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ABSTRACT 

Rapid industrialization has led to massive environmental pollution, resulting in damage to the 

ecosystem and human health. Dyes and heavy metals are non-biodegradable toxins that possess 

carcinogenic and mutagenic properties. With the rising scarcity of water, these toxins need to 

be removed from water bodies economically and efficiently. Among all the classical 

wastewater treatment techniques, including complexation, chemical oxidation or reduction, 

solvent extraction, chemical precipitation, adsorption is the most promising separation method. 

However, it is a challenge to design adsorbent materials with high specific surface area and 

appropriate chemical functionality to selectively adsorb toxins.  

The present work demonstrates one of the new types of adsorbent materials, which is a hybrid 

of graphene oxide (GO) and magnetite. Nanostructured two dimensional sheets, such as GO, 

can act as anchor points where the ceramic magnetic oxide can be precipitated, thus reducing 

the latter’s agglomeration tendency and expose active sites effectively. A facile sonication 

assisted synthesis was adopted to prepare the hybrids, and tested for their toxin adsorption 

properties against three distinctly different materials. The adsorption characteristics of Cr(VI) 

(toxic heavy metal contaminant), malachite green (a toxic cationic dye), and phenol red (a 

neutral dye) on to the GO-Fe3O4 hybrids was systematically investigated. The hybrids 

exhibited better adsorption properties than that of bare Fe3O4 nanoparticles. In addition, the 

hybrids were proved to be an excellent material for the separation of malachite green, with 

efficiency as high as 97%, with faster kinetics. The removal efficiency of phenol red was 

moderate, owing to the lack of charge on the dye; upto 68% removal was observed due to the 

interaction of the zwitterions with the adsorbents.  

The presentation aims to discuss the effects of time, pH, and concentration on adsorption. The 

experimental results will be analyzed based on various kinetic models, including pseuo-first 

order, pseudo-second order, intraparticle diffusion, Bangham model. Equilibrium adsorption 

isotherms of these toxins on the GO-Fe3O4 hybrids will be discussed in the context of 

Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. 

Keywords: Adsorption, hybrid, hexavalent chromium, malachite green, phenol red 
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CHAPTER-1 

 

INTRODUCTION 
In this section, the nature of the problem is introduced. Out of the many adsorbents used in the literature, 

the selection of a specific type of hybrid ceramic is introduced. Subsequently, the scope of the work is 

outlined, for the use of the synthesized nanoadsorbents in the removal of hexavalent chromium, malachite 

green, and phenol red.  
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One of the most pressing problems the world is facing today is access to clean uncontaminated 

water for domestic and industrial use. Anthropogenic activities and rapid industrialization have 

led to the discharge of a range of toxins to water bodies causing irremediable damage to the 

ecosystem [1-3]. Such ecological imbalances create new forms of diseases. The fact that water 

is moving throughout the world continuously changing its states, there is no gain or loss of 

water as a whole. Thus, contaminated water left untreated can continue to remain in the 

aqueous environment, and get absorbed by living organisms. Heavy metal ions, including lead, 

zinc, chromium, copper, mercury, arsenic, and many more are indiscriminately released into 

the water bodies [4]. Unlike organic pollutants, heavy metals are non-biodegradable in the 

environment, and also can accumulate in living tissues, particularly in human bodies, causing 

significant physiological damage [5]. Such disorders include damage to the central nervous 

system, blood composition, and irreversible damage to vital organs of the body. Chromium is 

one of the important hazardous heavy metal ions in the environment. It’s most commonly 

occurring oxidation states are +3 and +6, among which the +6 state is more toxic. The 

hexavalent state is not a stable oxidation state and has a tendency to get reduced to +5 

(completely unsafe) and +3 (relatively safe) inside the human body. Exposure to hexavalent 

chromium beyond its permissible limit can cause gastro intestinal disorders, damage RBCs 

(Red Blood Cells), reduce blood platelets, and cause asthma in the human body [6]. Therefore, 

removal of hexavalent chromium is an important area of work. 

Dyes, a common waste from textile and leather industries, are well known to influence the 

quality of water due to their toxicity and carcinogenic effects [7]. Extremely low concentrations 

of dye in water is visible and unsuitable for use. Most of the dyes have complex aromatic 

structures, render the penetration of UV-light into water bodies making difficulties in various 

photocatalytic activities in the aquatic system. Exposure to carcinogenic dyes can permanently 

damage eyes, liver, kidney in living beings. Hence, the presence of heavy metals and organic 

matters in natural water and industrial wastewaters is a subject of great interest in 

environmental engineering owing to its great relative impact on daily lives worldwide [8].  

Various technological approaches including, complexation, chemical oxidation or reduction, 

solvent extraction, chemical precipitation, reverse osmosis, ion exchange, filtration, membrane 
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processes, evaporation and coagulation are reported in the literature, for the treatment or 

removal of toxic heavy metal from contaminated wastewater [9-15]. However, these 

techniques are not very popular owing to certain disadvantages including, incomplete removal, 

high consumptions of reagent and energy, low selectivity, high capital and operational cost, 

and generation of secondary wastes that are difficult to be disposed of [16, 17]. For example, 

among the conventional methods, precipitation method followed by coagulation is particularly 

reliable for the removal of heavy metals from water [18]. But this process requires large settling 

tanks for precipitation of large volumes of sludge and requires subsequent treatment. 

Membrane filtration is a proven way to remove heavy metals. But its high cost limits the 

widespread use of this method [19]. For situations where the concentration of heavy metal ions 

is high in wastewaters, the traditional removal techniques can be suitable. However, it becomes 

ineffective when the concentration of heavy metals are low, but the water is still unsuitable for 

usage [20]. 

Besides the classical wastewater treatment techniques, adsorption of heavy metals is the most 

promising separation and purification method possessing many advantages including, high 

efficiency in removing very low levels of pollutants from dilute solutions, easy handling, high 

selectivity, lower operating cost, minimum production of chemical or biological sludge and 

regeneration of adsorbent [21-23]. Adsorption is a process by which molecules of a substance 

such as gas or liquid, accumulate on the surface of another solid material. Toxins, called as 

adsorbate in adsorption process, are attracted and bound to the adsorbent by different 

mechanisms. The mechanism of adsorption is complex and considered to take place via several 

mechanisms including, chemisorption complexation, coordination, chelating, physical 

adsorption, micro precipitation [24, 25] and ion exchange [26]. 

Hence, the approach followed in this work is to synthesize a novel, economical, easily available 

synthetic nanoadsorbent, which comprises a strong affinity and loading capacity. Some of the 

reported low-cost adsorbents include rice husk [27], flyash [28], pine bark [29], saw dust [30] 

and animal bone [31] for heavy metal ions removal. In conventional treatment processes, 

activated carbons have been widely used as an adsorbent for decontamination of drinking and 

wastewaters. Although activated carbon has large surface area and high adsorption capacity, 



4 
 

the high cost of activated carbon limits its use as an adsorbent [32]. Carbon-based materials 

including carbon nanotubes (CNTs) are very well known as adsorbents. Yet again, a 

prohibitively expensive material cannot be used for such a common and extremely large scale 

use, such as water decontamination. 

Graphene, a fascinating two dimensional carbon-based material possessing atomic thickness 

and high surface to volume ratio, has attracted considerable attention world over. But its 

separation problems and hydrophobic nature limit their practical application in water. 

Additionally, graphene has a tendency to agglomerate due to strong van der Waals forces, 

leading to drop in the surface area, hence a reduction in adsorption performance [33]. An 

apparent solution to this problem is chemical functionalization of graphene materials. 

Graphene oxide (GO) is a highly oxidized form of graphene, generally prepared by chemical 

oxidation of graphite resulting in extended graphene sheets decorated with (-COOH), carbonyl 

(-C-O), epoxy (C-O-C) and hydroxyl (-OH) groups. One of the major advantages with GO is 

that it is hydrophilic with very high negative charge density arising due to the oxygen 

containing functional groups. These functional groups are also responsible for the formation 

of stable aqueous colloid that can be obtained by simple sonication. GO can act as weak acid 

cation exchange resin because of the ionizable carboxyl groups. However, the problem 

associated with GO is the difficulty in separation of the materials from an aqueous system, 

leading to recontamination of water and nanotoxicity [33].  

A solution to all of these problems is the incorporation of molecules and nanomaterials into 

GO sheets, which can arrest the agglomeration, increase surface area and adsorption capacity. 

Moreover, if the incorporated material is magnetic in nature it the overall composite can 

become magnetically separable, thus mitigating separation issues. Among the magnetic 

materials magnetite (Fe3O4) is the oldest known magnetic material with excellent magnetic 

properties and surface area. There is much recent interest in the use of engineered magnetite 

nanoparticles in wastewater treatment because of nanosized particles, easily magnetic 

separable, low cost and eco-friendly nature [34]. But magnetite nanoparticles have poor 

thermal stability, and they further oxidize to maghemite and hematite, thus limiting adsorption 
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efficiency. It also possesses strong magnetic dipoles leading to decrease in surface area and 

drop in adsorption capacity. 

Keeping the above facts in mind, in the present work we have explored the use of a hybrid 

material by incorporating magnetite nanoparticles into GO sheets where the graphene oxide 

sheets act as substrates for Fe3O4 precipitation. The hydrophilic nature of the GO sheets keep 

the hybrid materials dispersed in the aqueous system and retard the leaching of Fe3O4 during 

water treatment process. The motivation of this work is to maximize the practical use of the 

combined advantages of both the components as active materials for improving the adsorption 

performance. In the present work, nanoparticulate Fe3O4 was synthesized individually, as well 

as anchored in GO sheets by a facile sonication assisted straight forward wet chemical route.  

The batch adsorption study was performed for Cr(VI) removal by bare magnetite particles as 

well as by the GO-Fe3O4 hybrid material and studied the effect of various process parameters 

(including adsorbent dose, pH, contact time, and initial concentration) on adsorption capacity 

was studied. The hybrid material was also tested for the removal of malachite green (a toxic 

cationic dye) and phenol red (a toxic neutral dye) followed by the study of the effect of various 

process parameters on it. Enhanced adsorption capacity and excellent adsorption kinetics were 

established the studied approach. For a better understanding of adsorption mechanisms, 

different kinetic models including, pseudo-first order, pseudo-second order, Weber-Morris, 

Elovich, and Bangham were applied to study the experimental data. Further, to understand 

equilibrium adsorption kinetics, various empirical isotherm models, including Langmuir, 

Freundlich, Dubinin–Radushkevich, and Temkin were applied to model the experimental data. 

Finally, all of the experimental results were assimilated to suggest the efficacy of the 

nanoadsorbents for the removal of the toxins. 
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CHARTER-2 

 

LITERATURE REVIEW 

In this section, relevant literature on the process of toxin removal using various adsorbents is 

reviewed. First the carbon based adsorbents are discussed, followed by that of various Fe based 

oxide nanoparticles. Subsequently, the recent literature based on the use of GO-Fe3O4 materials 

as adsorbents is reviewed. Then, literature based on the three different toxins used in this work 

are examined with regards to their effects, and the various adsorbents used for removal of these 

toxins.  
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The contamination of surrounding water bodies is mainly due to uncontrolled anthropogenic 

activities in the society and direct discharge of untreated industrial waste into water reservoirs, 

including rivers and lakes. Contamination of water is dangerous to living organisms that 

directly or indirectly use water for life processes. Adsorption is most widely used, feasible, and 

inexpensive method suitable for the separation of all kinds of contaminants, including heavy 

metals, dyes, and organic pollutants. The following paragraphs provide a brief overview of 

different types of adsorbent material, their synthesis, properties and performance in the field 

of water treatment.  

Fu et al. [35] reviewed the literature on removal of heavy metals from waste water through 

chemical precipitation, ion-exchange, adsorption, membrane filtration, coagulation, 

flocculation, flotation, and electrochemical methods. They concluded that adsorption was 

recognized as an effective and economical method for low concentration heavy metal removal 

by low-cost adsorbents and biosorbents. Additionally, the adsorbent of heavy metals by 

biosorbent is summarized through a review paper by Febrianto et al. [36]. The purpose of this 

paper was to explain biosorption of heavy metals through adsorption equilibria and kinetic 

modeling. Pseudo-first order and pseudo-second order rate equations have been widely used 

for studying the kinetics of biosorption of heavy metals from aqueous solutions. Various 

empirical models were fitted to explain the interaction of adsorbent surface with adsorbate 

materials. 

2.1. Carbon Based Materials as Adsorbents 

Carbon based materials have been preferred by many scientists for adsorption experiments due 

to their inherent large surface area. Activated carbon, a form of carbon that generally has much 

higher specific surface area than other carbon forms, has got remarkable attention for the 

removal of various pollutants, especially metal ions from drinking water [37, 38]. Due to 

economic considerations, use of activated carbon, however, has been limited. But, new 

inexpensive ways are progressively being found using activated carbon prepared from 

industrial and agricultural waste [39, 40]. Other low cost adsorbents, such as saw dust, distillery 

sludge and biomass, have also been developed for the removal of hexavalent chromium from 
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waste water [41-43]. However, these low cost adsorbents could not be used at industrial scale 

due to their poor mechanical stability. Additionally, their disposal also has created problems, 

thus further aiding environmental pollution.  

Carbon nano tubes (CNTs) are amongst the newer forms with nanostructured size and unique 

morphology that have been found to be popular as adsorbents [44, 45]. Stafiej et al. [46] used 

carbon nanotubes as efficient adsorbent for Cu2+, Co2+, Cd2+, Zn2+, Mn2+, Pb2+. Adsorption 

efficacy of CNTs as a function of pH and initial metal ion concentration were studied. Optimum 

conditions were pH-9 for toxin removal, and the equilibrium adsorption followed Freundlich 

isotherm. To improve the adsorption efficiency functionalization of CNTs was done through 

surface oxidation. Tofighy et al. [47] also studied the adsorption of divalent metal ions (Cu2+, 

Zn2+, Pb2+, Cd2+, Co2+) using oxidized carbon nanotubes, synthesized by chemical vapor 

deposition of cyclohexanol and ferrocene in a nitrogen atmosphere. Various isotherms, kinetics 

of adsorption and its variation with initial metal ion concentration were studied with a 

preferential ordered of adsorption as Pb2+ > Cd2+ > Co2+ > Zn2+ > Cu2+. Rao et al. [44] reviewed 

adsorption of divalent metal ions by both raw and surface oxidized CNTs showing that 

oxidation of CNTs remarkably increased the potential for adsorption. Effects of adsorption 

parameters on adsorption followed by competition of specific metal ion adsorption in the 

presence of multiple ions were also addressed. They achieved regeneration of CNTs using an 

acid solution, which considerably damaged the adsorbent bed. CNTs are not only shown 

potential adsorption capacity for metal ions but also employed for dye pollutants including azo 

dyes [48], reactive dyes [49] and direct dyes etc. [50]. Gupta et al. [45] reviewed adsorption of 

dyes from aqueous solution using CNTs and modified CNTs composites. They discussed the 

interaction sites on CNTs and adsorption capacity of functionalized CNTs. It showed that these 

materials show better results than non-functionalized single and multi-walled CNTs. Although 

many progresses have been made using CNTs as an adsorbent material, its fabrication cost 

limits their application in a larger scale. In addition, the nanotoxicity of CNT based materials 

in living organisms is not clearly understood. Also complete regeneration of CNTs is not a cost 

effective process. [51, 52].  
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A possible alternative to CNTs is “graphene”, which is another carbon based material with a 

lattice of sp2 hybridized carbon atom sheet with a great surface area. Graphene is the thinnest 

but strongest material and can be synthesized easily from graphite. This material also has 

acquired considerable attention in the field of water treatment, as can be seen from the 

following. 

Liu et al. [53] reported use of graphene prepared by modified Hummers’ method for adsorption 

of methylene blue from aqueous solution. Investigations describing the effect of various 

process parameters on the adsorption capacity of methylene blue onto prepared adsorbent were 

done.  The experimental data followed Langmuir adsorption isotherm at 293 K with a 

maximum adsorption capacity of 153.85 mg g-1. The calculated thermodynamic parameters 

suggested that adsorption process of methylene blue is endothermic, spontaneous, and followed 

pseudo second-order kinetics.   

Use of graphene as an adsorbent for fluoride removal from aqueous solution has been explored 

by Li et al. [54]. The batch experiments as a function of pH, contact time, and temperature 

were evaluated resulting optimum initial fluoride concentration and temperature to be of 25 

mg L-1 and 298 K, respectively. The experimental data fitted well to Langmuir isotherm model, 

resulting in maximum fluoride adsorption capacity of 35.59 mg g-1 at pH-7. The adsorption of 

fluoride showed pseudo-second-order kinetics and was found to be a spontaneous, 

endothermic, and irreversible process, as investigated by thermodynamic parameters 

calculation.   

Zhao et al. [55] have taken graphene sponge prepared by hydrothermal treatment of graphene 

with the use of thiourea. They developed a sponge like very porous but mechanically stable 

structure, which can be used for the removal of dyes, oils and other organic pollutants. 

Graphene sponges are found to have efficient adsorption capacity for both cationic and anionic 

dyes. Adsorption of dyes are highly dependent on the surface charges associated with the dye 

structures and the specific surface area of adsorbent material. Oil adsorption capacity was 129 

mg g-1, primarily due to high specific surface area of graphene sponge. The adsorption capacity 

of methylene blue, rhodamine B and methyl orange onto graphene sponges are calculated to 



10 
 

be 184 mg g-1, 72.5 mg g-1 and 11.5 mg g-1, respectively. Moreover, the regeneration of 

graphene sponge can be done by simple treatment without structural degradation. 

Decontamination of Bisphenol A (BPA) from aqueous solution on graphene was explored by 

Xu et al. [56]. The maximum adsorption capacity (qm) of graphene for BPA obtained from a 

Langmuir isotherm was 182 mg g-1 at 302.15 K, and the kinetics followed pseudo-second-order 

model. The thermodynamic studies indicated that the adsorption process was spontaneous and 

exothermic process. It was suggested that both π-π interactions and hydrogen bonds might be 

responsible for the adsorption of BPA on graphene. Besides, the presence of NaCl in the 

solution was also speculated to facilitate the adsorption process, whereas the alkaline pH range 

and higher temperature of the solution were unfavorable. 

 

The literature studied proved that graphene as a nanoadsorbent has offered potential benefits 

for various pollutants [53-56].  However, some important aspects of the use of graphene as 

adsorbent need to be considered. Graphene cannot be easily collected or separated from water 

after batch experiments, leading to recontamination or nanotoxicity, which eventually results 

additional problems to the ecosystem [57]. Again, graphene as a bulk material in solution phase 

has the tendency to agglomerate and restack due to strong van der Waals interactions to form 

graphite and results in large drop in the surface area and hence the adsorption capability [57]. 

