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Abstract 

The paperndeals with the conceptnof semi-compactness in thengeneralized setting of a 

fuzzyntopological space. We achievena number of characterizationsnof a fuzzynsemi-compact 

space. The notionnof semi-compactness is furthernextended to arbitrary fuzzyntopological sets. 

Such fuzzynsets are formulated inndifferent ways and a fewnpertinent properties are discussed. 

Finallynwe compare semi-compact fuzzynsets with some ofnthe existing types ofncompact-like 

fuzzynsets. We ultimately shownthat so far as thenmutual relationships among differentnexisting 

allied classes of fuzzynsets are concerned, thenclass of semi-compact fuzzynsets occupies a 

naturalnposition in the hierarchy. Thenpurpose of this papernis to introduce thenconcepts of 

semi*-connectednspaces, semi*-compactnspaces. We investigate theirnbasic properties. We 

alsondiscuss their relationship withnalready existing concepts. 

 

 

 

 

 

 

 



Introduction 

Barring para-compactness, therenexists in the literature, annumber of allied formsnof 

compactness studiednin a classical fuzzyntopological space. Among these, thenmost widely 

studiedncompact-like covering properties arenalmost compactness ornquasi H-closed-ness, 

nearncompactness, S-closed-ness, andnsemi-compactness. The thoroughninvestigations and the 

applicationalnaspects of these coveringnproperties have prompted topologistsnto generalize these 

conceptsn(with the exceptionnof semi-compactness) to fuzzynsetting. In this paper, some of 

interestingnproperties of fuzzy semi-compactnessnare investigated. Ournintention here is to go 

intonsome details towardsncharacterizations of semi-compactnessnfor a fts. These 

characterizationsnare effected with thenhelp of fuzzynsets, pre-filter-bases and similarnother 

concepts, which comprisenthe deliberation in thennext section. Compactnessnis one of thenmost 

important, useful and fundamentalnconcepts in fuzzy topology. Thenpurpose of this papernis to 

introducenthe concepts of semi*-connectednspaces, semi*-compact spaces. Weninvestigate their 

basicnproperties. We alsondiscuss their relationship withnalready existingnconcepts. 
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Chapter 1 

 

1. Fuzzy Topological spaces 

1.1 A topological space is an ordered pair ( X , τ), where X  is a set and τ is a collection 

of subsets of X , satisfying the following axioms 

1. The empty set and X it self belongs to τ. 

2. Any (finite or infinite) union of members of τ still belongs to τ. 

3. The intersection of any finite number of members of τ still belongs to τ. 

 

 

Definition: A fuzzy topology on a set X  is a collection  of fuzzy sets in X such that: 

1. 0,1 , 

2.  ,  

3. ∀ (
𝑖
)𝑖∈𝐼 ∈  ⇒  𝑖∈𝐼(

𝑖
) ∈ ; 

 is called as a fuzzy topology for X , and the pair ),( X is a fuzzy topological space, or FTS in 

short. Every member of  is called a T-open fuzzy set. Fuzzy sets of the form 1 − µ, where µ is 

an open fuzzy set, are called closed fuzzy sets. 

 

 



Examples of fuzzy topologies: 

 Any topology on a set X  (subsets are identified with their characteristic functions). 

 The indiscrete fuzzy topology {0, 1} on a set X  (= indiscrete topology on X ).  

 The discrete fuzzy topology on X  containing all fuzzy sets in X .  

 The collection of all crisp fuzzy sets in X  (= discrete topology on X ).  

 The collection of all constant fuzzy sets in X . 

 The intersections of any family of fuzzy topologies on a set X . 

1.2 Base and subbase for FTS: 

Definition: A base for a fuzzy topological space ),( X  is a sub collection  of τ such that each 

member A of τ can be written as jAj AV  , where each jA .  

Definition: A subbase for a fuzzy topological space ),( X  is a sub collection S of τ such that the 

collection of infimum of finite subfamilies of S forms a base for ),( X .  

Definition: Let ),( X  be an FTS. Suppose A is any subset of X . Then (A, A ) is called a fuzzy 

subspace of ),( X ,  

Where,  

1. },:{   BBAA   

2. XxxxB B  :))(,{(  ,  

3. }:))(,{( / AxxxB ABA   . 

