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Abstract

Breast cancer is one of the most widely recognized reasons for increased death

rate among women. For reduction of the death rate due to breast cancer, early

detection and treatment are of utmost necessity. Recent developments in digital

mammography imaging systems have aimed to better diagnosis of abnormalities

present in the breast. In the current scenario, mammography is an effectual and

reliable method for an accurate detection of breast cancer. Digital mammograms

are computerized X-ray images of breasts. Reading of mammograms is a crucial

task for radiologists as they suggest patients for biopsy. It has been studied that

radiologists report several interpretations for the same mammographic image. Thus,

mammogram interpretation is a repetitive task that requires maximum attention for

the avoidance of misinterpretation. Therefore, at present, Computer-Aided Diagnosis

(CAD) system is exceptionally popular which analyzes the mammograms with the

usage of image processing and pattern recognition techniques and classify them into

several classes namely, malignant, benign, and normal. The CAD system recognizes

the type of tissues automatically by collecting and analyzing significant features from

mammographic images.

In this thesis, the contributions aim at developing the new and useful features

from mammograms for classification of the pattern of tissues. Additionally, some

feature reduction techniques have been proposed to select the reduced set of significant

features prior to classification. In this context, five different schemes have been

proposed for extraction and selection of relevant features for subsequent classification.

Using the relevant features, several classifiers are employed for classification of

mammograms to derive an overall inference. Each scheme has been validated using

two standard databases, namely MIAS and DDSM in isolation. The achieved results

are very promising with respect to classification accuracy in comparison to the existing

schemes and have been elaborated in each chapter.

In Chapter 2, hybrid features are developed using Two-Dimensional Discrete

Wavelet Transform (2D-DWT) and Gray-Level Co-occurrence Matrix (GLCM) in

succession. Subsequently relevant features are selected using t-test. The resultant

feature set is of substantially lower dimension. On application of various classifiers it

is observed that Back-Propagation Neural Network (BPNN) gives better classification

accuracy as compared to others. In Chapter 3, a Segmentation-based Fractal Texture

Analysis (SFTA) is used to extract the texture features from the mammograms. A

Fast Correlation-Based Filter (FCBF) method has been used to generate a significant

feature subset. Among all classifiers, Support Vector Machine (SVM) results superior

classification accuracy. In Chapter 4, Two-Dimensional Discrete Orthonormal

S-Transform (2D-DOST) is used to extract the features from mammograms. A

feature selection methodology based on null-hypothesis with statistical two-sample

t-test method has been suggested to select most significant features. This feature with

AdaBoost and Random Forest (AdaBoost-RF) classifier outperforms other classifiers



with respect to accuracy. In Chapter 5, features are derived using Two-Dimensional

Slantlet Transform (2D-SLT) from mammographic images. The most significant

features are selected by utilizing the Bayesian Logistic Regression (BLogR) method.

Utilizing these features, LogitBoost and Random Forest (LogitBoost-RF) classifier

gives the better classification accuracy among all the classifiers. In Chapter 6,

Fast Radial Symmetry Transform (FRST) is applied to mammographic images

for derivation of radially symmetric features. A t-distributed Stochastic Neighbor

Embedding (t-SNE) method has been utilized to select most relevant features. Using

these features, classification experiments have been carried out through all the

classifiers. A Logistic Model Tree (LMT) classifier achieves optimal results among

all classifiers. An overall comparative analysis has also been made among all our

suggested features and feature reduction techniques along with the corresponding

classifier where they show superior results.

Keywords: Computer-Aided Diagnosis, DWT, GLCM, DOST, Null-hypothesis

SFTA, FCBF, SLT, BLogR, FRST, t-SNE, confusion matrix, ROC curve
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Chapter 1

Introduction

Biomedical image processing has encountered striking development, and has been

an interdisciplinary research field attracting expertise from applied mathematics,

computer science, engineering, statistics, physics, biology, and medicine. By the

expanding utilization of direct digital imaging frameworks for medical diagnostics,

digital image processing turns out to be more and more imperative in health care [1].

Digital medical images display living tissue, organs, or body parts and composed

of individual pixels to which discrete brightness or color values are assigned. In the

digital biomedical image processing, the physiological structures can be processed and

manipulated to visualize hidden characteristic diagnostic features that are difficult to

see with film-based imaging methods. Medical image reconstruction and processing

require specialized knowledge of a specific medical imaging modality that is used

to acquire images. Medical imaging utilizes the techniques to create images of the

interior parts of human body and processes for clinical diagnosis, treatment and

disease monitoring [1, 2]. The imaging modality means the mode of image acquisition

of interior body parts as shown in Figure 1.1. Different imaging modalities are:

X-ray Imaging: In this imaging modality, low-energy X-rays are passed through the

body parts and then detected by the detector and image is formed by the analysis

of the output of detector with the help of photographic film or digital equipment.

The film is exposed to the detected X-rays after passing through the body, will have

bright areas (little exposure), gray areas (more exposure) or nearly black areas (heavy

exposure) depending upon the amount of X-rays having penetrated in various parts

of the body. This modality is used for the diagnosis of breast cancer (mammography),

osteoporosis, etc.

1
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Computed Tomography (CT): In computed tomography, multiple images are

acquired as the X-ray tube is moved in an arc above the stationary patient and digital

detector. It combines multiple computer-processed X-ray images taken from different

angles to produce cross-sectional images of a particular area of a scanned body. This

technique is not applicable for soft tissues. Computed tomography is based on the

general principle that a finite set of measurements of transmitted X-ray between pairs

of points on the surface of an object is sufficient to reconstruct a transverse slice

representing the distribution of internal scatterers and absorbers. As light does not

travel through human soft tissues in straight lines, imaging technique such as x-ray

computed tomography is not applicable. Also soft tissue contrast is very limited

compared with CT. The CT method is mostly used for the diagnosis of brain tumors,

kidney, liver, lung diseases, etc.

Magnetic Resonance Imaging (MRI): MRI is an imaging technique that includes

three main types of equipment, a radio transmitter and receiver, and a computer. It

uses a magnetic field and pulses of radio wave energy to make images of organs and

structures inside the patient’s body. MRI is often divided into structural MRI and

functional MRI (fMRI). Structural imaging investigates the structure of the brain and

can be used for the diagnosis of large scale intracranial disease, such as tumor, and

injury. Functional imaging reveals the activity in certain brain regions by detecting

changes in metabolism, blood flow, regional chemical composition, and absorption.

The MRI method is very effective for soft tissues. This modality is used for the

diagnosis of brain tumors, abdomen organs, osteoporosis, etc.

Ultrasonography: It is a medical imaging modality that is based on reflection of

ultrasound waves. In this technique, an ultrasound wave travels through the tissue

of the human body. At transitions between different muscles and fats, the sound

wave is partly reflected and transmitted. The echo runtime indicates the distance

between transducer and tissue border while the echo strength is related to material

properties. Then, the same transducer is used to detect the echoes, and the image

is formed from this pulse-echo signal. The limitations of ultrasonography depend

on various factors on its field of view including patient cooperation and physique,

difficulty imaging structures behind the bony structures or through organs filled with

air, and its dependence on a skilled operator. The choice of frequency of sound

wave is also plays a role to generate spatial resolutions of the image. The lower

frequencies produce less resolution. Higher frequency sound waves have a smaller

wavelength and thus are capable of reflecting or scattering from smaller structures.

The ultrasonography modality is used for the diagnosis of prostate, urinary bladder,
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uterus, kidney, etc.

Positron Emission Tomography (PET): The PET imaging technique produces

the 3D image of functional processes in the body. In this method, positron-emitting

radionuclide tracer is introduced into the body on a biologically active molecule that

emits gamma rays. The pairs of gamma rays are detected by the system, and 3D

images of tracer concentration within the body are then constructed by computer

analysis. This modality is used for the diagnosis of Huntington diseases, Alzheimer

diseases, Parkinson diseases, early stage tumor detection, etc.

(a) X-ray of knee (b) CT of chest (c) MRI of brain

(d) Ultrasonography of kidney (e) PET of brain

Figure 1.1: Images of various body parts formed by different imaging modalities.

In this thesis we have investigated on mammograms for early detection of breast

cancer. Our subsequent discussion is confined to the topic of research. The chapter

is organized as follows:

1.1 Breast Cancer

Across the globe, the most widely recognized cause of cancer related death among

women is due to breast cancer. International Agency for Research on Cancer (IARC)

of World Health Organization (WHO) has released a press report on 12 December

2013 related to worldwide cancer incidence, mortality and prevalence [3]. According to
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this report, 1.7 million women were diagnosed with breast cancer and among them,

522,000 patients died in the year 2012. Since the 2008 assessment, the incident of

breast cancer has raised by more than 20% and mortality rate has increased by 14%.

This report demonstrates the sharp ascent in breast cancer among women in recent

years. In India, the breast cancer is also weighed as the most common cancer among

women. For the year 2012, about 144, 937 women were to be affected and 70, 218

patients died among them. It has been observed that one patient ceases to exist of

each two newly diagnosed women [4, 5].

Breast cancer is the consequence of the uncontrolled growth of breast cells.

The female breast is mainly comprised of lobules (milk-producing glands), ducts

(milk passages that connect the lobules to the nipple), fatty and connective tissue

surrounding the ducts and lobules, blood vessels, and lymphatic vessels as shown in

Figure 1.2. Most breast cancers have their origin in the cells of the ducts, some in the

cells of the lobules. The early stage of ductal cancer is referred to as in-situ, implying

that the cancer remains confined to the ducts (ductal carcinoma in-situ). When it

has invaded the surrounding fatty tissue and possibly has also spread to other organs,

it is referred to as invasive [6]. It has been studied that, the recovery of the breast

cancer as well as survival rate can be improved by the early detection through periodic

screening.

Figure 1.2: Side view of the anatomy and structure of the breast.
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To combat the mortality rate due to breast cancer, early detection and treatment

is an utmost necessity. Mammography is an efficacious, dependable, and cost-effective

method for a precise detection of breast cancer in recent years [7]. Mammography

is the procedure of utilizing low-energy X-rays for examination of breast to locate

the suspicious lesions. In mammography, a beam of X-rays passes through each

breast, where it is absorbed by tissue according to its density. The remaining rays

go to a photographic film through the detector and produces a gray-level image after

development. The outcome image is known as a film-based mammogram. Again

the film-based mammogram can be made digital through film-digitizer. Also the

output of the detector from the X-ray scanner directory goes to the digital equipment

for development of digital mammogram. The process of digital mammography is

described schematically in Figure 1.3. A digital mammographic image is shown in

the Figure 1.4 that shows the projected structure of the internal breast. In common

practice, there are two projections captured for each breast in mammography: one is

Carnio-Caudal (CC) and other is Medio-Lateral Oblique (MLO) shown in Figure 1.5.

In the MLO view, the view is taken obligatory during screening in which pectoral

muscles appear, but in the CC view of mammogram, the view is taken from head

down. In CC view of mammogram, the appearance of pectoral muscle is nil.

Figure 1.3: Digital mammography process.
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Figure 1.4: Digital mammographic image.

(a) Left CC view (b) Right CC view (c) Left MLO view (d) Right MLO view

Figure 1.5: Two types of view of the breast imaging.

Mammogram interpretation is a vital job for radiologists before suggesting patients

for clinical diagnostic tests. However, human interpretation varies as it relies upon

training and experience. Mammogram interpretation is a repetitive task which

requires maximum attention for evasion of mis-interpretation. It has been noticed

that 60 − 90% of the biopsies of human anticipated cancers found benign later [8].

Therefore, Computer-Aided Diagnosis (CAD) system is at present an exceptionally

popular and proficient method which analyzes the digital mammograms with the

utilization of image processing and pattern recognition techniques.

1.2 Computer-Aided Diagnosis (CAD)

The CAD framework takes care of the abnormality identification issues automatically

by collecting and analyzing the significant features from mammographic images. This
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system helps radiologists for accurate interpretation of mammograms for the detection

and classification of suspicious tissues present in the breast. The blend of CAD scheme

and specialist’s knowledge would significantly enhance the recognition exactness. The

CAD system discriminates among three possible classes i.e., malignant, benign and

normal. The CAD process mainly comprises two tasks: the features collected from

the image and use of these features in the classification to arrive at a decision. As

shown in Figure 1.6, the task of CAD involves several interrelated phases discussed

below.

Figure 1.6: Framework of CAD system.

(a) Image preprocessing: It is sometimes necessary to modify the data either

to correct the deficiencies in the acquired image due to limitations of image

acquisition system. In addition, the Region-of-Interest (ROI) that contains the

suspicious tissue is extracted from the mammogram by cropping procedure in

this phase.

(b) Feature extraction: In this phase, features are generated from the

mammographic ROIs to use them in the classification task.

(c) Feature selection: This task selects the significant features from available

feature set that are fed to the classification task. These relevant features

influence the efficacy of classification in the discrimination of mammogram

classes.
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(d) Classification: This phase uses a classifier to map a significant feature set to

a class type. Such mapping can be specified during training phase to induce

the mapping from a collection of feature vector known to be representative of

the various classes among which discrimination is being performed (i.e., training

set). Once formulated, the mapping can be used to assign an identification of a

new unlabeled feature vector subsequently presented to the classifier.

1.3 Performance Measures Used

In the binary classification of abnormal–normal mammograms, the abnormal

(cancerous) samples are denoted as the positive class while the normal samples

are denoted as the negative classes. Similarly, for malignant-benign mammogram

classification, malignant samples are considered as the positive class and benign

samples are considered as the negative classes. The performance of the classifier is

evaluated with the help of a confusion matrix as shown in Table 1.1 that summarizes

the number of samples predicted correctly or incorrectly by the classifier [9, 10].

Table 1.1: Confusion Matrix for binary classification system.

Actual class
Predicted class

Positive Negative

Positive True positive (TP ) False negative (FN)

Negative False positive (FP ) True negative (TN)

To evaluate the performance of the classifier, several performance measures can

be used with the help of the entries of the confusion matrix:

(a) The true positive rate (TPR) or sensitivity (Sn) is defined as the fraction

of positive samples predicted correctly by the model, i.e.,

TPR = TP/(TP + FN). (1.1)

(b) The false positive rate (FPR) is defined as the fraction of negative samples

predicted as a positive class, i.e.,

FPR = FP/(TN + FP ). (1.2)

(c) The true negative rate (TNR) or specificity (Sp) is defined as the fraction

of negative samples predicted correctly by the model, i.e.,

TNR = 1− FPR or TNR = TN/(TN + FP ). (1.3)
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(d) The false negative rate (FNR) is defined as the fraction of positive samples

predicted as a negative class, i.e.,

FNR = FN/(TP + FN). (1.4)

(e) Precision (p) or positive predictive value (PPV ) determines the fraction of

samples that actually turns to be positive in the group the classifier has declared

as a positive class and defined as,

p = TP/(TP + FP ). (1.5)

(f) Recall (r) measures the fraction positive samples correctly predicted by the

classifier. It is equivalent to the TPR.

(g) The negative predictive value (NPV ) determines the fraction of samples

that actually turns to be negative in the group the classifier has declared as a

negative class and is given by,

NPV = TN/(TN + FN). (1.6)

(h) The accuracy (ACC) determines the proportion of the true results of the total

number of samples tested. i.e,

ACC = (TP + TN)/(TP + FP + FN + TN). (1.7)

(i) The F1 score (Fscore) is the measure of test accuracy and defined as the

weighted average of the precision (p) and recall (r), i.e.,

Fscore = (2× p× r)/(p+ r). (1.8)

(j) The Matthews correlation coefficient (MCC) determines the quality of

the binary classification. It is defined as a correlation coefficient between the

observed and predicted binary classification and given as,

MCC =
((TP × TN)− (FP × FN))√

((TP + FP ) (TP + FN) (TN + FP ) (TN + FN))
. (1.9)

The MCC returns the value of −1, 0 and +1. A coefficient of +1 represents

a perfect prediction, 0 no better than random prediction and 1 indicates total

disagreement between prediction and observation.
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The evaluation of a classifier performance can also be accomplished by means of

Receiver Operating Characteristics (ROC) curves [8]. It is a two-dimensional

plot of true positive rate (sensitivity) versus false positive rate (1-specificity)

in vertical and horizontal axes respectively as shown in Figure 1.7. The area under

the ROC curve referred by an index AUC is an important factor for evaluating the

classifier performance. The value of AUC is 1.0 is a perfect performance of the

classifier.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
p

o
si

ti
ve

 r
at

e

 

 

Threshold
classifier1 (AUC=0.9369)
classifier2 (AUC=0.8932)

Figure 1.7: Typical ROC curves for two different classifiers in the classification of

mammograms.

1.4 Database Used

To validate the proposed schemes, mammographic images are taken from two

databases namely, Mammographic Image Analysis Society (MIAS) database [11]

and Image Retrieval and Medical Applications (IRMA) project [12]. The MIAS

database is built by Suckling et al. and openly available for scientific research. The

mammographic image database in IRMA project is made by Deserno et al., who

collected images from several other databases including Digital Database for Screening

Mammography (DDSM). Both MIAS and IRMA provide appropriate information

based on types of background tissues, and the class of abnormalities present in the

mammograms. The class of abnormality consists of abnormal–normal class, and again

based on the severity of abnormality; the abnormal class is divided into two sub-classes

such as malignant and benign. The MIAS database contains 322 images, which are

categorized according to tissue types like fatty, fatty-glandular and dense-glandular.
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In IRMA project, the database is divided into 12 and 20 class problems. In 12

class problem, the mammograms are categorized according to tissue density, and

each category is divided into three classes; normal, benign and malignant. In 20

class problem, the mammograms are of two categories of different types of lesions.

The 12 class database consists of mammograms of four tissue types; almost entirely

fatty, scattered fibro glandular, heterogeneously dense and extremely dense. This

database consists of 2796 images out of which 2576 images are from DDSM database.

Figures 1.8 and 1.9 show various regions-of-interest (ROIs) containing different classes

of abnormality.

We have considered all 322 images from MIAS database for our experiments from

this database. Out of 322 images, 207 images are normal, 115 images are abnormal;

again among abnormal images the number of benign and malignant types are 64

images and 51 respectively. Also, a total of 1000 DDSM images from 12 class problem

have been taken, out of which 500 images are normal and 500 images are abnormal.

The abnormal class consists of 236 benign images and 264 malignant images. Each

mammographic ROI has been taken of size 128 × 128 pixels used in the feature

extraction phase to find the feature elements.

(a) Fatty tissues (b) Fatty-glandular tissues

(c) Dense-glandular tissues

Figure 1.8: Mammographic ROIs of MIAS database. The sub-figures indicate different

types tissues present in mammograms. The labels 1, 2 and 3 of ROIs represent normal,

benign and malignant classes respectively.
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(a) Almost entirely fatty tissues (b) Scattered fibro-glandular tissues

(c) Hetereogeneously dense tissues (d) Extremely dense tissues

Figure 1.9: Mammographic ROIs of DDSM database from IRMA project. The

sub-figures indicate different types tissues present in mammograms. The labels 1,

2 and 3 of ROIs represent normal, benign and malignant classes respectively.

1.5 Related Work

Many researchers have worked to develop the automated recognition system for

earlier screening of breast cancer. Dhawan et al. have proposed a mammogram

classification scheme to predict the malignancy property of the tissues [13]. They

have defined two categories of correlated gray-level image structure features for

classification of difficult-to-diagnose cases. The first category of features includes

second-order histogram statistics-based features representing the global texture and

the wavelet decomposition based features representing the local texture of the

microcalcification area of interest. The second category of features represents the

first-order gray-level histogram based statistics of the segmented microcalcification

regions, size, number, and distance of the segmented microcalcification cluster.