To mitigate these problems various functionalization schemes of graphene have been explored 

in the literature. Among the chemically functionalized graphene, graphene oxide (GO), a 

highly oxidized form of graphene with functional groups decorated all over the sheets such as 

carboxyl (-COOH) and carbonyl (-C=O) groups at the sheet edges, and epoxy (C-O-C) and 

hydroxyl (-OH) groups on the basal plane [58]. Its oxygen containing functional groups and 

extremely high surface area favour its applications in the field of water decontamination. 

Several research groups have reported the beneficial uses of GO as an excellent adsorbent 

material for the removal of heavy metal ions, dye molecules and others cationic compounds 

[59-64].  
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Lei et al. [59] used three-dimensional free-standing graphene oxide foam (GOF) for the 

removal of heavy metal ions. Its adsorption capacity for the removal of heavy metal ions 

demonstrated that GOF had superior adsorption ability and good recyclability towards a wide 

range of metals ions, such as Zn2+, Fe3+, Pb2+, and Cd2+. GOF was prepared by direct oxidation 

of graphene foam, synthesized by microwave plasma chemical vapor deposition. The GOF 

processed a very high surface area (578.4 m2 g-1) and abundant oxygen functional groups with 

a rather low C/O ratio of 0.65. The maximum adsorption capacities found were 252.5, 326.4, 

381.3, and 587 mg g-1 for Cd2+, Zn2+, Pb2+ and Fe3+, respectively. The experimental data agreed 

well with the Langmuir isotherm adsorption model with 85% of the maximum adsorption 

capacities. 

 

Zhao et al. [60] synthesized fewlayered graphene oxide (FLGO) nanosheets from graphite 

using the modified Hummers method, and used as sorbents for the removal of Cd(II) and Co(II) 

ions from large volumes of aqueous solutions. The abundant oxygen-containing functional 

groups on the surfaces of graphene oxide nanosheets played a significant role in the adsorption 

of Cd(II) and Co(II). The effects of pH, ionic strength, and humic acid on Cd(II) and Co(II) 

sorption were investigated. The results showed that Cd(II) and Co(II) sorption on the FLGO 

nanosheets was strongly dependent on pH and weakly dependent on ionic strength. The 

presence of humic acid (HA) reduced Cd(II) and Co(II) sorption on graphene oxide nanosheets 

at pH < 8. Although the surface site density of graphene oxide nanosheets is lower than that of 

HA, the strong interaction of HA with graphene oxide nanosheets occupies parts of surface 

sites on graphene oxide nanosheets and also reduces the available binding sites of HA, leading 

to the formation of Co(OH)2 precipitation at pH > 8.2. The maximum sorption capacities of 

Cd(II) and Co(II) on graphene oxide nanosheets at pH 6.0 and 303 K were found about 106.3 

and 68.2 mg g-1 respectively. The thermodynamic parameters calculated from temperature-

dependent sorption isotherms suggested that Cd(II) and Co(II) sorption on graphene oxide 

nanosheets were endothermic and spontaneous processes. 
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Yang et al. [61] have studied the adsorption kinetics, isotherms and thermodynamics of Cr(III) 

on graphene oxide (GO). The adsorption kinetic data and the equilibrium data were well 

described by pseudo-second-order kinetics and Langmuir model, respectively. The 

thermodynamic parameters calculation indicated that the adsorption of Cr(III) on GO was 

spontaneous and endothermic. The maximum adsorption capacity of Cr(III) on GO at pH 5.0 

and T = 296 K was about 92.65 mg g-1 with a strong dependence on solution pH, but weak 

dependence on ionic strength. Fourier transform infrared (FTIR) spectra suggested that Cr(III) 

was adsorbed on GO mainly through the formation of inner-sphere complexes with the O-

containing functional groups on GO surface. Ramesha et al. [62] studied the adsorption of 

various charged dyes such as methylene blue (MB), methyl violet (MV), rhodamine B (RB), 

and orange G (OG) from aqueous solutions by exfoliated graphene oxide (EGO) and reduced 

graphene oxide (rGO). EGO consists of single layer of graphite decorated with oxygen 

containing functional groups such as carboxyl, epoxy, ketone, and hydroxyl groups in its basal 

and edge planes. Consequently, the large negative charge density available in aqueous 

solutions helps in the effective adsorption of cationic dyes on EGO with efficiency of up to 

95% for cationic dyes while the adsorption was negligible for anionic dyes. On the other hand, 

rGO that has high surface area does not possess high negative charge and was found to be very 

good adsorbent with removal efficiency 95% for anionic dyes, and 50% for cationic dyes. The 

adsorption can be attributed to the electrostatic interaction of nitrogen (ammonium ion) of MV 

with the COO− group of EGO. The delocalization of electrons in MV may influence the 

interaction and the charge transfer may not be strong. The nature of amine group (secondary 

amine) and possibly the steric hindrance limits the extent of interaction with EGO. With 

EGO/RB system, there is perhaps weak van der Waals and electrostatic interactions, and 

between EGO and OG, it is possibly van der Waals interactions alone. Electrostatic interactions 

play a role with EGO/MV and EGO/MB, while it is only van der Waals interaction with 

EGO/OG. The interactions with EGO/RB are probably both electrostatic and van der Waals 

type. According to the literature discussed, GO showed promising adsorption behaviors for 

water decontamination. However, GO has poor affinity for acidic/anionic compounds due to 

strong electrostatic repulsion between negative functional groups of GO and negative charge 
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on adsorbents leading to weak adsorption capacity [62]. Also, collection or separation of GO 

after adsorption is a serious problem. Moreover, unprecipitated feature of GO may cause a 

potential nano-toxicity to aquatic creatures, leading to a serious recontamination. 

 

Functionalization of graphene oxide has been explored by many research groups [57, 65, 66]. 

It may be achieved by the carboxylic acid group of graphene oxide or at the epoxy group of 

graphene oxide or non-covalent functionalization of graphene oxide or functionalization of 

reduced graphene oxide [58]. It improved their interactions with pollutants and maximized 

adsorption performance and potential. 

Wang et al. [67] reviewed the novel use of graphene based nanomaterials for remediation of 

various pollutants that may be inorganic and organic compounds from water. The 

physiochemical properties of GO were discussed with its limitations, especially in the field of 

water decontamination.  Modification of graphene oxide or graphene with metal oxides or 

organics were considered to enhance adsorption capacity, separation efficiency, and better 

reusability. Kui et al. [68] also reported graphene-based nanomaterials including modified 

graphene, graphene/metal nanoparticle composites, graphene/semiconductor hybrids, and 

graphene-complex oxide composites for better pollution management than pristine graphene. 

Perreault et al. [69] also highlighted graphene-based materials for environmental applications. 

They reviewed the recent developments using graphene-based materials as an adsorbent as 

well as its photocatalytic activities for environmental decontamination.  

GO has strong mechanical properties, its sheets help as a building frame increasing the 

mechanical properties of porous materials. Zhang et al. [70] prepared a porous Chitosan–

gelatin/Graphene oxide (CGGO) monoliths with 97% porosity by a unidirectional freeze-

drying method for the use of metal ions adsoption, such as Cu2+ or Pb2+ adsorption. All the 

CGGO monoliths exhibited extraordinarily high water absorption abilities, which should 

facilitate the diffusion of metal ions to the surface and interior regions of the porous structures. 

The adsorption behavior of the CGGO monoliths and influencing factors such as pH, GO 

concentration, metal ion concentration as well as the effect of EDTA were investigated. The 

incorporation of GO significantly increased the compressive strength of the CGGO monoliths 
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in both their wet and dry states, changed their porous structure with decent dimensional 

stability in aqueous solutions. The adsorbing ability for metal ions decreased at low pH, but 

increased from 20% to 88% upon the addition of EDTA at low pH. The remarkable increase 

in adsorption was mainly due to the high porosity of the CGGO monoliths, and the electrostatic 

interactions between the Cu2+–EDTA complexes and the protonated amino groups on the 

backbone of the chitosan macromolecules. Because of the high porosity of the CGGO 

monoliths, a large number of protonated amino groups are exposed to the solution. Since Cu2+–

EDTA complexes exhibit anionic properties, they can be easily attached by the exposed 

protonated amino groups through electrostatic interactions.  

 

The recent advances in graphene based materials largely include the anchoring of metal oxide 

nanoparticles into graphene/graphene oxide sheets. There are number of literature reported in 

a review article by Upadhyay et al. [71] using GO/metal oxide composites for water treatment, 

in which the authors have suggested all possible interactions GO/metal oxide composites. 

Another review paper by Hua et al. [72] described the heavy metal removal from wastewater 

by numbers of nanosized metal oxides, including ferric oxides, manganese oxides, aluminum 

oxides, titanium oxides, magnesium oxides, and cerium oxides.  The adsorption efficiencies 

for all of the oxides were measured by varying experimental parameters. They mainly focused 

on their preparation method, physicochemical properties, and adsorption mechanism for heavy 

metal removal.  Also, porous and magnetic nanomaterials got special attention in some section 

due to their unique separation performance. 

 

Nanotoxicity in water is a serious cause due to separation problem of graphene/graphene oxide 

from treated water. This can be controlled by incorporation of substances having magnetic 

properties so that magnetic separation can be possible. Li et al. [73] have functionalized GO 

with magnetic cyclodextrin-chitosan for chromium(VI) removal. The prepared material 

showed excellent adsorption behavior as a result of high specific surface area, sufficient 

binding sites (hydroxyl and amino groups), and their surface charge concentration, the 

additional effect of magnetite nanoparticles added extra adsorption properties. The novel 



15 
 

adsorption capacity of the material exhibited Langmuir isotherm at low pH for hexavalent 

chromium removal.   

2.2. Magnetite as an Adsorbent 

Among all pronounced magnetic materials, magnetite (Fe3O4) is the oldest and is one of the 

best magnetic material on earth [74, 75]. Magnetite nanoparticles also have contributed a lot 

in water decontamination due to the relative ease of synthesizing uniform nano sized particles 

with high surface area. These are well dispersed in water and are benign to the ecosystem [76-

78]. Magnetite nanoparticles show superparamagnetic behavior at room temperature with high 

saturation magnetization so that it can perform best in magnetic separation process [78]. There 

are numbers of published literature, where magnetite as nanoadsorbent has been used widely 

for dyes as well as toxic heavy ions removal. Shen et al. [79] have prepared magnetic Fe3O4 

nanoparticles by (i) co-precipitation method, (ii) co-precipitation followed by surface 

decoration, and (iii) polyol process showing three different average particle sizes of 8 nm, 12 

nm, and 35 nm respectively. They used synthesized Fe3O4 nanoparticles for removal of heavy 

metal ions such as Cu(II), Ni(II), Cd(II) and Cr(VI) mainly followed mechanism of electrostatic 

attraction. A special attention to particle size have been studied to investigate the adsorption 

capacity of magnetite nanoparticles showing increased adsorption with decreasing the particle 

size. Various process parameters (pH, temperature, adsorbent dose, contact time) for the 

smallest (8 nm) particles were optimized and used for all four kinds of ions. The maximum 

adsorption capacity was found to be 35.46 mg g-1 at pH-4, 293 K, six times higher value as 

compare to coarse particles (low surface area). They concluded that the magnetite nanoparticles 

with <10 nm sized were convenient for the removal of toxic ions with a maximum adsorption 

capacity of 41.86 mg g-1 for Ni2+, 47.44 mg g-1 for Cu2+, 45. 86 mg g-1 for Cd2+, and 43.59 mg 

g-1 for Cr6+.  

 

Yuan et al. [80] have prepared diatomite-supported/unsupported magnetite nanoparticles using 

co-precipitation and hydrosol methods for hexavalent chromium removal. The prepared 

diatomite-supported magnetite nanoparticles by hydrosol method were found to be of 15 nm 

size, good dispersion, less aggregation, and high thermal stability, with excellent adsorption 
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behavior. The interaction of Cr(VI) was described by a physico-chemical process such as an 

electrostatic attraction followed by a reduction of Cr(VI) to Cr(III). They studied pH 

dependence study on adsorption of Cr(VI), the kinetics studies showing a pseudo-second-order 

rate. The isotherm studies for both diatomite-supported/unsupported magnetite fitted well to 

the Langmuir isotherm equation. The maximum adsorption capacity obtained from the 

Langmuir equation followed order of 69.2 mg g-1 > 21.7 mg g-1 > 14.6 mg g-1 for diatomite-

supported/unsupported nano-scaled magnetite and micron-scaled magnetite respectively. 

 

Nano sized magnetite rods have been used by Karami [81] for Fe(II), Pb(II), Zn(II), Ni(II), 

Cd(II) and Cu(II) from aqueous solution. The pulsed current electrochemical method was used 

synthesize magnetite nanorods of 60 nm average diameters and 1000 nm average lengths 

showing excellent quantitative adsorption behavior. The experimental data exhibited that the 

adsorption of heavy metal ions onto magnetite nanorods followed Langmuir isotherm model 

and pseudo-second order kinetics. The maximum adsorption capacities of magnetite nano-

adsorbents calculated from the Langmuir isotherm models for Fe2+, Pb2+, Zn2+, Ni2+, Cd2+and 

Cu2+ were 127.01,112.86, 107.27, 95.42, 88.39 and 79.10 mg g-1 respectively. The regeneration 

of the nanorods was achieved by acid leaching with a cost effective eluent, HNO3 (nitric acid) 

solution. 

 

Saha et al. [82] have reported adsorption of different types of dyes (erichrome black-T, 

bromophenol blue, bromocresol green, methyl red, methylene blue, methyl orange, and 

fluorescein) onto iron oxide nanoparticles, and also demonstrated a comparative study between 

dyes containing -OH groups and without -OH groups. The synthesized iron oxide nanoparticles 

by co-precipitation method possessed 20-40 nm average size and ∼70 m2 g-1 specific surface 

area, and showed ferromagnetic behavior, both at room and low temperature, which helped for 

magnetic separation. The group of dyes (erichrome black-T, bromophenol blue, bromocresol 

green and fluorescein) containing especially hydroxyl groups showed enhanced adsorption 

capacity on the iron oxide surface as compared those that didn’t have -OH groups. The kinetic 

studies of dyes with hydroxyl groups indicated a faster second order rate in the pH range of 4 
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to 5. The adsorption equilibrium data exhibited interesting multilayer isotherm, well fitted to 

Freundlich model. The weak interactions (physisorption) of these dyes with iron oxide surface 

were evaluated from the Dubinin-Raduskevich isotherm model. The optimum pH for complete 

desorption was achieved at highly alkaline pH (> 11) with efficient reusability property.  

2.3. GO-Fe3O4 Hybrids as Adsorbents 

From the above cited literature, magnetite nanoparticles appear to be low cost, and eco-friendly 

adsorbent for wastewater treatment, owing to their high surface area, easy magnetic separation 

process, shorter sedimentation time, no sludge formation, and easily recycling back into the 

process [76-79, 81-83]. However, bare magnetite nanoparticles are susceptible to air oxidation 

and possess poor thermodynamic stability. Their further oxidation to other forms of the oxide, 

including maghemite (γ-Fe2O3) and hematite (α-Fe2O3), is proving to be a major hurdle for 

field application [34]. Additionally, due to a strong magnetic dipole, magnetite particles tend 

to aggregate in aqueous systems [84, 85]. The incorporation of engineered magnetite particles 

into GO based planar (2-dimensional) materials can mitigate the individual drawbacks of both 

GO and magnetite, and the synthesis of a hybrid of these materials can combine advantages of 

both of the materials. Graphene oxide, due to the presence of hydrophilic functional groups, 

can stay dispersed in aqueous systems, and can prevent restacking of the graphene sheets, 

unlike pure graphene. Therefore, GO can be used as template, or substrate, where magnetite 

nanoparticles can form a nucleus and growth to the required size. Thus, the magnetic 

nanoparticles being anchored to the GO surface can enhance and sustain a specific surface area 

of the hybrid during water treatment process. Various literature that have used the said or 

related concepts are reviewed in the next section.  

Yang et al. [86] have studied the interactions and adsorption performance of the organic (1-

naphthol and 1-naphthylamine) and inorganic pollutants (Pb2+) with synthesized GO-iron 

oxide and rGO-iron oxide composites using GO or rGO (reduced graphene oxide) as substrates, 

respectively. The comparative studies showed that the GO-iron oxide composite performs 

better for Pb(II) than organic pollutants due to complexation interaction and electrostatic 

attraction of inorganic metal ion with the negative oxygen-containing functional groups on GO. 

The data indicated qmax value of GO-iron oxides and RGO-iron oxides as 588.24 and 454.55 
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mg g-1, respectively. Also, adsorption capacities of naphthylamine on GO-iron oxides and 

RGO-iron oxides were calculated to be 285.7 and 303.03 mg g-1, respectively, concluding 

better performance of rGO-iron oxides.  

Adsorption of Cd(II) and ionic dyes was studied by Deng et al. [87]. The potential adsorption 

of magnetic graphene oxide (MGO) was simultaneously used for Cd(II), methylene blue (MB) 

and orange G (OG). The results showed the maximum sorption capacities in ultrapure water 

for Cd(II), MB and OG were 91.29 mg g-1, 64.23 mg g-1 and 20.85 mg g-1, respectively, and 

confirmed to pseudo-second-order kinetic model. The effect of adsorption capacities of Cd(II) 

in presence of MB and vice-versa were briefly studied by Cd(II)–MB binary system. However, 

in the same way, sorption capacity of OG in presence of Cd(II) and Cd(II) in presence of OG 

was studied in Cd(II)–OG binary system. The increase in solution pH for Cd(II) and MB system 

increase the sorption capacities, however, showed a contrary behavior for OG.  

Nano-sized [44-47, 51, 52] magnetite/graphene oxide (M/GO) composite was developed by 

Liu et al. [88] for the removal of Co(II) from aqueous solutions. The sorption of Co(II) on the 

magnetite-GO composite as a function of various process parameters were investigated. The 

adsorption data followed Langmuir isotherm model and pseudo-second-order kinetics. 

Thermodynamic parameters indicated endothermic process, and adsorption was spontaneous 

for the temperature range studied. The maximum adsorption capacities of Co(II) calculated 

from Langmuir isotherm model were 12.98 mg g-1 for the composites and a small value of 6.2 

mg g-1 for bare magnetite particles. The results indicated that the adsorption capacity of Co(II) 

on the Fe3O4-GO composite is much higher than that of Co(II) on Fe3O4. The inner-sphere 

surface complexation of Co(II) on Fe3O4-GO was observed at low pH. However, higher pH 

led to precipitation. The easy magnetic separation and recovery process proved the composite 

material to be suitable for metal ions decontamination from water in the natural environment.  

