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Abstract

Two types of heat conduction problems have been investigated in this literature. Firstly,
the steady state heat conduction through a two dimensional domain of both inner and outer
noncircular cross-section whose inner and outer surface are kept at constant but different
temperatures and it is solved by using a two dimensional semi-analytic technique called
boundary collocation method. In the second case, the steady state heat conduction through
the same two dimensional domain whose inner surface is kept at a constant temperature
and outer surface is subjected to convective condition is solved using boundary collocation
method. Some of the boundary conditions are applied to find the generalised solution of
the governing differential equation and the rest of the boundary conditions are used via
boundary collocation method for numerical solution. In the boundary collocation method,
equal number of points on the inner boundary and on the outer boundary are considered and
then necessary numerical method has been adopted to get the complete solution.

Keywords:Heat conduction; convection; boundary collocation method; conduction shape
factor; heat exchanger tube.



Nomenclature

R =dimensionless radius variable
rsi =inner surface distance from the origin of the axes
rso = outer surface distance from the origin of the axes
M =number of symmetry about π
N =half of the total number of collocation points
h = convective heat transfer coefficient,W/m2K

Kt =thermal conductivity,W/mK

S =conduction shape factor
T =temperature,K
Ti =temperature of the inner surface,K
To =temperature of the outer surface,K
Yk =unknown in the linear system
bi =length scale used to divide any length to convert that length to dimensionless form
r =radial distance of any point from the origin of reference
Bi =Biot number

Greek symbols

Θ =dimensionless temperature
θ =angle

Subscripts

i =inner surface
o =outer surface
∞ =ambient
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Chapter 1

Introduction

Heat exchange tubes have many applications in diverse range of fields which include
refrigeration and air conditioning, automotive, aerospace, cooling of gas turbine blades,
power and process engineering and many more. Using exchanger tubes is one of the most
effective ways of cooling microelectronics. Traditionally used exchanger tubes have circular
cross-section because it is easily available and for a fixed perimeter, circular shape has
the minimum area which in turn minimizes the material cost. But with the development
of polymeric material and nanotechnology, we are able to manufacture exchanger tubes of
different aerodynamic shapes.

In 1913, Langmuir et, al. [? ] introduced the concept of Conduction Shape Factor
(CSF). If the steady state temperatures at the two boundaries and the corresponding CSF
for an exchanger tubes and are known, then the total heat flow can easily be calculated by
Q = KtS(Ti−To)where S is the CSF defined as S =

∫
Γ

∂Θ
∂n

dΓ. HereΘ is the dimensionless
temperature.Several researchers further extended Langmuir’s idea of finding CSF [? ], [?
], [? ], [? ]. Determining CSF is one best way to investigate the heat conduction in
two-dimensional domain. Some researchers have proposed different techniques for solving
heat conduction problems for oval and elliptic shaped exchanger tubes [? ], [? ], [?
]. Merker et, al. [? ] investigated heat conduction in oval-shaped tubes experimentally
and found out that oval-shaped tubes have smaller front areas on the shell-side as compared
to those with the circular tubes. This helped to recover the waste heat from the exhaust
of gas turbines. Kolodziej et, al. [? ] suggested a semi-analytic technique to find the
CSF of circular and polygonal cross-sections. Many literatures [? ], [? ], [? ], [?
], [? ] have been reported which proved the advantage of using non-circular exchanger
tubes over the traditional circular exchanger tubes. Bouris et, al. [? ] showed that the
elliptic exchanger tubes have lower rate of fouling and pressure drop but higher heat transfer
rate as compared to circular exchanger tubes. Moharana et, al. [? ] used the sector
method and the boundary collocation method to improve the analysis done by Li et, al.
[? ]. They found that the boundary collocation method gives a more reliable and accurate
solution as compared to the [? ] fin analysis method. Moharana et, al. [? ] also used
boundary collocation method, sector method and the perturbation technique to study the
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Introduction

heat conduction in eccentric annuli and proposed its advantage in insulation. Many articles
have been published on heat conduction through exchanger tubes of circular cross-section
and exchanger tubes of outer circular cross-section and inner noncircular cross-section and
exchanger tubes of inner circular cross-section and outer noncircular cross-section. Tilldate,
no literature ia available for heat conduction through exchanger tubes of both inner and outer
noncircular cross-section. This dissertation presents an improved analysis of heat conduction
in exchanger tubes of both inner and outer noncircular cross-section.

