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i 
 

 

This project presents the application of neural networks as well as statistical techniques for 

prediction of ground vibration by major influencing parameters of blast design. The predictions by 

artificial neural network (ANN) is compared with the predictions of conventional statistical 

relation. Ground vibrations and frequency induced due to blasting were monitored at Indian 

Detonators Limited Rourkela (IDL), Balphimali Bauxite mine (UAIL) and Dunguri Limestone 

mine (ACC). The neural network was trained by the data sets recorded at the various mine sites. 

From the analysis it was observed that the correlation coefficient determined for PPV and 

frequency by ANN was higher than the correlation coefficient of statistical analysis. The 

correlation coefficient determined for PPV and frequency by ANN for Balphimali Bauxite mine 

(UAIL) was 0.9563 and 0.9721 respectively and correlation coefficient determined for PPV and 

frequency by ANN for IDL was 0.9053 and 0.9136 while correlation coefficient determined for 

PPV and frequency by ANN for Dunguri Limestone mine (ACC) was 0.9322 and 0.9301. The 

difference in correlation coefficient of PPV and frequency in different mines is due to different 

number of input parameters for the neural network and number of datasets used for the training of 

network. The number of datasets and input parameters were more for Balphimali Bauxite mine 

(UAIL), thus it showed higher correlation coefficient between the recorded and predicted data by 

ANN than other mines. 
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INTRODUCTION 

The primary objective of blasting in mining is to break and move the rock. Whilst most blasts 

arguably achieve this objective reasonably efficiently, some of the energy applied to the rock by 

the detonating blast is inevitably converted into non-productive “waste” energy in the form of 

ground vibration and air blast. This energy leaves the vicinity of the blast and can travel a 

significant distance (as much as thousands of meters) before finally dissipating to negligible levels. 

In the meantime, it can cause significant damage to rock structures and buildings, and disturbance 

to human occupants. 

 

Ground vibrations are an integral part of the process of rock blasting and consequently they are 

unavoidable. With the general trend toward large blasts in mining and constructions projects, 

vibration problems and complaints have also increased. Consequently, lawsuit cases have 

developed between the mining industry and the general public at an accelerating rate. Complaints 

ranges from human disturbance to outright demolition of a residential structure, and although some 

of these claims are exaggerated, other legitimate. In spite of the many varying damage criteria 

established in the past, it is difficult to completely isolate vibration damage from damage caused 

by natural setting of the building, inadequate construction, old ages, etc. Even if a valid “fool 

proof” damage criterion were established, the critical problem remains to eliminate or considerably 

reduce all complaints resulting from ground vibrations and air blast, regardless of what the 

prevailing legal vibration limits are within a community. Therefore, the effect of ground vibrations 

produced by blasting on building structures and human beings need to be predicted, monitored, 

and controlled by the blasting engineer as part of optimizing the job. 
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1.1 OBJECTIVES 

 To study the ground vibrations and frequency caused due to blasting and prediction of safe 

explosive amount and steps to be taken to reduce the adverse effects of blasting i.e. to reduce the 

Peak particle velocity (PPV) by the use of neural networks. Figure 1 shows the plan of work. 

1.2 PLAN OF WORK 

1) PPV and Frequency monitoring at Balphimali Bauxite Mine (UAIL), Indian Detonators Ltd.  

    and Dunguri Limestone Mine (ACC).  

2) Use of ANN and statistical techniques to predict PPV and Frequency.  

3) Comparison of results obtained from ANN and statistical methods. 

.  

Fig 1: Flowchart of the plan of work 
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LITERATURE REVIEW 

Explo’sive ene’rgy pro ’duces th’e follo’wing effe ’cts:  

 Ro’ck shat ’tering an ’d displa’cement.  

 Grou’nd vibra’tion.  

 A’ir vibrat’ion.  

 

Th’e ene’rgy con ’tained i ’n explos’ives u’sed i ’n m ’ine blas’tholes i ’s des’igned t’o bre’ak a’nd disp’lace ro ’ck 

a’nd th ’e mor’e ene’rgy avai’lable whi’ch ca’n b’e utili’sed fo’r th’at purp’ose, th ’e mor’e effici’ent th’e bla ’st. 

How’ever, so ’me o’f th’e ene’rgy cann ’ot b’e utili’sed i’n break ’ing roc’k an’d crea ’tes vibrat’ion i’n the 

surrou’nding ro ’ck an ’d a’ir. A’s a gen ’eral princ’iple, bo’th ai ’r an ’d grou ’nd vibrat’ion incr’ease wi’th 

increa’sing cha’rge (expl’osive) ma’ss an’d redu ’ce wit’h increa ’sing dista ’nce. 

Ground Vibration  

Th’e move’ment o’f an ’y part’icle i’n th ’e grou ’nd ca’n b ’e descr’ibed i’n thr’ee wa ’ys; displace ’ment, 

velo’city an ’d acceler ’ation. Vel ’ocity transdu’cers (geopho ’nes) prod ’uce a vol ’tage wh ’ich is 

propor’tional th ’e velo ’city o’f move’ment, an ’d ca’n b ’e eas ’ily mea’sured an ’d reco’rded. The ’y a’re rob ’ust 

an’d relativ’ely inexp’ensive an ’d s’o ’are ’mos ’t freq ’uently us’ed fo ’r monit’oring. It h ’as b ’een sh’own in 

ma’ny stu’dies, m ’ost not’ably b’y USB’M tha ’t it i’s velo’city w’hich i’s m’ost close ’ly rela ’ted to th’e ons’et 

of dam’age, and so it is veloc’ity whi ’ch i ’s almo ’st alwa’ys meas ’ured. If nece ’ssary, th’e velo ’city 

reco ’rding ca’n b ’e conv ’erted to obt’ain displac’ement or accel ’eration. Ea’ch tra’ce ha ’s a po’int wh ’ere 

th’e velo ’city i ’s a maxi’mum (+ve or -ve) an’d th ’is is kno’wn a’s th’e Pe ’ak Part ’icle Veloc ’ity (or PP ’V) 

whi’ch ha’s uni’ts of m’m/s. Geoph ’ones a’re on ’ly ab’le t’o respo ’nd t ’o vibra’tion i’n on ’e dimensi ’on an ’d 

s’o t’o capt’ure th’e comp ’lete sign ’al i’t i’s neces ’sary t ’o ha’ve thr ’ee geoph ’ones arra ’nged orthog’onally 

(at ri’ght ang’les). On ’e wil’l alway’s b’e verti ’cal an’d th ’e othe ’r tw ’o wi’ll b’e horizo’ntal, bu ’t th’e 

horiz’ontal geopho ’nes ca’n eith’er b ’e align ’ed wi’th th’e cardin’al poin ’ts o’f th ’e compa’ss o’r the ’y ca’n b’e 

arran ’ged wit’h refer’ence t’o th’e bla ’st posi’tion. I’n th ’e latt’er ca’se, on ’e geop’hone wou’ld b ’e se’t alo ’ng 

t’he lin ’e fro ’m bla ’st t’o mon’itor (th ’is is kn ’own a’s th ’e longitu ’dinal or radi ’al) s’o tha’t th ’e othe’r wou ’ld 

b’e perpen ’dicular t’o thi ’s lin’e (th ’is i’s know ’n a’s th ’e tran’sverse). 
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Generation of blast vibration  

Wh’en a’n expl’osive cha’rge deton ’ates, inte’nse dyna’mic wa’ves a’re s’et arou ’nd th’e bla ’st ho ’le, du ’e t’o 

sud’den accel’eration o’f th’e roc’k m ’a’ss. Th ’e ener ’gy liber’ated b ’y th ’e explo’sive i’s transm’itted t ’o th ’e 

ro’ck ma ’s ’s a’’s stra’in ener ’gy. Th’e transm’ission o’f th’e ener ’gy tak ’es pla’ce i’n th’e for’m o’f th’e wa’ves. 

T’he ener’gy car’ried b ’y the’se wav ’es cru’shes th’e roc’k, whi’ch i’s th’e imme’diate vicin’ity o ’f th ’e ho’le, 

t’o a fin ’e powd ’er. T ’he regi ’on i’n wh ’ich t’his ta ’kes pl’ace i’s cal’led s ’hock zo’ne. Th’e rad ’ius o’f th ’is 

zon’e i ’s near ’ly tw ’o tim’es t’he radi ’us o ’f th’e ho ’le. Beyo ’nd t’he sho ’ck zo’ne, th’e ener ’gy o ’f th’e wav ’es 

ge’ts atten ’uated t’o so’me degr ’ee whi’ch caus’es th’e rad ’ial crack ’ing o ’f th ’e roc’k ma ’ss. T ’he g’as 

gen ’erated a’s a res ’ult o’f detona’tion ent ’ers in ’to the’se crac’ks an’d displa ’ces th’e roc’k furth ’er apa ’rt 

causin’g i’ts fragm ’entation. T’he reg’ion i’n whi’ch thi’s phenom ’enon tak ’es pla’ce i ’s cal’led trans ’ition 

z’one. Th ’e radi ’us o ’f th ’is zo’ne i’s twen ’ty t ’o fif’ty tim’es th ’e radi ’us o ’f t ’he hol’e. A ’s a res ’ult o ’f fur’ther 

atten’uation taki’ng pl’ace i’n th’e transi’tion zo’ne, th’e wav’e’s alt’hough ca’use gen’eration o’f th’e crac’k ’s 

t’o a les’ser ex ’tent bu’t t’h ’ey a ’re n ’ot i’n a posi’tion t’o ca’use t ’he per ’manent def’ormation i’n th’e ro ’ck 

ma’ss loc ’ated out ’side th ’e tran ’sition zon’e. I’f th ’ese atte’nuated wa’ves ar ’e n ’ot ref ’lected fr’om a f ’ree 

f’ace, the ’n the ’y m’ay ca ’use vibra ’ti’ons i’n th ’e ro ’ck. H’owever, i ’f a fre ’e fac’e i ’s ava’ilable, th ’e wa ’ves 

refl ’ected fro’m a fre ’e fac ’e cau’se furth’er bre’ak ’age i’n t ’he roc’k ma ’ss un ’der t’he infl’uence o ’f t’he 

dyn ’amic te ’nsile stre’ss. Fig 3 is a pi’ctorial repres ’entation o’f th’e va’rious zon’es desc’ribed ab ’ove an ’d 

exp’lains th’e phen ’omenon o’f refl ’ection o ’f w’aves. 