2.4. Cr(VI) As a Toxin and its Removal 

Industrial discharge bears lots of heavy metal ions among which most hazardous are Cd, Cr, 

Cu, Ni, As, Pb, and Zn. These ions are non-biodegradable inorganic pollutants that accumulate 

in living beings causing serious carcinogenic effects. Further, these ions are highly soluble in 
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aqueous systems and get easily absorbed in the food chain polluting the whole living system 

[89], although essential for human living process when present at trace levels. But, when the 

presence of these ions exceeds the critical/permissible limits, severe carcinogenic concerns 

arise. Among the heavy metal ions, chromium is one of the most hazardous. It is the 21st most 

abundant metal in natural earth crust existing in a wide range of oxidation states of +1 to +6, 

where +3 and +6 are most commonly occurring states. Among +3 and +6 oxidation states, +6 

is more toxic, stable, and exists as either in the form of chromate (CrO4
2-), dichromate (Cr2O7

2-

), or hydrochromate (HCrO4
-) ions [90].  

The primary sources of chromium discharge are corrosion of natural elemental rocks and dust 

from volcanic eruption. The main and major source of chromium is industrial or anthropogenic 

activities; including the direct or indirect discharge of effluents of chrome plating, stain-less 

steel production, and manufacturing of photographic plates from various industries. Chromium 

(VI and III) exposure can happen by both volatile and non-volatile forms causing various skin 

diseases and lung carcinoma [91]. It goes into human body by simple breathing, consumption 

of contaminated food and drinking contaminated water. Direct or indirect contact with skin can 

also cause primary skin irritation. Therefore, a maximum permissible limit hexavalent 

chromium has been set as a value of 0.05 mg L-1 by USEPA (2011). ATSDR (2000) found 

excess ingestion and exposure to hexavalent chromium beyond permissible limit can cause 

diarrhea, gastrointestinal disorders, irritation in the mucous membrane, low blood platelets, 

headache, damaged RBC, asthma, chest pain, and vomiting.  

Many adsorbent materials have been developed having selective properties, especially for the 

removal of hexavalent chromium from waste water. Pradhan et al. [92] studied the uptake of 

hexavalent chromium by activating red mud, an industrial waste. They suggested the 

heterogeneous adsorption behavior of adsorbent surface show both Langmuir as well as 

Freundlich adsorption isotherm models. Prominent effect of temperature, foreign ions and 

initial chromium concentration on adsorption behavior were investigated. Among all foreign 

ions sulfate (SO4
-2), and phosphate (PO4

-3) had perceptible effects on chromium adsorption. 

The optimum conditions for maximum adsorption found were pH in the range of 5 at 303 K, 

with initial chromium concentration 2-30 mg L-1. The maximum adsorption capacity was 
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calculated to be 30.74 mmol g-1. Deng et al. [93] used fiber material for removal of trivalent 

and hexavalent chromium. Polyacrylonitrile fibers were tested as a function of pH and found 

that adsorption performance was greatly dependent on solution pH. Adsorption of trivalent 

chromium occurred completely through surface complexation or chelating interaction of 

nitrogen containing surface group and Cr(III). However, the hexavalent chromium bound 

through hydrogen bonding or electrostatic attraction depending on pH of the solution. The 

mechanism of adsorption was analyzed by X-ray photoelectron spectroscopy (XPS) and FTIR 

spectra after adsorption of toxic ions. Adsorption of hexavalent chromium was found up to a 

maximum of 96%. The regeneration of both Cr(VI) and Cr(III) loaded fibers were done by 

base and acid leaching, respectively, without loss of adsorption capacities. Ow lad et al. [94] 

have published a review article on Cr(VI) removal from waste water mainly focusing on 

adsorption, as well as some typical methods including membrane filtration, ion exchange, and 

electrochemical treatment methods. Adsorption was found to be promising and new technique 

widely used to overcome water contamination. Different types of adsorbent materials, such as 

activated carbons (that possess high specific surface area), chitosan polymer (highly 

hydrophilic and flexible with surface amino groups), and inorganic membranes with high 

chemical and thermal stability were discussed. Biosorption using some low cost biosorbent 

followed by chemical modifications to get better performance were also discussed.  

Grandos-Correa et al. [95] used synthesized boehmite as adsorbent material for hexavalent 

chromium removal. Effect of various process parameters on chromium adsorption, isotherm, 

thermodynamic and kinetic studies were performed in order to get the adsorption mechanism 

at optimum conditions. Thermodynamic parameters suggested that adsorption is endothermic 

and spontaneous. Freundlich, Langmuir and Dubinin–Radushkevich isotherm models were 

studied to understand the equilibrium adsorption process. Overall boehmite was found to be a 

potential adsorbent for chromium removal. Another modified adsorbent, a mixed hydroxide of 

aluminum and magnesium were prepared by Li at al. [96] in nano sized range for Cr(VI) 

removal. Different Mg/Al molar ratios were synthesized by co precipitation and tested. It was 

found that molar ratio 3 (Mg/Al) showed maximum adsorption efficiency because of the 

smallest average particle size and high zeta potential value. Adsorption of Cr(VI) was favorable 
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at alkaline medium with a greater reaction rate. The interaction mechanism was attributed to a 

combination of both anion exchange and surface complexation. The maximum adsorption 

capacity was found to be in the range of 105.3-112.0 mg g-1 at temperature ranges from 20-40 

ºC. The adsorption experiment was endothermic and followed pseudo-second-order kinetics. 

Later Gupta et al. [97] have also used a low cost fertilizer from industrial waste for uptake of 

Cr(VI). They converted carbon slurry, an industrial waste generated in generators of fuel oil-

based industries, into a practically applicable adsorbent for hexavalent chromium removal from 

contaminated water. The raw material was oxidized with hydrogen peroxide and then acid 

activated with HCl to increase active surface area. Various adsorption conditions were applied 

with respect to adsorption efficiency. The equilibrium parameters for maximum adsorption 

were found at 70 min of digestion time, solution of pH-2, 100 mg L-1 initial Cr(VI) 

concentration, 4.0 g L-1 adsorbent dose, and 303 K temperature. Both Langmuir and Freundlich 

adsorption isotherm models were applicable to the adsorption behavior, and the kinetics 

followed pseudo-second order rate model. Maximum adsorption capacity was calculated as 

15.24 mg g-1 for Cr(VI) removal on activated carbon slurry. Regeneration of the adsorbent was 

proposed by column study. 

In the previous literature survey chitosan polymer were proved to be suitable adsorbent 

material for hexavalent chromium [94]. Sufia Hena [98] prepared a modified form of chitosan 

biopolymer coated with poly-3-methyl thiophene polymer. This surface functionalization was 

performed to achieve maximum adsorption capacity of the biopolymer than other 

commercially available activated carbon and adsorbents reported in other literatures [98-109]. 

Langmuir isotherm model better fitted the adsorption mechanism of chitosan coated with poly-

3-methyl thiophene than Freundlich of Temkin isotherm models in the optimum temperature 

range. The maximum adsorption capacity was found to be 127.62 mg g-1, which is a greater 

value than reported literature.  

Both biopolymer and ionic liquid have been gathered considerable attention in the field of 

adsorption applications. Kumar et al. [110]  have analyzed the active adsorption of 

chromium(VI) using a chitosan biopolymer impregnated with tetraoctylammonium bromide 
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by ultrasonication.  The coupling mechanism of chitosan and ionic liquid was governed by 

effective mass transfer due to ultrasonication followed by hydrogen bonding between chitosan-

ionic liquid. The adsorption mechanism was facilitated by electrostatic interaction between 

amino groups in chitosan and Cr(VI) through three center (3c) co-operative mechanism.  The 

Langmuir adsorption capacity of chromium onto prepared adsorbent was 63.69 mg g−1. 

Adsorption accompanied pseudo second order kinetics and exothermic spontaneous adsorption 

process. 

Graphene based material also have been used in recent years showing excellent adsorption 

efficacy towards carcinogenic metal ions. Wu et al. [111] used a modified form of graphene 

with cetyltrimethylammonium bromide as an active adsorbent. The results from batch 

experiment suggested the maximum uptake happened at lower pH value. The equilibrium 

temperature was at 293 K showing exothermic and spontaneous behavior. The adsorption 

processes were very fast and fitted well to pseudo-second-order model. The maximum 

Langmuir adsorption capacity was 21.57 mg g-1 at optimum temperature value. Kumar et al. 

[112] have reported exfoliated graphene oxide modified with an ionic liquid (aliquat-336) as 

an adsorbent to get a combined effect of hexavalent chromium removal. Graphene oxide 

worked as an impregnating platform for ionic liquid through electrostatic interaction 

mechanism. The adsorption mechanism of hydrochromate anion, the dominant complex form 

of hexavalent chromium in the optimum pH range, interacted with the prepared hybrid by 

cation-π, anion-π, as well as electrostatic interactions. The process followed second order 

kinetics and the Langmuir adsorption capacity was 285.71 mg g -1. Regeneration of the 

adsorbent could be possible with ammonium hydroxide, which leached out hexavalent 

chromium as ammonium chromate complex.  

The main sources of dye pollutions are from textile, paper and food processing industries 

releasing untreated water in to river and water reservoir. These dyes are water soluble, non-

biodegradable, but can be decomposed into poisonous aromatic amines that may cause ill 

health effect to living beings. Even a very low concentration of dye (< 1 ppm) in water is 

considered problematic for human use. These complex structured dyes can hamper the cycles 

of aquatic ecosystem too by slowing down the photosynthesis process of green plants. These 
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dyes do not allow the penetration of light and reach the aquatic plants [113, 114]. Some of it 

also affect the catalytic activities of microorganism [115].  

 

Therefore, direct disposal of waste containing dyes should be restricted and must be treated 

before releasing. Some of the above literatures suggest that adsorption is a promising method 

for dyes removal and that various adsorbent materials have been tried for different kinds of 

dyes. In the following sections, two specific dyes mostly found in industrial wastes, named 

malachite green and phenol red, will be discussed.  

2.5. Malachite Green as a Toxin and its Removal 

Malachite green (MG) is a cationic dye also known as triarylmethane. The primary sources of 

malachite green are mainly leather dying, ceramic, and fertilizer industries. It has a complex 

structure (Figure.2.1) containing nitrogen groups. MG was categorized as hazardous dye by 

WHO in 1964 and found to be carcinogenic or mutagenic [116, 117]. Malachite green is highly 

soluble in water and can harm the aquatic system, render the penetration of UV light into water 

bodies. Its health effects include damage to the liver, gill, kidney, and intestine of living 

characters in aquatic system [118, 119]. In case of human beings, even inhalation, ingestion, 

or contact can cause extreme irritation, and may cause permanent injury to eyes. 

 

Figure.2.1. The molecular structure of malachite green (left) and phenol red (right). 
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Keeping the hazardous effect of malachite green in mind different types of adsorbent materials 

have been synthesized by many researchers for potential adsorption of MG from waste water. 

A number of low cost adsorbents have been developed for uptake of malachite green. 

Chowdhury et al. [119] have chemically modified rice husk by treating it with sodium 

hydroxide and used in batch experiments. The adsorption of malachite green followed 

Freundlich isotherm model. Chemical ion-exchange was the main mechanism with maximum 

adsorption capacity was 7.395 mg g-1 at 313 K. Adsorption of malachite green onto modified 

rice husk was endothermic and followed pseudo-second order kinetics. Khattri et al. [120] used 

neem saw dust as an adsorbent, and found monolayer adsorption of MG dye with Langmuir 

maximum adsorption capacity of 4.354 mg g−1.  Vasanth Kumar et al. [121] used pithophora 

sp., a water algae for malachite green adsorption. This water alga performed maximum when 

activated at 300 °C for 50 min for 20-100 mg L-1 dye concentration. It followed Redlich-

Peterson isotherm model with maximum sorption capacity 117.647 mg g-1. Gupta et al. [122] 

used another low cost adsorbent called bottom ash, a thermal power plant waste. Almost 100% 

of malachite green was adsorbent by bottom ash. Langmuir and Freundlich adsorption isotherm 

models were analyzed. Acetone was used as eluent for the recovery of adsorbent bed. Ahmad 

et al. [123] have studied ginger waste for adsorption of malachite green through batch and 

column methods. Rechienberg’s equation was used to understand the complete film diffusion 

of adsorption. Alkaline medium was found favorable for maximum adsorption with monolayer 

adsorption capacities 84.03, 163.9 and 188.6 mg g-1 at 30, 40 and 50 °C respectively. Onal et 

al. [124] used activated carbon prepared from lignite by chemical activation with potassium 

hydroxide. They produced activated carbon which possessed high specific surface area (1000 

m2 g-1), and behaved as a good adsorbent for malachite green. Mass transfer and pore diffusion 

were found to be the governing mechanisms for the diffusion of MG. The process was 

endothermic in nature. The use of many other types of adsorbent materials have been tested in 

the literature with low to moderate adsorption capacity, including mesoporous carbons [125], 

activated carbon prepared from the epicarp of ricinus communis [126], rice husk-based porous 

carbon [127], rice husk-based active carbon [128], activated carbon derived from borassus 
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aethiopum [129], silica gel [130], rice straw-derived char [131], bentonite [132], Activated 

carbon/CoFe2O4 composites [133], and chitosan bead [134].  

Graphene materials also have been attended as potential adsorbent material for malachite 

green. Bradder et al. [135] have studied layered graphene oxide prepared by modified 

Hummers method. Layered GO that contains large numbers of oxygen containing functional 

groups with a high surface area showed better adsorption behavior than graphite. The Langmuir 

maximum adsorption capacity was 351 mg g-1 and 248 mg g-1, respectively, for methylene blue 

and malachite green.  

Zhigang Geng et al. [136] have functionalized reduced graphene oxide–Fe3O4 nanoparticles a 

composite material for dye adsorption. A series of dyes, including Rhodamine 6G (R6G), acid 

blue 92 (AB92), orange (OII), malachite green (MG), and new coccine (NC) have been used 

as adsorbate. The mechanisms of adsorption of dyes were mainly ascribed through π-π 

conjugation. The magnetic property of Fe3O4 helped the composite material to be separated 

from solution through magnetic separation. The hybrid material was regenerated successfully 

for reuse. Graphene oxide–Fe3O4 materials possessed numerous advantages, such as low cost, 

easy processing, combine adsorption performance of both GO and iron oxide, good 

regeneration capacity.  

2.6. Phenol Red as a Toxin and its Removal 

Dyes containing industrial waste also majorly contain phenol red (PR). It is also one of the 

most toxic dyes to both human beings and animals. In aqueous solutions containing PR, 

photocatalytic degradation, microbial decomposition and chemical oxidation are difficult due 

to the dye’s complex aromatic structure [137]. Phenol red induces cytotoxicity to Hela cells 

during tissue culture [138], and is considered a serious threat to living organisms. Therefore, 

removal of phenol red is a major concern and thus, there is a need to establish conventional, 

cost efficient and practically applicable technologies for removal of such carcinogenic 

materials from water. Some of the literature related to adsorption of phenol red from 

contaminated water are discussed below.  
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Mittal et al. [97] suggested adsorption, a conventional removal method for phenol red using 

different types of waste material. Their main motivation of that research work was use of waste 

as an adsorbent for wastewater treatment. They used bottom ash, a thermal power plants waste 

and deoiled soya, an agricultural waste material as effective adsorbents. Equilibrium studies 

were performed and monolayered adsorption with a maximum of 2.6 × 10-5 mol g-1 capacity. 

Thermodynamic calculations indicated that the process was endothermic, and followed inter 

particle and film diffusion mechanisms.  Almost 90% regeneration was achieved by acid 

leaching. Iqbal et al. [139] studied the adsorption of dyes by activated charcoal. They had taken 

a number of industrially important dyes, where phenol red was one of them. Adsorption 

performance of activated charcoal was investigated individually and also for a mixture of dyes 

that showed L-type and S-type isotherms. In case of mixture of dyes, the dye–dye interaction 

dominates over adsorbent and dyes attraction. Effect of pH on adsorption concluded that 

increase in pH can increase the adsorption for cationic dyes. However, for phenol red, the 

adsorption efficiency decreased with increasing pH. The negative values of Gibb’s free energy 

and enthalpy change for phenol red revealed that adsorption was exothermic and spontaneous. 

The maximum Langmuir capacity for phenol red was 0.0409 mg g−1 at 298 K.  

Wu et al. [140] have used mesoporous silica and hybrid gels for organic dyes like alizarin red 

S and phenol red adsorption. The comparative studies for both adsorbents demonstrated the 

hybrid gels to have more adsorption capacity than silica gel. They suggested that the adsorption 

mechanism of organic dyes are governed by interaction of hydrophobic gel surface and dye 

molecules. Toth isotherm (heterogeneity in adsorption behavior) showed better regression as 

compared to Langmuir isotherm. Wu [141] with another group of researchers investigated the 

adsorption study of organic dyes (methyl orange, alizarin red S, brilliant blue FCF, and phenol 

red) by porous xerogels. Here also, the mechanism of adsorption was the hydrophobic 

interaction of gel surface with organic dyes. Hybrid xerogels performed better than 

untemplated xerogels. Electrostatic interactions (hydrogen bonding) of xerogel surface and dye 

molecules effected by pH change, but was not found as a dominant mechanism.  
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OBJECTIVES 

The main objectives of the research work produced here are: 

o To synthesize nano-structured magnetite particles Fe3O4 by a facile sonication assisted 

chemical co-precipitation method. 

o To perform Cr(VI) removal test for bare magnetite system by batch experiments and 

study the effect of various process parameters including adsorbent doses, pH, contact 

time and initial adsorbate concentration, on adsorption.  

o To synthesize graphene oxide(GO) by modified Hummer’s method. 

o Anchoring of Fe3O4 nanoparticles into GO sheets to synthesize GO-Fe3O4 hybrids 

materials by a facile and straight forward wet chemical route with enhanced surface 

area and phase stability.  

o To study the removal kinetics of Cr(VI) ions on GO-Fe3O4 hybrids as the adsorbent 

system and explore the effect of various process parameters including adsorbent doses, 

pH, contact time and initial adsorbate concentration, on adsorption. 

o To test the removal efficiency of malachite green, a form of cationic dye with the use 

of GO-Fe3O4 hybrid adsorbents and study the effect of adsorbent doses, pH, contact 

time and initial adsorbate concentration, on adsorption. 

o To test the removal of efficiency phenol red (PR), a form of neutral dye, with the use 

of GO-Fe3O4 hybrid adsorbents and study the effect of various process parameters such 

as adsorbent doses, pH, contact time and initial adsorbate concentration, on its 

adsorption process. 

o To understand the isotherms and kinetics of adsorption for all of the toxin/adsorbent 

systems, corroboration of the experimental data to various mathematical models. 
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CHAPTER-3 

 

EXPERIMENTAL DETAILS 

In this section, details of materials synthesis, and procedures for adsorption studies are 

presented. First, the synthesis of magnetite nanoparticles is shown, followed by the synthesis 

of graphene oxide from modified Hummer’s method. Subsequently, the processing of the GO-

Fe3O4 hybrid adsorbents is performed. Adsorption studies are detailed thereafter. Some 

theoretical aspects of the adsorption kinetics and isotherm modeling are also presented.  
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3.1. Experimental Details: Materials Synthesis and 

Characterization 

3.1.1. Chemicals and Materials 

The qualities of reagents were pure and of analytical grade. Water was deionized prior to use 

for the dilution of aqueous solutions. FeCl3 6H2O and FeCl2 4H2O were procured from Loba 

Chemie, India. Graphite and all other chemicals including H2SO4, NaNO3, KMnO4 and H2O2 

were purchased from Merck, India. A working solution of 100 mg L-1 Cr(VI) for batch 

adsorption experiments was prepared from stock 1000 mg L-1 Cr(VI) using K2Cr2O7 (Merck). 