Various features in each category were correlated with the biopsy examination

results of 191 difficult-to-diagnose cases for selection of the best set of features

representing the complete gray-level image structure information. The selection of

the best features was performed using the multivariate cluster analysis as well as a

genetic algorithm (GA)-based search method. The selected features have been used

for classification using Back-Propagation Neural Network (BPNN) and parametric

statistical classifiers. ROC analysis has been performed to compare the neural

network-based classification with linear and K-Nearest Neighbor (K-NN) classifiers.

The performance index value of the classification, AUC of 0.81 has been yielded by
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neural network classifier.

Wei et al. have achieved AUC of 0.96 through ROC analysis in the classification

of 168 abnormal–normal mammograms by using multiresolution texture features [14].

In their method, wavelet transform has been used to decompose the mammographic

ROI to collect different detail coefficients and consequently, texture features were

extracted from these coefficients. Linear discriminant models have been used to select

effective features from the global, local, or combined feature spaces were established

to maximize the separation between masses and normal tissue. Liu et al. have used

linear phase non-separable two-dimensional wavelet transform to extract features from

mammographic ROIs. They have found accuracy rate of 84.2% on true positive

detection in the classification of mammograms from MIAS database by using binary

classification tree [15]. Ferrari et al. have proposed a classification approach based

on the multiresolution analysis of mammographic images [16]. The method utilizes

Gabor wavelets to find the linear directional components of mammograms. The

most relevant directional elements are selected using KL transform. The scheme

has achieved an average classification accuracy of 74.4% on MIAS database using

Bayesian linear classifier. Zhen et al. have designed an algorithm that comprises many

artificial intelligent strategies and discrete wavelet transform (DWT) for detection of

abnormalities in mammograms [17]. The categorization of mammograms as cancerous

or normal has been performed by the use of tree-type classification technique. The

algorithm has been validated using 322 mammograms of MIAS database and a

performance result concerning sensitivity of 97.3% has been obtained.

M. Masotti has developed a method to extract the features by multiresolution

analysis of mammograms using ranklet-based transform [18]. A classification

performance index value, AUC = 0.978 has been obtained in the classification

of abnormal–normal tissues for DDSM database. Mavroforakis et al. have

proposed a method to characterize the breast tissue based on the texture analysis of

mammograms. They have employed a fractal analysis to analyze the textural features

and achieved 83.9% of performance score through SVM classifier [19]. Martins et

al. have applied Gray-Level Co-occurrence Matrix (GLCM) to extract the features

from mammographic images [20]. The forward selection technique has been employed

to select the most significant features. Then, a Bayesian neural network has been

used to evaluate the ability of these features to predict the class for each tissue

sample into malignant, benign and normal. The method was tested on a set of 218

tissues samples of MIAS database, 68 benign and 51 malignant and 99 normal, and

a classification accuracy of 86.84% has been achieved. Sakellaropoulos et al. have
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used wavelet-based feature analysis for differentiating masses, of varying sizes, from

normal dense tissue on mammographic images [21]. The images analyzed was from

DDSM database consists of 166 ROIs containing spiculated masses (60), circumscribed

masses (40) and normal dense tissue (66). A set of ten multiscale features, based

on intensity, texture and edge variations, were extracted from the ROIs sub-images

provided by the wavelet transform. Logistic regression analysis was employed to

determine the optimal multiscale features for differentiating masses from normal dense

tissue. The classification accuracy in differentiating circumscribed masses from the

normal dense tissue is comparable with the corresponding accuracy in differentiating

spiculated masses from normal dense tissue, achieving AUC values of 0.895 and 0.875,

respectively.

Rashed et al. have obtained an average accuracy of 84.16% in the prediction

of malignancy of mammograms from MIAS database [22]. Texture features were

extracted from mammographic ROIS by decompositions based on three different

wavelets, Daubechies-4, Daubechies-8, and Daubechies-16. The Euclidean distance

has been used to design the classifier based on calculating the distance between the

feature vectors of testing ROIs and the precomputed class core vector. Pereira et

al. have proposed a method in which spatial gray-level dependence matrix of the

wavelet transformed mammograms has been used to derive the texture features [23].

These texture features were utilized to classify the mammograms as malignant or

benign with the help of non-parametric K-NN classifier. Different mammograms

from DDSM database were used in their experiment. The AUC values of 0.973,

0.607, and 0.617 have been achieved for discriminating the abnormal–normal ROIs,

malignant–benign microcalcification, and malignant–benign masses, respectively.

Khademi et al. have utilized a shift-invariant wavelet transform to define the texture

features of the mammographic images in their proposed method for classification

of mammograms [24]. Gray level co-occurrence matrices are found for a variety of

directions in the wavelet domain, and homogeneity and entropy were extracted which

produces a shift, scale, and semi-rotational invariant feature set. Exhaustive feature

selection was used with both a K-NN and LDA classifier, to find the best classification

performance. They found the optimum classification accuracy of 72.5% by using

LDA classifier. Dong et al. have used Gabor filter for the classification of normal

and abnormal mammograms and achieved an average of 80% precision with selected

features [25]. Dua et al. have developed a method to classify the mammograms using

a unique weighted association rule based classifier [26]. In their method, texture

components were extracted from segmented parts of the image and discretized for
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rule discovery. Association rules were derived between various texture components

extracted from segments of images and employed for classification based on their intra-

and inter-class dependencies. These rules were then employed for the classification

of mammograms collected from MIAS database, and an accuracy of 89% has been

achieved.

Prathibha et al. have used multiscale wavelet transformation for extraction

of texture features from the mammographic images. They have obtained the

classification performance as AUC of 0.946 in ROC analysis to classify normal and

abnormal mammograms of MIAS database by using the statistical classifier [27].

Verma et al. have used BI-RADS descriptor features to classify the malignant and

benign mammograms utilizing the proposed Soft Clustered Based Direct Learning

(SCBDL) classifier [28]. They have achieved an accuracy of 97.5% on DDSM

database. Moayedi et al. have developed a scheme for automatic mass classification

of mammograms by using contourlet transform for extraction of features [29]. A

genetic algorithm has been utilized in their scheme to choose most discriminative

texture feature set from the available extracted features. They have accomplished

96.6% of classification accuracy on MIAS dataset with the assistance of Successive

Enhancement Learning (SEL) weighted Support Vector Machine (SVM). Cao et

al. have proposed a mammogram classification scheme based on forty-two features

including shape, intensity, texture, age etc., extracted from each segmented mass [30].

The Support Vector Machine (SVM) has been employed for the characterization of the

mammograms as malignant or benign using DDSM database and the AUC of 0.948

has been achieved. Buciu et al. have developed a method to discriminate malignant,

benign and normal mammograms for the early detection of breast cancer [31]. A

Gabor wavelet has been applied to get features from mammograms in different

orientations and frequencies. Principal Component Analysis (PCA) has been utilized

to reduce the dimension of extracted feature set, and a proximal SVM has been used

to classify the dataset. The scheme is evaluated on MIAS database and performance

results in terms AUC values of 0.79 and 0.78 are attained in the classification of

abnormal-normal and malignant-benign mammograms respectively.

Mutaz et al. have developed a method in which the textural features were

extracted from ROI using GLCM [32]. Utilizing these features, they have

discriminated the malignant and benign mammograms with the help of neural network

and achieved the sensitivity of 91.67% and specificity of 84.17% on DDSM database.

Fraschini has used discrete wavelet transform and neural network to classify the

mammograms [33]. The performance index value of AUC of 0.91 has been yielded
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using DDSM database in the analysis of ROC curve. Tahmasbi et al. have designed

a mammogram diagnostic approach by utilizing the Zernike moments as feature

descriptors [34]. The Multi Layer Perception (MLP) technique has been employed

to classify the mammogram as malignant or benign and the AUC of 0.976 has

been obtained on MIAS database. Biswas et al. have proposed a two-layered

model for identification of architectural distortions in mammograms [35]. In the first

layer of their model, a multiscale filter bank has been intended to generate texture

descriptors from mammographic Region-of-Interest (ROI). The inferred features are

represented as a set of textural primitives by the mixture of Gaussian distributions.

An Expectation-Maximization (EM) algorithm has been employed to learn these

texture patterns. They have achieved classification accuracies of 82.5% and 88.3%

on MIAS and DDSM database respectively. The ROC analysis of classification has

additionally been completed, and AUC values of 0.83 and 0.87 have been found

on similar platforms. Tsai et al. have developed an efficient algorithm for the

diagnosis of the breast cancer based on the mammographic image reconstruction

and identification of microcalcification [36]. For this purpose, wavelet transform and

Renyis information theory have been used to distinguish the suspicious ROI from

normal tissues. The scattered regions of microcalcification have been reconstructed

by utilizing a morphology dilation and majority voting rule. The scheme uses

forty-nine feature descriptors namely shape inertia, compactness, eccentricity and

Gray-Level Co-occurrence Matrix (GLCM) to specify the patterns of the suspicious

microcalcification clusters. PCA has been employed to select the most significant

descriptors for achieving the optimal results in the classification task that was

performed by BPNN. The proposed scheme has been applied to the real clinical

patients at National Cheng-Kung University Hospital, Taiwan, and a sensitivity value

of 97.19% was obtained.

Jona et al. have used GLCM to extract the features from the mammographic

images [37]. They have optimized the feature set by employing a hybrid particle swarm

optimization and genetic algorithm, and obtained 94% of classification accuracy by

using SVM to classify the abnormal and normal mammograms on MIAS database.

Ramos et al. have explored on the abnormal-normal mammogram set classification

using different methods namely ridgelet transform, GLCM and DWT for extraction

of features [38]. The best significant feature set has been selected by utilizing Genetic

Algorithm (GA). A maximum classification result has been obtained through Random

Forest with the help of DWT and GA that gives an AUC value of 0.90 using DDSM

database. Eltoukhy et al. have proposed a scheme for classification of mammograms
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in which multiresolution techniques, wavelet and curvelet transform have been used

to extract the features from mammographic ROIs [39]. The most significant features

were selected by applying statistical t-test method upon the available derived feature

set. A 5-fold cross-validation technique has been used with the help of SVM for

the classification of mammograms from MIAS database. The optimal classification

accuracies of 95.98% and 97.30% have been achieved for abnormal–normal and

malignant–benign class respectively, using curvelet transform. Muštra et al. have

proposed a mammogram classification method for the detection of abnormalities by

breast density measurement [40]. They have observed the breast density as textures

and used GLCM method to extract the textures taking into account gray-scale

features of first and second order. Two databases, MIAS, and KB-FER have been

tested by this method, and an optimal result have been found for BI-RADS two

category case. A maximum classification accuracy of 91.6% has been achieved on the

MIAS database by using Best-First Backward feature selection method and Naive

Bayes classifier. Similarly, an accuracy of 97.2% has been obtained with the use of

Best-First Forward feature selection method and K-NN classifier on KBD-FER digital

mammography database of the University Hospital Dubrava, Zagreb, Croatia. Nanni

et al. have proposed a mammogram classification system based on the Local Ternary

Pattern (LTP) features [41] and found the AUC of 0.97. A Neighborhood Preserving

Embedding (NPE) method has been used to produce the high variance features that

are further provided to the classifier. An SVM has been employed to classify the

mammogram as malignant or benign using DDSM database.

Görgel et al. have proposed a scheme to classify the mammogram using spherical

wavelet transform (SWT) for extraction of features and SVM as the classifier [42]. In

their proposed method, a local seed region growing algorithm has been used to detect

ROIs of mammograms. The proposed scheme achieves 96% and 93.59% accuracy

in mass–non-mass classification and malignant–benign classification respectively

when using the Istanbul University (I.U.) database with k-fold cross-validation.

Nascimento et al. have developed a scheme that uses DWT to extract the features

and a polynomial classifier to discriminate the malignant–normal, benign–normal

and malignant–benign mammogram sets [43]. Classification performance measures

concerning AUC values of 0.98, 0.95 an 0.96 have been achieved for the respective

mammogram sets using DDSM database. Kumar et al. have proposed a method based

on the combination of DWT and Stochastic Neighbor Embedding technique for benign

and malignant mammogram classification [44]. They have used Stochastic Neighbor

Embedding technique to reduce wavelet coefficients of mammograms and SVM as
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classifier. The method has achieved classification accuracies of 93.39% and 92.10% to

classify normal–abnormal and benign–malignant mammograms, respectively. Oral et

al. have used first order and second order textural feature to classify the mammograms

as abnormal or normal. Principal component analysis (PCA) has been used in their

method to reduce the dimension of feature spaces and an accuracy of 91.1% is achieved

on MIAS database by multi layer perception (MLP) classifier [45]. Liu et al. have

investigated on the classification of malignant–benign mammograms using selected

geometry and texture features [46]. Maximum performance results with respect to

the accuracy of 94% and AUC of 0.9615 with a leave-one-out scheme on DDSM

database have been demonstrated. The optimum results have been accomplished by

using the SVM based Recursive Feature Elimination (SVM-RFE) procedure with a

Normalized Mutual Information Feature Selection (NMIFS) method.

Ganesan et al. have found a maximum accuracy of 92.48% by applying one-class

classification on the set of mammograms provided by the Singapore Anti-Tuberculosis

Association CommHealth (SATA) [47]. A trace transform functional has been used

in the scheme to extract the features from mammograms. A Gaussian Mixture Model

(GMM) has been engaged for the classification of the malignant-benign mammograms.

Reyad et al. have proposed a scheme to extract features from mammograms by

using different strategies namely Local Binary Pattern (LBP), statistical measure

and multiresolution frameworks [48]. Texture descriptors and statistical features

were derived by LBP and statistical methods respectively, whereas multiresolution

features were extracted by DWT and contourlet transform. SVM has been utilized

for the classification of abnormal–normal mammograms from DDSM database by

using these extracted features. A classification accuracy of 98.43% has been achieved

using statistical or LBP features. Subsequently, an improved accuracy of 98.63%

has been accomplished by using the combination of both LBP and statistical features

that outperform the contourlet and wavelet transform based method. Diaz et al. have

proposed an approach in which, the morphological algorithms are applied to detect

the microcalcification in the mammograms [49]. An SVM with Gaussian kernel has

been used to distinguish the mammograms as abnormal or normal on MIAS database

utilizing a set of spatial, texture and spectral features and achieved the AUC of 0.976.

A mammogram classification scheme is designed by the Kim et al. to discriminate

the spiculated malignant masses from normal tissues and the AUC of 0.956 has been

obtained on DDSM database [50] . In this approach, region-based stellate features are

determined by computing the statistical characteristics of three subregions, namely,

core, inner, and outer parts of an ROI. The SVM has been employed for classification
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using relevant set of features chosen by AdaBoost learning.

Görgel et al. have proposed a Spherical Wavelet Transform (SWT) based

mammogram classification method for automatic detection of breast cancer [51].

The scheme extracts shape, boundary, and gray-level based feature of wavelet from

mammographic ROIs. SVM has been employed to classify the benign–malignant

masses which attains an accuracy of 91.4% on Istanbul University hospital database,

Turkey and 90.1% on MIAS database. Li et al. have found an accuracy of 85.96% for

the classification of malignant-benign mammograms using DDSM database [52] and

their scheme deals on the analysis of texton based mammogram textures with multiple

subsampling strategies. Each of the subsampling strategies catches a discriminating

structure used in the classification phase. A K-NN classifier has been employed

to attain the expected optimum accuracy. Rouhi et al. have proposed a scheme

to discriminate mammogram mass type as benign or malignant [53]. In the first

method of the scheme, segmentation has been performed using an automated region

growing utilizing a threshold obtained from trained Artificial Neural Network (ANN).

In the second method of the scheme, a Cellular Neural Network (CNN) has been

utilized for segmentation using Genetic Algorithm (GA). Intensity, textural, and shape

features were extracted from segmented ROIs by thresholding, GLCM and Zernike

moments, respectively. GA has been used to select relevant features from the set of

extracted features. ANN has been employed to classify the mammograms as benign

or malignant. Experiments have been carried out on MIAS and DDSM databases,

and optimal accuracy values of 96.47% and 90.6% have been achieved respectively.

Korkmaz et al. have proposed a diagnostic method to classify the

mammograms as malignant, benign or normal [54]. In this methodology,

a set of texture features including sum average, difference variance, kurtosis,

skewness, entropy inverse difference moment, contrast, local homogeneity, cluster

prominence and maximum probability are extracted and utilized. An mRMR

(minimum-Redundancy-Maximal-Relevance) technique has been used to select

significant values of the features. The mammograms are classified with the help of

KL (Kullback-Leibler) classifier using the DDSM database and an accuracy (ACC)

of 93.8% has been achieved. Jiang et al. have developed a CBIR (Content-Based

Image Retrieval)-based CAD for correct identification of the mammographic ROI

as a mass or normal by utilizing SIFT features with the help of a vocabulary

tree [55]. In their approach, weighted majority vote technique has been applied

to classify the mammograms collected from the DDSM database, and an accuracy

(ACC) of 90.8% is obtained. Dhahbi et al. have used the curvelet transform
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and moment theory in succession to extract two types of features namely, Curvelet

Level Moment (CLM), and Curvelet Band Moment (CBM) from mammograms [56].

A t-test ranking technique has been applied to select most relevant feature sets.

The K-NN is used to classify the mammograms from MIAS and DDSM databases

into two classes, abnormal–normal and malignant–benign. The accuracy values of

91.27% (abnormal–normal), 81.35% (malignant–benign) has been achieved for MIAS

database. Similarly, the values are 86.46% and 60.43% for DDSM database has been

found in their methodology. Murat Karabatak has proposed a new weighted Naive

Bayesian classifier to characterize the mammograms as malignant or benign [57]. He

has used the Wisconsin breast cancer database that includes 699 records and each

record has nine number of features and achieved the classification accuracy of 96.02%.

Xie et al. have presented a CAD system in which a total of 32 gray-level and

texture features are extracted from mammograms in the feature extraction phase [58].

A combination of SVM and ELM (Extreme Learning Machine) has been used for

the elimination of insignificant features. The ELM, which is a single hidden layer

feed-forward network, has been employed to classify mammograms by utilizing the

optimal subset of relevant features. They have achieved the accuracy (ACC) of 96.02%

and AUC of 0.9659 in the classification of malignant and benign mammograms on

MIAS database. Oliveira et al. have proposed a method to classify mammographic

mass or non-mass regions using the taxonomic indices as texture features and found an

accuracy (ACC) of 98.88% [59]. The taxonomic diversity and distinctness indexes are

computed with the use of phylogenetic tree considering two spatial approaches namely,

internal and external masking. An SVM has been used to classify the mammograms

from DDSM database utilizing the computed taxonomic indices. Zhang et al. have

proposed method to discriminate the malignant masses from benign masses [60]. The

fractional Fourier transform has been employed to obtain the unified time–frequency

spectrum coefficients which are reduced by principal component analysis (PCA). The

have achieved sensitivity (Sn) of 92.22%, specificity (Sp) of 92.10%, and accuracy

(ACC) of 92.16% using SVM as classifier on MIAS database.

1.6 Motivation

It has been observed from the literature study that the relevant features play a vital

role in the successful classification of mammograms as normal, benign or malignant.