 

Wave forms of blast vibration  

Ground vibration radiates outwards from the blast site and gradually reduces in magnitude, in the 

same manner as ripples behave when a stone is thrown into a pool of water, schematically shown 

below. The motion of the wave can be defined by taking measurements of a float on the surface 

of the water. With suitable instruments the displacement or amplitude, velocity, acceleration and 

wave length of the waves can be measured. Figure 2 shows the pictorial representation of the 

various zones and the phenomenon of reflection of waves 
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Fig 2: Pictorial representation of the various zones and the 

Phenomenon of reflection of waves 

 

 

 

 

Th’e gro’und vibr ’ation w’ave mo’tion co ’nsists o’f diffe’rent kin ’ds o’f wav ’es:  

 Com’pression (or P) wav ’es.  

 Sh’ear (or S or secondary) wav ’es.  

 Ra’yleigh (or R) wav ’es.  

 

P-wave 

The Compression or “P” wa’ve is t’he fa’stest wav ’e throu’gh th ’e gro’und. Th ’e simp’lest illust’ration o’f 

th’e mo ’tion ’of th ’e par ’ticles w’ithin t’he “P” wa ’ve i ’s t’o con ’sider a lo’ng st’eel r’od str ’uck on the e ’nd. 

The p ’articles o’f t’he ’r  ’o  ’d mo’ve t ’o and fr’o as t ’he co’mpressive pu’lse tr ’avels alo’ng th’e r ’od, i.e. the 
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p’articles i’n t’he wa’ve mo’ve i’n t’he sa ’me directi’on a’s th’e propag’ation o’f ’the wav’e. T ’he “P” wa’ve 

mov’es ra’dially fr’om t’he blasth’ole a’s sho’wn i’n fi’gure 3 i’n ’al ’l directi’ons a’t veloc’ities char’acteristic 

of the m’aterial bein ’g trav ’elled thr’ough (app ’roximately 2200 m/s). 

 
Fig 3: Characteristic of P-Wave in a solid medium 

S-wave 

The S’hear or “S” wa’ve trav’els a’t approxim’ately 1200 m/s (50% to 60% of the velocity of the “P” 

wave). The moti’on o ’f th’e partic’les wi ’thin t’he wa’ve c ’an b ’e illu ’strated b’y shaki’ng a ro ’pe a ’t o ’ne 

e’nd a’s sho ’wn i ’n Fig’ure 4. T’he w ’ave tra’vels alo’ng th’e ro ’pe, b’ut th’e pa’rticles wi’thin th’e wa’ve m ’ove 

a’t rig’ht ang’les t’o th ’e direc ’tion o’f m ’otion o’f th’e wa ’ve. T ’he “P” w ’aves an’d “S” wa’ves a ’re 

someti’mes refe’rred to as ―body wa’ves be’cause th’ey tra ’vel throu ’gh th’e bo ’dy of th ’e roc’k in th ’ree 

dimen’sions. 

 

Fig 4: Characteristic of S-Wave in a solid medium 

R-wave 

T’he R-w’ave prop’agates m’ore slo’wly th ’an th ’e P-wa’ve and S-w’ave an’d t’he par ’ticles m ’ove 

ellipt’ically i ’n th’e ve’rtical p’lane a’nd i’n t’he sa ’me dir’ection a’s th’e prop ’agation. Unl’ike th’e bo’dy 

wa’ve’s unidir’ectional par ’ticle motio’ns, Ray’leigh surf’ace wa’ve par’ticle mot’ion i’s tw’o dimen’sional. 
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T’hese wa’ves ar’e si ’milar t’o tho’se pro’duced b’y dro’pping a st’one in ’to a p’ool o’f wa’ter. As th’e wat ’er 

wa’ve pa’sses a pi ’ece o ’f co’rk, t ’he m ’otion o ’f t ’he co’rk o ’n wate ’r is des’cribed b’y a forw’ard cir’cle. 

W’hereas, i’n ro ’ck a parti’cle w’ill fol’low a retro ’grade elli’ptical pat ’h, wit’h t ’he rat’io o ’f hori ’zontal t’o 

vertic’al displa’cements equ’al to 0.7. 

 

Fig 5: Characteristic of Rayleigh wave in a solid medium 

 

T’o des ’cribe th ’e motio’ns compl’etely, thr’ee perpe’n ’dicular com ’ponents of m’otion m’ust be 

me’asured; t’he longi ’tudinal, L, is us’ually orie’nted al’ong a hor’izontal rad’ius to the explo’sion. It 

follo’ws, the’n, th’at th’e o ’ther t’wo per’pendicular com’ponents wi ’ll b’e vertic ’al, V, and tra ’nsverse, T, 

to the r’adial dire’ction, as sh’own in Fig’ure 5. 

 

Figure 6: Vibration Components 

No’ne o’f the ’se vib ’ration com’ponents as shown in Figure 6, w ’hich a’re no’rmal t’o ea’ch o ’ther, al’ways 

domi’nates i’n blas ’ting an’d th’e pe’ak com ’ponent v ’aries wi’th ea’ch bla’sting si’te. Th’e pea ’k occ’urs i ’n 

diffe’rent time’s an ’d a’t diff’erent freque ’ncies. Th ’e diffe ’rence betwe’en th’e th ’ree comp’onents res ’ults 

fro’m th ’e pres ’ence o’f th’e diffe ’rent wa’ve typ’es i’n th’e bl ’ast vibra’tion wa’ve tra’ins. 
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Peak Component and True Vector Sum 

The variation of motion with each component has led to difficulty in determining which 

component is the most important. Is it the component with the greatest amplitude, or the peak 

vector sum of the components? Assume that we have the peak component of 0.9 of velocity unit 

recorded in longitudinal direction at time 1, and the vertical and the transverse components at the 

same time are 0.25 and 0.25, respectively. The true vector sum of all the components at time 1 is 

 

There may be another time when the peak true vector sum will be larger than that at the peak 

component and several should be checked. However, it usually occurs at the same time as the 

largest component peak. Peak motions should always be reported as either peak component or the 

peak true vector sum. 

Another measure, the maximum vector sum, is frequently reported but is conservative and not 

directly related to a maximum velocity at a particular time. The maximum vector sum is calculated 

as shown in the above equation also; however, the maximum of each component is used regardless 

of the time when it occurs. Thus, for the same record in the example above if the peak of the 

vertical and transverse components are both 0.75 and occur at different time than time 1, then, the 

maximum vector sum is 

 

In general, the empirical observations of cracking have been made with single-component peaks; 

therefore, use of the maximum vector sum provides a large unaccounted safety factor. As a result 

of that, peak particle velocity, which is the maximum particle velocity among the radial, vertical, 

and transverse components recorded form the same blast event, should be taken into account 

instead of peak vector sum. 

Frequency Properties and Durations 

The frequency of ground vibration can be defined as the number of cycles executed per unit time 

(second). Mathematically, it can be expressed as follows: 
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Where F is the frequency and its unit is Hertz (Hz), and T is the time in seconds required for a 

complete oscillation. The amplit ’ude (A) of gro ’und vibra ’tion i’s defi ’ned a’s a tim’e vary’ing an ’d 

kinemat’ical vibra ’tion quan’tity o’f displ’acement, velo’city o ’r accel’eration. Th’ey a’ll ha ’ve 

instan’taneous val’ues a’t an’y inst’ant toget’her wi ’th th’e pe’ak o ’r maxi’mum a’t som’e spec’ific mom’ents 

f’or an’y vibr ’ation reco ’rd. T’he ampl ’itude, freque ’ncies, an’d durat ’ions o’f th’e grou ’nd vibra’tions 

chan ’ge a’’s the ’y propag’ate, bec ’ause of (a) inter’action wi’th vari’ous geol’ogic med’ia an ’d struc’tural 

inter’faces, (b) spread ’ing o’ut th ’e wa’ve-tra’in thro’ugh dispe ’rsion, an’d/or (c) absor’ption, whi ’ch i ’s 

grea’ter fo’r th ’e high ’er frequen ’cies. There’fore, t’he vibr’ation frequ ’ency a’nd cons ’equently th’e 

veloc’ity, disp ’lacement an’d accelera ’tion ampl’itudes dep ’end str ’ongly o ’n th ’e propag’ating medi ’a. 

F’or insta’nce, th’ick s ’oil overbu’rden a’s w ’ell a’s lon’g abso ’lute dist’ance c ’reates lo’ng-dur’ation, lo’w-

frequ ’ency wav ’e tra’ins. Th’is incre’ases the resp ’onses an’d dama ’ge poten ’tial o’f nea ’rby struc’tures. 

T’he 1980 USB’M's repo’rt indi’cates th’at frequ ’encies bel ’ow 10 Hz p’roduce lar’ge gro’und 

displace’ment an’d hig’h leve’ls o’f str ’ain, anvd al ’so coup’le ve’ry effici ’ently i’nto stru’ctures whe’re 

typ ’ical resona’nt freque’ncies are 4 to 12 Hz for t ’he corne’r or rack ’ing mot’ions. It is a ’lso conc’luded 

th’at da’mage pote ’ntials f’or lo’w-frequ ’ency bl ’asts (<40 Hz) a’re con ’siderably h’igher th’an t ’hose f ’or 

hi’gh-fre’quency (>40Hz). 