 

 



Definition: A fuzzy point 𝐿 in 𝑋 is a special fuzzy set with membership function defined by  

𝐿(𝑥) = {

𝜇 ∀ 𝑥 = 𝑦

0 ∀ 𝑥 ≠ 𝑦
 

Where, 0 < 𝜇 ≤ 1. 

𝐿 is said to have support y, value 𝜇 and is denoted by 


yP or 𝑃(𝑦, 𝜇) . 

Let A be a fuzzy set in X , then )(yAAPy  
.  

In particular, 

  ,zyPP zy .  

A fuzzy point 


yP  is said to be in A, denoted by  



yP ∈ A ⇔nα ≤ A(y).  

The complement of the fuzzy point 

xP is denoted either by 1

xP  or by c

xP )(  . 

Definition: The fuzzy point 

xP is said to be contained in a fuzzy set A, or to belong to A, 

denoted by 

xP ∈ A if and only if λ < A(x).  

Every fuzzy set A can be expressed as the union of all the fuzzy points which belong to A. That 

is, if A(x) is not zero for x ∈ X , then A(x) = sup {λ: 

xP , 0 < λ ≤ A(x)}. 

Definition: Two fuzzy sets A, B in X are said to be intersecting if and only if there exists a point 

x ∈ X  such that (A ∧ B)(x)   0. For such a case, we say that A and B intersect at x. Let A, B ∈ 

I X . Then A = B if and only if P ∈ A ⇔ P ∈ B for every fuzzy point P in X . 



1.3 Closure and Interior of fuzzy sets 

Definition: The closure A and the interior 0A of a fuzzy set A of X  are defined as  

},:inf{  cKKAKA  

},:sup{0  OAOOA  

1.4 Neighborhood 

Definition: A fuzzy point 

xP is said to be quasi-coincident with A, denoted by qAPx

 , if and only 

if λ > )(xAc , or λ + A(x) > 1. 

Proposition: Let f be a function from X to Y. Let P be a fuzzy point of X, A be a fuzzy set in X 

and B be a fuzzy set in Y. Then we have: 

1. If ,)( BPf q then ).(1 BfPq


 

2. If ,APq then ).()( AfPf q
 

3. ),(1 BfP   if .)( BPf   

4. ),()( AfPf  if .AP  

 

 

 

 

 



1.5 Fuzzy Continuous Map 

Definition: Given fuzzy topological space ),( X and ),( Y , a function YXf :  is fuzzy 

continuous if the inverse image under f  of any open fuzzy set in Y  is an open fuzzy set in X ; 

that is if   )(1f  whenever   . 

 

Proposition: 

 (a) The identity ),(),(:  XXidX   on a fuzzy topological space ),( X  is fuzzy continuous.  

(b) A composition of fuzzy continuous functions is fuzzy continuous.  

Proof. (a)   

XX idid )(, 1  

(b) Let ),(),(:&),(),(:  ZYgYXf   be fuzzy continuous. For 

)).(()()()()()(, 1111    gfgffgfgfg     )(1g since g is 

fuzzy continuous, and so    ))(()()( 111 gffg   = f −1 (g −1 (η)) ∈ τ since f  is fuzzy 

continuous. 

 

 

 

 

 



Chapter 2 

2. Generalized locally closed sets and GLC-continuous function 

2.1 Fuzzy G-Closed sets 

𝑆 ∈ (𝑋, 𝜏) is Fuzzy G-closed, 

⟺ 𝑐𝑙(𝑆)  𝐺, 

      𝑆  𝐺, 

      𝐺 is open in ( X , ). 

2.2 Fuzzy G-open Sets 

𝑆 ∈ ),( X   is fuzzy G-open, 

⟺ (𝑋 − 𝑆) is fuzzy g-closed. 

2.3 Fuzzy Locally Closed sets 

 𝑆 ∈ is fuzzy locally closed 

⇔ 𝑆 =  𝐺 ∩ 𝐹,  

Where, 𝐺 ∈ 𝜏  and 𝐹 is closed in (Χ,  ) 

 

 

 

 



2.4 Fuzzy G-Locally closed sets 

𝑆 ∈ (𝑋, 𝜏) is fuzzy G-locally closed 

⇔ 𝑆 = 𝐺 ∩ 𝐹, 

Where, 𝐺 is fuzzy g-open in (𝑋, 𝜏) 

            𝐹 is fuzzy g-closed in (𝑋, 𝜏). 

