant at p-value of 0.028 and 0.012, respectively. (a) Fold change 

in gene expression was evaluated in the presence of SNP rs1570056. Homozygous dominant 

allele “TT” causes comparatively more downregulation in gene expression in comparison to 

heterozygous (TC) and homozygous recessive (CC) allele. (b) Fold change in gene expression is 

evaluated in the presence of SNP rs11154883. Homozygous recessive allele AA causes results in 

more downregulation in comparison to heterozygous (GA) and homozygous dominant (GG) 

allele. 

3.3.2 Prognostic potential of differentially methylated CpG sites on 

survival of breast cancer patients 

Breast cancer has displayed an increasing incidence and more importantly, the steady 

mortality rate in a past decade. While the clinical screening has attributed to the enhanced 

survival of breast cancer patient, still improvised markers are required to assess accurately 

patient prognosis at the time of diagnosis. The disease heterogeneity, limited specificity 

and the clinicopathological variables are being used in prognostication and staging of 

breast cancer. Thus, the development of complementary biomarkers with more specific 

prognostic potential will allow assessing the risk of developing recurrent and/or 

metastatic disease. We report for the first time the association between the differentially 

methylated CpG site and overall survival of breast cancer patients. Univariate and 

multivariate Cox PH regression analysis have been implemented to establish the 

prognostic potential of differentially methylated CpG sites. Of the total 1820 meQTLs, 

489 differentially methylated CpGs were identified to be significantly associated with the 

survival of breast cancer patients in the training model. The prognostic potential of these 

differentially methylated CpGs were validated in test model of 164 patients. 
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 To test the association of risk in 164 breast cancer patients for overall survival, we 

first began our analysis using univariate Cox PH model. On evaluating 489 differentially 

methylated CpGs (training model) based upon the clinicopathological variables of vital 

status and last follow-up days, 18 covariates were found to be significantly associated 

with overall survival of breast cancer patients in the test model. The most significant 

association with overall survival were observed for cg04003327 on chromosome 2q37.3 

(HR= 0.01, p = 0.003), cg14033170 on chromosome 7p15.1 near CREB5 gene (HR = 

158.94, p = 0.004) and cg00902464 on chromosome 1p21.2 (HR = 0.02, p = 0.016) 

[Table 3.1]. The risk allele associated with CpG sites cg11340537, cg00956490, 

cg04586622, and cg14033170 have already been identified in GWAS phenotypes. The 

genotypic variation associated with SNP rs2640785 has been identified to regulate the 

differential methylation of CpG site cg11340537 located in the exonic region of the 

EXPH5 gene. The missense variation (GAG -> GTG) associated with this risk allele is of 

greater significance as it is conjointly associated with differential methylation, gene 

expression and survival of breast cancer patient. A similar explanation can be associated 

with synonymous risk variant rs940453 (ATA -> ATC) that regulates methylation of CpG 

site cg00956490 and simultaneously influences ZNF775 gene expression and overall 

survival. However, the risk allele rs2384061 is an intron variant that is associated with 

CpG site cg0458662 and regulates the expression of ADCY3 gene. The SNP rs2230576 

mapped to the 3̍-UTR variant is correlated with differential methylation of CpG site 

cg05370838 and gene expression of ADMA8 gene. The differentially methylated CpG site 

holds significance in regulating the overall survival of breast cancer patients (HR= 0.008, 

p = 0.049). 

Table 3.1. Univariate analysis of differentially methylated CpGs sites, and theit associations with 

the overall survival in test model:  HR: Hazard Ratio; CI: Confidence Interval for the hazard ratio 

CpG ID  SNP ID GENE HR 95% of CI P-value 

cg04003327 rs1054641 ESPNL; SCLY 0.011948 0.00076 – 0.18 0.0032 

cg14033170 rs177595 CREB5 158.9545 3.10816 – 8129.1 0.0038 

cg00902464 rs17403618 LOC100128787 0.023795 0.00178 -  0.32 0.0167 

cg03383184 rs6988652 Intergenic 52.99806 1.4918 -  1882.7 0.0170 

cg00101629 rs6660333 KIAA1026 0.050101 0.00378 -  0.667 0.0173 

cg03521812 rs4620521 Intergenic 0.023186 0.00107 -  0.498 0.0177 

cg17378966 rs2431663 DUSP1 13.45278 1.2033 -  150.39 0.0262 

cg08937612 rs12409375 VSIG8 0.003215 2.63E-05 -  0.39 0.0270 

cg26901096 rs17444979 LOC254312 13.55016 1.32054 -  139.1 0.0292 
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cg13558682 rs9424283 LRRC47 0.024577 0.001227 -  0.49 0.0366 

cg16774160 rs3088007 HSPA12B 0.000191 2.23E-07 – 0.16 0.0384 

cg06099459 rs10505956 C12orf77 0.002645 1.64E-05 – 0.426 0.0416 

cg05370838 rs2230576 ADAM8 0.008903 0.000201 – 0.395 0.0498 

cg11340537 rs2640785 EXPH5 0.031486 0.00135 -  0.733 0.0528 

cg00956490 rs940453 ZNF775 0.001156 3.58E-06 – 0.373 0.0645 

cg04586622 rs2384061 ADCY3 0.008966 0.000116 – 0.693 0.0648 

cg00889709 rs16923085 FAM110B 0.061646 0.00400 -  0.948 0.0652 

cg14798310 rs738806 SLC2A11 ,MIF  0.000387 2.06E-07 -  0.725 0.0793 

The univariate analysis was followed by the multivariate regression model to assess the 

risk associated with 18 co-variables obtained from the univariate study. This logistic 

regression analysis led to the identification 8 differentially methylated CpGs having a 

significant association with overall survival of the breast cancer patient [Table 3.2]. 

Among these, the most substantial findings were observed for cg04003327 (HR= 0.016; 

95% of CI = 0.0003-0.86; P = 0.04), cg11340537 (HR = 0.28; 95% of CI = 0.005-14.49; 

P = 0.05) and cg00956490 (HR = 0.0005; 95% of CI = 1.36 x 10
-7

-2.44; P = 0.08). These 

8 covariates showed the clear demarcation of the patient into high (84 patients) and low 

risk (84 patients), respectively at a significant p-value of 0.04 [Figure 3.7]. Beside these 

differentially methylated CpGs, the exclusive effects of SNPs were also evaluated for 

both direct and indirect effect on overall survival of breast cancer patients. In the next 

section of our study, we explain the variable allele distribution and its association with 

survival of breast cancer patients. 
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Figure 3.7: Kaplan-Meir plot associated with differnentially methylated CpGs sites. These 

differentially methylated sites could successfully classify 164 tumor patients (test set) into high 

(84 patients) and low risk (84 patients), respectively, at p-value = 0.041. 
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Table 3.2. Summary for univariate and multivariate analysis of differentially methylated CpGs and the associations with overall risk based upon Cox 

proportional hazard model in test dataset. HR: Hazard Ratio; CI: Confidence interval for the hazard ratio. 

SNP ID CpG ID Gene Locus Univariate 

HR            95% of CI      p 

Multivariate 

HR             95% of CI           p 

rs1054641 cg04003327 ESPNL; SCLY 2q37.3 0.012    (0.001-0.18)    0.003 0.016     (0.0003-0.86)       0.04 

rs2640785 cg11340537 EXPH5 11q22.3 0.031     (0.001-0.73)      0.05 0.28       (0.005-14.49)      0.05 

rs940453 cg00956490 ZNF775 7q36.1 0.001    (3.58E-06-0.37)  0.06 0.0005   (1.36E-07-2.44)   0.08 

rs2230576 cg05370838 ADAM8 10q26.3 0.0008   (0.002- 0.39)   0 .049 0.028     (0.0001-4.5)         0.17 

rs6660333 cg00101629 KIAA1026 1p36.21 0.05       (0.003-0.66)     0.17    0.88      (0.02-37.57)          0.95 

rs177595 cg14033170 CREB5 7p15.1 158.94   (3.1-8129.07)   0.003 213       (1.7-25740)        0.028 

rs4620521 cg03521812 Intergenic 1q31.2 0.02       (0.001-0.49)    0.018 0.04     (0.001-1.8)          0.098 

rs9424283 cg13558682 LRRC47 1p36.32 0.024     (0.001-0.49)     0.036 0.336    (0.001- 101.1)      0.71 
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3.3.3 Probing the association SNPs on the survival of breast cancer 

 patients 

Genetic variation characterized by single nucleotide polymorphism offers promising 

surrogate biomarker to predict therapeutic response and prognosis in breast cancer 

patients. In the present study, we investigated the risk associated with the individual SNP 

and in cumulative fashion on the overall survival. We developed a probabilistic 

framework for predicting and prioritizing the candidate SNPs in the training data set and 

validated across test set constituting 164 samples. The complete survival analysis was 

based upon the homozygous dominant and recessive allele and heterozygous allele 

distribution available for each SNP.  

 The univariate survival analysis associated with individual SNP was based upon 

the log-rank test at threshold p-value of 0.05. Of the total 7970 CpG-SNP pair, 492 SNPs 

were significantly associated with the overall survival in the training set of breast cancer 

patient. Each individual SNP were validated in the test model. Of the total significant 

SNPs in the training set, 23 were substantially associated with survival and their 

respective p-value ranged from ≤ 0.0001− ≤ 0.05 [Table 3.3]. These SNPs had a 

variable distribution across the genome. Of the total significant SNPs in the test set, 7 

SNPs (rs2880556, rs17006586, rs876701, rs41470747, rs2967798,rs11804125, 

rs1548373) were present as an intro variant, 6 SNPs (rs12085531,rs12653167, 

rs12591432, rs940482, rs1532272) were present in the intergenic region, 3 SNPs 

(rs16943263, rs9325443,1538146) were localised in the upstream region, each of 2 SNPs 

were associated with non-coding transcript variant (rs7117026, rs10101376) and 

synonymous variant (rs17142291, rs140679) and remaining one SNP  (rs1862372) was 

associated with 5'UTR variant. Moreover, the SNPs highlighted in the table are already 

mentioned in GWAS study in relevance to cancer and other diseases. 

 The Kaplan-Meir plot for the significant SNPs having nearly equal genotypic 

frequency is displayed in Figure 3.8. While the presence of heterozygous allele “GA” 

associated with SNP rs10101376 is detrimental, the homozygous dominant allele “CC” 

and “TT” concomitant with SNP rs140679 and rs1538146 affects the survival of the 

breast cancer patient at threshold p-value of 0.05. The homozygous dominant allele “TT” 

(rs1538146) is located in the upstream of the TRPC4 gene. The transient receptor 

potential cation channel (TRCP4) gene encodes a member of a canonical subfamily of 

transient receptor potential cation channels. This encoded protein forms a non-selective 

calcium-permeable cation channel that is activated by a Gq-coupled receptor and tyrosine 

kinase. The polymorphism  associated with TRCP4 gene is deleterious, as it is conjointly 

linked with gene expression and regulates the overall survival.Similarly, the allele CC 
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associated with SNP rs1538146 regulates the expression of gamma-aminobutyric acid 

(GABA)-A receptor gene and is detrimental to breast cancer patients.  

Table 3.3. Summary of SNPs associated with overall survival of breast cancer patients using         

log-rank in test dataset. AA: Reference allele, AB: Heterozygous allele, BB: Alternate allele.  