Figure 1.1 depicts a heat exchanger tubes of both inner and outer noncircular
cross-section whose inner and outer surfaces are kept at constant but different temperatures.
The problem considered here is a two-dimensional boundary value problem governed by
the two-dimensional Laplace equation. We can solve this problem using finite difference
method, finite element method and boundary element method. These methods are
comparatively complex and the time required to generate the mesh using any of these
methods is much higher as compared to boundary collocation method making these methods
unreasonable to use. But using the boundary collocationmethod to solve this type of problem
is an efficient way which reduces computational complexity as well as savesthe important
time. Due to these advantages, the boundary collocation method finds extensive application
in continuous mechanics [? ]. The brief overview of the paper is as follows:

• temperature profile for heat exchanger tubes bounded by isothermal inner and outer
noncircular cross-section is found out

• temperature profile for heat exchanger tubes bounded by isothermal inner and
convective outer noncircular cross-section is calculated

• CSF obtained by numerical methods is compared with the exact CSF to convey the
reliability of the method.

3



Chapter 1 Introduction

1.1 Mathematical formulation

Figure 1.1: croos-section of a heat exchannger tube

The dimensionless parameters

Θ =
T − To

Ti − To

R =
r

bi
R1 =

rsi
bi

R2 =
rso
bi

whereΘ,R, rsi, rso, r, bi, Ti and To are the same as defined in the Nomenclature section.

i. Case-1: Heat exchanger tubes bounded by isothermal inner and outer
noncircular cross-section
In Figure 1.1 the inner and outer boundaries are maintained at uniform temperatures
Ti and To respectively. The domain is symmetric with respect to the angles θ = 0

and θ =
π

M
where M is the number of symmetry of the cross-section about π. In

this work, we solve the Laplace equation in polar form because using it gives us an
advantage for computational purpose.
The two dimensional Laplace equation in dimensionless parameters is

∂2Θ

∂R2
+

1

R

∂Θ

∂R
+

1

R2

∂Θ

∂θ
= 0. (1.1)

The general solution of equation (1.1) is

4



Chapter 1 Introduction

Θ(R, θ) = A+B lnR + Cθ +Dθ lnR

+
∞∑
k=1

(AkR
λk +BkR

−λk) cos(λkθ)

+
∞∑
k=1

(CkR
λk +DkR

−λk) sin(λkθ). (1.2)

Where A,B,C,D,Ck and Dk are constants to be determined.
The boundary conditions are

∂Θ

∂θ
= 0 for θ = 0. (1.3)

∂Θ

∂θ
= 0 for θ =

π

M
. (1.4)

whereM is the number of symmetry about π.

Θ = 1 for R = R1. (1.5)

Θ = 0 for R = R2. (1.6)

Differentiating equation (1.2) with respect to θ and then applying equation (1.3) yields

C = D = Ck = Dk = 0. (1.7)

Again differentiating equation (1.2) with respect to θ and then applying equation (1.4)
we get

λk = kM. (1.8)

Substituting (1.7) and (1.8) in (1.2) results in

Θ(R, θ) = A+B lnR +
∞∑
k=1

(AkR
Mk +BkR

−Mk) cos(Mkθ). (1.9)

Reducing the number of modes to p− 1 equation (1.9) can be rewritten as

Θ(R, θ) = A+B lnR +

p−1∑
k=1

(AkR
Mk +BkR

−Mk) cos(Mkθ). (1.10)
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Chapter 1 Introduction

Introducing new variables

Y1 = A, Y2 = A2, Y3 = A2, ..., Yp = Ap−1,

Yp+1 = B, Yp+2 = B1, Yp+3 = B2, ..., Y2p = Bp−1

So (1.10) can be written as

Θ(R, θ) =

2p∑
k=1

YkΨk(R, k, θ). (1.11)

where
Ψ1 = 1 and Ψk = RM(k−1) cos(M(k − 1))θ for k = 2, 3, ..., p

Ψp+1 = lnR and Ψk = R−M(k−p−1) cos(M(k − p− 1)θ) for k = p+ 2, p+ 3, ..., 2p.
Now boundary collocation method will be used to solve this problem.