Diphenyl carbazide reagent was used for spectrophotometric determination of chromium in the 

aqueous. Dyes (malachite Green, phenol Red) were obtained from Sigma-Aldrich, India. The 

pH of the solution was maintained by the addition of required amount of 0.1M HCl (Merck) 

and 0.1M NaOH (Merck). All glassware used for experimental purposes were acid-washed and 

subsequently rinsed with deionized (DI) water to avoid metal contamination. All of the 

materials were used without further purification. 

3.1.2. Preparation of Magnetite Nanoparticles 

Ferrous chloride tetrahydrate (FeCl2 4H2O) (Loba Chemie, India) and Ferric chloride 

hexahydrate (FeCl3 6H2O) (Loba Chemie, India) were used as the precursors.  Aqueous 

solutions of ferric and ferrous salts were mixed together in the ratio of 1:2. The mixture was 

heated with continuous stirring, then ammonia (NH3) (AR grade, Merck) in water was added 

to it as a precipitating agent. A brown colored precipitate of Fe2+/Fe3+ ions was formed which 

is subjected to horn ultra-sonication (Oscar Ultrasonics, Mumbai) for 30 mins. Then the 

solution was cooled to room temperature, washed several times with deionized water to remove 

excess ammonium and dried under vacuum at 70 ◦C.  

3.1.3. Synthesis of graphene oxide (GO) 

Graphene oxide was synthesized from natural graphite by a modified Hummers method from 

the natural flake Graphite (Merck). 69 ml. of H2SO4 (Merck) was added to 3 g. graphite powder 

and 1.5 g. NaNO3 (Merck). Then the mixture was cooled in an ice bath. 9 g. of KMnO4 (Merck), 
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an oxidizing agent was gradually added while stirring. The rate of addition was carefully 

controlled to keep the reaction temperature below 20 ˚C. Subsequently, the reaction mixture 

was diluted with distilled water in an ice bath where the temperature was rapidly increased to 

98 ◦C. The suspension was stirred at 98 ◦C for 1 day. 3 ml. H2O2 (Merck) was then added to the 

mixture. The resulting suspension was heated, and then air cooled. The solid GO was obtained 

after the black deposit was filtered followed by centrifugation, washed several times with 

distilled water and alcohol, and dried at 100 ◦C for 12 h in a vacuum oven. 

3.1.4. Synthesis of Graphene Oxide-Magnetite Hybrids 

The Magnetite/Graphene Oxide (GO- Fe3O4) composite was synthesized by coprecipitation of 

FeCl3 6H2O (Loba Chemie, India) and FeCl2 4H2O (Loba Chemie, India) in the presence of 

GO. The mixed water solution of FeCl3 and FeCl2 in the ratio of 2:1 was added slowly to the 

GO solution, and heated with continuous stirring, 10 ml ammonia solution was added to adjust 

the pH to 10 to precipitate Fe2+/Fe3+ ions for synthesis of magnetite (Fe3O4) particles. The 

mixed solution was taken to a ultrasonicate horn (Oscar Ultrasonics, Mumbai). After ultra-

sonication for 45 min, the solution was cooled to room temperature. The dark black colored 

solution was then centrifuged and washed several times with deionized water and dried in 

vacuum at 70 ◦C.  

3.1.5. Physico-chemical characterization 

The FT-IR spectra of Magnetite, Graphene Oxide and GO-Fe3O4 adsorbent were recorded 

using Perkin Elmer FT-IR (spectrum RX-I) spectrometer in the range 500-4000 cm-1 by mixing 

the samples with spectroscopy grade KBr (Loba) in 1:2 ratios. Their X-ray diffraction (XRD) 

patterns were obtained using a Rigaku ultima IVdiffractometer (Rigaku, Japan) using Cu-Kα 

radiation (λ = 1.54 Å) operating at 40 kV and 40 mA. Scattering angle 2θ was ranged from 10 

to 80 at a scanning rate of 2°/minute and was analyzed using standard software. The qualitative 

element composition of the Fe3O4 and GO-Fe3O4 adsorbent before and after adsorption of 

chromium(VI) were analyzed using the energy dispersive spectral analysis (EDS) followed by 

microstructure analysis with a Nova NanoSEM/FEI FESEM analyzer operated at an 

accelerating voltage of 10 KeV. Transmission Electron Microscopy (FEI, TechnaiTM G2) 
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imaging of bare magnetite particles was performed by drop cast method using a carbon coated 

copper grid (300 mess, Ted Pella, USA). Specific surface area and adsorption isotherm were 

measured at liquid N2 temperature using the Brunauer–Emmett–Teller (BET) surface area 

analyzer (Quantachrome AUTOSORB-1, USA). The samples were degassed at 150 °C under 

vacuum. The pH measurements of aqueous solutions were made using a Calibrated Orion 2 

Star bench top pH meter. After adsorption, Spectrophotometric determination of Cr(VI), 

malachite green and phenol red in the filtrate were determined by a UV visible 

spectrophotometer (Perkim Elmer, USA) using 10 mm quartz cuvettes. Calibrations were done 

using standard solutions of calculated concentration prepared from their corresponding stock 

solutions.  

3.2. Experimental Details: Adsorption Studies 

3.2.1. Preparation of Cr(VI) stock and standard solutions 

Potassium dichromate (K2Cr2O7) was used as the source for chromium stock solution. All of 

the required solutions were prepared with analytical reagents and double-distilled water. 2.82 

g K2Cr2O7 was dissolved in distilled water of 1000 ml volumetric flask up to the mark to obtain 

1000 ppm (mg L-1) of Cr(VI) stock solution. Samples of different concentrations of Cr(VI) are 

prepared from this stock solution by appropriate dilutions. For example, 100 mg L-1 chromium 

stock solution was prepared by diluting 100 mL of 1000 mg L-1 chromium stock solution with 

distilled water in a 1000 mL volumetric flask up to the mark. Similarly, solutions with different 

metal concentrations such as (10, 20, 30, 40, 50 and 60 mg L-1) are prepared. 

3.2.2. Preparation of dye stock and standard solutions 

Malachite Green (Sigma-Aldrich, India) of analytical grade was used to prepare the stock 

solution. 1 gm of malachite green was dissolved in 1000 ml deionized water to make 1000 mg 

L-1 stock solution. Furthermore, 1000 mg L-1 phenol red (Sigma-Aldrich, India) stock solution 

was prepared from 1 gm in 1000 ml deionized water. Various concentrations of dyes were 

prepared by diluting appropriate amount of the above stock solutions as 10 to 100 mg L-1 for 

malachite green and 10 to 100 mg L-1 for phenol red.  
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3.2.3. Adsorption of Cr(VI) by Magnetite nano particles and GO- Fe3O4 

hybrids 

Adsorption of hexavalent chromium on to the prepared adsorbents (Magnetite nanoparticles 

and GO-Fe3O4) were studied by batch experiments. All of the batch experiments were 

performed at room temperature. A series of capped bottles were used to avoid change in 

chromium concentration containing 100 mL of 10 mg L-1 Cr(VI) solution. Required amount of 

adsorbent material was added to each bottle, well shaken for a predetermined time period and 

then subjected to magnetic separation process. The aqueous volume and chromium 

concentration were fixed at 100 ml and 10 mg L-1 respectively during the whole study for both 

the adsorbents.  Effect of experimental parameters such as adsorbent dose, contact time, pH, 

and initial concentration have been studied to investigate the Cr(VI) adsorption process for 

Magnetite nanoparticles and GO-Fe3O4 hybrid. The solution pH was adjusted by adding 

required amounts of 0.1M HCl or 0.1M NaOH solutions. The isotherm studies were performed 

at room temperature varying initial Cr(VI) concentrations and various isotherm models were 

used to corroborate the experimental data. Kinetic studies were investigated by different kinetic 

modelling. 

Absorbance spectra of Cr(VI) solution were measured by UV-vis spectrophotometer in 10 mm 

quartz cuvettes. Absorbance vs. concentration behavior of dichromate solution is complicated 

because the combined concentration of [HCrO4
-], [CrO4

-2], and [Cr2O7
-2] species together is 

indicated as Cr(VI) and the equilibrium between these species is dependent on both 

concentration and pH. Therefore, diphenylcarbazide solution is used for the 

spectrophotometric determination of Cr(VI) in the aqueous phase. It forms chromium(VI)-

diphenylcarbazide complex which gives a distinct red-violet color characteristic of 

chromium(VI) at 540 nm (Figure.3.1). 
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Figure.3.1. Absorption spectrum of Cr(VI)-diphenyl carbazide complex at 540 nm with varying initial 

concentration of the adsorbate solution. 

3.2.4. Adsorption of dyes by GO-Fe3O4 hybrid 

Adsorption of dyes on to prepared GO-Fe3O4 hybrid was studied by batch experiments. 

Experiment procedures for dyes were almost same as used in batch adsorption of Cr(VI). All 

of the experiments were performed in capped bottles for a fixed volume (100 mL) of 10 mg L-

1 dye concentration. Magnets are used for the separation process. Effect of various adsorption 

parameters such as adsorbent dose, contact time, pH, and initial adsorbate concentration for 

adsorption of dyes on GO-Fe3O4 hybrid have been studied. The pH was adjusted by adding 

required amounts of 0.1M HCl or 0.1M NaOH to the solutions. Data obtained from effect of 

initial dye concentration and contact time on adsorption were used for the isotherm and kinetic 

modelling respectively. UV-vis spectrophotometer is used for the spectrophotometric 

determination of malachite green and phenol red. It gives a distinct green color characteristic 

spectra for malachite green at 620 nm (Figure.3.2) and a distinct red color characteristic spectra 

for phenol red at 435 nm (Figure.3.3). 
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Figure.3.2. Absorption spectrum of malachite green at 620 nm. 

 

 

 

 

 

 

 

 

 

 

Figure.3.3. Absorption spectrum of phenol red at 435 nm. 
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3.3. Modelling of Adsorption Kinetics  

The kinetics of adsorption was studied by agitating the adsorbent loaded toxin solution for 

different time intervals, followed by finding out the adsorbate concentration and the adsorption 

capacity. Initially, the data were modelled based on Lagergren’s pseudo-first order and Ho and 

McKay’s pseudo-second order adsorption kinetics. The pseudo-first order kinetics can be 

expressed as  

  log ( 𝑞𝑒 − 𝑞𝑡) = log  𝑞𝑒 −
𝐾𝐼

2.303 𝑡
                             Eq. 3.1 

where qe is the equilibrium adsorption capacity (in mg g-1), qt is the adsorption capacity (mg g-

1) at time t, and KI is the first order rate constant (in min-1). The pseudo-second order kinetics 

can be expressed as. 

𝑡

𝑞𝑡
=

1

𝐾𝐼𝐼𝑞𝑒
2 +

1

𝑞𝑒
𝑡                                 Eq. 3.2 

where KII is the second order rate constant (g mg-1 min-1). Plotting t/qt with t, and fitting a 

straight line to it can enable calculation of the equilibrium adsorption capacity and the rate 

constant. 

The above two kinetic models indicate whether or not the process is governed by 

chemisorption. However, no information on the diffusion processes can be concluded from the 

said models. Therefore, to understand more about the adsorption process, the data were 

analyzed with other established kinetic models, including the Elovich model, Weber-Morris 

model for intraparticle diffusion, and Bangham model for pore diffusion controlled kinetics. 

The Elovich model can be expressed as  

𝑞𝑡 =
1

𝛽
ln (αβ) + 

1

𝛽
ln 𝑡                               Eq. 3.3 

where, α represents the initial sorption rate, and can indicate the extent of surface coverage. 

Plotting qt with t, and fitting the data with a straight line can yield other unknowns. The term 

β shows the activation energy for chemisorption. Confirmation of this kinetic model itself can 

mean that diffusion is the main process for adsorption. 
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To find out the type of diffusive processes involved, one can model the experimental data with 

intraparticle diffusion model, known as the Weber-Morris model. The expression can be 

written as 

𝑞𝑡 = 𝐾𝐼𝑃𝑡
1

2 + 𝐶                                  Eq. 3.4 

where KIP is the intraparticle diffusion constant (in mg g-1 min-0.5), and C is the intercept. 

Plotting the adsorption capacity at a specific time (qt) with t0.5 can yield a straight line as per 

this equation if the data follow intraparticle diffusion model. However, it has generally been 

seen that the data set in the above said plot can comprise of various segments. The initial data 

set may obey a linear relationship, as discussed above, followed by a plateau. In such a case, it 

may be appropriate only to model the linear part to find out the intraparticle diffusion constant. 

The onset of the plateau region might indicate the dominance of some other mechanism, mostly 

other slower diffusive processes, such as diffusion through pores. Additionally, it also can be 

checked if the linear segment has any intercept with the y-axis (C), in which case, it might 

indicate the instantaneous adsorption formed by a boundary layer. Moreover, a negative 

intercept also can mean that the formation of such boundary layer tends to impede the process 

of adsorption. 

The Bangham model can be expressed as follows: 

log log [
𝐶𝑖

𝐶𝑖−𝑚𝑞𝑡
] = log

𝐾𝐵

2.303 𝑉
∝ log 𝑡                                     Eq. 3.5 

where, Ci is the initial concentration of the adsorbate solution (in mg L-1), α is a constant usually 

less than unity, m is the mass of the adsorbent used, and V is the volume of the solution. The 

quantity log log Ci/(Ci-mqt) can be plotted against log t to yield a straight line, if the data were 

to obey Bangham model. The model indicates if pore diffusion has any role to play in the 

adsorption process. It is physically possible that the adsorbates follow surface diffusion and 

get adsorbed on the freely available particle surface. However, after the saturation on the 

surface, the adsorbate moves to the inner pores of particles or agglomerates of the particles. In 

this process, however, the diffusion slow down, and pore diffusion becomes the rate limiting 

step. 
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3.4. Modelling of Adsorption Isotherms 

Equilibrium adsorption analysis is important to find out the adsorption levels at a specific 

adsorbate concentration and to underpin further the types of adsorption followed. Therefore, 

experiments were conducted by varying the initial adsorbate concentration (mg L-1) and 

evaluating the equilibrium adsorbate concentration (Ce) and equilibrium adsorption capacity. 

Thus obtained data were analyzed based on established adsorption isotherm models. The most 

simplistic adsorption isotherm model is the Langmuir expression, where it is assumed that all 

of the adsorption sites possess equal affinity for the adsorbate and that no interactions between 

the adsorbates are possible. This covers from a sub-monolayer to a maximum of monolayer 

coverage of adsorbate on the adsorbent surface. It can be expressed as 

1

𝑞𝑒
=

1

𝐶𝑒𝑞𝑚𝐾𝐿
+

1

𝑞𝑚
                                         Eq. 3.6 

where, Ce, and qe are equilibrium adsorbate concentration and capacity, respectively, qm is the 

maximum calculated adsorption capacity of the adsorbent (mg g-1), and KL is the Langmuir 

adsorption constant (in L mg-1). A plot between Ce
-1 and qe

-1 can yield a straight line, from 

where the maximum adsorption capacity can be calculated from the intercept. The Langmuir 

constant is an indicative of the free energy for the process of adsorption (ΔG), which can be 

calculated with the expression  

∆𝐺 = −𝑅𝑇 ln 𝐾𝐿                                           Eq. 3.7 

A negative value of free energy indicates spontaneity of the process. Additionally, through a 

dimensionless equilibrium Langmuir parameter (RL), it can be found out of the process is 

favourable. RL can be expressed as  

𝑅𝐿 =
1

1+(1+𝐾𝐿𝐶0)
                                             Eq. 3.8 

Where C0 is the initial adsorbate concentration. A value of RL > 1, indicates an unfavorable 

process, whereas < 1 indicates favorable process. A value of 0 indicates irreversible adsorption 

process. 
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The adsorption process on heterogeneous adsorbent surfaces is modelled by the Freundlich 

isotherm model. It is based on the assumption that the adsorption sites are distributed 

exponentially with respect to their enthalpy of adsorption. It is generally prevalent with multi-

layered adsorption. The model can be expressed as 

log 𝑞𝑒 = log 𝐾𝐹 +
1

𝑛
log 𝐶𝑒                                        Eq. 3.9  

    

Where, KF is the Freundlich constant, an approximate indicator of adsorption capacity. The 

term 1/n is a function of the strength of adsorption; a value of <1 indicates normal adsorption, 

and >1 indicates cooperative adsorption. The smaller the value of n the higher is the 

heterogeneity of adsorption in the system, and ‘n’ in the range of 1 to 10 generally indicates 

favorable adsorption process. 

By changing the condition of no interactions between the adsorbates in the Langmuir model, a 

new type of isotherm model can be derived. The Temkin model takes into account the 

interactions between adjacent adsorbate ions and assumes that the heat of adsorption linearly 

decreases with the increase of adsorbate coverage on the surface. It can be expressed as 

𝑞𝑒 =
𝑅𝑇

𝑏
ln 𝐾𝑇 +

𝑅𝑇

𝑏
ln 𝐶𝑒                                         Eq. 3.10 

Where, b is the heat of sorption (in Joules mole-1), and KT is the Temkin equilibrium constant 

(in L mg-1), R is the universal gas constant, and T is the absolute temperature.  