CpG_ID SNP_ID P-value GENE A B AA AB BB 

cg11929693 rs2880556 2.29E-24 LOC340073  G T 153 9 2 

cg09939673 rs7117026 2.55E-12 DQ592890   A T 1 10 153 

cg00067528 rs17006586 1.47E-05 ATP6V1B1  C T 140 21 3 

cg01711124 rs12085531 9.05E-05 Intergenic C T 4 24 136 

cg09573435 rs1862372 0.000594 SEMA6A  C T 111 43 10 

cg22675791 rs876701 0.000627 DGKZ  A G 6 36 122 

cg20705812 rs2286218 0.001795 DLGAP2  A G 143 16 5 

cg08980697 rs41470747 0.006462 RASGEF1B  C A 1 12 151 

cg14584565 rs16943263 0.006649 LOC283761  G C 152 8 4 

cg04513214 rs12653167 0.008100 Intergenic T G 162 1 1 

cg22422090 rs2967798 0.008121 KLHL3   T A 102 44 18 

cg24310780 rs11804125 0.008351 LMX1A  G T 122 30 12 

cg03339247 rs1548373 0.013806 ZFHX3  C T 106 38 20 

cg25203310 rs10101376 0.014656 LOC286083 G A 59 47 58 

cg20214734 rs17142291 0.016161 ASB13  G A 4 9 151 

cg15179472 rs12591432 0.018465 Intergenic C T 123 33 8 

cg15461663 rs940482 0.029081 Intergenic C T 99 53 12 

cg22514112 rs1532272 0.031189 Intergenic A G 94 52 18 

cg04966682 rs140679 0.033337 GABRG3  C T 57 67 40 

cg02576753 rs140679 0.033336 GABRG3 C T 57 67 40 

cg20896197 rs9325443 0.037904 KIF20B  A C 91 59 14 

cg24540569 rs574095 0.041499 Intergenic A G 3 26 135 

cg15398976 rs1538146 0.049488 TRPC4  G T 65 54 45 
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Figure 3.8 Kaplan-Meier survival plot for SNPs: (a) rs10101376 (b) rs140679 and (c) rs1538146. 

The survival analysis has been done such that the solid black line represents homozygous 

dominant, red dotted line: heterozygous allele and solid green line for homozygous recessive 

genotype. The findings are based upon test-dataset at threshold p-value of 0.05.  

  

 Beside the log-rank test, these 23 significant SNPs were also subjected to 

univariate Cox PH regression analysis. The most significant association in the univariate 

model for survival was observed for rs7117026 located on chromosome 11p11.2 (HR= 

0.109, p < 0.001) as non-coding transcript variant of DQ582890 gene, rs1548373 at 

chromosome 16q22.3 (HR = 2.35 and p = 0.0096) as an intron variant of  ZFHX3 gene, 

rs140679 on chromosome 15q12 (HR= 0.359, p = 0.016) as non-synonymous variant of 

GABRG3 gene, rs876701 on chromosome 11p11.2 (HR= 0.371, p = 0.038) as a intron 

variant of DGKZ gene and rs41470747 at chromosome 4q21.21 (HR = 0.357, p = 0.039) 

as an intron variant of RASGEF1B gene. Additionally borderline associated risk variants 

included rs574095, rs12653167, rs2286218 and rs1538145 at threshold of p = 0.1. 

Besides SNPs rs16943263 associated with CpG loci cg14584565 (HR = 2.44 and p = 

0.17) is also identified in classifying the patients in high and low risk [Table 3.4]. 

 Finally, we performed conjoint analysis by including 23 SNPs in order to assess 

the cumulative effect of the genetic variant on overall survival. We performed the 

multivariate Cox PH regression analysis between the SNPs and clinical variance 

constituting vital status and last follow-up days. Of the total 23 variables from the log-
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rank test study, 16 SNPs were identified to be significant (test model) in grouping the 

patent into high and low risk based upon the multivariate model at threshold p-value of 

0.05 [Figure 3.9a]. However, top 9 SNPs presents clear demarcation of patients into high 

and low risk at a p-value of 0.005 [Figure 3.9b]. The delineation was such that 84 patients 

(Test sample) survived for a longer duration while the remaining 84 were prone to poor 

prognosis and had survival probability for only 8
1/2

 years. Most of these genetic variants 

are germline and have shown significant association with overall survival. Thus, the Cox 

proportional model conjointly with clinicopathological features suggests the association 

between the genetic variants and the risk in the survival of breast cancer patients which 

may also modulate the cancer prognosis. 

 

 

Figure 3.9 Kaplan-Meir curve associated with (a) top 16 SNPs, (b) top 9 SNPs (listed table 3.4) 

could classify 164 tumor patients into high (84) and low risk (84 patients) at threshold of p < 0.05 

in the test dataset.
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Table 3.4.Summary of univariate and multivariate analysis of SNPs associations with overall risk based upon Cox proportional hazard model in test 

dataset. HR: Hazard Ratio; CI: Confidence interval for the hazard ratio. 

SNP ID CpG ID Gene Locus Univariate 

HR    95% of CI      p  

Multivariate 

HR    95% of CI        p  

rs1862372 cg09573435 SEMA6A 5q23.1 1.66    (0.66-4.15)    0.28 1.15     (0.2-6.3)          0.87 

rs2880556 cg11929693 LOC340073 5q31.3 2.23    (0.5-9.8)       0.29 59.7  (2.52-14.12)    0.011 

rs1548373 cg03339247 ZFHX3 16q22.3 2.35  (1.23-4.17)    0.0096 5.99 (1.84-19.49)   0.0029 

rs12591432 cg15179472 Intergenic 15q23   1.32  (0.48-3.6)    0.59 4.50   (0.67-30.21)      0.12 

rs12653167 cg04513214 Intergenic 5p15.1   2.96  (0.95-9.24)  0.062 4.85  (0.45-52.28)       0.19 

rs16943263 cg14584565 LOC283761 15q26.1    2.44  (0.68-8.6)   0.17 0.06    (0.0007-6.6)     0.25 

rs12085531 cg01711124 Intergenic 1p36.12 0.52   (0.20-1.3)      0.17 1.4     (0.44-4.87)        0.53 

rs1538145 cg15398976 TRPC4 13q13.3 0.558   (0.29-1.07)  0.081 0.58    (0.21-1.54)     0.28 

rs41470747 cg08980697 RASGEF1B 4q21.21 0.35    (0.13-0.94)    0.039 0.38   (0.047-3.07)     0.37 

rs140679 cg04966682 GABRG3 15q12  0.359   (0.15-0.82)  0.016 0.11   (0.018-0.7)      0.019 

rs17142291 cg20214734 ASB13 10p15.1  0.56     (0.15-2.0)     0.38 11.80  (0.47-291.84)  0.13 

rs11804125 cg24310780 LMX1A 1q23.3 1.12     (0.56-2.2)      0.75 1.38     (0.34-5.47)      0.64 

rs7117026 cg09939673 DQ5982890 11p11.2 0.109  (0.03-0.3) 3 .00 X 10
-4

 0.00198(0.00003-0.12)  0.0034 

rs876701 cg22675791 DGKZ 11p11.2 0.371   (0.14-0.94)   0.038 0.29    (0.07-1.27)   0.1 
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rs574095 cg24540569 Intergenic 1p31.3 0.445   (0.19-1.0)       0.058 0.25   (0.036-1.70)     0.16 

rs2286218 cg20705812 DLGAP2 8p23.3 2.76     (0.88-8.5)    0.08 0.97     (0.05- 19.20)    0.99 
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3.4 Discussions 

Molecular understanding of inter-tumor heterogeneity is key to effective cancer treatment 

and personalized medicine. Analysis of high-throughput molecular profiling data has 

revealed the extent of inter-tumour heterogeneity in breast cancer. The identification of 

diverse levels (sub-types) of tumor heterogeneity and the most-appropriate treatment 

strategies for each sub-type is expected to radically improve the treatment practices for 

the optimal clinical management of breast cancers [406]. 

 Genome-wide association, studies have led to the identification of a large number 

of genetic variants that confer susceptibility to different types of cancers. However, the 

risk conferred by individual variant is not sufficient to uphold the individual risk 

prediction. Assessing the genetic variability by incorporating multiple SNPs into a 

predictive model could achieve improved risk discrimination that may be useful for 

prognostic stratification of breast cancer patients [407, 408]. It is often a challenge to 

assess the functional impact of non-coding genetic variants, for example, the effect of 

SNPs transcriptional activity, and the associated disease risk. It is more likely that such 

variation may indirectly influence the epigenetic regulation located in a nearby position 

(cis) or distant loci (trans). 

 Here, we have investigated the relationship between genetic variation, DNA 

methylation and gene expression, and their potential utility as prognostic biomarkers of 

breast cancer. Numerous studies have discovered the association of genetic variants with 

variation in gene expression [409-411]. To our knowledge, this is the first study where we 

have investigated the relationship between methylation quantitative trait loci (meQTLs) 

and single nucleotide polymorphism (SNPs), and their combined effect on breast cancer 

prognosis. Questions still remain for the prognostic biomarkers identified for cancer. The 

first question is that there is little overlap among numerous prognostic signatures 

generated from different studies. Another question is that most signatures generated do 

not have clear biological meanings as why these prognostic genes may affect patient 

outcome, which lead to the clinical application of such signatures still under debate. In 

this study, we developed a novel method to identify prognostic gene signatures for breast 

cancer by integrating genomic and epigenomic data. This is based on the hypothesis that 

multiple sources of evidence pointing to the same gene or pathway are likely to lead to 

reduced false positives. We also apply random resampling to reduce overfiiting noise by 

dividing samples into training and test datasets. In the current analysis, TCGA breast 

invasive carcinoma (BRCA) overlapping dataset between DNA methylation, Affymetrix 

SNP array, and clinical samples were randomly divided into two subsets based on thevital 

status obtained from clinical data. The Caret module was implemented in the random 

classification of 3/4
th

 (486) of sample into training and 1/4
th

 (164) into test subset at R-
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interface. The predictive model was trained based on certain features mainly the beta 

values and genotype associated with methylation and SNP, respectively. The robustness 

of the features were evaluated statistically in the training subset and were validated in an 

exclusive and independent test subset. The significant association between methylation 

and genotype was calculated based on one-way ANOVA at threshold p-value of 0.05. 

Each SNP encoded for variable homozygous and heterozygous genotypic (allele) 

frequency across the breast cancer samples. Localization of each SNP was interrogated at 

50-bps upstream and downstream of each CpG site. Thus, for a window size of 50-bps we 

investigated CpG-SNP pairs to enlist their statistical significance such that minimum of 

one SNP is associated with one CpG loci. This evidence of a correlation between genetic 

variant at specific loci and DNA methylation led to the identification of meQTLs. Of the 

total distribution of 7970 CpG-SNP pair in the window size of 50-bps, 1820 SNPs were 

significantly associated with differential methylation in the predictive training model. Out 

of these 1820 CpG-SNP pairs, 489 SNP were significantly correlated with differential 

methylation leading to the identification of meQTLs in the test set. These CpG-SNP pairs 

enlighten on the plausible mechanism through which SNPs have an influence on the 

phenotype. In one of the scenario, presence of SNP in the vicinity of CpG loci prevents 

the binding of CpG methyl binding proteins as a consequence of which affects DNA 

methylation [412]. In another scenario, these SNPs may affect the transcriptional 

silencing via differential DNA methylation. Indeed, it has also been reported that DNA 

methylation plays a significant role in the regulation of splicing and aids in distinguishing 

exons from introns [413, 414]. Thus, genetic variant characterized by the presence of 

SNPs in the intronic region, causes differential methylation and leads to a different, set of 

spliceosome [415]. Interestingly, we have identified CpG loci (cg18287222) that constitute 

two SNPs (rs1570056, rs11154883) located in the intronic region and affects the function 

of MAP3K5 gene. These genotypic variation associated with these SNPs regulates the 

methylation pattern in contrary manner. While the homozygous dominant allele TT with 

respect to SNP rs1570056 is responsible for hypermethylation, the homozygous recessive 

allele AA associated with rs11154883 causes increase in methylation level for the same 

CpG loci. These differential distribution landmarks the presence of specific 

meQTL.Beside overlap with meQTL, these SNPs also leads to eQTLs in the cis-

regulatory region. Thus, the meQTLs have been identified to be enriched in eQTLs. 