 

 

Parameters influencing propagation and intensity of ground vibrations  

Th’e para’meters, wh ’ich exhi’bit con’trol o’n th ’e amp ’litude, fre’quency a ’nd dura’tion of th ’e gro ’und 

vibration, are div ’ided in t’wo grou’ps as fo ’llows:  

a. Non-cont ’rollable Para’meters  

b. Control’lable Par ’ameters  

The non-cont’rollable param’eters are th ’ose, over wh’ich the Blas ’ting Engin ’eer doe’s not hav’e a’ny 

contr’ol. The l’ocal geo ’logy, ro ’ck cha’racteristics an’d dist’ances of th’e structu’res fro ’m bla’st s’ite is 

non-contr ’ollable para’meters. Howe’ver, th ’e cont’rol on th’e grou ’nd vib ’rations c’an be esta ’blished 

w’ith the h ’elp of contro’llable para’meters. The sa ’me ha’ve be ’en reprodu ’ced belo ’w:  

1.  Charge Weight 

2. Delay Interval 

3. Type of Explosive 

4. Direction of blast propagation 
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5. Burden, Spacing and Specific charge 

6. Coupling 

7. Confinement 

8. Spatial Distribution of Charges 

 

 

 

 

 

 

Reduction of ground vibrations  

To pro’tect a st’ructure, i ’t i’s n’ecessary t ’o mi’nimize the g’round vibratio ’ns fro’m th ’e bla ’st. Th’e 

accep’table techn ’iques fo ’r redu ’ction a’nd con ’trol o ’f vibra’tions are:  

a. Red’uce th’e char’ge p’er de’lay: Th ’is i’s th’e m ’ost important me’asure for the pur’pose. Ch’arge per 

del’ay ca ’n be cont ’rolled by:  

i. Red’ucing the ho ’le de’pth.  

ii. Us’ing sm ’all diam’eter ho’les  

iii. Dela’yed initi’ation of de’ck char’ges in th’e blas’t hol’es  

iv. Usi’ng m’ore num’bers o’f de’lay detona ’tors se’ries  

v. Usin’g sequ ’ential blast ’ing mac’hine  

 

b. Reduce explosive confinement by:  

i. Redu’cing exce’ssive bu ’rden an ’d sp ’acing  

ii. Rem’oving buf’fers i ’n fro’nt o ’f th ’e h ’oles  

iii. Redu’cing ste’mming b’ut n’ot to t’he deg’ree of increasi ’ng air-bl’ast and fly r’ock  

iv. Red’ucing sub-gr’ade dr’illing  

v. Allowi’ng at lea’st one fr’ee fac ’e  

vi. Usin’g decou ’pled ch’arges  

vii. D’rilling ho ’les para’llel to the ben’ch fac’e  

viii. Acc’uracy i ’n drill’ing  
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c. Li’mit t’he explo ’sive conf’ine ’ment t’o bedroc ’k if t’he overbu ’rden c’an be ex’cavated by ot ’her 

mea’ns.  

d. Squ’are patt’erns pr’oduce m ’ore vibr ’ations  

e. Li’mit fre’quency of blas’ting  

f. Ti’me the bl’asts w’ith hi ’gh am’bient no ’ise lev’els  

g. U’se cont’rolled blas ’ting tech’niques  

h. U’se a lo ’w VOD an ’d lo’w densi’ty explos’ive  

 

Structure Response to Blast Excitation 

Blasting can cause significant vibrations within structures even in cases where the distance 

between a blast and the structure is large. High levels of vibration within structures are caused by 

a close match between the ground vibration frequency and the fundamental resonant frequency of 

the structure or some structural elements 

 

Structure Components and Ground Vibration Parameters 

Structures consist of many components, and two of most important are walls and superstructural 

skeletons. Superstructure response, measured at a corner, is associated with the shearing and 

torsional distortion of the frame, while the wall response, which measured in the middle of the 

wall, is associated with bending of that particular wall. The wall and superstructure continue to 

vibration freely after the passage of the ground motion, according to Dowding (1985). He also 

indicated that the wall motion tend to be larger in amplitude than the superstructure motions and 

tend to occur at higher frequencies during free vibration than those of the superstructure. Detailed 

studies (Dowding et al., 1980; Medearis, 1976) have shown that the natural frequencies of walls 

range from 12 to 20 Hz and those of superstructures from 5 to 10 Hz. 

The response of any structure to vibration can be calculated if its natural frequency and damping 

are known or can be estimated. The fundamental natural frequency Fd of the superstructure of 

any tall building can be estimated from compilations of work in earthquake engineering 

(Newmark and Hall, 1982): 
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where, N is the number of the stories. Substitution of 1 and 2 for residential structures for N yields 

Fd values that can be compared favorably with results of actual measurements. Damping β is a 

function of building construction and to some extent the intensity of vibration. Measurement 

reveals a wide range of damping for residential structure with an average of 5%. Excessive 

structural response has been separated into three categories arranged below in the order of 

declining severity and increasing distance of occurrence (Nothwood et al., 1963; Siskind et al., 

1980). Beginning with effects that occur closest to the blast, the categories are listed here: 

1. Major (Permanent Distortion). Resulting in serious weakening of the structure (e.g. large cracks 

or shifting of foundations or bearing walls, major settlement resulting in distortion or weakening 

of the superstructure, walls out of plump). 

2. Minor (Displaced Cracks). Surficial, not affecting the strength of the structure (e.g. broken 

windows, loosened or fallen plaster), hairline cracks in masonry. 

3. Threshold (Cosmetic Cracking). Opening of old cracks and formation of new plaster cracks, 

dislodging of loose objects (e.g. loose bricks in chimneys) (Dowding, 1992). 

 

Resonation and Amplification Factor 

The probability of damage in structures depends on the relationship between dominant frequency 

of the ground vibration and natural frequency of the structure. Most significant for blasting is that 

the principal frequencies of the ground motion almost always equal or exceed the gross structure 

natural frequencies of 4 to 10 Hz. In this case, structure resonates and it is shacked by amplified 

vibration a few seconds. People may still perceive and are concerned about this situation. While 

structure resonates, it may not be damaged but people may still complain even if particle velocity 

is much below the limiting vibration value. However, the damages within the structures are caused 

when structure resonates at a particle velocity exceeding vibration limit. Although amplitude of 

the exciting wave traveling in the ground is not sufficient to cause damage to structure, structure 

may be damaged due to amplification during resonation. Amplification is defined as the increase 

in the amplitude measured in the structure with respect to ground amplitude due to the transfer of 

the exciting wave on the ground to the structure. The ratio of amplitude of the structure to ground 

amplitude is called as amplification factor. 
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Damage criteria:  

T’he dam’age crit’eria w ’as prop’osed b ’y ma ’ny organ ’izations inc’luding USBM, DGMS, In ’dian 

Standa’rds etc bas’ed o’n th’e Perm ’issible PPV in mm/s and Freq ’uency o ’f th ’e grou ’nd vibr ’ations fo ’r 

vario’us typ ’es o’f struct ’ures. Th’e crit’eria ba’sed o ’n th’e Perm’issible PPV in mm/s and Freq ’uency of 

th’e gro’und vibr ’ations f’or var ’ious typ ’es o ’f struc’tu ’res as p’er DGMS (1997) as pres ’ented b ’elow in 

Table 1 and 2 is followe’d f’or th ’e presen’t investig’ations to esti’mate saf ’e ch ’arge p ’er del ’ay to li’mit 

the gro’und vibrati’ons withi’n s ’afe li ’mit of 5 mm/sec as t’he frequ ’ency w ’as wit’hin the lim’its of 8 to 

25 for the pr’esent observat’ions (cons ’idering th ’e structu’res as sens ’itive and not belon’ging to the 

residen ’tial areas). 

Table 1: Damage criteria vis-à-vis Buildings / Structures belonging to the owner 

 

 

 

Table 2: Damage criteria vis-à-vis Buildings / Structures NOT belonging to the owner 
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Distinction of blast-induced cracking from natural cracking 

Control of blast-induced transient effects to prevent threshold or cosmetic cracking reduces blast-

induced displacement or strains in structures to below that caused by every day activities and 

change in the weather (Stagg et al., 1984; Dowding, 1988). The blast induced threshold cracks can 

be scientifically observed only with visual inspection immediately before and after each blast. 

However, the multiple origins of cracks should be taken into consideration. Several institutional 

references (Anon, 1977; Anon, 1956; Thoenen and Windes, 1942) summarized that cracks 

basically are found to be caused by the following non-blast factors: 

1- Differential thermal expansion. 

2- Structural overloading. 

3- Chemical change in mortar, bricks, plaster, and stucco. 

4- Shrinking and swelling of wood. 

5- Fatigue and aging of wall coverings. 

6- Differential foundation settlement. 

 

2.1 Important Findings of work done by others on prediction of ground vibrations 

       and frequency by the use of neural networks 

Table 3: Important Findings of work done by others on prediction of ground 

vibrations and frequency by the use of neural networks 

Serial No. Year Author Title Important 

Findings 

1 2010 P K Singh 

 

Standardization of 

blast vibration 

damage threshold for 

the safety of 

residential structures 

in mining areas 

 

Artificial neural 

network and fuzzy 

logic used to predict 

the safe explosive 

amount. 

 

2 2009 Marathan Silitonga 

 

Prediction of ground 

vibrations due to 

blasting 

 

The potential of 

variations in 

vibration intensity 

due to blast 

constriction and its 

implication in 

vibration control. 
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3 2009 Roy Fitzgerald 

Nicholson 

 

Determination of 

Blast Vibrations 

using PPV 

 

A understanding of 

ground vibrations 

from blast and its 

effect on structures. 

 

4 2009 Manoj Khandelwal, 

T.N. Singh 

 

Evaluation of blast-

induced ground 

vibration predictors 

 

Neural network 

approach for 

appropriate 

prediction of PPV to 

protect surrounding 

environment and 

structures 

 

5 2009 Mohamed  

 

Use of ANN to 

predict blast induced 

vibrations 

 

Author observed 

that the ANN model 

with two-input 

parameters provides 

better results than 

the model with one 

input parameter. 

That is to say, 

increase in the 

number of input 

variables results in 

increasing the 

ability of ANN to 

learn and to predict 

more precisely. 

6 2008 Tang  

 

Prediction of the 

peak velocity of 

blast vibration  

 

Tang has adopted 

the back-

propagation neural 

network model to 

predict the peak 

velocity of blast 

vibration  

 

7 2008 M. Monjezi  

 

A model to predict 

blast-induced ground 

vibration using 

artificial neural 

network (ANN) in 

the Siahbisheh 

project, Iran  

 

To construct the 

model on maximum 

charge per delay, 

distance from 

blasting face to the 

monitoring point 

using ANN model. 
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FUNDAMENTALS OF NEURAL NETWORKS 

In 1956 the Rockefeller Foundation sponsored a conference at Dartmouth College that had as its 

scope: 

The potential use of computers and simulation in every aspect of learning and any other feature of 

intelligence. It was at this conference that the term "artificial intelligence" came into common use. 

Artificial intelligence can be broadly defined as: 

Computer processes that attempt to emulate the human thought processes that are associated with 

activities that required the use of intelligence. 