Texture based features are predominant in the existing schemes and mostly when

multiresolution transform and its variants for classification, neural network and SVM
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have been mostly used. The existing schemes have been validated either on MIAS

or DDSM but not on both. Considering the existing literature and importance of

the topic, it has been realised that there exists an abundant scope to suggest new

features and feature reduction schemes along with improved classifiers to enhance

performances.

1.7 Research Objectives

The prime objective is to reduce the variability in judgments among radiologists by

providing an accurate diagnosis of cancer using digital mammograms. Therefore, the

objectives are narrowed down to

1. develop features using Segmentation-based Fractal Texture Analysis (SFTA),

Discrete Orthonormal S-Transform (DOST), Slantlet Transform (SLT), and Fast

Radial Symmetry Transform (FRST),

2. develop hybrid features using Discrete Wavelet Transform (DWT), and

Gray-Level Co-occurrence Matrix (GLCM),

3. select significant features using null hypothesis with statistical t-test, Fast

Correlation-Based Filter (FCBF), Bayesian Logistic Regression (BLogR), and

t-distributed Stochastic Neighbor Embedding (t-SNE) method, and

4. devise classifiers using Back-Propagation Neural Network (BPNN or FNN),

Support Vector Machine (SVM), AdaBoost and Random Forest (AdaBoost-RF),

LogitBoost and Random Forest (LogitBoost-RF), and Logistic Model Tree

(LMT).

1.8 Classifier Used

In order to validate the efficacy of the proposed feature and feature selection

techniques, various classifiers are devised and used employing Back-Propagation

Neural-Network (BPNN or FNN), Support Vector Machine (SVM), ensemble

classifiers like AdaBoost and LogitBoost using Random Forest, and Logistic Model

Tree (LMT). The achieved results have been compared among the devised classifiers

as well as with other standard classifiers namely, Naive Bayes (NB) and K-Nearest

Neighbor (K-NN) for the validation of proposed work. The description of each

classifier are given below in brief.
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1.8.1 Back-Propagation Neural-Network (BPNN or FNN)

Artificial neural network is a powerful parallel dynamic system consisting of multiple

simple and interconnected processing units (nodes), that performs tasks like the

biological brains. The nodes in a neural network architecture are commonly known

as neurons. In the architecture of the neural network, each input node is connected

via a weighted link to the output node. The weighted link is used to emulate the

strength of the synaptic connection between neurons. A neural network can perform

the necessary transformation operation automatically with the aid of neuron’s state

response to their input information. These networks are trained with a set of samples

known as the training set. The network is trained by learning the values of its internal

parameter from the training set so that, an input leads to a specific output.

A feed-forward Back-Propagation three-layered Neural Network (BPNN or FNN)

as depicted in Figure 1.10 is one of the most common and efficient network structures

used for classification in the feature space. This network has an intermediary layer

known as hidden layer present with input and output layer. The hidden layer is

composed of H hidden nodes. A set of R selected significant feature vectors (xi, i =

1, 2, ..., R) are input to BPNN for the classification. The output with reduced error is

to be expected for better performance. For this purpose, BPNN possesses two phases

in each iteration: forward phase and backward phase. During the forward phase, the

weights obtained from the previous iteration are used to compute the output value

of each neuron in the network. The computation progresses in the forward direction.

During the backward phase, the weights are updated in the reverse direction. The

errors for neurons at current layer are used to estimate the errors for neurons at the

previous layer.

Back propagation of Error

Input Layer

Hidden Layer

Output Layer

Figure 1.10: Model of a 3-layered feed-forward BPNN or FNN.
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1.8.2 Support Vector Machine (SVM)

The Support Vector Machine is employed as the classifier that is based on the

statistical learning theory shows promising empirical results in the characterization of

mammograms [61]. In SVM, the feature vector x of an object is classified by looking

at the sign of a linear scoring function ⟨x,w⟩. The objective of learning is to estimate

the parameter w ∈ Rd in such a way that the score is positive if the x belongs to the

positive class and negative otherwise. Thus, a margin is imposed between positive and

negative class instances in the formulation of SVM. The parameter w is estimated by

fitting the scoring function to a training dataset ofK instances {xi, yi}, i = 1, 2, ..., K.

The yi ∈ {−1,+1} is the class label of the corresponding instance vector xi. Then a

loss function is computed that measures the fit quality, and given as,

ℓi < w, x >= max {0, 1− yi ⟨w, x⟩} . (1.10)

Fitting the training data is usually insufficient. In order for the scoring function

generalize to future data as well, it is usually preferable to trade off the fitting accuracy

with the regularity of the learned scoring function ⟨x,w⟩. Regularity in the standard

formulation is measured by the norm of the parameter vector ∥w∥2. Averaging the

loss on all training instances and adding to it the regularizer weighed by a parameter

λ yields the regularized objective function that is given by,

E (w) =
λ

2
∥w∥2 + 1

K

K∑
i=1

max {0, 1− yi ⟨w, x⟩}. (1.11)

This objective function is convex for which there exists a single global optimum. So

far only the linear scoring function ⟨x,w⟩ have been considered. Implicitly, however,

this assumes that the objects (images) to be classified have been encoded as vectors

x in such a way that makes linear classification possible. This encoding step can be

made explicit by introducing the feature map Φ (x) ∈ Rd. Including the feature map,

a non-linear scoring function in x is yielded and given as,

x ∈ X → ⟨Φ (x) , w⟩ (1.12)

where X is the input sample space. The relation of feature maps to similarity functions

is formalized by the notion of a kernel, a positive definite function k (x, x′) measuring

the similarity of a pair of objects. A feature map defines a kernel by,

k (x, x′) = ⟨Φ (x) ,Φ (x′)⟩ . (1.13)
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In original SVM, two parallel planes are formed in a way that each plane is closest

to one of the two populations belonging to two classes, and two planes are as far

apart as possible. In generalized eigenvalue proximal SVM, two optimal nonparallel

planes are generated which achieves the enhanced classification performances [62]. In

nonparallel SVM, two non parallel planes are formed in the form of

wT
1 x− b1 = 0 and wT

2 x− b2 = 0 (1.14)

To obtain the first plane,the following solution is derived from (1.14)

(w1, b1) = argmin
(w,b)̸=0

∥∥wTX1 − oT b
∥∥2
/
∥z∥2

∥wTX2 − oT b∥2
/
∥z∥2

(1.15)

z ← [wb ] (1.16)

where, X1 and X2 are set of samples belong to class 1 and class 2, respectively. The

parameter q is a vector of one of appropriate dimensions. Simplifying (1.15) gives

min
(w,b)̸=0

∥∥wTX1 − oT b
∥∥2

∥wTX2 − oT b∥2
(1.17)

A Tikhonov regularization term is included to decrease the norm of the variable z

that corresponds to the first hyperplane in (1.14)

min
(w,b) ̸=0

∥∥wTX1 − oT b
∥∥2

+ t∥z∥2

∥wTX2 − oT b∥2
(1.18)

where, t is a positive (or zero) Tikhonov factor. Equation (1.18) turns to the Rayleigh

quotient in the following form of

z1 = argmin
z ̸=0

zTPz

zTQz
(1.19)

where, P and Q are symmetric matrices in R(p+1)(p+1) as

P
def
= [X1 − 0]T [X1 − 0] + tI (1.20)

Q
def
= [X2 − 0]T [X2 − 0] + tI (1.21)

Using the stationarity and boundedness properties of Rayleigh quotient, solution of

(1.19 is deduced by solving a generalized eigenvalue problem as,

Pz = λQz, z ̸= 0 (1.22)

where, z is eigenvector and λ is eigenvalue for both the hyperplanes correspond to

populations of class 1 and 2 samples.
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1.8.3 Ensemble Classifiers

In machine learning, ensemble methods make use of numerous base learning

algorithms to come up with a better predictive model than that of any of the single

learning algorithm. An ensemble classification model makes a set of base classifiers

from training data and then perform classification taking a vote of each of the base

classifier’s predictions. The very inception of this algorithm is a fascinating procedure

called Boosting. Boosting focuses on the training examples that are hard to classify,

and it achieves this by iteratively change the distribution of the training instances.

AdaBoost and LogitBoost algorithms are the most well-known form of the boosting

procedure [63, 64]. These bear the most vital flexibility for adding many weak

classifiers having high error rates to produce a combined hypothesis whose training

error rate is small.

AdaBoost and Random Forest (AdaBoost-RF) Classifier

An AdaBoost algorithm has been used with the Random Forest classifier as base

or weak learner for the mammogram classification. Random Forest is an ensemble

classification technique proposed by Breiman that specially designed for decision tree

classifier [65]. It utilizes the bagging procedure, where randomness is interposed

into the model-building process by randomly choosing the samples, with replacement

from the original training dataset. The bagging technique uses the uniform

probability distribution to generate the bootstrapped samples that build each classifier

throughout the entire mode-building process. This method combines the predictions

generated by multiple decision trees where each tree is built based on the values of

an independent set of random vectors and with the same distribution for all the trees

in the forest. The learning error rate of the Random Forest depends on the number

of input features used in each node of the decision tree. Thus, a decision tree is

built using the training set and random vector. After many trees are generated, a

classification decision hypothesis is fitted to a function based on the voting for the

class.

AdaBoost algorithm is a popular version of boosting procedure. It has the

high flexibility for adding many weak classifiers having high error rates to generate

a combined hypothesis whose training error rate is small [63, 64, 66]. For the

binary classification problem, an AdaBoost algorithm uses the training dataset

X → {xi, yi}, i = 1, 2, ..., K contains K number of instances. The attribute xi of

X is an instance associated with corresponding class label yi ∈ {−1,+1}. The class

labels −1 and +1 represent the positive and negative type in the mammographic class
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set. With the use of the training dataset X , the AdaBoost model handles the binary

classifications using following factors.

1. Initially equal weights (W) are assigned to all training instances.

2. In each round, a weak hypothesis, hn (xi) of lower error rate is generated by

n-th base classifier. The importance of each base classifier is dependent on its

error rate defined as,

errorn ←
∑

i:hn(xi) ̸=yi

Wn(i). (1.23)

3. The importance of the base classifier depends on the constant, cn is given by,

cn ←
1

2
ln

(
1− errorn
errorn

)
(1.24)

4. The weights of misclassified instances are increased by updating the weights of

the training instances and given as,

Wn+1 (i)←
Wn (i)

Zn

e−cnyihn(xi) (1.25)

where Zn is a normalizing constant.

5. The instances with higher weights are selected to train the classifier in the next

round.

6. The final decision is obtained by the linear combination of the weak hypothesis

generated in each round.

The detail description of the AdaBoost procedure with Random Forest classifier is

given in the Algorithm 1.

LogitBoost and Random Forest (LogitBoost-RF) Classifier

A LogitBoost algorithm based on the Random Forest (RF) that acts as the base

classifier has been employed to characterize mammograms into malignant, benign

and normal type [63]. A LogitBoost algorithm is to be derived from the AdaBoost

model by applying least squares regression cost function. In the LogitBoost algorithm,

the same procedure has been followed with only one additional application of the least

square cost function. In this model, each of the training examples is initialized by

a specific weight that determines the probability of the corresponding sample being

selected for the training set (X ) in the classifier. Initially, an equal weight is given to
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Algorithm 1 Classification using AdaBoost-RF method.

Require: Dataset having K instances, X = xi for i = 1, 2, ..., K with labels yi ∈
{−1,+1}, N : Total number of iteration and T : Total number of trees.

Ensure: classifier decision

1: Initialize weight W1(i)← 1/K, ∀i
2: for n← 1 to N do

3: for t← 1 to T do

4: Generate a vector Vt with Wn(i)

5: Xt ← bootstrap(X)

6: ctreet ← buildtree(Xt, Vt)

7: return hypothesis h

8: end for

9: Obtain class hypothesis, hn(xi)→ yi ∈ {−1,+1}
10: Compute the error of hn(xi),

errorn ←
∑

i:hn(xi )̸=yi

Wn(i)

11: Set a constant cn ← 1
2
ln
(

1−errorn
errorn

)
12: Wn+1 (i)← Wn(i)

Zn
e−cnyihn(xi)

13: end for

14: hfinal (x)←
N∑

n=1

cnhn (x)

15: classifier decision← sign[hfinal(x)]

all the training examples of the dataset with a probability estimation value of 0.5 to

the corresponding training instance.

Next, the base learner is repeatedly trained on the weighted version of training

examples for many rounds. In each round, a base learner decision function is generated

and at the same time two parameters, working response and weight of the i-th

instance are also computed. The learner decision fitting function is generated by a

weighted least square regression of computed working response to the corresponding

instance using the earlier assigned weight. Then the classification decision function

gets updated in an additive manner of each classification function obtained from

each round. Consequently, the probability estimation of the training example is also

updated. Finally, after completion of all rounds, a classifier decision is obtained by

taking the signum function of the accomplished updated classification function. The

detailed description of the LogitBoost procedure with Random Forest as base classifier
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has been given in Algorithm 2.

Algorithm 2 Classification using LogitBoost-RF method.

Require: Feature dataset X of K instances having a instance xi ∈ X for i =

1, 2, ..., K associated with class label Ci → yi ∈ {−1,+1}, RF: Random Forest

classifier, M : total number of iteration and T : total number of trees.

Ensure: decision: Induced decision of classification.

1: Initialize weights Wi ← 1/K for all i

2: set F (x) ← 0 and p(xi) ← 0.5 {F (x): classifier decision function, p(xi):

probability estimation of the instance xi for binary class classification}
3: for m← 1 to M do

4: for t← 1 to T do

5: Construct a vector Vt with weight Wim

6: Xt ← bootstrap(X )
7: Ctree← buildtree(Xt, Vt)

8: end for

9: fm(xi)← yi ∈ {−1,+1} {m-th base learner decision}
10: Compute zi ← yi−p(xi)

p(xi)(1−p(xi))
{zi: working response}

11: Compute Wi ← p (xi) (1− p (xi))
12: Fit the learner decision fm(xi) by a weighted least-squares regression of zi to

xi using computed weight Wi

13: Update F (x)← F (x) + 1
2
fm(xi)

14: Update p (x) = exp{F (x)}
exp{F (x)}+exp{−F (x)}

15: end for

16: decision← sign[F (x)]

1.8.4 Logistic Model Tree (LMT)

The Logistic Model Tree (LMT) is a regression tree in which each node fits a

LogitBoost function [67, 68]. The LMT consists of a tree structure that includes

sets N and T of non-terminal nodes and terminal nodes, respectively. The tree is

provided by the entire instance space, X ∈ SFM → {xi, yi}, i = 1, 2, ..., K contains

K number of instances. The attribute xi ∈ sfvi of X is an instance associated with

corresponding class label yi ∈ C → {−1,+1}, where C is the number of classes. The

class labels, −1 and +1 represent the negative and positive type in the mammographic

ROIs class sets. Then, a disjoint subdivision of significant feature matrix (SFM) into

regions Xt is made by the tree structure and expressed as,
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X =
∪
t∈T

Xt (1.26)

where Xt

∩
Xt′ = ϕ, ∀ t ̸= t′. Each formed region is represented by a leaf node t ∈ T ,

which fits a LogitBoost function. The LogitBoost function f(t) develops an additive

model of least-squares fitted to the given relevant dataset X for each class y and given

as,

Fy (x) = β0 +
R∑
i=1

βixi (1.27)

where R is the number of features present in the feature vector of each instance x, β0

is the coefficient of initial feature component, βi is the coefficient of the ith component

in the feature vector. The class membership probabilities induced by the model is

given by,

P (y |X → x) =
exp (Fy (x))

C∑
j=1

exp (Fj (x))

. (1.28)

Then, the model represented by the entire LMT is given by,

f (x) =
∑
t∈T

ft (x).I (x ∈ Xt) (1.29)

where I (x ∈ Xt) =

{
1, if x ∈ Xt

0, otherwise
.

Now, the LMT is built by the following steps:

1. The tree is grown based on C4.5 approach [69], where each node fits a logistic

model using LogitBoost algorithm.

2. A split is formed at the root of the data. Then, the tree is continuously growing

by sorting the appropriate subsets of the data to the child nodes. Also, at each

child node, a logistic regression model is built.

3. At each split, the logistic regressions of the parent node are passed to the child

node.

4. The splitting process continues till it achieves a minimum information gain. The

tree growing stops when there is no more split.
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5. The final model in the terminal nodes accumulates all parent models that

generates the probability estimates for each class.

6. After the entire tree has been built, CART-based pruning [70] is applied for

reduction of the size of the tree that enhances the generalization of the model.

1.9 Thesis Organization

This thesis is organized into six different chapters including introduction. Each

chapter presents the contributions specific to the feature development and selection

scheme. The efficacy of the proposed schemes have been validated using several

classifiers namely, Naive Bayes (NB), K-Nearest Neighbor (K-NN), Back-Propagation

Neural Network (BPNN), Support Vector Machine (SVM), AdaBoost and Random

Forest (AdaBoost-RF), LogitBoost and Random Forest (LogitBoost-RF), and Logistic

Model Tree (LMT) on two standard databases, MIAS and DDSM. Each chapter is

discussed below in a nutshell.

Chapter 2: Mammogram Classification using DWT and GLCM Features

Followed by t-test Feature Selection

Two Dimensional Discrete Wavelet Transform (2D-DWT) and Gray-Level

Co-occurrence Matrix (GLCM) is used in succession to extract the feature descriptors

from the mammographic ROIs. To derive the relevant features from the feature

matrix, t-test and F-test are utilized independently. The relevant features are

used in different classifiers for classification of mammograms. The performance of

classification is evaluated with respect to accuracy (ACC) and AUC of ROC curve.

The accuracy measures are computed with respect to normal vs. abnormal and benign

vs. malignant. It has been observed that, Back-Propagation Neural Network (BPNN)

achieves better result among all classifiers. For MIAS database the optimal accuracy

measures are 98.13% and 94.20% respectively, whereas for DDSM database they are

98.80% and 97.40%. Similarly, AUC parameters are of 0.9899, 0.9504 for MIAS, and

0.9945, 0.9761 for DDSM database.

Chapter 3: Mammogram Classification using SFTA Features with FCBF

Feature Selection

This chapter presents an effective scheme to identify the abnormal mammograms

in order to detect the breast cancer. The scheme utilizes the Segmentation-based

Fractal Texture Analysis (SFTA) method to extract the texture features from the
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mammograms. A Fast Correlation-Based Filter (FCBF) method is used to select

feature subsets containing significant features, which are used for classification

purpose. The 10-fold cross-validation has been made to obtain the optimal relevant

feature subset. The scheme has been validated using different classifiers. A promising

classification performances of ACC = 98.76%, AUC = 0.9901 (abnormal–normal),

and ACC = 95.65%, AUC = 0.9705 (malignant–benign) have been achieved by

SVM for MIAS database. The similar results of ACC = 99.20%, AUC = 0.9988

(abnormal–normal), and ACC = 98.00%, AUC = 0.9967 (malignant–benign) have

been archived for DDSM database.

Chapter 4: Mammogram Classification using DOST Features followed by

Null-hypothesis based Feature Selection

A Two-Dimensional Discrete Orthonormal S-Transform (2D-DOST) is used to extract

the coefficients from the digital mammograms. A feature selection algorithm based

on null-hypothesis with statistical two-sample t-test has been suggested to select

most significant coefficients from large number of DOST coefficients. The selected

coefficients are used in different classifiers for classification of mammograms. It has

been observed that, the optimal results with respect to ACC and AUC are achieved

by AdaBoost-RF classifier. The parameters are ACC = 98.75%, AUC = 0.9991

(abnormal–normal), and ACC = 98.26% and AUC = 0.9985 (malignant–benign)

for MIAS database. Similarly, for DDSM database the parameters are ACC =

99.30%, AUC = 0.9994 (abnormal–normal), and ACC = 98.80%, AUC = 0.9992

(malignant–benign).