ii. Boundary Collocation Method(BCM)
The boundary collocation method is a method that satisfies the general solution of the
governing differential equation of the problem at a finite number of points along the
boundary rather than using the general solution of the governing differential equation
along the whole boundary. The details of this method can be found in the book
Kolodziej et, a l[17]. There is no heat conduction in the axial direction and the problem
is investigated when the domain is at steady state. Temperature is different but uniform
and constant at both the inner and outer surfaces. There is no internal heat generation
in the material of the exchanger tube. The thermal conductivity of the material of
the tube is constant throughout the domain. These are the assumptions made by the
authors before applying the boundary collocation method. Now we apply BCM for
2N points i.e. N points on the inner boundary and N points on the outer boundary.
Hence we have 2p unknowns and 2N number of equations. So (1.11) forms a system
of equations ZY = b where Z is the coefficient matrix of order 2N × 2p, Y is the
vector of order 2p× 1 and contains the unknowns Yks and finally b is a column vector
of order 2N × 1. Now using equation (1.5) we can write equation (1.11) as

2p∑
k=1

YkΨk(R1, k, θ) = 1. (1.12)

Using equation (1.6) and equation (1.11) we can obtain

2p∑
k=1

YkΨk(R1, k, θ) = 0. (1.13)

Solving equation (1.12) and equation (1.13) we can determine the values of all the

6



Chapter 1 Introduction

unknown Yks.

iii. Case-2: Heat exchanger tubes bounded by isothermal inner and convective outer
noncircular cross-section
The boundary conditions are

∂Θ

∂θ
= 0 for θ = 0. (1.14)

∂Θ

∂θ
= 0 for θ =

π

M
. (1.15)

Θ = 1 for R = R1. (1.16)

∂Θ

∂R
+ Bi∗Θ = 0 for R = R2. (1.17)

Where Bi∗ =
Bi ∗ bi

r
Using equations (1.2), (1.14) and (1.15) we obtain C = D = Ck = Dk = 0 and
λk = kM . Hence, equation (1.2) can be written as

Θ = A+B lnR +
∞∑
k=1

(AkR
Mk +BkR

−Mk) cos(Mkθ). (1.18)

Reducing the number of modes to p− 1 equation (1.18) can be rewritten as

Θ = A+B lnR +

p−1∑
k=1

(AkR
Mk +BkR

−Mk) cos(Mkθ). (1.19)

From equation (1.16) and equation (1.19)

A+B lnR +

p−1∑
k=1

(AkR
Mk
1 +BkR

−Mk
1 ) cos(Mkθ) = 1. (1.20)

Introducing new variables as in the previous case, we get

2p∑
k=1

YkΨk(R1, k, θ) = 1. (1.21)

Where
Ψ1 = 1 and Ψk = R

M(k−1)
1 cos(M(k − 1))θ for k = 2, 3, ..., p

Ψp+1 = lnR and Ψk = R
−M(k−p−1)
1 cos(M(k − p− 1)θ) for k = p+ 2, p+ 3, ..., 2p
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Equation (1.16) is satisfied when

p−1∑
k=1

YkΨk(R1, k, θ) = 1. (1.22)

Considering only p− 1 number of modes, quation (1.17) is satisfied when

B

R2

+

p−1∑
k=1

Mk[AkR
Mk−1
2 −BkR

−Mk−1
2 ] cos(Mkθ)

+Bi∗[A+B lnR2

p−1∑
k=1

(AkR
Mk
2 −BkR

−Mk
2 ] cos(Mkθ)] = 0. (1.23)

Equivalently we can write equation (1.24) as follows

2p∑
k=1

YkΨk(R1, k, θ) = 0. (1.24)

Here
Ψ1 = Bi∗

Ψk = [M(k − 1)R
M(k−1)−1
2 +Bi∗R

M(k−1)−1
2 ] cos(M(k − 1))θ for k = 2, 3, ..., p

Ψp+1 = Bi∗ lnR2 +
1
R2

Ψk = [−M(k − p − 1)R
−M(k−p−1)−1
2 + Bi∗R

−M(k−p−1)
2 ] cos(M(k − p − 1))θ for

k = p+ 2, p+ 3, ..., 2p

Writting equation (1.22) at N points on the inner boundary and writting equation
(1.24) at N points on the outer boundary, we can form a simultaneous system of
equations as in the previous case. By solving this system of equations, we can obtain
all the unknowns. Once we obtain the value of the unknowns, we can determine the
dimensionless temperature at any point inside the domain.