Neural networks technique recently has been included in this definition, so it can be accepted as a 

legitimate field of artificial intelligence (Tsoukalas and Uhrig, 1996). 

 

3.1 Artificial Neurons 

An artificial neuron is a model whose components have direct analogs to components of an actual 

neuron. Figure 7 shows the schematic representation of an artificial neuron. This artificial neuron 

was first presented by McCulloch and Pitts in 1943. The input signals are represented by x0, x1, 

x2…, xn. These signals are continuous variables, not the discrete electrical pulses that occur in the 

brain. Each of these inputs is modified by a weight (sometimes called the synaptic weight) whose 

function is analogous to that of the synaptic junction in a biological neuron. These weights can be 

either positive or negative, corresponding to acceleration or inhibition of the flow of electrical 

signals. 
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Fig 7: Schematic representation of an artificial neuron (Saha, 2003) 

This processing element consists of two parts. The first part simply aggregates (sums) the weighted 

inputs resulting in a quantity, 

I =  

the second part is effectively a nonlinear filter, usually called the activation function, through 

which the combined signal flows (Tsoukalas and Uhrig, 1996). More commonly, the activation 

function is a continuous function that varies gradually between two asymptotic values, typically 0 

and 1 or –1and +1, called the sigmoidal function. The most widely used activation function is the 

logistic function, which is shown in Figure 8 and represented by the equation. 

 

Fig 8: Activation function for neurons (Saha, 2003) 
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Where α is a coefficient that adjusts the abruptness of this function as it changes between the two 

asymptotic values. 

 

3.2 Artificial Neural Network 

An artificial neural network can be defined as: 

A data processing system consisting of a large number of simple, highly interconnected processing 

elements (artificial neurons) in an architecture inspired by the structure of the cerebral cortex of 

the brain (Tsoukalas and Uhrig, 1996). 

These processing elements are usually organized into a sequence of layers or slabs with full or 

random connections between the layers. This arrangement is shown in Figure 9, where the input 

layer is a buffer that presents data to the network. 

The following layer(s) is called the hidden layer(s) because it usually has no connection to the 

outside world. The output layer is the following layer in the network, which presents the output 

response to a given input. Typically, the input, hidden, and output layers are designated the ith, 

jth, and kth layers, respectively. 

 

Fig 9: Scheme of an artificial neural network (Saha, 2003) 
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Typical neural network is “fully connected,” which means that th ’ere is a connection between each 

of the neurons in any given layer with each of the neurons in the next layer as shown in Figure 9. 

When there are no lateral connections between neurons in a given layer and none back to previous 

layers, the network is said to be a feedforward network (Tsoukalas and Uhrig, 1996). This network 

is said to be trained until the Least-mean-square (LMS) is minimized. The LMS is defined by the 

equation 

 

Where tpj and opj are the target and actual outputs for pattern p on node j, respectively. 

 

 

 

3.3 Backpropagation Neural Network 

Backpropagation is a systematic method for training multiple (three or more)- layer artificial neural 

networks. The clarification of this training algorithm by Rumelhart, Hinton, and Williams (1986) 

was the key step in making neural networks practical in many real-world situations. However, 

Rumelhart, Hinton, and Williams were not the first to develop the backpropagation algorithm. It 

was developed independently by Parker (1982) in 1982 and earlier by Werbos (1974) in 1974. 

Nevertheless, the backpropagation algorithm was critical to the advances in neural networks 

because of the limitations of the one-and two-layer networks discussed previously. Indeed, 

backpropagation played a critically important role in the resurgence of the neural network field in 

the mid-1980s. Today, it is estimated that 80% of all applications utilize this backpropagation 

algorithm in one form or another. In spite of its limitations, backpropagation has dramatically 

expanded the range of problems to which neural network can be applied, perhaps because it has a 

strong mathematical foundation (Tsoukalas and Uhrig, 1996). 

 

3.4 Error Back-propagation Algorithm 

Error back-propagation is a learning scheme in which the error is backpropagated and used to 

update the weights. The algorithm employs a gradient descent method that minimizes the error 
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between the desired and actual outputs calculated by the multilayer perceptron (Rumelhart and 

Hinton, 1986). Back-propagation and error adjustment continue until all examples from the 

training set are learnt within an acceptable overall error. The following is the scenario for the pth 

pattern in a feedforward network with hidden layers. 

1. The ith node in the input layer holds a value of xpi for the pth pattern. 

2. The net input to the jth node in the hidden layer for pattern p is 

 

Where wij is the weight from node i to node j. the output from each unit j is the threshold function, 

ƒj, which acts on the weighted sum. In this multilayer perceptron ƒj is the sigmoid function, defined 

as 

 

Where k is a positive constant that controls the spread of the function. 

3. The output of the ith node in the hidden layer can also defined as 

 

4. The net input to the kth node of the output layer is 

 

Where wkj is the weight values between the ith hidden layer and the kth output layer node. 

5. Output of the kth node of the output layer can also be defined as 

 

6. If Ep is the error function for a pattern, p, that is proportional to the square of difference between 

the actual and desired outputs for all the patterns to be learnt 
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Where tpk and opk are the target and actual outputs for pattern p on node k, respectively. 

In more general setting, with more than one hidden layer, weight  denotes the weight 

assigned to the link from node j in the ith layer to node k in the (i+1)th layer, and  denotes 

output of the jth node in the ith layer for the pth pattern (Mehrotra et. al., 1996). Now it is needed 

to discover w, the vector consisting of all weights in the network, such that the value of Ep is 

minimized. One way to minimize E is based on the gradient decent method. According to this 

method, the direction of weight change of w should be in the same direction as - ∂E/∂w. To simplify 

the calculation of -∂E/∂w, the weight change in a single weight is examined. the value of ∂E/∂wkj 

is calculated for each connection from the hidden layer to the output layer. Similarly, the value of 

∂E/∂wji is calculated for each connection from the input layer to the hidden layer. The connection 

weights are then changed by using the value so obtained; this method is also known as the 

generalized delta rule. In brief, the following two equations describe the suggested weight 

changes. 

 

 

The derivative of E with respect to a weight wkj associated with the link from node j of the hidden 

layer to the kth node of the output layer is easier to calculate than for a weight wji connecting the 

ith node of the input layer to the jth node of the hidden layer. But both calculations use the same 

general idea–the chain rule of derivatives. The error depends on wkj only through opk, hence, for 

the calculations that follow, it is sufficient to restrict attention to the partial derivative of E with 

respect to opk and then differentiate opk with respect to wkj. From equation (2.14), the following 

equation is obtained 
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Since equation (2.12) represents the total input to a node k in the output layer, and equation () gives 

the output, opk, hence; 

 

                                       and, 

 

Consequently, the chain rule is 

 

Which gives 

 

Next, consider the derivative of (∂E / ∂wji). The error E depends on wji through netj, also, 

 

and  

 

Therefore, using the chain rule of derivatives, the following equation is 

Obtained  
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From equations 2.15 and 2.21, the weight changes at the outer layer of weights can be summarized 

as 

 

and from equation 2.13 and 2.24, weight changes at the inner layer of weights are 

 

Where η is an independent parameter known as the “learning rate,” and its 

value ranges between 0 and 1, and 

 

                                                And 

 

Thus, similar equations determine the change in both layers of weights proportional to the product 

of the input to the weight in the forward direction (xj or xi) and a generalized error term (δk or μj). 

 The value of δk is proportional to the amount of error (tpk–opk) multiplied by the derivative 

of the output node with respect to the net input to the output node. 

 The value of μj is proportional to the amount of weighted error Σk δk wkj (using the 

previous layer’s δ values) multiplied by the derivative of the output of the hidden node with 

respect to the net input of the hidden node. 

The above analysis does not make any assumption about the node activation function except that 

it should be differentiable. For the sigmoid function 
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, the derivative S’(x) = ∂S(x) / ∂x is equal to = S(x)(1 – S(x)) 

Hence, if every node uses this node function, then 

 

                                            And 

 

Thus, the weight updating for every individual weight wij, between the output layer and hidden 

layer, can be done using the following formula 

 

and, for the weights between the hidden layer and the input layer, the following formula can be 

used 

 

In brief, there are two phases of back-propagation algorithm; 

1. Present input patterns, propagate activation through output to generate opk for each output unit. 

Then compare the output against the desired output, to calculate the error signals. 

2. Pass error backwards through the network so as to recursively compute error signals, and use 

them to update weights of the previous layers. 

 

However, back-propagation may lead the weights in a neural network to a local minimum of the 

mean-square-error (MSE), possibly substantially different from the global minimum that 

corresponds to the best choice of weights. This problem can be particularly bothersome if the 

“error surface” (plotting MSE against network weights) is highly uneven or jagged, Figure 10. 
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Fig 10: Graph of jagged error surface of error vs. weights (Saha, 2003) 

To avoid getting stuck in the local minimum, another term can be added to the weight updation 

formula; this term is called the “momentum”. 

 

Where, α is the momentum coefficient and its value ranges between 0 and 1 (typically about 0.9). 

 

 

3.5 Neural Network Design and Architecture 

Many important issues, such as determining how large a neural network is required for a specific 

task, and how many nodes and layers should be included in the network design, are solved in 

practice by trial and error. For instance, with too few number of nodes, the network may not be 

powerful enough for a given learning task. With a large number of nodes (and connections), 

computation is too expansive. Neural learning is considered successful only if the model can 

perform well on test data on which the network has not been trained. 
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3.6 Training Parameters 

The training parameters, the learning rate and the momentum (typical values between 0 and 1) 

have a significant effect on the training process. A large value of learning rate will lead to rapid 

learning but the weight may then oscillate, while low values imply slow learning and it takes long 

time to converge to global minima. A high value of a momentum coefficient allows one to choose 

higher value of learning rate. In fact, there is no clear consensus on any fixed strategy in choosing 

the proper values of the training parameters. However, in practice, the best choice can be achieved 

by trial and error, which leads to the minimum prediction error (Tsoukalas and Uhrig, 1996). 

 

3.7 Data Scaling and Representation and Weight Initialization 

Scaling has the advantage of mapping the desired range of a variable (with range between the 

minimum and maximum values) to the full “working” range of the network input and output. 