Moreover, MAP3K5 (Mitogen-activated protein kinase (MAPK) is an essential 

component of MAP kinase signal transduction pathway and plays a crucial role in the 

apoptosis [416, 417]. Characterizing the genetic control of methylation and its association 

with the regulation of MAP3K5 gene expression presents signature marks that can resolve 

in understanding the underlying biology behind the complex phenotype in breast cancer.   
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 The differentially methylated CpG sites obtained from above study was further 

evaluated for their association with overall survival of breast cancer patients. The high 

mortality rate associated with metastasis in breast cancer urge for the development of 

more personalized prognostic algorithms that will complement the general, clinical 

predictors. We have systematically investigated the risk associated with host-related 

breast invasive carcinoma traits that may serve as a biomarker for disease prognosis. In 

this study, we have implemented model selection framework composed of linear 

statistical techniques of univariate analysis based on log-rank test and multivariate Cox 

proportional regression model. Of the total 1820 significant CpG-SNP pair, we identified 

a comprehensive panel of 489 differentially methylated CpGs to be associated with 

overall survival in the training set based upon the the univariate regression model. 

However, 18 differentially methylated CpGs were identified as the landmark risk loci for 

overall survival in the test set. The conjoint multivariate regression analysis of these 

differentially methylated CpG sites led to the identification of 8 differentially methylated 

CpGs as promising candidates having significant prognostic potential. These noteworthy 

biomarkers clearly demarcated 164 breast cancer patients of the test sample into high and 

low risk, respectively. The most interesting fact is that the SNPs (rs2640785, rs940453, 

and rs9424283) associated with the differentially methylated CpG sites (cg11340537, 

cg00956490, and cg04586622) have been already reported in GWAS phenotypes. We 

explored the potential mechanism by which differentially methylation CpG site 

cg11340537 directs overall survival in breast cancer patients. The missense variant (GAG 

-> GTG) associated with SNP rs2640785 dictates differential methylation of CpG site 

cg11340537 and mRNA expression of EXPH5 (Exophilin 5) gene. EXPH5 gene shares 

homology with Rab-GTPase and plays a significant role in vesicle trafficking [418, 419]. 

The active participation of this gene has been reported in colorectal cancer [420]. The 

differential methylation associated with the CpG site cg14033170 also holds greater 

significance. SNP rs177595, an intron variant located in the vicinity of CpG site 

cg14033170 regulates the differential methylation and subsequently deregulates CREB5 

gene expression. CREB5 gene encodes for cAMP responsive element binding protein 5. 

Previous studies have suggested that CREB5 gene play a fundamental role in a metastatic 

signal network in colorectal cancer [421]. Moreover, it has been reported that eQTL 

associated with CREB5 gene causes colorectal, prostate and nasopharyngeal cancer [422-

424]. On a similar account, differentially methylation associated with CpG cg00956490 

holds prognostic significance. The risk variant rs940453 linked to CpG loci regulates the 

mRNA expression of ZNF775 gene. The gene encodes for zinc finger protein 775 [425]. 

It has been identified to be involved in transcriptional regulation. SNP rs2230576 is a 3̍- 

UTR variant that has been mapped to the vicinity of differential methylated CpG site 

cg05370838 and ADAM metallopeptidase domain 8 (ADAM8) gene. The differentially 



79 
 

methylated CpG site is associated with high risk in breast cancer patients. ADMA8 gene 

localised in the vicinity of the CpG site encodes for membrane-anchored protein that have 

been implicated in several biological process including cell-cell interactions, cell-matrix 

interactions and neurogenesis [426]. It has been reported that ADMA8 is aberrantly 

expressed in breast tumours, especially in triple-negative breast cancer (TNBCs). The 

aberrant expression of ADAM8 gene has been correlated with poor prognosis in breast 

cancer patients and concomitantly with increased number of circulating tumour cells and 

metastasis [427]. The anomalous expression of the ADAM8 gene is also associated with 

poor survival in colorectal, lung, gastric, pancreatic cancer, hepatocellular, 

gastrointestinal carcinoma and gliomas [428-431].    

 Studies have been done so far correlate the conjoint effect of significant CpG-SNP 

pair regulating the differential methylation and overall survival of breast cancer patients. 

Recent studies have illustrated the upshot of genetic variants in regulating the overall risk 

associated with breast cancer patients. However, the cumulative effect is still to be 

disclosed. In the next section, we detailed about the prognostic potential of individual 

SNPs and their cumulative action. In our study, we have comprehensively analyzed the 

TCGA SNP array data mapped to methylated loci and concomitantly evaluated its 

association with the breast cancer survival. Of the total 7970 CpG-SNP pair, 492 SNPs 

were predicted to be significantly associated with overall survival in the training set. 

However, the univariate analysis based upon log-rank test mapped 23 SNPs to be 

significant across the test data set. Most of these SNPs have been highlighted in GWAS-

studies. In this study, we have mainly displayed Kaplan-Meir plot for the SNP having 

higher and nearly equal allelic distribution in breast cancer population. The heterozygous 

allele “GA” associated with SNP rs10101376 is detrimental and is related to poor 

prognosis. Similarly, the homozygous dominant allele “TT” linked to rs140679 SNP 

disrupts the mRNA expression of gamma-aminobutyric acid A receptor (GABRG3) 

[432], subsequently deteriorates survival probability in breast cancer patients. The 

homozygous genetic variant “TT” of SNP rs1538146 mapped to 1349 bps upstream of 

TRPC4 gene (transient receptor potential cation channel, subfamily C) reduces the overall 

survival and has a significant prognostic determinant. The canonical transient receptor 

potential (TRPC) channels are permeable to Ca
2+

 cationic channels and regulate Ca2+ 

influx in response to G protein-coupled receptor [433].  Overexpression of TRPC4 gene 

resulting in anomalous cell proliferation have been reported in the prostate, ovarian, lung 

cancer and renal cell carcinoma [434-437]. Our findings have demonstrated the potential 

importance of assessing prognosis in breast cancer based upon the univariate model of 

SNP distribution. Finally, we assembled these SNPs to construct logistic regression model 

and evaluated their cumulative effect on overall survival of breast cancer. Of the total 23 

SNPs, 18 SNPs had significant prognostic potential and could classify 164 breast cancer 
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patient into poor prognostic (high risk) and higher prognostic group (low risk). However, 

the conjoint effect of 9 SNPs holds more clear vision on demarcation.   

 In summary, the comprehensive assessment of CpG-SNP pairs has led to the 

identification of loci that holds the risk to the overall survival of breast cancer patients. 

The novel findings are highly promising and strongly support the identification of these 

loci in the clinical visualization of breast cancer progression. Such prognostic scans at the 

genome-wide level will likely be beneficial not only for identification of novel prognostic 

biomarkers, but also will open a new horizon to the novel pathways involved in breast 

cancer progression, directing to the potential targets for more efficient treatment 

strategies. 
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Chapter 4 

To identify novel inhibitor(s) targeting DNA 
methyltransferases for therapeutic intervention of 
breast cancer 

4.1 Introduction 

The intra-tumor heterogeneity in breast cancer characterized by extended molecular 

diversity poses an important impediment [438]. Fuelled by the Darwinian evolutionary 

dynamic governance of the disease, the selective pressure of targeted therapeutics in 

breast cancer inevitably leads to the emergence of resistance in the tumor cell [439].  

Interrogation of molecular mechanisms mediating high resistance rationally guides our 

choice to combinatorial therapeutics. The systemic efforts of interrogation based upon 

synergetic profiling of genetic and epigenetic aberration will provide guidance for 

rationally selecting therapeutic strategies [440]. In the studies done so far, we have 

already predicted the close association of genetic polymorphism and DNA methylation in 

diagnosis and prognosis of breast cancer. The presence of SNPs in the vicinity of CpG 

loci largely influences the distribution of methylation pattern. This differential 

methylation distribution is mainly associated with hypermethylation of tumor suppressor 

genes in breast cancer [129]. However, the reversal of this hypermethylation by small 

molecule or inhibitors may provide novel cancer therapeutic strategies [441].  

Cellular DNA methylation is established and maintained by the complex interplay 

of a family of dedicated enzymes called DNA methyltransferases (DNMTs). Along with 

regional hypermethylation and overall hypomethylation of the genome in many cancers, it 

has been reported that the expression and activity of DNMTs are very high [442]. This 

gives a clue that DNMTs may have oncogenic potential apart from its DNA methylation 

activity thus, it has emerged as a budding anticancer drug development target. Targeting 

inhibitors to the catalytic domain of DNMTs is essential for therapeutic interventions 

[443]. Currently, the available inhibitors of DNMTs are classified into two broad groups, 

known as nucleoside and non-nucleoside analogs. The archetypal nucleoside inhibitors 

are derivatives of the cytidine nucleoside, and they inhibit DNMT activity only after 

getting incorporated into newly synthesized DNA strands and trapping the DNMTs by 

forming DNA-protein adduct [21, 443].  

This chapter is based upon published research article [444].  
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Concomitantly, the cellular levels of DNMTs are rapidly depleted leading to DNA 

demethylation and continued DNA replication. The prototypical nucleoside inhibitor 5-

azacytidine (Vidaza) is an FDA-approved drug largely used in the treatment of cancer 

[445]. 5-azacytidine being a ribose nucleoside is chemically modified to a deoxyribose 

sugar to get incorporated into DNA [446].  

However, a portion of ribose sugar gets incorporated into RNA, affecting diverse 

RNA functions including ribosome biogenesis. 5-aza-2̍-deoxycytidine (i.e., decitabine), 

deoxyribose analog of 5-azacytidine was identified as new potent inhibitor as it directly 

gets incorporated into DNA [447, 448]. It was found to be effective against 

myelodysplastic syndrome, acute myelogenous leukemia, and chronic myelogenous 

leukemia. However, the substantial toxic effect of these nucleoside inhibitors offers 

limitation to their usage in higher dose against the treatment of cancer [449].  

Another class of inhibitor constituting the non-nucleoside group directly blocks 

DNA methyltransferase activity, and it does not possess the inherent toxic property as that 

of the nucleoside inhibitors. One of such DNMT inhibitor is (–)-epigallocatechin-3-

gallate (EGCG), a tea polyphenol. However, the degradation of EGCG produces a 

substantial amount of hydrogen peroxide. H2O2 being strong oxidizing agent causes 

oxidation of DNA methyltransferases and other associated protein [450]. Other group of 

phytochemicals which belong to the category of non-nucleoside inhibitors in the 

treatment of cancer are: mahanine, a carbazole alkaloid [451]; and curcumin, a 

component of the Indian spice turmeric [452]. Many others are effective against non-

cancerous diseases. Some of them are hydralazine, antihypertensive drug [453]; procaine, 

local anesthetic [454] and procainamide, an antiarrhythmic drug [455]. SAH, the end 

product of DNA methylation reaction, and its analogs apparently have also been reported 

as selective inhibitors towards inhibition of DNA methylation [456, 457]. However, these 

inhibitors have some limitations in lieu of their specificity in inhibiting DNMTs.  

In this investigation, we report for the first time a detail view of the elementary 

interactions between non-nucleoside inhibitors and DNMTs in the active site terminal and 

thus, find out the best inhibitors. To explore the interactions between the enlisted non-

nucleoside inhibitors and DNMTs, we performed docking and simulation studies [Figure 

4.1]. Application of docking based on varying algorithms affirms the binding pattern and 

profile of a ligand. The relative binding site for all the compounds/inhibitors is chosen at 

the SAH-binding pocket of DNMT1 and DNMT3A/and of human and mouse. Molecular 

dynamics (MD) simulations analysis of the potential complexes from docking gives the 

final clue about the stability of the DNMT-inhibitor complexes. The dynamic picture of 

the complexes is determined using the time-dependent evolution of the system during the 

simulation.  
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Changes in free energies for binding (-ΔG) were determined and total energy was 

decomposed on the basis of per residue contribution. The non-covalent interactions 

constituting hydrogen bonding, van-der-Waals, and electrostatic occupancies were 

monitored throughout the docking and simulations. Moreover, the efficacy of the best-

found inhibitor is tested by in-vitro studies in invasive breast cancer cell line, MDA-MB-

231.  

