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Abstract 

In recent times, nickel-based super alloys are widely used in aerospace, chemical and 

marine industries owing to their supreme ability to retain the mechanical properties at 

elevated temperature in combination with remarkable resistance to corrosion. Some of the 

properties of these alloys such as low thermal conductivity, strain hardening tendency, 

chemical affinity and presence of hard and abrasives phases in the microstructure render 

these materials very difficult-to-cut using conventional machining processes. 

Therefore, the aim of the current research is set to improve the productivity and surface 

integrity of machined surface of Inconel 625 (a nickel-based super alloy) by impregnating 

powder particles such as graphite, aluminum and silicon to kerosene dielectric during 

electric discharge machining (EDM). Initially, temperature distribution, material removal 

rate (MRR) and residual stress were predicted through numerical modelling of powder-

mixed EDM (PMEDM) process. In the experimental investigation, particle size analysis of 

the as-received powder particles was carried out to identify the distribution of particles. X-

ray diffraction (XRD) analysis of particles indicated the presence of various phases 

including small amount of impurities. An experimental setup was developed and integrated 

with the existing EDM system for carrying out PMEDM process. The experiments were 

planned and conducted by varying five different parameters such as powder concentration, 

peak current, pulse-on time, duty cycle and gap voltage according to the central composite 

deign (CCD) of response surface methodology (RSM). Effects of these parameters along 

with powder concentration were investigated on various EDM characteristics such as 

material removal rate (MRR), radial overcut (ROC) and surface integrity aspects including 

surface crack density (SCD), surface roughness (SR), altered layer thickness (ALT), 

microhardness of surface and sub-surface regions, chemical and metallurgical alterations 

of the machined surface and residual stress. Results clearly indicated that addition of 

powder to dielectric has significantly improved MRR and surface integrity compared to 

pure dielectric. Among the powders used, graphite has resulted in highest MRR, lowest 

SCD, least ALT, least microhardness of surface and sub-surface regions. Least ROC, 

lowest surface roughness and least residual stress were obtained using silicon powder. 

Aluminum performed well in terms of MRR at low concentration range (upto 6 

g/l).Therefore, optimal process performance under a given operating condition depends on 

judicious selection of powder materials, their size, concentration and process parameters. 

 

Keywords: Powder-mixed EDM; Inconel 625; Numerical modeling; Material removal 

rate; Radial overcut; Surface Integrity. 
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Chapter 1  

Introduction 

The growing trend to use slim, light and compact mechanical components in 

automobile, aerospace, medical, missile, and nuclear reactor industries has led to the 

development of high strength, temperature resistant, and hard materials during last few 

decades. It is almost impossible to find sufficiently strong and hard tools to machine 

aforesaid materials at economic cutting speeds [1]. Moreover, machining of complex 

shapes in these materials with low tolerances and high surface finish by conventional 

methods is even more troublesome. Hence, there is great demand for new machining 

technologies to cut these ‘difficult-to-machine’ materials with ease and precision. Among 

modern machining processes, electric discharge machining (EDM) has become highly 

popular in manufacturing industries due to its capability to machine any electrically 

conductive material into desired shape with required dimensional accuracy irrespective of 

its mechanical strength. 

Joseph Priestley, The English physicist, first noted the erosion of metals by electric 

sparks in 1770. However, Russian scientists B. R. Lazarenko and N. I. Lazarenko, first 

introduced controlled machining by electric discharges in 1943. Intermittent arcing in air 

between tool electrode and workpiece material, connected to a DC electric supply, caused 

the erosion of material. The process was not very accurate due to overheating of the 

machining region and may be defined as ‘arc machining’ rather than ‘spark machining’ [2]. 

During 1980s, the efficiency of EDM raised extraordinarily with the introduction of 

computer numerical control (CNC). Self- regulated and unattended machining from loading 

the electrodes into the tool changer to a finished smooth cut was possible with CNC control 

system. Since then, these emergent virtues of EDM have been vigorously sought after by 

the manufacturing industries producing tremendous economic advantage and creating keen 

research interest. 
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1.1 Principle of EDM 

Despite the fact that the material removal mechanism of EDM is not absolutely 

identified and is still contentious, the most widely established principle is the 

transformation of electrical energy into thermal energy through a sequence of distinct 

electric discharges. Fig. 1.1 shows a representative diagram of a typical EDM setup. Build-

up of suitable voltage across tool and work-piece (cathode and anode respectively) that are 

submerged in an insulating dielectric, causes cold emission of electrons from the cathode. 

These liberated electrons accelerate towards the anode and collide with the dielectric fluid, 

breaking them into electrons and positive ions. A narrow column of ionized dielectric fluid 

molecules is established connecting the two electrodes. A spark generates due to the 

avalanche of electrons. This results in a compression shock wave. Very high temperature 

(8,000 to 12,000 ºC) is developed which induces melting and evaporation of both the 

electrodes. The molten metal is evacuated by the mechanical blast (of the bubble), leaving 

tiny cavities on both tool and workpiece. 

 

Fig. 1.1 A typical EDM setup 

A step by step description of the material removal process due to sparking is presented 

in Fig. 1.2. There is no direct contact between the two electrodes (held at a small distance) 

and a high potential is applied between them (Fig. 1.2(b)). The electrode moves towards 

the workpiece and enhances the electric field in the inter electrode gap, until the breakdown 



 

 

 

3 

 

voltage of dielectric is reached. The spot of discharge is normally between the nearest points 

of the tool and the workpiece. However, the spot location may change depending on the 

impurities or debris present in the inter electrode gap. Voltage drops and current flows from 

workpiece to electrode due to ionization of dielectric and formation of plasma channel (Fig. 

1.2(c)). The flow of discharge current continues and there is a constant attack of ions and 

electrons on the electrodes which ultimately lead to intense heating of the workpiece. The 

temperature rises between 8,000 °C and 12,000 ºC [3], resulting in the formation of a small 

molten metal pool at both the electrode surfaces and some of the molten metal directly 

vaporizes. During this period, plasma channel widens and radius of the molten metal pool 

increases (Fig. 1.2(d)). 

 

Fig. 1.2 Material removal mechanism in EDM 

Towards the end of the discharge, voltage is shut and plasma channel collapses inwards 

due to the pressure exerted by the neighboring dielectric. As a result, the molten metal pool 

is powerfully drawn into the dielectric, producing a tiny cavity at the surface of workpiece 

(Fig. 1.2(e)). The machining process successively removes minute quantities of workpiece 

material, in the form of molten metal, during discharges. The removed material solidifies 

to form debris. The flow of dielectric washes away the debris from the discharge zone. The 

gap increases after material removal at the point of spark, and the position of the next spark 
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shifts to a different place, where inter electrode gap is the smallest. In this manner, 

thousands of electric discharges take place at different localities of the workpiece surface 

corresponding to tool-workpiece gap. As a consequence, a negative replica of the tool 

surface shape is produced in the workpiece. 

1.2 Process variables 

As per the discharge phenomena explained earlier, some of the key process parameters 

which influence the EDM process are, 

 

Discharge current or peak current (Ip): During each pulse-on time, current rises until it 

attains a certain predetermined level that is termed as discharge current or peak current. It 

is governed by the surface area of cut. Higher currents produce high MRR, but at the cost 

of surface finish and tool wear. Accuracy of the machining also depends on peak current, 

as it directly influences the tool wear. 

 

Discharge voltage (V): Open circuit voltage between the two electrodes builds up before 

any current starts flowing between them. Once the current flow starts through plasma 

channel, open circuit voltage drops and stabilizes the electrode gap. A preset voltage 

determines the working gap between the two electrodes. It is a vital factor that influences 

the spark energy, which is responsible for the higher MRR, higher tool wear rate and rough 

surfaces. 

 

Pulse-on time or pulse duration (Ton): It is the duration of time (µs), the current is allowed 

to flow per cycle. Dielectric ionizes and sparking takes place during this period. It is the 

productive regime of the spark cycle during which current flows and machining is 

performed. The amount of material removal is directly proportional to the amount of energy 

applied during this on-time. Though MRR increases with Ton, rough surfaces are produced 

due to high spark energy. 

 

Pulse-off time or pulse interval (Toff ): It is the duration of time between two consecutive 

pulse-on times. The supply voltage is cut off during pulse-off time. Dielectric de-ionizes 

and regains its strength in this period. This time allows the molten material to solidify and 

to be washed out of the arc gap. Pulse-off time should be minimized as no machining takes 

place during this period. However, too short Toff leads to process instability. 
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Duty cycle (τ): It is a percentage of the on-time relative to the total cycle time. This 

parameter is calculated by dividing the on-time by the total cycle time (on-time and off-

time), which is shown in Equation 1.1. At higher τ, the spark energy is supplied for longer 

duration of the pulse period resulting in higher machining efficiency. 

100on

on off

T

T T
  


 

(1.1) 

Polarity: Polarity refers to the potential of the workpiece with respect to the tool. In straight 

or positive polarity the workpiece is positive, whereas in reverse polarity workpiece is 

negative. In straight polarity, quick reaction of electrons produces more energy at anode 

(workpiece) resulting in significant material removal. However, high tool wear takes place 

with long pulse durations and positive polarity, due to higher mass of ions. In general, 

selection of polarity is experimentally determined depending on the combination of 

workpiece material, tool material, current density and pulse duration. 

 

Dielectric Fluid: Dielectric fluid carries out three important tasks in EDM. The first 

function of the dielectric fluid is to insulate the inter electrode gap and after breaking down 

at the appropriate applied voltage, conducting the flow of current. The second function is 

to flush away the debris from the machined area, and lastly, the dielectric acts as a coolant 

to assist in heat transfer from the electrodes. Most commonly used dielectric fluids are 

hydrocarbon compounds, like light transformer oil and kerosene. 

 

Inter electrode gap (IEG): The inter electrode gap is a vital factor for spark stability and 

proper flushing. The most important requirements for good performance are gap stability 

and the reaction speed of the system; the presence of backlash is particularly undesirable. 

The reaction speed must be high in order to respond to short circuits or open gap conditions. 

Gap width is not measurable directly, but can be inferred from the average gap voltage. The 

tool servo mechanism is responsible for maintaining working gap at a set value. Mostly 

electro mechanical (DC or stepper motors) and electro hydraulic systems are used, and are 

normally designed to respond to average gap voltage. 

 

Tool work time (Tw) and tool lift time (Tup): During the working time Tw, multiple sparks 

occur with a pulse on duration Ton and pulse off time Toff. Then, the quill lifts up for Tup 

duration when impulse flushing is done. The impulse flushing is an intermittent flushing 

through side jet and is done through a solenoid valve is synchronized with the lifting of 

tool. The dielectric is directed towards the IEG to accomplish removal of the debris. The 

sparking cycle consists of Tw and Tup which are shown in Fig. 1.3. 
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Fig. 1.3 EDM sparking cycle 

Flushing Pressure and Type of flushing: Flushing is an important factor in EDM because 

debris must be removed for efficient cutting. Moreover, it brings fresh dielectric into the 

inter electrode gap. Flushing is difficult if the cavity is deeper and inefficient flushing may 

initiate arcing that may create unwanted cavities which are detrimental for surface quality 

and dimensional accuracy. There are several methods generally adopted to flush the EDM 

gap: jet or side flushing, pressure flushing, vacuum flushing and pulse flushing. In jet 

flushing, hoses or fixtures are used and directed at the inter electrode gap to wash away the 

debris. In pressure and vacuum flushing, dielectric flows through the drilled holes in the 

electrode, workpiece or fixtures. In pulse flushing, the movement of electrode in up and 

down, orbital or rotary motion creates a pumping action to draw the fresh dielectric. The 

usual range of pressure used is between 0.1 and 0.4 kgf/cm2. 

1.3 Performance measures in EDM 
Material removal rate (MRR) determines the productivity of any machining process. 

It can be defined as the volume of the material removed in a unit time. MRR achieved 

during EDM is quite low (0.1 to 10 mm3/min-A). Actual value of MRR depends on the 

machining conditions employed. Overcut determines the accuracy of EDM process. It is 

the difference between the size of the electrode and the size of the cavity created during 

machining. Overcut has to be minimized to achieve close tolerances on the machined 

components. Since the material removal in EDM is achieved through the formation of 

craters due to the sparks, it is obvious that larger crater size results in a rough surface. So, 

the crater size, which depends mainly on the energy per spark, controls the quality of the 

surface. 
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Fig. 1.4 Layers of an EDMed surface 

Apart from productivity (MRR), surface integrity of the machined component plays a 

vital role in the selection of a machining process. Surface integrity deals basically with two 

issues, i.e., surface topography and surface metallurgy (possible alterations in the surface 

layers after machining). Surface integrity greatly affects the performance, life and reliability 

of the component. Typically EDM results in two kinds of surface or sub-surface layers, i.e., 

recast layer, heat affected zone (HAZ) as shown in Fig. 1.4. If molten material from the 

workpiece is not flushed out quickly, it will re-solidify and harden due to cooling effect of 

the dielectric, and gets adhered to the machined surface. This thin layer (about 2.5 to 50 

µm) is known as ‘re-cast layer or white layer’. It is extremely hard and brittle and hence 

often causes microcracks to nucleate and proliferate. The layer next to recast layer is called 

‘heat affected zone’. Heating, cooling and diffused material are responsible for the presence 

of this zone. Thermal residual stresses, weakening of grain boundary, and consequent 

formation of cracks are some of the characteristics of this zone. The application of higher 

discharge energy results in deeper HAZ and subsequently deeper cracks. Excessive local 

thermal expansion and subsequent contraction may result in residual tensile stresses in the 

eroded layer [4]. The surface finish achieved during EDM is also influenced by the chosen 

machining conditions. Surface finish is primarily governed by the pulse frequency and 

energy per spark. 
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1.4 Categories of EDM 

EDM facilitates the machining in a number of ways, a lot of these operations are 

similar to conventional machining operation, for instance milling and die sinking. A variety 

of classifications are possible and recent developments in its technology append new 

operations owing to increase in various requirements. A simple and general classification 

can be given in view of standard applications such as, 

1. Die sinking EDM 

2. Electric discharge milling (ED milling) 

3. Electric discharge grinding (EDG) 

4. Wire EDM (WEDM) 

5. Micro-EDM (μ-EDM) 

1.4.1 Die sinking EDM 

Die sinking EDM, comprises a tool electrode and workpiece that are immersed in an 

insulating dielectric fluid. A pulsating power supply that produces a voltage potential, 

connects the tool and workpiece. A constant gap between the tool and the workpiece is 

maintained by a servo motor control of the tool holder. As tool moves towards the 

workpiece, dielectric breaks down into electrons and ions, creating a plasma column 

between two electrodes. A momentary flash jumps between the electrodes. Automatic 

movement of tool, towards workpiece takes place as the spark gap increases due to metal 

erosion. Thus the process continues without any interruption. As a result, the 

complementary shape of the tool electrode accurately sinks into the workpiece. 

1.4.2 Electric discharge milling 

Electric discharge (ED) milling is an evolution of CNC contouring EDM. A rotating 

cylindrical electrode follows a programmed path in order to obtain the desired shape of a 

part, like a cutter used in conventional computerized numerical controlled (CNC) milling. 

Compared to traditional sinking EDM, the use of simple electrodes in ED milling eliminates 

the need for customized electrodes. In the ED milling, the simple shape electrode does 

layer-by-layer milling to get a three-dimensional complex parts, at the same time, electrical 

discharges occur repeatedly to remove materials along the programmed path. According to 

the discharge status between the electrode and the workpiece, the control system determines 

the forward and withdrawal feed rate of the electrode [5]. 
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1.4.3 Electric discharge grinding 

Electric discharge grinding (EDG) is the process which works on the same principle 

as EDM. A rotating wheel made of electrically conductive material, is used as a tool. A part 

of the grinding wheel (cathode) and workpiece (anode) both are immersed in the dielectric, 

and are connected to DC power supply. The rotating motion of the wheel ensures effective 

flow of dielectric in the IEG, and hence flushing the gap with dielectric can be eliminated. 

Mechanism of material removal is exactly same as in EDM except that rotary motion of the 

tool helps in effective ejection of the molten material. Contrary to conventional grinding, 

there is no direct physical contact between the tool and workpiece, hence fragile and thin 

sectioned specimens can be easily machined. EDG is also considered to be economical 

compared to the conventional diamond grinding [1].  

1.4.4 Wire EDM 

Wire EDM uses a very thin wire of 0.02 to 0.03 mm diameter usually made of brass or 

stratified copper as electrode and machines the workpiece with electric discharges by moving 

either the wire or workpiece. Erosion of workpiece by utilizing spark discharges is very 

same as die sinking EDM. The predominant feature of a moving wire is that a complicated 

cut can be easily machined without using a forming tool. This process is frequently used to 

machine plates about 300 mm to manufacture dies, punches, and tools from hard materials 

which are difficult to machine using other processes. 

1.4.5 Micro-EDM 

The present trend of miniaturization of mechanical parts has given µ-EDM a 

considerable research attention. Using this process, it is possible to produce shafts and 

microholes diameter as less as 5 µm, and also intricate three-dimensional shapes [6]. It is 

extensively utilized for the fabrication of micro arrays, tool inserts for micro-injection 

molding, and hot embossing. In the beginning, µ-EDM was employed mostly for 

fabricating small holes in metal sheets. Owing to the versatility of the process, currently it 

is used in the manufacturing of micro molds and dies, tool inserts, micro filters, micro 

fluidic devices, housings for micro-engines, surgical equipment etc. 

1.5 Variants of EDM 

Notwithstanding the capability to machine virtually any electrically conductive 

material, the applications of electric discharge machining (EDM) are restricted to a few 
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industries, due to poor productivity and surface quality of the machined components. Over 

the years, researchers have developed new variants to EDM for enhancing its performance. 

Some of them include the rotation of tool, ultrasonic vibration of the 

tool/workpiece/dielectric, and utilization of powder-mixed dielectric. 

1.5.1 Rotation of tool 

Rotary motion is given to tool electrode, in the normal direction to the workpiece 

surface. Centrifugal force induced through rotary motion, drags the dielectric in to the inter 

electrode gap, enabling easier debris removal. Other advantages of the technique over 

stationary electrode include reduced tendency of arcing and improved sparking efficiency 

which finally lead to higher MRR, diminished too wear and surface roughness [7,8]. 

1.5.2 Ultrasonic vibration of tool/workpiece 

The higher efficiency gained by the employment of ultrasonic vibration is mainly 

attributed to the improvement in dielectric circulation which facilitates the debris removal 

and the creation of a large pressure variation between the electrode and the work piece, as 

an enhancement of molten metal ejection from the surface of the workpiece [9]. Zhang et 

al. [10] proposed spark erosion with ultrasonic frequency using a DC power supply instead 

of the usual pulse power supply. The pulse discharge is produced by the relative motion 

between the tool and work piece simplifying the equipment and reducing its cost. They 

have indicated that it is easy to produce a combined technology which benefits from the 

virtues of ultrasonic machining and EDM. 

Vibro-rotary motion (combination of vibration and rotation) of tool produces superior 

MRR compared to simple vibration or rotation alone [11]. Moreover, use of ultrasonic 

vibration under micro-EDM regime has also been found to be quite productive. When 

vibration is imparted in the workpiece there is an improvement in flushing efficiency. 

Additionally increase in amplitude and frequency during ultrasonic vibration assisted 

micro-EDM enhances MRR [12–14]. 

1.5.3 Near-dry or dry EDM 

In dry EDM, tool electrode is formed to be thin walled pipe. High-pressure gas or air 

is supplied through the pipe. The role of the gas is to remove the debris from the gap and 

to cool the inter electrode gap. The technique was developed to decrease the pollution 

caused by the use of liquid dielectric which leads to production of vapor during machining 

and the cost to manage the waste. Gaseous environment generally involves helium, argon, 
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oxygen and air [15–17]. In near dry EDM, mixture of gas and fluid in mist environment is 

utilized as dielectric medium [18].  

1.5.4 Powder-mixed EDM (PMEDM) 

 

Fig. 1.5 PMEDM setup 

In PMEDM, the addition of suitable powder particles to the dielectric leads to superior 

surface finish combined with better machining rates compared to those for conventional 

EDM (without powder). A typical dielectric circulation system used in PMEDM is shown 

in Fig. 1.5. This kind of specially designed system is mounted in the working tank of an 

EDM setup. A stirrer or a micro-pump is provided to avoid the settling of powder particles 

at the bottom of dielectric reservoir. It also helps to prevent the stagnation of the powder 

particles on the workpiece surface. A set of permanent magnets is provided to separate the 

debris from the powder particles through the filtering system. This separation is possible 

only when the workpiece is magnetic in nature and the powder material is not. 