Chapter 5: Mammogram Classification using Slantlet Features followed by

BLogR for Feature Selection

This chapter presents an efficient scheme to characterize the type of digital

mammogram as malignant, benign or normal in the early diagnosis of the breast

cancer. The texture features are extracted by performing the Two-Dimensional

Slantlet Transform (2D-SLT) on enhanced mammographic ROIs. The most significant

features are selected from the available derived features by utilizing the Bayesian

Logistic Regression (BLogR) method. To accomplish an adequate improved

performance, the relevant features are balanced by the Gaussian distribution based

balancing method prior to classification. The optimal performance measures are

obtained by LogitBoost-RF classifier among all classifiers on similar platform. The

proposed approach achieves the optimal accuracy results of 99.69% and 99.13% for

abnormal–normal and the malignant–benign class set on MIAS database respectively.
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The similar parameters of 99.80% and 99.40% are accomplished for DDSM database.

The optimal AUC of value 1 with respect to ROC curve is achieved for all the class

sets of both the databases.

Chapter 6: Mammogram Classification using Radial Symmetric Features

followed by t-SNE Feature Selection

The Fast Radial Symmetry Transform (FRST) is performed on the mammographic

Region-of-Interest (ROI) to derive the radially symmetric features. A t-distributed

Stochastic Neighbor Embedding (t-SNE) method has been utilized to select most

relevant features. The suggested scheme has been validated using various classifiers.

Experimental results show an optimal classification performance that is achieved by

LMT classifier with respect to accuracy (ACC) and area under ROC curve (AUC)

value. The ACC measures are estimated concerning malignant vs. normal, malignant

vs. benign, and benign vs. normal classes. For MIAS database, the accuracy measures

are 99.61%, 99.13%, and 99.63% respectively, whereas, for DDSM database, they are

99.87%, 99.40%, and 99.73%. Similarly, the AUC values are 0.9997, 1, and 0.9998 for

MIAS datbase. For DDSM database, the parameters are 1, 1, and 0.9968

Chapter 7: Conclusions and Future Work

This chapter presents the conclusions drawn from the proposed work with emphasis

on the achievements and limitations. The scope for future research work has been

discussed at the end.
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Chapter 2

Mammogram Classification using

DWT and GLCM Features

Followed by t-test Feature

Selection

The leading cause of death among cancer for women is the breast cancer. Early

detection of breast cancer has been observed to improve the recuperation rates

to a great extent. In this context, mammography is one of the most diagnostic

tests for pre-screening the breast cancer. In most cases, experienced radiologists

are responsible for interpreting and analyzing the mammograms. However, due to

the possibility of human error, the result brings the variable judgments. In this

regard, it is an extremely challenging and difficult task for radiologists to classify

the suspicious lesion correctly in mammograms. Therefore, automatic classification

of digital mammograms is required to support the decision making of radiologists.

For accurate classification, the relevant features with an improved classifier play a

vital role. In this chapter, we suggest a hybrid feature followed by a feature selection

mechanism to classify mammograms as malignant, benign or normal . The feature

extraction algorithm concentrates on the texture point in the mammographic image

utilizing Two-Dimensional Discrete Wavelet Transform (2D-DWT) and Gray-Level

Co-occurrence Matrix (GLCM) in succession on Region-of-Interest (ROI) to find out

the feature descriptors of each detail coefficient at two-level resolution. Two statistical

methods namely, two-sample t-test and F-test have been applied independently to
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select significant features. Utilizing relevant features, several classifiers have been

used to validate the proposed scheme. It has been observed that Back-Propagation

Neural Network (BPNN) has showed the significant performance among all classifiers.

The classification using BPNN has been explained elaborately in this chapter. The

overall block diagram of the scheme is shown in Figure 2.1.

The rest of the chapter is organized as follows: The extraction of ROI form the

mammographic image is described in Section 2.1. The fundamentals of 2D-DWT and

GLCM methods are explained in Sections 2.2 and 2.3 respectively for completeness.

The extraction of feature using 2D-DWT and GLCM method is described in

Section 2.4. Section 2.5 outlines the feature selection followed by the classification.

Section 2.6 describes the experimental results obtained on standard databases MIAS

and DDSM. Section 2.7 gives the summary of overall work proposed in this chapter.

Figure 2.1: Block diagram of proposed scheme using 2D-DWT and GLCM.

2.1 Extraction of Region-of-Interest (ROI)

It might be noticed that digital mammographic image is composed of different types

of noise, imaging artifacts, object background, and pectoral muscle as shown in

Figure 2.2(a). All these regions are undesirable segments for the analysis of texture

because of which; the full mammographic image is not suitable for feature extraction
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and consequent characterization. Hence, a cropping operation has been applied on

mammographic image to extract the Region-of-Interest (ROI) which contains the

suspicious abnormality, excluding the undesirable parts of the image. This process

is performed by referring the center of the abnormal area as the center of ROI and

taking the approximate radius (in pixels) of a circle enclosing the abnormal area.

Subsequently, the circular image is converted to a 128 × 128 rectangular image that

encompassed the circle, and is shown in Figure 2.2(b). For the extraction of normal

ROI, the same cropping procedure is performed on normal mammographic images

with a random selection of the location. Thus, in this phase, the ROIs extracted

are free from the background information and noises. The cropping process has been

applied on the mammograms of MIAS database to extract ROIs based on the prior

ground truth informations [11]. However, for the DDSM mammographic images, the

ROIs are already given as mammographic patches by the IRMA project [12].

High 

intensity

label

High 

intensity

label

Tape

artifact

Scanning 

artifact

Pectoral

muscle

(a) Undesirable regions

Digital mammogram

Suspicious region Extracted 

    ROI

(b) ROI extraction

Figure 2.2: Mammogram with various undesirable regions and ROI extraction.

2.2 Multiresolution Analysis using 2D-DWT

In the multiresolution technique, the underlaying texture of mammographic ROIs

are analyzed by zooming in and out process. Two-Dimensional Discrete Wavelet

Transform (2D-DWT) decomposes the mammographic ROI into a number of

sub-images in different resolution levels preserving the high and low frequency

information. This property leads the wavelet to extract better texture information

from the mammographic ROIs. Given a continuous, square integrable function f (x),

its wavelet transform is calculated as the inner product of f(.) and a real valued

wavelet function (ψ (x)) [71] given by,

W [f (s, τ)] = ⟨f, ψk
s,τ ⟩ =

∞∫
−∞

f (x)ψk
s,τ (x) dx (2.1)
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where ψk
s,τ (x) = 1√

s
ψk

(
x−τ
s

)
is a wavelet family, s ∈ Z, τ and k ∈ {h, v, d} are

scale (resolution level), translation and orientation parameters respectively. The

orientation parameters h, v and d represents to horizontal, vertical and diagonal

directions respectively. Now the dyadic wavelet decomposition is achieved when s = 2j

and τ = 2j.n, j, n ∈ Z. Using the wavelet function ψ (x) and scaling function φ (x),

the wavelet and scaling families are constructed as,

ψk
j,n (x) =

1√
2j
ψk

(
x−2j .n

2j

)
and φk

j,n (x) =
1√
2j
φ
(

x−2j .n
2j

)
. (2.2)

These are orthonormal basis of sub-spaces and related to resolution 2j. The wavelet

atoms are defined by scaling and translating three mother atoms like ψh, ψv and ψd.

These oriented mother atoms are computed as the tensor product of one dimensional

ψ (x) and φ (x) given by,

φ (x) = φ (x1)φ (x2) , ψ
h (x) = ψ (x1)φ (x2) ,

ψv (x) = φ (x1)ψ (x2) and ψ
d (x) = ψ (x1)ψ (x2)

. (2.3)

A Two-Dimensional Discrete Wavelet Transform is implemented using the

combination of digital filter banks and down-samplers. The digital filter banks consist

of high-pass (g) and low-pass (h) filters. In the configuration of DWT structure, the

number of banks is set as per the desired resolution [72]. As the image is a 2D

signal, separable wavelet functions compute the Discrete Wavelet Transform (DWT).

The rows and columns of the image are separately undergone through the 1D wavelet

transform to establish the 2D-DWT. As shown in Figure 2.3, the original image A2j+1f

at resolution 2j+1 is decomposed into four sub-band images in the frequency domain.

Among them, three sub-band images, Dh
2j f , D

v
2j f , D

d
2j f are the detail images at

resolution 2j in horizontal, vertical, and diagonal directions respectively. The Fourth

one is the approximation image, A2j f found at coarse resolution. So the whole image

A2j+1f is represented as,

A2j+1f = Dh
2j f +Dv

2j f +Dd
2j f + A2j f. (2.4)

The decomposed sub-images are the representation of 2D orthogonal wavelet.

Thus, the output of a wavelet decomposition of an image results into four orthogonal

sub-band components like Low-Low (LL), Low-High (LH), High-Low (HL) and

High-High (HH), that correspond to sub-images Dh
2j f , Dv

2j f , Dd
2j f and A2j f

respectively as shown in Figure 2.3.
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Figure 2.3: Wavelet decomposition using analysis filter banks.

2.3 Gray-Level Co-occurrence Matrix (GLCM)

The Gray-Level Co-occurrence Matrix (GLCM) is used to extract the texture in an

image by doing the transition of gray level between two pixels. The GLCM gives

a joint distribution of gray level pairs of neighboring pixels within an image [73].

The co-occurrence matrix of the ROI is useful in classifying breast tissues by

extracting descriptors from the matrix. For the computation of GLCM , first a spatial

relationship is established between two pixels, one is the reference pixel, and the other

is a neighbor pixel. This process forms the GLCM containing different combination

of pixel gray values in an image. Let q (i, j) is the element of GLCM of a given image

f of size M ×N containing the number of gray levels G ranging from 0 to G−1. The

element q (i, j) is defined as,

q (i, j) =
M∑
x=1

N∑
y=1

{
1 , iff (x, y) = i and f (x+∆x, y +∆y) = j

0, otherwise
(2.5)

where (x, y) and (x+∆x, y+∆y) are the locations of reference pixel and its neighboring

pixel respectively. Each element of GLCM , q (i, j |∆x,∆y ) represents the relative

frequency with which two pixels in a given neighborhood are separated by a distance

(∆x,∆y) having gray level values i and j respectively [74]. It can be represented

as q (i, j |D, θ ), where the parameter D is the distance of separation between two

neighboring resolution cells with two pixels having intensities i and j in the image.

The other parameter θ represents the direction of neighboring pixel with respect to

the pixel of reference. The directionality used in GLCM is shown in Figure 2.4. The
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parameter D is also called as set distance as it specifies the distance of all neighboring

resolution pairs in a set. For the texture calculation; the GLCM must be symmetrical,

and each entry of the GLCM should be a probability value. For this purpose, a

normalization process is followed. Each element of the n-dimensional Normalized

Gray-Level Co-occurrence Matrix (NGLCM) is defined as,

p (i, j) = q (i, j) /
G−1∑
i=0

G−1∑
j=0

q (i, j). (2.6)

[-D,-D]

Reference pixel

Figure 2.4: Directionality used in Gray-Level Co-occurrence Matrix.

The size of GLCM is same as the number of gray levels of input image. The

GLCM is highly dependent on the parameters D and θ. Several matrices can be

obtained with small changes in the parameter D and θ. For the digital mammograms,

the distance parameter D is limited to integral multiples of the pixel size, and the

value of a direction parameter θ can be 0◦, 45◦, 90◦ and 135◦. Figure 2.5 describes

the process of computation of GLCM of a given test image intensity matrix. Here,

the number of gray level is considered to be four and the offset values are taken as

[0, 1], [−1, 0], [−1, 1], and [−1,−1]. The offset values represent set distance D = 1

in four possible neighbor pixel directions, θ = 0◦, 90◦, 45◦ and 135◦ with respect

to the reference pixel. It can be seen that the occurrence of resolution cells pair

(0, 2) in the intensity matrix of input image is 4 in the horizontal direction (θ = 0◦)

due to the symmetric property. Therefore, the element in the (0, 2) position of the

horizontal GLCM is 4 as shown in Figure 2.5(b). In the same manner other three

GLCMs are computed. Figure 2.6 shows the Normalized Gray-Level Co-occurrence

Matrices (NGLCM) where each cell in the matrices contains probability value. Each

element of NGLCM is computed by dividing 24 in case of horizontal and vertical

directions, and 18 in case of left diagonal and right diagonal directions to each element

of corresponding symmetrical GLCM .
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0 1 2 3

0 0 2 1 2

1 2 3 2 0

2 0 1 3 2

3 2 0 2 1
(a)

0 1 2 3

0 0 1 4 0

1 1 0 3 1

2 4 3 0 3

3 0 1 3 0
(b)

0 1 2 3

0 0 1 5 0

1 1 0 2 1

2 5 2 0 3

3 0 1 3 0
(c)

0 1 2 3

0 0 0 0 3

1 0 0 2 1

2 0 2 6 0

3 3 1 0 0
(d)

0 1 2 3

0 2 1 0 1

1 1 0 2 1

2 0 2 4 0

3 1 1 0 2
(e)

Figure 2.5: Computation of co-occurrence matrices. (a) Intensity values of input

image with 4 gray levels. Different co-occurrence matrices (GLCM) for set distance

D = 1 at four different directions such as (b) horizontal (θ = 0◦), (c) vertical (θ = 90◦),

(d) right diagonal (θ = 45◦), (e) left diagonal (θ = 135◦).

0 1 2 3

0 0 0.0417 0.1667 0

1 0.0417 0 0.1250 0.0417

2 0.1667 0.1250 0 0.1250

3 0 0.0417 0.1250 0
(a) θ = 0◦

0 1 2 3

0 0 0.0417 0.2083 0

1 0.0417 0 0.0833 0.0417

2 0.2083 0.0833 0 0.1250

3 0 0.0417 0.1250 0
(b) θ = 90◦

0 1 2 3

0 0 0 0 0.1667

1 0 0 0.1111 0.0556

2 0 0.1111 0.3333 0

3 0.1667 0.0556 0 0
(c) θ = 45◦

0 1 2 3

0 0.1111 0.0556 0 0.0556

1 0.0556 0 0.1111 0.0556

2 0 0.1111 0.2222 0

3 0.0556 0.0556 0 0.1111
(d) θ = 135◦

Figure 2.6: NGLCM of corresponding GLCM in Figure 2.5 at different directions.

2.4 Feature Extraction using 2D-DWT and GLCM

In the discrete wavelet decomposition, the output detail images give the detail

coefficients of the original image. It is found that, the approximation sub-image carries

little energy due to which it is not taken into consideration for texture analysis of
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mammographic ROI. But the wavelet detail coefficients provide the texture descriptors

of the mammographic ROI. Using 2D-DWT, the three detail coefficient matrices at

each resolution level are obtained, which represent horizontal, vertical, and diagonal

sub-structures of the ROI as shown in Figure 2.7. Then the Gray-Level Co-occurrence

Matrices are calculated at each resolution level by taking the absolute value of each

coefficient in the corresponding matrices. For analysis of texture patterns of each

ROI, the following five texture descriptors such as energy, correlation, entropy, sum

variance, and sum average are computed using GLCM [73]. The expressions for

different texture feature descriptors (FD) are given in Table 2.1. Now p (i, j) is

the (i, j)th entry of normalized GLCM . Let px (i) is the ith entry in the marginal

probability matrix by summing the rows of p (i, j), defined as, px (i) =
G∑

j=1

p (i, j),

where G is the number of distinct gray levels in the quantized ROI. Similarly,

py (j) =
G∑
i=1

p (i, j) and px+y (k) =
G∑
i=1

G∑
j=1

i+j=k

p (i, j) , k = 2, 3, ..., 2G. The steps

associated for computation of feature matrix from 2D-DWT and GLCM are described

in Algorithm 3.

Original 

   ROI

2D-DWT

(a) Wavelet decomposition at two resolution level (b) Original ROI (c) DWT of ROI

Figure 2.7: 2D-DWT of mammographic ROI.

In Algorithm 3, a 2D-DWT is applied on K mammographic ROIs to produce

different detail coefficient matrices (DM) at r different directions such as horizontal,

vertical and diagonal directions for l resolution levels. A co-occurrence matrix

(GLCM) and its corresponding normalized co-occurrence matrix (NGLCM) are

calculated from each DM in four directions (p = 4) i.e., at θ = 0◦, 45◦, 90◦, and 135◦

at a set distance D. Then all the feature descriptors (FD) mentioned in Table 2.1

are computed from each NGLCM and combined to form a feature descriptor matrix

(FDM). Thus, a feature matrix is generated by concatenating all the FDMs from

all NGLCMs for K number of ROIs.
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Table 2.1: Computation of feature descriptors for mammographic ROIs.
Feature

Descriptor Name Computation

FD1 Energy
G∑
i=1

G∑
j=1
{p (i, j)}2

FD2 Correlation

G∑
i=1

G∑
j=1

(i,j)p(i,j)−µxµy

σxσy

FD3 Entropy −
G∑
i=1

G∑
j=1

p (i, j) log (p (i, j))

FD4 Sum variance
2G∑
i=2

(i− sumentropy)2px+y (i)

FD5 Sum average
2G∑
i=2

ipx+y (i)

where, µx, µy, σx and σy are the means and standard deviations of px and py,

and sumentropy = −
2G∑
i=2

px+y (i) log {px+y (i)}.

2.5 Feature Selection and Classification

The features extracted from the textures of ROIs are expressed as mathematical

descriptions. This helps the classifier to distinguish the breast tissues as malignant,

benign or normal. However, one major problem lies with the large number of features

that is very difficult to determine which feature or combination of features achieves

better classification accuracy rate [8]. Therefore, it is important to select a suitable

and optimized set of features from a high dimensional feature matrix that has the

ability to distinguish between different types of mammograms. In this scheme, two

statistical methods such as two-sample t-test and F-test have been used independently

to select the most significant features from the feature matrix. Two-sample t-test and

F-tests are performed on two classes, and a test decision is returned for the null

hypothesis that the data in two vectors v1 and v2 come from normal distributions

with equal means. The objective of the test is to determine whether the data from

two vectors v1 and v2 are related or not. In the proposed feature selection algorithm,

a null hypothesis value, h = 1 indicates that the null hypothesis is incorrect and

rejected. An incorrect null hypothesis implies that, data from two vectors v1 and v2

are different and independent. In the two-sample t-test and F-test method, the t and

F values are computed as,

t =
|µv1 − µv2 |√
(σv1)

2

Kv1
+

(σv2)
2

Kv2

and F =
S2
v1

S2
v2

(2.7)
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Algorithm 3 Feature matrix generation using 2D-DWT and GLCM.

Require: K: total number of ROIs, l: resolution level, r: number of directions in

which DM is to be computed, θ: direction , p: number of directions, D: set

distance, s: number of feature descriptors, fv and FDM : feature descriptor

vector and matrix respectively.

Ensure: FM [M ][K]: feature matrix. Function wavedec() performs wavelet

transform of ROI. Function detcoef() extracts three detail and approximation

coefficient components from transformed ROI at lower resolution levels. And

function graycomatrix() computes GLCM from DM .