 
Figure 4.1 chemical structures of non-nucleoside inhibitors against DNMTs known till date 

4.2 Materials and Methods 

4.2.1 In-silico dataset preparation, molecular docking and simulation 

studies 

4.2.1.1 Preparation of protein structure and ligand 

The X-ray crystallographic structures of human DNMT1 (PDB id: 3PTA) [458] and 

DNMT3a (PDB id: 2QRV) [459] co-crystallized with SAH at resolutions of 3.6 Å and 

2.89 Å, respectively, were retrieved from RCSB Protein Data Bank [460]. Subsequently 

the structure of mouse DNMT1 of 3.25Å (PDB: 3AV5) [461] co-crystallized with DNA 

and SAH was obtained from protein data bank. Mouse DNMT1 was used for the in-silico 
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study because it is used as an experimental model for the in-vivo study. The heteroatoms 

including SAH and zinc ion other than those present in the active site were edited using 

chimera software. The double-stranded DNA attached to human and mouse DNMT1 were 

also clipped off. The energy minimization of protein structures was done using steepest 

descent and conjugate gradient algorithm of 100 steps and step size of 0.02Å. It followed 

the addition of polar hydrogen and Gasteiger charges. The set of non-nucleoside 

inhibitors as described in Figure 4.1 was retrieved from PubChem 

(http://pubchem.ncbi.nlm.nih.gov/) and ChEBI database [462] (www.ebi.ac.uk/chebi). 

The ligand preparation was done using “Prepare ligands” protocol at Discovery Studio 

2.5. The preparation of ligand involved removal of duplicate structure, generation of the 

tautomer, isomers, Lipinski filter, change of ionization state and generating 3D structure.   

4.2.1.2 Multiple sequence alignment of DNMTs nucleotide sequence 

Multiple sequence alignments were carried out for DNMT3A/a DNMT3B/b amino acid 

sequences of human and mouse to determine the conserved amino sequence of the active 

site residues. Amino acid sequences of UniProt accession number Q9Y6K1, Q9UBC3, 

O88508, and O88509 were retrieved from Uniprot database [463] located 

at (http://www.uniprot.org/). The sequence were aligned with a window interface of 

CLUSTALW [464]. The BLOSUM62 substitution matrix [465] was used, with a gap start 

penalty of 10 and a gap extend penalty of 0.2.  

4.2.1.3 Docking protocols 

In order to generalize the ligand and protein conformation on binding accuracy, variable 

docking algorithms were employed. Each algorithm constitutes an alternative way of 

scoring and treating ligand flexibility keeping protein structure in a rigid state in order to 

reduce conformation search space. The various algorithms used for handling ligand 

flexibility constituted “Lamarckian Genetic Algorithm (LGA) (Autodock) [466] , monte-

Carlo conformational search (LigandFit) [467], descriptor matching (Glide_XP) [468] 

and molecular dynamics simulated annealing (CDOCKER) [469]. 

 Autodock 

AutoDock 3.05 is freely available software availed from Scripps Research 

Institute. Here, the inhibitors are treated as flexible ligands by modifying their rotatable 

torsions while the protein template is considered to be a rigid receptor. The minimised 

protein structures 3PTA, 2QRV and 3AV5 were used as target structures. Grid maps were 

prepared using auto grid to fix the active site of protein having specific co-ordinates and 

dimension of 40 × 40 × 40 and a resolution of 0.375 Å. Docking parameters were set as: 

number of individuals in the population (set to 150), maximum number of energy 

http://www.ebi.ac.uk/chebi
http://www.uniprot.org/uniprot/O88508
http://www.uniprot.org/uniprot/O88509
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=08887543&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.uniprot.org%252F
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evaluations (set to 2500000), maximum number of generations (set to 27000), and 

number of hybrid GA-LS runs (set to 100). 

 Glide_XP 

The protein structure was prepared using the protein preparation module of 

Schrödinger software. The co-crystallized water molecules were removed. All the 

selected ligands were assigned an appropriate bond order using the LigPrep 2.4.107 script 

and converted to .mae format (Maestro, Schrödinger, Inc.) and optimization was carried 

out by means of the OPLS_2005 force field. The Protein ligand docking studies were 

performed using Maestro 9.1.107. Parameters having default values were selected and 

docking was carried out using Glide Extra Precision (XP Glide), version 4.5.19. After the 

complete preparation of protein and ligand for docking, receptor-grid files were 

generated. Here van-der Waal radii were scaled of receptor atoms by 1Å with partial 

atomic charge of 0.25 for running the grid generation module.  

 CDOCKER 

CDOCKER is an in-house docking protocol of “Accelyrs Discovery studio”. For 

initial stage MD a softcore potential is used. Each of the structures from the MD run are 

then located and fully minimized. The solutions are then clustered according to position 

and conformation and ranked by energy. CHARMm charges are used for the protein 

structure, i.e., the param19/toph19 parameter set38 using only polar hydrogens. 

CDOCKER only allows for flexible ligand treatment. Here the docking model constitutes 

receptor in its rigid state and static protein conformation of biding site is described using 

1.0 Å grid and for every point grid, interaction energies of 20 types of probe atoms are 

calculated. The three dimensional grid is calculated such that radius of 8Å extend in all 

directions from any atom in the ligand. Subsequent to simulated annealing conformational 

search of the flexible ligand, the grid is removed minimization of all atoms of protein-

ligand is performed by fixing the coordinates of the protein using the standard all atom 

potential function with a distance dependent dielectric (RDIE). This interaction energy is 

taken as the score for the final ligand pose.  

 LigandFit 

LigandFit is another docking programme of Accelyrs Discovery Studio. It is based 

on protein minimization using steepest descent (gradient <0.1) and conjugate gradient 

algorithms (gradient <0.01) of CHARMm force field. The active site determination 

includes within 10Å radius from the centre of the bound ligand. Docking was performed 

with monte-carlo simulations using the CFF95 force field. The grid resolution was set to 

0.5Å (default), and the ligand accessible grid was defined such that the minimum distance 

between a grid point and the protein is 2.0Å for hydrogen and 2.5Å for heavy atoms. The 



86 
 

grid extends from the defined active site to a distance of 5Å in all directions. The top 10 

conformations were saved after rigid body minimizations of 1,000 steps. The scoring was 

performed using set of scoring functions (including Dock_score, -PMF, -PLP1 and –

PLP2) implemented in LigandFit module. The combination of consensus scoring 

functions was employed to obtain the most preferable output conformation. 

4.2.1.4 Molecular dynamics simulation analysis 

The molecular dynamics of the protein–inhibitor complex provides understanding to the 

flexibility associated with ligand conformational change and thus provides an insight into 

the molecular basis for the inhibition. All of the simulations were carried out using the 

GROMACS 4.5.5 package with an identical protocol [470]. The best orientation obtained 

out of docking of protein-ligand complex was used for simulation. We performed the 

simulation for ligands SAH, EGCG and procyanidin B2 and their respective binding with 

human DNMT1, DNMT3a and mouse DNMT1. Here we separated the ligands from 

protein in order to prepare protein and ligand topology file separately. We used the 

GROMOS96 43a1 force field to generate topology file for protein. The ligand topology 

file was generated using PRODRG server employing GROMOS96.1 force field [471]. 

The protein was solvated in a dodecahedron box with edges 1 nm in length using the 

explicit solvent–simple point charge model (SPC216 water molecules), which generated 

the water box. The next step followed the 5000 steps of steepest descent minimization and 

position restrained dynamics to distribute water molecule throughout in 100 ps. The 

simulation was carried out at 300 k of constant temperature and pressure of 5000 steps for 

100 ps using Nose–Hoover method (nvt) and the Parrinello–Rahman method respectively. 

Once the system was equilibrated with desired temperature and pressure, the final step 

was to release the position restraints and run production of 500000 steps for 1000ps for 

data collection.  

4.2.1.4 Evaluation of free binding energy by MM-PBSA method 

Free energy of binding was calculated using the molecular mechanics-Poisson-Boltzmann 

surface area (MM-PBSA) method implemented in Amber12 [472]. For each complex, a 

total number of 40 snapshots were taken from an interval of 50 ps from the final 5000 ps 

of the MD simulation. The MM-PBSA method and nmode module of Amber 12 were 

implemented to calculate the binding free energy of the inhibitor and the detail is 

summarized as: 

                                          ΔGb = ΔEMM + ΔGsol – TΔS,              (1) 

where, ΔGb is the binding free energy in solution consisting of the molecular mechanics 

free energy (ΔEMM) and the conformational entropy effect to binding (−TΔS) in the gas 

phase, and the solvation free energy (ΔGsol). ΔEMM was evaluated as:  

                                             ΔEMM = ΔEvdw+ ΔEele,                (2) 
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where, ΔEvdw and ΔEelestand for van der Waals and electrostatic interactions in the gas 

phase, respectively. The solvation free energy (ΔGsol) was calculated in two steps:  

                                             ΔGsol = ΔGpol + ΔGnonpol                                                (3) 

where, ΔGpol and ΔGnonpol are polar and nonpolar components of the salvation free energy, 

respectively. The ΔGsol was calculated with the PBSA module of Amber 12 suite. The 

nonpolar contribution of the solvation free energy is calculated as a function of the 

solvent-accessible surface area (SAS), as follows: 

                                             ΔGnonpol = γ (SAS) + β,                (4) 

where, the values of empirical constants γ and β were set to 0.00542 kcal, (molÅ2) and 

0.92 kcal, mol, respectively. The contributions of entropy (TΔS) to binding free energy 

can be evaluated as the sum of change in the translational, rotational, and vibrational 

degrees of freedom, as follows: 

                             ΔS = ΔStranslational + ΔSrotational + ΔSvibrational                         (5) 

TΔS was calculated using classical statistical thermodynamics and normal-mode analysis. 

4.2.1.5 Residue-inhibitor interaction decomposition  

The interaction between inhibitors and each residue of hDNMT1, DNMT3A, and 

mDNMT1 was calculated using molecular mechanics of Generalized Born Surface Area 

(MM-GBSA) decomposition process module of Amber 12 [473, 474]. The binding 

interaction of each inhibitor-residue pair was evaluated in terms of electrostatic (ΔEele) 

contribution, van der Waals (ΔEvdw) contribution in the gas phase, polar solvation (ΔGpol) 

and nonpolar solvation (ΔGnopol) contributions. 

           ΔG inhibitor-residue=ΔEele+ΔEvdw+ΔGpol+ΔGnopol    (6) 

The polar contribution (ΔGpol) to solvation energy was calculated by using the 

GB (Generalized Born) module.  

4.2.2 In-vitro analysis of gene expression, DNMT activity, and toxicity 

4.2.2.1 Reagents 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT), dimethylsulfoxide (DMSO),  

epigallocathechin-3-gallate (EGCG), procyanidin B2-3, 3'-di-O-gallate (procyanidin B2), 

S-Adenosyl-L-homocysteine (SAH)  and trypsin were purchased from Sigma-Aldrich (St 

Louis, MO, USA). Dulbecco’s modified Eagle medium (DMEM), Fetal bovine serum   

(FBS) (sterile-filtered, South American origin) were purchased from Invitrogen 

(Carlsbad, CA, USA).  

4.2.2.2  Cell culture 

Human invasive breast cancer cell line MDA-MB-231 and the immortalized human 

keratinocyte cells HaCaT were obtained from National Centre for Cell Science, Pune. 

MDA-MB-231 and HaCaT cells were maintained in DMEM supplemented with 10% 
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FBS and 100 U Penicillin and 0.1 mg Streptomycin at 37 °C in a humidified incubator 

(5% CO2). 

4.2.2.3 DNMT inhibition assay  

Cultured MDA-MB 231 cells were harvested to prepare nuclear extract according to 

standard protocol [475]. After quantification of protein by Bradford method, nuclear 

extract having 7.5 µg of protein was used to measure total DNMT activity using the 

EpiQuik DNA Methyltransferase Activity Assay Kit (Epigentek, Inc.) according to the 

manufacturer’s protocol. As per protocol, the nuclear extracts were added to the pre-

coated substrate and then AdoMet was added followed by inhibitors (EGCG and 

procyanidin B2) at varying concentrations and incubated for 2 h at 37°C. The above 

incubated nuclear extracts were exposed to capture antibody against 5-methyl cytosine for 

1 h and the detection antibody for 30 min at room temperature. Finally, developer 

solution was added, and absorbance was recorded using microplate reader 

spectrophotometer (Perkin-Elmer, Waltham, MA, USA) at 450 nm with an optional 

reference wavelength of 655 nm. The assay was conducted to identify the IC50 for the 

inhibitors against DNMT activity. The log dose response curve was plotted, and IC50 was 

calculated using the following equation.  