Scaling of the variable between 0.1 and 0.9 is often used to limit the amount of the sigmoid 

activation function used in the representation of the variables in order to avoid “network paralysis” 

in the training process. In addition to that, the data is represented randomly to the neural network 

for each training cycle, which means the data is fedforward to the network in different order for 

each epoch. This randomization of the input patterns helps in speeding up the training process and 

takes less time to converge to global minima. Moreover, training is generally commenced with 

randomly chosen weight values. Typically, the weight chosen are (between -1.0 and 1.0 or -0.5 to 

+0.5), since large weight magnitudes may drive the output of layer 1 nodes to saturation, requiring 

large amounts of training time to emerge from the saturated state (Mehrotra et. al., 1996). 
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DETAILS OF BLAST SITES 

4.1 DUNGRI LIMESTONE MINE 

The Dungri Limestone mine is situated in the Bargarh District of Odisha. The village Dungri is 

situated at a distance of 850 meter from the active mine. The Dungri Limestone mine has a 

longitude of 83°32’57.4” and latitude of 21°41’24” The Dungri area is situated in the rich mining 

belt of Bargarh. Limestone is a very essential raw material for the metallurgical industry as flux 

and in the manufacture of cement. Large deposits of limestone are located all over the area and are 

being worked out. The Dungri Limestone mine is an entity of ACC Limited (Formerly The 

Associated Cement Companies Limited). The ACC is one of the largest producers of cement 

in India. The company is the only cement company to get Super brand status in India. The Dungri 

lease is in the shape of a rectangle parallel to Mahanadi River with northern portion of the area 

widening out in the shape of a polygon. The Lease area is in the low lying portion of the valley 

between the Dechua hill range in the east and the Holsary hills in the west with the ground sloping 

gently from west to east. The Mahanadi flows further west of the Holsary hills. Figure 11 shows 

the Dunguri limestone mine of ACC Ltd and nearby residential areas 

 

 

.  
 

Fig 11: Dunguri limestone mine of ACC Ltd and nearby residential areas (Google Maps) 

 

https://en.wikipedia.org/wiki/India
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4.1.1 BLASTING PRACTICES AT THE MINE 
 

The Dungri limestone mine is fully mechanized mine being operated by drill and blast method for 

primary breakage and rock breaker for handling of oversize fragments. Atlas Copco make D50 

and Sandvik make TITON 500 drill machine is being used regular drilling and blasting operation 

with 9 to 10 m bench height. Burden varied between 3 and 3.5 m, spacing between 4 and 5 m and 

quantity of charge per hole between 40kg & 60 kg for 115 mm drill diameter. Accordingly, the 

stemming column in the blast holes also varies between 2.5m to 3.0 m. Staggered pattern and 

square grid pattern of holes are drilled. The blast hole depth is 10 meter including 10% sub grade 

drilling. The non-electric (NONEL) system of initiation (TLDs 17/250ms and 25/250ms) is being 

used for blasting work in combination with ANFO and cast booster weighing 150 gm. In case of 

watery hole during the rainy season and in the lower bench Large diameter slurry explosive 

cartridge (Aquadyne and supergel) is used for blasting. Each blast is monitored for ground 

vibration and fragmentation and necessary care is taken based on the report obtained. Minimate is 

used for measurement of ground vibration in the mines. 

In blasting, two to three rows of holes are blasted at a time and maximum of 60 holes are blasted 

at a time. With proper initiation pattern, charging pattern and charge per delay. Ground vibration 

is maintained within 3.00mm/s within 300 meter of the blasting site. A sample initiation pattern 

given below depicts the basting of each hole one after another. General blasting pattern followed 

in the mine, charging pattern and charging with supergel exlosive are shown in Figure 12, 13 and 

14 respectively. Table 4 shows observations recorded at Dunguri Limestone Mine. 

 

 

                   Fig 12: General blasting pattern followed at Dunguri mine (ACC) 

 

Free face

0 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255

42 59 76 93 110 127 144 161 178 195 212 229 246 263

84 101 118 135 152 169 186 203 220 237 254 271

In a row hole to hole delay 17ms. 

Row to row delay betweeen 2nd hole of the 1st row and 1st hole of the 2nd row is 25ms

Row to row delay betweeen 2nd hole of the 2nd row and 1st hole of the 3rd row is 25ms

Spacing 3.0 meter to 4.5 meter

Burden 2.5 meter to 3.0 meter

Spacing

B
u

rd
en



Details of Blast Sites 

33 
 

Delay is set in such a way that each hole gets the adequate free face and blasted at a time. Hence 

optimum fragmentation with reduced ground vibration is achieved. So practically the charge per 

delay is only the amount of explosive placed in a single hole, i.e. 40 to 60kg. The village Dungri 

is situated at a distance of 850 meter from the active mine. (Quarry No 6). The mine is equipped 

with two explosive magazine of 5.6 ton each and an ammonium nitrate store house of 45 Ton 

capacity. The detonator storage capacity of the magazines is 30,000 numbers for each magazine. 

One road van of 2.6ton capacity is present for transportation of explosive.    

 

 

Fig 13: General charging pattern followed at Dunguri mine (ACC) 

 

Fig 14: Charging of blast hole with Supergel explosive at Dunguri mine (ACC) 
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4.1.2 OBSERVATIONS RECORDED AT DUNGURI LIMESTONE MINE 
 

Table 4: Observations recorded at Dunguri Limestone Mine 

 

Sl No  Distance 

(m) 

Hole 

Depth 

(m) 

Charge 

per 

hole 

(kg)  

Burden 

(m) 

Spacing 

(m) 

No of 

holes 

Total 

Explosive 

charge 

(kg) 

Peak 

Particle 

Velocity 

(mm/s) 

Dominant 

Frequency 

(Hz) 

1 500 10 50 3 4 64 3200 1.62 21.5 

2 150 10 50 4 5 67 3350 4.16 19.8 

3 300 10 50 4 3 99 4950 3.52 2 

4 200 10 50 3 4 15 750 2.52 2.25 

5 400 9 55 3 5 80 4400 2.05 11.3 

6 500 9.5 55 4 3 40 2200 1.33 24 

7 600 10 30 3 4 96 2880 0.873 25.3 

8 750 9.5 36.46 2.5 4 55 2005 0.191 18.3 

9 150 9.5 50 4 3 130 6500 8.60 2.25 

10 500 10 50 4 3 58 2900 3.10 34.3 

11 150 9 34.6 4 3 63 2180 6.10 17.8 

 

 

4.2 IDL EXPLOSIVES LIMITED 

4.2.1 Details of blasting for the purpose of metal cladding 

The blast site is located in the coordinates 22°11'12.8"N 84°52'28.4"E falling in Sonaparbat area 

near IDL colony, Rourkela, Sundergarh district, Odisha. IDL Explosives Limited is one of the 

leading manufacturers of industrial explosives of India and caters the needs of various mines of 

the country. Explosion clad plates are also being manufactured which are used in various 

applications like chemical, petrochemical, ship building, smelters etc., Cladding is being 

conducted on sand base surface which is spread uniformly and the plates are cladded with the help 

of explosives in form of powder which is initiated by remote device.   The pressure released from 

this cladding by the explosives joins two different metal plates. This process generates sound /air 
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blast effect in the surroundings. The cladding plate is placed over the backer plate with a small gap 

between the two. A layer of specially prepared explosive charge is spread on top of the cladding 

plate. On detonation the cladding plate collides progressively with the backer plate at a high 

velocity. This collision is completed in milli seconds and removes the contaminating surface films 

like oxides and adsorbed gases in the form of a line jet at collision front thereby bringing together 

two virgin metal surfaces to form a metallurgical bond by electron sharing. Figure 15 shows the 

preparation of blast with powder explosive for metal cladding at IDL –Explosives Limited-

Rourkela. 

 

 

Fig 15: Preparation of blast with powder explosive for metal cladding at IDL –Explosives 

Limited-Rourkela 
 

4.2.2 OBSERVATIONS RECORDED AT IDL EXPLOSIVES LTD. ROURKELA 

 

Table 5: Observations recorded at IDL explosives Ltd. Rourkela 

Blast No Explosive Charge 

(kgs) 

Distance from the 

blast (m) 

Peak Particle 

Velocity (mm/s) 

Frequency 

1 300 500 2.11 74 

2 200 720 0.32 13.6 

3 90 650 0.44 15.5 

4 150 1500 0.238 11.8 

5 100 800 0.25 18.8 

6 270 2750 0.238 11.8 

7 270 1990 0.683 22.6 

8 50 564 0.349 14.3 
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9 530 1520 0.381 19.6 

10 180 493 1.11 30.6 

11 540 1320 0.286 29 

12 195 777 0.714 29 

13 540 750 0.33 19 

14 540 354 1.71 42.8 

15 240 390 2.27 10.3 

16 270 2700 0.91 11.8 

17 240 800 1.86 11.2 

18 240 1000 1.51 9.8 

19 240 1000 1.81 13.6 

20 240 1200 1.02 17.1 

  

 

4.3 BAPHLIMALI BAUXITE MINE (UAIL) 

4.3.1 BLASTING PRACTICES AT THE MINE 

Baphlimali Bauxite Mines under M/S Utkal Alumina International Limited have started mining 

operation since Nov’12. The hill is essentially composed of khandalites with charnockites 

occurring in the south-eastern part of the hill. The formations have NE-SW trends and steep south-

easterly dips of 50-80 degrees. Baphlimali Bauxite deposit extends over an area of 9.68 sq. km and 

roughly corresponds to an ovoid of 6.3 km * 3.2 kms size. It is a blanket type of deposit having 

average 10 -12 m hard laterite as overburden and thickness of Bauxite varies from 10-12 m.  

At present, conventional explosives are being used for blasting operations and it is proposed to 

introduce slurry mix emulsion explosive as column charge and Emul Boost as cast booster as an 

alternate and improved methodology. In this regard, Management of M/S UTKAL ALUMINA 

INTERNATIONAL LIMITED wanted to conduct scientific study for understanding the effect of 

blasting in the geomining conditions of the Baphlimali Bauxite Mines. Some of the geotechnical 

data available with the mines and with the explosive manufacturers M/s Keltech Energies Ltd was 

utilized for the analysis. Figure 17 & 18 shows the charging pattern and charging of blasthole with 

SME respectively. 