2.5 Fuzzy GLC* 

𝑆 ∈ (𝑋, 𝜏) 

𝑆 ∈ 𝑓𝑢𝑧𝑧𝑦 𝐺𝐿𝐶∗(𝑋, 𝜏) 

⇔ 𝑆 = 𝐺 ∩ 𝐹 

Where, 𝐺 is fuzzy g-open set of (𝑋, 𝜏) 

             𝐹 is fuzzy-closed set of (𝑋, 𝜏) 

2.6 Fuzzy GLC** 

𝑆 ∈ (𝑋, 𝜏) 

𝑆 ∈ 𝑓𝑢𝑧𝑧𝑦 𝐺𝐿𝐶∗∗(𝑋, 𝜏) 

⇔ 𝑆 = 𝐺 ∩ 𝐹 

 Where, 𝐺 is fuzzy-open set of (𝑋, 𝜏) 

              𝐹 is fuzzy g-closed set of (𝑋, 𝜏) 

 



Theorem: 

𝑆 ∈ (𝑋, 𝜏) 

1. 𝑆 ∈ 𝑓𝑢𝑧𝑧𝑦 𝐺𝐿𝐶∗(𝑋, 𝜏) 

2. 𝑆 = 𝑃 ∩ 𝑐𝑙(𝑆) ∀ 𝑓𝑢𝑧𝑧𝑦 g-open 𝑠𝑒𝑡 𝑃 

3. 𝑐𝑙(𝑆) − 𝑆 𝑖𝑠 𝑓𝑢𝑧𝑧𝑦 g-closed 

4. 𝑆 ∪ 𝑐𝑙(𝑋 − 𝑐𝑙(𝑆))𝑖𝑠 𝑓𝑢𝑧𝑧𝑦 g-open 

Proposition 

𝐴, 𝑍 ∈ (𝑋, 𝜏) 

𝐴 ⊂ 𝑍 

1. 𝑍 is fuzzy g-open in (𝑋, 𝜏) 

     𝐴 ∈ 𝐺𝐿𝐶∗ (𝑍,  𝜏 | 𝑍) 

     ⇒ 𝐴 ∈ 𝐺𝐿𝐶∗(𝑋, 𝜏) 

2. 𝑍 is fuzzy g-closed in (𝑋, 𝜏) 

     𝐴 ∈ 𝐺𝐿𝐶∗∗(𝑍,  𝜏 | 𝑍) 

     ⇒ 𝐴 ∈ 𝐺𝐿𝐶∗∗(𝑋, 𝜏) 

3. 𝑍 is fuzzy g-closed and fuzzy g-open in (𝑋, 𝜏) 

     𝐴 ∈ 𝐺𝐿𝐶(𝑍, 𝜏 | 𝑍) 

     ⇒ 𝐴 ∈ 𝐺𝐿𝐶(𝑋, 𝜏) 



2.7 Fuzzy Generalized Locally Closed Functions: 

Fuzzy GLC-irresolute:  

𝑓:  (Χ,  ) (𝑌, 𝜎) 

⇔ 𝑓−1(𝑉) ∈ 𝐺𝐿𝐶 (Χ,  ) ∀ 𝑉 ∈ 𝐺𝐿𝐶 (𝑌, 𝜎). 

Fuzzy GLC-continuous:  

𝑓:  (Χ,  ) (𝑌, 𝜎) 

⇔ 𝑓−1(𝑉) ∈ 𝐺𝐿𝐶 (Χ,  ) ∀ 𝑉 ∈ . 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

3. Fuzzy semi-compact spaces 

Definition: A FTS X  is said to be a fuzzy semi-compact space if every fuzzy cover of X  by 

fuzzy semi-open sets (such a cover will be called a fuzzy semi-open cover of X ) has a finite sub-

cover.  

A direct consequence of the above definition yields the following alternative formulation of a 

fuzzy semi-compact space.  