Chapter 2

Results and Discussion

In this chapter, heat conduction for various geometrical shapes as well as for some
standard geometrical shapes has been solved. The standard geometrical shapes for
which analytical solutions are available is used to validate the results of boundary
collocation method. For all the geometrical shapes considered in this paper the CSF
can be calculated by
S =

∫
Γ

∂Θ
∂η
dΓ

= −
∫ 2π

0
∂Θ
∂R

RdΘ

= −
∫ 2π

0
BdΘ−

∫ 2π

0

∑p−1
k=1Mk(AkR

Mk −BkR
−Mk) cos(Mkθ)dΘ

= −2πB

= −2πYp+1

2.1 (Case-1):Heat exchanger tubes bounded by
isothermal inner and isothermal outer noncircular
cross-section

Figure 2.1(a) shows the heat conduction for a heat exchanger tube of both inner
and outer circular cross-section. The problem has been solved for the steady state
considering constant inner temperature Ti and constant outer temperature To. These
values of Ti and To are considered for all other geometrical shapes solved in this
literature. In [18], the analytical expression for heat exchanger tube of both inner
and outer cross-section is given [? ] by

S =
2πL

ln(ro/ri)
. (2.1)

9



Chapter 2 Results and Discussion

Figure 2.1: Temperature distribution in an exchanger tube of (a) both isothermal inner
and outer circular cross-section (b) eccentric annuli of both isothermal inner and outer
cross-section

whereL is the length in the axial direction. Figure 2.1(b) shows the temperature profile
for an eccentric annuli with eccentricity 2 and ro/ri = 4. While solving this problem,
the origin of the frame of reference is chosen at a distance of from the centre of the
inner circular surface towards the centre of the outer circular surface. Hence with
respect to the author’s choice of frame of reference both the surfaces of the annuli are
noncircular. In [? ] the shape factor for this type of eccentric annuli is given by

S =
2πL

cosh−1[(r2o + r2i )/2rori]
. (2.2)

Equation (2.1) and (2.2) can be used to find out the numerical values of CSF for both
the circular shape and eccentric annuli presented in the Figure 2.1(a) and Figure 2.1(b).
The problem for both the shapes in Figure 2.1 and Figure 2.2 have been solved for
the purpose of validation of the boundary collocation method. From Table 2.1, it is
clear that the boundary collocation method gives pretty good approximate solution and
hence, we can rely on this method.

Table 2.1: Comparision of CSF value by BCM with the analytic CSF value
Geometrical shape ro/ri CSF- Analytical CSF-BCM

Circular 2 9.064720284 9.064751443
Eccentric annuli 4 5.890123070 5.888601269

Figure 2.2 shows the teperature distribution in a heat exchanger tube with outer
rounded square cross-section and inner square cross-section. This shape is one of the
most commonly used shape for exchanger tubes. For this figure, the ratio of ao/ai = 2

was considered. Although the inner surface has corners with angle 900, the method
was able to give good results. The CSF for this shape was found to be 4.785902248. In
Figure 2.3, ao and ai are taken as 3 and 2 respectively. Figure 2.2(a), Figure 2.3(a) and
Figure 2.4(a) show the ability of the method to handle boundaries with sharp corners

10



Chapter 2 Results and Discussion

Figure 2.2: (a) Temperature distribution and (b) schematics of a heat exchanger tube with
outer rounded square cross-section and inner square cross-section

Figure 2.3: (a) Temperature distribution and (b) schematics of a heat exchanger tube with
flower like outer cross-section and inner square cross-section

Figure 2.4: (a) Temperature distribution and (b) schematics of a heat exchanger tube with
outer elliptic cross-section and inner 8 sided polygonal cross-section

with angles 900 or more than 900. But, if both the two boundaries have boundaries
with sharp corners of angle 900 or less than 900 the method may fail to give correct
results.

Several investigations have established the potential of using elliptic shapes in the
design of various heat exchanger tubes. Many authors have also shown the superiority

11



Chapter 2 Results and Discussion

Figure 2.5: (a) Temperature distribution and (b) schematics of a heat exchanger tube with
outer elliptic cross-section and inner rounded square cross-section

Figure 2.6: (a) Temperature distribution and (b) schematics of a heat exchanger tube with
both inner and outer isothermal flower like cross-section

of elliptic tubes in drag reduction and its advantage in cross-flow. Hence, we felt the
necessity of investigating the combination of elliptic shape with other shapes. Figure
2.4 presents the heat conduction analysis of an exchanger tube with outer elliptic
cross-section and inner 8 sided polygonal cross-section. The heat conduction problem
has been solved considering ai = 1 and ao = 7 and bo = 4. Figure 2.5 displays
the heat conduction of an exchanger tube with outer elliptic cross-section and inner
rounded square cross-section. For the problem in Figure 2.5, the values of ai, ao, bo
are chosen as 1, 6 and 3 respectively. In Figure 2.6, a flower like shape having 8
number of symmetry is considered. The heat conduction problem for this shape is
solved by taking ai = 1 and ao = 2 and then using boundary collocation method. The
results obtained from this analysis are satisfactory.