𝑦 = 𝐴1+
𝐴2−𝐴1

1+10(𝐿𝑂𝐺𝑥0−𝑥)𝑝 

                   IC50 = 10𝐿𝑂𝐺𝑥0 

Here A1 and A2 are bottom and top asymptote, p is the hill slope, and LOGx0 is the 

center of the curve. The graph for log dose response was plotted using GraphPad Prism 

software. 

4.2.2.4 Quantitative reverse transcription PCR (qRT-PCR) of DNMT target genes 

MDA-MB-231 cells were treated with EGCG and procyanidin B2 for 24 h at their 

respective sub-lethal concentration. Total cellular RNA was isolated with Tri Reagent 

(Sigma) according to the manufacturer’s instructions. Reverse transcriptase reactions 

were performed using Revert-Aid First Strand cDNA Synthesis Kit (Thermo Scientific) 

with 1 μg of RNA.  qRT-PCR was performed using SYBR® Green JumpStart™ Taq 

Readymix in the Realplex4Eppendorf system. The primer sequences of DNMT target and 

the three DNMT genes are enlisted in Table 4.1. Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) gene was used as an internal control.  

 

 

 

 

 



89 
 

 

Table 4.1 Primer sequences of DNMT target and DNMT genes. 

Gene name Primers sequence 
Amplicon 

size (bp) 

E-cadherin F 5’-CGAGAGCTACACGTTCACGG-3’ 

R 5’-GGGTGTCGAGGGAAAAATAGG-3’ 

119 

Maspin F 5’-GGAATGTCAGAGACCAAGGGA-3’ 

R 5’-GGTCAGCATTCAATTCATCCCTT-3’ 

139 

BRCA1 F 5’-ACAGCTGTGTGGTGCTTCTGTG-3’ 

R 5’-CATTGTCCTCTGTCCAGGCATC-3’ 

107 

DNMT1 

 

F 5′-GGCTGAGATGAGGCAAAAAG-3′ 

R 5′-ACCAACTCGGTACAGGATGC-3′ 

112 

DNMT3A 

 

F  5′-TATTGATGAGCGCACAAGAGAGC-3′ 

R 5′-GGGTGTTCCAGGGTAACATTGAG-3′ 

111 

DNMT3B F 5′-AATGTGAATCCAGCCAGGAAAGGC-3′ 

R  5′-ACTGGATTACACTCCAGGAACCGT-3′ 

191 

GAPDH F 5′-GGAGCGAGATCCCTCCAAAAT-3′ 

R 5′-GGCTGTTGTCATACTTCTCATGG-3′ 

197 

4.2.2.5 Evaluation of cytotoxicity of SAH, EGCG and procyanidin B2 

The cytotoxicity of SAH, EGCG and procyanidin B2 was evaluated in both MDA-MB-

231 and HaCaT cells by colorimetric MTT assay. In brief, the cells in the logarithmic 

phase were plated in 96-well flat-bottom culture plates at a density of 4000 cells/well and 

treated with SAH, EGCG and procyanidin B2 at six different concentrations for 24 h. The 

cytotoxic effect of SAH, EGCG and procyanidin B2 was determined by measuring the 

absorbance intensity of formed formazan solution at 595 nm by using microplate reader 

spectrophotometer (Perkin-Elmer, Waltham, MA, USA).  Water in case of SAH and 

DMSO (0.01%) in case of EGCG and procyanidin B2 was used in the control treatment. 

All the experiments were done in triplicate, and the cell viability was determined by 

percentage at varying concentration of drugs. 

4.2.2.6 Statistical analysis 

The statistical significance of the above result was analyzed using Student’s t-test by 

SPSS software. Data are expressed as a mean ± standard deviation. The significant 

difference in IC50, LC50 and gene expression between two groups (EGCG and procyanidin 

B2 treatment) was computed using one-way ANOVA, and the p-value was evaluated at 

the threshold of 0.05. 
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4.3 Results 

Till date, many non-nucleoside inhibitors of DNMTs have been identified. We have 

enlisted some of them through a literature survey and taken into consideration for this 

study [Figure 4.1]. Several experimental analyzes depict the interaction of specific non-

nucleoside inhibitor of the target DNMT enzyme; however, the comparative analysis of 

the known non-nucleoside inhibitors was not done prior to our present work. We 

investigated to identify which among these inhibitors is best in inhibiting DNMTs 

activity, including both DNMT1 and DNMT3a. Our results obtained byanalyzing the 

existing inhibitors and their analogsare supporting procyanidin B2, a novel phytochemical 

to be the best effective in reducing DNMT activity. The efficiency of ligands has been 

analyzed by in-silico and in-vitro experiments. In-silico analyzes involve the ligand 

interaction with DNMTs at both static and dynamic conditions. The in-vitro study 

includes cell viability assay, relative gene expression study on the application of different 

drugs of varying concentration and identification of drug concentration at which it 

reduces DNMT activity to 50%. A detailed report is presented below. 

4.3.1 Comparison of active site loop of DNMT3A/a and DNMT3B/b 

Figure 4.2a shows the sequence alignment of the catalytic domain of human DNMT3A, 

DNMT3B and mouse DNMT3a, and DNMT3b. It is apparent that the catalytic domains 

superimpose well due to their high sequence similarity. The active-site loop of human 

DNMT3A (2QRV) (residues 708–729) superimposes well with the mouse DNMT3a 

(residues 704-725). These DNMT3A/a active site residues also depict significant 

overlapping with human DNMT3B (residues 649-670) and mouse DNMT3b (residues 

655-976) with an exception of amino acid Ile (isoleucine) residue substituted by Asn 

(aspargine) (marked yellow). The key amino acid residues for the catalysis and cofactor 

binding are found to be conserved. Thus, it may be assumed that the inhibitors will have a 

similar effect on both DNMT3A/a and DNMT3B/b. So, for our further studies we have 

focused on the detailed analysis of the interaction of non-nucleoside inhibitors on 

hDNMT1 (3PTA), mDNMT1 (3AV5) and DNMT3A (2QRV). The non-nucleoside 

inhibitors were docked at the SAH-binding pocket present in the active site of 3PTA, 

2QRV and 3AV5 [Figure 4.2, b-d]. 
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Figure 4.2 (a) Depiction of conserved active site regions of DNMT3A/a and DNMT3B/b in 

human and mouse. The numberingof the sequences corresponds to the mouse orthologs. Grey 

highlighted regions were conserved sites along DNMT3a and DNMT3b while red highlighted 

regions depict amino acid Cysteine (C), a nucleophilic group. Positions highlighted in yellow 

exhibit unconserved residues and pink highlighted regions exhibit common interacting regions 

between DNMT3A/a-DNMT3L and DNMT3B/b-DNMT3L. Neighbour sites of the active site 

with differences in amino acids are marked as green. Binding of SAH to active site of pocket of 

(b) hDNMT1 (3PTA), (c) DNMT3A (2QRV), (d) mouse DNMT1 (3AV5) as obtained by 

modelling using Maestro 9.1.107 of Schrodinger. 

4.3.2 Interactions of DNMTs with non-nucleoside inhibitors 

The enlisted non-nucleoside inhibitors in Figure 4.1 constituting both synthetic 

(hydralazine, RG108, procaine, procainamide) and natural compounds (curcumin, EGCG, 

parthenolide, mahanine) are identified to inhibit DNMT activity through different 

mechanisms. The binding affinity of non-nucleoside phytochemicals were analyzed with 

respect to synthetic inhibitors. These inhibitors were docked at SAH-binding pocket of 

DNMTs, and their binding affinity was analyzed by different algorithms of glide_XP, 

autodock, cdocker and LigandFit [Figure 4.3].  

 Among all non-nucleoside inhibitors, EGCG binds with the highest efficacy 

exhibiting glide score of -10.56, -10.13 and -11.0 kcal/mol, when bound to catalytic 

domain of 3PTA, 2QRV and 3AV5, respectively [Figure 4.3 a]. However, curcumin binds 

only to 3PTA showing glide score of -10.52 kcal/mol. The binding energy analysis was 
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further confirmed with other algorithms [Figure 4.3 b-d]. The more negative binding 

energy (ΔG) reflects the stability of a complex and is a consequence of non-covalent 

interactions, mainly hydrogen bonding, van der Waals and electrostatic forces by the 

residues of the binding pocket. EGCG interacts with 3PTA via 5 hydrogen bonds. Six 

hydrogen bonds are formed on an interaction with 2QRV and 3AV5 active site residues, 

respectively. The binding residues and hydrogen bond donor and acceptor groups and 

their respective bond length have been depicted in Figure 4.4 (a-c).  

 Thus, among the enlisted non-nucleoside inhibitors, EGCG have been identified 

as the most potent inhibitor to diminish DNMTs activity. Thereafter, we examined a 

novel set of other phytochemicals which would be better than EGCG to reduce DNA 

methylation density and cellular toxicity. 

4.3.3  Interaction of DNMTs with novel set of phytochemicals/compounds 

In quest of identification of novel inhibitors, thirty-two EGCG analogs were retrieved 

from PubChem database (http://pubchem.ncbi.nlm.nih.gov/). It mainly constituted the 

polyphenolic groups of phytochemicals. Some of them are eryvarinol A, mangiferin, 

isomagniferin, 3, 4'- 5-trihydroxystilbene, theaflavin-di-gallate, procyanidin B2-3, 3'-di-

O-gallate and others. Extensive chemoinformatic analyzes of these compounds were done 

to expand the medicinally relevant chemical space. Compounds selected were docked into 

the active site pocket of the crystallographic structure of DNMTs using Glide_XP 

protocol. According to the Glide score, procyanidin B2-3,3̍-di-O-gallate (Prc) ranked, 

first of all, the analogs, indicating that it may possess higher inhibition potential against 

DNMTs. The score obtained was as high as -13.95, -11.53 and -14.9 kcal/mol when 

docked to 3PTA, 2QRV, and 3AV5, respectively. The comparative analysis of binding 

energy, hydrogen bond donor-acceptor groups and the bond length for SAH, EGCG and 

procyanidin B2 with respective DNMTs is depicted in Table 4.2. The binding energy of 

procyanidin B2 was comparatively higher than EGCG and SAH. The increased binding 

energy is characterized by increased non-covalent interactions, mainly, involving 

hydrogen bonding, van der Waals, and electrostatic forces. Procyanidin B2 on an 

interaction with 3PTA exhibit -7.54, -6.25 and -1.85 kcal/mol of hydrogen bonding, 

hydrophobic and electrostatic interactions, respectively. Similarly, the respective non-

covalent interactions are identified to be -5.73, -3.59 and -1.65 kcal/mol on interaction 

with 2QRV, while -8.04, -5.42 and -1.37 kcal/mol with 3AV5. 

 The detailed binding residues of procyanidin B2 with DNMTs (3PTA, 2QRV and 

3AV5), hydrogen bond donor and acceptor groups, their respective bond lengths and pi 

(π)-cation interactions have been depicted in Figure 4.5 (a-c). The principle pi (π)-cation 

interaction is identified between the phenolic ring of procyanidin B2 and NH1, NH2 

http://pubchem.ncbi.nlm.nih.gov/
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group at R1312 of 3PTA. Similarly, it also forms pi (π)-cation interaction with NH1 and 

NH2 group at R684 and R887 of 2QRV.  

Finally, DNMT-inhibitor (SAH, EGCG, and procyanidin B2) complexes 

exhibiting higher binding score were selected and subjected to molecular dynamics 

simulations in explicit aqueous solution.  