The deposit covers an area of 9.68 sq. Km occurring as a residual blanket-type deposit over the 

khondalite basements, on top of the Baphlimali plateau. The plateau boundary roughly resembles 

the map of India and is oval in shape with maximum dimensions of 6.3 km and 3.2 km. It rises to 

about 150-200 m above the surrounding valleys. It is bounded by 19°18' to 19°22' North latitudes 
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and 82°57' to 82°59' East longitudes and forms a part of survey of India topo- sheet no. 65 1/15. 

The major axis of the plateau trends a bearing of N 40°30'E. 

 

 

4.3.2 Mining Method  

Mining method adopted for a deposit is largely influenced by the geology, geomorphology, 

overburden to ore ratio, rock properties spatial distribution of ore, production level, quantity of 

overburden, quality required, environmental considerations, climatic conditions of the area etc. 

Figure 16 shows the location of site of experimental blast at UAIL and table 6 shows the 

observations recorded at UAIL. 

 

 
Fig 16: Mine Plan showing location of site of experimental blast at UAIL. 

 

Trench mining method of mining known as trench method is adopted for this deposit. In this 

method, mining fronts are planned to advance roughly parallel to the contours. Mining at this 

deposit involves –  

 Removal of the OB/waste covers lying on top of the bauxite layer.  
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 Excavation of bauxite  

 Mining of bauxite close to the floor  

 Back-filling of OB/waste into mined out areas for land reclamation.  

 This being a plateau top deposit, a 15 m wide peripheral zone of un-mined bauxite is 

proposed to be left on the edge of the plateau. This will act as a peripheral barrier for the 

purpose of equipment safety, avoiding discharge of silts into the surrounding valleys 

directly, and hiding the mining activities from adjacent areas.  

 

 
Fig 17: Charging pattern of blasthole with SME 
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Fig 18: Charging of SME in the blast hole 

 

 

 

 

 

4.3.3 OBSERVATIONS RECORDED AT UAIL 

 

Table 6: Observations recorded at UAIL 

Sl 

No. 

Distance Charge 

per 

hole 

Charge 

per 

Delay 

Hole 

Depth 

Burden 

(m) 

Spacing 

(m) 

No 

of 

holes 

Total Qty 

of 

Explosive 

used (kg) 

PPV 

(mm/s) 

Frequency 

(Hz) 

1 160 65 520 6.5 3.5 4 62 4030 6.51 12.5 

2 160 30 480 5.5 2.5 3 108 3240 3.8 17.7 

3 160 40 320 5.5 3.5 4 122 4880 3.94 4.8 

4 130 55 440 6 3.5 4 109 5995 7.35 11.3 

5 130 50 150 5.5 3.5 4 87 4350 6.01 12.8 

6 130 40 120 5.5 3.5 4 39 1560 3.21 9.9 
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7 150 55 440 5.5 3.5 4 130 7150 12.2 8.8 

8 150 55 440 6 3.5 4 52 2860 4.24 11 

9 175 50 50 6 3.5 4 55 2750 5.32 7.5 

10 150 55 110 6 3.5 3 110 6050 8.81 6.6 

11 130 55 55 6 4 5 59 3245 8.61 7.1 

12 150 80 320 8 4 5 57 4560 5.55 6.1 

13 150 60 60 6 3.5 4.5 107 6420 13.4 9.5 

14 100 70 70 7 3.5 4 75 5250 13.1 12 

15 175 68 68 7 3.5 4.2 73 4964 3.51 7.9 

16 100 70 140 7 3.5 4.2 38 2660 12.2 8.6 

17 175 70 70 7 3.5 4.2 115 8050 6.18 11.9 

18 150 30 30 6 2.5 4.2 19 570 4.49 8.6 

19 100 70 210 7 3.5 4.5 63 4410 4.87 7.6 

20 150 65 130 7 3.5 4.5 86 5590 10.21 13.3 
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RESULTS AND COMPARISON 

5.1 DUNGURI LIMESTONE MINE, ACC 

The number of input parameters taken were six for ANN and MVRA. They were distance, hole 

depth, charge per hole, burden, spacing and no of holes. An error tabulation was generated between 

the recorded and predicted PPV. Table 7 shows the error calculation of PPV predicted by both 

ANN & MVRA. It shows that the error generated from prediction in ANN is lesser than the 

statistical analysis. The maximum and minimum error generated by ANN was 0.5992 and 0.1688 

respectively whereas the maximum and minimum error generated by MVRA was 2.4712 and 

0.6502 respectively. Figure 19 & 20 show the regression analysis of ANN and MVRA. The 

correlation coefficient determined by ANN & MVRA was 0.9322 and 0.6833 respectively. Figure 

21,22 and 23 show the line graph comparison between the recorded and predicted PPV by ANN 

and MVRA. Figure 24 shows the bar graph comparison between the recorded and predicted PPV 

by ANN and MVRA. 

 

Table 7: Error calculation of PPV predicted of ACC by ANN & MVRA 

Sl no. Recorded 

PPV 

Predicted 

PPV by 

ANN 

Standard 

Deviation 

Predicted 

PPV by 

MVRA 

Standard 

Deviation 

1 1.62 1.4166 0.2034 0.9698 0.6502 

2 4.16 3.9887 0.1713 2.9968 1.1632 

3 3.52 3.8264 0.3064 5.0004 1.4804 

4 2.52 2.2262 0.2938 3.9994 1.4794 

5 2.05 2.4248 0.3748 0.9898 1.0602 

6 1.33 1.4988 0.1688 2.9854 1.6554 

7 0.873 0.4962 0.3768 1.9684 1.0954 

8 0.191 0.4122 0.2212 2.0012 1.8102 

9 8.60 8.0008 0.5992 6.1288 2.4712 

10 3.10 3.6254 0.5254 4.9866 1.8866 

11 6.10 6.6888 0.5888 4.1212 1.9788 

 

The equation for prediction of PPV by MVRA is: 

PPV = 15.33644 -0.00874 (Distance) -0.75903(Hole depth) -0.00965 (Charge per Hole) + 

0.035712 (Burden) – 0.84386 (Spacing) +0.027468 (No of holes) 

………………………………. (5.1.1) 
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Fig 19: Regression analysis between recorded and predicted PPV of ACC by ANN 

 

 

Fig 20: Regression analysis between recorded and predicted PPV of ACC by MVRA 
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Fig 21: Line graph comparison between recorded and predicted PPV of ACC by ANN 

 

 

Fig 22: Line graph comparison between recorded and predicted PPV of ACC by MVRA 
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Fig 23: Line graph comparison between recorded and predicted PPV of ACC by ANN & 

MVRA 

 

 

Fig 24: Bar graph comparison between recorded and predicted PPV of ACC by ANN & 

MVRA 
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the recorded and predicted frequency. Table 8 shows the error calculation of frequency predicted 

by both ANN & MVRA. It shows that the error generated from prediction in ANN is lesser than 

the statistical analysis. The maximum and minimum error generated by ANN was 2.9189 and 

1.1382 respectively whereas the maximum and minimum error generated by MVRA was 6.6744 

and 3.0213 respectively. Figure 25 & 26 show the regression analysis of ANN and MVRA. The 

correlation coefficient determined by ANN & MVRA was 0.9301 and 0.6667 respectively. Figure 

27,28 and 29 show the line graph comparison between the recorded and predicted frequency by 

ANN and MVRA. Figure 30 shows the bar graph comparison between the recorded and predicted 

frequency by ANN and MVRA. 

 

 

 

 

Table 8: Error calculation of Frequency predicted of ACC by ANN & MVRA 

Sl no. Recorded 

Frequency 

Predicted 

Frequency 

by ANN 

Standard 

Deviation 

Predicted 

Frequency 

by MVRA 

Standard 

Deviation 

1 21.5 24.3662 2.8662 15.4554 6.0446 

2 19.8 22.6872 2.8872 14.9999 4.8001 

3 2 3.9668 1.9668 5.0213 3.0213 

4 2.25 4.0236 1.7736 6.9299 4.6799 

5 11.3 9.111 2.189 6.9396 4.3604 

6 24 26.0874 2.0874 17.3256 6.6744 

7 25.3 27.3232 2.0232 18.7562 6.5438 

8 18.3 20.0064 1.7064 22.6484 4.3484 

9 2.25 1.1118 1.1382 5.9284 3.6784 

10 34.3 37.2189 2.9189 30.2141 4.0859 

11 17.8 15.1864 2.6136 22.8632 5.0632 

 

The equation for prediction of Frequency by MVRA is: 

Frequency = -70.9841 +0.052424(Distance) +0.203808(Hole Depth) -0.46242 (Charge per 

Hole) +19.90629 (Burden) +6.850645 (Spacing) -0.12203 (No of holes) ……………… (5.1.2) 
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Fig 25: Regression analysis between recorded and predicted Frequency of ACC by ANN 

 

 

Fig 26: Regression analysis between recorded and predicted Frequency of ACC by MVRA 
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Fig 27: Line graph comparison between recorded and predicted Frequency of ACC by 

ANN 

 

Fig 28: Line graph comparison between recorded and predicted Frequency of ACC by 

MVRA 
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Fig 29: Line graph comparison between recorded and predicted Frequency of ACC by 

ANN & MVRA 

 

 

Fig 30: Bar graph comparison between recorded and predicted Frequency of ACC by ANN 

& MVRA 
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5.2 IDL 

The number of input parameters taken were two for ANN & MVRA. They were distance and 

charge.  An error tabulation was generated between the recorded and predicted PPV. Table 9 shows 

the error calculation of PPV predicted by both ANN & MVRA. It shows that the error generated 

from prediction in ANN is lesser than the statistical analysis. The maximum and minimum error 

generated by ANN was 0.4889 and 0.110 respectively whereas the maximum and minimum error 

generated by MVRA was 2.2641 and 0.4107 respectively. Figure 31 & 32 show the regression 

analysis of ANN and MVRA. The correlation coefficient determined by ANN & MVRA was 

0.9053 and 0.5736 respectively. Figure 33, 34 and 35 show the line graph comparison between the 

recorded and predicted PPV by ANN and MVRA. Figure 36 shows the bar graph comparison 

between the recorded and predicted PPV by ANN and MVRA. 