Current understanding of the PMEDM is presented here as the process is yet to be 

fully established. In PMEDM, fine powder particles are suspended in the dielectric oil. An 

electric field is created in the inter-electrode gap (IEG) when sufficient voltage (about 80 

to 320V) is applied between them. Ionization of dielectric takes place as in the case of 

conventional EDM. Under the applied electric field, positive and negative charges 

accumulate at the top and bottom of the powder particles respectively (Workpiece positive 

and tool negative case). The capacitive effect of the electrodes leads to the formation of 

chains of powder particles. First discharge breakdown occurs where the electric field 

density is the highest (between ‘a’ and ‘b’ in Fig. 1.6). This breakdown may be between 

two powder particles or a powder particle and an electrode (Tool or workpiece). 
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Redistribution of electric charges takes place after the first discharge and electric charges 

gather at point ‘c’ and ‘d’. Further discharge happens between these powder particles and 

the other particles where electric field density is highest [19,20]. 

 

Enlargement of discharge gap: Size of the discharge gap largely depends on the electrical 

and physical properties of the powder particles. Under high-temperature machining 

conditions, the free electrons present in electrically conductive powder particles reduce the 

overall resistance of the dielectric. The improved conductivity helps the spark to be 

generated from a longer distance and thus enlarges the discharge gap [21,22]. 

 

Widening of discharge passage: After the first discharge, powder particles in IEG get 

energized and move rapidly along with ions and electrons. These energized powder 

particles colloid with dielectric molecules and generate more ions and electrons [19]. Thus, 

more electric charges are produced in PMEDM compared to conventional EDM. Also 

increased discharge gap aids in the reduction of hydrostatic pressure acting on the plasma 

channel. These two phenomena ensure the widening of the discharge passage. The enlarged 

and wide discharge column decreases the intensity of discharge energy leading to the 

formation of large shallow cavities on the workpiece surface. 

 

Fig. 1.6 Series discharging in PMEDM [18] 

Multiple discharges: Multiple discharge paths are observed in PMEDM due to the rapid 

zigzag movement of the suspended powder particles ensuring uniform distribution of 

energy and formation of multiple craters in single pulse duration. Unlike conventional 



 

 

 

13 

 

EDM, the discharge waveform in the case of PMEDM is significantly different from the 

input pulse. Voltage fluctuates rapidly within single pulse duration due to multiple 

discharges [23,24]. 

1.6 Applications of PMEDM 

 EDM has been used in manufacturing of aerospace components such as fuel system, 

engine, impeller and landing gear components where high temperature and high-stress 

conditions prevail. However, the safety and life of the components were questionable due 

to poor surface integrity. Application of PMEDM process in place of conventional EDM 

adequately addressed the problem arising due to poor surface integrity. Some of the specific 

applications of PMEDM in automobile industry include the manufacturing of engine 

blocks, cylinder liners, piston heads and carburetors. With the increased precision, accuracy 

and the capability to be used under micro machining domain, PMEDM is also used to 

produce medical implants and surgical equipment. Some of the specific devices include 

surgical blades, dental instruments, orthopedic, spinal, ear, nose, and throat implants. 

Surface modification in the form of electro discharge coating is also realized by PMEDM 

technique. Therefore, light metallic alloys can be surface treated for wear resistance 

applications typically in automobile and aerospace industries. 
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Chapter 2  

Literature review 

The invention of powder-mixed EDM (PMEDM) process took place around late 

seventies and the first publication came in 1980 [25]. In PMEDM, the addition of suitable 

powder particles to the dielectric leads to a superior surface finish, and better machining 

rate compared to those for conventional EDM (without powder-mixed dielectric). A novel 

EDM two-tank system was first developed and marketed by Mitsubishi [26]. One of the 

tanks consisted of standard dielectric oil and the second one contained powder-mixed 

dielectric. After completion of initial machining operation in the first tank, the tool head 

moved to the second tank to perform the finish machining. However, the extensive 

application of PMEDM in the industry requires a thorough understanding of its mechanism 

and the influence of different powder characteristics on performance measures. 

The emphasis in the current section is given on influence of powder characteristics 

and machining parameters on various responses. Some of the major application areas, 

variants of the basic PMEDM process and potential future direction of research are also 

discussed. 

2.1 Influence of powder characteristics 

Jahan et al. [27] presented a comprehensive analytical modelling of PMEDM process. 

Fig. 2.1 shows the schematic representation of different forces acting on a powder particle 

present in the inter-electrode gap. In Fig. 2.1, Fl, Fc, Fd, Fe and ‘f’ are lift, columbic, drag, 

electric, friction (direction only) forces respectively. W denotes the self-weight of the 

particle. The derived formula for breakdown energy of powder-mixed dialectic is provided 

in Eq. (2.1). 
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(2.1) 

where 
iE = Initial voltage for concentration

iN , 
brE = Breakdown voltage for final 

concentration fN ,  = Boltzmann constant, T = Temperature, 
1 = Permittivity of 

dielectric, p = Permittivity of powder particle and r = Radius of powder particle. 
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Fig. 2.1 Different forces acting on a powder particle 

From Eq. (2.1) it is evident that
brE depends on particle radius and change in 

concentration ‘N’, permittivity of the particles and dielectric. For no addition of powder 

particles or unchanged concentration ( fN =
iN ), the value of 

brE =
iE , which means no 

change in breakdown strength. 

The derived expression for spark gap during PMEDM is given in Eq. (2.2). 
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(2.2) 

where α = Field enhancement factor for small protrusion, 
dg = Distance between bottom of 

the particle and micro-peak, ph = Height of the protrusion. d1= Spark gap without powder 

suspension. From Eq. (2.2), it is clear that spark gap during PMEDM (d2) is higher than 

that of conventional EDM process (d1). 

Density, size, electrical and thermal conductivities are some of the critical 

characteristics of the powder particles that significantly affect PMEDM process. 

Increase in electrical conductivity of the dielectric, and resulting extension of 

discharge gap in PMEDM, as discussed earlier, enhance spark frequency and facilitate easy 

removal of debris from the machining zone [27,28]. 

High thermal conductivity of powder particles removes a large amount of heat from 

the discharge gap leading to reduction in discharge density. Therefore, only shallow craters 

are formed on the workpiece surface [29,30]. Number of surface cracks developed on the 
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machined surface are also reduced along with their width and depth, as the intensity of 

discharge energy is less in PMEDM compared to conventional EDM process [31,32]. 

Table 2.1 Properties of various powder materials 

Material Density 

(g/cm3) 

Electrical 

resistivity 

(µΩ-cm) 

Thermal 

conductivi

ty (W/m-

K) 

Reference(s) 

Aluminum (Al) 2.70 2.89 236 [24,27,29–31,33,35–52] 

Alumina (Al2O3) 3.98 103  25.1 [27,44,53–57] 

Boron Carbide (B4C) 2.52 5.5 x 105 27.9 [58–61] 

Carbon nanotubes 

(CNTs) 

2.00 50 4000 [48,62–71] 

Chromium (Cr) 7.16 2.60 95 [29,30,36,72–75] 

Copper (Cu) 8.96 1.71 401 [29,36,45,46,76–78] 

Graphite (C) 1.26 103 3000 [21,27,28,30,37,45–

48,78–94] 

Molybdenum 

disulfide (MoS2) 

5.06 106 138 [95–97] 

Nickel (Ni) 8.91 9.5 94 [98–100] 

Silicon (Si) 2.33 2325 168 [28,37,39,43,44,48,55,10

1–116] 

Silicon Carbide (SiC) 3.22 1013 300 [23,30,34–36,38,117–

126] 

Titanium (Ti) 4.72 47 22 [127–130] 

Tungsten (W) 19.25 5.3 182 [28,45,46,76,77,131–134] 

 

The number of powder particles in the electrode gap at a given instant increases with 

the decrease in their size. As a consequence, overall discharge energy increases, but it is 

more evenly distributed in a larger area. Hence, energy density gets diminished [27]. 

Formation of multiple number of smaller craters during a single discharge also takes place. 

Use of smaller powder particles has, therefore, produced higher material removal rate 

(MRR) and superior surface quality compared to the larger size particles of the same 

material [33–36]. 

The powder particles with low density can balance themselves better against the 

surface forces, allowing even distribution of particles throughout the dielectric [48,68]. 

Low density also minimizes the amount of powder particles settling at the bottom of the 

tank, thereby bringing down the requirement of powder quantity. Lighter particles also 

cause small explosive impact on the molten metal [29]. Some of the frequently used powder 

materials in PMEDM along with their properties are presented in Table 2.1. 
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Yeo et al. [119] observed a circular growth within the crater during powder-mixed µ-

EDM process due to the deposition of the powder material on the workpiece surface. 

However, no such growth could be found during conventional EDM process. 

Along with physical, electrical and thermal properties, concentration of powder 

material in the dielectric also causes a significant change in the responses. Higher 

concentration is effective in multiplying the number of discharges which in turn augment 

MRR [113,114]. The accentuation of multi-sparking in a single pulse-on time due to 

increase in powder concentration reduces the energy per spark resulting in low surface 

roughness (SR) [38]. However, too many powder particles in the discharge gap hinder the 

discharge energy transfer to the workpiece. It also leads to arcing and short-circuiting that 

ultimately results in low MRR and poor surface quality [97,116]. 

On the contrary, Jabbaripour et al. [30] observed a fall in MRR, when powders like 

Al, Gr, SiC, Cr and Fe had been impregnated in the dielectric during the PMEDM of ϒ-

TiAl intermetallic. Such reduction was attributed to the reduced energy density at the 

discharge spot due to enlarged IEG and widened discharge passage. Consequently, the 

reduced impulsive force of the plasma channel on the workpiece surface also resulted in 

the formation of small craters leading to the reduction in MRR. Powders like Fe and Cr that 

have low thermal conductivity and high density produced superior MRR. According to the 

authors, powders that have high thermal conductivity take away the heat from the discharge 

spot resulting in lower values of MRR. Low-density particles produced poor MRR as they 

mixed well with the dielectric and dissipated more heat to the dielectric. Hence, Al with 

highest thermal conductivity and the least density among the used powders produced the 

worst MRR. 

Wu et al. [40] achieved excellent surface finish by mixing a surfactant 

(Polyoxythylene-20-sorbitan monooleate) along with Al powder in dielectric during the 

EDM of SKD 61 die steel. The added surfactant acted as a steric barrier to prevent the 

agglomeration of the powder particles. It was also found that usage of only surfactant as an 

additive could reduce the recast layer thickness as it increased the overall conductivity of 

the dielectric [135]. 

Radial pattern and a trace of the circular annulus at the edge of the machined surface 

were found by Wang et al. [111,112], at 4 g/l concentration of Si powder in the dielectric 

while machining NAK-80 mold steel. All the negatively charged electrons colloid with the 

positive charges present on the workpiece surface generating enormous amount of heat 

energy. A track with branches radially growing outward was formed due to rapid heat 

transfer to surroundings. The track disappeared at higher levels of powder concentration as 

powder congregation died down. 
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Among others, Tsai et al. [44,53,55] established the feasibility of polymer particles 

(starch, polyaniline) as additives during the PMEDM of stainless steel. Starch when added 

along with Al2O3 powder in silicone oil produced better surface quality than pure Al2O3 

powder. Wong et al. [37] utilized crushed glass as an additive to machine AISI-01, SKH 54 

tool steels and found no significant effect of it on both MRR and surface quality due to its 

very poor electrical and thermal conductivities. Sari et al. [68] and Prabhu et al. [62–

65,67,69–71] concluded that carbon nanotubes (CNTs) mixed in the dielectric resulted in 

huge improvement of MRR compared to other powder materials which was attributed to 

the low density and high thermal conductivity of CNT. The low density allowed the 

particles to be better balanced against the surface forces of the dielectric. Hence, there was 

an even distribution of the particles in the dielectric. High thermal conductivity also helped 

in the uniform distribution of discharge energy over the large surface area. Mai et al. [48] 

used CNTs fabricated using floated catalytic chemical vapor deposition (CVD) method 

during the PMEDM of NAK-80 steel. The uniform diameter and straight pin shape of these 

CNTs allowed easier separation from each other compared to CNTs produced using 

conventional CVD technique. As high as 66 % increase in MRR and 70 % decrease in SR 

were reported with 0.4 g/l concentration of CNTs. 

2.2 Influence of machining parameters 

The combined and individual characteristics of dielectric, powder, tool and workpiece 

material along with other machining parameters affect the PMEDM process significantly 

[45–47]. The effect of important process parameters on the machining characteristics of 

PMEDM process is discussed below. 

2.2.1 Dielectric 

Apart from commercial EDM oils, kerosene, and deionized water are widely used in 

PMEDM. The higher thermal conductivity and specific heat of pure water take away the 

heat from the machining zone resulting in a better cooling effect [117]. Simultaneously, 

kerosene forms carbides and water forms oxides on the machined surface. Carbides require 

more thermal energy to melt compared to oxides [58]. Hence, higher MRR and less TWR 

were realized with deionized water than kerosene as dielectric. But kerosene produces 

better surface finish. Usage of emulsified water (water+emulsifier+machine oil) as the 

dielectric by Liu et al. [137] produced higher MRR and better surface quality than pure 

kerosene. This was attributed to the increase in overall electrical conductivity of the 

dielectric due to the ionization of water soluble anionic compound emulsifier present in the 
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emulsified oil. Some of the important properties of dielectrics used in PMEDM are 

provided in Table 2.2. 

Table 2.2 Properties of typical dielectrics used in PMEDM [136] 

Dielectric Specific 

heat 

(J/kg-K) 

Thermal 

conductivity 

(W/m-K) 

Breakdown 

strength 

(kV/mm) 

Flash point (ºC) 

Deionized water 4200 0.62 65-70 Not applicable 

Kerosene 2100 0.14 24 37-65 

Mineral oil 1860 0.13 10-15 160 

Silicon oil 1510 0.15 10-15 300 

2.2.2 Polarity 

Discharge current takes place due to flow of both electrons and ions. For short pulse-

on time, the discharge current is mainly due to the electron current. When the pulse-on time 

is long, the discharge consists of a large amount of ion current. Hence for better MRR and 

lower TWR, positive polarity (workpiece +ve) with short pulse-on time should be preferred 

while negative polarity (workpiece -ve) can be used for long pulse-on time [23]. 

With positive polarity, some of the molten metal re-solidified at the center of craters, 

resulting in bulging effect during the EDM of titanium alloy using SiC additive in the 

dielectric [118]. It also led to a greater accretion of powder material on the machined surface 

[127]. Furthermore, deep cavities with predominant ridges were observed with negative 

polarity. This means that high MRR could be achievable with negative polarity but with 

coarser surface [111,138]. 

2.2.3 Peak current 

MRR increases with peak current due to an increase in discharge energy [139–143]. 

The increase in peak current also increases the number of electrons and ions per unit 

volume, thereby increasing the pressure in the plasma channel. As a consequence, 

impulsive force per unit area (specific impulsive force) increases allowing an easier ejection 

of the molten material [115,116]. Tool wear increases with increasing pulse current as more 

particles strike the surface. However, pulse energy dominates striking effect at high pulse 

current leading to less tool wear [33,99]. 

Surface quality deteriorates with peak current as the quantity of material removed per 

discharge increases due to rise in discharge energy [144]. Large and deep craters were 

observed at high pulse currents [40]. The thickness of recast layer also increases as more 
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material melts and re-solidifies [132]. Apart from material transfer, rapid heating and 

quenching at high pulse currents elevate the microhardness of the machined surface [145]. 

2.2.4 Pulse-on time 

MRR increases with pulse-on time due to an increase in pulse energy [33,57,115]. Too 

long pulse-on time causes an expansion of the plasma channel that in turn leads to the 

reduction of energy density and impact force. Thus, MRR is reduced at long pulse-on time 

[135]. SR also decreases with pulse-on time due to aforesaid reasons. Short-circuiting and 

incomplete removal of debris from the discharge area make the process unstable and 

degrade the surface quality at high pulse-on times [40,92,108]. More debris is formed and 

adheres to the machined surface as the pulse-on time increases the productive machining 

time. This also causes an increase in recast layer thickness [58,123]. There is an initial 

decrease in microhardness of the machined surface, followed by subsequent rise with 

further increase in pulse-on time due to material transfer [145]. TWR decreases with the 

pulse-on time due to the time available for heat transfer from the molten crater to the body 

of the electrode. High wear resistance of the electrode due to the deposited carbon on it 

increases the TWR [81]. More overcut (OC) was observed with high pulse-on time owing 

to the large amount of material removed per spark [138]. 

Yasar et al. [125] observed many small pits within the crater with a decrease in pulse-

on time. At high pulse-on times, the initial discharge pushes the powder particles outwards 

and forms a clearer space at its center. Simultaneously, the particles around it form sub-

discharges resulting in several pock marks. 

2.2.5 Duty cycle 

MRR increases with duty cycle due to an increase in spark energy. But, MRR starts 

declining when duty cycle becomes too long as the process becomes unstable, and arcing 

may take place due to unfavorable flushing conditions [33,57,135]. For the same reasons, 

minimum SR is obtained at moderate value of duty cycle [33]. Extended duty cycles do not 

allow the gasses and accumulated debris to escape resulting in reduced tool wear [99]. 

2.2.6  Gap voltage 

When gap voltage becomes too large, the time required for bridging the discharge gap 

with ions and electrons increases due to an increased spark gap resulting in low MRR [135]. 

Less energy density and energy loss in the discharge gap also decrease the MRR [57]. There 
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is an initial hike in SR as MRR increases. However, too high gap voltage decreases the SR 

owing to increase in spark gap [33,133]. The deposited layer thickness increases with gap 

voltage as the expansion of spark gap allows more powder into it. However, further increase 

in gap voltage diverges and reduces the discharge column thereby reducing the recast layer 

thickness (WLT) [118]. 

Kumar et al. [87] observed a reduced TWR by employing a cryogenically treated 

copper electrode during EDM of Inconel 718 using dielectric suspended with graphite 

powder. This was attributed to improved electrical and thermal conductivity of the 

cryogenically treated tool due to its grain refinement. 

Wong et al. [37] achieved mirror-finish for SKH-54 tool steel using Al suspended 

dielectric, but not for AISI-01, which emphasizes the significance of the workpiece 

composition in PMEDM process. Surface finish improved with machining time when AISI 

H13 mold steel was machined with Si impregnated dielectric by Pecas et al. [102]. Too 

much dielectric flow degraded the surface quality due to the instability in the machining 

zone [38]. The turbulent flow of the dielectric increases the tool wear as well [68]. 

2.3 Major research areas of PMEDM 

The following methodologies have been adopted to analyze and expand the areas of 

application of PMEDM process. 

2.3.1 Rough machining 

PMEDM process was traditionally used in finish machining. The application of 

PMEDM in rough machining was first attempted by Zhao et al. [19]. Problems like high 

tool wear rate, improper flushing of debris at high machining parameters have to be 

addressed before applying PMEDM in rough machining. Mai et al. [48] investigated the 

rough machining parameters for PMEDM of NAK80 die steel using CNTs. High peak 

current and long pulse-on time resulted in high machining rate [47]. 

2.3.2 Finish machining 

Finish machining is one of the major application areas of PMEDM. Good surface 

finish achieved through PMEDM reduces other finish machining operations and the cost 

associated with it. A mirror-like reflective surface can be obtained using PMEDM at low 

discharge energy parameters [101,102]. Roughness of the machined surface increases with 

the increase in tool size even at low energy settings [37,102]. 



 

 

 

22 

 

Mohri et al. [101] used planetary tool motion for fine machining of H13 steel using Si 

powder. The machined surface showed good corrosion resistance. Wong et al. [37] 

observed mirror-like surface finish with Al suspended dielectric for SKH-54. Semi-

conductive C and Si powders produced very fine finish but not mirror-like surface. Pecas 

et al. [102] achieved a mirror finish during EDM of H13 tool steel using Si powder-mixed 

dielectric. Further, a significant improvement in surface finish was realized with increasing 

machining time. 

Wu et al. [40] used a surfactant along with Al powder in the dielectric. This 

combination produced lower SR owing to uniform dispersion of powder particles in the 

dielectric. Pecas et al. [109,110] analyzed the influence of powder concentration, electrode 

area and dielectric flow rate on the crater characteristics of the machined surface. Crater 

dimensions, i.e., diameter and depth, decrease with powder concentration due to the 

dispersed multi-sparking in a single discharge. However, crater depth increases at high 

powder concentration levels due to an increase in discharge energy. 