Theorem: A FTS X  is fuzzy semi-compact   each family U  of fuzzy semi-closed sets in X  

with finite intersection property (i.e., for every finite sub-collection 0U  ofU , XU 00  ) has a 

non-null intersection. 

Theorem: A FTS X  is fuzzy semi-compact   every pre-filter base on X  has a fuzzy semi-

cluster point. 

Proof: Let X  be fuzzy semi-compact and let }:{  FE  be a pre-filter base on X  having 

no fuzzy semi-cluster point. Let Xx . Corresponding to each Nn  (here and hereafter N  

denotes the set of natural numbers), there exists a semi-q-nbd n

xU of the fuzzy point nx /1  and an 

n

xF  such that n

x

n

x FqU . Since ,/11)( nXU n

x   we have 1)( xU x , where 

}.:{ NnUU n

xx   Thus },:{ XxNnUU n

x   is a fuzzy semi-open cover of X . Since X  

is fuzzy semi-compact, there exist finitely many members nk

xk

n

x

n

x UUU ,...,, 2

2

1

1 of U  such that

.11 X

ni

xi

k

i U   If EF  such that ,...2

2

1

1

nk

xk

n

x

n

x FFFF   then .1XqF  Consequently, XF 0  

and this contradicts the definition of a pre-filter base. 



Definition: A fuzzy point x in a FTS X is called a complete semi accumulation point of a fuzzy 

set A in X if and only if for each semi-q-nbd U  of x , |,}1)()(:{||sup|  yUyAXyA

where for a subset B  of X , by | B | we mean, the cardinality of B . 

 

Theorem: A necessary condition for a FTS X  to be fuzzy semi-compact is that every fuzzy set

A  in X  with 0|sup| NA   has a complete semi accumulation point. 

Proof: Let A be a fuzzy set in a fuzzy semi-compact space X  such that 

0|sup| NA  , 

And if possible, suppose A has no complete semi accumulation point inY . Then for each Xx

and Nn , there is a semi-q-nbd n

xU of the fuzzy point nx /1  such that 

.|sup||}1)()(:{| AxUxAXx n

x   

Now, since ,1/1)(  nxU n

x  it follows that  

},:{ NnXxU n

x   is a fuzzy cover of X  by fuzzy semi-open sets. As X is fuzzy semi-compact, 

there exist a finite subset },...,,{ 21 nxxx of X  and finitely many positive integers mnnn ,...,, 21 such 

that    X

ni

xi

m

i UU 11  . 

Now, 1sup  k

k

n

xUAx , for some K(1<K<m) 

 1)()(  xAxU k

k

n

x  

 k

n

x nAyUyAXyx k

k
 }1)()(:{  



As, 
in

m

ik AUnA 1  , we have 
in

m

i AUA 1sup   

But, |sup||| AAU
kn  for i=1,2,…,m. Thus, 

|sup||||| max
1

1 AAUAUU i

mi

n

m

i i





 

Hence, we get 

|sup||||sup| 1 AAUUA
in

m

i    

It is a contradiction. This proves our theorem. 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

4. Fuzzy semi-compact sets 

Definition: A fuzzy set A  in a FTS X is said to be: 

1. A fuzzy compact set, if every fuzzy open cover of A  has a finite sub-cover for A . 

2. A fuzzy nearly compact set, if every fuzzy regular open cover of A  has a finite sub-cover for

A . 

3. A fuzzy s-closed set, if every fuzzy semi-open cover of A  has a semi-proximate sub-cover for

A . 

4. A fuzzy almost compact set, if every fuzzy open cover of A  has a finite proximate sub-cover 

for A . 

5. A fuzzy  -rigid set, if for every fuzzy open cover U  of A , there exists a finite subfamily 0U  

of U such that ).(int 0UclA   

6. A fuzzy * -rigid, if for every semi-open cover U of A , there exists a finite subfamily 0U of U  

such that }).:{( 0UUsclUsclA   

 

 

 

 



Theorem: If A  is a Fs*C-set in a FTS X  and YXf : is fuzzy irresolute then )(Af is a 

Fs*C-set in the FTS Y . 

Proof: For each fuzzy semi-open cover }:{ V  of )(Af inY , }:({ 1  Vf  is a fuzzy 

semi-open cover of A  in X . Hence, 

),(1

0  VfA 

  for some finite subset 0 of .  