 

Figure 4.3 Docking of non-nucleoside inhibitors with 3PTA (blue), 2QRV (orange) and 3AV5 

(green) with (a) Glide_XP, (b) Autodock, (c) CDOCKER and (d) LigandFit. The binding energy 

was determined in terms of kcal/mol. Among all known non-nucleoside inhibitors, EGCG was 

identified to have higher binding energy at SAH-binding pocket of DNMT. 
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Figure 4.4: Depiction of the interaction of EGCG with (a) 3PTA, (b) 2QRV and (c) 3AV5 via 

hydrogen bonds of specific length. The hydrogen bonds and their respective bond lengths in Å 

have been shown. The π-cation interactions have been displayed by a solid orange line. The figure 

is produced by Accelrys discovery studio. 
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Figure 4.5 Depiction of interaction of Procyanidin B2 with (a) 3PTA), (b) 2QRV, (c) 3AV5 via 

hydrogen bonds defining specific length. The hydrogen bonds and their respective bond lengths in 

Å have been shown. The π-cation interactions have been shown by a solid orange line. The figure 

is produced by Accelrys discovery studio. 
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Table 4.2. Detailed study of interaction of SAH, EGCG and Procyanidin B2 with DNMTs 

Protein (PDB) Ligand Glide Score 

(kcal/mol) 

 

Residues at binding 

site 

H-bond donor-acceptor 

groups 

H-bond 

distance 

(Å) 

Human_DNMT1 

(3PTA) 

SAH 

 

 

 

 

 

 

 

EGCG 

 

 

 

 

 

 

 

 

Procyanidin 

B2 

(Prc) 

-9.44 

 

 

 

 

 

 

 

-10.56 

 

 

 

 

 

 

 

 

-13.95 

G1223,S1146,G1222, 

L1151,E1266,G1147, 

E1168,M1169,I1167 

D1190,E1189,C1191, 

P1225,F1145 

 

 

 

E1168,L1247,C1191,M

1169,D1190,T1170,Q1

227,M696,P1225, 

E698,F1145,G1147, 

L1247,R650,E1168, 

T1170,F1146,V1144, 

I1167,M1169,C1191, 

D1190,L1247, 

 

P1225,M696,Q1227 

E698,A699,P1224, 

T1528,N1578,G1223,D

700,V1268,E1266, 

G1577,R1310,D701, 

R1312, G1147 

L1151:H->SAH: O 

E1168: HE2->SAH:O3 

E1168: HE2->SAH:O2 

C1191: H->SAH:N1 

SAH: HN3->E1266:OE1 

SAH: HN3>E1266:OE2 

SAH: HN1>D1190:OD2 

 

C1191: H->EGCG:O7 

Q1227: HE22>EGCG:O3 

EGCG: H6->M696:SD 

EGCG: H14>D1190:OD2 

EGCG: H16->F1145:O 

 

 

 

 

E1168:HE2->Prc:O5 

C1191:H->Prc:O11 

R1310:HH22->Prc:O11 

T1528:HG1->Prc:O14 

Prc:H16->E698:OE1 

Prc:H23->D1190:OD2 

Prc:H31->G1577:O 

1.8 

2.1 

2.1 

2.3 

1.9 

2.1 

1.8 

 

1.9 

2 

2.4 

2.3 

2.1 

 

 

 

 

2.9 

1.9 

2.2 

2.2 

2.1 

2.2 

1.7 
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Prc:H32->D701:OD1 

Prc:H33->D701:OD1 

1.8 

1.6 

Human 

DNMT3a(2QRV) 

SAH 

 

 

 

 

 

 

EGCG 

 

 

 

 

 

 

 

Procyanidin 

B2 

(Prc) 

-9.69 

 

 

 

 

 

 

-10.13 

 

 

 

 

 

 

 

-11.53 

E660,F636,D637, 

W889, T641, S888, 

S659, R887, P705, 

V683, D682,V661, 

L726 

 

 

E660,S665,G638, 

R887,L884,G703,  

E752,F636,P705, 

V683,L726,S704, V661 

 

 

 

 

N707,P705,V683, 

V661,S659,F636, 

G681,R887, R684, 

D682,R883,G722, 

L726,T723 

T641:HG1->SAH:OXT 

V863:H->SAH:N1 

W889:H->SAH:OXT 

SAH:HO->E660:OE1 

SAH:H1->E660:OE2 

SAH:H3->D682:OD1 

 

S665:HG->EGCG:O8 

R887:HH22>EGCG:O8 

EGCG:H5->E752:OE1 

EGCG:H5->E660:OE2 

EGCG: H13->L884:O 

EGCG:H15->E660:OE1 

V683:H>Prcd:O20 

 

N707:HD22->Prc:O12 

N707:HD22>Prc:O14 

R887:HH21->Prc:O7 

Prc:H23->D682:OD1 

Prc:H30->G722:O 

Prc:H31->G722:O 

Prc:H33->S659:OG 

Prc:H34->D682:OD2 

2A 

2.4 

1.9 

2A 

2.1 

2.4 

 

2.1 

2.1 

2 

2.2 

2 

2.2 

1.8 

 

2.1 

2.1 

2.3 

1.7 

2.3 

2.4 

2.3 

2.2 

Mouse_DNMT1 

(3AV5) 

SAH 

 

 

-10.35 

 

 

E1171,N1580,G1225,G

1150,F1148,S1149,A15

81,D1146,V1582,L115

G1152:H->SAH:O 

G1153:H->SAH:O 

L1154:H->SAH:OXT 

2.1 

2 

2.1 
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EGCG 

 

 

 

 

 

 

Procyanidin 

(Prc) 

 

 

 

 

 

 

 

 

 

 

 

-11.0 

 

 

 

 

 

 

-14.9 

4,E1269,G1153,G1152,

C1151,V1147,I1170,P1

228,C1194,N1195,E119

2,D1193,L1250, M1172 

 

 

 

 

 

 

C1194,P1228,W1173,F

1148,E1192,A621,N12

48,D1193,N1195,L125

0,M1172 

 

 

 

 

C1194,W1173,L1250,

D1174,N1196,Q123, 

P1228,N1580,G1579, 

C1229,G1150,G1226, 

S1149,E1171,F1148 

C1194:H->SAH:N1 

N1580:HD21->SAH:O3 

V1582:H->SAH:OXT 

SAH:HN2->S1149:O 

SAH:HO->N1171:OE1 

SAH:HO->N1171:OE2 

SAH:HN1->D1143:OD1 

SAH:HN1->D1193:OD1 

SAH:H1->F1148:O 

 

M1172: H->EGCG:O6 

C1194: H->EGCG:O8 

EGCG: H15>D1193:OD1 

EGCG: H17->N1248:O 

EGCG: H17- N1248: OD1 

EGCG:H18>D1193:OD2 

 

C1194:H->Prc:O17 

Q1230:HE11->Prc:O4 

Q1230:HE22->Prc:O13 

Prc:H16->Q1230: OE1 

Prc:H24->E1171:OE1 

Prc:H27->F1149:O 

Prc:H33->G1579:O 

2.2 

2.1 

2.1 

2.2 

2.1 

2.1 

3.6 

1.8 

2.4 

 

2.1 

1.9 

2 

2.1 

2.5 

1.6 

 

2.1 

2.3 

2.5 

1.7 

2.1 

2 

1.9 
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4.3.4 Molecular dynamics simulation of DNMT-inhibitor complexes   

The molecular dynamics simulations were implemented to authenticate the docking 

results and decipher efficacy inhibiting DNMTs activity. In order to maintain proper 

orientation of ligand distance, restraints were applied to inhibitors in the initial few 

picoseconds (ps) and then whole complexes were allowed to move freely. The docked 

conformations were analysed by examining their relative total energy scores, protein 

backbone root mean square deviation (RMSD), total hydrogen bonds, van-der-Waals 

interaction, electrostatic interaction and root mean square fluctuation (RMSF) of active 

site residues. 

Here, the stability of DNMT-inhibitor complex was determined in terms of total 

energy (kinetic Ek+ potential Ep) at the given temperature of 310K and pressure of 1atm. 

We plotted the fluctuation in total energy as a function of constant time gaps. The average 

total energy (kJ/mol) for EGCG and procyanidin B2 was very high at SAH-binding 

pocket of 3PTA, 2QRV, and 3AV5. In Figure 4.6 it is evident that both the inhibitors 

oscillated with a nearly same frequency of -1.718 x 10
6
, -6.868 x 10

5
 and -4.071 x 10

6
 

kJ/mol. 

 The RMSD of each protein relative to binding of respective inhibitors (SAH, 

EGCG, and procyanidin B2) was calculated to monitor the stability of each trajectory. 

Here, we mainly focussed on the active site residues of DNMTs. The stability of protein- 

inhibitor complex was analyzed by aligning heavy atoms of the complex to the crystal 

structures of proteins using the mass-weighted least square fitting method. The RMSD 

plot exhibited the structures which are stable during the course of MD simulations. The 

RMSD plot unveiled an increase in deviation at first 200ps of the production phase. This 

is because the equilibration phase was performed with restraints on complex, while the 

restraints in production phase were released. From Figure 4.7 one can easily watch that 

the inhibitor procyanidin B2 attains equilibrium after 500ps and on average comparatively 

lesser RMSD of 3.0 Å, 1.6 Å, and 2.4 Å is attained on interaction with 3PTA, 2QRV, and 

3AV5 respectively. Thus from this observation it's evident that procyanidin B2 forms 

more stable complex than SAH and EGCG with DNMTs. The stability of an enzyme-

ligand complex is characterized by ligand binding mode inside the active site pocket of 

the enzyme, and the binding force includes strong hydrogen bonds, electrostatic and van 

der Waals interactions. The intermolecular hydrogen bond plots between enzyme and 

inhibitor are shown in Figure 4.8. 
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Figure 4.6 Total energy at each ps on interaction of SAH (red), EGCG (blue) and Procyanidin B2 

(green) with (a) 3PTA, (b) 2QRV, (c) 3AV5 in kJ/mol. Total energy has been identified to be 

elevated for EGCG and procyanidin B2 on interaction with DNMT1 in human and mouse and 

DNMT3A human. 

 
Figure 4.7 RMSD plot with respect to time in ps on binding of SAH (red), EGCG (blue) and 

Procyanidin B2 (green) with (a) 3PTA, (b) 2QRV and (c) 3AV5 in Å. RMSD is calculated for 

heavy atoms with reference to their respective orientation in the crystal structures. Procyanidin B2 



101 
 

exhibits the least deviation on interaction with DNMT and forms most stable complex as 

compared to SAH and EGCG. 

 On an average procyanidin B2 forms a higher number of hydrogen bonds than 

SAH and EGCG with the cognate donor/receptor in the vicinity of the binding pocket of 

DNMTs. It forms an average of 6.5 on interaction with 3PTA while 5.2 hydrogen bonds 

are formed when ligated to 2QRV and 3AV5. Further, non-bonding interaction 

constituting Columbic function and Lennard–Jones potential function were employed to 

calculate electrostatic and van-der-Waals interactions, respectively with a cut-off distance 

of 9Å. On the evaluation of both the parameters, it has been identified that van-der-Waals 

interaction take over the electrostatic interaction, thus favoring the interaction of 

inhibitors mainly to procyanidin B2 at the active site pocket. The average van-der-Waals 

energy (ΔEvdw) is identified to -367.743, -296.80 and -330.101 kJ/mol on interaction 

with 3PTA, 2QRV, and 3AV5. Thus from the above findings it can be inferred that 

hydrogen bonds and van der Waals energy dominates in the total binding energy profile 

for stabilizing the protein-inhibitor complex. 

 

Figure 4.8 Observation of intermolecular hydrogen bond in Å between SAH (red), EGCG (blue), 

Procyanidin B2 (green) with active site residues of (a) 3PTA, (b) 2QRV and (c) 3AV5. On an 

average Procyanidin B2 forms a higher number of hydrogen bonds with the respective enzymes. 