For porous materials, the Dubinin-Raduskevich isotherm model relates the adsorption 

characteristics with the available porosity in the adsorbents. It assumes a Gaussian distribution 

of energies on a heterogeneous surface. It can be expressed as 

𝑞𝑒 = 𝑞𝑠𝑒−𝐾𝐷𝑅𝜖2
                                           Eq. 3.11 

This expression simplifies to the following form 

ln 𝑞𝑒 = ln 𝑞𝑠 − 𝐾𝐷𝑅𝜀2                                           Eq. 3.12 
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Where, qs is the theoretical adsorption saturation capacity (in mg g-1), KDR is the D-R isotherm 

constant (mol2 J-2). The term ε can be calculated as follows: 

𝜖 = 𝑅𝑇 ln [1 +
1

𝐶𝑒
]                                             Eq. 3.13 

By plotting ε2 with ln qe, a straight line fit can be performed. Subsequently the mean free energy 

for adsorption (E) can be calculated as: 

𝐸 =
1

√2𝐾𝐷𝑅
                                               Eq. 3.14 

This model is generally applied to solutions containing intermediate to high range of 

concentration. 
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CHAPTER-4 

 

RESULTS AND DISCUSSION 

In this section, all of the outcome of the current work are discussed and are explained in the 

context of toxic ion removal. In the first part, the structure, morphology, and other physical 

characteristics of the processed nanoparticles, and hybrid adsorbent are discussed. This is 

followed by the results and discussions on the adsorption of Cr(VI) by magnetite nanoparticles, 

and the GO-Fe3O4 hybrids. Subsequently, the adsorption of malachite green, a cationic dye, by 

GO-Fe3O4 hybrid adsorbents is presented. In the last part, the adsorption of Phenol red, a 

neutral dye, on GO-Fe3O4 hybrid powders is discussed. 
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4.1. PROPERTIES OF THE SYNTHESIZED NANOADSORBENTS 

4.1.1. Characterization of Magnetite nanoparticles 

4.1.1.1. XRD analysis  

The XRD patterns of prepared samples were recorded on a (X’pert High Score diffractometer, 

Rigaku, Japan) using Cu-Kα radiation (λ = 1.54 Å) operating at 40 kV and 40 mA. Scattering 

angle 2θ was ranged from 10 to 80 at a scanning rate of 2º/minute and was analyzed using 

standard X’pert High Score software provided with the instrument. Then crystalline structure 

of the magnetite nanoparticles as shown in Figure.4.1. The diffraction peaks of (220), (311), 

(400), (422), (511) and (440) reflect the magnetite crystal with a cubic spinel structure. The 

intense diffraction peaks indexed to (220), (311), (400), (422), (511), and (440) planes 

appearing respectively, are consistent with the standard XRD data for the cubic phase Fe3O4 

with a face centered cubic (fcc) structure [142].The unit cell of cubic spinel structure consists 

of eight ferric ions at tetrahedral sites (A sites) each with four oxide ions nearest neighbors, 

and eight ferric ions and eight ferrous ions at octahedral sites (B sites) each with six oxide ions 

as the nearest neighbors. This system could be referred to the structural formula of (Fe3+) A 

[Fe2+Fe3+] BO4. However, a magnetite can be easily oxidized in presence of air to form the 

maghemite (γ-Fe2O3) at temperature 110–230 ◦C and can be further transformed to the hematite 

(α-Fe2O3) at temperature above 250 ◦C. Generally, the diffraction peaks at (113), (210), (213) 

and (210) are the characteristic peaks of maghemite and hematite, respectively [143]. However, 

these peaks do not appear in the XRD pattern which implies no other iron compounds in the 

synthesized magnetite [144].  
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Figure.4.1. XRD pattern of magnetite nanoparticles (JCPDS no. 76-1849). 

4.1.1.2. FESEM and EDX analysis 

The morphological study (FESEM images) of bare magnetite nano particles as prepared by 

chemical co-precipitation method are shown in Figure.4.2. It consists of sphere shaped 

particles with diameter ranging from 20-70 nm. From the images, agglomeration of the 

particles is also shown. Presence of Fe and O in the elemental analysis of magnetite is in 

agreement with its successful synthesis shown in the EDX spectrum. 

 

 

 

 

 

 

 

 

 

 

Figure.4.2. FESEM and EDX study of bare magnetite nanoparticles. 
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4.1.1.3. TEM analysis 

The morphological studies of bare magnetite particles are shown in Figure.4.3 from 

transmission electron micrographs, which indicated a cluster of spherical shaped nanoparticles 

in the size range of 20-50 nm. However, these agglomerates are found to be occasional in 

nature, and well dispersed nanoparticles of 15-30 nm size were frequently observed during 

microscopy. The presence of pores are clearly visible from the high resolution TEM image of 

magnetite. 

 

 

 

 

 

 

 

 

 

 

Figure.4.3. TEM images of magnetite particles. 

 

4.1.1.4. BET analysis 

BET isotherm studies of magnetite nanoparticles were performed in the N2 atmosphere at 

degassing temperature 150 °C. The Figure.4.4 shows the complete N2 adsorption and 

desorption curves for magnetite nanoparticles with observed hysteresis. The BET isotherm is 

valid within a relative pressure range of 0.02-1.0, giving surface area 128.6 m² g-1. Presence of 

small hysteresis between absorption-desorption curve is an indication of presence of mesopores 

and majority of the pores fall in the range of 2-6 nm shown in the Particle size distribution 

graph of magnetite nanoparticles.  
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Figure.4.4. BET isotherm (left) and PSD analysis (right) of magnetite nanoparticles. 

4.1.1.5. FTIR analysis 

FTIR analysis of magnetite nano particles is shown in Figure.4.5. The FTIR spectrum have 

two prominent bands at 580 cm-1 for metal-oxygen bond vibration and a small hump at 1630 

cm-1 corresponds to hydroxyl groups stretching associated to the surface of magnetite nano 

particles.  

 

 

 

 

 

 

 

 

Figure.4.5. FT-IR spectrum of bare magnetite nanoparticles. 
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4.1.2. Characterization of Graphene Oxides 

4.1.2.1. XRD analysis  

The XRD patterns of flaky graphite and the synthesized graphene oxide is presented in 

Figure.4.6. The flaky graphite showed characteristic (002) peak of graphitic layers at ~26° of 

2θ. However, the peak was found shifted to about 10° for the GO materials. This confirms that 

the interlayer distance of 3.34 Å in graphitic structure has increased to about 8 Å in graphene 

Oxide. It can, however, be not claimed as a single layer of GO, since the peak would be absent 

in such a situation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.6. X-ray diffraction patterns of graphite and graphene oxide. 

 

4.1.2.2. FESEM and EDX analysis 

The typical morphology of GO was analyzed in Figure.4.7 showing distinctive wrinkled silk 

like surface, which is a characteristic of the vigorous chemical reactions during the exfoliation 

process. Presence of large opened GO sheets with highly semi-ordered structures in the SEM 

image of GO revealed its successful preparation by modified Hummer’s method. The 
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interactions of the interlayered hydrogen bonds facilitate the surfaces of GO sheet to become 

more hydrophilic. 

 

 

 

 

 

 

Figure.4.7. FESEM image of graphene oxide. 

4.1.2.3. UV-Vis analysis 

Further, the formation of GO was proved by the UV-Vis spectrum of the GO colloid in water 

is presented in Figure.4.8 that shows the absorption at 230 nm due to π-π* transition of the 

atomic C=C bonds form the GO sheets. 

 

.  

 

 

 

 

 

 

 

 

 

Figure.4.8. UV-Vis spectra of graphene oxide.  



47 
 

4.1.2.4. FTIR analysis 

Functional groups such as hydroxyl, carboxyl and epoxy group are introduced characteristics 

of GO. Figure.4.9 shows the characteristics FT-IR spectrum of Graphene oxide. In case of 

Graphene Oxide stretching vibrations of OH functional groups were obtained at 3334 cm-1. 

The carbonyl group (C=O) stretching vibrations were seen at 1725 cm-1 and alkoxy C–O 

stretching at 1045 cm-1. The aromatic C=C stretching 1615 cm -1 and C–OH stretching bands 

were obtained at 1402 cm-1. All the peaks discussed above satisfied the theoretical 

characteristics peaks values of graphene oxides.  

 

 

 

 

 

 

 

 

 

Figure.4.9. FT-IR spectra of graphene oxide. 

4.1.3. Characterization of GO-Fe3O4 hybrid 

4.1.3.1. XRD analysis  

The XRD pattern of the GO-Fe3O4 hybrid material (Figure.4.10) indicates peaks that are 

predominantly from magnetite. This is due to the fact that the hybrids possess a very low 

volume fraction of GO. The broad diffraction peaks indicate the nanoparticles with extremely 

fine crystallites [142]. There are no peaks of GO appeared in XRD pattern of GO-Fe3O4 hybrid. 

The reason is (1) more monolayer graphene oxide caused in the presence of magnetite, 
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resulting in weaker peaks from carbon being observed; (2) the strong signals of the iron oxides 

overwhelming the weak carbon peaks [144]. 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.10. XRD pattern of GO-Fe3O4 hybrid. 

 

4.1.3.2. FESEM and EDX analysis 

In FESEM image of GO-Fe3O4 hybrid, Iron oxide nanoparticles are successfully decorated 

over the GO sheets (Figure.4.11). After combination, the crumpled GO waves acted as 

growing matrix for magnetite nanoparticles and where the nanoparticles are successfully 

decorated over the GO sheets preventing the former’s agglomeration.  
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Figure.4.11. FESEM and EDX image of GO-Fe3O4 hybrid. 

4.1.3.3. FTIR analysis 

Figure.4.12 showing the  FT-IR spectra of GO-Fe3O4 hybrid before and after adsorption. In 

case of GO-magnetite hybrid, the characteristics peaks are described as O–H stretching was 

obtained at 3359 cm-1, carbonyl group (C=O) stretching vibrations were seen at 1729 cm-1, the 

aromatic C=C stretching at 1622 cm -1 and C–OH stretching peaks at 1401 cm -1.  

  

 

 

 

 

 

 

 

 

Figure.4.12. FT-IR spectra of GO-Fe3O4 hybrid. 
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4.2. ADSORPTION STUDIES 

4.2.1. ADSORPTION STUDIES OF Cr(VI) ON MAGNETITE 

NANOPARTICLES  

4.2.1.1. Effect of adsorbent dose 

Effect of variation of adsorbent doses on extent of adsorption was carried out by batch 

technique. Series of 100 mL hexavalent chromium solution with initial concentration of 10 mg 

L-1 were taken in bottles with varying adsorbent doses from 0.25 to 0.85 gm. The solutions 

were shaken for almost 90 minutes at room temperature and neutral pH to get the optimum 

adsorbent dose. From Figure.4.13, it can be clearly seen that the general trend of adsorption 

efficiency of hexavalent chromium increases with increase in adsorbent doses from 11 to 

75.7%. The result suggested that increase in adsorption efficiency is due to increase in number 

of active sites that play an important role in binding the impurities. But a visibly constant value 

in adsorption efficiency after 0.65 g of adsorbent doses is seen due to agglomeration of particles 

which reduce the effective surface area. Hence, 0.65 g was considered to be the optimum 

adsorbent dose and used for further adsorption studies. 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.13. Effect of adsorbent doses versus % removal of Cr(VI) using magnetite nanoparticles for 

initial Cr(VI) concentration of 10 mg L-1, at room temperature and neutral pH. 
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4.2.1.2. Effect of pH and mechanism of interaction of Fe3O4 nanoparticles 

with Cr(VI) 

Metal ion adsorption and its interaction with the adsorbent was probed by varying the pH of 

the solution. Although pH plays an important role in adsorption, it depends on the type of metal 

ions (adsorbates) and its chemistry in solution. Optimization of pH was carried out for series 

of 100 mL of 10 mg L-1 of Cr(VI) solution using 0.65 g adsorbent dose at room temperature. 

The pH of the solution was maintained by suitable acid and base like (0.1 M) HCl and (0.1M) 

NaOH. From Figure.4.14 it is evident that increase in pH leads to decrease in adsorption 

efficiency of hexavalent chromium. At pH < 5 and > 2 the predominant form of Cr(VI) is 

HCrO4
– (oxo-anion). That mechanism is briefly discussed later through predominance diagram 

(Figure.4.27). Under acidic medium adsorbent surface is highly protonated that leads to 

electrostatic attraction with chromium oxo-anions [151]. Higher pH leads to deprotonation of 

adsorbent surface resulting in electrostatic repulsion with chromium oxo-anions. Also higher 

pH leads to partial dissolution and coating phenomenon of magnetite nano particles in presence 

of excess NaOH [152, 153]. The two steps mechanism of dissolution of iron oxides as a 

function of pH is summarized in next adsorption system. It is also possible that [OH-] is high 

at higher pH leads to competition with negative oxo-anion. So, the optimized pH value for 

maximum 75.6 % adsorption was found at pH 4. 

 

 

 

 

 

 

 

 

 

Figure.4.14. Effect of pH versus % removal of Cr(VI) using magnetite nanoparticles for initial Cr(VI) 

concentration of 10 mg L-1, adsorbent dose 0.65 g and at room temperature. 
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4.2.1.3. Adsorption Kinetics 

The rate of adsorption was performed by varying the contact times from 10 to 100 mins with 

10 mg L-1 of Cr(VI) solution, 0.65 g adsorbent dose at room temperature for pH-4. It is 

observed from the Figure.4.15 that adsorption efficiency increased up to a maximum of 75.7% 

with time of adsorption than became constant after 90 minutes. This may be because of number 

of open available sites that progressively get saturated with the formation of a monolayer of 

metal ions on the adsorbent surface. So, the optimum time period was considered to be 90 mins 

which prove, the rate of adsorption is considerably lower. Also, the slope is almost uniform 

throughout the graph for all time intervals it means the material is not kinetically much active.  

 

Figure.4.15. Effect of contact time versus % removal of Cr(VI) using magnetite nanoparticles for initial 

Cr(VI) concentration of 10 mg L-1, adsorbent dose 0.65 g and pH 4. 

Adsorption kinetic mechanisms of Cr(VI) on magnetite nano particles were investigated by 

fitting the experimental data with different kinetic models such as pseudo-first-order (Eq. 3.1), 

pseudo-second-order (Eq. 3.2), Elovich (Eq. 3.3), Weber- Morris (Eq. 3.4) and Bangham (Eq. 

3.5) models, which are extensively used for all adsorption process [154, 155]. The fitting results 

obtained from different models are summarized in Table.4.1. 
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Fist the experimental data were fitted by pseudo-first order and pseudo-second order models 

indicated acceptable fits to the experimental data, with the second order model showing better 

regression coefficient R2
=0.98 (Figure.4.16). The maximum adsorption capacity (qe) of 1.67 

mg g-1 and KII of 0.01 g mg-1 min-1 was found out. The initial adsorption rate, V0 (KIIqe
2) was 

also calculated from the pseudo-second order data to be 0.03 mg g-1 min-1. Thus experiment 

results supports the assumption behind the model that the rate limiting step in adsorption of 

Cr(VI) through chemisorption. 

 

Table.4.1. Kinetic parameters for Cr(VI) removal onto magnetite nanoparticles.  

Kinetic models Parameters Values 

Pseudo-1st Order  R2 

KI (min−1) 

qe (mg g-1) 

0.929 

0.024 

1.294 

Pseudo-2nd Order  R2 

KII (g mg−1 min−1) 

qe (mg g-1) 

V0 (mg g-1 min-1) 

0.975 

0.01 

1.67 

0.03 

Elovich  R2 

β (mg g-1 min-1) 

α (g mg-1) 

0.966 

2.75 

0.18 

Weber-Morris  R2 

KIP (mg g-1 min-1/2) 

0.99 

0.126 

Bangham  R2 

KB (ml g L-1) 

α 

0.99 

62.13 

0.78 
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Figure.4.16. Pseudo-first-order model and Pseudo-second-order model for the removal of Cr(VI) by 

magnetite nanoparticles. 

To understand the nature of diffusion kinetics the Elovich model was applied, which showed 

acceptable R2
=0.966 as evidence that the rate determining step is not completely diffusion in 

nature but moderately it affects the adsorption process (Figure.4.17).  

 

 

 

 

 

 

 

 

 

Figure.4.17. Elovich model for the removal of Cr(VI) by magnetite nanoparticles. 
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To assess the type of diffusion mechanisms involved in the adsorption process, the intraparticle 

diffusion model (Weber-Morris equation) was applied. The data indicated excellent fit 

(R2=0.99) with t0.5 in the x-axis (Figure.4.18) pointing out the first stage of kinetics is 

intraparticle diffusion controlled. In the process, the adsorbent progressively adsorbs onto the 

Fe3O4 nanoparticles, as the process may be controlled by surface diffusion. In addition, the fact 

that the fitted straight line almost passes through the origin indicates the formation of boundary 

layer is not there.  

 

 

 

 

 

 

 

 

 

Figure.4.18. Weber- Morris model for the removal of Cr(VI) by magnetite nanoparticles. 

The adsorption close to the saturation time cannot be modelled based on the W-M model, where 

the adsorption significantly decreases indicating the dominance of the other processes during 

such stage (close to saturation). In order to understand if the effect of porosity is there, the data 

was modelled based on its Bangham kinetic equation (Figure.4.19). Interestingly, the data 

confirmed to Bangham model with excellent fit (R2=0.99). It is possible that after the 

kinetically enhanced uptake of the Chromium (VI) ions by the adsorbate, the diffusion of the 

toxins can be controlled by its diffusion through the pore clusters of the nanoparticles. 

Occasional porosity in the nanoparticles has been seen by TEM image (Figure.4.3) of 
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magnetite which corroborates the conclusion from the Bangham model. Thus, it can be inferred 

that the adsorption of chromium is primarily surface-diffusion controlled with some 

contribution from pore diffusion.  

 

 

 

 

 

 

 

 

 

 

 

Figure.4.19. Bangham model for the removal of Cr(VI) by magnetite nanoparticles. 

 

4.2.1.4. Adsorption Isotherms 

The effect of initial Cr(VI) concentration on adsorption was performed to investigate the type 

of adsorption behavior of the material surface. Adsorption may be monolayer or multilayer 

depending on the type of interaction of metal ion with the adsorbent surface. Batch experiment 

was performed at room temperature by varying the initial Cr(VI) concentration from 10 to 60 

mg L-1 using 0.65 g adsorbent at pH-4 well shaken for 90 mins. Figure.4.20 shows that the 

adsorption behavior seems to be monolayer or takes place at homogeneous surface as 

adsorption efficiency decreases with increase in initial Cr(VI) concentration. The reason is that 

the adsorbent dose is constant for all concentrations and the number of active adsorption sites 

are fixed which get saturated with concentration.  
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Figure.4.20. Effect of initial Cr(VI) concentration versus % removal using magnetite nanoparticles for 

adsorbent dose 0.65 g, pH-4, room temperature and time 90 mins.  

 

Further mechanism of adsorption is estimated by different isotherm modellings such as 

Langmuir (Eq. 3.6), Freundlich (Eq. 3.9), Temkin (Eq. 3.10) and Dubinin–Radushkevich (Eq. 

3.12) equations. All the corresponding isotherm parameters were calculated from their slopes 

and intercepts, summarized in Table.4.2.  

The Langmuir adsorption isotherm describes monolayer formation that takes place in 

homogeneous surface. This model assumes uniform energies of adsorption onto the surface 

and no transmigration of adsorbates in the plane of the surface. The Langmuir plot obtained 

from Ce
-1 and qe

-1 yields a straight line as shown in Figure.4.21. The plot indicated that 

adsorption of Cr(VI) onto magnetite is applicable to monolayer adsorption isotherm with very 

good fitting higher R2 = 0.99. The maximum adsorption capacity, qm and Langmuir constant, 

KL could be evaluated from the slope and intercept. The maximum monolayer adsorption 

capacity (qm) of magnetite nanoparticles was calculated to be 5.9 mg g-1. The free energy, ∆G 

(Eq. 3.7) calculated from the Langmuir constant was found to be -11.38 kJ mol-1
, which 

indicates that the process is spontaneous with +ve enthalpy.  Moreover, the magnitudes of 

equilibrium parameter (RL) calculated from Eq. 3.8 falls between 0.489 for 10 mg L-1 
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concentration of Cr(VI). This represents favorable adsorption of Cr(VI) oxo-anion with 

adsorbent [156]. 