12



Chapter 2 Results and Discussion

Table 2.2: CSF valuefor different shapes considered from figure 2.2 to figure 2.6
Geometrical shape in Numerical value of CSF

Figure 2.2 4.785902248
Figure 2.3 6.839875525
Figure 2.4 7.788335961
Figure 2.5 7.788335961
Figure 2.6 9.171086768

2.2 (Case-2):Heat exchanger tubes bounded by
isothermal inner and convective outer noncircular
cross-section

Some geometrical shapes have been considered where the problem has been solved for
conjugate heat transfer i.e. conduction with convection and are presented in figure 2.7
to Figure 2.10. From the present analysis, it is quiet convincing that heat conduction
problems for complicated geometries can be easily handled by boundary collocation
method.

Figure 2.7: Temperature distribution in an exchanger tube of isothermal inner and convective
outer (a) circular cross-sections (b) elliptic cross-sections

2.3 Validation

We represent the obtained results in Figure 2.11 for the purpose of analysis. Figure
2.11(a) shows the angular variation of temperature as a function of the radial
distance for an exchanger tube of outer rounded square cross-section and inner square
cross-section. Here Ti and To are considered to be 800 and 200 respectively. With the
increasing radial distance, the angular variation gradually deviates from the uniform

13
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Figure 2.8: Temperature distribution in an exchanger tube with (a) outer convective rounded
square cross-section and inner isothermal square cross-section (b) convective flower like
outer cross-section and isothermal inner square cross-section

Figure 2.9: Temperature distribution in an exchanger tube with (a) convective outer elliptic
cross-section and isothermal inner 8 sided polygonal cross-section (b) convective outer
elliptic cross-section and isothermal inner rounded square cross-section

Figure 2.10: Temperature distribution in an exchanger tube with (a)inner isothermal and
outer convective flower like cross-section (b) inner isothermal and outer convective eccentric
annuli

distribution. As we go from angle 00 to angle 450, the thickness in the radial direction
increases which makes the curve the steepest at angle 00. Since we have considered a
combination of outer rounded square cross-section and inner square cross-section, the
thickness in the radial direction does not change much with variation of the angle and
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Figure 2.11: Angular variation of temperature as a function of the radial distance for an
exchanger tube of (a) outer rounded square cross-section and inner square cross-section (b)
outer elliptic cross-section and inner octagonal cross-section

Figure 2.12: Comparison of analytical and numerical values of CSF for a heat exchanger
with (a) outer square cross-section and inner circular cross-section (b) outer rectangular
cross-section and inner circular cross-section

Figure 2.13: (a) Comparison of analytical and numerical values of CSF for an elliptic heat
exchanger (b) Variation of percentage error in CSF calculation with the total number of
collocation points

that’s why we got a region in the middle portion where the temperature distribution is
uniform for every angle. InFfigure 2.11(b), the temperature verses the radial distance
from the origin of reference is plotted for different angles. One can observe that the
temperature distribution is dependent on the thickness of the exchanger tube. The
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Figure 2.14: (a) Variation of percentage error in CSF calculation with the number of
unknowns in equation (1.11) (b) Variation of global error with the number of unknowns
in equation (1.11)

Figure 2.15: (a) Temperature determinaion along a line which is not a radius for a circular
exchannger tube (b) Variation of percentage error in CSF calculation with eccentricity

figure is drawn considering ai = 1,ao = 7, bo = 4. Here, the thickness decreases
as the value of the angle increases. So the temperature at a higher angle is higher for
the same radial distance making the curve steeper at a higher angle. Thus, we get the
maximum steepness at the angle 900 and minimum steepness at the angle 00.