2.3.3 Micromachining 

Recent advancements in micro-electro-mechanical systems (MEMS) and micro-

mechanical equipment like micro-pumps, micro-engines and micro-robots necessitate 

precise micromachining processes. Due to its capability to accomplish high surface finish, 

powder-mixed micro-EDM (µ-EDM) has resulted in better surface quality and precision 

compared to conventional µ-EDM [146,147]. Chow et al. [38] machined micro-slits on 

titanium alloy using Al and SiC suspended dielectrics. It was observed that Al powder 

produced a large slit expansion due to its high electrical and thermal conductivity. A gray 

zone was found under the actual recast layer during the µ-PMEDM of Inconel 718 using Si 

powder due to its high heat of fusion [39]. Nanopowders of graphite, Al and Al2O3 were 

used by Jahan et al. [27,83,85] during µ-PMEDM of WC10%Co alloy. No significant effect 

was found with Al2O3, while Al and graphite powders significantly improved the MRR and 

surface quality. Kibria et al. [58–60] used boron carbide (B4C) powder in kerosene as well 

as deionized water during drilling of microholes on titanium alloy. Diameter variation at 

entry and exit of the hole was more for kerosene dielectric than deionized water. At low 

peak current, such variation was more for powder-mixed dielectrics than pure dielectric, 

but less for high peak current. Chow et al. [23] fabricated micro-slits on titanium alloy using 

silicon carbide suspended pure water as dielectric. It was observed that the expansion of 

micro-slits was more for positive polarity. 
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2.3.4 Surface modification 

Electro discharge coating (EDC) using powder metallurgy tool has been used 

extensively for surface coating and modification. However, the surface becomes inaccurate 

due to high tool wear associated with the process. Surface coating and surface alloying 

using PMEDM has received much attention in recent years due to its improved accuracy. 

Various researchers have added different powders to dielectric to achieve a desired 

quality of the machined surface for specific applications. Chen et al. [130] machined grade 

4 pure Ti with Ti mixed-deionized water using a grade 4 Ti electrode. The machined 

component was biocompatible and could be used as a dental implant. Due to its excellent 

lubricity properties, usage of molybdenum sulfide (MoS2) as an additive solved the problem 

of lubrication of sliding parts in space for EDMed stainless steel parts [148]. Zain et al. 

[139] used tantalum carbide (TaC) powder during the EDM of stainless steel (SUS 304) to 

achieve excellent surface microhardness. Bhattacharya et al. [28] studied the effect of 

various electrode and powder combinations on the microhardness of the machined surface. 

Results indicated that the combination of W-Cu electrode and W powder produced the 

hardest surface compared to the surfaces obtained by utilizing graphite and Si powder 

suspended dielectrics. The investigation of Fong and Chen [29] on the EDM of SKD 11 

steel revealed that Cr powder which has low electrical resistivity and hardness has produced 

fine surface finish compared to SiC additive. 

Furutani et al. [127] used different kinds of electrodes for the accretion of TiC on AISI 

1049 carbon steel while adopting Ti mixed dielectric. While a thin powder metallurgy 

electrode produced a high concentration of accretion of TiC, rotating gear shape electrode 

during PMEDM resulted in the accumulation of TiC over a large area. Urea was suspended 

in pure water during EDM of titanium to form a TiN ceramic layer [144]. Microhardness 

of the machined surface also increased due to this layer. Further, surfaces machined using 

PMEDM process showed an improved resistance to corrosion due to effective surface 

modification [101]. 

2.3.5 Machining of nonconductive materials 

Kucukturk and Cogun [84] produced holes on different nonconductive ceramics 

through EDM by suspending graphite powder in the dielectric. Before machining, all the 

workpieces were coated with a conductive layer to initiate the sparking. After the erosion 

of coated layer the discharge process still continues due to the formation of a thin layer 

consisting of decomposed carbon particles of the dielectric, graphite powder and particles 

of the coated layer adhering to the machined surface. 
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2.3.6 Optimization of PMEDM process 

Quite a few single objective optimizations in PMEDM were performed in the past 

using the design of experiment (DOE) methods like Taguchi[34,61,80] or response surface 

methodology (RSM) [73,75,98]. 

Bhattacharya et al. [77] performed a multi-objective optimization of MRR, TWR and 

SR using analytic hierarchy process (AHP) during the PMEDM of various steels with 

different combinations of tool and powder materials. Singh et al. [34] and Talla et al. [52] 

analyzed the impact of process parameters on PMEDM characteristics of 

aluminum/alumina metal matrix composite using silicon carbide and aluminum powders 

respectively. Multi-objective optimization using gray relational analysis (GRA) was also 

proposed to find the optimal combination of process parameter settings. Assarzadeh and 

Ghoreishi[57] investigated the effect of various electrical and non-electrical process 

parameters on MRR and SR during the PMEDM of CK45 alloy using alumina, copper and 

silicon carbide additives in dielectric. The experiments were carried out using RSM design, 

and optimal parameter combination was determined using desirability approach. A hybrid 

multi-response optimization employing TOPSIS and GRA was performed by Tripathy and 

Tripathy [149] during the EDM of H-11 die steel using chromium powder-mixed dielectric. 

Padhee et al. [114] attempted simultaneous optimization of multiple objectives using a non-

traditional technique called non-sorted genetic algorithm (NSGA). Empirical models for 

the optimization were generated using RSM. 

2.3.7 Numerical modelling of PMEDM process 

Substantial amount of research work has been reported in the numerical modelling of 

EDM process. However, very few research work has been attempted in the numerical 

modelling of PMEDM process. Kansal et al. [82] developed an axisymmetric 2D thermal 

model to predict temperature distribution with respect to various PMEDM process 

parameters. The model was further utilized to estimate crater size and subsequently the 

MRR. Along with temperature distribution and MRR, Bhattacharya et al. [86] 

accomplished a 3D finite element model to predict thermal residual stresses induced during 

PMEDM process. Further, mathematical models were developed to predict the radius and 

height of crater during PMEDM process [89]. Tan and Yeo [150] established 3D finite 

element models for surface integrity aspects such as maximum surface roughness (Rmax) 

and recast layer thickness by considering multiple crater effect. Similarly, Vishwakarma et 

al. [151] and Singh et al. [94] have accomplished finite element models to predict MRR by 

considering single and multiple crater theories respectively. 
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2.4 Variants of PMEDM 

PMEDM process is further improved by making small adjustments to the setup. Some 

of those variations are discussed below. 

2.4.1 PMEDM with the rotary tool 

Effect of the powder particles on the machined surface can be enhanced by using a 

rotary tool. Powder particles from the surroundings are dragged into the machining zone 

due to the centrifugal force of the rotating tool [150,152]. This increase in the concentration 

of particles in the machining zone enhances the overall effectiveness of the powder 

particles. 

2.4.2 PMEDM with ultrasonic vibration 

MRR and surface quality can be improved considerably when ultrasonic vibration is 

imparted to the tool. More molten material is removed by each discharge due to enhanced 

abrasive action of the powder particles caused by the vibrating tool. SR also decreases 

owing to the wear-out of the crater edges [138]. 

Instead of the tool, Prihandana et al. [88,90] employed ultrasonic vibration to the 

workpiece in the forward-backward direction during µ-EDM process using graphite powder 

suspended dielectric. Such vibration pumped out the debris from the IEG and allowed the 

fresh dielectric to flow into it, yielding better MRR compared to conventional EDM.  

In another set of experiments, Prihandana et al. [21,95] used an ultrasonic bath to 

vibrate the dielectric. This ultrasonic vibration of the dielectric reduces the adhesion of 

debris to the workpiece besides preventing the settling of powder particles at the bottom of 

the tank. The combined effect has resulted in the improvement of MRR, as more powder 

particles enter the IEG. 

2.4.3 Near dry PMEDM 

Very little work has been reported in the area of near dry PMEDM. Debris removal is 

a primary concern in near dry EDM. The enlarged discharge gap in PMEDM makes the 

way for easier debris removal thereby enhancing the process stability in near dry PMEDM 

[153,154]. 

Some of the major developments in PMEDM, starting from its inception have been 

summarized in Table 2.3. 
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Table 2.3 Evolution of PMEDM process 

Year Author(s) Area of research Major findings 

1980 Erden and 

Bilgin [25] 

Usage of impurities 

(Cu, Al, Fe, and C) 

in the dielectric. 

Time lag (ignition delay) reduced 

compared to conventional EDM. 

MRR and tool wear rate (TWR) 

increased and remained constant 

with impurity concentration. 

1981 Jeswani 

[79]  

Ultrasonic vibration 

of the tool in 

graphite powder-

mixed dielectric. 

More molten material is removed per 

each discharge due to enhanced 

abrasive action of the powder 

particles caused by the vibrating 

tool. SR also decreased owing to the 

wear out of the crater edges. 

1991 Mohri et 

al. [101] 

Planetary tool 

motion in Si 

powder-mixed 

dielectric. 

Time required for removing the 

cusps reduced significantly due to 

the grinding action of powder 

particles provided by the planetary 

tool motion.  

1995 Ming and 

He [32] 

Usage of lipophilic 

surface agents 

(liquids) as 

additives. 

Liquid additives also enhanced the 

MRR. Microhardness of the 

machined surface has improved. 

Recast layer thickness and number of 

micro-cracks got reduced. 

2000 Chow et al. 

[38] 

Employment of 

rotating Cu diskette 

as electrode. 

Micro-slits were successfully 

fabricated. Slit expansion (overcut) 

depends on electrical conductivity of 

the powder material. 

2001 Tzeng and 

Lee [36] 

Influence of powder 

properties on 

PMEDM 

characteristics 

High spark gap was observed for 

large particles. Small particles 

produced high MRR. 

2001 Furutani et 

al. [127] 

Electro discharge 

coating (EDC) using 

PMEDM process  

Gear-shaped rotating electrode 

produced wider area of accretion 

compared to other electrodes as it 

drags more powder particles into the 

sparking zone. 

2005 Wu et al. 

[40] 

Usage of surfactant 

along with Al 

powder in dielectric 

Agglomeration of powder particles 

was reduced. Machining rate and 

surface quality were improved. 

2005 Yan et al. 

[144] 

Urea with distilled 

water as dielectric 

A ceramic TiN layer formed on the 

workpiece. Microhardness of the 

machined surface was improved. 

Better surface finish obtained 

compared to conventional EDM.  
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2006 Kansal et 

al. [106] 

Multi-objective 

optimization of 

PMEDM process 

Performed multi-objective 

optimization using Taguchi approach 

and utility concept. 

2008 Kansal et 

al. [82] 

Numerical 

simulation of 

PMEDM process 

2D transient thermal models were 

developed to analyze temperature 

distribution and material 

transformation in PMEDM process. 

Prediction model for MRR was 

developed.  

2008 Tsai et al. 

[53]  

Electrorheological 

(ER) fluid (Silicone 

oil + starch) as 

dielectric  

Al2O3 mixed ER fluid produced the 

polishing effect on the machined 

surface. The addition of starch along 

with Al2O3 decreased the surface 

roughness from 0.3 µm to 0.06 µm. 

2009 Prihandana 

et al. [95] 

Usage of ultrasonic 

bath inside the 

dielectric tank 

Ultrasonic vibration of the dielectric 

significantly improved the MRR as it 

prevented the powder particles and 

debris at the bottom of the tank.  

2009 Gao [153] Near dry PMEDM A gas-liquid-solid medium was used 

as a dielectric medium. The main 

intention was to reduce the amount 

of dielectric and improve the debris 

removal process.  

2010 Kucukturk 

and Cogun 

[84] 

Machining of 

nonconductive 

materials 

Nonconductive materials were 

coated with a conductive layer and 

machined with graphite powder-

mixed dielectric. 

2010 Tsai et al. 

[55] 

Polymer powder as 

additive 

High molecular weight polyaniline 

(PANI-emer) produced a finer finish 

than Si powder. 

2013 Tan et al. 

[150] 

Simulation by 

considering multiple 

crater phenomenon 

in PMEDM 

2D transient thermal models based 

on finite element method were 

developed for powder-mixed µ-

EDM by considering multiple 

craters. 

2014 Chen et al. 

[130] 

Development of 

metal based 

biomedical implant  

Machined Ti alloy with pure Ti 

suspended dielectric. Wettability of 

the machined surface was increased. 

2.5 Motivation and objective of research work 

From the review of past research work, it is evident that PMEDM has strong potential 

in enhancing MRR and surface finish. However, the criteria for powder material selection, 

based on specific requirements and application, are still unknown. Therefore, it is essential 
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to comparatively evaluate the performance of some of the commercially available powders 

and correlate the same with different properties of these powder materials.  

Moreover, previous studies primarily focused on MRR and surface finish in PMEDM. 

Existing works also reveal that the process parameters such as powder concentration, peak 

current, pulse-on time, duty cycle and gap voltage have significant influence on EDM 

characteristics. While these performance measures undoubtedly have enormous 

significance, surface integrity of the machined components perhaps plays a more vital role 

in influencing the performance during their intended applications and deciding the service 

life of the same components. Therefore, investigation into influences of various PMEDM 

parameters on various aspects of surface integrity is of utmost relevance. However, such 

studies have rarely been reported so far. 

It is also observed from the literature that various methodologies were adopted to 

analyze different response characteristics in PMEDM. However, very few attempts have 

been made to correlate the interaction effect of PMEDM process parameters with process 

performance. 

A great deal of research work pertaining to PMEDM of different grades of steel has 

been published during the last decade or so. In recent times, nickel-based super alloys are 

widely used in aerospace, chemical and marine industries owing to their supreme ability to 

retain the mechanical properties at elevated temperature in combination with remarkable 

resistance to corrosion. Some of the properties of these alloys such as low thermal 

conductivity, strain hardening tendency, chemical affinity and presence of hard and 

abrasives phases in the microstructure render these materials very difficult-to-cut using 

conventional machining processes. Although some amount of studies have been reported 

on EDM of nickel-based super alloys, exploits of PMEDM process in machining such 

alloys have hardly been explored. Few studies pertaining to EDM and PMEDM evaluated 

basic machining characteristics of Inconel 718. However, different other grades of super 

alloy with variation in chemical composition and properties should also be considered in 

order to attain deeper insight into the role of process mechanics on such alloys. Inconel 625 

is one such grade of nickel-based super alloys of which EDM characteristics and role of 

powder materials have yet to be evaluated. 

Considering all the gaps or incompleteness in the reviewed literature discussed above, 

the major objective of the current research work is to investigate the influence of various 

powder additives and process parameters on different performance measures with 

significant emphasis on various aspects of surface integrity in PMEDM during machining 

of Inconel 625. 
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The detailed objectives specific to the different sections of chapter 4 (results and 

discussion) are formulated as follows: 

1. To establish 3D numerical models correlating temperature distribution, material 

removal rate (MRR), and residual stress with different process parameters such as peak 

current, pulse-on time, duty cycle and gap voltage during PMEDM utilizing different 

powders (graphite, aluminum and silicon). 

2. To study the influence of powder materials, their size and concentration as well as 

PMEDM parameters, arranged using RSM-based design of experiment, on material 

removal rate (MRR) and radial overcut (ROC). 

3. To investigate the effect of powder materials, their concentration as well as different 

process variables on various aspects of surface integrity such as crater distribution, 

surface morphology, surface crack density, surface roughness, formation of altered 

layers including recast layer and heat affected zone (HAZ), microhardness at surface 

and sub-surface regions, phase changes, grain size, lattice strain and residual stress after 

machining. 
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Chapter 3  

Experimental details 

3.1 Development of experimental setup 

All experiments were conducted on a die sinking EDM machining setup (make: 

Electronica, India; model: ElektraPlusPS 50ZNC) as shown in Fig. 3.1. Since it was 

planned to use a fresh dielectric fluid with varying concentrations of powder for every 

experiment, a separate dielectric circulation system was designed, fabricated and attached 

to the existing machine as indicated in Fig. 3.1. 

 

Fig. 3.1 Experimental setup 

Schematic diagram of PMEDM setup is depicted in Fig. 3.2. The recirculation system 

consists of a cylindrical working tank of 20 liters, a work holding fixture, a dielectric 

reservoir (bucket), 0.5 HP pump and delivery pipes. A pressure gauge was also attached to 

the system to measure the dielectric pressure during experimentation. The pump receives 
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the dielectric fluid from the outlet of the cylindrical tank and recirculates it to the tool-work 

inter electrode gap to flush out the debris. The continuous circulation of the dielectric fluid 

avoids the settlement of powder particles in the flushing system. In the current 

investigation, side jet flushing was selected to flush out the debris. 

 

Fig. 3.2 Schematic of dielectric circulation system 

3.2 Selection of materials 

3.2.1 Workpiece and tool 

Nickel-based super alloys have a wide range of industrial applications because of their 

properties, such as good tensile strength, excellent resistance to oxidation and corrosion 

along with thermal stability. Inconel 625 is an austenitic nickel-based super alloy, 

possessing excellent corrosion resistance to severe working environments. The chemical 

constituents of Inconel 625 are given in Table 3.1. The presence of chromium resists 

oxidization whereas molybdenum prevents corrosion in non-oxidizing environments. 

Niobium reduces crack formation during welding by stabilizing the weld pool. The High 

percentage of nickel arrests cracking due to chloride stress corrosion. Due to aforesaid 

properties, some of the specific applications of Inconel 625 include acid storage hardware, 

tubes for sour gas handling, chimney liners, furnace equipment and distillation columns 

[155]. However, the same properties pose a great challenge during conventional machining 

processes. Since Inconel 625 is conductive in nature, it is suitable for electric discharge 

machining. However, EDM characteristics of the same alloy have hardly been reported so 
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far. Hence, Inconel 625 was chosen as the workpiece material in the form of thin plates 

with dimensions of 40 mm x 40 mm x 5 mm. The properties of Inconel 625 are listed in 

Table 3.2. An electrolytic copper tool with a diameter of 12 mm and length of 60 mm has 

been used to perform the experiments. 

Table 3.1 Chemical composition of as-received Inconel 625 

Element Weight (%) 

Aluminum (Al) 0.32 

Silicon (Si) 0.35 

Sulfur (S) 0.01 

Titanium (Ti) 0.38 

Chromium (Cr) 22.36 

Manganese (Mn) 0.35 

Iron (Fe) 4.58 

Nickel (Ni) 58.74 

Niobium (Nb) 3.87 

Molybdenum (Mo) 9.04 

Table 3.2 Properties of Inconel 625 [155] 

Mechanical properties 

Density 8440 kg/m3 

Young’s modulus 2.07 x 1011 N/m2 

Poisson’s ration 0.308 

Maximum yield strength 634.3 MPa 

Electrical resistivity 129-134 µΩ-cm 

Melting temperature 1573 K 

Thermal properties 

Temperature 

(K) 

Thermal conductivity 

(W/m-K) 

Coefficient of thermal 

expansion (m/m-ºC) 

Specific heat 

(J/kg-K) 

300 9.8 1.31 x 10-5 410 

500 14.1 1.33 x 10-5 456 

700 17.5 1.44 x 10-5 511 

900 20.8 1.53 x 10-5 565 

1100 25.2 1.62 x 10-5 620 



 

 

 

33 

 

3.2.2 Powder materials 

Three different powders i.e., aluminum (Al), graphite and silicon (Si) which have 

significant variation in their thermo-physical characteristics as shown in Table 3.3 were 

used as additives in kerosene dielectric. The average particle size of all the three powders 

claimed by the manufacturer (Sigma-Aldrich), is ~15 µm. 

Table 3.3 Properties of powder materials 

Property (Units) Graphite Aluminum Silicon 

Electrical resistivity (µΩ-cm) 5-30 5 10000 

Thermal conductivity (W/m-K) 25-470 238 163 

Heat of fusion (kJ/mol) 117 10.79 50.21 

Specific heat (J/kg-K) 710 910 710 

Melting temperature (ºC) 3550 660 1414 

Density (g/cm2) 1.26 2.7 2.33 

Mohs hardness (HV) 1.5 3 6.5 

3.3 Process parameters 

Five process parameters i.e., powder concentration (Cp), peak current (Ip), pulse-on 

time (Ton), duty cycle (τ) and gap voltage (Vg) were selected for the present research work. 

Choice of parameters was influenced by the fact that these parameters have significant 

impact on various EDM and PMEDM characteristics as evident from Chapter 2. Lateral 

flushing with a pressure of 0.5 kg/cm2 and positive polarity (workpiece +ve) were used for 

all the experiments. Tool working time and lift time were set to be 0.7 s and 0.3 s 

respectively. Servo sensitivity (SEN) which controls the speed of quill was chosen as 7. 

Anti-arc sensitivity (ASEN) which does not allow sparking when IEG is not clean was set 

to be 5. Depth of machined hole of 1 mm was kept same for all the samples throughout. 

3.4 Design of experiments using RSM 

The experiments were designed according to central composite design (CCD) of 

response surface methodology (RSM). It is a collection of mathematical and statistical 

techniques that are useful for modelling and analysis of problems in which output or 

response is influenced by several variables and the goal is to find the correlation between 

the response and the variables [156]. RSM has effectively been applied to study and 

optimize the processes. It offers enormous information from a small number of 
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experiments. In addition, it is possible to detect the interaction effect of the independent 

parameters on the response. The model easily clarifies the effect for binary combination of 

the independent process parameters. Furthermore, the empirical model that relates the 

response to the independent variables is used to obtain information. It has been widely used 

in analyzing various processes, designing the experiment, building models, evaluating the 

effects of several factors and searching for optimum conditions to give desirable responses 

and reduce the number of experiments [157–159]. The experimental values are analyzed, 

and the mathematical model is then developed that illustrates the relationship between the 

process variable and response. A second-order model generated using a typical RSM design 

is given in Eq. (3.1). 