 

 

Table 9: Error calculation of PPV predicted of IDL by ANN & MVRA 

Sl no. Recorded 

PPV 

Predicted 

PPV by 

ANN 

Standard 

Deviation 

Predicted 

PPV by 

MVRA 

Standard 

Deviation 

1 2.11 1.8988 0.2112 1.1122 0.9978 

2 0.32 0.4996 0.1796 1.8832 1.5632 

3 0.44 0.2984 0.1416 1.9088 1.4688 

4 0.238 0.4986 0.2606 0.6487 0.4107 

5 0.25 0.4998 0.2498 1.0538 0.8038 

6 0.238 0.5023 0.264 0.9962 0.7582 

7 0.683 0.5312 0.1518 1.993 1.3104 

8 0.349 0.5148 0.1658 1.022 0.6736 

9 0.381 0.5126 0.1316 1.0258 0.6448 

10 1.11 0.9996 0.110 2.1533 1.0433 

11 0.286 0.4953 0.2093 1.0287 0.7427 

12 0.714 0.4962 0.2178 1.9985 1.2845 

13 0.33 0.4982 0.1682 1.01 0.681 

14 1.71 1.4874 0.2226 3.9741 2.2641 

15 2.27 2.4899 0.2199 3.873 1.6032 

16 0.91 0.6128 0.2972 1.9926 1.0826 

17 1.86 1.9996 0.1396 3.0564 1.1964 

18 1.51 1.9989 0.4889 3.0875 1.5775 

19 1.81 2.0632 0.2532 2.9889 1.1789 

20 1.02 0.8989 0.1211 2.9669 1.9469 
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The equation for prediction of PPV by MVRA is: 

PPV = 1.236495 – 0.00039 (Distance) + 0.00043 (Explosive Charge) …………… (5.2.1) 

 

Fig 31: Regression analysis between recorded and predicted PPV of IDL by ANN 

 

 

Fig 32: Regression analysis between recorded and predicted PPV of IDL by MVRA 
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Fig 33: Line graph comparison between recorded and predicted PPV of IDL by ANN 

 

 

Fig 34: Line graph comparison between recorded and predicted PPV of IDL by MVRA 
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Fig 35: Line graph comparison between recorded and predicted PPV of IDL by ANN & 

MVRA 

 

 

Fig 36: Bar graph comparison between recorded and predicted PPV of IDL by ANN & 

MVRA 
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minimum error generated by ANN was 3.6352 and 0.576 respectively whereas the maximum and 

minimum error generated by MVRA was 14.6744 and 2.0754 respectively. Figure 37 & 38 show 

the regression analysis of ANN and MVRA. The correlation coefficient determined by ANN & 

MVRA was 0.9136 and 0.6231 respectively. Figure 39, 40 and 41 show the line graph comparison 

between the recorded and predicted frequency by ANN and MVRA. Figure 42 shows the bar graph 

comparison between the recorded and predicted frequency by ANN and MVRA. 

 

Table 10: Error calculation of Frequency predicted of IDL by ANN & MVRA 

Sl no. Recorded 
Frequency 

Predicted 
Frequency by 
ANN 

Standard  
Deviation 

Predicted 
Frequency by 
MVRA 

Standard 
Deviation 

1 74 70.9991 3.0009 59.3256 14.6744 

2 13.6 15.0564 1.4564 4.9898 8.6102 

3 15.5 13.9996 1.5004 5.9675 9.5325 

4 11.8 13.0587 1.2587 5.9937 5.8063 

5 18.8 17.0699 1.7301 10.142 8.6573 

6 11.8 13.2287 1.4287 15.6583 3.8583 

7 22.6 20.0874 2.512 14.7806 7.8194 

8 14.3 16.3754 0.576 14.8765 2.0754 

9 19.6 17.0637 2.5363 14.5268 5.0732 

10 30.6 32.4662 1.8662 24.9992 5.6008 

11 29 27.1222 1.877 22.2823 6.7177 

12 29 27.0928 1.9072 22.1264 6.8736 

13 19 16.4823 2.5177 14.985 4.0147 

14 42.8 39.164 3.6352 50.6628 7.8628 

15 10.3 12.3394 2.0394 6.9986 3.3014 

16 11.8 13.0642 1.2642 14.2234 2.4234 

17 11.2 13.1264 1.9264 14.5399 3.3399 

18 9.8 11.9997 2.1997 6.2255 3.5745 

19 13.6 16.5239 2.9239 8.6729 4.9271 

20 17.1 19.2121 2.1121 12.0761 5.0239 

 

The equation for prediction of Frequency by MVRA is: 

Frequency = 20.62364 - 0.00769 (Distance) + 0.033415 (Explosive Charge) ………… (5.2.2) 
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Fig 37: Regression analysis between recorded and predicted Frequency of IDL by ANN 

 

 

Fig 38: Regression analysis between recorded and predicted Frequency of IDL by MVRA 
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Fig 39: Line graph comparison between recorded and predicted Frequency of IDL by ANN 

 

 

Fig 40: Line graph comparison between recorded and predicted Frequency of IDL by 

MVRA 
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Fig 41: Line graph comparison between recorded and predicted Frequency of IDL by ANN 

& MVRA 

 

 

Fig 42: Bar graph comparison between recorded and predicted Frequency of IDL by ANN 

& MVRA 
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5.3 UAIL 

The number of input parameters taken were six for both ANN and MVRA. They were distance, 

hole depth, charge per hole, burden, spacing and no of holes. An error tabulation was generated 

between the recorded and predicted PPV. Table 11 shows the error calculation of PPV predicted 

by both ANN & MVRA. It shows that the error generated from prediction in ANN is lesser than 

the statistical analysis. The maximum and minimum error generated by ANN was 1.2736 and 

0.0018 respectively whereas the maximum and minimum error generated by MVRA was 4.0775 

and 1.1533 respectively. Figure 43 & 44 show the regression analysis of ANN and MVRA. The 

correlation coefficient determined by ANN & MVRA was 0.9563 and 0.7477 respectively. Figure 

45, 46 and 47 show the line graph comparison between the recorded and predicted PPV by ANN 

and MVRA. Figure 48 shows the bar graph comparison between the recorded and predicted PPV 

by ANN and MVRA. 

 

 

Table 11: Error calculation of PPV predicted of UAIL by ANN & MVRA 

Sl no. Recorded 

PPV 

Predicted 

PPV by ANN 

Standard  

Deviation 

Predicted 

PPV by 

MVRA 

Standard 

Deviation 

1 6.51 6.0991 0.4109 8.2999 1.7899 

2 3.8 3.7982 0.0018 5.1634 1.3634 

3 3.94 3.5463 0.3937 6.0202 2.0802 

4 7.35 7.7426 0.3926 5.1769 2.1731 

5 6.01 5.5842 0.4258 4.1208 1.8892 

6 3.21 3.7329 0.5229 5.0284 1.8184 

7 12.2 11.2586 0.9414 10.6354 1.5646 

8 4.24 4.8463 0.6063 6.9997 2.7597 

9 5.32 4.9587 0.3613 4.1667 1.1533 

10 8.81 9.2601 0.4501 10.1594 1.3494 

11 8.61 8.2943 0.3157 12.1647 3.5547 

12 5.55 6.0002 0.4502 3.1111 2.4389 

13 13.4 12.1264 1.2736 15.8976 2.4976 

14 13.1 14.1602 1.0602 16.1252 3.0252 

15 3.51 3.0056 0.5044 6.9994 3.4894 

16 12.2 12.9683 0.7683 8.1225 4.0775 

17 6.18 5.9906 0.1894 9.9795 3.7995 

18 4.49 5.1264 0.6364 7.4989 3.0089 

19 4.87 4.1022 0.7678 7.6237 2.7537 
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20 10.21 10.9699 0.7599 7.9694 2.2406 

 

The equation for prediction of PPV by MVRA is: 

PPV = 6.406891 -0.0695 (Distance) + 0.534612 (Hole depth) -0.00465 (Charge per Hole) + 

0.0346424 (Burden) + 0.673227 (Spacing) +0.056285 (No of holes)…………………… (5.3.1) 

 

Fig 43: Regression analysis between recorded and predicted PPV of UAIL by ANN 

 

 

Fig 44: Regression analysis between recorded and predicted PPV of UAIL by MVRA 
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Fig 45: Line graph comparison between recorded and predicted PPV of UAIL by ANN 

 

 

Fig 46: Line graph comparison between recorded and predicted PPV of UAIL by MVRA 
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Fig 47: Line graph comparison between recorded and predicted PPV of UAIL by ANN & 

MVRA 

 

 

Fig 48: Bar graph comparison between recorded and predicted PPV of UAIL by ANN & 

MVRA 
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The number of input parameters taken were six for both ANN and MVRA. They were distance, 

hole depth, charge per hole, burden, spacing and no of holes. An error tabulation was generated 

between the recorded and predicted frequency. Table 12 shows the error calculation of frequency 

predicted by both ANN & MVRA. It shows that the error generated from prediction in ANN is 

lesser than the statistical analysis. The maximum and minimum error generated by ANN was 

0.9607 and 0.4738 respectively whereas the maximum and minimum error generated by MVRA 

was 3.4503 and 1.1368 respectively. Figure 49 & 50 show the regression analysis of ANN and 

MVRA. The correlation coefficient determined by ANN & MVRA was 0.9721 and 0.7012 

respectively. Figure 51, 52 and 53 show the line graph comparison between the recorded and 

predicted frequency by ANN and MVRA. Figure 54 shows the bar graph comparison between the 

recorded and predicted frequency by ANN and MVRA. 