Table.4.2. Isotherm parameters for Cr(VI) removal onto magnetite nanoparticles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.21. Langmuir model for the removal of Cr(VI) by magnetite nanoparticles. 

Isotherm models Parameters Values 

Langmuir  R2 

qm (mg g-1) 

KL (L mg -1) 

∆G (kJ mol-1) 

RL 

0.99 

5.9 

0.098 

-11.38 

0.489 

Friendlich  R2 

KF (mg g-1) 

n 

0.96 

0.88 

1.79 

DR  R2 

KDR 

qm (mg g-1) 

E (kJ mol-1) 

0.95 

-0.001 

5 

16.9 

Temkin  R2 

b (J mol-1) 

KT (L g-1) 

0.975 

1764.34 

0.858 
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The possibility of adsorption of Cr(VI) on heterogeneous surface was modelled by Freundlich 

isotherm model. The linear plot of log qe and log Ce showed a moderate fit with regression 

coefficient of 0.96 (Figure.4.22), indicating that multilayer formation on adsorbent surface is 

not significant. The Freundlich constant, KF and Freundlich coefficient, n were calculated from 

the slope and intercept as 0.88 mg g-1 and 1.79. The value of n is an indication of favorable 

adsorption process.  

 

 

 

 

 

 

 

 

 

 

 

Figure.4.22. Freundlich model for the removal of Cr(VI) by magnetite nanoparticles. 

To evaluate the adsorption potentials of the Fe3O4 nanoparticles for Cr(VI) ions, Temkin 

isotherm model was used. The Temkin plot of lnCe vs. qe is presented in Figure.4.23. The 

linear fit of Temkin model is acceptable with R2=0.975. The energy parameter b, related to 

heat of adsorption was found to be 1.7 kJ mol-1 indicating the process of adsorption is 

chemisorption.   

The experimental data were found to be partially applicable to D-R model with R2 value 0.95 

(Figure.4.24). The type of adsorption is also predicted by the mean sorption energy (E) value 

from the D-R model. The value of E (Eq. 3.14) for this system was found to be 16.9 kJ mol-1 

suggesting the chemical nature of adsorption. The Langmuir maximum adsorption capacity of 

5.9 mg g-1 was found to be comparable to the D-R adsorption capacity of 5 mg g-1. It means 
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adsorption of Cr(VI) onto magnetite surface is completely monolayer with a uniform 

distribution of adsorption energy. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.23. Temkin model for the removal of Cr(VI) by magnetite nanoparticles. 

 

 

 

 

 

 

 

 

 

Figure.4.24. D-R model for the removal of Cr(VI) by magnetite nanoparticles. 
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4.2.1.5. Mechanism of Desorption 

Desorption experiment is generally assessed for the economic and cost effectiveness of used 

adsorbent [24]. The reusability test was done by acid or base leaching process. The reagents 

used would not affect the adsorbent bed after desorption experiment so that it can be used again 

as fresh one. Both adsorption and desorption of the metal ions are strongly dependent on pH 

of the solution. So, 0.1M HCl and 0.1M NH4OH are used for our studies, to find out desorption 

efficiency as a function of pH (Figure.4.25). The desorption efficiency (DE) was calculated 

by using equation. 

 

DE (%)=
Concentration of Cr(VI) desorbed into the eluate

Concentration of Cr(VI) adsorbed onto the adsorbent
  ˟ 100                 Eq. 4.1 

The highest desorption efficiency was calculated to be 67.23% at highest pH-12. The poor 

desorption is attributed to chemisorption. As discussed before the process of adsorption of 

Cr(VI) on magnetite nanoparticle is favorable (75%) in acidic medium. But under basic 

medium process of desorption predominance over adsorption. Higher pH leads to negatively 

charged magnetite surface so that all possible desorption occurred due to electrostatic 

repulsion. Also, NH4OH helps chromium to desorb as corresponding ammonium chromate salt 

to the solution at high pH [145].  Sometimes NH4OH is known to help in reduction of Cr(VI) 

to the less toxic Cr(III) [145].  
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Figure.4.25. %desorption of Cr(VI) from magnetite nanoparticles as a function of pH. 

4.2.2. ADSORPTION STUDIES OF Cr(VI) ON GO-Fe3O4 HYBRIDS 

4.2.2.1. Effect of Adsorbent Dose 

Adsorption studies were mainly carried out by batch technique to obtain equilibrium data. A 

series of 100 mL samples having Cr(VI) initial concentration 10 mg L−1 were shaken for 1h 

with the varying adsorbent doses. It was observed from Figure.4.26 that the adsorption 

efficiency of was increased from ~ 61 to ~ 95% with increase the adsorbent dose from 0.05 to 

0.35 g, as number of active sites increases with respect to adsorbent dose. A very high value of 

adsorption efficiency is seen for this system at dose 0.25 g (less) than dose 0.65 g (high) for 

magnetite nanoparticles.  However, it was observed that after dose of 0.25 g, there was no 

significant change in adsorption efficiency of Cr(VI). This may be due to overlapping of active 

sites at higher dose. So, there was not any significant increase in the effective surface area due 

to the agglomeration of particles considering 0.25 g per 100 mL as optimum dose for further 

study. 
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Figure.4.26. Effect of adsorbent dose versus % removal of Cr(VI) using GO-Fe3O4 hybrids with initial 

Cr(VI) concentration of 10 mg L-1, at room temperature and neutral pH. 

 

4.2.2.2. Effect of pH, mechanism of interaction of GO-Fe3O4 hybrids with 

Cr(VI) 

The incorporation of magnetite nanoparticles on graphene oxide limits their re-stacking and 

aggregation, thereby enhancing the surface area of the composite. The growth of metal oxide 

nanoparticles on graphene oxide sheets results in less agglomeration among particles as GO 

acts as building blocks for the nanoparticles growth and keeps them in dispersed form. 

Furthermore, the functional groups and defect sites of GO act as the nucleation and growth 

sites for Fe3O4 nanoparticles.  

The pH dependence experiment of Cr(VI) adsorption is largely allied to the metal chemistry in 

the solution, as it exists in different ionic forms in solution and also to the properties of the 

adsorbent used. The most common Cr(VI) states in solution are chromate (Cr2O7
2-), dichromate 

(Cr2O7 
2-) and hydrogen chromate (HCrO4

-) at various pH of the solution. At pH <5 and >2 the 

dominant form of Cr(VI) is hydrogen chromate [146, 147, 157, 158] ion [HCrO4
-] in dilute 

solution but the dichromate ion is predominant in more concentrated solutions.  Increasing the 
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pH would shift the equilibrium to the CrO4
-2 oxy anion. At pH less than 2 the dichromate ion, 

Cr2O7
-2 is the key species that exists in solution [147]. The distribution of Cr(VI) species as 

dependence on both pH and total chromium concentration is shown by a predominance 

diagram (Figure.4.27). 

 

 

 

 

 

 

 

 

Figure.4.27. The predominance diagram with relative distribution of Cr(VI) species in water as a 

function of pH and concentration of chromium along with its equilibrium reactions. 

In a solution containing Cr(VI) ions, the interaction of hexavalent chromium certainly would 

depend on the pH of the medium. Hence, adsorption was measured as a function of pH of the 

solutions and its role in the interaction of the magnetite particles and graphene oxide. The 

optimization of pH was studied for an initial Cr(VI) concentration of 10 mg L -1 and the pH of 

the solution were adjusted from pH 1 to10 using dilute (0.1M) of both HCl and NaOH. At pH 

3-4, due to higher [H+] the hydrated surface of graphene oxide is protonated leading to 

positively charged surface, and this promotes the adsorption of HCrO4
– (oxo-anion) due to 

electrostatic attraction. The magnetite particles are also involved in an electrostatic interaction 

with the HCrO4
- anion as well as protonated hydroxyl groups on the surface [151]. The 

mechanism of protonation of iron oxide surface is summarized in two steps [153]. First, in 

aqueous solution Fe is coordinated to a neutral OH/OH2 pair forming a neutral compound [FeIII 

(OH)(OH2)], Second in acidic medium the OH group absorb a proton to form a positively 

charged compound [FeIII (OH2)2]
 +, which helps in electrostatic attraction with HCrO4

- anion. 
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The overall mechanism and different modes of interaction of GO-Fe3O4 hybrids with HCrO4 
- 

could be summarized in Figure.4.28. Above pH-4, the surface charge of adsorbent becomes 

negative with the slow deprotonation of the surface groups thereby acquiring a negative charge 

leading to electrostatic repulsion between the hexavalent chromium oxo-anion and the 

adsorbent surface (Figure.4.29). It is evident from the above data that there was decrease in 

adsorption efficiency with increase in pH of the solution. It means higher pH leads to partial 

dissolution of magnetite nanoparticles in the aqueous solution and also may be due coating 

phenomena at around neutral and higher pH due the presence of sodium hydroxide [152]. As 

discussed before increase in pH also increase OH– concentration in the solution which 

competes with Cr(VI) oxo-anions. The measured data suggested that the optimum pH for 

removal of Cr(VI) was 4. This is a characteristic feature associated with the existence of 

hydrochromate anion as reported by several groups working on the removal of chromium [146, 

148].  

 

Figure.4.28. Possible interactions involved in the adsorption of Cr(VI) on GO-Fe3O4 at optimum pH. 
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Figure.4.29. Effect of pH versus percentage removal of Cr(VI) by GO-Fe3O4 hybrids with initial 

concentration of 10 mg L-1 and adsorbent dose 0.25 g. 

4.2.2.3. Adsorption Kinetics 

Adsorption of Cr(VI) at different contact times was studied for an initial concentration of 10 

mg L−1 keeping dose 0.25 g and pH 3-4 to be constant. The result, presented in Figure.4.30 

shows that rate of adsorption of Cr(VI) onto GO-Fe3O4 hybrids is very fast as compare to bare 

magnetite nanoparticles. The adsorption efficiency was found to increase from 31.8 to 95% for 

a contact time of 5 to 30 min. It is evident from the figure that the Cr(VI) adsorption rate is 

high at the beginning of the adsorption, this may be due to the adsorption sites are opened and 

Cr(VI) interact easily with these sites. Cr(VI) uptake becomes almost constant after 30 min; 

this indicates the possible monolayer formation of Cr(VI) ions on the outer surface and that 

can be considered as equilibrium time of Cr(VI) adsorption. The observed data proved that the 

composite material is much more kinetically active than magnetite nanoparticles. The 

adsorption kinetics were evaluated by fitting experimental data to different kinetic models e.g.  

pseudo-first-order (Eq. 3.1) and pseudo-second-order (Eq. 3.2), Elovich (Eq. 3.3), Weber-

Morris (Eq. 3.4), and Bangham (Eq. 3.5). The amount of the Cr(VI) adsorbed at equilibriums, 

their respective kinetics constants and related regression coefficients are calculated and 

summarized in Table.4.3.  
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Figure.4.30. Effect of contact time versus %removal of Cr(VI) by GO-Fe3O4 hybrids for initial Cr(VI) 

concentration of 10 mg L-1, adsorbent dose 0.25 g and pH 4. 

To understand the order of the adsorption, first the experimental data were tested with pseudo-

first-order and pseudo-second-order kinetic models as shown in Figure.4.31. The low value of 

KII (0.023) and high value of R2 (0.99) indicates that the adsorption completely followed 

pseudo-second-order kinetics. The second order adsorption capacity and initial adsorption rate 

were found to be 4.6 mg g-1 and 0.48 mg g-1 min-1, which is much higher value than 

Cr(VI)/magnetite system. Jung WooaLee et al. has reported a V0 value of 0.29 mg g-1 min-1 

with 1 mg g-1 adsorption capacity for initial Cr(VI) concentration 120 mg L-1  by iron 

nanoparticles decorated on the graphene [159]. An initial adsorption rate 0.30 mg g-1 min-1 was 

reported by Jiahua Zhu et al. [160] where mesoporous magnetic carbon nanocomposite was 

used as an adsorbent for Cr(VI) removal. Yan Liu et al. found 2.77. mg g-1 min-1 initial 

adsorption rate for 300 mg L-1 Cr(VI) removal by manganese dioxide/iron oxide/graphene 

oxide system as adsorbent [161]. The initial adsorption rate for the present system is much 

better with initial Cr(VI) concentration 10 mg L-1 than another system reported in above 

literature.  
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Figure.4.31. Pseudo-first-order model (left) and Pseudo-second-order model (right) for the removal by 

of Cr(VI) by using GO-Fe3O4 hybrids. 

 

Table.4.3. Kinetic parameters for Cr(VI) removal onto GO-Fe3O4 hybrids.  

Kinetic models Parameters Values 

Pseudo-1st Order  R2 

KI (min−1) 

qe (mg g-1) 

0.943 

0.096 

4.284 

Pseudo-2nd Order  R2 

KII (g mg−1 min−1) 

qe (mg g-1) 

V0 (mg g-1 min-1) 

0.99 

0.023 

4.6 

0.48 

Elovich  R2 

β (mg g-1 min-1) 

α (g mg-1) 

0.98 

0.774 

0.55 

Weber-Morris  R2 

KIP (mg g-1 min-1/2) 

0.94 

0.699 

Bangham  R2 

KB (ml g L-1) 

α 

0.98 

61.219 

0.985 

 

The overall adsorption kinetics for the Cr(VI) removal was a pseudo-second-order process. 

However, this could not highlight on the rate-limiting step. Therefore, then the experimental 

data were analyzed by Elovich model also to understand whether the governing mechanism is 

diffusion controlled or not. The linear plot of lnt and qt shows partial fitting with R2=0.98 
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shown in Figure.4.32. It means transfer of HCrO4
– oxo anion from the aqueous phase to the 

adsorbent matrix could be governed by diffusion processes [162].  

Surface controlled diffusion process can be derived from the W-M model. The linear plot of qt 

and t0.5 did not show a a very good fit with regression coefficient of 0.94 (Figure.4.33) and not 

passing through the origin. It means whatever mass transfer occured; it was across the external 

boundary layer film of liquid surrounding the exterior of the particle. The slope of the linear 

portion indicates the rate of the adsorption oxo-anions. The lower slope corresponded to a 

slower sorption process. Poor surface diffusion and slow adsorption after saturation shows 

there are other rates determining step involved in the adsorption process. 

 

 

 

 

 

 

 

 

 

 

Figure.4.32. Elovich model for the removal of Cr(VI) by using GO-Fe3O4 hybrids. 
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Figure.4.33. Weber- Morris model for the removal of Cr(VI) by using GO-Fe3O4 hybrids. 

The slow increase in percentage removal after 30 min is attributed to intraparticle diffusion of 

Cr(VI) into mesopores with the extension of time from 30-40 mins. The pore diffusion 

controlled mechanism was tested by Bangham model (Figure.4.34). The linear fit with 

R2=0.98 is a conformation which might be taken as evidence that the rate determining step is 

controlled by pore diffusion process through the liquid filled pores. 

 

 

 

 

 

 

 

 

Figure.4.34. Bangham model for the removal of Cr(VI) by using GO-Fe3O4 hybrids. 
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4.2.2.4. Adsorption Isotherms 

Batch experiments were performed to investigate the effect of initial chromium concentration 

on adsorption onto adsorbate. For this experiment the initial concentration of chromium was 

varied from 10 mg L-1 to 100 mg L-1 with optimum adsorption dose, time and pH. It is evident 

from the result that the adsorption efficiency of Cr(VI) decreased from 95.1% to 11.8% for an 

initial concentration of 10 to 100 mg L-1 (Figure.4.35). The results indicate that there is a 

reduction in adsorption, due to the lack of available active sites required for the high 

concentration of chromium. The higher uptake of chromium at low concentration may be 

attributed to the availability of more active sites on the surface of the adsorbent for a lesser 

number of adsorbate species. The various isotherm models, Langmuir (Eq. 3.6), Freundlich 

(Eq. 3.9), Temkin (Eq. 3.10) and Dubinin–Radushkevich (Eq. 3.12) essentially correlate the 

amount of the hexavalent chromium adsorbed at equilibrium (Table.4.4).  

 

Table.4.4. Isotherm parameters for Cr(VI) removal onto GO-Fe3O4 hybrids.  

Isotherm models Parameters Values 

Langmuir  R2 

qm (mg g-1) 

KL (L mg -1) 

∆G (kJ mol-1) 

RL 

0.96 

10.23 

1.49 

-18.11 

0.0626 

Friendlich  R2 

KF (mg g-1) 

n  

0.97 

2.12 

4.65 

DR  R2 

KDR  

qm (mg g-1) 

E (kJ mol-1) 

0.95 

-0.0003 

10.63 

39.24 

Temkin  R2 

b (J mol-1) 

KT (L g-1) 

0.96 

1535.45 

36.24 
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Figure.4.35. Effect of initial Cr(VI) concentration versus %removal of Cr(VI) by GO-Fe3O4 hybrids 

with adsorbent dose 0.25 g, pH 4, room temperature and time 30 min. 

 

The Langmuir plot of 1/qe against 1/Ce with higher correlation coefficient, R2=0.96 indicates 

the applicability of Langmuir adsorption isotherm shown in Figure.4.36. A high Langmuir 

adsorption capacity of (qm) and binding energy constant (KL) of the adsorbent for Cr(VI) was 

10.23 mg g-1 and 1.49 L mg-1 respectively reflects the excellent sorption potential which is 

valid for monolayer sorption onto a surface with a finite number of identical sites. The -ve free 

energy parameter, ∆G can be calculated to be -18.11 kJ mol-1 is an indication of spontaneity of 

the process. 21.57 mg g-1 maximum capacity for 100 mg L-1 chromium concentration by CTAB 

modified graphene was reported by Yan Wu et al. [111]. Jiahua Zhu et al. used 1 g L-1  Cr(VI) 

ion concentration and got 1.03 mg g-1 capacity for Graphene/Fe@F2O3@Si-S-O system [163]. 

15.24 mg g-1 adsorption capacity was observed for 100 mg L−1 concentration by Vinod K. Gupta 

et al. [159] using carbon slurry as an adsorbent system. Yan Liu et al. [164]studied on 

manganese dioxide/iron oxide/graphene oxide for 300 mg L-1 with maximum adsorption 

capacity 175.4 mg g-1. The present system shows a higher Langmuir adsorption capacity of 

10.2 mg g-1 for a very low concentration of Cr(VI) 10 mg L-1. In order to calculate the 
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adsorption efficiency of the adsorption process and to know whether the process is favorable 

or not for the Langmuir type adsorption, the dimensionless equilibrium parameter (RL), can be 

calculated using Eq. 3.8. The calculated RL values found in this study was 0.0626 for 10 mg 

L-1 concentration of Cr(VI), representing favorable adsorption process which shows the 

effectiveness of interaction of the adsorbent with Cr(VI) oxo-anions [165]. 