2

0

1 1 , 1,

m m m

i i ii i ij i j

i i i j i j

y x x x x e   
   

        
(3.1) 

where y is the corresponding response, Xi is the input variables and Xi
2 and XiXj are the 

squares and interaction terms, respectively. The unknown regression coefficients are β0, βi, 

βii and βij, and the error in the model is depicted as ‘e’. 

Table 3.4 Process parameters and their levels 

Parameter Symbol Level Units 

-2 -1 0 1 2 

Powder concentration Cp 0 2 4 6 8 g/l 

Peak current Ip 2 4 6 8 10 A 

Pulse time Ton 100 200 300 400 500 µs 

Duty cycle τ 55 65 75 85 95 % 

Gap voltage Vg 40 50 60 70 80 V 

 

The process parameters and their levels are provided in Table 3.4. The ranges of the 

parameters were so chosen that the process falls under semi-finishing operation. The CCD 

is capable of fitting second order polynomial and is preferable if curvature is assumed to be 

present in the system. In the current research work, half factorial 2K design (K factors each 

at two levels) was considered to reduce the experimental runs. Half factorial 32 run (25) 

unblocked design having 16 factorial points, 10 (2K, where K=5) axial points and 6 center 

points is shown in Table 3.5. Design Expert 7.0 software was used to determine the 

experimental design. According to the experimental design, 32 number of runs for each 

powder was obtained. Therefore, one complete set of experiment involves 96 number of 

runs. Each of the runs was repeated twice so that a total of 96 x 2 number of experimental 

runs were performed in the entire study. 
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Table 3.5 Plan of experiments 

Standard 

order 

Run 

number 

Point type Cp Ip Ton τ Vg 

17 1 -1 -2 0 0 0 0 

13 2 1 -1 -1 1 1 1 

11 3 1 -1 1 -1 1 1 

15 4 1 -1 1 1 1 -1 

9 5 1 -1 -1 -1 1 -1 

7 6 1 -1 1 1 -1 1 

5 7 1 -1 -1 1 -1 -1 

3 8 1 -1 1 -1 -1 -1 

1 9 1 -1 -1 -1 -1 1 

29 10 0 0 0 0 0 0 

21 11 -1 0 0 -2 0 0 

20 12 -1 0 2 0 0 0 

25 13 -1 0 0 0 0 -2 

26 14 -1 0 0 0 0 2 

28 15 0 0 0 0 0 0 

32 16 0 0 0 0 0 0 

23 17 -1 0 0 0 -2 0 

24 18 -1 0 0 0 2 0 

30 19 0 0 0 0 0 0 

31 20 0 0 0 0 0 0 

27 21 0 0 0 0 0 0 

22 22 -1 0 0 2 0 0 

19 23 -1 0 -2 0 0 0 

8 24 1 1 1 1 -1 -1 

16 25 1 1 1 1 1 1 

2 26 1 1 -1 -1 -1 -1 

10 27 1 1 -1 -1 1 1 

12 28 1 1 1 -1 1 -1 

4 29 1 1 1 -1 -1 1 

6 30 1 1 -1 1 -1 1 

14 31 1 1 -1 1 1 -1 

18 32 -1 2 0 0 0 0 
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3.5 Performance measures 

Effect of powder materials and EDM parameters was investigated in terms of a large 

number of performance measures in the current research work. Productivity of EDM or 

PMEDM process is typically characterized by MRR while dimensional accuracy is 

expressed in terms of ROC. The present investigation attempts major emphasis on various 

aspects of surface integrity in terms of surface roughness, surface morphology, surface 

crack density, surface microhardness along with depth profile, microstructure and phases, 

grain size, lattice strain, white layer thickness and residual stress. Methodology of assessing 

these response characteristics is discussed below. 

3.5.1 Material removal rate (MRR) 

Weight of the workpiece before and after the experiment was measured using an 

electronic balance (Make: Shinko Denshi, Japan; Model: DJ 300S) shown in Fig. 3.3. Time 

duration of each experimental run was recorded using a digital stop watch. Eq. (3.2) was 

used to calculate the MRR. 

 

 

Fig. 3.3 Electronic weighing machine 
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where bw  and aw  are weights of the specimen before and after the machining,   is the 

density of workpiece material and ‘ machT ’ is machining time. 

3.5.2 Surface roughness (SR) 

Surface roughness expressed in terms of center line average (Ra) is defined as the 

average departure of roughness profile from the center line. The expression of Ra is given 

in Eq. (3.3). 

1
| ( ) |aR y x dx

l
   

(3.3) 

where l is the sampling length, y is height of peaks and valleys of roughness profile and x 

is the profile direction. 

 

 

Fig. 3.4 Stylus type profilometer 

Measurement of center line average i.e., Ra was carried out using a portable stylus type 

profilometer (Make: Taylor Hobson, Model: Surtronic 3+) shown in Fig. 3.4. The cut off 

and sampling lengths were set to be of 0.8 and 4 mm respectively. Measurements were 

carried out at three randomly chosen locations on each of the machined specimens. The 

average of three values was taken as the surface roughness of a particular specimen. 

3.5.3 Radial overcut (ROC) 

Cavities produced during EDM are always larger than the electrode size. The radial 

difference between size of electrode and cavity is called radial overcut (ROC). It becomes 

important when components with close tolerances are required to be produced. In the 

current investigation, a tool makers microscope (Make: Carl Zeiss, Germany) with a least 

count of 1 μm shown in Fig. 3.5 was used to measure the diameter of the machined holes. 

Radial overcut was calculated using Eq. (3.4). 
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(3.4) 

where hD  is the machined hole diameter and tD  is the tool diameter. 

 

Fig. 3.5 Tool makers microscope 

3.5.4 Microhardness 

 

Fig. 3.6 Vickers microhardness tester 
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Microhardness of the machined surfaces was measured at three different places using 

a Vickers microhardness tester (Make: Leco, USA; Model: LV 700) shown in Fig. 3.6. 

During measurement, a load of 50 g was applied with a dwell time of 15 s. The mean value 

was determined by taking the average of three measured values. In order to determine 

hardness depth profile machined surfaces of all the specimens were sectioned along the 

transverse length using a wire EDM setup (Make: Electronica, India; Model: Ecocut, 

ELPULS 15), followed by polishing using water proof polishing paper (SiC, grades: 220, 

400, 600 and 1000). Subsequently, microhardness was measured along the cross-section of 

the cut specimens by maintaining a constant distance of 20 μm between each indentation 

starting from the edge of machined surface. 

3.5.5 Surface morphology and crack density (SCD) 

Surface morphology and density of surface cracks were evaluated using scanning 

electron microscopy (SEM) images of different magnification using a system (Make: 

JEOL, Japan; Model: JSM-6480) shown in Fig. 3.7. The measurement of SCD was carried 

out by measuring the length of cracks on five randomly selected areas on each specimen 

with a constant magnification of 250x. The average crack length on each specimen was 

divided by the area of SEM micrographs to obtain the SCD. 

 

 

Fig. 3.7 Photograph of SEM setup 
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3.5.6 Altered layer thickness (ALT) 

Formation of altered layer (recast layer + heat affected zone) is a regular occurrence 

in EDM or PMEDM process. In order to measure such layer thickness, the cut specimens 

were first mounted and polished successively using water proof SiC papers with decreasing 

of grit sizes of 220, 400, 600 and 1000. Subsequently, the surface was polished with 

diamond paste (Make: HIFIN, India; Grade: 01-0S-47) and HIFIN Fluid of “OS” type using 

a polishing cloth (make: Selvyt, UK). Further, the specimens were etched using Keller’s 

reagent (95 ml H2O, 2.5 ml HNO3, 1.5 ml HCl, 1 ml HF) for around 30 s. This was necessary 

in order to distinguish white layer from the parent material. The micrographs of white layer 

were then recorded at a magnification of 500x using SEM. The area of white layer was 

measured by PDF viewer software on each SEM micrograph and the mean of white layer 

thickness was obtained by dividing the measured area by the length of the micrograph. 

3.5.7 Phases, grain size and lattice strain 

 

Fig. 3.8 X-ray diffractometer 

These characteristics of work material before and after machining were evaluated 

using X-ray diffraction (XRD) technique. XRD works on the principle of Bragg’s 

diffraction law and its measurement was carried out on a multipurpose X-ray diffraction 

system (Make: Rigaku, Japan; Model: Ultima IV) shown in Fig. 3.8. In addition to 

identification of various phases, shifting and broadening of peaks were also analyzed. Peak 
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broadening is typically quantified by full width half maxima (FWHM). All such analyses 

were performed using X’pert High score software. 

Furthermore, grain size of as-received powders which are presumably stress free was 

calculated using Scherrer’s equation. Since PMEDM would cause lattice deformation and 

variation in grain size, Scherrer’s equation could not be used for measurement of grain size 

and lattice strain simultaneously. Therefore, Williamson-Hall plot (linear) with the ability 

to effectively separate the influence of both the aspects [160] has been utilized to determine 

grain size and lattice strain of work material before and after machining under different 

conditions. The Williamson-Hall formula is given in Eq. (3.5). 

cos 4 sin 1e

K K L

  

 
   

(3.5) 

where  = Integral breadth of peak,  = Braggs angle,  = wavelength of X-ray 

radiation=0.15418 nm, L = average crystallite size measured in a direction perpendicular 

to the direction of specimen, K = a constant, can be taken as 0.9, e = strain induced. A plot 

of 
cos

K

 


 against 

4 sine

K




gives a linear relation with a slope of 2e and intercept of 

K

L


. 

The integral breadth of a diffraction peak was calculated after appropriate background 

correction followed by fitting the peak using Pseudo–Voigt function. Brag-Brentano mode 

of XRD was adopted for this purpose. 

3.5.8 Residual stress 

The residual stress on the machined surfaces was determined using sin2 ψ technique 

while performing the measurement in a separate high resolution XRD system (HRXRD, 

Make: PANalytical). First, the major phase i.e., peak with highest intensity was identified 

from trial measurements which revealed (1 1 1) peak observed at 2θ = 42.75° using Cu (λ 

= 1.5418 A°) radiation. The lattice spacing measurement was performed in 7ψ tilts. The 

Lorentz polarization, Kα-2 splitting and background corrections were performed for the 

measured intensities. Peaks were analyzed using the Gaussian curve fit. 

3.5.9 Crater diameter 

Since mixing of powder with dielectric has prominent influence on crater dimension, 

the same was measured using the microscopic images captured on an optical microscope 

(Make: Carl Zeiss, Germany) shown in Fig. 3.9. Diameter of three craters on each specimen 

was measured using PDF viewer software and the average value was considered. 
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Fig. 3.9 Optical microscope 
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Chapter 4  

Results and discussion 

4.1 Numerical modeling of temperature distribution, 

material removal rate and thermal residual stress 

The blending of powders in dielectric fluid during EDM makes the discharge 

procedure more complicated and random with a sequence of discharges distributed all over 

the surface. For simplifying the analysis, a few reasonable presumptions without altering 

with the basic PMEDM procedure are considered. 

4.1.1 Assumptions 

1. The modelling and its study indicate results for a single spark. 

2. Thermal characteristics of the workpiece material are functions of temperatures. 

The change in the shape of workpiece due to thermal heating is negligible. 

3. Density and specific heat of the workpiece material are independent of temperature. 

4. Transient thermal analysis and Gaussian heat flux on workpiece are chosen. 

5. Fraction of heat that goes into the workpiece (Kw) continues to be same under all 

parameter settings. 

6. Material flushing efficiency is considered to be 20%. 

7. Transfer of heat energy to the electrode is by conduction. Convection is used on the 

top area of the workpiece which is in contact with powder-mixed dielectric. 

8. Workpiece material is homogeneous and isotropic and is free from any stress before 

machining. 

9. The influence of impulse force is not considered during modelling. 

4.1.2 Heat flux and boundary conditions 

The governing differential heat conduction equation for an axisymmetric solid is given 

by Eq. (4.1) 

1T T T
C Kr K

t r r r z z


         
             

 
(4.1) 
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where,  is the density, C is the specific heat and K is the thermal conductivity of the work 

material, T is the temperature, t  is the time and r and z are coordinate axes shown in Fig. 

4.1. 

During pulse-on time, flow of electrons takes place from cathode to anode creating a 

plasma channel between them. Earlier, researchers have assumed such plasma channel as 

uniform heat flux. However, researchers who had used Gaussian heat distribution obtained 

more accurate and realistic results. Fig. 4.1 shows the distribution of heat flux to the 

workpiece. Guassian heat distribution is given by Eq. (4.2). 
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(4.2) 

where, gV  and pI  are breakdown voltage and peak current during the process respectively, 

wR  is the fraction of heat transferred to the workpiece. 

 

Fig. 4.1 Heat flux distribution in PMEDM 

Various thermal boundary conditions applied during the PMEDM process are shown 

in Fig. 4.1. Heat is transferred as per Gaussian heat flux distribution on the top surface up 

to spark radius (R). Convective heat transfer takes place for the remaining portion. All other 

sides (BC, CD and AD) are considered to be insulated as there is no heat transfer along 
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these directions. These sides are sufficiently away from the spark region. The boundary 

conditions are mentioned below. 

1. For AB boundary 

( )W

T
K Q r

z





 where r < R 

0( )
T

K h T T
z


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
 where R <= r 

2. For boundaries BC, CD and AD 

0
T

n





 

where, h is the heat transfer coefficient between the workpiece surface and powder mixed 

dielectric, QW(r) is the heat flux owing to the spark, T0 is the initial temperature which is 

equal to room temperature and T is the temperature. 

4.1.3 Spark radius 

In PMEDM process spark radius or its growth is a complex phenomenon and it 

involves many thermo-physical processes. Calculation of the spark radius by experimental 

or mathematical means is also a difficult issue. DiBitonto et al. [161] formulated a 

mathematical relation for spark radius. Erden [162], further modified the equation for spark 

radius in terms of power and discharge time. The equation for spark radius is given in Eq. 

(4.3). 

( ) m n

onR t ZP T  
(4.3) 

where, R(t) is the spark radius at a particular instant, P and Ton are power and pulse-on time 

respectively, Z, m and n are empirical constants. Kansal et al. [82] used a spark radius of 

120 µm which is 30-50% more than that of Shankar et al. [163]. In the current study spark 

radius is assumed to be 100 µm which is in between above two values. 

4.1.4 Material flushing efficiency 

In most of the papers, researchers considered material flushing efficiency as 100 % 

[94,151], meaning entire melted material is removed from crater during flushing. But the 

experimental results show that only 10-30% of molten material is actually removed from 

the crater [161,164]. In the current study material flushing efficiency is assumed as 20 %. 

Thus, the error between predicted and experimental results can be reduced. 
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4.1.5 Methodology 

PMEDM is a complicated process which involves many physical phenomena as well 

as interaction among them. FEM is an approximate method for real engineering problems. 

FEM makes it possible to simulate these problems related to PMEDM. To develop a model 

based on FEM, a powerful software is required which can consider all these aspects. 

ANSYS is such a software which uses FEM for the analysis of various processes. In the 

current study, numerical model and the analysis of the PMEDM process is carried out using 

FEM software ANSYS 15.0 utilizing transient thermal analysis (FLUENT) module. 

Geometry of the workpiece was prepared with a dimension of 1×1×0.25 mm for Inconel 

625 the properties of which are listed in the Table 3.2. Then the model was meshed using 

3D tetrahedral elements of 2.5 µm size. Fig. 4.2 shows the meshing of entire workpiece 

region of the developed model. 

 

Fig. 4.2 Meshed workpiece material 

Finite element simulation with ANSYS was performed for different process parameter 

settings to study the temperature profile after PMEDM. From the temperature profiles, the 

amount of volume removed during a single crater was calculated. The cooling rate and 

stresses induced due to the heating of the workpiece by spark was also evaluated for some 

select cases. The process parameters varied during this simulation work are powder material 

(graphite, aluminum and silicon), peak current, pulse-on time, duty cycle and gap voltage. 

Other parameters such as Rw and spark radius are kept constant. 
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Using the variables from Table 3.2 and Eq. (4.2), the heat flux values are calculated 

for different process settings. These calculated heat fluxes are used as thermal loading in 

ANSYS (FLUENT) environment for transient thermal analysis. 

4.1.6 Temperature distribution 

 

Fig. 4.3 Temperature distribution along the radial direction 

A representative image of temperature distribution along the radial direction is shown 

in Fig. 4.3. It can be observed from Fig. 4.3 that the maximum temperature is generated at 

the center of the crater and with increase in radial distance the temperature drops. A 

Gaussian distribution was observed for temperature along the radial direction of the crater 

for all the levels of process parameters. 

Temperature distribution in the depth direction at center of crater is shown in Fig. 4.4 

as a sample representation. It can be observed that within a very short depth temperature 

drops very quickly to even below the melting point of the workpiece material. Similar 

observations were made for other parameter settings as well. For higher energy settings, 

this phenomenon takes place at a slightly more depth. Thus, the temperature in the radial 

direction follows a Gaussian distribution wherein it is maintained at a very high value in 

radial direction and substantially lower in the crater depth direction. This leads to a crater 

formation with larger diameter but small depth, thus, forming shallow craters. 
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Fig. 4.4 Depth profile of the temperature distribution 

Simulated temperature distribution was also identified in ranges to identify the 

different regions and provide an insight of the changes in the metal properties. The 

remaining workpiece material after removal of the crater volume assumes the shape of the 

region above melting temperature. It can be observed that the volume of material removed 

by the crater is broadly a part of a sphere and its volume can be calculated accordingly. As 

discussed earlier, the craters formed are of shallow depth. Overlapping of many such craters 

during actual material removal in PMEDM, may lead to a smoother finish of the machined 

surface. This may be one of the possible mechanims for achievement of superior surface 

finish during PMEDM process as observed by past experimental investigations discussed 

in chapter 2. 

4.1.7 Determination of MRR 

Prediction of MRR depends upon the crater morphology. The morphology of the crater 

is assumed to be hemispherical dome shape as observed in Fig. 4.5. The crater volume can 

be calculated by using Eq. (4.4). 

2 21
(3 )

6
vC d r d   

(4.4) 

where r is the radius of spherical dome and d is the depth of the crater. 
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Total material removal in the entire machining time depends on number of pulses 

(NOP). It is calculated by dividing the total machining time by pulse duration as shown in 

Eq. (4.5). 

 

Fig. 4.5 Assumed crater shape 

 

Fig. 4.6 Predicted MRR values for different experimental conditions 
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(4.5) 

where Tmach is the machining time, Ton is pulse-on time and Toff is pulse-off time. 

The MRR for the given machining duration can be determined using Eq. (4.6). 
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MRR

T
  

(4.6) 

The predicted MRR values during PMEDM of Inconel 625 using three different 

dielectrics are presented in Fig. 4.6. The MRR values obtained using different powder-

mixed dielectrics are very close to each other. Graphite powder-mixed dielectric produced 

slightly higher MRR compared to other two powders. MRR increases with peak current 

significantly due to the rise in thermal energy. MRR is all most constant upto a pulse-on 

time of 200 μs. Further increase in pulse-on time has diminished MRR due to the reduction 

in NOP as shown in Eq. (4.5). No significant variation in MRR is realized with respect to 

duty cycle and gap voltage. Careful observation would indicate that MRR declines slightly 

at too high duty cycle (95 %). 

4.1.8 Determination of thermal residual stress 

 

Fig. 4.7 Predicted thermal residual stress for different experimental conditions 
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The temperature distribution profiles obtained using FLUENT were transferred to 

STATIC STRUCTURAL module. Analyses were completed using the boundary conditions 

mentioned earlier. Fig. 4.7 shows the variation of average equivalent von-Mises stress 

generated on the workpiece due to heat energy associated with spark with respect to the 

change in process parameters. 

It is observed that increase in process parameters such as peak current, pulse-on time, 

duty cycle and gap voltage led to the increase in thermal residual stress due to the raise in 

discharge heat energy. Among, the three powders, silicon has produced least thermal 

residual stress followed by aluminum and graphite due to its less thermal conductivity 

compared to other two. 

4.2 Influence of powder materials and EDM parameters on 

material removal rate and radial overcut 

4.2.1 Characterization of powder materials 

As-received aluminum, graphite and silicon powders were characterized using various 

non-destructive testing methods such as scanning electron microscopy (SEM), particle size 

analysis, and X-ray diffraction to determine the actual size, distribution, and the presence 

of impurities. The results thus obtained were used to study the influence of powder size and 

impurities on various PMEDM characteristics of Inconel 625. 

SEM micrographs of different powder additives are shown in Fig. 4.8. Although 

aluminum particles evidently have smoother surface compared to the other two, 

agglomeration of individual particles can also be noticed. Average size of the agglomerated 

particles is about ~15 µm, whereas the individual size might be less (3-6 µm), as observed 

from Fig. 4.8. On the other hand, graphite powder shows irregular shape with a mean size 

of ~20 µm. Silicon particles have sharp edges with irregular shape and correspond to an 

average size of ~10 µm. 