 

Table 12: Error calculation of Frequency predicted of UAIL by ANN & MVRA 

Sl no. Recorded 

Frequency 

Predicted 

Frequency 

by ANN 

Standard  

Deviation 

Predicted 

Frequency 

by MVRA 

Standard 

Deviation 

1 12.5 11.9996 0.5004 9.9999 2.5001 

2 17.7 18.4961 0.7961 21.1503 3.4503 

3 4.8 4.1269 0.6731 2.2521 2.5479 

4 11.3 11.9923 0.6923 13.9891 2.6891 

5 12.8 12.1263 0.6737 10.1267 2.6733 

6 9.9 10.5185 0.6185 11.9587 2.0587 

7 8.8 8.1309 0.6691 7.1113 1.6887 

8 11 11.9607 0.9607 13.1502 2.1502 

9 7.5 6.9899 0.5101 6.3326 1.1674 

10 6.6 7.1962 0.5962 8.0002 1.4002 

11 7.1 6.2322 0.8678 5.9632 1.1368 

12 6.1 6.9328 0.8328 7.9584 1.8584 

13 9.5 8.9939 0.5061 8.1102 1.3898 

14 12 12.9954 0.9954 13.9902 1.9902 

15 7.9 7.1222 0.7778 6.2321 1.6679 

16 8.6 9.1558 0.5558 10.9595 2.3595 

17 11.9 11.1108 0.7892 9.1206 2.7794 

18 8.6 9.1207 0.5207 10.2871 1.6871 

19 7.6 7.1262 0.4738 6.100 1.4991 

20 13.3 13.9652 0.6652 14.9069 1.6069 
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The equation for prediction of Frequency by MVRA is: 

Frequency = 22.50533 - 0.01667 (Distance) + 0.641225 (Hole Depth) + 0.004224 (Charge per 

Hole) -4.16849 (Burden) -0.51095 (Spacing) + 0.015564 (No of holes) ………………. (5.3.2) 

 

 

 

 

 

 

Fig 49: Regression analysis between recorded and predicted Frequency of UAIL by ANN 
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Fig 50: Regression analysis between recorded and predicted Frequency of UAIL by MVRA 

 

 

Fig 51: Line graph comparison between recorded and predicted Frequency of UAIL by 

ANN 
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Fig 52: Line graph comparison between recorded and predicted Frequency of UAIL by 

MVRA 

 

 

Fig 53: Line graph comparison between recorded and predicted Frequency of UAIL by 

ANN & MVRA 
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Fig 54: Bar graph comparison between recorded and predicted Frequency of UAIL by 

ANN & MVRA 

 

5.4 OVERALL ANALYSIS 

Table 13: Correlation coefficient between the recorded and predicted data at various mines 

Name of the 

Mine 

No. of Input 

Parameters 

Correlation 

coefficient 

between the 

recorded 

and 

predicted 

PPV by ANN 

Correlation 

coefficient 

between the 

recorded 

and 

predicted 

PPV by 

MVRA 

Correlation 

coefficient 

between the 

recorded 

and 

predicted 

frequency by 

ANN 

Correlation 

coefficient 

between the 

recorded 

and 

predicted 

frequency by 

MVRA 

Dunguri 

Limestone 

mine (ACC) 

06 0.9322 0.6833 0.9301 0.6667 

Indian 

Detonators 

Limited 

Rourkela 

(IDL) 

02 0.9053 0.5736 0.9136 0.6231 

Balphimali 

Bauxite mine 

(UAIL) 

06 0.9563 0.7477 0.9721 0.7012 
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Table 13 shows Correlation coefficient between the recorded and predicted data at various mines 

The correlation coefficient between recorded and predicted PPV by ANN was highest for 

Balphimali Bauxite mine (0.9563) and lowest for Indian Detonators Limited (0.9053). 

The correlation coefficient between recorded and predicted PPV by MVRA was highest for 

Balphimali Bauxite mine (0.0.7477) and lowest for Indian Detonators Limited (0.5736). 

The correlation coefficient between recorded and predicted frequency by ANN was highest for 

Balphimali Bauxite mine (0.9721) and lowest for Indian Detonators Limited  (0.9136). The 

correlation coefficient between recorded and predicted frequency by MVRA was highest for 

Balphimali Bauxite mine (0.7012) and lowest for Indian Detonators Limited (0.6231). It shows 

more the number of inputs, high is the correlation coefficient. 

 

5.5 PPV PREDICTED FOR VARIOUS MINES 

DUNGURI LIMESTONE MINE, ACC 

Table 14: Predicted PPV (mm/sec) by ANN at different Distances from the source of blast 

at ACC 

Charge 

per hole 

No of 

holes 

Predicted PPV (mm/sec) by ANN at different Distances (m) from the 

source of blast (taking spacing as 4, burden as 3 and hole depth as 10) 

At 

100 m 

At 

200 m 

At 

400 m 

At 

600 m 

At 

800 m 

At 

1000 m 

At 

2000 m 

30 25 3.53 3.01 2.55 1.67 1.24 1.02 0.56 

50 30 4.02 3.22 2.64 1.73 1.27 1.08 0.59 

40 50 4.11 3.41 2.68 1.78 1.33 1.12 0.61 

60 50 4.20 3.63 2.72 1.84 1.36 1.18 0.64 

80 50 4.44 3.73 2.78 1.88 1.42 1.23 0.67 

100 50 4.62 3.81 2.85 1.92 1.50 1.29 0.73 

200 30 4.86 3.89 2.91 1.95 1.60 1.33 0.77 

250 30 4.93 4.02 2.96 1.99 1.72 1.37 0.79 

250 50 6.21 5.11 4.01 3.04 2.82 1.42 0.81 
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Table 14 shows the predicted PPV by ANN at different distances from the source of blast at ACC. 

It suggests that at a distance of 100 m when the charge per hole is 250 kg and number of holes 

blasted is 50, the PPV exceeds the damage criteria of 5 mm/s. So it is safer to blast less than 30 

number of holes when the charge per hole is close to 250 kg. 

 

INDIAN DETONATORS LIMITED 

Table 15: Predicted PPV (mm/sec) by ANN at different Distances from the source of blast 

at IDL 

Weight of 

Explosive 

(kg) 

Predicted PPV (mm/sec) at different Distances (m) from the source of blast 

At  

100 m 

At  

200 m 

At  

400 m 

At  

600 m 

At  

800 m 

At  

1000 m 

At  

2000 m 

50.00 1.72 0.99 0.57 0.41 0.33 0.27 0.16 

100.00 2.28 1.31 0.75 0.54 0.43 0.36 0.21 

150.00 2.68 1.54 0.88 0.64 0.51 0.42 0.24 

200.00 3.00 1.72 0.99 0.72 0.57 0.48 0.27 

250.00 3.28 1.89 1.08 0.78 0.62 0.52 0.30 

300.00 3.53 2.03 1.17 0.84 0.67 0.56 0.32 

350.00 3.76 2.16 1.24 0.90 0.71 0.60 0.34 

400.00 3.96 2.28 1.31 0.95 0.75 0.63 0.36 

450.00 4.15 2.39 1.37 0.99 0.79 0.66 0.38 

500.00 4.33 2.49 1.43 1.03 0.82 0.69 0.39 

550.00 4.50 2.59 1.48 1.07 0.85 0.71 0.41 

600.00 4.66 2.68 1.54 1.11 0.88 0.74 0.42 

700.00 4.96 2.85 1.64 1.18 0.94 0.79 0.45 

800.00 5.23 3.00 1.72 1.25 0.99 0.83 0.48 

 

Table 15 shows the predicted PPV by ANN at different distances from the source of blast at IDL. 

It suggests that at a distance of 100 m when the charge used is 800 kg for cladding purpose, the 

PPV exceeds the damage criteria of 5 mm/s. So it is safer to use explosive charge of less than 800 

kg for metal cladding. 
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BALPHIMALI BAUXITE MINE, UAIL 

Table 16: Predicted PPV (mm/sec) by ANN at different Distances from the source of blast 

at UAIL 

Charge 

per hole 

No of 

holes 

Predicted PPV (mm/sec) by ANN at different Distances (m) from the 

source of blast (taking spacing as 4.5, burden as 3.5 and hole depth as 

10) 

At 

100 m 

At 

150 m 

At 

200 m 

At 

400 m 

At 

600 m 

At 

800 m 

At 

1000 m 

30 50 2.36 2.08 1.96 1.73 1.27 1.01 0.77 

40 50 2.97 2.32 2.26 2.22 1.38 1.21 0.87 

50 50 3.55 2.67 2.70 2.73 1.56 1.43 0.96 

60 50 4.37 2.97 3.11 3.21 1.92 1.67 1.13 

70 50 5.41 3.64 3.50 3.41 2.33 1.91 1.29 

80 50 6.77 4.13 4.09 4.02 2.71 2.29 1.41 

90 50 7.73 5.33 5.15 4.58 3.01 2.46 1.50 

100 50 8.61 6.13 5.77 5.44 3.52 2.83 1.67 

120 50 9.39 7.82 6.89 6.01 4.26 3.44 1.94 

150 50 10.41 9.66 8.44 6.53 4.99 3.91 2.21 

 

Table 16 shows the predicted PPV by ANN at different distances from the source of blast at UAIL. 

It suggests that at a distance of 100 m when the charge per hole is 70 kg and number of holes 

blasted is 50, the PPV exceeds the damage criteria of 5 mm/s. So it is safer to blast less than 50 

number of holes when the charge per hole is close to 70 kg. 
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6.1 CONCLUSIONS 

Based on data obtained from field work, artificial neural network analysis and multivariate 

regression analysis, following conclusions are made.  

1) The correlation coefficient determined for PPV and frequency by ANN for Balphimali 

Bauxite mine (UAIL) was 0.9563 and 0.9721 respectively and correlation coefficient 

determined for PPV and frequency by ANN for IDL was 0.9053 and 0.9136 while 

correlation coefficient determined for PPV and frequency by ANN for Dunguri Limestone 

mine (ACC) was 0.9322 and 0.9301. 

2) From ANN analysis, it was observed that more the no. of input parameters better is the 

correlation coefficient between the recorded and predicted data. It was also observed that 

when the no. of input parameters is same, the no. of testing data sets affects the correlation 

coefficient, more the no. of testing data sets more is the correlation coefficient. 

3) ANN having better R-squared value (correlation coefficient) than conventional statistical 

approach, it was used to predict PPV at various distances with explosive charge values 

keeping other input parameters constant. Safe explosive limits were predicted for the three 

mine sites using artificial neural network. For UAIL the safe explosive limit was 150 kg 

per hole for distance of 100m. Similarly, the safe explosive limit for metal cladding at IDL 

at a distance of 100m was found to be 700 kg and for ACC it was 250 kg per hole for a 

distance of 100m. 
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6.2 SCOPE FOR FUTURE WORK 

In this thesis study, the neural network has shown the ability to predict the peak particle velocity 

with a satisfactory accuracy, hence, for further study, it is recommended that other parameters 

affecting the ground vibrations should be designated and included in the training neural network 

model. Modelling of PPV and frequency can be done for different structures, buildings and storeys 

using softwares like STAAD and RAM. 
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