1: fv ← ϕ, FDM ← ϕ

2: Initialize l← 2, r ← 3, p← 4, and s← 5

3: M ← l × r × p× s
4: for i← 1 to K do

5: Read ROIi, D ← 1

6: for j ← 1 to l do

7: TROIi ← wavedec(ROIi) {TROIi is the wavelet transform of ROIi}
8: for d← 1 to r do

9: DMjd ← detcoef (TROIi)

10: for k ← 1 to p do

11: GLCMjdθk ← graycomatrix (DMjd, θk, D)

12: NGLCMjdθk ← GLCMjdθk / sum(elements of GLCMjdθk)

13: for q ← 1 to s do

14: Compute FDq from NGLCMjdθk and fv ← fv
∪
FDq

15: FDMjdθk ← FDM
∪
fv

16: end for

17: end for

18: end for

19: D ← D + 1

20: end for

21: end for

22: FM ← concatenate (FDMs)

where Kv1 and Kv2 are the numbers of ROIs in two classes. Here, µv1 and µv2 are

means, σv1 and σv2 are standard deviations, and Sv1 and Sv2 are the variances of

two classes. The higher t and F values indicate more significant differences between

the means of the two vectors. For a certain threshold t and F values, corresponding

p1 and p2 values define probabilities of obtaining a t and F values more than the
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threshold. A significance level, α defines the lower threshold for the p1 and p2 values.

The value of α is in the range 0 and 1. As the α value decreases from one to zero, the

selection of the number of features reduces. The selection of significant features has

been described in Algorithm 4.

Algorithm 4 Feature selection using two-sample t-test and F-test method.

Require: FM [M ][K], target[1][N ], α: Significance level

Ensure: SFM1[R][K] and SFM2[R][K]. R: Total number of selected features.

Functions ttest() and vartest() compute the null hypothesis values of two vectors

at different values of significance level, by two-sample t and F-test respectively.

1: Create two empty vectors v1 and v2

2: Initialize α, 0 < α < 1

3: for i← 1 to M do

4: Clear contents of vector v1 and vector v2

5: for j ← 1 to K do

6: if target class[j] = 1 then

7: Append FM [i][j] to v1

8: else

9: Append FM [i][j] to v2

10: end if

11: end for

12: h1[i]← ttest(v1, v2, α)

13: h2[i]← vartest(v1, v2, α)

14: for l← 1 to 2 do

15: if hk[i] = 1 then

16: Append FM [i][K] to SFMk

17: end if

18: end for

19: end for

To validate the efficacy of the proposed hybrid DWT and GLCM features,

various classifiers namely, Back-Propagation Neural Network (BPNN), Support

Vector Machine (SVM), AdaBoost and Random Forest (AdaBoost-RF), LogitBoost

and Random Forest (LogitBoost-RF), and Logistic Model Tree (LMT) have been

used for classification. Moreover, two other classifiers such as Naive Bayes (NB) and

K-Nearest Neighbor (K-NN) are also used to compare the classification accuracies

utilizing the same proposed features. Among all the classifiers, BPNN has shown

superior performance as compared to others. The artificial neural network structure
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(Figure 1.10) has been experimentally optimized as a three layer network with 15

hidden neurons. Different performance measures of classification such as sensitivity

(Sn), specificity (Sp), accuracy (ACC), and AUC of ROC analysis are studied with

the different number of significant features by varying the α values and changing the

number of neurons (H) in the hidden layer of neural network as shown in Figure 2.1.

2.6 Experimental Results and Analysis

In this scheme, simulation experiments have been carried out in MATLAB

environment. For the evaluation of the performance, two image class sets are

built from MIAS and DDSM databases and used in the experiments namely,

abnormal–normal and malignant–benign. The abnormal and malignant type of ROIs

are considered as positive class in the abnormal–normal and malignant–benign image

class sets respectively.

2.6.1 Results for Feature Extraction

In this work, the symmetric biorthogonal 4.4 wavelet has been used to compute DWT

of images. It has been observed that at l = 2, the 2D-DWT gives the suitable results

on feature extraction. At each resolution level (j) the DWT results three detail

coefficient matrices and thus a total of six detail coefficient matrices (DM) such as

H1, V1, D1 at j = 1, and H2, V2, D2 at j = 2 are obtained in three different directions.

Furthermore, fourGLCM and correspondingNGLCM are computed from each detail

coefficient matrix (DM) at each resolution level. The resolution level (j) of wavelet

transform acts as the distance parameter (D) for GLCM computation. The value of

D has been taken 1 and 2 for resolution level j = 1 and j = 2 respectively. From each

NGLCM , a total of five feature descriptors (s = 5) such as energy, correlation,

entropy, sum variance, and sum average are extracted and consequently, form a

feature descriptor matrix. Thus, for l = 2, r = 3, p = 4 and s = 5, a total 120

(M = l× r× p× s) features are extracted from K number of ROIs. This M number

of features are kept in rows with corresponding K number of ROIs in columns to

generate a feature matrix, which is used in feature selection algorithm. Tables 2.2,

2.3, 2.4, and 2.5 show the values of different texture feature descriptors for different

types of ROIs at each resolution level (j).
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Table 2.2: Different values of various feature descriptors at θ = 0◦ with set distance

D = 1 for j = 1 and D = 2 for j = 2.

Mammogram
Database

Type of
ROI

Detail
coefficient

Feature Descriptors

FD1 FD2 FD3 FD4 FD5

MIAS

Normal

H1 0.2779 487.5895 2.0317 68.9951 9.7276
H2 0.0970 692.6964 2.8604 41.6123 8.1096
V1 0.1877 466.5697 1.9693 61.5468 9.0858
V2 0.0996 767.3355 2.8207 51.9270 8.8618
D1 0.2179 444.1351 1.8202 65.0145 9.2864
D2 0.2331 347.4291 2.2023 43.2433 7.9591

Benign

H1 0.2281 419.9608 1.9828 52.9509 8.6760
H2 0.0968 874.2193 2.7809 57.3901 9.2558
V1 0.3602 239.8866 1.6763 48.3035 8.0619
V2 0.0884 741.4346 2.8748 47.4457 8.5482
D1 0.2263 432.9716 1.8142 65.5525 9.3108
D2 0.1219 668.9592 2.5554 56.7644 9.0768

Malignant

H1 0.2096 669.7592 1.9406 88.8764 10.8185
H2 0.1253 663.9185 2.4817 56.4908 9.0556
V1 0.4441 216.5229 1.4351 51.0913 8.0865
V2 0.2024 498.4734 2.0593 65.2262 9.4488
D1 0.3583 258.8663 1.5051 53.2372 8.3248
D2 0.1205 645.2020 2.6058 53.9703 8.8808

DDSM

Normal

H1 0.3516 280.7523 1.8023 46.6090 8.0955
H2 0.1532 844.4912 2.2438 91.2830 11.0730
V1 0.1731 459.2810 2.1313 55.5010 8.7921
V2 0.1101 653.7500 2.6209 51.4534 8.5875
D1 0.1450 549.6110 2.2607 57.1411 8.9572
D2 0.2361 325.8900 2.0760 47.0090 8.0912

Benign

H1 0.9296 219.4603 0.2129 98.9842 9.9898
H2 0.2355 294.7308 1.6366 34.1920 6.9669
V1 0.9139 213.1101 0.2764 95.1445 9.9783
V2 0.5363 184.5213 1.1469 47.6322 7.7436
D1 0.7223 148.4800 0.5889 54.3605 7.8384
D2 0.9639 130.3821 0.1285 61.9740 7.9811

Malignant

H1 0.9341 217.4412 0.1970 97.1415 9.9778
H2 0.3882 246.0833 1.3712 42.7977 7.5013
V1 0.9127 214.5800 0.2823 95.3071 9.9841
V2 0.2998 239.7766 1.5814 40.7870 7.4602
D1 0.3350 284.9154 1.2925 58.8471 8.5895
D2 0.7726 143.5648 0.5099 55.7352 7.8725

H1, V1, D1: horizontal, vertical and diagonal detail coefficient matrices at j = 1
H2, V2, D2: horizontal, vertical and diagonal detail coefficient matrices at j = 2
FD1, FD2, FD3, FD4 and FD5 are feature descriptors defined in Table 2.1.

45



Chapter 2 DWT + GLCM + t-test

Table 2.3: Different values of various feature descriptors at θ = 90◦ with set distance

D = 1 for j = 1 and D = 2 for j = 2.

Mammogram
Database

Type of
ROI

Detail
coefficient

Feature Descriptors

FD1 FD2 FD3 FD4 FD5

MIAS

Normal

H1 0.2326 479.8930 2.1199 71.5657 9.7237
H2 0.0903 677.5727 2.8725 42.0656 8.1228
V1 0.1969 468.5895 1.9439 60.1313 9.0849
V2 0.1015 762.7643 2.7947 51.3033 8.8450
D1 0.2177 442.5444 1.8138 65.2780 9.2845
D2 0.2250 346.4965 2.2173 43.3453 7.9539

Benign

H1 0.2011 413.7083 2.0464 55.6596 8.6787
H2 0.0897 864.0826 2.8057 58.5130 9.2778
V1 0.4352 241.9732 1.5906 48.3573 8.0619
V2 0.1005 746.1557 2.8445 47.4000 8.5461
D1 0.2291 433.3259 1.8093 65.8895 9.3106
D2 0.1213 674.2864 2.5647 57.0645 9.0855

Malignant

H1 0.1930 664.6917 1.9807 92.7172 10.8194
H2 0.1234 637.6616 2.4486 56.7353 9.0446
V1 0.5052 216.8881 1.3503 50.3845 8.0858
V2 0.2093 506.7676 2.0243 64.7834 9.4423
D1 0.3559 258.9083 1.5028 53.5048 8.3264
D2 0.1279 634.4545 2.5620 53.8055 8.8830

DDSM

Normal

H1 0.2907 276.4500 1.8987 47.2782 8.0948
H2 0.1745 819.9701 2.1207 98.9453 11.0805
V1 0.1951 461.4608 2.0561 54.6023 8.7895
V2 0.1123 675.1321 2.6809 48.5760 8.5925
D1 0.1451 548.7622 2.2601 57.3110 8.9543
D2 0.2515 324.4001 2.0657 47.2960 8.0953

Benign

H1 0.9139 213.2400 0.2881 95.4910 9.9834
H2 0.2197 270.7105 1.7934 34.3020 6.9534
V1 0.9259 219.8802 0.2182 96.9100 9.9857
V2 0.5974 194.7628 0.9838 50.0120 7.7476
D1 0.7195 148.5254 0.5898 54.3786 7.8380
D2 0.9639 130.3410 0.1285 61.9856 7.9811

Malignant

H1 0.9127 212.2101 0.2813 95.1182 9.9746
H2 0.3230 231.8769 1.5543 41.3890 7.4696
V1 0.9182 222.9300 0.2372 96.7241 9.9957
V2 0.3256 254.5963 1.4196 42.2070 7.4696
D1 0.3324 285.0214 1.2995 58.7192 8.5893
D2 0.7804 142.9786 0.4945 55.9823 7.8772
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Table 2.4: Different values of various feature descriptors at θ = 45◦ with set distance

D = 1 for j = 1 and D = 2 for j = 2.

Mammogram
Database

Type of
ROI

Detail
coefficient

Feature Descriptors

FD1 FD2 FD3 FD4 FD5

MIAS

Normal

H1 0.2264 480.5639 2.1465 70.6623 9.7249
H2 0.0879 681.0941 2.8792 42.3220 8.1304
V1 0.1864 467.7653 1.9784 60.9509 9.0844
V2 0.0926 766.4563 2.8347 51.7463 8.8526
D1 0.2174 443.6977 1.8201 64.9795 9.2851
D2 0.2095 348.9067 2.2437 43.2632 7.9568

Benign

H1 0.1974 415.2558 2.0749 54.6695 8.6772
H2 0.0906 858.3919 2.8054 58.5568 9.2685
V1 0.3516 241.0157 1.6931 47.6765 8.0624
V2 0.0898 748.6347 2.8727 47.1760 8.5424
D1 0.2249 434.0044 1.8205 65.2272 9.3105
D2 0.1199 668.5166 2.5641 56.9308 9.0802

Malignant

H1 0.1883 666.8222 2.0078 91.3533 10.8204
H2 0.1233 643.4498 2.4670 56.9562 9.0486
V1 0.4392 216.4788 1.4470 50.4909 8.0867
V2 0.2056 494.2931 2.0431 65.5455 9.4444
D1 0.3515 259.9105 1.5157 52.6011 8.3250
D2 0.1197 643.0346 2.6010 53.7630 8.8819

DDSM

Normal

H1 0.2847 276.8162 1.9086 46.7880 8.0924
H2 0.1485 827.6910 2.2421 94.6770 11.0822
V1 0.1721 459.9882 2.1365 55.0801 8.7910
V2 0.0978 671.1874 2.7181 49.0870 8.5902
D1 0.1449 550.2200 2.2622 56.8473 8.9557
D2 0.2114 329.7618 2.1021 44.7035 8.0979

Benign

H1 0.9139 213.2245 0.2897 95.4060 9.9831
H2 0.2050 271.6973 1.8368 33.2631 6.9557
V1 0.9139 213.1512 0.2776 95.0765 9.9784
V2 0.5371 184.2814 1.1599 47.4170 7.7424
D1 0.7210 148.7421 0.5919 54.2596 7.8378
D2 0.9657 130.4118 0.1256 62.1110 7.9824

Malignant

H1 0.9123 212.2347 0.2843 95.0021 9.9747
H2 0.3243 231.1132 1.5688 41.1360 7.4945
V1 0.9123 214.6300 0.2834 95.1750 9.9846
V2 0.3078 239.7369 1.5993 40.3093 7.4633
D1 0.3352 285.1724 1.3013 58.1961 8.5885
D2 0.7873 143.3512 0.5003 55.8630 7.8764
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Table 2.5: Different values of various feature descriptors at θ = 135◦ with set distance

D = 1 for j = 1 and D = 2 for j = 2.

Mammogram
Database

Type of
ROI

Detail
coefficient

Feature Descriptors

FD1 FD2 FD3 FD4 FD5

MIAS

Normal

H1 0.2269 480.7278 2.1466 70.6295 9.7249
H2 0.0900 684.9990 2.8778 42.1644 8.1296
V1 0.1861 467.8358 1.9786 60.8743 9.0849
V2 0.0954 760.9155 2.8241 51.8240 8.8542
D1 0.2164 443.6506 1.8209 65.1938 9.2854
D2 0.2122 347.3934 2.2333 43.1518 7.9576

Benign

H1 0.1970 414.9199 2.0684 54.9266 8.6774
H2 0.0910 859.0862 2.8037 58.3728 9.2670
V1 0.3523 240.9230 1.6918 47.7658 8.0624
V2 0.0901 743.2662 2.8825 47.8501 8.5424
D1 0.2239 433.9719 1.8191 65.1063 9.3110
D2 0.1183 672.4989 2.5709 56.7228 9.0802

Malignant

H1 0.1880 666.9464 2.0085 91.2963 10.8207
H2 0.1227 647.4172 2.4699 56.9847 9.0494
V1 0.4382 216.5055 1.4477 50.4490 8.0867
V2 0.2016 492.9544 2.0538 65.8033 9.4437
D1 0.3474 259.8169 1.5155 52.7306 8.3250
D2 0.1165 642.1973 2.6072 53.6483 8.8819

DDSM

Normal

H1 0.2881 276.6600 1.9064 47.0070 8.0924
H2 0.1502 828.8966 2.2446 94.3992 11.0817
V1 0.1733 459.8334 2.1368 55.1521 8.7912
V2 0.0978 671.1200 2.7155 49.0154 8.5895
D1 0.1448 549.9213 2.2617 56.9170 8.9548
D2 0.2160 329.5301 2.1044 44.8295 8.0979

Benign

H1 0.9139 213.2773 0.2873 95.4790 9.9833
H2 0.2068 271.7451 1.8327 33.4358 6.9550
V1 0.9139 2132.0892 0.2766 95.1265 9.9782
V2 0.5364 184.2615 1.1616 47.362 7.7424
D1 0.7229 148.6612 0.5919 54.2346 7.8348
D2 0.9671 130.4906 0.1244 62.0631 7.9820

Malignant

H1 0.9123 212.2300 0.2835 95.0051 9.9747
H2 0.3285 232.2644 1.5734 40.9761 7.4945
V1 0.9123 214.5783 0.2840 95.1964 9.9838
V2 0.3088 239.6123 1.6006 40.2593 7.4645
D1 0.3358 285.1300 1.3011 58.2996 8.5887
D2 0.7916 143.4742 0.4983 55.8124 7.8766

48



Chapter 2 DWT + GLCM + t-test

2.6.2 Results for Feature Selection and Classification

During the experiments, different number of significant features (R) have been selected

through two-sample t-test and F-test methods. Figure 2.8 shows the variation of the

number of selected features (R) with respect the various values of significant level

(α) for MIAS and DDSM databases. It has been observed that, the reduced number

of selected features (R) is obtained at lower values of significance level (α) using

both statistical methods. It is also observed that for same value of α, the dimension

reduction is more in DDSM images as compared to MIAS images. The selected

features are used in the classifier to find the optimal classification accuracy rate.
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Figure 2.8: Feature selection by two-sample t-test and F-test method.
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After getting several sets of significant features, we conducted the classification

experiments on both MIAS and DDSM dataset using a three-layered BPNN. In the

experiment, 70% of the total dataset have been used for training. From the remaining

dataset, 15% data are used for validation and rest 15% are used for testing purposes.

As mentioned in the proposed model (Figure 2.1), the magnitude of significance

level (α) for feature selection and number of neurons in the hidden layer (H) of

the BPNN influence the performance of the classifier. It is very difficult to find the

best significant feature set through which the classifier achieves optimal performance.

Therefore, several feature sets obtained at various values of significance level (α) are

used in the classifier to find the optimum results. In fact, for the same value of α,

the classifier achieves different performance results at the different number of hidden

neurons (H).

In our experiments, the values of H have been chosen as 5, 10, 15 and 20 to

investigate the best performance. It has been found that, at H = 15 with respect

to different α, the classifier attains its best performance. Different performance

measures, including sensitivity (Sn), specificity (Sp) and test classification accuracy

(ACC) using two feature selection methods are presented in Table 2.6. It is

observed that, the higher classification accuracy rates are obtained with two-sample

t-test feature selection method for both the databases. These values are as

98.13% (abnormal–normal), 94.2% (malignant–benign) for MIAS database, and 98.8%

(abnormal–normal), 97.4% (malignant–benign) for DDSM database.

We have also evaluated the performance of two feature selection methods by

comparing the obtained AUC values of ROC curves at different magnitudes of

significance level (α) with respect to the different number of hidden neurons (H)

in BPNN classifier. A heat-map has been used to demonstrate the comparison as

shown in Figure 2.9. It is clearly observed that, the best values of AUC have

been accomplished with the significance level (α) of 0.2 for classification of MIAS

and DDSM datasets. One tenuous deviation in AUC is observed at α = 0.5 for

malignant–benign classification in MIAS data. This might be due to some irregular

tissue pattern in mammograms.
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Table 2.6: Different values of performance measures of the classifier using two feature

selection methods with H = 15.