 

Fig. 4.8 Different powder additives (a) aluminum (b) graphite and (c) silicon used in PMEDM 
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The size distribution for different powders measured by a particle analyzer is shown 

in Fig. 4.9. Average size of graphite, silicon and aluminum particles comprising of 

maximum volume of sample size is ~12, ~16 and ~26 µm respectively. Evidently, graphite 

exhibits highest volume % of small particles followed by silicon and aluminum. On the 

other hand, aluminum indicated a small range of particle size distribution followed by 

silicon and graphite. One of the reasons for larger particle size measured for aluminum is 

the presence of extensive twinning and agglomeration in the samples [165]. In this case, 

particle size analyzer measured the agglomerations instead of particle size. 

 

Fig. 4.9 Particle size distribution of different powders 

X-ray diffraction (XRD) spectra of as-received powders are demonstrated in Fig. 4.10. 

Comparison with standard XRD patterns enabled an unambiguous identification of the 

phases present in all three powders. Presence of oxides i.e, Al2O3 and SiO2 corresponding 

to (2 0 0), (2 2 0) phases were observed for aluminum and silicon powders respectively. No 

graphite oxide (GO) [166] phase could be found for graphite powder. From the XRD 

spectra, the average crystallite sizes of the as-received powders were calculated by using 

Scherrer’s formula given in Eq. (4.2) 



 

 

 

53 

 

cos

K
L



 
  

(4.2) 

where L is the mean crystallite size, K is the shape factor taken as 0.9, λ is the wavelength 

of the incident beam (1.54 Aº), β is full width half maxima (FWHM) and θ is the Bragg 

angle. The average crystallite size of aluminum, graphite and silicon was found to be 20, 

39 and 22 nm respectively. Apparent discrepancy in powder size might be explained by the 

fact that formation of particle takes place by combination of several crystallites. It may be 

noted that during PMEDM process it is the particle which actually contributes to alteration 

in electro-physical phenomena at the discharge gap. Therefore the size of the particle is of 

more relevance in the context of PMEDM process. 

 

Fig. 4.10 XRD spectra of as-received powders 

4.2.2 Material removal rate 

For all the three powders, enhancement of MRR was observed when powder particles 

were uniformly dispersed in the dielectric. Such improvement in MRR can be attributed to 

the reduction of breakdown strength of the dielectric when conductive particles are added 
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to it. Gap between the two electrodes increases significantly in PMEDM compared to 

conventional EDM. 

Table 4.1 MRR for different powders 

Run Cp 

(g/l) 

Ip 

(A) 

Ton 

(μs) 

τ 

(%) 

Vg 

(V) 

MRR (mm3/min) 

Graphite Aluminum Silicon 

1 0 6 300 75 60 5.529 5.529 5.529 

2 2 4 400 85 70 0.644 0.686 0.625 

3 2 8 200 85 70 12.745 13.568 12.374 

4 2 8 400 85 50 10.473 11.149 10.168 

5 2 4 200 85 50 3.735 3.976 3.626 

6 2 8 400 65 70 5.197 5.533 5.046 

7 2 4 400 65 50 0.52 0.554 0.505 

8 2 8 200 65 50 12.759 13.582 12.387 

9 2 4 200 65 70 2.715 3.015 2.478 

10 4 6 300 75 60 5.638 5.638 5.299 

11 4 6 100 75 60 8.01 8.638 7.529 

12 4 10 300 75 60 21.304 23.104 20.025 

13 4 6 300 75 40 7.219 7.723 6.786 

14 4 6 300 75 80 3.934 4.215 3.698 

15 4 6 300 75 60 5.683 5.683 5.342 

16 4 6 300 75 60 6.168 6.168 5.798 

17 4 6 300 55 60 4.744 5.103 4.459 

18 4 6 300 95 60 7.19 7.683 6.758 

19 4 6 300 75 60 6.542 6.542 6.149 

20 4 6 300 75 60 7.023 7.023 6.602 

21 4 6 300 75 60 6.814 6.814 6.405 

22 4 6 500 75 60 1.048 1.619 0.985 

23 4 2 300 75 60 0.293 0.36 0.275 

24 6 8 400 65 50 11.049 11.878 10.089 

25 6 8 400 85 70 11.98 12.874 10.938 

26 6 4 200 65 50 3.691 3.968 3.37 

27 6 4 200 85 70 3.163 3.706 3.148 

28 6 8 200 85 50 19.05 20.479 17.393 

29 6 8 200 65 70 12.301 11.664 11.183 

30 6 4 400 65 70 0.484 0.52 0.442 

31 6 4 400 85 50 0.768 0.825 0.701 

32 8 6 300 75 60 10.254 6.505 8.726 
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The increase in gap causes enlarged discharge passages. At the same time, the powder 

particles try to bridge the discharge gap between both the electrodes. This facilitates the 

dispersion of discharge into several increments resulting in increase in sparking frequency 

and hence, MRR increases [108]. The measured MRR values for different powder-mixed 

dielectrics are provided in Table 4.1. 

 

Fig. 4.11 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for MRR using 

graphite powder 

Fig. 4.11, Fig. 4.12 and Fig. 4.13 show the effect of different powder materials and 

process parameters on MRR. Increase in peak current lead to the rise in MRR due to an 

increase in discharge energy. For low pulse-on time, the heating time of workpiece was so 

short that only a small part of material was melted, indicating a reduction in MRR. When 

pulse duration is prolonged, sufficient discharge energy in combination with better peak 

current density can be obtained. After the melted material is completely removed, a better 
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MRR is acquired, and highly efficient impulsive force is achieved. If pulse duration is too 

long, the plasma channel will be so much expanded that the density of electrical discharge 

energy may be reduced. Consequently, MRR declined. 

With increase in duty cycle, spark energy per pulse increases leading to higher MRR. 

However, at higher duty cycle, accumulated debris and powder particles result in short 

circuiting leading to arcing and unstable discharge conditions. Thus, MRR decreased, due 

to unfavorable flushing conditions. 

 

Fig. 4.12 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for MRR using 

aluminum powder 

Keeping all other parameters constant, increased gap voltage causes a hike in energy 

per spark leading to higher MRR. However, at larger gap voltage, space between electrode 

and workpiece becomes larger. Hence, time required to fill the inter electrode gap with 
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neutral particles and ions is raised due the increase in gap voltage. Consequently a slight 

reduction in MRR was realized. 

 

Fig. 4.13 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for MRR using 

silicon powder 

Overall, aluminum powder produced the highest MRR followed by graphite and 

silicon up to 6 g/l concentration. This is due to the lower electrical resistivity of Al (2.89 

µΩ-cm) powder compared to graphite (103 µΩ-cm) and Si (2325 µΩ-cm). 

Lower electrical resistivity of Al allows the sparking to take place from a larger 

distance compared to other particles leading to a rise in sparking frequency. In addition, 

debris is easily and quickly flushed away due to the increased spark gap. Hence, highest 

MRR was achieved for aluminum powder in the low concentration range (up to 6 g/l). At 

higher concentrations, aluminum agglomerates (as seen in Fig. 4.8 and Fig. 4.9) and the 

large particles adhere to workpiece leading to short circuiting and arcing. On the other hand, 

low density of graphite (1.26 g/cc) compared to Al (2.70 g/cc) and Si (2.33 g/cc) allows it 
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to mix easily with the dielectric resulting in higher MRR at 8 g/l concentration. Si powder 

has the least electrical and thermal conductivities among the three powders. The presence 

of small amount of SiO2 (Fig. 4.10) further reduces the electrical and thermal conductivities 

of Si powder. Hence, it had the least influence on MRR. 

Analysis of variance (ANOVA) was conducted to test the significance of the model 

and lack of fit. If the probability (P) value is less than 0.05, it is statistically significant at 

95 % confidence interval, but if it exceeds 0.1, it is not significant. Significant models and 

insignificant lack of fit are desirable. Quadratic model was selected for MRR to consider 

curvature effect. Table 4.2 illustrates the abridged ANOVA for MRR using three different 

powder-mixed dielectrics. P < 0.0001 for all three cases indicates that the models are 

significant. The insignificant lack of fit values of 0.8187, 0.3541 and 0.8355 for graphite, 

aluminum and silicon powders imply that the models fit well with the experimental data. 

The correlation coefficients for MRR using graphite, aluminum and silicon powder-mixed 

dielectrics are 99.53 %, 99.07 % and 99.25 % respectively. In addition, there are minor 

differences between Adj R2 and Pred R2. After deleting insignificant process parameters, 

RSM-based mathematical models for MRR using three different dielectrics have been 

obtained and shown in equations (4.3), (4.4) and (4.5). 

Table 4.2 Abridged ANOVA for MRR 

Source Graphite Aluminum Silicon 

Model P < 0.0001 P < 0.0001 P < 0.0001 

Lack of fit P = 0.8187 P = 0.3541 P = 0.8355 

Residual 0.47 0.93 0.47 

R2 0.9953 0.9907 0.9925 

Adj R2 0.9915 0.9849 0.9904 

Pred R2 0.9846 0.9681 0.9853 

 

2 2 2 2

( )   4.69 1  .461* 1  .942*  0.00934* - 0.1477*

 0.268*  0.094*  0.2757*  0.000046*   0.002029*

 0.1987* *  0.002271*  *  0.03763* *  0.02937* *

 0.000238*  *

GraphiteMRR A B C D

E A B C E

A B B C B D B E

C E

   

    

   



 

(4.3) 

 

2 2

( ) 16.85276 0.82184* 2.78309* 0.011298* 0.1773*

0.036167* 0.19186* * 0.000181* * 0.044628* *

0.037653* * 0.000329* * 0.34633* 0.000027*  

AlMRR A B C D

E A B B C B D

B E C E B C

    

   

   

 

(4.4) 
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2 2 2 2

( )  2.86 1  .103* 1  .566 *  0.0094*  0.1284*  0.249*

 0.0729 *  0.2618*  0.000043*  0.001798*  0.1438* *

 0.002108 * *  0.03395* *  0.02808* *  0.000199* *

SiMRR A B C D E

A B C E A B

B C B D B E C E

     

    

   

 

(4.5) 

 

From Table 4.3, Table 4.4 and Table 4.5 it is evident that the difference between 

experimental MRR and predicated MRR using regression modelling is minimum compared 

to those obtained using numerical modelling. This shows that fitted model equations give 

better results compared to numerical models under the given experimental conditions. 

Higher MRR was predicted using numerical modelling as there may be difference between 

assumed percentage of heat transfer to workpiece (20 %) and actual experimental heat 

transfer. And the flushing efficiency which was assumed to be 20 %, may even be less in 

actual experimental conditions. 

Table 4.3 Comparison of experimental and predicted MRR for graphite mixed-dielectric 

Experimental condition Experime

ntal MRR 

Predicted MRR 

Numerical 

modelling 

Regression 

modelling 

MRR % 

error 

MRR % 

error 

Ip=2 A, Ton=300 μs, τ=75 %, Vg=60 V 0.293 0.32 9.22 0.308 5.12 

Ip=4 A, Ton=300 μs, τ=75 %, Vg=60 V 1.965 2.28 16.03 1.921 2.24 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=60 V 6.128 6.74 9.99 6.091 0.6 

Ip=8 A, Ton=300 μs, τ=75 %, Vg=60 V 11.944 13.3 11.35 12.075 1.1 

Ip=10 A, Ton=300 μs, τ=75 %, Vg=60 V 21.304 21.7 1.86 20.867 2.05 

Ip=6 A, Ton=100 μs, τ=75 %, Vg=60 V 8.01 8.375 4.56 8.023 0.16 

Ip=6 A, Ton=200 μs, τ=75 %, Vg=60 V 8.769 8.96 2.18 8.788 0.22 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=60 V 7.023 8.04 14.48 6.987 0.51 

Ip=6 A, Ton=400 μs, τ=75 %, Vg=60 V 5.14 5.8 12.84 5.208 1.32 

Ip=6 A, Ton=500 μs, τ=75 %, Vg=60 V 1.048 1.14 8.78 0.962 8.21 

Ip=6 A, Ton=300 μs, τ=55 %, Vg=60 V 4.744 4.97 4.76 4.32 8.94 

Ip=6 A, Ton=300 μs, τ=65 %, Vg=60 V 6.09 6.29 3.28 6.217 2.09 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=60 V 6.819 7.27 6.61 6.782 0.54 

Ip=6 A, Ton=300 μs, τ=85 %, Vg=60 V 7.819 8.45 8.07 7.779 0.51 

Ip=6 A, Ton=300 μs, τ=95 %, Vg=60 V 7.19 7.89 9.74 7.442 3.5 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=40 V 7.219 6.96 3.59 7.106 1.57 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=50 V 7.756 7.75 0.08 7.806 0.64 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=60 V 6.874 7.56 9.98 6.837 0.54 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=70 V 6.153 6.8 10.52 6.19 0.6 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=80 V 3.934 4.5 14.39 3.875 1.5 
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Table 4.4 Comparison of experimental and predicted MRR for aluminum mixed-dielectric 

Experimental condition Experi

mental 

MRR 

Predicted MRR 

Numerical 

modelling 

Regression 

modelling 

MRR % 

error 

MRR % 

error 

Ip=2 A, Ton=300 μs, τ=75 %, Vg=60 V 0.371 0.33 11.05 0.40 8.09 

Ip=4 A, Ton=300 μs, τ=75 %, Vg=60 V 2.092 2.27 8.51 1.95 6.69 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=60 V 5.856 6.3 7.58 5.87 0.26 

Ip=8 A, Ton=300 μs, τ=75 %, Vg=60 V 12.338 11.56 6.31 11.83 4.07 

Ip=10 A, Ton=300 μs, τ=75 %, Vg=60 V 21.943 18.3 16.6 21.12 3.81 

Ip=6 A, Ton=100 μs, τ=75 %, Vg=60 V 7.905 8.28 4.74 8.12 2.77 

Ip=6 A, Ton=200 μs, τ=75 %, Vg=60 V 9.027 8.7 3.62 8.48 6.07 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=60 V 6.808 7.74 13.69 6.76 0.6 

Ip=6 A, Ton=400 μs, τ=75 %, Vg=60 V 5.403 4.97 8.01 5.11 5.44 

Ip=6 A, Ton=500 μs, τ=75 %, Vg=60 V 1.079 1.06 1.76 1.08 0.46 

Ip=6 A, Ton=300 μs, τ=55 %, Vg=60 V 4.886 4.85 0.74 4.44 9.17 

Ip=6 A, Ton=300 μs, τ=65 %, Vg=60 V 6.192 6.24 0.78 5.92 4.44 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=60 V 6.572 7.04 7.12 6.56 0.17 

Ip=6 A, Ton=300 μs, τ=85 %, Vg=60 V 8.328 8.26 0.82 7.67 7.89 

Ip=6 A, Ton=300 μs, τ=95 %, Vg=60 V 7.405 7.57 2.23 7.94 7.31 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=40 V 7.117 6.54 8.11 7.61 6.93 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=50 V 8.131 7.56 7.02 7.70 5.31 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=60 V 6.652 6.2 6.79 6.62 0.53 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=70 V 6.299 6.6 4.78 5.89 6.49 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=80 V 4.052 4.12 1.68 3.99 1.46 

Table 4.5 Comparison of experimental and predicted MRR for silicon mixed-dielectric 

Experimental condition Experi

mental 

MRR 

Predicted MRR 

Numerical 

modelling 

Regression 

modelling 

MRR % 

error 

MRR % 

error 

Ip=2 A, Ton=300 μs, τ=75 %, Vg=60 V 0.27 0.24 11.11 0.28 5.09 

Ip=4 A, Ton=300 μs, τ=75 %, Vg=60 V 1.86 1.93 3.76 1.79 3.6 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=60 V 5.72 6.12 6.99 5.7 0.33 

Ip=8 A, Ton=300 μs, τ=75 %, Vg=60 V 11.19 10.5 6.17 11.31 1.01 
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Ip=10 A, Ton=300 μs, τ=75 %, Vg=60 V 20.02 17.97 10.24 19.62 2.02 

Ip=6 A, Ton=100 μs, τ=75 %, Vg=60 V 7.52 8.07 7.31 7.58 0.8 

Ip=6 A, Ton=200 μs, τ=75 %, Vg=60 V 8.22 8.55 4.01 8.24 0.19 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=60 V 6.50 6.06 6.77 6.54 0.62 

Ip=6 A, Ton=400 μs, τ=75 %, Vg=60 V 4.81 4.54 5.61 4.86 1.02 

Ip=6 A, Ton=500 μs, τ=75 %, Vg=60 V 0.98 1.02 4.08 0.93 5.18 

Ip=6 A, Ton=300 μs, τ=55 %, Vg=60 V 4.45 4.53 1.8 4.057 9.02 

Ip=6 A, Ton=300 μs, τ=65 %, Vg=60 V 5.68 5.81 2.29 5.79 1.95 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=60 V 6.36 6.77 6.45 6.34 0.31 

Ip=6 A, Ton=300 μs, τ=85 %, Vg=60 V 7.37 7.51 1.9 7.30 0.91 

Ip=6 A, Ton=300 μs, τ=95 %, Vg=60 V 6.75 7.55 11.85 7.06 4.6 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=40 V 6.78 6.35 6.34 6.71 1.09 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=50 V 7.28 7.08 2.75 7.31 0.41 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=60 V 6.42 6.06 5.61 6.4 0.31 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=70 V 5.78 6.41 10.9 5.79 0.26 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=80 V 3.69 3.75 1.63 3.68 0.46 

4.2.3 Radial overcut 

The addition of conductive powder particles to the dielectric drastically reduces its 

breakdown strength. The low break down strength allows the sparking to take place from a 

long distance [108]. Consequently, it results in increased radial overcut. The measured ROC 

values for different powder-mixed dielectrics are presented in Table 4.6. 

Fig. 4.14, Fig. 4.15 and Fig. 4.16 demonstrate the influence of different powder 

materials and process parameters on radial overcut (ROC). ROC increased along with peak 

current and pulse-on time. This is due to high discharge energy removing large amount of 

molten material. There is no significant variation of ROC with respect to duty cycle and 

gap voltage. However, ROC slightly increased with duty cycle due to the increase in 

discharge energy. ROC declined at large duty cycle (95 %) due to the piling up of debris 

caused by the insufficient flushing. The effect is more evident for graphite and silicon 

mixed-dielectrics. Aluminum has the minimal influence due to agglomeration of particles 

at high concentration. 

There was small increase in ROC with gap voltage due to increased discharge energy. 

However, at larger voltages, ROC appeared to decline slightly due to diminished MRR. 

Radial overcut significantly varies with properties of added particles. Silicon powder had 

least effect on ROC. The reasons are attributed to the thermo-physical characteristics of the 



 

 

 

62 

 

Si powder. Si has the highest electrical resistivity among the three powders. Therefore, 

among the three powder-suspended dielectrics, Si powder-suspended dielectric possesses 

the highest insulating strength. Al produced the largest ROC due to its high electrical 

conductivity. 

Table 4.6 ROC for different powders 

Run Cp 

(g/l) 

Ip 

(A) 

Ton 

(μs) 

τ 

(%) 

Vg 

(V) 

ROC (μm) 

Graphite Aluminum Silicon 

1 0 6 300 75 60 25.79 25.79 25.79 

2 2 4 400 85 70 34.38 61.88 20.63 

3 2 8 200 85 70 36.9 66.43 22.14 

4 2 8 400 85 50 45.13 92.82 30.94 

5 2 4 200 85 50 53.14 95.66 31.89 

6 2 8 400 65 70 78.3 140.95 46.98 

7 2 4 400 65 50 38.2 68.75 22.92 

8 2 8 200 65 50 44.29 79.71 26.57 

9 2 4 200 65 70 29.52 53.14 17.71 

10 4 6 300 75 60 51.71 112.07 31.02 

11 4 6 100 75 60 41.7 85.06 25.02 

12 4 10 300 75 60 56.71 113.08 34.03 

13 4 6 300 75 40 48.37 91.07 29.02 

14 4 6 300 75 80 48.5 91.03 29.1 

15 4 6 300 75 60 53.38 112.08 32.03 

16 4 6 300 75 60 52.77 111.99 31.66 

17 4 6 300 55 60 46.37 83.06 26.02 

18 4 6 300 95 60 52.99 99.67 30.22 

19 4 6 300 75 60 45.04 111.96 30.32 

20 4 6 300 75 60 51.71 112.07 31.02 

21 4 6 300 75 60 51.71 111.17 31.02 

22 4 6 500 75 60 53.38 106.08 32.03 

23 4 2 300 75 60 35.03 68.05 21.02 

24 6 8 400 65 50 58.67 116.17 35.2 

25 6 8 400 85 70 83.12 158 47.88 

26 6 4 200 65 50 52.91 104.75 31.74 

27 6 4 200 85 70 60.46 119.72 36.28 

28 6 8 200 85 50 43.46 86.05 26.08 

29 6 8 200 65 70 47.24 93.53 28.34 

30 6 4 400 65 70 26.89 53.24 16.13 

31 6 4 400 85 50 51.34 101.65 30.8 

32 8 6 300 75 60 54.04 89.28 32.43 
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Fig. 4.14 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for ROC using 

graphite powder 

ROC increased with increase in powder concentration. The presence of conductive or 

semi-conductive powders in the working gap can drastically lowers the breakdown strength 

of dielectric, eventually leading to a higher spark gap. 