 Then, 

.)())(()(
000

11

 VVffVffAf 



   

Thus )(Af  is a Fs*C-set inY .  

 

 

 

 

 

 

 

 

 



Chapter 5 

5. Semi*-connectednessnin Fuzzy TopologicalnSpaces:- 

Definition 5.1: Let A nbe a subsetnof a fuzzy topologicalnspace X . The generalizednclosure of

A  is definednas the intersectionnof all g-closed setsncontaining A  and is denotednby )(* ACl . 

A subsetn B  of a fuzzyntopological space X  isncalled g-closed, if UBCl )(  whenever UB   

andnU  is opennin X . 

Definition 5.2: Ansubset A ofna fuzzy topologicalnspace 𝑋 is callednsemi*-open if

))((* AIntClA . 

Definition 5.3: Ansubset A  of a fuzzyntopological space 𝑋 isncalled semi*-regular ifnit is both 

semi*-opennand semi*closed. 

Definition 5.4: Let A  bena subset of X . Then thensemi*-closure of A  isndefined as the 

intersectionnof all semi*-closednsets containing A  andnis denoted by )(* ACls . 

Definition 5.5: Ansubset A  of a fuzzyntopological spaces X , thensemi*-frontier of A  

isndefined by )(*\)(*)(* AIntsAClsAFrs  . 

Definition 5.6: Anfunction YXf :  is saidnto be   

(i) semi*-continuousnif  )(1 Vf   isnsemi*-open in X  fornevery open setnV  in Y .   

(ii) semi*-irresolutenif )(1 Vf    isnsemi*-open in X  fornevery semi*-open setnV  in Y  

 

 



Theorem 5.7: Let YXf :  bena function. Then  

(i) fnis semi*-continuousnif and onlynif )(1 Vf   isnsemi*-closed in X  fornevery 

closed setnV  in Y . 

(ii) f isnsemi*-irresolute if and onlynif )(1 Vf   isnsemi*-closed in X  fornevery semi*-

closednset V  in Y . 

Definition 5.8: A fuzzyntopological space X  isnsaid to bensemi*-connected if X  cannotnbe 

expressed asnthe union ofntwo disjoint non-emptynsemi*-open sets in X . 

Theorem 5.9: Everynopen set isnsemi*-open. 

Theorem 5.10: Everynsemi*-open set isnsemi-open. 

Theorem 5.11: Let A bena subset ofna fuzzyntopological space 𝑋. Then A isnsemi*-regular if 

and onlynif )(* AFrs . 

Theorem 5.12: Ifna fuzzy topologicalnspace X  is semi*-connected, thannit is connected. 

Proof: Let X  bensemi*-connected. Suppose, X  isnnot connected. Thennby definition 

ofnconnected space, we cannsay that  BABA &, , such that .BAX   Where, A  

and B  arenopen sets. By Theorem 5.9, we cannsay that A and B  arensemi*-open sets. Thisnis a 

contradictionnto X  isnsemi*-connected. Hence, the fuzzyntopological space X isnconnected. 

Theorem 5.13: Ifna fuzzy topologicalnspace X is semi-connected, thannit is semi*-connected. 

Proof: Letnthe fuzzy topologicalnspace X be semi-connected. Let X isnnot semi*-connected. 

Thennby Definition 5.8, we cannsay that  BABA &, , suchnthat .BAX   Where

A and B arensemi*-open sets. By Theoremn5.10, wencan say that A and B  arensemi-open sets. 



This isna contradiction to X isnsemi-connected. Hence, fuzzyntopological space X isnsemi*-

connected. 

Theorem 5.14: Anfuzzy topological spacenis a semi*-connectednspace if and onlynif the only 

semi*-regularnsubsets of X aren  and X . 

Necessity: Supposenthe fuzzy topologicalnspace X is semi*-connected. Let A bena non-empty 

propernsubset of X  thatnis semi*-regular. Then A and AX \  arennon-empty semi*-opennsets 

and )\( AXAX  . 

This isna contradiction tonour assumptionnthat X  is semi*-connected. 

Sufficiency: Suppose .BAX   BABA &, . A  and B  arensemi*-open sets. 