102 
 

 The residue flexibility of bound DNMT-inhibitor complexes was examined by 

analyzing the RMSF of the Cα atoms of each residue. The RMSF plot for different 

protein complexes has shown the flexible regions of the systems; however plot clearly 

displayed minimum fluctuation around the active site residues [Figure 4.9 a-c]. The 

amino acid residues exhibit an average fluctuation of 0.98, 0.69, and 1.1 Å in case of 

procyanidin B2 while 1.2, 0.8 and 1.13 Å in case of EGCG, on interaction with 3PTA, 

2QRV, and 3AV5, respectively. The average fluctuation of amino acid residues in the 

interaction of SAH with these proteins has been found to be 1.3, 1.0 and 1.5 Å, 

respectively. From the above findings, we can infer that procyanidin B2 forms more 

stable complex because the residues fluctuation is comparatively lesser than others. Thus, 

stability of procyanidin B2-DNMT complexes has been established by total energy, 

RMSD of the protein backbone, non-covalent interactions and RMSF of active site 

residues measurements.  

 
 

Figure 4.9 Root-mean-squared fluctuations (RMSF) of backbone atoms (Å) of (a) 3PTA, (b) 

2QRV and (c) 3AV5 on binding to SAH (red), EGCG (blue) and Procyanidin B2. Active site 

residues for all protein-ligand complexes exhibit the least fluctuation, exhibiting the stability of 

the complexes. 
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4.3.5  Thermodynamic evaluation of DNMT-inhibitor complexes  

Absolute free energies of binding were evaluated using MM-PBSA method in order to 

gain insight into the continuous spectrum of binding energy of hDNMT1, DNMT3A, and 

mDNMT1 with respect to SAH, EGCG and procyanidin B2. In this method the 

interaction and solvation energy is computed for complex, receptor and ligand in order to 

investigate average binding free energy. The detailed binding energy of protein-inhibitor 

complexes have been depicted in Figure 4.10 (a-c). The free energy of binding has been 

evaluated with respect to SAH at active site pocket of DNMTs. It is evident from Figure 

10 that procyanidin B2 has highest binding efficiency for DNMTs (3PTA, 2QRV, and 

3AV5). The binding energies of the 3PTA, 2QRV and 3AV5 with respect to procyanidin 

B2 are -16.64, -15.06 and -17.29 kcal/mol respectively. The binding efficiency of EGCG 

for the respective proteins has also been identified to be greater than SAH. The 

discrepancy in binding energy of protein-inhibitor complexes implicates that there are 

various mode of interactions  From Figure 4.10, it is evident that the highest binding 

energy for procyanidin B2-DNMT complexes are consequence of gaseous phase 

electrostatic and van der Waals interactions. The nonpolar solvation energy (ΔGnp) also 

favors binding affinity in active site pockets of the enzyme. The relatively lower value of 

non-polar solvation energies indicates the closeness and integrity of packing of cavity 

regions. Moreover, the parameters like entropy (−TΔS) and polar solvation energy which 

is unfavorable for binding of inhibitors is identified to comparatively less for procyanidin 

B2 as compared to SAH and EGCG.  Thus, the calculations of the free energy of binding 

of DNMT-inhibitor complexes elucidate that procyanidin B2 may be a novel inhibitor 

against DNMTs. Thereafter, the detailed mechanism of interaction was decomposed into 

inhibitor-residue pairs in order create a spectrum of inhibitor-residue interaction. 
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Figure 4.10 Energy components (kcal/mol) for the binding of SAH (blue), EGCG (brown) and 

procyanidin B2 (green) at binding pocket of (a) 3PTA (b) 2QRV and (c) 3AV5. ΔEele, 

electrostatic energy in the gas phase; ΔEvdw, van der Waals energy; ΔGnp, nonpolar solvation 

energy; ΔGpb, polar solvation energy, TΔS, total entropy contribution; ΔGtotal = ΔEele + ΔEvdw + 

ΔEint + ΔGpb; ΔG = ΔGtotal−TΔS. Error bars in indicates the difference. 

4.3.6 Binding spectrum of residues at active site pocket of DNMTs 

In order to obtain the detailed thermodynamic description of contribution from amino 

acid residue to the free energy of binding, the interaction energies were further 

decomposed to contributions of individual residues through MM-GBSA script in the 

AMBER 12 suite. The method of residue decomposition aids in understanding the 

atomistic detail of the mechanism of residue-inhibitor interactions. The detailed study of 

the contribution of residues to the binding energy for SAH, EGCG, and procyanidin B2 

with respect to 3PTA, 2QRV and 3AV5 has been depicted in Figure 4.11 (a-c). Overall 

the major interaction at the active site of the pocket of 3PTA is the contribution of F1145, 

E1168, M1169, E1189, and C1191. The average binding energy of these residues is 

greater than -1 kcal/mol. Similarly, in case of mouse DNMT1 (3AV5), the residues 

F1148, E1171, M1172, C1194, and C1248 contributes to the elevation of binding energy. 

From the Figures 4.11a and 4.11c, it is evident that procyanidin B2 has higher interaction 

with these residues as compared to SAH and EGCG. Moreover, among all, the cysteine 

residue offers highest binding energy on interaction with procyanidin B2. C1191 and 

C1194 contribute to the binding energy of -5.10 and -4.21 kcal/mol to the interaction of 
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procyanidin B2 with 3PTA and 3AV5 respectively. In case of DNMT3A, the residues 

F636, D637, E660, D684, and W889 imparts to the elevation in the binding of inhibitors 

in the catalytic pocket of the enzyme. The D684 residue has a higher contribution to the 

interaction with procyanidin B2, and the average binding energy is identified to be -4.01 

kcal/mol.  This decomposition of free binding energy (ΔG) per residue is a consequence 

of van der Waals (ΔEvdw) energy, the sum of electrostatic and the polar solvation energy 

and the non-polar solvation (ΔGnp) energy. The change of entropy parameter is not 

included. Further ahead, the in-vitro studies were carried out to affirm the role of 

procyanidin B2 as a potent DNMT inhibitor. 

 
 

Figure 4.11 Decomposition of ΔG on a per-residue basis for the SAH (blue), EGCG (brown) and 

procyanidin B2 (green) at the binding pocket of (a) 3PTA (b) 2QRV and (c) 3AV5.   

4.3.7  Effect of EGCG and procyanidin B2 on DNMTs activity 

The inhibitors, EGCG and procyanidin B2, were used to construct a dose-response curve 

in terms of IC50 value at varying concentration of drugs. The nuclear extracts from 

MDA-MB-231 cells were incubated with increasing concentrations of EGCG and 

procyanidin B2 (1, 2.5, 5, 10 and 15 µM). We observed dose-dependent growth inhibition 

of DNMTs on incubation with various concentration EGCG and procyanidin B2. The IC50 

was determined under identical assay conditions. The IC50 of EGCG is identified to be 

9.36±1.02 µM while, that of procyanidin B2 is 6.88±0.64 µM [Figure 4.12]. Thus, from 

above analysis it can be concluded that procyanidin B2 is effective successfully inhibiting 
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DNMTs at a lower dose of drug concentration as compared to EGCG. The difference in 

IC50 between EGCG and procyanidin B2 was identified to be significant (n=3, mean ± 

S.D.). The p-value was found to be significant at 0.05 (p=0.023). 

 

 
Figure 4.12 Depiction of the log of dose-response plot in terms of percentage decrease in DNMT 

activity against increasing log of the concentration of procyanidin B2 and EGCG.  The IC50 of 

procyanidin B2 and EGCG are found to be 6.88±0.647 µM and 9.36±1.02, respectively. This 

clearly demonstrates that procyanidin B2 is more active in inhibiting DNMTs. Data are expressed 

as mean ± S.D., n=3, p < 0.05. 

4.3.8 Upregulation of DNMT target and DNMTs genes by EGCG and 

 Procyanidin B2 

To further validate the DNMT inhibitory activity, we examined the effect of 

procyanidinB2 and EGCG on the expression of DNMT target genes (E-cadherin, Maspin, 

and BRCA1) in MDA-MB-231 cells. Our result indicates that the procyanidin B2 

treatment more efficiently upregulates the expression of E-cadherin, Maspin, and BRCA1 

as compared to EGCG. This apparently reveals that procyanidin B2 inhibition of DNMTs 

causes upregulation of these genes [Figure 4.13a]. Moreover, the expression of the 

DNMT genes; DNMT1, DNMT3A, and DNMT3B were also enhanced by treatment with 

these polyphenols (Figure 4.13a). The mRNA levels of these genes were identified to be 

significant (n=3, mean ± S.D.) between EGCG and procyanidin B2 treated groups. The p-

value was significant at 0.05.  
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Figure 4.13 Real-time RT-PCR analyses: (a) E-cadherin, Maspin, BRCA1, and (b) DNMT1, 

DNMT3A, DNMT3B gene expression after treatment with EGCG and procyanidin B2. The 

mRNA level of both DNMT target and DNMT genes are upregulated more in case of procyanidin 

B2 than EGCG.  Data are expressed as mean ± S.D., n=3, p < 0.05. 

4.3.9  EGCG and procyanidin B2 are non-toxic for normal cells 

The cytotoxicity analysis examined the toxic nature of EGCG and ProcyanidineB2 

towards normal keratinocytes (HaCaT) and triple negative breast cancer cells (MDA-

MB231) in terms of percentage of cell viability. From the figure 4.14, it is evident that a 

significant decrease in cell viability was seen with an increasing concentration of EGCG 

and procyanidin B2 in MDA-MB231 cells. However, these inhibitors did not elicit any 

lethal effect on normal cells. The sub-lethal concentration (LC50) of EGCG and 

procyanidin B2 was determined to be 200 and 150µM, respectively, in MDA-MB-231 

cells. In contrast, at LC50 of EGCG and procyanidin B2, the HaCaT cells were found to 

induce no such cytotoxic phenomena. SAH, being an endogenous biochemical product of 

the methylation reaction has a minimal cytotoxic effect on MDA-MB 231 cells. The 

difference in LC50 between EGCG and procyanidin B2 was identified to be significant 

(n=3, mean ± S.D.). The p-value was found to be significant at 0.05 (p=0.01). 
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Figure 4.14 Effect of (a) SAH, (b) EGCG and (c) Procyanidin B2 on cell viability and growth. 

MDA-MB231 and HaCaT cells were treated with indicated concentrations of (a) SAH, (b) EGCG 

and (c) Procyanidin B2 in µM for 24 h. Cell viability was determined by MTT assay. Data are 

represented as the mean±SD of three different observations. EGCG and Procyanidin B2 exhibits 

LC50 of 200 µM and 150 µM, respectively, while SAH has been identified having the almost 

negligible cell growth inhibitory effect of MDA MB 231. However, ECGC and Procyanidin B2 

show no cytotoxic effect on HaCaT cells. Data are expressed as mean ± S.D., n=3, p < 0.05. 

4.4 Discussion 

Several studies have documented the apoptosis-inducing effect of polyphenols like 

catechins and procyanidins indicating their anti-cancer potential and chemotherapeutic 

application [476, 477]. However, the mystery behind the molecular targets of cell killing 

effect of these polyphenolic groups or their effect on epigenetic molecular marks, like 

DNA methylation and manipulators, like DNMTs was not resolved prior to this work. We 

are acquainted with the fact that DNMTs are responsible for hypermethylation of various 

genes, imposing a genotoxic effect including tumor suppressor gene during tumor 

development and cancer progression [478]. Thus, we sought to explore the factors 

dictating the selectivity of inhibitors binding to DNMT1 and DNMT3A/a. Docking, 

molecular dynamics simulation, and free energy analyzes were carried out in order to 

unravel the potential of non-nucleoside inhibitors known till date. We found that the 

binding affinity of EGCG was highest among all, successfully inhibiting DNMTs in both 

human and mouse. The docking and simulation analysis illustrate that EGCG-DNMT 

complex is energetically favored, and the finding is apparently consistent with an in-vitro 
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analysis. Further ahead, EGCG analogs, mainly polyphenolic groups were screened in 

quest of identification of novel inhibitors. In this second category, procyanidin B2-3, 3-di-

O-gallate moiety presented itself valid, and the most promising inhibitor is having a 

strong correlation with the active site residues of DNMTs. The selection of procyanidin 

B2 is of higher negative binding energy and greater selectivity towards DNMTs. Our 

results demonstrate that binding geometry, driven by hydrogen bond and van-der-Waals 

energy dominates in the enhancement of total binding energy. Electrostatic interaction 

occupancy is comparatively feeble along the interface of protein-inhibitor complex. 