A comparison between the analytical value of CSF and the value of CSF obtained
by BCM is presented for a domain with outer square cross-section and inner circular
cross-section in figure 2.12(a). The length of the side of the square is increased keeping
the radius of the inner circle fixed. For such cases, the value of CSF is plotted against
a/r where a is length of the side of the outer square cross-section and r is radius of
the inner circular cross-section. The CSF value can be determined analytically [? ]
by

S =
2πL

ln(ro/ri)− 0.27079
. (2.3)

A comparison between the analytical value of CSF and the value of CSF obtained by
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BCM is presented for a domain with outer rectangular cross-section and inner circular
cross-section in Figure 2.12(b). The length of the rectangle is increased keeping the
breadth of the rectangle and the radius of the inner circle fixed. For such cases, the
value of CSF is plotted against b/a where a is the breadth of the outer rectangular
cross-section and b is the length of the outer rectangular cross-section. The analytical
CSF value for such a geometry can be obtained [? ] by

S =
2πL

ln(4a/πr)− 2l
. (2.4)

Here l is the correction term as defined by Balcerzak and Raynor [? ]. In Figure
2.13(a), an exchanger tube of both inner and outer elliptic cross-sections is considered
and the values of CSF is plotted against (ao+bo)/(ai+bi). The values of ai and ao are
the major axes of the inner and outer ellipses respectively.bi and bo are the minor axes
of the inner and outer ellipses respectively. The analytical expression CSF for such an
exchanger tube is given [? ] by

S =
2πL

ln((ao + bo)/(ai + bi))
. (2.5)

The value of aiand bi are kept constant. Then ao and bo are chosen so that both the inner
and outer ellipses will be confocal. For such a case, when the shape of the ellipses
becomes more and more circular means the distance between the two foci tends to
zero, the CSF obtained by the present analysis tend to match more accurately with
the analytical result i.e. the difference between the analytical and numerical value of
CSF tends to zero. The excellent agreement of the solution obtained by the proposed
method with the analytical solution shows that we can certainly rely on the BCM.

2.4 Error analysis

The global error can be calculated as follows.

Eg =
1

2N

2N∑
i=1

[Θe(Ri, θi)−Θa(Ri, θi)]
2. (2.6)

where Eg represents the global error. Θe(Ri, θi) and Θa(Ri, θi) are the exact value
of dimensionless temperature given by the boundary condition and numerical value
of dimensionless temperature arising from BCM respectively. Ri and θi are the
dimensionless radius and angle of the i-th collocation point where the boundary
condition is fulfilled approximately. 2N is the total number of collocation points
considered in the inner and outer boundaries of the domain. The local error can be
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found as
(El)i = |Θe(Ri, θi)−Θa(Ri, θi)|. (2.7)

where (El)i is the local error at the i-th collocation point. The local error is bounded
by E which means that (El)i ⩽ E for i = 1, 2, ..., 2N .
where E =

2Nmax
i=1

|Θe(Ri, θi)−Θa(Ri, θi)|
Hence, the value of Θa(Ri, θi) lies in the interval [Θe(Ri, θi)− E,Θe(Ri, θi) + E].

The system of equations obtained from BCM is solved using Gauss elimination
and Moore-Penrose pseudoinverse. When 2N = 2p, we solve the system using
Gauss elimination method. But, when 2N > 2p, we solve the system using
pseudoinverse method. The percentage error for CSF calculation is obtained for both
Gauss elimination and pseudoinverse method and is presented in Figure 2.13(a). It is
clear from the figure that the pseudoinverse method gives less error as compared to
the Gauss elimination method for the same number of collocation points. Moreover,
when the number of collocation points is high, the matrix obtained from the system
of equations becomes ill-conditioned. Hence, solving such a system using Gauss
elimination may produce biased results.This problem can be avoided by using
the pseudoinverse method. Hence, the authors felt the necessity of using the
pseudoinverse method.

Since, we are solving a second order Laplace equation, we need two boundary
conditions to obtain the solution. But due to the presence of a complicated geometry,
we are not able to obtain the solution analytically and hence, adopting numerical
methods to obtain the complete solution. From the numerical solution, it can be
verified that the unknown constants in the summation term has much less contribution
towards the solution as compared to the unknown constants outside the summation
term in equation (1.10) and equation (1.20). Hence, considering a large number of
terms in the summation series does not affect the solution much. So the authors
preferred the pseudoinverse method to the Gauss elimination method. A comparative
study of how the CSF value is affected by varying the number of terms in the
summation in equation (1.11) is presented in Figure 2.14(a). It is observed that
10 number of unknown constants in equation (1.11) gives the minimum percentage
error in CSF calculation and the error almost remains constants for higher number
of unknown constants. Hence, 10 is the optimum number of unknown constants in
equation (1.11) for CSF calculation for the considered geometry in the Figure 2.14(a).