Mammogram
Database

Selection
method α

Abnormal-normal Malignant-benign

Measures (%) Measures (%)

R Sn Sp ACC R Sn Sp ACC

MIAS

Two-sample
t-test

0.9 112 77.80 93.30 87.50 116 87.5 88.90 88.20

0.5 107 88.2 93.30 91.70 96 100 90.00 94.20

0.2 80 100 97.00 98.13 46 77.80 87.50 82.40

0.05 60 85.70 97.10 93.80 24 75.00 77.80 76.50

0.01 52 100 77.40 85.40 08 66.70 54.50 58.90

Two-sample
F-test

0.9 105 69.20 100 91.70 113 87.50 77.80 82.40

0.5 81 75.00 93.80 87.50 84 100 66.70 82.40

0.2 46 88.20 100 95.80 78 88.90 87.50 88.20

0.05 25 82.60 96.00 89.60 51 87.50 66.70 76.50

0.01 24 64.70 93.50 83.30 32 62.50 77.80 70.6

DDSM

Two-sample
t-test

0.9 110 93.50 86.40 90.30 109 93.30 86.9 89.4

0.5 94 91.40 83.30 87.90 60 94.10 90.40 92.10

0.2 76 100 97.90 98.80 22 100 94.70 97.40

0.05 40 100 95.10 97.60 09 92.30 96.00 94.70

0.01 30 97.80 89.40 93.90 07 93.30 91.30 92.10

Two-sample
F-test

0.9 108 93.60 84.60 89.10 105 86.60 86.90 86.80

0.5 83 93.30 89.40 91.50 77 93.30 86.90 89.40

0.2 40 100 95.10 97.60 58 93.80 90.90 92.10

0.05 18 95.60 92.10 93.90 44 86.70 91.70 89.40

0.01 11 95.40 84.60 90.30 16 92.30 88.00 89.50
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Figure 2.9: Heat-maps of AUC measurements using significant feature sets.
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During our experiment, we have compared the performances achieved by the

BPNN classifier along with statistical two-sample t-test and F-test method with

random forest method [65]. ROC curves obtained using the proposed feature selection

schemes, and the random forest method are shown in Figure 2.10. It has been inferred

that the proposed schemes outperform the random forest method with respect to

AUC measurements. Table 2.7 presents the comparison of the test accuracies and

AUC measurements for two-sample t-test and F-test, and random forest technique.

The maximum AUC values obtained by the BPNN and t-test method are 0.9899 and

0.9504 in MIAS, and 0.9945 and 0.9761 in DDSM database for both abnormal–normal

and malignant–benign pattern classification. It has been clearly observed that the

two-sample t-test has quite higher-performance values in comparison to other methods

mentioned for both databases.
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Figure 2.10: Comparison of ROC curves for both image class sets using proposed

feature selection schemes and random forest method with help of BPNN.

53



Chapter 2 DWT + GLCM + t-test

Table 2.7: Comparison of optimal test ACC and AUC measurements between

proposed and random forest methods.

Mammogram
Database

Image class
set

Performance measures

ACC (%) AUC

t-test F-test
random
forest t-test F-test

random
forest

MIAS

Abnormal–
normal 98.13 95.80 93.30 0.9899 0.9810 0.9277

Malignant–
benign 94.20 88.20 82.40 0.9504 0.9055 0.8371

DDSM

Abnormal–
normal 98.80 97.60 92.80 0.9945 0.9888 0.9619

Malignant–
benign 97.40 92.10 89.50 0.9761 0.9556 0.9304

Further, a training error comparison has been made for the proposed scheme and

random forest method as shown in Figure 2.11 to evaluate the training convergence

as one of the performance indices. The training error of the classifier is expressed as

mean squared error (MSE) values at multiple numbers of training iteration in BPNN

classifier. The mean squared error of a predictor measures the average of the squares

of the errors, i.e., the difference between the predicted and actual. Regarding this

context, the mean squared error is the average squared difference between output

classes generated by the classifier and existing actual classes. The BPNN adjusts the

weights and biases of the network in order to minimize the mean squared error. The

weights of hidden layer neurons are adjusted in direct proportion to the error in the

neuron to which it is connected. The training error curves of two-sample t-test method

shows that it converges faster than other selection methods for both abnormal–normal

and malignant–benign mammogram classes.
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Figure 2.11: Training error comparison by BPNN using two-sample t-test and F-test,

and random forest feature selection methods.

The comparison of accuracies achieved by the BPNN and other classifiers utilizing

the relevant DWT and GLCM features selected by t-test is given in Table 2.8. It has

been observed that the BPNN achieves the optimal accuracies using the hybrid DWT

and GLCM features for both the MIAS and DDSM databases as compared to other

classifiers.
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Table 2.8: Comparison of accuracies (ACC(%)) achieved by different classifiers

utilizing the relevant features selected by t-test method.

Classifier MIAS DDSM

Abnormal–
normal

Malignant–
benign

Abnormal–
normal

Malignant–
benign

NB 91.67 82.35 95.18 89.47

K-NN 89.58 76.47 92.77 86.84

BPNN 98.13 94.20 98.80 97.40

SVM 85.40 76.47 90.36 84.21

AdaBoost-RF 90.56 88.52 96.38 95.00

LogitBoost-RF 91.26 90.11 97.15 96.68

LMT 93.75 88.23 96.38 92.10

Finally, a comparative analysis between the proposed scheme with other existing

schemes has been made and shown in Table 2.9. It has been clearly observed that

the proposed scheme performs better classification than other schemes with respect

to different performance measures.
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Table 2.9: Performance comparison by different approaches with the proposed scheme.

Approach Technique Database Performance measures

Prathibha et al. DWT, MIAS AUC = 0.95

(2010) [27] ANN (Abnormal–normal)

Buciu et al. Gabor wavelets MIAS Sn = 97.56%, Sp = 60.86%

(2011) [31] and PCA, SVM AUC = 0.79

(Abnormal–normal)

Sn = 84.61%, Sp = 80.0%

AUC = 0.78

(Malignant–benign)

Mutaz et al. GLCM, DDSM Sn = 91.6%, Sp = 84.17%

(2011) [32] ANN (Malignant–benign)

Jona et al. GLCM, MIAS ACC = 94.0%

(2012) [37] SVM (Abnormal–normal)

Görgel et al. SWT, I.U. ACC = 96.0%

(2013) [42] SVM Database (Abnormal–normal)

ACC = 93.59%

(Malignant–benign)

Zhang et al. fractional Fourier transform, MIAS Sn = 92.22%, Sp = 92.10%

(2016) [60] PCA, SVM ACC = 93.59%

(Malignant–benign)

Proposed DWT+GLCM MIAS Sn = 100%, Sp = 97.00%

scheme +t-test+BPNN ACC = 98.13%, AUC = 0.9899

(Abnormal–normal)

Sn = 100%,Sp = 90.00%

ACC = 94.20%, AUC = 0.9504

(Malignant–benign)

DDSM Sn = 100%,Sp = 97.90%

ACC = 98.80%, AUC = 0.9945

(Abnormal–normal)

Sn = 100%, Sp = 94.70%

ACC = 97.40%, AUC = 0.9761

(Malignant–benign)
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2.7 Summary

In this chapter, an efficient mammogram classification scheme has been proposed

to support the decision of radiologists. The scheme utilizes DWT and GLCM

in succession to derive the hybrid features form mammograms. To select the

relevant features from the feature matrix, both t-test and F-test have been

applied independently. The efficiency of the proposed selection methods has

been compared with random forest technique. To validate the efficacy of the

suggested scheme, simulation has been carried out using several other classifiers

namely, Back-Propagation Neural Network (BPNN), Naive Bayes (NB), K-Nearest

Neighbor (K-NN), Support Vector Machine (SVM), AdaBoost and Random Forest

(AdaBoost-RF), LogitBoost and Random Forest (LogitBoost-RF), and Logistic Model

Tree (LMT) for both MIAS and DDSM databases. It has been observed that, t-test

based relevant features achieve higher classification accuracy with the help of BPNN

classifier. An accuracy of 98.13% and 94.20% have been obtained for abnormal–normal

and malignant–benign respectively for MIAS database. The similar parameters are

98.80% and 97.40% achieved for DDSM databases. Furthermore, the competent

schemes are also simulated in the similar platform, and comparative analysis with

respect to accuracy (ACC) and AUC of ROC reveals that the suggested scheme

outperforms other schemes.
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Mammogram Classification using

SFTA Features with FCBF Feature

Selection

All over the world, the causes of cancer-related deaths among women are due to

breast cancer. Early detection of breast cancer improves the reduction in death

rates. Currently, mammography is the most reliable radiological screening method

for detection of the abnormality in the breast. In mammography, the X-ray images

known as mammograms are analyzed for the abnormality detection. Reading of

mammograms is a very important task for radiologists as they suggest patients

for biopsy. However, the reading result varies among radiologists as it depends on

experience. It has been observed that most of the predicted abnormal tissues by the

radiologist found normal in the biopsy. To overcome this problem, Computer-Aided

Diagnosis (CAD) method has been developed in order to help radiologists for accurate

diagnosis. In a CAD of breast cancer, the crucial task is to find out the significant

features from the mammograms to characterize them as malignant, benign or normal.

This chapter presents an effective scheme to identify the abnormal mammograms in

order to detect the breast cancer. The scheme utilizes the Segmentation-based Fractal

Texture Analysis (SFTA) to extract texture features from the mammograms for the

classification of mammograms. A fractal analysis has been applied to collect the

qualitative information of texture features. A Fast Correlation-Based Filter (FCBF)

method has been used to select feature subsets containing significant features, which

are used for classification purpose. To validate the efficacy of proposed scheme
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different classifiers have been used among which, Support Vector Machine (SVM)

gives a better performance. In this work, a detail study of classification performed by

SVM has been explained. The overall block diagram of the proposed scheme is shown

in Figure 3.1.

The organization of the chapter is as follows: The extraction of feature using SFTA

is described in Section 3.1. Section 3.2 explains the selection of significant features

utilizing FCBF method. The classification and evaluation of performance is outlined

in Section 3.3. The experimental results are presented in Section 3.4. The overall

work proposed in this chapter is summarized in Section 3.5.

Feature extraction phase (using SFTA)

Feature selection phase (using FCBF)

Feature dataset generation

Generation of feature 

vector containing

number of features

Test dataset

matrix

number of ROIs

category vector

Generation of 

feature subset
Evaluation

 Fulfill

criterion

Yes 

No

 Effective 

feature subset

Classification phase

Performance

SVM

Original

    ROI 

Figure 3.1: Block diagram of proposed scheme using SFTA and FCBF method.

3.1 Feature Extraction using SFTA

In Segmentation-based Fractal Texture Analysis (SFTA) of mammograms, the

features are extracted from the mammographic Regions-of-Interest by decomposing

them into a set of binary images from which fractal dimensions are computed [75].

These dimensions are used to describe the segmented texture patterns of the

mammograms. For the decomposition of input gray-scale Regions-of-Interest
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(ROIs), a two-threshold binary decomposition method is applied. In this type of

decomposition, a set of n number of threshold values of gray-scale ROI is computed by

applying multilevel Ostu algorithm recursively, where n is the user defined parameter.

A set of binary Regions-of-Interest (bROIs) are computed from a gray-scale ROI by

applying a two-threshold binary decomposition. In this method, pairs of lower and

upper and threshold values (tL, tU) are selected from the set of threshold values, T

and the gray-scale ROI is decomposed as,

bROI (x, y) =
{

1, if tL<ROI(x,y)≤tU
0 . (3.1)

In two threshold binary decomposition of gray-scale ROI, a 2n number of bROIs

is obtained by using all pairs of threshold values from the set T . After the binary

image decomposition, three components such as fractal dimension, mean gray level,

and region area of resulting bROIs are computed. The fractal dimension of bROI

is generated from a texture of its border image. The border image is the regions of

boundaries of bROI computed by using the set of 8-connected pixels. The border

image has the value one at pixel (x, y) on the corresponding bROI(x, y) = 1, and

having at least one neighboring pixel zero. Otherwise, the border image takes the

value zero.

The fractal dimension (D) measures the degree of irregularities of an image. Various

approaches are there to compute the fractal dimension of an image, but box-counting

is the most common method in this regard [76]. The fractal dimension (D) of a bROI

is computed with the help of a grid of squares each having the size s and given as,

D = − lim
s→0

log (Ns)

log (s)
(3.2)

where Ns is the number of squares needed to cover the portion of bROI. Now the

feature vector, V is constructed for each ROI using the series collection of the three

components, fractal dimension (D), mean gray level (GL), and region area (A) of

resulting bROIs as described inAlgorithm 5. Thus, the feature extraction algorithm

gives the feature vector for every ROIs, and consequently; a datasetX is also obtained

containing K number of ROIs andM number of features. The value ofM is 6n where

n is the number of thresholds given to the algorithm.
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Algorithm 5 Feature extraction and dataset generation using SFTA.

Require: K: Total number of ROIs, n: Number of thresholds tU , tL: Upper and lower

thresholds respectively, GL: Maximum possible gray level of an ROI.

Ensure: X[K][M ]: Matrix contains the feature data. Function BinaryDecomp()

decomposes gray-scale ROI to a set of bROIs.

1: Initialize the required value to n

2: m← 2× n and M ← 3×m

3: for i← 1 to K do

4: Get ROIi; Ti ← Ostu(ROIi, n); R← |Ti|
5: for p← 1 to R− 1 do

6: T1 ← {{tp, tp+1} : tp, tp+1 ∈ Ti}
7: end for

8: for q ← 1 to R do

9: T2 ← {{tq, GL} : tq ∈ Ti}
10: end for

11: l← 1

12: for j ← 1 to m do

13: bROIij ← BinaryDecomp(ROIi, tL, tU )∀ {{tL, tU} ∈ {T1, T2}}
14: Compute Dij , GLij and Aij of bROIij

15: Vi [l]← Dij ; Vi [l + 1]← GLij ; Vi [l + 2]← Aij

16: l← l + 1

17: end for

18: Append Vi to X

19: end for

3.2 Feature Selection using FCBF Method

Fast Correlation-Based Filter (FCBF) is a filter model of feature selection proposed by

Yu et al. [77], based on the correlation between feature and class. The correlation can

be measured by a desired property known as symmetry uncertainty. The symmetry

uncertainty (SU) can measure the effectiveness of the feature and limits the biasing

effect in favor of features with more values. The FCBF selects a set of relevant features

S, that is highly correlated to the class with SU ≥ t, where t is predefined threshold

and SU is defined as,

SU (X, Y ) = 2

[
IG (X |Y )

H (X) +H (Y )

]
(3.3)
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where IG (X,Y ) is the information gain, and H (X), H (Y ) and H (X |Y ) are

entropies. Information gain of a feature X and class Y is computed as,

IG (X, Y ) = H (X)−H (X |Y ) . (3.4)

Entropy measures the uncertainty of a variable. H(X) measures the entropy of feature

X, and H (X |Y ) measures the entropy of feature X after observing class Y . They

are defined as,

H (X) = −
∑
i

P (xi)log2 (P (xi)) , (3.5)

H (X |Y ) = −
∑
j

P (yj)−
∑
i

P (xi |yj )log2 (P (xi |yj )) , (3.6)

where P (xi) is the prior probabilities for all values of X, and P (xi|yj) is the posterior
probabilities of X given the values of Y . The features of mammographic ROIs

and class labels are structured in the dataset X and category vector Y as shown

in Figure. 3.2. Each row in the dataset X is a feature vector of all instances,

Vi = {f1, f2, ..., fM} , 1 ≤ i ≤ K and each column is a part of instance. The column

vector contains the class labels of the instances. In our problem, the total number of

classes are two, as all the instances are belonging to either normal or abnormal class.

ROIK

ROI
1

ROI
2

Figure 3.2: The structure of dataset X and category vector Y .

FCBF computes SUi,l value of every feature fi ,1 ≤ i ≤ M in the dataset X and

compares with t value. Here l ∈ Y is the class label of the mammographic ROIs. Then,

the feature fi is predominant if SUi,l ≥ t (∀fi ∈ S, 1 ≤ i ≤M, SUi,l ≥ t). A feature fj

with SUj,i ≥ SUi,l ∀ fj ∈ S , i ̸= j does not exist in the dataset, and if it exists, then

it is redundant to fi. If two features are redundant, then FCFB applies a heuristic to
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remove one of them from the feature set. The heuristic is based on removing one of the

redundant features that is less relevant to the class labels. Finally, a set S has been

selected, which contains the most significant and non redundant features. Further,

various feature subsets Sij, Sij ∈ Si, 1 ≤ i ≤ K, are constructed from selected feature

set using different combination of relevant features, where j represents the number of

relevant features used for combination. These subsets are used in the classification

phase for the characterization of abnormal mammograms.

3.3 Classification and Evaluation of Performance

A comparative classification of mammograms is carried out by using the reduced set of

features. Here we have used a Support Vector Machine (SVM) as classifier with 10-fold

cross-validation. The goal of machine learning classifier is to build a model which

makes accurate predictions on the training set. But, the training dataset accuracy is

not a good indication of better performance of the classifier; however, it depends on

how well the classifier will perform when classifying the new data outside the training

dataset. Therefore, the classifier needs some effective measure to provide adequate

accuracy when it will be deployed. For this purpose, cross-validation process is used

to provide a much truer accuracy of the classifier. In the cross-validation process, the

dataset is divided into a large training set and a smaller validation set. The classifier

is then trained on the training set and use the validation set to measure the accuracy.

For the division of dataset into training and validation set, K fold cross-validation

method is used. The cross-validation process is continued in K rounds. In each

round, one fold is selected for validation and remaining (K − 1) folds are combined

and used for training purpose. Then the classifier is trained by the training dataset

and accuracy is measured on the validation data for each round. After K rounds,

the average of all obtained accuracies is calculated to get the final cross-validation

accuracy.

During the training period, the classifier is fed with separate selected feature

subsets of MIAS database. A number of cross-validation accuracies are obtained

corresponding to the different feature subsets. The optimal feature subset is

determined on the basis of high cross-validation accuracy. The testing dataset from

both MIAS and DDSM database is provided to classifiers namely Support Vector

Machine (SVM), Back-Propagation Neural Network (BPNN), AdaBoost and Random

Forest (AdaBoost-RF), LogitBoost and Random Forest (LogitBoost-RF), and Logistic

Model Tree (LMT) for an independent measurement of performances. In addition,
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Naive Bayes (NB) and K-Nearest Neighbor (K-NN) classifiers are also used to compare

the obtained accuracies utilizing the same proposed features for both the databases.

The performance of the proposed scheme has been assessed with the assistance of

various parameters namely, sensitivity (Sn), specificity (Sp), positive predictive value

(PPV ), negative predictive value (NPV ), classification accuracy (ACC), and AUC

value of ROC curve.

3.4 Experimental Results and Discussion

For extraction of features, SFTA method is applied to all mammographic ROIs of size

of 128× 128 pixels of MIAS and DDSM databases. The feature extraction algorithm

uses the various numbers of threshold values starting from 2 onwards. For each

image, using n number of threshold values, the algorithm gives 2n number of binary

images and subsequently gives 6n number of features. Suppose, using 10 threshold

values, the algorithm extracts a total of 60 features from a mammographic ROI. Thus,

various numbers of threshold values can be employed in extracting the feature in the

algorithm. However, our objective in feature extraction algorithm is to find out the

optimal number of threshold values, which are to be used to extract the feature sets

from which relevant subsets can be extracted. For this purpose, all the extracted

feature sets are given to the SVM classifier, and a 10-fold cross-validation operation

is performed for a number of rounds.

In the experiment, the whole dataset is partitioned into 10 folds. In each round,

nine folds are used together for training of the classifier and remaining one fold is

used as validation purpose. This procedure continues for 10 rounds with different

validation sets and 10 number of validation accuracies are obtained. Then a final

cross-validation accuracy is found by averaging the obtained accuracies in each round.