Then, BXA \  is semi*-closed. Thus, A  isnnon-empty proper subsetnthat is semi*-regular. 

This isna contradiction tonour assumption. Hence, our theorem is proved. 

Theorem 5.15: A fuzzyntopological space X  isnsemi*-connected if every semi*-

continuousnfunction of X  into andiscrete spaceY with atnleast two points isna constant function. 

Proof: Let f  be ansemi*-continuous function of thensemi*-connected space intonthe discrete 

spaceY . Then forneach })({, 1 yfYy  is ansemi*-regular setnof X . Since X  isnsemi*-

connected orXyf  })({1 . If ,})({1 Yyyf  thennf ceases tonbe a function. Therefore 

Xyf  })({1 forna unique Yy 0 . Thisnimplies }{)( 0yxf   andnhence f  is anconstant 

function. 

Theorem 5.16: A fuzzyntopological space X  isnsemi*-connected if andnonly if everynnon-

empty propernsubset of X  hasnnon-empty semi*-frontier. 



Proof: Supposenthat the fuzzyntopological space X  isnsemi*-connected. Let A  be annon-empty 

proper subsetnof X . We claimnthat )(* AFrs . On thencontrary, let )(* AFrs . 

Then by Theorem 5.11, A isnsemi*-regular subset of X .BynTheorem 5.14, X isnnot semi*-

connected,nwhich is ancontradiction. 

Conversely, supposenthat every non-emptynproper subset of X  hasna non-emptynsemi*-

frontier. We claimnthat X is semi*-connected. On thencontrary, suppose X  is notnsemi*-

connected. By Theorem 5.14, X  hasna non-empty propernsubset A , which isnsemi*-regular. By 

Theorem 5.11, )(* AFrs , whichnis a contradiction tonour assumption. Hence, the 

fuzzyntopological space X  isnsemi*-connected. 

Theorem 5.17: Let YXf : be ansemi*-continuous surjection andnthe fuzzy 

topologicalnspace X be semi*-connected. ThennY is connected. 

Proof: Let YXf : be semi*-continuousnsurjection and the topologicalnspace X be a semi*-

connected. Let V  bena clopen subsetnofY . By Definition 5.6 (i) and Theorem 5.7 (i), )(1 Vf 

isnsemi*-regular in X . Since X  isnsemi*-connected orXVf  )(1 . Hence orYV  . 

Thisnproves Y  is connected. 

Theorem 5.18: Let YXf : be anfuzzy semi*-irresolutensurjection. If X is anfuzzy semi*-

connected, thenY isnso. 

Proof: Let YXf : be fuzzynsemi*-irresolute surjectionnand X be anfuzzy semi*-connected. 

Let V  bena subset ofY thatnis semi*-regular innY . By definition 5.6 (ii) and Theorem 5.7 (ii), 

)(1 Vf  isnsemi*-regular in X . Since X  isnfuzzy semi*-connected, orXVf  )(1 . Hence, 

orYV  . Thisnproves Y  is fuzzynsemi*-connected. 



Chapter 6 

6. FUZZYNWEAKLY-COMPACTNSPACES 

In thisnchapter we define setsnfuzzy weakly-compact relativento a topologicalnspace and 

investigatenthe relationship betweennsuch sets and fuzzynweakly-compact subspaces.  

6.1 Definition. Anfuzzy subset S isnsaid to be fuzzynregular open (resp. fuzzynregular closed) 

ifnint(cl(S))= S  (resp. cl(int(S))=S). 

6.2 Definition. Anfuzzy open covern{V:L} of annfts is saidnto be fuzzynregular if for 

eachnL  there existsna nonempty fuzzynregular closed set F innX such thatnFV and Xn= 

U{int (F):L} 

6.3 Definition. Annfts X isnsaid to be fuzzynweakly-compact (resp. fuzzynalomost-compact) if 

everynfuzzy regular (resp. fuzzynopen) cover ofnX has a finitensubfamily whose fuzzynclosures 

cover X. Itnis clear thatnevery fuzzy almost-compatnspace is fuzzynweakly-compact. 

 A fuzzynsubset S of thenfts X isnsaid to be fuzzynweakly-compact if S isnfuzzy weakly-

compact asna fuzzy subspacenof X. 