Table 4.7 illustrates the ANOVA for ROC using three different powder-mixed 

dielectrics. P < 0.0001 for all three cases indicate that the models are significant. The 

insignificant lack of fit values of 0.4027, 0.1523 and 0.3290 for graphite, aluminum and 

silicon powders indicate that the models fit well with the experimental data. The correlation 

coefficients for ROC using graphite, aluminum and silicon powder-mixed dielectrics are 

95. 38 %, 91.42 % and 98.43 % respectively exhibit a good agreement between measured 

and predicted values. In addition, there are minor differences between Adj R2 and Pred R2. 



 

 

 

64 

 

After deleting insignificant process parameters, RSM-based mathematical models for ROC 

using three different dielectrics are expressed in equations (4.6), (4.7) and (4.8). 

 

Fig. 4.15 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for ROC using 

aluminum powder 

 

Table 4.7 Abridged ANOVA for ROC 

Source Graphite Aluminum Silicon 

Model P < 0.0001 P < 0.0001 P < 0.0001 

Lack of fit P = 0.4027  P = 0.1523  P = 0.3290 

Residual 11.37 9.29 1.49 

R2 0.9538 0.9142 0.9843 

Adj R2 0.9247 0.8670 0.9676 

Pred R2 0.8264 0.7767 0.9353 
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Fig. 4.16 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for ROC using 

silicon powder 

2
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4.3 Influence of powder materials and EDM parameters on 

surface integrity 

4.3.1 Crater distribution 

 

Fig. 4.17 Distribution of craters using (a) no powder (b) graphite (c) aluminum and (d) silicon 

powders for Cp= 4 g/l, Ip= 6 A, Ton= 300 μs, τ= 75 % and Vg= 60 V 

 

Fig. 4.18 Distribution of craters using (a) Graphite (b) Aluminum and (c) Silicon powders for Cp= 

8 g/l, Ip= 6 A, Ton= 300 μs, τ= 75 % and Vg= 60 V 

Microscopic images in Fig. 4.17 show the crater depth and size of the machined 

surface using different powder-mixed dielectrics. Deep and small craters were observed on 

the surface machined by conventional EDM (Fig. 4.17(a)). For all the three powder-mixed 

dielectrics, larger and shallower craters were observed compared to coneventional EDM 

(‘A’ and ‘B’ of Fig. 4.23). This is due to enhanced conductivity which causes spark 
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generation from a long distance. Enlarged IEG allows the expansion of plasma channel 

width. 

Simultaneously, external hydrostatic force acting on the plasma channel decreases. 

Thus, large and shallow cavities are formed on the workpiece since discharge energy 

spreads over a larger area. Among the three powders, graphite produced largest cavities due 

to the combination of its low density, high electrical and thermal conductivities. It is 

followded by aluminum and silicon. However, the difference in crater size among the threee 

powder-mixed dielectrics is very small. 

 

 

Fig. 4.19 Distribution of craters using (a) graphite (b) aluminum and (c) silicon powders for Cp= 4 

g/l, Ip= 2 A, Ton= 300 μs, τ= 75 % and Vg= 60 V 

Crater size and depth increased at high powder concentration (8 g/l) compared to low 

powder concentration (4 g/l) as shown in Fig. 4.18. This is due to the increased spark gap 

allowing the plasma channel expansion with powder addition. 

Fig. 4.19 shows the crater distribution at a peak current of 2 A. The craters are small, 

flat and distintinctly visible. It is due to the small amount of discharge energy associated 

with low peak current. 

 

 

Fig. 4.20 Distribution of craters using (a) graphite (c) aluminum and (c) silicon powders for Cp= 4 

g/l, Ip= 6 A, Ton= 500 μs, τ= 75 % and Vg= 60 V 
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Large, flat and distinct craters were observed at a pulse-on time of 500 μs as shown in 

Fig. 4.20. Larger craters are due to the expansion of plasma channel with pulse-on time. 

Reduction of plasma channel pressure also allows the molten material to flow over a large 

area. 

 

 

Fig. 4.21 Distribution of craters using (a) graphite (c) aluminum and (c) silicon powders for 

Cp= 4 g/l, Ip= 6 A, Ton= 300 μs, τ= 95 % and Vg= 60 V 

 

Fig. 4.22 Distribution of craters using (a) graphite (c) aluminum and (c) silicon powders for 

Cp= 4 g/l, Ip= 6 A, Ton= 300 μs, τ= 75 % and Vg= 80 V 

Crater size increased slightly with the increase in duty cycle as shown in Fig. 4.21. This 

may be due to the flow of molten metal at the crater edges as the time available for debris 

removal is very short. Craters also appeared to be deep due to bulging of molten metal at 

the crater edges because of insufficient cooling time. 

Crater diameter slightly increased with gap voltage due to enlargement of the IEG at 

higher voltages. Comparitively shallow craters were obtained as shown in Fig. 4.22 due to 

the decreased plasma channel pressure on the moltan metal. 

The avregae crater diameter for different powder materials, their concentartion and 

maching conditions is shown in Fig. 4.23. 
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Fig. 4.23 Variation of crater diameter with different machining conditions 

4.3.2 Surface topography 

EDM surface is characterized by overlapping craters, globules of debris, uneven fusing 

structure, pockmarks and cracks. These defects are depiected in Fig. 4.24 which includes 

various SEM images of the machined surfaces using both pure dielectric (without powder) 

and different powder-suspended dielectric at 4 g/l concentration. Among others, cracking 

is one of the significant surface defects since it causes deterioration in resistance to fatigue 

and corrosion of the material especially under tensile loading condition. There are two types 

of cracks in EDM. Circumferential cracks orginate from the edge of the crater, while 

penetrating cracks go deep in to the sub-surface layers and even base material. Ekmekci 

and Ersöz [167] demonstrated the mechanism of formation such cracks. 

It is evident from Fig. 4.24 that the surface obtained using conventional EDM seems 

to consist of more number of surface defects (surface cracks in particular) along with deep 

craters. PMEDM did not only minimize number of surface defects, but also left shallow 

craters. 
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Fig. 4.24 Surface morphology using (a, b) no powder (c, d) graphite (e, f) aluminum and (g, f) 

silicon powders for Cp= 4 g/l, Ip= 6 A, Ton= 300 μs, τ= 75 % and Vg= 40 V 
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Fig. 4.25 Micromorphology of the machined surfaces using (a, b) no powder (c, d) graphite (e, f) 

aluminum and (g, h) silicon powders for Cp= 4 g/l, Ip= 6 A, Ton= 300 μs, τ= 75 % and Vg= 40 V 
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In PMEDM, high thermal conductivity of the added powder takes away some part of 

residual heat from the sparking zone. Uniform energy distribution, slow cooling rate of the 

molten metal due to less plasma channel pressure also reduce the formation of micro-cracks 

[21]. Among the different powders, surface generated with graphite mixed EDM exibited 

smothest morphology. Capability of graphite to tackle surface damage compared to other 

two powders may be explained by very high heat of fusion coupled with high thermal 

conductivity (Table 3.3) and consequent restriction of thermal energy transferred to the 

workpiece surface. It is also evident from Fig. 4.24(g, h) that silicon powder also resulted 

in shallow crater and less surface damage also due to considerably high heat of fusion 

(around 4 times that of aluminum).  

Careful investigation of the higher magnification images i.e. Fig. 4.24(b), (d), (f) and 

(h) would reveal that all surface cracks primarily nucleate from the ridges of the crater and 

extend along the machined surface. This phenomenon might be attributed to high 

transformational stresses evolved during melting and resolidification processes. 

Since heat flux could be more uniformly distributed all over the machined surface due 

to mixing of the powders with the dielectric, such stress could be minimized and hence 

severity of surface cracking was mitigated in comparison with EDM using pure dielectric. 

Minimum surface cracking could be observed with graphite powder as its high thermal 

conductivity helps in uniform distribution and dissipation of heat to the workpiece surfaces 

to limit the number of craters produced. 

Another feature that may have an impact on the performance of graphite is its excellent 

lubricity, which may have some effects in terms of wetting of the particles by the melted 

surface [37]. It is followed by Si-suspended dielectric due to high heat of fusion. Al powder-

suspended dielectric resulted in more severe thermal cracking owing to very less heat of 

fusion. Higher magnification images revealed the solidified globules of molten metal and 

pockmarks on the surface machined using conventional EDM. Smooth surface with very 

little amount of resolidified molten metal was observed for Si powder-mixed dielectric due 

to the combination of small particle size and abrasive action. 

The study reveals interesting microstructure of Inconel 625 after EDM and PMEDM 

processes. Comparing the microstructures depicted in Fig. 4.25 with that of as-received 

Inconel 625, it becomes evident that precipitation of γ’ phases from matrix of γ phase 

(austenitic) is promoted due to EDM process as a result of heating and cooling cycles [168]. 

This precipitated γ’ phase is an intermetallic phase consisting mainly of Ni3(Al Ti) and one 

of the major contributors for precipitation hardening of Inconel 625 [169]. This γ’ phase 

hinders dislocation movement and hence improves creep resistance of the alloy. When the 
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same phase is present in more volume fraction, it augments the strength of the material 

owing to its ordered structure and high degree of coherency with γ phase [170]. 

 

Fig. 4.26 Surface morphology using (a, b) graphite (c, d) aluminum and (e, f) silicon powders for 

Cp= 8 g/l, Ip= 6 A, Ton= 300 μs, τ= 75 % and Vg= 40 V 

Careful consideration of Fig. 4.25 would indicate that such structure existed only in 

discrete domains, not uniformly distributed at the entire machined surface. Moreover, 

prominent γ’ phase was detected after EDM with pure dielectric as well that mixed with 
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different powders, although their appearance looks different. Moreover, availability of 

more carbon atoms due to pyrolysis of kerosene dielectric leads to rise in metal carbides of 

the form M23C6 or MC precipitated in the grain boundaries. As a consequence of both these 

phenomena, hardness of the machined workpiece is expected to increase. 

 

Fig. 4.27 Surface morphology using (a, b) graphite (c, d) aluminum and (e, f) silicon powders for 

Cp= 4 g/l, Ip= 2 A, Ton= 300 μs, τ= 75 % and Vg= 40 V 
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At a high powder concentration of 8 g/l, the amount of pock marks and globules on 

the surface increased as shown in Fig. 4.26 due to the availability of higher discharge 

energy. 

 

Fig. 4.28 Surface morphology using (a, b) graphite (c, d) aluminum and (e, f) silicon powders for 

Cp= 4 g/l, Ip= 6 A, Ton= 500 μs, τ= 75 % and Vg= 40 V 
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It was observed from Fig. 4.27 that at low peak current the craters were shallow and 

the density of global appendages and pockmarks was low, whereas at higher peak current, 

the craters were deeper and global appendages were most evident. 

 

Fig. 4.29 Surface morphology using (a, b) graphite (c, d) aluminum and (e, f) silicon powders for 

Cp= 4 g/l, Ip= 6 A, Ton= 300 μs, τ= 95 % and Vg= 40 V 



 

 

 

77 

 

The effect of increased pulse-on time on the surface structure is evident from Fig. 4.28. 

The amount and size of the pockmarks were increased due to the availability of extended 

duration of heat transfer. 

 

Fig. 4.30 Surface morphology using (a, b) graphite (c, d) aluminum and (e, f) silicon powders for 

Cp= 4 g/l, Ip= 6 A, Ton= 300 μs, τ= 75 % and Vg= 80 V 

At high duty cycle value of 95 %, it is clearly evident in Fig. 4.29 that a great deal of 

resolidified globules was observed on the machined surface due to insufficient flushing 



 

 

 

78 

 

action. Very deep craters were formed due to the bulging of molten material at the edges of 

the craters. Large pockmarks were observed as the time needed for the escaping of gases is 

very less. They were deep with a high density of global appendages with the resulting 

surfaces thus being matt in appearance. 

A relatively smooth surface with little amount of solidified globules was observed as 

shown in Fig. 4.30 at a gap voltage of 80 V. This may be due to the enhanced spark gap at 

a high voltage allowing easier flush out of debris. The amount and size of pock marks were 

also reduced as the large spark gap allows easier escape of gases. 

4.3.2.1 Surface crack density 

Table 4.8 SCD for different powders 

Run Cp 

(g/l) 

Ip 

(A) 

Ton 

(μs) 

τ 

(%) 

Vg 

(V) 

SCD (μm/μm2) 

Graphite Aluminum Silicon 

1 0 6 300 75 60 0.021 0.021 0.021 

2 2 4 400 85 70 0.015 0.017 0.015 

3 2 8 200 85 70 0.023 0.024 0.024 

4 2 8 400 85 50 0.023 0.029 0.027 

5 2 4 200 85 50 0.008 0.01 0.009 

6 2 8 400 65 70 0.02 0.027 0.025 

7 2 4 400 65 50 0.016 0.018 0.017 

8 2 8 200 65 50 0.022 0.024 0.023 

9 2 4 200 65 70 0.007 0.008 0.008 

10 4 6 300 75 60 0.015 0.018 0.017 

11 4 6 100 75 60 0.014 0.014 0.016 

12 4 10 300 75 60 0.023 0.027 0.026 

13 4 6 300 75 40 0.014 0.016 0.016 

14 4 6 300 75 80 0.013 0.017 0.015 

15 4 6 300 75 60 0.015 0.014 0.013 

16 4 6 300 75 60 0.015 0.018 0.017 

17 4 6 300 55 60 0.015 0.019 0.017 

18 4 6 300 95 60 0.015 0.019 0.017 

19 4 6 300 75 60 0.014 0.016 0.016 

20 4 6 300 75 60 0.015 0.015 0.015 

21 4 6 300 75 60 0.015 0.014 0.014 

22 4 6 500 75 60 0.017 0.021 0.02 

23 4 2 300 75 60 0.007 0.008 0.008 

24 6 8 400 65 50 0.018 0.022 0.024 

25 6 8 400 85 70 0.016 0.019 0.02 
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26 6 4 200 65 50 0.009 0.01 0.011 

27 6 4 200 85 70 0.006 0.007 0.008 

28 6 8 200 85 50 0.015 0.019 0.021 

29 6 8 200 65 70 0.015 0.019 0.021 

30 6 4 400 65 70 0.011 0.012 0.013 

31 6 4 400 85 50 0.01 0.012 0.014 

32 8 6 300 75 60 0.014 0.016 0.017 

 

 

Fig. 4.31 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for SCD using 

graphite powder 

Minimum SCD could be observed with graphite powder due to its high thermal 

conductivity. It is followed by Al-suspended dielectric due to a combination of high 

electrical and thermal conductivities. Si powder-suspended dielectric resulted in more 

severe thermal cracking due to its low thermal and electrical conductivities. However, at 
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higher powder concentrations (more than 6g/l), aluminum produced the highest SCD. This 

can be attributed to larger concentration of agglomerated aluminum particles which might 

have caused arcing. 

 

Fig. 4.32 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for SCD using 

aluminum powder 

Table 4.9 illustrates the abridged ANOVA for SCD using three different powder-

mixed dielectrics. P < 0.0001 for all three cases indicates that the models are significant. 

The insignificant lack of fit values of 0.4635, 0.6514 and 0.7538 for graphite, aluminum 

and silicon powders imply that the models fit well with the experimental data. The 

correlation coefficients for SCD using graphite, aluminum and silicon powder-mixed 

dielectrics are 99.11 %, 91.70 % and 93.28 % respectively. In addition, there are minor 

differences between Adj R2 and Pred R2. After deleting insignificant process parameters, 

RSM-based mathematical models for SCD using three different dielectrics have been 

determined and represented in equations (4.9), (4.10) and (4.11). 
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Fig. 4.33 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for SCD using 

silicon powder 
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Table 4.9 Abridged ANOVA for SCD 

Source Graphite Aluminum Silicon 

Model P < 0.0001 P < 0.0001 P < 0.0001 

Lack of fit P = 0.4635  P = 0.7538 P = 0.6514  

Residual 3.19*10-7 2.46*10-6 2.86*10-6 

R2 0.9911 0.9328 0.9170 

Adj R2 0.9837 0.9132 0.8970 

Pred R2 0.9453 0.8497 0.8580 

4.3.2.2 Surface roughness 

Table 4.10 SR for different powders 

Run Cp 

(g/l) 

Ip 

(A) 

Ton 

(μs) 

τ 

(%) 

Vg 

(V) 

SR (μm) 

Graphite Aluminum Silicon 

1 0 6 300 75 60 8.3 8.3 8.3 

2 2 4 400 85 70 3.8 3.5 3.4 

3 2 8 200 85 70 10.4 10.7 10.2 

4 2 8 400 85 50 10.4 9.8 8.4 

5 2 4 200 85 50 6.6 6.2 5.9 

6 2 8 400 65 70 9.7 9 8.6 

7 2 4 400 65 50 3.3 3.1 2.9 

8 2 8 200 65 50 9 10.1 9.6 

9 2 4 200 65 70 7.3 6.8 6.5 

10 4 6 300 75 60 6.9 7.1 6.2 

11 4 6 100 75 60 7.1 7.5 6.3 

12 4 10 300 75 60 10.4 10.7 9.3 

13 4 6 300 75 40 6.3 5.8 5.6 

14 4 6 300 75 80 6.7 6.9 6.2 

15 4 6 300 75 60 6.6 5.4 4.7 

16 4 6 300 75 60 6.9 7.1 6.2 

17 4 6 300 55 60 6.6 7.7 6.1 

18 4 6 300 95 60 6.8 7.5 6 

19 4 6 300 75 60 6.3 6.5 5.6 

20 4 6 300 75 60 6.8 6 5.2 

21 4 6 300 75 60 6.6 5.6 4.8 

22 4 6 500 75 60 5.4 4.8 4.6 

23 4 2 300 75 60 3.2 3.2 2.8 

24 6 8 400 65 50 6.9 8.3 6.1 

25 6 8 400 85 70 6.9 8.3 6.1 

26 6 4 200 65 50 5.1 5.4 4 

27 6 4 200 85 70 4.6 5.5 4.1 
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28 6 8 200 85 50 7.1 8.5 6.3 

29 6 8 200 65 70 8.1 9.7 7.2 

30 6 4 400 65 70 3.8 4.6 3.4 

31 6 4 400 85 50 2.6 3.1 2.3 

32 8 6 300 75 60 6.4 7.4 5.7 

 

 

Fig. 4.34 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for SR using 

graphite powder 

A considerable decrease in SR took place with the addition of conductive powder 

particles such as Al, graphite and Si to the dielectric. Plasma channel gets widened and 

enlarged when powder particles are mixed with the dielectric. Multiple sparking among the 

powder particles, distributes the discharge energy over a large area. As a result, large and 

shallow craters are formed on the workpiece surface [29]. 
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In addition to this, the molten metal is not heavily pressed by the plasma channel and 

the gas bubbles. These conditions reduce the entrapping of gas in the cavities. Thus, the 

surface becomes less concave, smooth and uniform [36]. The measured SR values for 

different powder-mixed dielectrics are provided in Table 4.10. 

 

Fig. 4.35 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for SR using 

aluminum powder 

Fig. 4.34, Fig. 4.35 and Fig. 4.36 show the effect of different powder materials and 

process parameters on SR. Discharge energy increases with peak current causing an hike 

in impulsive force and removing more molten and gasified materials. This generates deeper 

and larger discharge craters resulting in high SR. On the other hand, SR slightly decreased 

with increase in pulse-on time. This may be due to the expansion of discharge column 

leading to large and shallow cavities. An increase in SR was noted with the raise in duty 

cycle. This is attributed to the dominant effect of discharge energy per pulse leading to 
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deeper cavity and insufficient time for flushing the removed debris. SR increased with gap 

voltage due to the increase in discharge energy. At too long voltage values, IEG becomes 

very large and spark frequency reduces. This caused SR to decline. 

 

Fig. 4.36 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for SCD using 

silicon powder 

Silicon powder produced the least SR followed by aluminum and graphite owing to 

its low electrical and thermal conductivities. At a given instance, more number of Si 

particles enter the electrode gap due to its smaller size. As a consequence, overall discharge 

energy is more evenly distributed in a larger area. Formation of multiple number of smaller 

craters during a single discharge also takes place [24]. Use of smaller Si powder particles 

has, therefore, produced superior surface quality compared to the larger size particles of 

aluminum and graphite materials. The sharp edges of silicon powder as evident in Fig. 4.8, 

also augment the abrasive action of the particles on the crater edges. Thus, shallow craters 
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are observed in case of silicon particles mixed dielectric. Although Al powder has higher 

electrical conductivity than graphite powder, it provides higher surface roughness than that 

of graphite powder. 