Thus, the SVM classifier determines several cross-validation accuracies for various

feature sets of MIAS dataset using the different number of threshold values as shown

in Figure. 3.3. From Figure. 3.3, it has been observed that, the validation accuracies

of the classifier are optimal employing the number of threshold values as, n = 6, 7, 8, 9

and 10. For the number of threshold values, n = 2 to 5, the accuracy rate rises sharply

and from n = 11 and onwards, the accuracy rates falls slowly and become constant

but less than the optimal accuracy values. Therefore, we have taken feature sets

corresponding to the number of threshold values from n = 6 to 10 for effective feature

subset selection. Various feature vectors containing different numbers of features for

all optimal numbers of threshold values are shown in Table 3.1. In FCBF method,
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different relevant feature sets selected from the respective feature vectors are also

shown in Table 3.1.

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Number of thresholds

C
ro

ss
−v

al
id

at
io

n 
ac

cu
ra

cy
 / 

N
um

be
r 

of
 fe

at
ur

es

 

 

Cross−validation accuracy
Number of features

Figure 3.3: Number of features with their respective cross-validation accuracies

obtained using different number of threshold values (MIAS database).

Table 3.1: Selected feature sets containing relevant features by FCBF method (MIAS

database).

Number of
threshholds

(n)

Extracted feature
vector
(Vn)

Total Number
of features

(f)

Selected feature set with
relevant features

(SFn)

6 V6 36 S6 = {f35, f10, f34}

7 V7 42 S7 = {f41, f10, f16}

8 V8 48 S8 = {f47, f13, f19}

9 V9 54 S9 = {f53, f13, f43}

10 V10 60 S10 = {f59, f16, f49}

Further, various feature subsets SFi,j, SFi,j ∈ SFi containing optimal relevant

feature combinations are given to the classifier for adequate discrimination of
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abnormal–normal mammograms. In our experiment, a 10-fold cross-validation

operation has been performed using the relevant feature subsets in the training phase

of the classifier. Table 3.2 shows various selected feature subsets with their respective

average cross-validation accuracies. From the experiment, it is observed that, relevant

feature subset, S102 gives optimal cross-validation accuracy among all feature subsets.

Table 3.2: Feature subsets containing different combination of relevant features with

corresponding cross-validation accuracies.

Selected feature
set (SFn)

Number of effective
features used (p)

Selected feature
subset (SFnp)

Cross-validation
accuracy (%)

S6

1 S61 = {f35} 87.25

2 S62 = {f35, f10} 86.25

3 S63 = {f35, f10, f34} 85.92

S7

1 S71 = {f41} 86.30

2 S72 = {f41, f10} 86.94

3 S73 = {f41, f10, f16} 85.84

S8

1 S81 = {f47} 92.01

2 S82 = {f47, f13} 96.53

3 S83 = {f47, f13, f19} 88.37

S9

1 S91 = {f53} 91.83

2 S92 = {f53, f13} 95.36

3 S93 = {f53, f13, f43} 85.41

S10

1 S101 = {f59} 92.34

2 S102 = {f59, f16} 98.18

3 S103 = {f59, f16, f49} 90.94

Now, using the optimal feature subset, different test samples are randomly selected

from both the MIAS and DDSM databases and given to different classifiers for

subsequent classification and performance evaluation. Different performance measures

achieved by the SVM and other classifiers utilizing the relevant features selected by

FCBF method on the same platform is given in Table 3.3. It has been observed that,

SVM achieves better classification accuracy (ACC) of 98.76% (abnormal–normal) and

95.65% (malignant–benign) for MIAS database. The similar parameters of 99.20%

(abnormal–normal) and 98.00% (malignant–benign) are achieved for DDSM database.
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Table 3.3: Comparison of performances of various classifiers using optimal relevant

feature set, S102.

Database Class set Classifier
Measures of performance (%)

Sn SP PPV NPV ACC

MIAS

Abnormal–
normal

NB 96.62 85.22 92.17 93.33 92.55

K-NN 99.03 69.57 85.42 97.56 88.51

BPNN 98.07 88.70 93.98 96.23 94.72

SVM 99.52 97.39 98.56 99.12 98.76

AdaBoost-RF 96.62 93.91 96.62 93.91 95.65

LogitBoost-RF 95.65 99.13 99.50 92.68 96.89

LMT 99.03 95.65 97.62 98.21 97.83

Maligant–
benign

NB 85.94 94.12 94.83 84.21 89.57

K-NN 93.75 78.43 84.51 90.91 86.96

BPNN 90.63 90.20 92.06 88.46 90.43

SVM 96.88 94.12 95.38 96.00 95.65

AdaBoost-RF 95.31 86.27 89.71 93.62 91.30

LogitBoost-RF 96.88 88.24 91.18 95.74 93.04

LMT 95.31 92.16 93.85 94.00 93.91

DDSM

Abnormal–
normal

NB 99.00 88.20 89.35 98.88 93.60

K-NN 98.00 82.00 84.48 97.62 90.00

BPNN 98.20 92.40 92.82 98.09 95.30

SVM 98.40 100 100 98.43 99.20

AdaBoost-RF 99.00 95.20 95.38 98.96 97.10

LogitBoost-RF 99.20 96.00 96.12 99.17 97.60

LMT 99.40 97.20 97.26 99.39 98.30

Malignnt–
benign

NB 93.22 89.02 88.35 93.63 91.00

K-NN 92.37 85.98 85.49 92.65 89.00

BPNN 95.34 90.53 90.00 95.60 92.80

SVM 99.58 96.59 96.31 99.61 98.00

AdaBoost-Rf 99.15 90.91 90.70 99.17 94.80

LogitBoost-RF 97.88 92.42 92.03 97.99 95.00

LMT 98.73 95.83 95.49 98.83 97.20

Further, ROC curves are computed by the SVM to study the efficiency of

classification performance. Different test ROC curves with corresponding AUC values
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of the classification using different optimal feature subset S102 for both MIAS and

DDSM database are shown in Figure. 3.4. The optimal AUC values are 0.9901

(abnormal–normal) and 0.9705 (malignant–benign) for both MIAS database. For

DDSM database, the similar parameters are 0.9988 and 0.9967.
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Figure 3.4: Comparison of ROC curves achieved by optimal classifier (SVM).

Finally, the proposed scheme has been compared with other existing schemes and

is shown in Table 3.4. It is observed that the proposed scheme performs better than

other schemes in the characterization of mammograms.
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Table 3.4: Performance comparison of other schemes with proposed scheme for

classification of mammograms.

Scheme Technique Database Measurement

Eltoukhy et al. Curvelet transform, MIAS ACC = 95.98%

(2012) [39] statistical t-test, (Abnormal–normal)

SVM ACC = 97.30%

(Malignant–benign)

Ramos et al. DWT, DDSM AUC = 0.90

(2012) [38] Random forest (Abnormal–normal)

Jona et al. GLCM, PSO, MIAS ACC = 94.00%

(2012) [37] SVM (Abnormal–normal)

Oral et al. First and second MIAS ACC = 91.10%

(2013) [45] order textural (Abnormal–normal)

feature, PCA, MLP

Görgel et al. SWT, SVM I.U. ACC = 96.00%

(2013) [42] Database (Abnormal–normal)

Proposed SFTA+FCBF+SVM MIAS ACC = 98.76%

scheme AUC = 0.9901

(Abnormal–normal)

ACC = 95.65%

AUC = 0.9705

(Malignant–benign)

DDSM ACC = 99.20%

AUC = 0.9988

(Abnormal–normal)

ACC = 98.00%

AUC = 0.9967

(Malignant–benign)
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3.5 Summary

In this chapter, an efficient scheme has been presented for classification of

mammographic images as malignant, benign or normal to support the radiologist

in the interpretation of digital mammograms. The scheme utilizes SFTA method

to extract the features from the digital mammograms. An efficient feature selection

technique FCBF has been used to select the most significant feature set from the

extracted features. A promising classification performances of ACC = 98.76%,

AUC = 0.9901 (abnormal–normal), and ACC = 95.65%, AUC = 0.9705

(malignant–benign) have been achieved by SVM for MIAS database. The similar

results of ACC = 99.20%, AUC = 0.9988 (abnormal–normal), and ACC = 98.00%,

AUC = 0.9967 (malignant–benign) have been archived for DDSM database. The

yielded results are compared with that of other classifiers namely, Naive Bayes

(NB), K-Nearest Neighbor (K-NN), Back-Propagation Neural Network (BPNN),

AdaBoost and Random Forest (AdaBoost-RF), LogitBoost and Random Forest

(LogitBoost-RF), and Logistic Model Tree (LMT) on the similar platform. It has

been observed that the results achieved by the SVM utilizing the proposed SFTA

features is optimum. A rigorous comparative analysis has been made with other

existing schemes with respect to accuracy (ACC) and AUC. It has been observed

that the suggested scheme outperforms its competent schemes.
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Mammogram Classification using

DOST Features followed by

Null-hypothesis based Feature

Selection

The breast cancer is currently one of the major reasons for increased death rate

among women. Early detection through periodic screening improves the chance

of recovery in breast cancer. For a reliable early detection, mammography is an

efficient method in which digital mammograms are analyzed [7]. Digital mammograms

are the scanned X-ray images of breasts. Interpretation of mammograms is a

very important task for radiologists as they refer patients for biopsy. However,

interpretation of mammograms varies among radiologists as it depends on training

and experience. This leads to different judgments by different radiologists. It has

been observed that, 60− 90% of initially suspected malignant lesions by radiologists

were found benign later [8]. Therefore, avoidance of misinterpretation is highly

desirable. Currently, Computer-Aided Diagnosis (CAD) is a very popular and

efficient method which analyzes the digital mammograms and helps radiologists in

mammogram interpretation to detect the suspicious lesions as well as their type.

Regarding this responsibility, one important step is to extract a set of significant

features from the mammographic ROIs that can classifies malignant, benign or normal

mammograms. In this chapter Two-Dimensional Discrete Orthonormal S-Transform

(2D-DOST) has been utilized to extract the features from the digital mammograms.
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A feature selection algorithm based on null-hypothesis with statistical two-sample

t-test method has been suggested to select most significant coefficients from a large

number of DOST coefficients. The selected coefficients are used as features in the

classification of mammographic images as malignant, benign or normal. Several

classifiers have been employed to characterize the mammographic ROI as malignant,

benign or normal. The detail description of classification by AdaBoost and Random

Forest (AdaBoost-RF) has been given as it gives the significant result. The overall

block diagram of the proposed scheme is shown in Figure 4.1.

The chapter is organized as follows: The extraction of feature using 2D-DOST

method is described in Section 4.1. Section 4.2 outlines the feature selection followed

by the classification. Section 4.3 describes the experimental results obtained on the

MIAS database . Section 4.4 summarizes the overall work proposed in this chapter.

Figure 4.1: Block diagram of proposed scheme using 2D-DOST.

4.1 Extraction of Features using 2D-DOST

Wavelet Transform has been used in the extraction of features from mammograms

in Chapter 2. A Two-Dimensional Discrete Wavelet Transform (2D-DWT) is

a multi-resolution decomposition method in which an original image A2j+1f at
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resolution 2j+1 is decomposed to three detail images Dh
2j f , D

v
2j f , D

d
2j f at resolution

2j in horizontal, vertical, and diagonal directions respectively. It also gives an

approximation image A2j f at coarse resolution. The detail and approximation images

are the wavelet coefficient matrices in which each coefficient is considered as a feature

of the original image.

The proposed scheme uses a Two-Dimensional Discrete Orthonormal S-Transform

(2D-DOST) which is a multi-scale technique to extract the pixel-by-pixel texture

features of a mammographic image. The 2D-DOST is based on the S-Transform,

which is a time-frequency representation closely related to continuous wavelet

transform [78]. The S-Transform is advantageous for the analysis of mammographic

images as it preserves the phase information using linear frequency scaling. However,

the major limitation of S-Transform is its high time and space complexity due to its

redundant nature. To eliminate these limitations, 2D-DOST uses an orthonormal

set of basis functions. Therefore, 2D-DOST has less computational and storage

complexity as compared to S-Transform. The 2D-DOST of a mammographic ROI,

f(x, y) of size N × N can be obtained using a dyadic sampling scheme given by the

following steps,

1. Perform Two-Dimensional Fourier Transform (2D-FT ) on the image f(x, y) of

size N ×N to obtain Fourier samples, F (u, v)← 2D-FT [f(x, y)].

2. Partition F (u, v) and determine the number of points in that partition.

3. Compute the square root of the number of points and multiply it with F (u, v)

to get a result.

4. Apply an inverse 2D-FT on the result to get the DOST description of the image

f(x, y), which is termed as voice image and given by,

S (x′, y′, υx, υy) =
1√

2px+py−2×
2px−2−1∑
u=−2px−2

2py−2−1∑
v=−2py−2

F (u+ υx, v + υy)×

e
2πi

(
ux′

2px−1+
vy′

2py−1

) (4.1)

where υx = 2px−1 + 2px−2 and υy = 2py−1 + 2py−2 are horizontal and vertical

voice frequencies.

5. A rectangular voice image is obtained having 2px−1 × 2py−1 points same as in

the original image as shown in Figure 4.2(b).
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In 2D-DWT, horizontal, vertical and diagonal detail coefficients of an image are

obtained for each order as shown in Figure 4.2(a). In DOST, each pixel p(x, y) within

the image gives voice frequencies (υx, υy) with 2px−1×2py−1 bandwidth. Subsequently,

the pixel-wise local spatial frequency description in 2D-DOST is computed as,

1. Select an arbitrary pixel at coordinate (x, y) within the image.

2. Compute the value of the voice image S, ∀(υx, υy) in the frequency order (px, py)

of the location (x, y) at S [x/N × 2px−1,y/N × 2py−1].

3. Build a local spatial frequency domain having size 2log2N×2log2N by iterating

over all values (px, py) for each pixel of the image.
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Figure 4.2: A six order partition of DWT and DOST using dyadic sampling scheme.

The frequency domain contains the positive and negative components from DC,

(υx, υy) = (0, 0) to the Nyquist frequency Nf , (υx, υy) = (N/2, N/2). Thus, all

the components in the frequency domain are mapped to the M -space frequency

coefficients. In this way, a N × N ROI generates N × N DOST coefficients and

each coefficient is included in the feature vector (FV ). Combination of K number of

FV s is represented in a feature matrix FM . The detail feature extraction process is

described in Algorithm 6. The FM becomes an input to the feature selection phase.

4.2 Selection of Features and Classification

In feature selection phase, an optimal set of relevant features are selected from the

extracted feature matrix. Here, a statistical null-hypothesis test using two-sample

t-test method [79] is used for selection of features. The null-hypothesis test is carried
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Algorithm 6 Feature matrix generation using 2D-DOST.

Require: K : Total number of ROIs taken for the experiment.

Ensure: FM [M ][K]: Feature matrix. Function dost() computes DOST coefficients

of ROIs and function resize() sets the dimension of each ROI as per required.

1: Create an empty matrix CM [N ][N ] and an empty vector FV {CM is used as

DOST coefficient matrix and FV is used as feature vector}
2: Initialize N in terms of pixel, i← 1

3: M ← N ×N {A total number of features is to be extracted from an ROI}
4: for k ← 1 to K do

5: Get ROIk

6: ROIk ← resize(ROIk, N)

7: CMk[N ][N ]← dost(ROIk)

8: for p← 1 to N do

9: for q ← 1 to N do

10: FVk[i][1]← CMk[p][q]

11: i← i+ 1

12: end for

13: end for

14: Reset i← 1

15: for m← 1 to M do

16: FM [m][k]← FVk[m][1]

17: end for

18: end for

out on two normally distributed populations of samples, say v1 and v2 containing

benign and malignant feature data respectively. The test decision specifies whether

the null-hypothesis to be correct or incorrect, which in turn triggers the data from two

populations are significantly different or not. The incorrect null-hypothesis is rejected

and specifies that the data from two populations are significantly different from each

other and independent. Whereas, a correct null-hypothesis is failed to reject and there

is no significant difference between the data from two populations.

Let, instances of two populations bi ∈ v1, i = 1, 2, ...n1 and mj ∈ v2, j =

1, 2, ...n2 are feature vectors. The corresponding means and standard deviations

of two populations v1 and v2 are µv1 , µv2 , and σv1 and σv2 respectively. Now, the

null-hypothesis test is performed in the following steps.

1. Specify the desired value of significance level (α) between 0 and 1. The
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significance level is the probability of null-hypothesis to be incorrect.

2. Compute the statistic as,

t = (|µv1 − µv2 |)

/√(
σ2
v1

n1

+
σ2
v2

n2

)
. (4.2)

3. Calculate the degrees of freedom as,

d =

(
σ2
v1

n1

+
σ2
v2

n2

)2
/(

σ4
v1

n2
1 (n1 − 1)

+
σ4
v2

n2
2 (n2 − 1)

)
. (4.3)

4. Compute the p-value using the cumulative distributed function of t-test statistics

as,

p =

t∫
−∞

Γ
(
d+1
2

)
√
π × d× Γ (d/2)

×
(
1 +

t2

d

)−( d+1
2 )

(4.4)

where Γ is a Gamma function (Γ (t) =
∞∫
0

xt−1e−xdx). The p-value is the

probability of the t-test with degrees of freedom d given that the null-hypothesis

is correct.

5. Set the decision value for the null-hypothesis test as,

h =

{
1, if p ≤ α

0, if p > α
. (4.5)

6. For h = 1, null-hypothesis is incorrect and rejected for the specified value of α.

We have taken the label values −1 and +1 for representing the sample as negative

and positive class respectively. The target vector contains the label values of all ROI

samples which are used in the scheme. With the help of the target vector, the two

populations v1 and v2 are generated. From the null-hypothesis testing, the returned

decision value is a vector and defined as, hm ∈ {0, 1} , m = 1, 2, ...,M , where M

represents the total number of extracted features. Then, a feature fm ∈ FM is to be

selected as a relevant one, if and only if hm equals to 1. Thus, all the selected relevant

features are collected from the feature matrix FM to form a significant feature matrix

SFM for K number of ROIs. The total number of reduced feature(s) denoted as R

is decided according to the value of α specified in the hypothesis testing. Further, a

training datasetX is created forK number of ROIs using the SFM and target vector,
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which is used in the classifier to design an effective classifier model. Algorithm 7

describes the feature selection process in detail.

Algorithm 7 Feature selection using statistical null-hypothesis with t-test method.

Require: FM [M ][K], target[1][K], α : Significance level

Ensure: SFM [R][K]: Significant feature matrix. R: Total number of reduced

features. Function nhtest() computes statistical null-hypothesis decision value

using two vectors at different values of α utilizing two-sample t-test method.

1: Create two empty vectors v1 and v2

2: Initialize α with 0 < α < 1 and i← 1, j ← 1, l← 1

3: for m← 1 to M do

4: Clear contents of vector v1 and vector v2

5: for k ← 1 to K do

6: if target[i] = 1 then

7: target[k] = 1

8: v2[1][i]← FM [m][k]

9: i← i+ 1

10: else

11: v1[1][j]← FM [m][k]

12: j ← j + 1

13: end if

14: end for

15: Reset i← 1 and i← 1

16: h[i]← nhtest(v1, v2, α)

17: if h[m] = 1 then

18: for k ← 1 to K do

19: SFM [l][k]← FM [m][k]

20: end for

21: l← l + 1

22: end if

23: end for

For the validation of the proposed scheme, various classifiers namely, Naive Bayes

(NB), K-Nearest Neighbor (K-NN), Back-Propagation Neural Network (BPNN),

Support Vector Machine (SVM), Logistic Model Tree (LMT), AdaBoost and Random

Forest (AdaBoost-RF), and LogitBoost and Random Forest (LogitBoost-RF) are

used by utilizing the relevant DOST features for both MIAS and DDSM databases.
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However, the detail classification experiment has been described using AdaBoost-RF

method as it achieves better result. The performances of classification are evaluated

with the help of parameters such as, true positive rate (TPR), false positive rate

(FPR), Fscore, Matthews correlation coefficient (MCC), and AUC value in the

analysis of ROC curves.