6.4 Definition. A fuzzynsubset S of annfts X isnsaid to be fuzzynweakly-compact relative to X  if 

forneach cover {V:L} ofnS by fuzzynopen sets of X  satisfyingnthe condition () : 

() For eachnL, there existsna nonempty fuzzynregular closed set F of X suchnthat 

FVnand S U{int (F):L}. 

therenexists a finite subsetnLo of L suchnthat S{cl(V):Lo}. 



6.5 Definition. Annfts X is said to be fuzzynnearly compact ifnevery regular fuzzynopen cover of 

X hasna finite fuzzynsubcover. 

 Let A bena fuzzynsubspace of an fts X and S benany fuzzy subsetnof A. Innthis section 

clA(S) (resp.nintA(S)) denotesnthe fuzzy closuren(resp. fuzzyninterior) of S  innthe subspace A. 

6.6 Theorem. IfnA is a fuzzynweakly-compact subspacenof a space X, then A isnfuzzy weakly-

compact relativento X. 

Proof. Let {U:L} be a fuzzyncover of A by fuzzynopen subsets of X satisfyingncondition (*) 

of Definition 6.4. Thennfor each L therenexists a nonempty fuzzynregular closed sets F such 

that FU and A{int(U):L}. Forneach L, int(F)∩A  and U∩A arenfuzzy open in A 

and (F)∩A  isnfuzzy closed in A. The familyn{U∩A:L} is fuzzynopen cover ofnA. 

Forneach  L we have  clA(int(F)∩A)F∩AU∩A. Moreover, wenhave. A = 

U{int(F)∩A:L}  and (int(F) ∩A)intA(clA(int(F)∩A )). Since clA(int(F)∩A) is 

fuzzynregular closed in A, {U∩A:L} is a fuzzynregular cover of the fuzzynsubspace A. 

There existsna finite subset Lo of  L suchnthat  A= U{clA(U∩A):Lo}. Sincen(clA(U∩A)) 

clA(U) forneach Lo, wenobtain AU{clA(U):Lo}. Thisnshows that A is fuzzynweakly-

compact relative tonX. This completesnthe proof of Theorem  6.6.                                                                                                       

 

 

 

 



6.7 Theorem.  Ifnevery proper fuzzynregular closed subsetnof an fts X is fuzzynweakly-compact 

relative  to X, then X isnfuzzy weakly-compact. 

Proof. Let {U:L} bena fuzzy regularncover of X. Then forneach L there existsna 

nonempty fuzzy regularnclosed set F in X suchnthat FU and X={int(F):L}.  

Choosenand fix oL. Let K=Xint(
o

F ); then K isnfuzzy regular closednin X and K 

U{int.(F):L{o}}.   Therefore, {U:L{o}} is a fuzzyncover of K by fuzzynopen sets 

of X satisyingn(*) of Definition 3.5.4 and hencenfor some finite subsetnLo of L we have 

KU{clA(U):Lo}. Thus, wenobtain X = K Uint(
o

F )= KUcl(
o

V )= Ucl{(
o

V ):LoU{o}} 

This showsnthat X is fuzzynweakly-compact.   This completes the proof of Theorem  6.7.                                                       

6.8 Corollary.  Ifnevery proper fuzzynregular closed subsetnof a space X is fuzzynweakly-

compact, then X is fuzzynweakly-compact. 

Proof. The proof follows from Theorems 6.6 and 6.7.                                                                       

6.9 Theorem. Let X bena fuzzy weakly-compactnspace. If A is anfuzzy clopen subset of X, then A 

isnfuzzy weakly-compact relative to X. 

Proof. Let {U:L} be a fuzzyncover of A by fuzzynopen sets of X satisfying thencondition 

(*) of Definition 6.4. Assume that (XA)Ø. Since A isnfuzzy clopen in X,  (XA)  is also 

fuzzynclopen in X. Thereforenthe family {U:L}U{(XA)} is anfuzzy regular covernof X. 

Since X is fuzzynweakly-compact there existsna finite   subset  Lo of  L suchnthat   

XU{cl(U):Lo} Ucl(XA)=U{cl(U):Lo}Ucl(XA) Therefore, we 

obtainnAU{cl(U):Lo}. This completes the proof of Theorem 6.9. 
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