Molecular dynamics simulation of protein-ligand complexes fortified the docking 

analysis. The stability of the inhibitor inside the binding pocket has been substantiated by 

total energy, RMSD and RMSF data. Furthermore, the analysis of free energy of binding 

by MM-PBSA for SAH, EGCG, and procyanidin B2 with DNMTs established that 

procyanidin B2 has the highest efficacy for the catalytic pocket. Moreover, the detailed 

thermodynamic description of residue contribution to the free energy of binding affirms 

the intimate interaction with active site residues.  

 In addition to the results rationalizing in-silico observed selectivity, in vitro 

experimental analyzes also revealed the potential of procyanidin B2 as an effective 

inhibitor for diminishing DNMTs activity. The effect of procyanidin B2 in inhibiting 

DNMTs was evaluated following direct as well as an indirect approach. The indirect 

approach, procyanidin B2 was directly used as an inhibitor against DNMTs in the nuclear 

extract of the cells and DNMT activity was noted to be declined with respect to control. 

Moreover, procyanidin B2 elicits a greater reduction of DNMT activity at a concentration 

of 6.88±0.647 µM as compared to EGCG. The indirect approach deals with reactivation 

of DNMT target genes on the application of procyanidin B2. Previously, it has been 

documented that E-cadherin [479], Maspin [480] and BRCA1 [481] are epigenetically 

inactivated in breast cancer due to aberrant cytosine methylation in their promoter 

regions. Evidence also report that inhibition of DNA methylation by 5-Aza-2-

deoxycytidine (AZA), could restore the expression the E-cadherin and Maspin (gene) in 

this cell line [482]. Moreover, in prostate cancer cells it has been reported that BRCA1 

can be reactivated by treatment with AZA. Based on this fact, we sought to examine 

whether EGCG and procyanidin B2 could be able to restore the expression of these 

DNMT target genes as that of AZA. Corroborating our in silico analysis and in vitro 

DNMT activity inhibition measurement, we found that both EGCG and procyanidin B2 

lead to reactivation of E-cadherin, Maspin and BRCA1 gene at the transcription level. Of 

note, procyanidin B2 could more efficiently upregulate the DNMT target gene expression 

relative to EGCG. This might be due to more affinity of procyanidin B2 for DNMTs, thus 

inhibiting DNMTs to a greater extent than EGCG. However, this enzymatic inhibition 

impels the elevated expression of DNMTs. Consequently, among the non-nucleoside 
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inhibitors procyanidin B2 can be considered to be more effective in reducing the DNMT 

activity and hence can be used to decrease the methylation level.  

 One of the foremost concerns for clinical application of any anticancer drug 

relies on its clinical toxicity. So, after searching a potential DNMT inhibitor as 

procyanidin B2, our next attempt was to examine its cytotoxic nature towards normal 

cells in contrast to breast cancer cells. Both EGCG and procyanidinB2 were found to 

elicit extensive cytotoxic effect in highly invasive triple-negative MDA-MB-231 breast 

cancer cells. While EGCG reduced 50% cell viability at 200 µM concentration, 

procyanidin B2 was effective at a comparatively lower concentration of 150 µM for 24 h. 

Conversely, the same LC50 of EGCG and procyanidin B2 treatment exhibited no 

cytotoxic activity to normal keratinocytes (HaCaT).   

 In contrast to conventional chemotherapeutic drugs, procyanidin B2 is non-

toxic in nature. Additionally, it is natural and a dietary component with substantial 

anticancer effects on breast cancer cells. In conclusion, we have unraveled the role of 

procyanidin B2 as an epigenetic modulator which precisely targets DNMTs and reverses 

the silencing of tumor suppressor genes. The outcome of this investigation holds 

procyanidin B2 as a promising inhibitor against cancer targeting the enzyme DNMTs. 

Further, by executing experiments in animal models and clinical settings, it may be 

recommended for incorporation in the list of compounds in chemoprevention of breast 

cancer.
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Chapter 5 

Conclusions 

The occurrence of inter/intra-tumor heterogeneity and clonal evolution in breast cancer 

requires accurate elucidation of geographical and chronological variations in patient 

samples. Despite the success of GWAS in identifying loci associated with tumor 

initiation, there is still a substantial proportion of the causality to be explored. 

Interestingly, EWAS have the potential to capture disease-associated epigenetic 

variations, primarily differential methylation. In this thesis, we have integrated genotype-

epitype dataset to identify haplotype-specific DNA methylation in breast cancer, 

subsequently excavated locus specific diagnostic and prognostic marker. The biomarker 

identification was conjointly associated with sequential therapeutic strategies for 

identifying novel drugs, to achieve low dose, the customized and high-impact treatment 

we seek.  

 Considering the conjoint study based on genotype-epitype interactions, 

chapter 2, details about the comparative and comprehensive study of risk alleles in breast 

cancer and matched normal tissues. The identification of risk allele supports the potential 

implementation of meQTLs as a risk factor in cancer, wherein DNA methylation 

functions as a mediator for the respective risk allele. Likewise, risk associated with a 

polymorphism display germline variant in the cancer tissue and the matched normal 

counterparts. Mutated genes are inherited in breast cancer and are a well-defined example 

of breast cancer susceptibility. The increased predisposition of germline mutations in 

breast cancer tissues is more susceptible for inheritance. The conjoint study of genotype-

epitype association has enlightened a novel approach to elucidate the genome-wide 

distribution of differentially methylated loci. Based on the integrated study, three 

significant CpG-SNP pairs have been identified that clearly demonstrates variability in 

the distribution of polymorphic allele is linked to differential methylation pattern which in 

turn is associated with the gene expression. The fluctuation in major and minor allele 

distribution associated with SNPs rs9891975, rs4421026 and rs17235834 regulates the 

methylation level of CpG sites SNP cg02058408, cg05388880 and cg25198340, 

respectively in tumor and normal samples. These CpG sites lead to differential gene 

expression of ST5, CMAH and FYN genes, respectively in breast cancer patients in 

comparison to normal population. Thus, findings based upon novel mechanism 

constituting genetic variation, DNA methylation and gene expression may serve as novel 

biomarkers for early diagnosis.   
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 Owing to the identification of diagnostic marker, the next step was to detect 

the prognostic potential of the biomarkers in determining the overall risk associated with 

the survival. In chapter 3, the detailed analysis based upon meQTLs is integrated with 

clinicopathological factors to detect the risk related to overall survival of breast cancer 

patients. Unlike GWAS, environmental factors directly confound on EWAS, affecting 

both epigenotype and phenotype and exaggerating the risk associated with the progression 

of breast cancer. Indeed, when DNA methylation is integrated with SNP array data, it 

gives a more appropriate clue in understanding principle coordinates of both genetic and 

epigenetic states in dissecting the risk associated with overall survival. In our study, we 

have investigated the genome-wide distribution of meQTLs and their cumulative effect on 

risk stratification of breast cancer patients. The Cox proportional hazard model based on 

multiple covariates provides an empirical estimate of overall risk. The comprehensive 

assessment based on meQTLs depicts that variable genotype associated with particular 

SNP results in differential methylation distribution. These differentially methylated CpG 

sites have been identified in delaminate the breast cancer patients into the high and low-

risk group. In particular, the quantification in methylation level was observed at CpG 

sites, cg05370838, cg00956490 and cg11340537. These differentially methylated regions 

were the consequence of discrepancy in allelic distribution associated rs2230576, 

rs940453, and rs2640785 SNPs, respectively. Furthermore the differentially methylated 

CpGs were strongly associated with the expression of ADAM8, CREB5, and EXPH5 gene, 

respectively. These differentially methylated CpGs were identified to have a promising 

association with tumor progression and overall survival of breast cancer patients. Besides, 

the exclusive effects of SNPs were also interrogated to assess the risk of cancer 

progression. In summary, conjoint analysis based upon differential methylated CpG sites 

and SNPs have resulted in the identification of novel susceptible loci that holds 

prognostic relevance in breast cancer. Further ahead, the functional studies on the 

candidate genes are required to explicate their potential relevance to the pathophysiology 

and treatment efficacy of breast cancer.  

 Tumors displaying global differential methylation hold the benefit of the 

restoration of these global patterns. Considering their dynamic and reversible nature, the 

modifying enzymes need to be targeted by small molecules or inhibitors, adding to the 

drug arsenal to improve their specificity and reduce their toxicity. In chapter 4, we 

elucidate combinatorial approach of in-silico and in-vitro analysis in the development of 

personalized medicine therapies. DNMT, the key epigenetic manipulator, was targeted for 

pharmacological inhibition and cancer reprogramming. DNMT inhibitors known till date 

were excavated and examined in-lieu of identification of novel and potent inhibitor. 

EGCG, being efficient of all had its own limitations. However, on analysis of 32 EGCG 

analogues, procyanidin B2-3, 3'-di-O-gallate (procyanidin B2) emerged as potent 
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inhibitor attenuating DNMT activity at IC50 of 6.88±0.647 µM and successfully restoring 

the expression of E-cadherin, Maspin and BRCA1 tumor suppressor genes. Moreover, the 

toxic property of procyanidin B2 has the ability to discern the triple negative breast 

cancer (MDA-MB231) cells to normal cells. In summary, the identified epigenetic 

modulator will have considerable clinical effect in remodeling the malignant cells, and 

will hold a prime position in breast cancer therapy.  

 Finally we would like to conclude by saying that the conjoint analysis based 

upon genetic and epigenetic marker will enlighten the researcher and clinicians to design 

new strategy in resolving the complexity associated with diagnosis, prognosis and 

therapeutic implications of breast cancer treatment.  

Scope for further research 

Integrative studies of genotype-epitype interactions have provided tantalizing insight into 

the global distribution of meQTLs; however, the significant details need to be evaluated. 

For instance, there are many questions that need to be answered regarding the genomic 

architecture of meQTLs (e.g. exact number of loci having differentially methylated 

regions, how far are the DMRs extended across the functional loci or have positional 

biasness). The distal or the trans effect of these meQTLs on gene expression needs to be 

evaluated. Moreover, these DMRs are closely linked to another epigenetic process such as 

histone modifications and non-coding RNA, needs to be interrogated conjointly. 

Genetically and stochastically driven DMRs holds functional significance and requires 

systematic investigation across tissues and cell types. Moreover, beside the significant 

influence of SNP, other genetic variants such as insertion, deletion, duplication and copy 

number variations need to be incorporated to resolve the complexity associated with 

disease etiology. 
 High-throughput technology is characterized by next generation sequencing aids 

in genome-wide methylome-profiling. Nowadays, it is feasible to map allelic 

polymorphism associated with DNA methylation at a single base-pair resolution as it 

provides detailed information about the extent and location of meQTLs. However, 

technical limitation related to bisulphite sequencing to determine epialleles and epi-

haplotypes in the genome is still constrained. It has been identified that sequencing based 

upon single molecule resolution is required for high epi-allelic and quantitative 

information. The establishment of the repository and electronic access to samples and 

associated data will enable to dissect the specific sequence polymorphism, specifically in 

cancer patients. Finally, appropriate designing of EWAS database needs to developed and 

conducted, to enable the tools for analysis and interpretation of EWAS data. To achieve 

clear insight into the exact mechanism of initiation and propagation of tumors condition, 

cooperation between scientist, clinicians and resource provider is required to pioneer the 
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conjoint study of GWAS and EWAS. The recognition of the epigenome-wide study of 

differential methylation has opened new avenues for drug discovery and therapeutics. 

Therapeutic implications could be combined with conventional therapies to develop 

personalized treatment and render unresponsive tumors susceptible to treatment at 

reduced dose. Such advancement may restrict the side effects of treatment and will 

improve the compliance associated with dose regimens and overall quality of life 
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