There may be several reasons behind this behavior. First, the density of Al powder is 

greater than that of graphite powder, which prohibits it from mixing uniformly with the 

dielectric. Therefore, discharge energies are more evenly distributed among the powder 

particles in case of graphite powders, which make it suitable for generating smaller and 

shallow craters. On the other hand, the Al powder has a tendency to agglomerate owing to 

the electrostatic force or Van der Walls force when added to dielectric. SR decreased with 

increase in powder concentration and started to decline at high concentrations. It is due to 

enlarged discharge heat area, which results in reduction in discharge density to form large 

diameter, shallow craters on the surface. Presence of excessive powder particles causes 

short circuiting that is responsible for the increase in SR. 

Table 4.11 illustrates the abridged ANOVA for SR using three different powder-mixed 

dielectrics. P < 0.0001 for all three cases indicates that the models are significant. The 

insignificant lack of fit values of 0.1007, 0.8142 and 0.8939 for graphite, aluminum and 

silicon powders imply that the models fit well with the experimental data. The correlation 

coefficients for MRR using graphite, aluminum and silicon powder-mixed dielectrics are 

97.88 %, 94.16 % and 95.18 % respectively. In addition, there are minor differences 

between Adj R2 and Pred R2. After deleting insignificant process parameters, RSM-based 

mathematical models for SR using three different dielectrics have been obtained and shown 

in equations (4.12), (4.13) and (4.14). 

Table 4.11 Abridged ANOVA for SR 

Source Graphite Aluminum Silicon 

Model P < 0.0001 P < 0.0001 P < 0.0001 

Lack of fit P = 0.1007 P = 0.8142 P = 0.8939 

Residual 0.14 0.37 0.26 

R2 0.9788 0.9416 0.9518 

Adj R2 0.9654 0.9212 0.9350 

Pred R2 0.9078 0.8979 0.9090 
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2 2
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4.3.3 Altered layer 

EDM being primarily thermal process typically results in different distinct zones in 

the sub-surface regions. Owing to immense surface heating material removal takes by 

vaporization. During the process some molten material remains and subsequently 

resolidifies during cooling (flushing of dielectric) to form a recast layer. Very high thermal 

energy also alters the microstructure of sub-surface region to a certain depth which is called 

heat affected zone (HAZ). The zone beyond thermally affected layer is called as bulk 

material which remains unaffected by the process. The entire heat affected zone inclusive 

of recast layer is termed as altered layer thickness (ALT). 

 
Fig. 4.37 Sub-surface regions of the machined layer 

Fig. 4.37 shows four different zones at the sub-surface after machining. The top most 

zone is the recast layer followed by heat affected zone. The interface between HAZ and 

bulk material is called rim zone [39]. In many occasions it is difficult to discern between 

recast layer and HAZ. Therefore, in the current study ALT has been measured and plotted 

against various parameters after EDM with and without powders. 
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Fig. 4.38 Altered layer using (a) no powder (b) graphite (c) aluminum and (d) silicon powders for 

Cp= 4 g/l, Ip= 6 A, Ton= 300 μs, τ= 75 % and Vg= 40 V 

 

Fig. 4.39 Cracks within the altered layer in conventional EDM (no powder) 
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Fig. 4.38 shows formation of altered layer after EDM without powder and PMEDM 

using graphite, aluminum and silicon powders. Evidently altered layer thickness is more in 

conventional EDM compared to PMEDM process. It has already been observed that 

powders help distribution of thermal energy over a larger area so that heat density gets 

reduced. As a consequence, depth of penetration of thermal energy would be less in 

PMEDM. This causes thermally affected layer to shrink. Graphite has all along resulted in 

minimum ALT owing to its highest heat of fusion and thermal conductivity. Less ALT for 

aluminum mixed EDM could be the result of higher thermal conductivity of aluminum than 

silicon. 

Moreover, for conventional EDM, altered layer was non uniform and nature of 

cracking was distinct from PMEDM. In addition to surface cracks being extended upto sub-

surface region (Fig. 4.38(a)), cracks also developed within HAZ (Fig. 4.39) as a result of 

more intense heating and cooling and consequent rise in residual stress. Such crack network 

could not be located in any of the samples machined using PMEDM. So it can be inferred 

that mixing of powder with dielectric effectively lowers density of heat and residual stress 

finally leading to reduction in ALT. 

 

 

Fig. 4.40 Altered layer using (a) graphite (b) aluminum and (c) silicon powders for Cp= 8 g/l, Ip= 6 

A, Ton= 300 μs, τ= 75 % and Vg= 40 V 

Increase in concentration of powders in dielectric has clearly brought reduction in ALT 

as evident from Fig. 4.40. This may be attributed to enlargement of discharge gap and 

widening of plasma channel with increase in concentration and consequent mitigated 

intensity of discharge. However, for aluminum powder, this reduction is least prominent 

compared to the other two. This is due to the agglomeration of aluminum particles at higher 

concentration leading to possibility of arcing and restriction of flow of dielectric in the 

discharge gap. 

The altered layer appeared to be thinner (Fig. 4.41) as the peak current decreases. This 

is due to the fact that, increase in the peak current leads to an increase in the pulse energy 
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which increases the rate of melting and evaporation of electrodes. This causes higher 

volume of molten material and the dielectric fluid is unable to flush away all the molten 

material causing it to build upon the surface of the parent material. 

 

 

Fig. 4.41 Altered layer using (a) graphite (b) aluminum and (c) silicon powders for Cp= 4 g/l, Ip= 2 

A, Ton= 300 μs, τ= 75 % and Vg= 40 V 

When pulse-on time duration was increased, altered layer thickness also increased as 

shown in Fig. 4.42 regardless of powder additive. The increase in ALT as a result of 

increasing pulse-on time is mainly attributed to the production of more molten material by 

the greater discharge energy magnitudes. Although more molten material is produced, the 

amount of molten material removed by flushing remains relatively constant and results in 

a net increase in ALT. 

 

 

Fig. 4.42 Altered layer using (a) graphite (b) aluminum and (c) silicon powders for Cp= 4 g/l, Ip= 6 

A, Ton= 500 μs, τ= 75 % and Vg= 40 V 

Increase in duty cycle caused prominent increase in ALT particularly for PMEDM 

using aluminum and silicon powders (Fig. 4.43). This may be explained by greater thermal 

energy associated with prolonged sparking. Owing to higher heat of fusion and thermal 

conductivity samples machined with graphite powder were more immune to such rise in 

discharge energy. 
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The altered layer thickness decreased with gap voltage (Fig. 4.44) as the expansion of 

spark gap allowed more powder into it causing fall in discharge energy and consequent heat 

input to the work surface. 

 

 

Fig. 4.43 Altered layer using (a) graphite (b) aluminum and (c) silicon powders for Cp= 4 g/l, Ip= 6 

A, Ton= 300 μs, τ= 95 % and Vg= 40 V 

 

Fig. 4.44 Altered layer using (a) graphite (b) aluminum and (c) silicon powders for Cp= 8 g/l, Ip= 6 

A, Ton= 300 μs, τ= 75 % and Vg= 80 V 

4.3.3.1 Influence of process parameters on ALT 

High spark gap is produced when powder particles are suspended in dielectric due to 

the reduction in overall electrical resistivity. The enlarged spark gap results in low discharge 

energy distribution on the workpiece surface. Besides, the added powder takes some part 

of heat away from the sparking zone. These two phenomena lead to a shallow melted zone 

in the workpiece surface [29]. Hence a thin altered layer as shown in Fig. 4.38(b), (c) and 

(d) is realized in case of PMEDM compared to conventional EDM (Fig. 4.38(a)). 

The altered layer was continuous and evenly distributed in case of powder mixed 

dielectric. The measured ALT values for different powder-mixed dielectrics is given in 

Table 4.12. Corresponding surface plots are shown in Fig. 4.45, Fig. 4.46 and Fig. 4.47. 

ALT increased with the increase in peak current. At high peak current values, a steep 

thermal gradient builds up beneath the melting zone due to the availability of high discharge 
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energy. This thermal effect causes the production of molten material that is not completely 

flushed out by the dielectric. The remaining molten metal solidifies and forms a thick 

altered layer during the pulse-off time [172]. 

Table 4.12 ALT for different powders 

Run Cp 

(g/l) 

Ip 

(A) 

Ton 

(μs) 

τ 

(%) 

Vg 

(V) 

ALT (μm) 

Graphite Aluminum Silicon 

1 0 6 300 75 60 31.97 31.97 31.97 

2 2 4 400 85 70 22.45 22.92 27.05 

3 2 8 200 85 70 32.05 36.29 42.84 

4 2 8 400 85 50 39.02 39.84 42.62 

5 2 4 200 85 50 12.85 13.12 15.49 

6 2 8 400 65 70 36.88 37.66 36.79 

7 2 4 400 65 50 24.85 25.38 29.95 

8 2 8 200 65 50 32.87 33.56 39.62 

9 2 4 200 65 70 11.22 11.46 13.53 

10 4 6 300 75 60 23.61 26.52 28.45 

11 4 6 100 75 60 17.47 17.83 22.28 

12 4 10 300 75 60 35.51 39.88 42.79 

13 4 6 300 75 40 21.3 21.75 25.68 

14 4 6 300 75 80 20.31 24.62 25.22 

15 4 6 300 75 60 18.04 20.26 27.08 

16 4 6 300 75 60 23.62 26.52 28.46 

17 4 6 300 55 60 23.42 28.48 27.29 

18 4 6 300 95 60 23.08 27.74 27.82 

19 4 6 300 75 60 21.5 24.14 25.91 

20 4 6 300 75 60 19.77 22.2 27.93 

21 4 6 300 75 60 18.43 20.69 27.13 

22 4 6 500 75 60 26.58 28.01 28.95 

23 4 2 300 75 60 10.75 12.07 12.95 

24 6 8 400 65 50 27.68 36.17 33.36 

25 6 8 400 85 70 24.1 31.5 29.05 

26 6 4 200 65 50 13.07 17.08 15.75 

27 6 4 200 85 70 8.85 11.57 10.67 

28 6 8 200 85 50 23.54 30.76 28.36 

29 6 8 200 65 70 23.55 30.79 28.39 

30 6 4 400 65 70 15.25 19.93 20.9 

31 6 4 400 85 50 15.63 20.42 18.83 

32 8 6 300 75 60 17.79 27.38 26.06 
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ALT increased with the increase in pulse-on time. At higher pulse-on duration, high 

energy is produced so that the thickness of molten metal is more, which cannot be removed 

by flushing. The amount of debris also increases with pulse-on time. This debris upon 

cooling adheres and solidifies on the workpiece surface. Increase in spark gap with voltage, 

allows more powder particles into the spark gap resulting in reduction of ALT. Also, 

discharge column ebarates and less impulsive force (energy) will reach to the workpiece 

resulting in diminished ALT. 

 
Fig. 4.45 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for ALT using 

graphite powder 

Among the three powders, graphite resulted in the least ALT due to its high thermal 

conductivity. It is followed by aluminum due to the combination of high thermal and 

electrical conductivities. Silicon produced highest ALT due to its poor thermal and 

electrical conductivities. 
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Fig. 4.46 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for ALT using 

aluminum powder 

Table 4.13 illustrates the abridged ANOVA for ALT using three different powder-

mixed dielectrics. P < 0.0001 for all three cases indicates that the models are significant. 

The insignificant lack of fit values of 0.9619, 0.9330 and 0.9846 for graphite, aluminum 

and silicon powders imply that the models fit well with the experimental data. The 

correlation coefficients for MRR using graphite, aluminum and silicon powder-mixed 

dielectrics are 96.19 %, 93.30 % and 98.46 % respectively. In addition, there are minor 

differences between Adj R2 and Pred R2. After deleting insignificant process parameters, 

RSM-based mathematical models for MRR using three different dielectrics have been 

obtained and shown in equations (4.15), (4.16) and (4.17). 
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Fig. 4.47 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for ALT using 

silicon powder 

 

Table 4.13 Abridged ANOVA for ALT 

Source Graphite Aluminum Silicon 

Model P < 0.0001 P < 0.0001 P < 0.0001 

Lack of fit P = 0.9532 P = 0.7719 P = 0.2298 

Residual 3.03 5.62 1.47 

R2 0.9619 0.9330 0.9846 

Adj R2 0.9486 0.9134 0.9749 

Pred R2 0.9399 0.8917 0.9440 
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2

( ) 17.84  0.59*  6.448*  0.0842*  0.0714*

 0.2095*  0.365* *  0.00643* *   0.00516* *

GraphiteWLT A B C E

A A B A C B C

     

   
 

(4.15) 

 

2

2

( ) 50.4  3.592*   5.994*  0.0696* 1  .649*  0.368*

 0.0108*  0.00677* *

AlWLT A B C D A

D B C

     

 
 

(4.16) 

 

( ) 24.3  5.19*  8.982*  0.0964*  0.641* 1  .161*

 0.357* *  0.0613* *  0.01209  *  0.01461* *

SiWLT A B C D E

A B A D B C D E

     

   
 (4.17) 

4.3.4 Surface microhardness 

Table 4.14 Surface microhardness for different powders 

Run Cp 

(g/l) 

Ip 

(A) 

Ton 

(μs) 

τ 

(%) 

Vg 

(V) 

Vickers microhardness (HV) 

Graphite Aluminum Silicon 

1 0 6 300 75 60 1190.71 1190.71 1190.71 

2 2 4 400 85 70 1477.15 1379.67 1523.86 

3 2 8 200 85 70 1050.16 1082.63 1040.55 

4 2 8 400 85 50 1121.05 1131.95 1127.22 

5 2 4 200 85 50 1213.34 1196.15 1225.26 

6 2 8 400 65 70 1162.3 1160.64 1167.48 

7 2 4 400 65 50 1476.69 1379.35 1523.34 

8 2 8 200 65 50 1054.47 1085.63 1045.43 

9 2 4 200 65 70 1373.28 1324.19 1433.58 

10 4 6 300 75 60 1222.44 1202.48 1249.32 

11 4 6 100 75 60 1067.4 1094.62 1062.62 

12 4 10 300 75 60 1041.9 1076.89 1031.92 

13 4 6 300 75 40 1225.86 1212.64 1285.64 

14 4 6 300 75 80 1228.89 1162.45 1180.02 

15 4 6 300 75 60 1223.99 1203.56 1251.18 

16 4 6 300 75 60 1240.38 1214.96 1270.91 

17 4 6 300 55 60 1280.97 1238.95 1329.45 

18 4 6 300 95 60 1227.54 1181.47 1212.95 

19 4 6 300 75 60 1252.99 1223.73 1286.1 

20 4 6 300 75 60 1269.25 1235.04 1305.68 

21 4 6 300 75 60 1262.17 1230.12 1297.16 

22 4 6 500 75 60 1302.58 1258.23 1345.81 

23 4 2 300 75 60 1651.67 1570.64 1886.57 

24 6 8 400 65 50 1145.13 1148.7 1168 

25 6 8 400 85 70 1153.12 1154.26 1178.45 
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26 6 4 200 65 50 1425.09 1343.45 1534.25 

27 6 4 200 85 70 1394.56 1322.21 1494.31 

28 6 8 200 85 50 1119.68 1081.04 1040.76 

29 6 8 200 65 70 1057.19 1087.53 1052.96 

30 6 4 400 65 70 1657.08 1504.84 1837.74 

31 6 4 400 85 50 1433.89 1349.58 1570.5 

32 8 6 300 75 60 1345.58 1288.14 1481.9 

 

 

Fig. 4.48 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for surface 

microhardness using graphite powder 

Conducting and semi-conducting powder particles when added to kerosene, increase 

the ionization in inter electrode gap. PMEDM using different powders revealed surface 

hardening of Inconel 625 which was clearly more than that obtained with conventional 

EDM (with pure dielectric). The possible mechanism behind this interesting phenomena 
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may be explained as fallows. The energized plasma channel causes more pyrolysis and 

breakage of C-H bonds. The availability of more carbon atoms leads to the formation of 

hard metal carbides on the machined surface. Augmentation of surface microhardness may 

also be explained by the promotion of cuboidal γ’ phase after transfer of thermal energy to 

the workpiece. Rise in strength due to precipitation of γ’ phase has already been discussed 

in section 4.4.2. The measured microhardness values for different powder-mixed dielectrics 

is given in Table 4.14. 

 

Fig. 4.49 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for surface 

microhardness using aluminum powder 

Fig. 4.48, Fig. 4.49 and Fig. 4.50 show the effect of different powders and machining 

characteristics on microhardness. Microhardness clearly increased with peak current due to 

high heating and quenching effects. Microhardness increased with pulse-on time due to an 

increase in discharge energy. 
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As pulse-on time increases the energy density decreases and less deposition takes 

place. Hence, microhardness declines at high pulse-on time. Initial increase in duty cycle 

enhances microhardness due to increase in spark energy. At high percentage of duty cycle 

values, time available for cooling becomes very less. Hence, low microhardness values are 

observed. Discharge energy increases with gap voltage. At high gap voltage, the discharge 

gap becomes too large and heat density decreases. This causes a reduction in 

microhardness. 

 

Fig. 4.50 Surface plots (a) Cp vs. Ip (b) Cp vs. Ton (c) Cp vs. τ and (d) Cp vs. Vg for surface 

microhardness using silicon powder 

Among the three powders, Si particles produced the surface with the highest 

microhardness as less amount of heat is removed from the sparking zone owing to low 

thermal conductivity of Si. The presence of high amount of heat at the workpiece and 

quenching leads to the formation of hard surface. Formation of silicon carbide (SiC) on the 

machined surface also enhances the surface hardness. Interestingly, larger and distinct 
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plates of γ’ phase has already been noted with the sample machined with Si-mixed 

dielectric. 

Silicon is followed by Al and graphite in improving the surface hardness. Higher 

electrical conductivity and the formation of aluminum carbide (Al4C3) result in harder 

machined surface in case of Al compared to graphite. Microhardness improved with powder 

concentration as more particles enter the inter electrode gap. 

Table 4.15 Abridged ANOVA for surface microhardness 

Source Graphite Aluminum Silicon 

Model P < 0.0001 P < 0.0001 P < 0.0001 

Lack of fit P = 0.2767 P = 0.1084 P = 0.0950  

Residual 59.42 47.39 15.13 

R2 0.9867 0.9800 0.9804 

Adj R2 0.9771 0.9674 0.9680 

Pred R2 0.9549 0.9209 0.9469 

 

2 2 2

( ) 1384  20.6* 1  08.5*  0.922*  7.71*  3.32*

1  .411*  5.098*  0.000995*  3.32* *  0.0793* *

1  .027* *  0.869* *  0.00986* *

GraphiteSMH A B C D E

A B C A B B C

B D B E C E

     

    

  

 

(4.18) 

 

2 2 2

( ) 1411  44.1* 1  60.7* 1  .741*  9.07*  6.2*

 3.07*  8.83*  0.001248*  7.87* *  0.0719* *

1  .097* *  0.886* *

AlSMH A B C D E

A B C A B B C

B D B E

     

    

 

 

(4.19) 

 

2 2 2

( ) 1002  23.15*  98.1* 1  .012*  5.23* 1  0.45*

 4.996*  0.000764*  0.0556*  2.7* *  0.0395* *

 0.637* *  0.527* *

SiSMH A B C D E

B C E A B B C

B D B E

     

    

 

 

(4.20) 

 

Table 4.15 illustrates the abridged ANOVA for surface microhardness using three 

different powder-mixed dielectrics. P < 0.0001 for all three cases indicates that the models 

are significant. The insignificant lack of fit values of 0.2767, 0.1084 and 0.09850 for 

graphite, aluminum and silicon powders imply that the models fit well with the 

experimental data. The correlation coefficients for MRR using graphite, aluminum and 

silicon powder-mixed dielectrics are 98.67 %, 98.00 % and 98.04 % respectively. In 

addition, there are minor differences between Adj R2 and Pred R2. After deleting 
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insignificant process parameters, RSM-based mathematical models for MRR using three 

different dielectrics have been obtained and shown in equations (4.18), (4.19) and (4.20). 

4.3.5 Microhardness depth profile 

 

Fig. 4.51 Microhardness depth profile 
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Microhardness has been measured along the direction starting from the machined 

surface. Influences of different process parameters and powder-mixed dielectrics on 

hardness depth profile are presented in Fig. 4.51. It was observed that microhardness close 

to top surface region i.e., in recast layer was high which can be attributed to the formation 

of carbides and precipitation of γ’phase on the top surface [132]. Decrease in hardness 

beyond this zone is due to diminished effect of heating and quenching. 

Compared to conventional EDM, less hardness was realized along the cross section, 

when powder-suspended dielectric was used due to a reduction in discharge energy density. 

Among the three powders, graphite resulted in the least cross-sectional microhardness due 

to its high thermal conductivity. It is followed by aluminum due to the combination of high 

thermal and electrical conductivities. Silicon produced highest cross-sectional 

microhardness. Therefore, similar trend between gradient and top surface hardening has 

been noted. 

Microhardness along depth has decreased as due to the decrease in discharge energy 

with the powder concentration. Microhardness increased with peak current due to high 

heating and quenching effects at large peak current values. Microhardness increased with 

pulse time due to the increase in discharge energy. Also, the time available for heat transfer 

increases with pulse-on time resulting in larger heat effected zone. Cross-sectional 

microhardness was directly proportional to duty cycle due to the increase in spark energy. 