 

 

 

 

 

 

 

 

 

 

Figure.4.36. Langmuir model for the removal by of Cr(VI) by using GO-Fe3O4 hybrids. 

The adsorption process on heterogeneous adsorbent was linearized by Freundlich isotherm plot 

with regression coefficient, R2=0.97 is shown in Figure.4.37. The Freundlich constant, n was 

calculated from the slope as 4.65 indicates favorable adsorption process.  

To understand the interactions between adjacent adsorbate ions Temkin model was taken into 

consideration. The linear plot of lnCe and qe gives regression coefficient 0.96 (Figure.4.38). 

The energy parameter corresponding to Temkin model also known as heat of adsorption (b) 

was found out 1.5 kJ mol-1. The high heat of adsorption attributed to chemisorption is the 

governing mechanism for the Cr(VI) adsorption on GO-Fe3O4 hybrids.   
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Figure.4.37. Freundlich model for the removal of Cr(VI) by using GO-Fe3O4 hybrids. 

 

 

 

 

 

 

 

 

 

Figure.4.38. Temkin model for the removal of Cr(VI) by using GO-Fe3O4 hybrids. 
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Involvement of pores in the isotherm mechanism can be described by D-R model. The value 

of R2 to be 0.95 for D-R model showed a poor fitting for this system (Figure.4.39). But the 

mean sorption energy (E) is found to be 39.24 kJ mol-1.  

 

 

 

 

 

 

 

 

 

 

Figure.4.39. Dubinin–Radushkevich model for the removal of Cr(VI) by using GO-Fe3O4 hybrids. 

4.2.2.5. Mechanism of Desorption 

Regeneration studies give an idea about the nature of adsorption. Chemisorption exhibits poor 

desorption; it may be due to the fact that in chemisorption the adsorbate species are held to 

adsorbent with comparatively stronger bonds. In any adsorption process, the economics of the 

entire operation is quite important and in this perspective the regeneration of the adsorbent is 

also an important parameter [24]. The desorption mechanism of the metal ions onto the 

adsorbent surface strongly depend on the pH of the solution, shown in Figure.4.40 

respectively. In this process different pH (2-12) of the solution was selected by using 0.1M 

HCl and 0.1M NH4OH as an eluent to desorb the metal ions from loaded adsorbent.  

In the adsorption process, the percentage of hexavalent chromium ions adsorption onto the GO-

Fe3O4 hybrids was found to be ~95% between pH 3-4 (acidic medium). At pH < 3, the 
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adsorbent surface has high positive charge density due to excess [H+]. Hence under these 

conditions the adsorption of Cr(VI) oxo-anions would be high due to electrostatic attraction. 

With increasing pH (pH > 4), the charge density on the adsorbent surface become negative, 

thereby resulting in a sudden decrease in Cr(VI) oxo-anions adsorption due to electrostatic 

repulsion. But under basic conditions, the process of desorption predominates over the process 

of adsorption. The desorption of Cr(VI) ions calculated (Eq. 4.1) from the loaded adsorbent 

surface was found to be ~92% at pH 10. 

 

Figure.4.40. %desorption of Cr(VI) from GO-Fe3O4 hybrids as a function of pH. 

4.2.2.6. Characterization of hybrid after adsorption Cr(VI) 

Since, some form of interaction between Cr(VI) ions with the Fe3O4  nanoparticles surface was 

expected, it was considered appropriate to conduct XRD scan of the Cr(VI) adsorbed GO-

Fe3O4 hybrids. Both the XRD patterns of the hybrid before and after Cr(VI) adsorption were 

almost similar, although some subtle differences can be observed Figure.4.41. The XRD 

pattern of the hybrid after Cr(VI) adsorption had slightly broader peaks.  It can be easily 

observed from the most intense (311) peak. Additionally, the peak intensity was also found to 
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be slightly reduced as compared to that of the unused GO-Fe3O4 hybrid. A logical explanation 

to this observation could be that Cr(VI) adsorbed onto the surface of the Fe3O4 nanoparticles, 

thus affecting its crystallinity. As a result some form of surface amorphization of the Fe3O4 

nanoparticles might occur. The XRD signal, therefore, could have come from the crystalline 

core of the Fe3O4 phase [145].  

 

 

 

 

 

 

 

 

 

Figure.4.41. XRD patterns of GO-Fe3O4 hybrid (a) before and (b) after adsorption of Cr(VI). 

The surface elements distribution of GO-Fe3O4 hybrid adsorbent after adsorption of Cr(VI) 

was studied by EDX shown in (Figure.4.42). It could also be substantiated that the adsorption 

of Cr(VI) from the EDX spectrum in addition to other elements such as Fe, C and O. The 

appearance of two peaks in the energy range of 5-6 keV in the EDX spectra of adsorbent after 

adsorption were characteristic of Cr(VI) reported earlier in literatures [145, 146]. 
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Figure.4.42. EDX spectra of GO-Fe3O4 hybrid after adsorption of Cr(VI). 

The FTIR spectroscopy of the hybrids before and after Cr(VI) adsorption provided substantial 

evidence for effective adsorption of the toxins. In the pH range (3-4), the hydroxyl groups in 

the adsorbent could be protonated and these positively charged surface hydroxy groups could 

also interact with the hydro chromate anion (HCrO4
-). After adsorption of chromium(VI), two 

new peaks appeared at 874 cm-1 and 770 cm-1 characteristics of Cr=O and Cr–O stretching 

frequencies in the hydrochromate anion respectively [147-150] (Figure.4.43). 

 

 

 

 

 

 

 

 

 

Figure.4.43. FTIR spectra of GO-Fe3O4 hybrid before and after adsorption of Cr(VI). 
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4.2.3. ADSORPTION STUDIES OF MALACHITE GREEN BY GO-

Fe3O4 HYBRIDS 

4.2.3.1. Effect of Adsorbent Dose 

Effect of adsorbent doses on the adsorption of malachite green in aqueous solution was 

performed by varying the GO-Fe3O4 hybrids doses from 0.005 g to 0.012 g shown in 

Figure.4.44. The doses are added to a series of 100 mL dye solutions of 10 mg L-1 

concentration at room temperature and neutral pH under stirring. The graph shows that the 

adsorption efficiency increases with adsorbent dose due to higher number of available active 

binding sites for cations in solution. The adsorption efficiency increases up to 97.6% for a very 

low amount of adsorbent dose of 0.01 g and then no significant changes in adsorption efficiency 

was observed on increasing the doses due to overlapping of active sites leading to 

agglomeration of nano particles. So, the optimum dose for malachite green removal was 

considered to be 0.011 g of GO-Fe3O4 hybrids. The above data manifested that the composite 

material is more practicable for dyes. Besides, the GO sheets also have delocalized π-electrons 

that act as basic sites providing the ability to bind cations. 

 

 

 

 

 

 

 

 

 

Figure.4.44. Effect of adsorbent doses versus %removal of malachite green on GO-Fe3O4 hybrids with 

an initial dye concentration of 10 mg L-1, at room temperature and neutral pH. 
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4.2.3.2. Effect of pH and Mechanism of Adsorption 

The effect of pH on adsorption and possible interactions of GO-Fe3O4 hybrids with dye 

molecules were further studied by varying the pH from 2 to 11, initial dye concentration of 10 

mg L-1 and adsorbent dose 0.01 g. pH of the solution was adjusted by adding a suitable volume 

of HCl (0.1M) and NaOH (0.1M). The role of pH is important in a solution containing ions as 

it affects the electrostatic interaction between adsorbent and adsorbate (cationic). A plot of 

%removal and pH clearly revealed that adsorption efficiency increases up to 97.6% with 

increase in pH and then decreases (Figure.4.46). The effect of pH on adsorbent surface is well 

discussed before for Cr(VI)/GO-Fe3O4 hybrid system. Lower pH leads to protonation of 

adsorbent surface, therefore, adsorption efficiency is low due to electrostatic repulsion of the 

cationic dye molecules with the adsorbent surface. Increase in pH increases the negative 

charges with slow deprotonation of surface groups associated with the GO-Fe3O4 hybrid, thus, 

increasing the electrostatic interactions with cationic dye. All possible interactions of malachite 

green onto GO-Fe3O4 hybrid is represented in Figure.4.45. But after pH > 8 the there is 

adecrease in adsorption efficiency because of higher [OH-] which complete with the adsorbate 

ions. So, adsorption efficiency increases up to 97.6% considering pH-8 to be the optimum pH 

for adsorption of malachite green. 
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Figure.4.45. Possible interactions of malachite green dye with GO-Fe3O4 hybrid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.46. Effect of pH versus %removal of malachite green by GO-Fe3O4 hybrid for initial dye 

concentration of 10 mg L-1 and adsorbent dose 0.011 g. 
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4.2.3.3. Adsorption Kinetics 

Effect of contact time on adsorption was studied to investigate the rate and kinetics for 

adsorption of cationic dye on GO-Fe3O4 hybrids. The batch experiments were carried out by 

varying the time period from 10-80 mins for an initial concentration dye to be 10 mg L-1, pH-

8 and dose (0.011 g). It is observed from the %removal versus time graph that adsorption 

efficiency increases with contact time for malachite green (cationic dye). The graph 

(Figure.4.47) shows two kind of behaviors, at initial time periods from 10-60 mins the slope 

of the graph is high which later gets almost constant values up to 80 mins. It suggested that 

initially the rate of binding is high because of higher numbers of open active sites get saturated 

with increasing time. The high slope of the graph suggested the high rate of adsorption of 

malachite green on to kinetically active GO-Fe3O4 hybrids material.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.47. Effect of adsorption time versus %removal of malachite green by GO-Fe3O4 hybrids for 

initial dye concentration of 10 mg L-1, adsorbent dose 0.011 g and pH-8. 

 

The adsorption kinetics for the removal of malachite green were investigated by correlating the 

experimental data to pseudo-first-order (Eq. 3.1), pseudo-second-order (Eq. 3.2), Elovich (Eq. 
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3.3), Weber-Morris (Eq. 3.4) and Bangham (Eq. 3.5) models. The corresponding calculated 

kinetic parameters are summarized (Table.4.5).  

Table.4.5. Kinetic parameters for malachite green removal onto GO-Fe3O4 hybrids.  

Kinetic models Parameters Values 

Pseudo-1st Order  R2 

KI (min−1) 

qe (mg g-1) 

0.72 

0.175 

918.54 

Pseudo-2nd Order  R2 

KII (g mg−1 min−1) 

qe (mg g-1) 

V0 (mg g-1 min-1) 

0.97 

0.00009 

102.67 

9.7 

Elovich  R2 

β (mg g-1 min-1) 

α (g mg-1) 

0.82 

0.06 

2.925 

Weber-Morris  R2 

KIP (mg g-1 min-1/2) 

0.94 

6.775 

Bangham  R2 

KB (ml g L-1) 

α 

0.78 

50.67 

0.503 

 

The pseudo first-order model was plotted between log(qe-qt) versus t, that give a linear 

relationship. But it was observed that the adsorption of cationic dye to GO-Fe3O4 hybrids fits 

well to pseudo-second-order model with higher R2 value 0.97 (Figure.4.48) than pseudo-first-

order (R2=0.72). Equilibrium adsorption capacity (qe) and pseudo-second order constant (KII) 

could be calculated form the slope and intercept of the obtained straight line respectively. The 

second order adsorption capacity was found to be 102.7 mg g-1. The initial adsorption rate of 

malachite green on GO-Fe3O4 hybrids was calculated to be 9.7 mg g-1 min-1, suggesting a much 

higher and faster kinetics than other, Cr(VI)/magnetite and Cr(VI)/GO-Fe3O4 systems.  

The lower value of KII (0.0009 g mg-1 min-1) shows the applicability of the second-order model 

to describe and interpret the experimental data better. Rashmi Rani Mishra, et al. [166] 

investigated the initial adsorption rate of citrate-stabilized magnetite particles to be 6.751 mg 

g-1 min-1 to remove malachite green with a maximum capacity 0.489 mg g-1. Utilization of 

oxidized-activated form of hydrothermally carbonized pine needles (HTC-APN) was reported 
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by Hassan H. Hammud et al. [167] showing adsorption capacity and rate to be 24.15 mg g -1 

and 3.12 mg g-1 min-1 respectively. In a very interesting study by Sozia Ahad et al. [168],5-

sulphosalicylic acid doped tetra-ethoxysilane (SATEOS) as an adsorbent showed an 

equilibrium capacity 4.81 mg g-1and initial adsorption rate 2.128 mg g-1 min-1. Hongmei Sun 

et al. [169] reported an initial rate of 1.35 mg g-1 min-1 for magnetite-RGO at adsorption 

capacity 6.47 mg g-1. The hybrid material found to possess ultrafast adsorption rate and 

capacity than the above literatures. 

In addition to the applicability of the pseudo-second-order kinetic model, the diffusion model 

was also found to be slightly applicable to explain the experimental data with regression 

coefficient 0.82.  The bad linear fit of Elovich model is shown in Figure.4.49.  

 

 

Figure.4.48. Pseudo-first-order model (left) and Pseudo-second-order model (right) for the removal of 

malachite green by GO-Fe3O4 hybrids. 
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Figure.4.49. Elovich model for the removal of malachite green by GO-Fe3O4 hybrids. 

Information regarding various intraparticle diffusion processes included were analyzed by 

partially fitted W-M model with R2=0.94 (Figure.4.50). It is evident from behavior of the 

linear plot of W-M model that the mechanism followed surface diffusion and since, the curve 

did not pass through the origin; it is noticed that in addition to the surface diffusion another 

stage such as boundary acts to control the adsorption process too. Also, the higher value of KIP 

(6.775) from W-M model signifies no internal diffusion of adsorbate. A very bad fitting of 

Bangham plot, the pore diffusion controlled model showing R2 of 0.78 (Figure.4.51) ascribed 

the adsorption of malachite green on to composite material is not diffusion controlled due its 

complex aromatic structure. The best followed mechanism is pseudo-second-order kinetics and 

partly intraparticle diffusion acts to control the adsorption process.  
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Figure.4.50. Weber-Morris model for the removal of malachite green by GO-Fe3O4 hybrids. 

 

 

 

 

 

 

 

 

 

Figure.4.51. Bangham model for the removal of malachite green by GO-Fe3O4 hybrids. 
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4.2.3.4. Adsorption Isotherms 

Effect of initial dye (malachite green) concentration on adsorption was performed by varying 

the dye concentration from 10 mg L-1 to 60 mg L-1 keeping other parameters constant. The 

result shows that adsorption efficiency decreasing with increasing the dye concentration 

(Figure.4.52). This simple adsorption behavior for cationic dye was assumed to be 

homogeneous. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.52. Effect of initial dye concentration versus %removal of malachite green by GO-Fe3O4 

hybrids with adsorbent dose 0.011 g, pH 8, room temperature and time 60 mins. 

 

Whether the adsorption takes place on homogeneous surface or heterogeneous surface can be 

further proved by isotherm modelling. The experimental data were fitted to Langmuir (Eq. 

3.6), Freundlich (Eq. 3.9), Temkin (Eq. 3.10) and Dubinin–Radushkevich (Eq. 3.12) models. 

All the constant parameters and correlation coefficients (R2) corroborated from the plots of 

known equations for all models are summarized in Table.4.6. 
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Table.4.6. Isotherm parameters for malachite green removal onto GO-Fe3O4 hybrids.  

Isotherm models Parameters Values 

Langmuir  R2 

qm (mg g-1) 

KL (L mg -1) 

∆G (kJ mol-1) 

RL 

0.98 

288.2 

2.103 

-18.957 

0.045 

Frieundlich  R2 

KF (mg g-1) 

n  

0.94 

157.01 

3.75 

DR  R2 

KDR  

qm (mg g-1) 

E (kJ mol-1) 

0.98 

-0.0002 

304.95 

41.76 

Temkin  R2 

b (J mol-1) 

KT (L g-1) 

0.99 

49.477 

31.586 

 

Based on the linear plot of Langmuir model (Figure.4.53), the values of Langmuir constant 

(KL) and maximum monolayer capacity (qm) were obtained from the intercept and slope of the 

plot. A correlation coefficient of 0.98 shows the moderate applicability of the model for the 

interpretation of the experimental data. The maximum monolayer adsorption capacity was 

found to be 288.2 mg g-1. α-Fe2O3–rGO showed maximum adsorption capacity of 438.8 mg g-

1 for initial malachite green concentration 75 mg L-1 by Airong Liu et al. [170]. Similarly, 89.3 

mg g-1 of monolayer capacity was derived from Activated carbon/CoFe2O4 composite as an 

adsorbent for 100 mg L-1 dye solution by Lunhong Ai et al. [171]. Hongmei Sun et al. reported 

maximum capacity 22 mg g-1 for 0.7 g L-1 of dye solution by magnetite-RGO [169]. Maximum 

adsorption capacity of malachite green for the present system is found to be better than above 

reported systems. Furthermore, the Langmuir constant (KL), related to free energy of 

adsorption (∆G) found to be -18.957 kJ mol-1 shows the process is spontaneous and 

dimensionless equilibrium parameter RL can be found out 0.045 for 10 mg L-1 dye 

concentration. This represents the adsorption of cationic dye on GO-Fe3O4 hybrids is favorable.  
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Figure.4.53. Langmuir model for the removal of malachite green by GO-Fe3O4 hybrids. 

Parameters of the Freundlich isotherm model such as KF and n were calculated from the 

intercept and slope of the linear plot of lnqe versus lnCe, respectively (Figure.4.54). The value 

of n (3.75) for this system shows the favorable adsorption of malachite green onto GO-Fe3O4 

hybrids while the lower R2 value of 0.94 shows its moderate suitability for fitting the 

experimental data. It means slight multilayer formation due to π-π staking interaction between 

aromatic part of cationic dye and delocalized π-electron system of graphene oxide [71]. 

 

 

 

 

 

 

 

Figure.4.54. Freundlich model for the removal of malachite green by GO-Fe3O4 hybrids. 
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The heat of adsorption (b) for adsorbent–adsorbate interactions and its uniform distribution of 

binding energy were evaluated by Temkin model. The linear plot of qe versus ln Ce represented 

the best fit with highest R2 value of 0.99 (Figure.4.55). The value of heat of adsorption was 

found 49.47 J mol-1, which is an indication of physical adsorption. Therefore, the mechanism 

of adsorption of malachite green onto GO-Fe3O4 hybrids completely followed by Temkin 

model showing physisorption. 

 

 

 

 

 

 

 

 

 

Figure.4.55. Temkin model for the removal of malachite green by GO-Fe3O4 hybrids. 