Figure 2.14(b) shows the change of the global error as defined earlier with respect
to the change of the value of 2p. The global error decreases for low values of 2p
but it is almost equal to zero for higher values of 2p. We can say that for higher
values of 2p the method is stabilised. So it is clear from Fiigure 2.13(a), 2.13(b)
and 2.14(a) that the domain of any smooth geometry can be easily handled with
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BCM and pseudoinverse method. In Figure 2.15(a), O is the origin of the frame
of reference. Several methods are available which can determine the temperature
distribution along line PQ. But so far, no numerical method is designed to obtain the
temperature distribution along the line PA or PB. But this can be done by BCM. If we
shift the origin of the frame of reference from O to C, the line AB falls in the radial
direction of the newly considered origin. Hence, OC = ai sin(θ)/ tan(θ + α) and
e = ai cos(θ)− ai sin(θ)/ tan(θ + α). Considering this eccentricity, the problem can
be solved to get the temperature distribution along the line PA at an angle of θ + α.
Similarly the temperature distribution along line PB can be calculated considering
e = ai sin(θ)/ tan(θ − β)− ai cos(θ) in the negative x-axis and at an angle of θ − β.

Table 2.3: CSF value of a circular heat exchanger for different eccentricity
e CSF-BCM CSF- Analytical Percentage error
0 9.064720284 9.064720284 0
0.1 9.064720368 9.064720284 9.27E-07
0.15 9.064721246 9.064720284 1.06E-05
0.2 9.064725614 9.064720284 5.88E-05
0.25 9.064739904 9.064720284 0.000216
0.3 9.064774581 9.064720284 0.000599
0.35 9.064837709 9.064720284 0.001295
0.4 9.064909097 9.064720284 0.002083

Table 2.3 represents the variation of CSF with eccentricity . As we increase the value
of e, the percentage error in the calculation of CSF increases. But the error is very
small. Hence, we can obtain the value of CSF with high accuracy. From Table 2.3 and
figure 2.15(b), we conclude that the BCMmethod can correctly predict the CSF value
even if we shift the origin of the frame of reference from O to O′.



Chapter 3

Conclusion and Scope for further
work

The method is highly dependent on the shape of the cross-section of the exchanger
tubes. This method can handle cross-sections with smooth boundaries but it may fail
to handle cross-sections with sharp edges. If the angle of this sharp edge is less than or
equal to 900, the method may fail to handle such a boundary. Figure 2.2(a), 2.3(a) and
2.4(a) clearly shows that up to some extent, this method can handle sharp edges, but
if we consider an exchanger tube of both inner and outer cross-section having edges
with angle 900 or less than 900 e.g. exchanger tube of both inner and outer rectangular
cross-sections , this method may not give us correct results. So far, the method have
been able to handle geometrical shapes if sharp edges with angle 900 or greater than
900 are present on any one boundary.

For all the cases considered, the number of collocation points chosen are close to
100 or more than 100. If the number of collocation points is less, the solution may
be unsatisfactory. Moreover, if the number of points is very large, it may lead to a
highly ill-conditioned system. For a better overview of this problem, one may refer
Moharana et al [20]. Hence 100 collocation points are chosen as benchmark which
is sufficient to give very good results but not large enough to give biased results.
In the method adopted by the author, equidistant points on the boundaries are not
chosen, rather points on the boundaries are chosen on the basis of equal angular
distance. If we consider equidistant points on the boundaries, the computational
complexity and the time required to do that may ruin the sole purpose of this paper.
The proposed method based on boundary collocation technique was developed in
this paper to numerically solve the two dimensional Laplace equation which is the
governing differential equation for heat conduction in two dimensional domain. By
the proposed method, there is no need to do huge and time consuming computational
work. The excellent agreement between the obtained result and the exact solution
presented in table 1 approve that the method is reliable. All the computational work
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and calculations are done using MATLAB. The figures are generated using Tecplot
and OriginLab.

This work can be further extended to solve three dimensional steady heat conduction
problems. In that case, the three dimensional Laplace equation is used as the governing
differential equation. All the boundary conditions used for this work are valid for that
case. Some new boundary conditions arise for that case. All the boundary conditions
are used to get the complete solution of the problem.
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