At high gap voltage, the discharge gap becomes larger and heat density decreases. This 

causes a reduction in microhardness. 

4.3.6 Composition, phases, grain size and lattice strain 

Table 4.16 Composition of machined surfaces (Ip= 6 A, Ton= 300 μs, τ= 75 % and Vg= 40 V) 

Element Weight % 

As-received 

Inconel 625 

EDM with 

no powder 

PMEDM (Cp= 4 g/l) 

Graphite Aluminum Silicon 

Al 0.32 0.52 0.08 0.27 0.4 

Si 0.35 - 0.74 0.26 - 

P - 0.29 0.05 0.95 0.53 

S 0.01 0.26 0.35 - 1.44 

Ti 0.38 0.17 - 0.16 - 

Cr 22.36 24.46 24.67 22.93 21.81 

Mn 0.35 0.85 0.34 - 1.22 

Fe 4.58 5.08 4.78 6.29 4.1 

Ni 58.74 57.03 56.24 49.66 58.91 

Nb 3.87 5.35 3.15 8.52 4.3 

Mo 9.04 5.99 9.6 10.96 7.29 
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In order to investigate the influence of different powder materials on possible 

alteration in chemical composition of Inconel 625, EDS analysis was carried out on the 

machined surface. This was followed by XRD study for identification of different phases 

and their modification as a result of PMEDM process. 

 

 
Fig. 4.52 SEM image and EDS results of the sample machined with graphite-mixed dielectric 

under the condition of Cp= 4 g/l, Ip= 6 A, Ton= 300 μs, τ= 75 % and Vg= 40 V 

 
Fig. 4.53 SEM image and EDS results of the sample machined with aluminum-mixed dielectric 

under the condition of Cp= 4 g/l, Ip= 6 A, Ton= 300 μs, τ= 75 % and Vg= 40 V 

Table 4.16 shows chemical composition of as-received Inconel 625 and that after 

machining the same material using with and without powder-mixed dielectric under the 

specified machining conditions. After carefully studying Table 4.16 it is evident that 

although EDM could not significantly alter chemical composition of Inconel 625, addition 

of powders resulted in variation in relative content of Nb and Mo at the expense of Ni and 

Fe. Weight % of Mo consistently increased in case of PMEDM. This might be due to the 

fact that redistribution of thermal energy due to PMEDM was favorable for realignment of 

elements like Mo to cause solution strengthening and formation of metal carbides. This 
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phenomenon prominently contributed to the enhancement of surface microhardness after 

PMEDM in comparison with conventional EDM as evident from Table 4.14. Rise in 

content of Nb along with Fe after aluminum-mixed EDM might have promoted formation 

of δ or laves phase [170,173]. 

 

 
Fig. 4.54 SEM image and EDS results of the sample machined with silicon-mixed dielectric under 

the condition of Cp= 4 g/l, Ip= 6 A, Ton= 300 μs, τ= 75 % and Vg= 40 V 

After revealing the bulk information of the machined surface after PMEDM, attempt 

was also made to reveal to extract information from the selective regions. Such results are 

presented in, Fig. 4.52, Fig. 4.53 and Fig. 4.54. The investigated light grey region (area 1) 

in Fig. 4.52 (a) apparently consists of fcc γ matrix which is solid solution strengthened by 

Cr and Mo according to the EDS result in Fig. 4.52 (b). Interestingly, when the region 

comprising mainly of γ’ precipitates was probed it was revealed there was a hike in % of 

C, Nb, Mo, Al and Ti at the expense of Ni and Cr. Area 2, therefore, is logically assumed 

to consist of δ phase, metal carbides apart from γ’ phase. Addition of graphite powder to 

the dielectric was responsible for formation of metal carbides. On the other hand, content 

of Nb was considerably less for the samples machined with aluminum and silicon powders 

at the specified locations as indicated in Fig. 4.53 and Fig. 4.54. Any trace of carbon could 

not also be detected. Therefore, it may be inferred that Nb-rich phase was not present in 

selected point for aluminum-mixed EDMed sample although it was prevalent at the bulk of 

the machined surface. 

Influence of powder-mixed dielectric on crystallographic orientation of EDMed 

Inconel 625 has been studied using X-ray diffraction (XRD) technique, the spectra for 

which are shown in Fig. 4.55. While EDM with conventional (pure) dielectric primarily 

demonstrated fcc structure of γ-phase of Inconel 625 [174] along with some δ (Ni3Nb) 

phase, some additional peaks have been identified when different powders were added. 

These peaks marked by ‘χ and ω’ in Fig. 4.55 indicate possible formation of carbides of Ni, 
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Cr and Mo along with Ni3Nb (211) from Inconel 625 as confirmed by X’pert High score 

software.  

 

Fig. 4.55 XRD spectra of machined surfaces obtained with and without powder-mixed dielectric 

under different conditions 

The meaning for different symbols used in Fig. 4.55 is provided in Table 4.17. Since 

kerosene has been used as dielectric, addition of powders caused enhanced degree of 

ionization as explained earlier which led to more pyrolysis which in turn might have 
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resulted in breakage of C-H bonds. Hence, more carbon atoms would be available close to 

the machined surface. These metal carbides might also be responsible for surface hardening 

effect as evident from Fig. 4.48 to Fig. 4.50. Moreover, addition of powder caused 

suppression of one of the peaks (around 32º) obtained with conventional EDM without 

powder. This peak corresponds to Ni4Mo phase. It has already been observed from EDS 

results (Table 4.16) that relative content of nickel was reduced at the expense of Nb and 

Mo after addition of powders like aluminum and graphite. XRD results also corroborate the 

same. 

Table 4.17 Different phases of machined surfaces 

Symbols Miller indices Possible phase(s) 

ζ (1 1 1) AlNi, Ni3Fe, Ni3Nb 

η (2 0 0) Mo2C, Ni3Mo, Ni3Nb 

υ (2 2 0) Ni3Mo, Ni3Al 

ε (1 1 0) Ni4Mo, Cr3Ni2 

ꝯ (1 1 1) Mo2C, Ti2Ni 

σ (0 0 2) Ni3Nb 

ψ (2 0 0) Ni3Si2, Cr3Ni2 

χ (3 1 0) NiC, Cr23C6, Mo2C 

ω (2 1 1) Ni3Nb, Cr23C6, Mo2C 

 

Two observations have been noted when powder concentration was increased from 4 

to 8 g/l. For lower concentration, preferred orientation of Inconel 625 has always been 

ζ(111) primarily consisting of nickel and its intermetallic phases (e.g. Ni3Nb). 

PMEDM with higher concentration caused prominent increase of η(200) which 

consists of more content of Mo2C. This is attributed to availability of more carbon atoms 

during discharge with elevation in powder concentration as explained before. Comparing 

Fig. 4.55(a) and (b) it is also evident that higher concentration of silicon promotes the 

formation of phase indicated by ψ symbol possibly comprising of Ni3Si2. It is also 

interesting to note that higher concentration of powders led to suppression of one of the 

nickel rich phases symbolized by ω. 

Variation of peak current did not cause significant alteration except during PMEDM 

with aluminum powder which exhibited more prominent phase marked by ꝯ consisting of 

Mo2C at lower peak current. This signifies influence of aluminum powder is more 

prominent at lower peak current which when increased almost negated the influence of 

PMEDM. Increase in pulse-on time clearly facilitated the formation of phase indicated by 

σ consisting of Ni3Nb. This is because of increase in relative content of niobium with 

prolonged pulse duration. Similar observation has also been noted when duty cycle has 
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been increased. However, no significant alteration in phases could be noticed with change 

in gap voltage. 

 

Fig. 4.56 FWHM obtained with and without powder-mixed dielectric under different conditions 

XRD spectra indicate that there is hardly any significant shifting of peaks while 

comparing EDM and PMEDM with different powders. Fig. 4.56 shows FWHM for 

different samples. While PMEDM with aluminum and graphite powders could not bring in 

any significant modification compared to conventional EDM, slight reduction in FWHM 

was observed with silicon powder. This is attributed to possible increase in grain size due 

to addition of silicon with dielectric. Lower thermal conductivity of silicon could not 

effectively carry away heat from the machining zone resulting net thermal energy on the 

workpiece surface to increase. This phenomenon might have led to grain growth. On the 

other hand, parameters such as concentration, peak current and pulse-on time could not 

significantly alter the FWHM when silicon powder was used. Owing to its very high 

electrical resistivity breaking down of dielectric molecules would be hindered. As a 

consequence change in discharge parameters in the selected range could hardly modify 

FWHM. However, when duty cycle and gap voltage were increased there was hardly any 

change in FWHM value when silicon powder has been added. FWHM obtained from XRD 
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results also indicates that graphite powder is the most susceptible to alteration in PMEDM 

condition. Pronounced increase in FWHM has been noted when different parameters such 

as Ip, Ton, τ and Vg were increased. The rise in FWHM is indicative of refinement of grains 

of Inconel 625 because of the fact that graphite has the highest heat of fusion (117 kJ/mol). 

This property enables graphite to retain more heat energy leaving less thermal energy 

available on the workpiece surface. Thus possibility of grain growth would be restricted for 

graphite powder. Effective mixing with dielectric due to its low density also helps graphite 

enhance cooling ability of dielectric. As a result grain refinement takes place. 

 

Fig. 4.57 Crystallite size and lattice strain obtained using conventional EDM and (a) graphite (b) 

aluminum (c) silicon powders 

Crystallite size and lattice strain of Inconel 625 after EDM with and without powder 

have been obtained using linear Williamson-Hall plot. This technique has the capability to 

segregate the influence of crystallite size and lattice strain on FWHM [175]. These two 

characteristics have considerable impact on overall microstructure of material and hence it 

should be studied. Crystallite size and lattice strain for different powders under varying 

machining condition have been presented in Fig. 4.57. 

It is evident from Fig. 4.57 that addition of powder with dielectric caused reduction in 

crystallite size as well as lattice strain. This may be explained by the fact that powder-mixed 
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dielectric ensures enlargement of crater while maintaining uniform discharge over a large 

area. 

It is also important to note pulse duration and duty cycle have contributed significantly 

to decrease crystallite size for all the powders. Careful consideration of Fig. 4.57 also 

indicates material of powder also has some influence. Crystallite size varied in the range of 

around 2 to 7.5 . While for the other two powders crystallite size varied in the similar 

range, exception was found when high peak current of 6 A was considered. Sudden rise of 

crystallite size more than 30 Aº for aluminum powder could be ascribed to very low heat 

of fusion (10.79 kJ/mol) in combination with its tendency to agglomerate leading to the 

condition of arcing under high peak current. Similar observation has also been noted for 

silicon powder. But crystallite size under same condition was less compared to that for 

aluminum powder (~20 ). This is due to higher heat of fusion than aluminum. Higher 

thermal energy under such condition caused grain growth for both these powders. Lower 

thermal conductivity of silicon powder is also one of the reasons. On the other hand, 

graphite has the highest heat of fusion among all apart from high thermal conductivity. This 

helps the powder retain sizable amount of heat leaving net thermal energy on the work 

surface. As a result grain growth could be restricted. Similar observation has also been 

noticed for lattice strain. 

4.3.7 Residual stress 

High energy sparking in EDM develops extreme temperature differences in the 

machined surface layers. During rapid cooling process, tensile residual stress develops on 

the EDMed surface [176]. Cracks are formed when this tensile residual stress exceeds the 

fracture strength of the material. Fig. 4.58 shows the residual stress plots of the machined 

surfaces under different machining conditions. High tensile residual stress (Fig. 4.58A) was 

observed for the sample machined with pure kerosene due to high discharge energy density. 

The tensile stress got reduced (Fig. 4.58B and Fig. 4.58C) with the addition of different 

powders to the dielectric as the added powder results in low discharge energy density due 

to spark gap enlargement. 

Little consideration would indicate that tensile residual stress is minimum for silicon 

powder throughout. Silicon owing to its high heat of fusion and thermal conductivity has 

the capability retain heat energy and dissipates it efficiently by virtue of its high thermal 

conductivity. The abrasive action of silicon particles on the crater ridges also augments the 

reduction of tensile residual stress. As a consequence, tensile residual stress could be 

restricted. Although, aluminum also possesses high thermal conductivity, due to its lower 

heat of fusion tensile stress is more than for silicon and graphite powders in general. 
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Further, agglomeration of aluminum at higher concentration (8 g/l) led to the possibility of 

arcing. Similarly, under the condition of highest duty cycle (95 %), similar condition might 

have prevailed. Therefore, tensile stress was the highest for aluminum powder under such 

situations. 

The tensile stress also reduced when current reduced from 6 A to 2 A (Fig. 4.58D) due 

to the reduction in discharge energy. At high pulse-on time of 500 μs the stress declined 

(Fig. 4.58E) because of the reduction in energy density due to discharge passage expansion. 

For the same reason low tensile residual stress (Fig. 4.58F) was realized with the increase 

in duty cycle. A fall in tensile stress was observed (Fig. 4.58G) with the increase in gap 

voltage. This is attributed to the reduction in energy density due to the enlargement of 

discharge column with the gap voltage. 

Due to the formation of inter metallic phases like Ni3Nb as evident in Fig. 4.55, the 

superior mechanical properties in the form of higher hardness and rupture strength will be 

achieved. As a result, the machined component would have greater resistance to 

indentation, crack propagation and rupture. This would be possible only when surface 

tensile strength reduces. Decrease in surface residual stress is also manifested in the 

reduction in SCD which is shown in Fig. 4.31 to Fig. 4.33. 

 
Fig. 4.58 Residual stress with and without powder-mixed dielectric under different conditions 
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From Table 4.18, it is observed that the experimental tensile residual stress values and 

predicted thermal residual stress values obtained using numerical modelling for different 

powder materials follow the same trend. However, the predicted values were slightly higher 

than the experimental values, as the mechanical aspects such as compressive pressure and 

abrasive action of the powder particles on craters during PMEDM process were not 

considered during modelling. 

Table 4.18 Comparison of experimental and predicted residual stress under different machining 

conditions 

Experimental condition Experimental 

residual stress 

Predicted thermal 

residual stress 

% 

error 

Graphite mixed-dielectric 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=40 V 686 810 18.08 

Ip=2 A, Ton=300 μs, τ=75 %, Vg=40 V 372 436 17.2 

Ip=6 A, Ton=500 μs, τ=75 %, Vg=40 V 751 874 16.38 

Ip=6 A, Ton=300 μs, τ=95 %, Vg=40 V 749 834 11.35 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=80 V 734 822 11.99 

Aluminum mixed-dielectric 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=40 V 721 782 8.46 

Ip=2 A, Ton=300 μs, τ=75 %, Vg=40 V 383 417 8.88 

Ip=6 A, Ton=500 μs, τ=75 %, Vg=40 V 766 842 9.92 

Ip=6 A, Ton=300 μs, τ=95 %, Vg=40 V 777 806 3.73 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=80 V 748 790 5.61 

Silicon-mixed dielectric 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=40 V 665 743 11.73 

Ip=2 A, Ton=300 μs, τ=75 %, Vg=40 V 360 384 6.67 

Ip=6 A, Ton=500 μs, τ=75 %, Vg=40 V 725 829 14.34 

Ip=6 A, Ton=300 μs, τ=95 %, Vg=40 V 738 767 3.93 

Ip=6 A, Ton=300 μs, τ=75 %, Vg=80 V 726 756 4.13 
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Chapter 5  

Conclusions, major contributions and 

future scope of work 

5.1 Conclusions 

In the current research work, the effect of various powder-mixed EDM (PMEDM) 

process parameters was first numerically modeled on temperature distribution, MRR and 

residual stress considering Inconel 625 as workpiece material. After gaining initial 

information on the influence of different powders (graphite, aluminum and silicon) on the 

process, experimental investigation was carried out according to RSM-based design of 

experiment. MRR and ROC which are the measures of productivity and dimensional 

accuracy respectively were first studied followed by various aspects of surface integrity. 

Comparative evaluation of all the process characteristics was made considering all the three 

powder materials. Additionally, influence of various process parameters was also 

investigated. Results clearly demonstrated remarkable improvement in terms of various 

performance measures for PMEDM compared to EDM without powder additives. 

However, such improvement is dependent on characteristics of powder materials and their 

concentration. The following major conclusions obtained from the entire work can be 

drawn: 

(a) Modelling of PMEDM process 

 

1. The predicted MRR values obtained for all three powder-mixed dielectrics were very 

close to each other. Careful observation would indicate that aluminum has produced 

highest MRR followed by graphite and silicon within the considered process parameter 

range. 

2. Among, the three powders, silicon has produced least thermal residual stress followed 

by aluminum and graphite due to the raise in predicted temperatures. 

 

(b) Effect of PMEDM on MRR and ROC 
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1. Although indicated particle size was same for all the three powders (~15 μm), detailed 

study utilizing SEM, particle size analysis, and XRD clearly pointed out variation in 

average particle size. Aluminum exhibited largest agglomeration while maximum 

volume % of finest particles was observed with graphite powder. Presence of small 

quantities of impurities such as SiO2 and Al2O3 in as-received Si and Al powders was 

also ascertained. 

2. For low levels of powder concentration (up to 6 g/l), Al powder is recommended for 

achieving high material removal rate. However, agglomeration of Al powder at high 

concentration (8 g/l) led to short-circuiting and arcing. Thus, at 8 g/l powder 

concentration graphite powder produced the highest material removal rate. 

3. Least radial overcut was attained in conventional EDM process. Among the powder-

mixed dielectrics, Si powder impregnated dielectric produced the least radial overcut 

followed by graphite and aluminum. 

 

(c) Effect of PMEDM on surface integrity 

 

1. For all the three powder-mixed dielectrics, larger and shallower craters were observed 

compared to coneventional EDM due to enhanced conductivity of dielectric which 

causes spark generation from a long distance. 

2. Conventional EDM exhibited largest number of surface cracks while, PMEDM is 

effective in minimizing the same. Graphite is suggested for minimizing the number of 

surface cracks, followed by Si and Al powders. 

3. Si powder is suggested for achieving good surface finish followed by Al. Smaller size 

and the abrasive action of Si powder on crater edges also contributed to improvement 

of surface finish. However, at higher powder concentrations (above 4 g/l), graphite 

powder produced superior surface finish compared to Al powder. 

4. PMEDM has resulted in thinner altered layer compared to conventional EDM (no 

powder). Among the three powders, graphite resulted in the least ALT followed by 

aluminum and silicon. 

5. Si powder is recommended for achieving high microhardness of the machined surface 

followed by aluminum and graphite. Crater diameter increased with the addition of 

powder materials. Al produced the largest crater diameter followed by graphite and Si. 

6. Microhardness in sub-surface regions was higher using pure dielectric compared to 

powder-mixed dielectric. Among the three powders, graphite resulted in the least cross-

sectional microhardness followed by aluminum and silicon. 
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7. Precipitation of γ’ phases from matrix of γ phase is promoted due to EDM process. It is 

an intermetallic phase consisting mainly of Ni3(Al,Ti) which hinders dislocation 

movement and hence improves hardness creep resistance of the alloy. 

8. Relative content of nickel was reduced at the expense of Nb and Mo after addition of 

powders like aluminum and graphite in dielectric during EDM. 

9. While EDM with conventional dielectric primarily demonstrated fcc structure of γ-

phase of Inconel 625 along with some δ(Ni3Nb) phase, PMEDM has promoted 

formation of carbides of Ni, Cr and Mo along with Ni3Nb from Inconel 625. 

Overall, graphite may be recommended for achieving high material removal rate, less 

surface cracks, thin altered layer, less microhardness at surface and sub-surface regions 

whereas silicon may yield low radial overcut, low surface roughness and less residual stress. 

Aluminum yielded high material removal rate at low concentration range (upto 6 g/l). 

5.2 Major contribution 

Following studies have been carried out for the first time which are considered as 

major contribution of current research work. 

1. Modelling and simulation of PMEDM process of nickel-based super alloy have 

been carried out for understanding the underlining mechanism. 

2. Role of PMEDM process on a nickel-based super alloy has been clearly established. 

3. Role of powder material properties, their concentration on surface integrity aspects 

has been ascertained. It is significant as surface integrity dictates the functional 

performance of the machined component. 

4. Recommendation has been made on selection of powder materials, their 

concentration and other PMEDM parameters considering various performance 

characteristics. 

The outcome of the present work therefore, is of considerable significance for the 

researchers working in the field of EDM and the pertinent industries including aerospace, 

marine and chemical industries. 

5.3 Future scope of work 

1. Modelling and simulation can be extended for different aspects of surface integrity 

such as surface roughness, altered layer thickness and crack formation. 
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2. Optimal parameter settings for achieving optimal responses can be carried out for 

individual powders using suitable optimization technique. 

3. Influence of nano powders on the PMEDM processing of nickel-based super alloys 

(Inconel 625 in particular) can be investigated in comparison with PMEDM using 

micro powders. 
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