To estimate the apparent porosity free energy adsorption isotherm, data were tested by D–R 

model. The characteristics of adsorption mechanism for this system seems to be partially 

governed by the linear D-R fit with R2 value of 0.98 (Figure.4.56). But the mean sorption 

energy (E) calculated was too high (41.76 kJ mol-1), which means the free energy change when 

one mole of ion is transferred from the solution to the surface of the sorbent is not an acceptable 

for this system.  
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Figure.4.56. D-R model for the removal of malachite green by GO-Fe3O4 hybrids. 

4.2.3.5. Mechanism of Desorption 

The mechanism of desorption as a function of solution pH is investigated using 0.1M HCl and 

0.1M NaOH. These used eluents are cost effective and does not harm the adsorbent bed. 

Adsorption mechanism of malachite green (cationic dye) onto GO-Fe3O4 hybrids was 

favorable at higher pH-8 as illustrated. But the process of desorption of cationic dye is seen to 

be maximum at lower pH. Therefore, a graph with decreasing %desorption with increase in pH 

is shown in Figure.4.57. At lower pH desorption predominance over the adsorption of the 

malachite green on GO-Fe3O4 hybrids. This perhaps due to electrostatic repulsion caused by 

surface protonation of the composite material with dye cations. The maximum desorption 

efficiency is calculated from Eq. 4.2 to be 93.3% at pH-2.  

 

Desorption Efficiency (%)=
Concentration of dye desorbed into the solution

Concentration of dye adsorbed onto the adsorbent
    ˟ 100            Eq. 4.2 
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Figure.4.57. %desorption of malachite green from GO-Fe3O4 hybrids as a function of pH. 

4.2.4. ADSORPTION STUDIES OF PHENOL RED BY GO-Fe3O4 

HYBRIDS 

4.2.4.1. Effect of Adsorbent Dose 

This batch experiment was carried with a series of bottles containing 100 mL of phenol red 

solutions of concentration 10 mg L-1 varying the doses from 0.005 to 0.012 g at room 

temperature and neutral pH. The results of the effect of adsorbent doses on adsorption capacity 

are illustrated in Figure.4.58. An increasing trend in adsorption efficiency with respect to 

adsorbent dose is seen from the graph. Increasing doses lead to more numbers of active sites 

which gradually overlap for higher doses [172]. Hence, the adsorption efficiency increases 

from 39.13% to 67.8% and then remain almost constant. As phenol red carries both the charges 

which effect of electrostatic interaction, the adsorption efficiency is not so high for the same 

amount of adsorbent dose used before for malachite green (cationic dye). 
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Figure.4.58. Effect of adsorbent dose versus %removal of phenol red by GO-Fe3O4 hybrids for initial 

dye concentration 10 mg L-1, room temperature and neutral pH. 

 

4.2.4.2. Effect of pH and Mechanism of Adsorption 

Effect of pH plays a significant role in adsorption mechanism of phenol red (neutral dye) on 

GO-Fe3O4 hybrids as it contains both the charges. Before going to the adsorption efficiency 

lets us discuss interesting chemistry of phenol red as a function of pH. In solution phase under 

very acidic conditions phenol red molecule attains the zwitterion form with two functional 

groups, a negatively charged sulfate group and a positively charged ketone group with an 

additional proton. If the pH of the solution is increased the pKa value also increases and the 

proton from the ketone group is lost resulting the dye molecule to be negatively charged. If the 

pH is further increased to higher basic level phenol’ hydroxyl loses its proton leading an extra 

negative charge. As the charge on the dye molecule is a function of pH, it will definitely effect 

the electrostatic interaction between the dye molecules and adsorbent surface hence the 

adsorption efficiency also.  
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The batch experiments were studied by varying the pH of the solution from 2-11 for an 

adsorbent dose of 0.011 g, initial dye concentration 10 mg L-1 at room temperature. The 

decrease in adsorption efficiency of phenol red as a function of pH variation is given in 

Figure.4.59. The prepared GO-Fe3O4 hybrids contain various functional groups which get 

protonated (+ve) at very low pH and as discussed before the dye molecules also acquire both 

the charges (+ve and –ve) at very low pH. Therefore, a maximum adsorption of 67.8% is 

possible at pH-3 due to electrostatic attraction between negatively charged protonated groups 

and positive charge in zwitterion. At higher pH the composite surface becomes more and more 

negative due to presence of higher [OH-]. So, at basic medium, there is electrostatic repulsion 

between negative adsorbent surface and negatively charged dye molecule leads to decrease in 

adsorption efficiency. This proves that the adsorption of neutral dye works well in acidic 

condition for GO-Fe3O4 hybrids. All possible interactions of phenol red molecules with GO-

Fe3O4 hybrids is shown in Figure.4.60. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.59. Effect of pH versus %removal of phenol red by GO-Fe3O4 hybrids with initial 

concentration of 10 mg L-1 and adsorbent dose 0.011 g. 
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Figure.4.60. Possible interactions of phenol red dye with GO-Fe3O4 hybrid. 

 

4.2.4.3. Adsorption Kinetics 

The kinetic experiment was done to investigate the efficacy of GO-Fe3O4 hybrids (adsorbent) 

as a function of contact time for the removal of phenol red. The adsorption kinetics play an 

important role in dye removal as it gives a better understanding of mechanism of adsorption 

reactions. This experiment was performed at different adsorption times from 10-80 mins for 

10 mg L-1 initial concentration and optimum dose. phenol red for GO-Fe3O4 hybrids system 

kinetically behave differently than malachite green for the same system. It is observed that 

almost 67% adsorption efficiency was achieved for 70 mins than there is no significant change 

is seen after this. As noted, the increase in adsorption is may be due to more number of available 
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diffusion sites and then further increase leads to increased diffusion path length [173]. The 

slope of the plot shows a slow rate of adsorption on adsorbent surface (Figure.4.61). This could 

be due to attractive electrostatic attraction between the adsorbate and adsorbent to attain the 

equilibrium time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.61. Time versus %removal of phenol red by GO-Fe3O4 hybrids for initial dye concentration 

of 10 mg L-1, adsorbent dose 0.011 g and pH-4. 

 

The kinetics of phenol red removal was determined to understand the adsorption behavior of 

hybrid material. Two different kinetic models such as pseudo-first-order (Eq. 3.1) and pseudo-

second-order (Eq. 3.2) have been used to investigate the adsorption kinetics and furthermore, 

the kinetics of neutral dye were well described by three diffusion controlled model, Elovich 

(Eq. 3.3), Weber-Morris (Eq. 3.4), and Bangham (Eq. 3.5). The results from above mentioned 

kinetic models and their calculated parameters are shown in Table.4.7. 
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Table.4.7. Kinetic parameters for phenol red removal onto GO-Fe3O4 hybrids.  

Kinetic models Parameters Values 

Pseudo-1st Order  R2 

KI (min−1) 

qe (mg g-1) 

0.82 

0.06 

82.92 

Pseudo-2nd Order  R2 

KII (g mg−1 min−1) 

qe (mg g-1) 

V0 (mg g-1 min-1) 

0.99 

0.0009 

78.67 

5.77 

Elovich  R2 

β (mg g-1 min-1) 

α (g mg-1) 

0.94 

0.071 

1.495 

Weber-Morris  R2 

KIP (mg g-1 min-

1/2) 

0.99 

5.31 

Bangham  R2 

KB (ml g L-1) 

α 

0.95 

59.83 

0.04 

 

Adsorption kinetics for the phenol red onto GO-Fe3O4 was investigated by pseudo-first-order 

and pseudo-second-order model. A bad fit (R2=0.82) was obtained from the linear pseudo-first 

order model, indicating it is completely not applicable to this system. But the regression 

coefficient, obtained from a pseudo second order kinetic model, is close to 1 i.e. 0.99 

(Figure.4.62) showing applicability of this model fitting the experimental data. It supports an 

assumption that may be chemisorption is one of the involved interaction mechanism. The 

equilibrium adsorption capacity (qe) and initial adsorption rate (V0) found out as 78.67 mg g-1 

and 5.77 mg g-1 min-1 respectively.  46.29 mg g-1 second order capacity was reported by M. 

Ghaedi et al. [174].  

The kinetic data subsequently were analyzed by Elovich model. The diffusion based Elovich 

model was found to be partly applicable for diffusion of neutral dye molecules. The data were 

analyzed, a linear fit of this model with R2 value of 0.94 is presented in Figure.4.63.  

 

 



98 
 

Figure.4.62. Pseudo-first-order model (left) and Pseudo-second-order model (right) for the removal of 

phenol red by GO-Fe3O4 hybrids. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.63. Elovich model for the removal of phenol red by GO-Fe3O4 hybrids. 

To distinguish the rate limiting stage, W-M model was applied. It was reported that an 

intraparticle diffusion mechanism is active from calculated high value R2 of 0.99 proved the 

linearity of adsorption completely followed Weber-Morris kinetics (Figure.4.64). The 

behavior of W-M plot is linear for this system shows surface diffusion mechanism, the very 
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fast diffusion of dye molecules on the available active adsorbing site. But the line has an 

intercept, indicating the diffusion of the dye molecules through the boundary layer. It means 

boundary diffusion controlled adsorption mechanism is also considered to be the rate 

determining step. From the calculated high value of KIP (5.31) suggest the intraparticle 

diffusion is not reasonable for internal diffusion.  

 

  

 

 

 

 

 

 

 

Figure.4.64. Weber-Morris model for the removal of phenol red by GO-Fe3O4 hybrids. 

The final stage is generally considered as rate limiting step and require more time for migration 

and transfer of dye molecules to the inner pores of hybrid structure. After saturation time, the 

adsorption rate slows down which can be modelled by Bangham fit of the experimental data 

showed adsorption process has few contributions from pore diffusion. The linear plot with R2 

value of 0.95 presented in Figure.4.65. Actually, the slow adsorption of dye molecules after 

saturation is due to the migration of molecules inside the pores, but phenol red has a aromatic 

ring structure renders the pure pore diffusion process. The above phenomena justified the pore 

diffusion is not the rate limiting step. 
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Figure.4.65. Bangham model for the removal of phenol red by GO-Fe3O4 hybrids. 

4.2.4.4. Adsorption Isotherms 

Concentration is a vital parameter needs to be studied because a very small concentration of 

dye in water is unpleasant. Variation of initial dye concentration from 10-80 mg L-1 and its 

effect on adsorption efficacy is shown in Figure.4.66. It is observed that increasing the dye 

concentration for a constant dose the adsorption efficiency is quite complex. The complexity 

of the graph is because of dual charge present in neutral dye [62].  

However, from the calculated isotherm parameters (Table.4.8) it proved the adsorption of 

phenol red onto GO-Fe3O4 hybrids followed Langmuir model, has a highest R2 value of 0.99. 

It supported the assumption of monolayer formation of neutral dye molecules. The maximum 

monolayer adsorption capacity (qm) and Langmuir constant (KL) could be calculated from the 

intercept and slope of the linear plot of 1/Ce versus 1/qe plot (Figure.4.67). The free energy 

parameter related to Langmuir constant calculated to be -8.48 kJ mol-1 confirmed the process 

is spontaneous with +ve enthalpy. However, the energy is falling in the range of physisorption. 

It means the monolayer formation of dye molecules on GO-Fe3O4 hybrids surface but the type 

of interaction satisfied physisorption process. Additionally, the dimensionless parameter (RL) 

calculated as 0.76 indicated the favorable process. The maximum adsorption was found out 

657.89 mg g-1. Alok Mittal et al. [175] has reported 2.6×10 -5 mol g-1 of monolayer capacity by 

Bottom ash, a waste from thermal power plant for 10 ×10-5 M of phenol red. 276.24 mg g-1 
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capacity was investigated using SBA-16 as an adsorbent by Haribandhu Chaudhuri et al. [176] 

for 100 mg L-1 dye solution. Activated charcoal was used by Muhammad J. Iqbal et al. [177] 

for removal of 3.5 mg L-1 with 0.04 mg g-1 capacity. 

 

 

 

 

 

 

 

 

 

Figure.4.66. Effect of initial dye concentration versus %removal of phenol red by GO-Fe3O4 hybrids 

for adsorbent dose 0.011 g, pH-4, room temperature and time 70 mins. 

 

 

 

 

 

 

 

 

Figure.4.67. Langmuir model for the removal of phenol red by GO-Fe3O4 hybrids. 
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The Freundlich plot of data showed a poor fit with regression coefficient 0.96. It suggested the 

possibility of physisorption is not suitable for this system. The intensity of the adsorption is 

represented as a constant n, was calculated to be 1.47 from the slope of the linear plot 

(Figure.4.68). The value n showed the high tendency of adsorption and, in addition, indicates 

the favorable process of adsorption.  

 

 

 

 

 

 

 

 

 

Figure.4.68. Freundlich model for the removal of phenol red by GO-Fe3O4 hybrids. 

 

Then the Temkin isotherm model was derived using the data showed R2 value of 0.97 from 

Temkin plot (Figure.4.69). The low heat of adsorption (b), 21.35 J mol-1 from this model 

suggested the mechanism of adsorption followed physisorption.  
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Table.4.8. Isotherm parameters for phenol red removal onto GO-Fe3O4 hybrids.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4.69. Temkin model for the removal of phenol red by GO-Fe3O4 hybrids. 

Isotherm models Parameters Values 

Langmuir  R2 

qm (mg g-1) 

KL (L mg -1) 

∆G (kJ mol-1) 

RL 

0.99 

657.89 

0.03 

-8.48 

0.76 

Friendlich  R2 

KF (mg g-1) 

n  

0.96 

30.595 

1.47 

DR  R2 

KDR  

qm (mg g-1) 

E (kJ mol-1) 

0.96 

-0.006 

366.58 

8.59 

Temkin  R2 

b (J mol-1) 

KT (L g-1) 

0.97 

21.35 

0.444 
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A partially fitted D-R plot with R2=0.96 for this system is shown in Figure.4.70. The mean 

sorption energy (E) derived 8.59 kJ mol-1 is related to physisorption. Some π-π interactions are 

also involved which has low energy. Therefore, the adsorption of phenol red onto GO-Fe3O4 

hybrids is monolayer type, but the interaction involves electrostatic and π-π interactions. The 

complexcity in the adsorption mechanism is due to dual charge present in the dye molecules 

[62].  

 

 

 

 

 

 

 

 

 

Figure.4.70. D-R model for the removal of phenol red by GO-Fe3O4 hybrids. 

4.2.4.5. Mechanism of Desorption 

Desorption of phenol red from GO-Fe3O4 hybrids bed was achieved by acid/base leaching 

process. Two cost effective eluents 0.1M HCl and 0.1M NaOH are used for eluting the 

adsorbent bed. Adsorption of phenol red is completely based on the electrostatic interactions 

between adsorbent surface and dye molecules. Physisorption shows superior desorption than 

chemisorption. The chemistry of chromium metal and adsorbent material in acidic solution 

reported in previous sections demonstrate the maximum adsorption is favorable in acidic 

medium. As desorption is the reverse mechanism of adsorption, it is favorable at basic medium 
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shown in Figure.4.71. The maximum 66.37% of desorption was calculated from Eq. 4.2 at 

pH-10 for this system. 

 

Figure.4.71. %desorption of phenol red from GO-Fe3O4 hybrids as a function of pH. 
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CHAPTER-5 

 

CONCLUSION AND SUMMARY 

In this section, all of the results in the current work are summarized and future prospects of the 

work are outlines. 
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The evaluation of adsorption of toxins by the novel graphene oxide-magnetite based hybrid 

nanoadsorbents, prepared by a facile straight forward process, was done, and interesting 

informations were obtained. The results can be summarized as follows. 

o The sonication assisted synthesis of bare magnetite materials exhibited nanoparticulate 

morphology with narrow size distribution, and specific surface area of 128.6 m2 g-1, 

which is encouraging for such a simple process. The pore size distribution indicated 

porosity between 2-6 nm.  

o The adsorption of Cr(VI) ions by the magnetite nanoparticles showed adsorption 

capacity of 1.67 mg g-1, which is comparable or better than many of the adsorbents in 

the literature. The initial adsorption rate was much better at 0.03 mg g-1 min-1, as 

calculated from pseudo-second order kinetics. 

o The adsorption kinetics followed intraparticle diffusion model, followed by pore 

diffusion towards saturation of adsorption. These results are in congruence with the 

morphology of the nanoparticles examined by electron microscopy, and from gas 

adsorption techniques. 

o The adsorption isotherm data of Cr(VI) could be modeled with Langmuir adsorption 

isotherms, indicating monolayer adsorption. The monolayer adsorption capacity of 5.9 

mg g-1 was found. The process was found to be energetically favorable, and 

spontaneous in nature.  

o The GO-Fe3O4 hybrid nanoadsorbents exhibited almost 95% of removal efficiency at 

an initial concentration of 10 mg L-1 of Cr(VI).  

o The kinetics followed pseudo-second order rate model, with an excellent initial 

adsorption rate of 0.48 mg g-1 min-1, which was an order of magnitude higher than that 

of the bare magnetite nanoparticles. The second order adsorption capacity was 4.6 mg 

g-1. 

o Other kinetic models showed variable degrees of agreement indicating that intraparticle 

diffusion controlled by the surface diffusion of Cr ions, as well as pore diffusion 

dominated the adsorption process at several stages. The process was clearly 

chemisorption. 
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o The adsorption isotherms exhibited fit to the Langmuir model with maximum 

adsorption capacity of 10.23 mg g-1. The free energy change for the process was -18.11 

kJ mole-1 indicating that the process was spontaneous and favorable.  

o The use of GO-Fe3O4 hybrids for the removal of malachite green exhibited excellent 

adsorption capacity of more than 97% removal efficiency in a very low initial 

concentration of 10 mg L-1. The adsorption capacity calculated was 102.67 mg g-1 from 

the adsorption kinetics data. 

o The initial adsorption capacity found was exceptionally high and indicated kinetically 

faster adsorption of the cationic dye. 

o Based on the Langmuir adsorption isotherms that maximal adsorption capacity was 

calculated as 288.18 mg g-1, which is considerably higher than data reported in the 

literature.  

o The hybrids showed very good adsorption kinetics, with removal efficiency of 68% for 

phenol red. The kinetics followed second-order model while other models indicated 

that the process can be a mixture of diffusion and physisorption. The adsorption 

capacity of 78.67 mg g-1, as calculated from pseudo-second order kinetics. 

o Based on Langmuir isotherm the maximum adsorption capacity was found to be 657.89 

mg g-1, and the process was spontaneous under the experimental conditions. The 

slightly inferior adsorption of phenol red as compared to malachite green was due to 

neutral nature of the dye, leading to physisorption as the only mechanisms. 

Thus, the current work has clearly demonstrated that graphene oxide-magnetite hybrids 

synthesized in this study can act as potential adsorbents for a variety of toxins, starting from 

heavy metals to different dye molecules. The fact that no particular functionalization of the 

adsorbents was followed in this work underscores the high efficiency of this material. The 

hybrid can be appropriately functionalized depending on the targeted toxic ion to enhance 

further the adsorption capacity and kinetics. 
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