4.3 Experimental Results and Analysis

In this work all the mammographic ROIs of MIAS and DDSM databases have

been cropped of size 128 × 128 pixels which are used in the feature extraction

experiment. In feature extraction phase (Algorithm 6), DOST coefficients of size

128 × 128 are extracted from each ROI and a feature matrix is built by keeping all

corresponding coefficient of each ROI in rows and ROI indices in columns. Next, the

significant features are selected using the feature selection algorithm (Algorithm 7).

The significant feature matrices (SFMs) are generated by using different values of

significance level (α). Using these SFMs and the class vector (target), a number of

datasets are generated and used in the classifier.

We have employed a 10-fold cross-validation technique for each experiment for

a number of rounds. In 10-fold cross-validation experiment, the whole dataset is

partitioned into 10 number of folds. In each round, nine folds are combined to form one

set and remaining one fold is made as another set. Thus, two disjoint sets are formed

containing 10% and 90% data that are used separately for training and validation

process respectively. This process is repeated for 10 times with random selection of

training and testing data by the classifier. For classification, we have taken Random

Forests with 10, 20, 40, 80, and 100 trees with maximum depth of two which is used

as the base learner in the AdaBoost algorithm. It has been observed that, the best

performance is achieved using a Random Forest with 20 trees. Thus, with optimal

structure of the classifier, a number of datasets having various sizes are used for the

classification of mammograms.

The various values of classification accuracies (ACC) obtained using different

values of α are articulated in Table 4.1. It may be noticed that, optimum accuracy

values are achieved with p-value less than α = 7 × 10−4 for both MIAS and DDSM

database. The classification performances of the Adaboost-RF classifier with that of

other classifiers have been compared and given in Table 4.2.

79



Chapter 4 DOST + Null-hypothesis

Table 4.1: Comparative analysis of classification accuracies at different values of α.

Mammogram
Database

Significance
level (α)

ACC (%)

Abnormal–normal Malignant–benign

MIAS

6× 10−3 90.99 88.7

5× 10−3 93.47 94.8

4× 10−3 94.09 92.2

3× 10−3 95.34 94.8

2× 10−3 96.89 95.6

1× 10−3 97.51 96.5

8× 10−4 97.51 97.4

7× 10−4 98.75 98.3

6× 10−4 96.89 95.7

5× 10−4 77.95 68.7

DDSM

6× 10−3 92.1 90.4

5× 10−3 94.1 91.6

4× 10−3 95.1 92.8

3× 10−3 96.8 94.4

2× 10−3 97.1 94.0

1× 10−3 97.8 96.8

8× 10−4 98.6 97.6

7× 10−4 99.3 98.8

6× 10−4 94.7 92.0

5× 10−4 92.6 88.8

It has been observed that, the AdaBoost-RF classifier performs better than other

classifiers. The optimum performances are ACC = 98.75% (abnormal–normal)

and ACC = 98.26% (malignant–benign) for MIAS database. Similarly for DDSM

database, the parameters are ACC = 99.30% (abnormal–normal) and ACC =

98.80% (malignant–benign). The other parameters such as Fscore,MCC and AUC

are also maximum at that optimal α = 7 × 10−4. At this value of significance

level, the root relative square errors are 0.1509 (abnormal–normal) and 0.2390

(malignant–benign) for MIAS database. Similarly, for DDSM database, error values

are 0.0895 (abnormal–normal) and 0.1194 (malignant–benign). It has been observed

that these error values are minimum than that of at other values of α.
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Table 4.2: Comparison of performances of various classifiers using optimal relevant

feature set (at α = 7× 10−4).

Database Class set Classifier
Measures of performance

Fscore MCC AUC ACC (%)

MIAS

Abnormal–
normal

NB 0.875 0.809 0.9693 91.30

K-NN 0.838 0.754 0.9562 88.81

BPNN 0.922 0.885 0.9945 97.72

SVM 0.881 0.816 0.9648 91.61

AdaBoost-RF 0.982 0.973 0.9991 98.75

LogitBoost-RF 0.973 0.960 0.9987 98.13

LMT 0.946 0.919 0.9983 96.27

Maligant–
benign

NB 0.870 0.797 0.9050 89.56

K-NN 0.771 0.696 0.8030 83.47

BPNN 0.917 0.862 0.9920 93.04

SVM 0.603 0.545 0.6823 74.78

Adaboost-RF 0.980 0.965 0.9985 98.26

LogitBoost-RF 0.970 0.947 0.9948 97.39

LMT 0.950 0.912 0.9930 95.65

DDSM

Abnormal–
normal

NB 0.942 0.884 0.9772 94.20

K-NN 0.921 0.842 0.9494 92.10

BPNN 0.971 0.942 0.9921 97.10

SVM 0.951 0.902 0.9826 95.10

AdaBoost-RF 0.993 0.986 0.9994 99.30

LogitBoost-RF 0.986 0.972 0.9990 98.60

LMT 0.978 0.956 0.9968 97.80

Malignnt–
benign

NB 0.910 0.809 0.9718 90.40

K-NN 0.883 0.804 0.8953 89.20

BPNN 0.948 0.890 0.9919 94.40

SVM 0.684 0.586 0.7597 75.20

AdaBoost-RF 0.988 0.976 0.9992 98.80

LogitBoost-RF 0.977 0.952 0.9987 97.60

LMT 0.960 0.923 0.9612 96.00
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The fold-wise results in terms of confusion matrix for optimal dataset (at α = 7×10−4)

in 10-fold cross-validation experiment is also presented in Table 4.3.

Table 4.3: Optimal confusion matrices for both MIAS and DDSM databases

(fold-wise) at α = 7× 10−4.

Database Folds
Class set

Normal-abnormal Benign-malignant

Training
instances

Testing
instances TP FP TN FN

Training
instances

Testing
instances TP FP TN FN

MIAS

Fold 1 289 33 11 0 21 1 103 12 6 0 6 0

Fold 2 289 33 12 0 21 0 103 12 4 0 7 1

Fold 3 289 33 12 0 21 0 103 12 5 0 7 0

Fold 4 289 33 11 0 21 1 103 12 5 0 7 0

Fold 5 291 31 11 0 20 0 103 12 6 0 6 0

Fold 6 290 32 11 0 21 0 104 11 4 0 6 1

Fold 7 290 32 11 1 20 0 104 11 5 0 6 0

Fold 8 291 31 11 0 20 0 104 11 5 0 6 0

Fold 9 290 32 11 0 21 0 104 11 5 0 6 0

Fold 10 290 32 11 0 20 1 104 11 4 0 7 0

DDSM

Fold 1 900 100 50 0 48 2 450 50 26 0 24 0

Fold 2 900 100 50 0 50 0 450 50 26 0 24 0

Fold 3 900 100 50 0 50 0 450 50 25 0 24 1

Fold 4 900 100 50 0 49 1 450 50 26 0 24 0

Fold 5 900 100 50 0 50 0 450 50 26 1 23 0

Fold 6 900 100 50 0 49 1 450 50 26 0 23 1

Fold 7 900 100 50 0 50 0 450 50 26 1 23 0

Fold 8 900 100 50 0 48 2 450 50 26 0 23 1

Fold 9 900 100 50 0 50 0 450 50 27 0 23 0

Fold 10 900 100 50 0 49 1 450 50 26 0 23 1

The AUC values of ROC curves achieved by the AdaBoost-RF classifier with that

of other classifiers have also been compared and presented in the Figure 4.3. The

optimal AUC values are 0.9991 (abnormal–normal) and 0.9985 (malignant–benign)

obtained by the AdaBoost-RF classifier for MIAS database. For DDSM database,

similar values are 0.9994 (abnormal–normal) and 0.9992 (malignant–benign).
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Figure 4.3: ROC curves obtained by different classifiers using relevant features at

optimum α of 7× 10−4.

Finally, Table 4.4 presents the comparative analysis of various performance measures

of the present scheme with the existing approaches. It may be observed that the

suggested scheme outperforms its competent ones.
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Table 4.4: Performance comparison by different approaches with the proposed scheme

for classification of mammograms.

Approach Technique Database Measurement

Verma et al. BI-RADS DDSM ACC = 97.5%

(2010) [28] descriptor, (Malignant–benign)

SCBDL

classifier

Buciu et al. Gabor wavelets, MIAS AUC = 0.78

(2011) [31] PCA and SVM (Malignant–benign)

Görgel et al. SWT, I.U. ACC = 96.0%

(2013) [42] SVM database (Abnormal–normal)

ACC = 93.59%

(Malignant–benign)

Nascimento et al. DWT, DDSM AUC = 0.96

(2013) [43] Polynomial (Malignant–benign)

classifier

Xiaoming et al. Geometry and DDSM AUC = 0.9615

(2014) [46] texture features, (Malignant–benign)

SVM-RFE with

NMIES filter

Ganesan et al. Trace transform, SATA ACC = 92.48%

(2014) [47] GMM (Malignant–benign)

Proposed DOST MIAS ACC = 98.75%

Scheme +Null-hypothesis AUC = 0.9991

+AdaBoost-RF (Abnormal–normal)

ACC = 98.26%

AUC = 0.9985

(Malignant–benign)

DDSM ACC = 99.30%

AUC = 0.9994

(Abnormal–normal)

ACC = 98.80%

AUC = 0.9992

(Malignant–benign)
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4.4 Summary

In this chapter an efficient scheme has been proposed to classify mammographic

images as malignant, benign or normal to support the early detection of breast cancer.

The scheme utilizes DOST method to extract features from the mammographic

images. Null-hypothesis with two-sample t-test has been proposed to select the most

discriminant features from high dimensional feature matrix. Several classifiers namely,

Naive Bayes (NB), K-Nearest Neighbor (K-NN), Back-Propagation Neural Network

(BPNN), Support Vector Machine (SVM), Logistic Model Tree (LMT), AdaBoost and

Random Forest (AdaBoost-RF), and LogitBoost and Random Forest (LogitBoost-RF)

have been used to classify the mammograms utilizing relevant feature set. The

classification algorithm with selected relevant features achieves the best performance

at significance level, α = 7 × 10−4. The results achieved by AdaBoost-RF with

respect to accuracy (ACC) and AUC are optimal in comparison to other classifiers.

The parameters are ACC = 98.75%, AUC = 0.9991 (abnormal–normal), and

ACC = 98.26% and AUC = 0.9985 (malignant–benign) for MIAS database.

Similarly, for DDSM database the parameters are ACC = 99.30%, AUC = 0.9994

(abnormal–normal), and ACC = 98.80%, AUC = 0.9992 (malignant–benign).

A comparative analysis has been made with other existing schemes with respect

to accuracy (ACC) and AUC. It has been observed that the suggested scheme

outperforms its competent schemes.
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Chapter 5

Mammogram Classification using

Slantlet Features followed by

BLogR for Feature Selection

Breast cancer continues to be a significant public health problem in the world.

It is viewed as one of the most frequent mortality causes among women. Early

detection is the key for enhancing breast cancer anticipation. Mammography is

at present the best method for reliable and early detection of breast cancer. On

the other hand, it is difficult for radiologists to provide both exact and uniform

assessment for a large number of mammograms generated in widespread screening.

Computer-Aided Diagnosis (CAD) of digital mammograms replaces conventional

screening of breast cancer. The CAD framework enhances diagnostic accuracy as well

as the reproducibility of mammographic interpretation. In this chapter, an efficient

scheme is proposed to characterize the type of digital mammogram as malignant,

benign or normal. A Contrast Limited Adaptive Histogram Equalization (CLAHE)

technique is utilized to enhance the mammographic ROI that contains the suspicious

region of the breast. A Two-Dimensional Slantlet Transform (2D-SLT) has been

employed to extract the texture features from the mammographic images. Bayesian

Logistic Regression (BLogR) method has been utilized for the selection of most

discriminatory feature element that represents the pattern of mammogram class and

minimizes the effort of the classification along with accuracy improvement. However,

in most of the cases, the formed relevant feature dataset lacks balance in the number

of instances to each class. This lacking of balance degrades the performance of the
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classifier due to over-fitting. To accomplish an adequate improved performance, the

relevant features are balanced by the Gaussian distribution based balancing method

prior to classification. The classification phase uses several classifiers to map the

processed relevant feature vector to a class of the mammogram. It has been observed

that LogitBoost and Random Forest (LogitBoost-RF) classifier achieves the optimal

performance among all classifiers. Therefore the detail explanation of the classification

performed by LogitBoost-RF classifier has been given in this chapter. The overall

block diagram of the proposed scheme has been shown in Figure 5.1.

The chapter is organized as follows: The enhancement of the mammographic

ROI is described in Section 5.1. The overviews of 2D-SLT and BLogR methods

are explained in Sections 5.2 and 5.3 respectively. Section 5.4 outlines feature

extraction and selection procedure. The balancing of relevant features and subsequent

classification are explained in Sections 5.5 and 5.6 respectively. Section 5.7 describes

the results obtained on standard databases. Section 5.8 summarizes the overall work

proposed in this chapter.

5.1 Enhancement of ROIs

The tissues present in the digital mammographic ROI possess very little contrast.

Hence, the ROI image is very poor quality and needs enhancement prior to feature

extraction. In this work, a CLAHE technique is applied to enhance the ROIs.

The CLAHE technique computes the histogram of intensities in a contextual region

centered at each pixel. Then, it sets a value for the intensity of the pixel according

to the rank of that pixel in the local histogram within the display range [80]. It is a

refinement of adaptive histogram equalization (AHE) where, the ordinary histogram is

modified to induce the enhancement by imposing a user-specified maximum intensity

level. During the enhancement with CLAHE, the original ROIs are partitioned into

many non-overlapping contextual square regions of equal sizes. For each block of

the image, the histogram is computed and equalized. To equalize the histogram, the

given gray-scale function is converted to a uniform density function by estimating the

cumulative distributed function (CDF) [81].

Consider P and G be the number of pixels and gray-scales respectively in each

block. Let hi (n) is the histogram of i-th block for n = {0, 1, 2, ..., G− 1}. The CDF

scaled by (G− 1) for a gray-scale mapping is defined as,

Fi (n) =
(G− 1)

P

n∑
k=0

hi (k) (5.1)
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The histogram equalization has a limitation that the block contrast is increased to

its maximum. Hence, the contrast of a block is set to a desired level by limiting the

maximum slope Smax of the CDF in (5.1). For this purpose, a threshold parameter

called as clip limit is set for clipping the histograms. Now, consider the clip limit is c

with a clip factor, a (in %). Then, c is given as

c =
P

G

(
1 + a

100
(Smax − 1)

)
(5.2)

In every mapping the value of maximum slope ranges from 1 to Smax as the clipping

factor (a) changes between 0 and 100. For X-ray images, Smax is generally set to

4. Each histogram of all blocks is redistributed in such a way that its height does

not go beyond the clip limit. Thus, all the histograms are modified by limiting the

maximum number of counts for each gray-scale to a clip limit c. Next, a bilinear

interpolation method is utilized to combine all the neighborhood blocks for removing

the boundaries, which are induced artificially. Now, the gray-scale values of the

mammogram are altered according to the modified histogram. The size of a contextual

block is taken as 4 × 4 to partition the mammogram image for enhancement. The

total number of blocks optimally used in the experiment depends on the type of input

mammogram. The clip limit that specifies the contrast enhancement limit is taken

as 0.01, which gives the best results in the present case. For the histogram, the

number of bins used in building a contrast enhancing transformation is limited to 32.

The uniform distribution is used for the flat histogram of mammogram blocks, which

results in an optimal output. The enhanced mammographic ROIs of the original ROIs

are shown in Figure 5.2.

(a) Original mammographic ROIs

(b) Corresponding enhanced ROIs

Figure 5.2: Enhancement of mammographic ROIs using CLAHE technique.
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5.2 Two-Dimensional Slantlet Transform

The Two-Dimensional Slantlet Transform (2D-SLT) has been proposed by Selesnick

utilizing the lengths of the discrete time basis function and their moments in such

a way, to the point that both time localization and smoothness properties are

achieved [82]. It is similar to orthogonal Discrete Wavelet Transform (DWT) with

an enhanced time localization and two zero moments. The architecture of the SLT is

based on parallel filter bank structure where distinctive filters are used for every scale

rather than the iteration of filters for every level (Figure 5.3).

(a) Two-scale filter bank

(b) Equivalent form of filter bank (c) Two-scale filter SLT bank structure

Figure 5.3: Two-scale filter bank with its equivalent form and corresponding SLT

filter bank structure.

The SLT filter banks are made out of filters gi(n), fi(n) and hi(n) with a scale i.

The length of filters for scale i will be 2i. The number of channels in a l-scale SLT

filter bank is 2l. The filter hi(n) is a low pass filter and fl(n) is the adjacent filter to

it. Both filters hl(n) and fl(n) follow a down sampling by 2l. The remaining 2l − 2

channels are channels are filtered by gi(n) and its shifted time-reverse for i = 1, ..., l−1
and followed by down sampling by 2i+1. The filters gi(n), fi(n) and hi(n) are linear

over the two intervals, n ∈
{
0, ..., 2i − 1

}
and n ∈

{
2i, ..., 2i − 1

}
. The filter gi(n) is
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described by four parameters, a0,0, a0,1, a1,0 and a1,1, and expressed as,

gi (n) =

{
a0,0 + a0,1n, for n = 0, ..., 2i − 1

a1,0 + a1,1 (n− 2i) , for n = 2i, ..., 2i+1 − 1
(5.3)

The parameters a0,0, a0,1, a1,0 and a1,1 are computed as,

a0,0 =
(s0+t0)

2
, a1,0 =

(s0−t0)
2

,

a0,1 =
(s1+t1)

2
, a1,1 =

(s1−t1)
2

(5.4)

where s0 = −s1
(
m−1
2

)
, s1 = 6

√
m

(m2−1)(4m2−1)
, t0 =

(
s1(m+1)
3−mt1

) (
m−1
2m

)
, t1 = 2

√
3

m(m2−1)

and m = 2i.

The filters fi(n) and hi(n) are defined in terms of eight parameters b0,0, b0,1, b1,0,

b1,1, c0,0, c0,0, c0,1, c1,0 and c1,1, and expressed as,

hi (n) =

{
b0,0 + b0,1n, for n = 0, ..., 2i − 1

b1,0 + b1,1 (n− 2i) , for n = 2i, ..., 2i+1 − 1
(5.5)

fi (n) =

{
c0,0 + c0,1n, for n = 0, ..., 2i − 1

c1,0 + c1,1 (n− 2i) , for n = 2i, ..., 2i+1 − 1
(5.6)

The parameters are computed as,

b0,0 = uv+1
2m
, b1,0 = u− b0,0

b0,1 =
u
m

b1,1 = −b0,1
c0,1 = q (v −m) , c1,1 = −q (v +m)

c1,0 = c1,1
v+1−2m

2
c0,0 = c0,1

v+1
2

(5.7)

where m = 2i, u = 1√
m
, v =

√
(2m2+1)

3
and q =

√
3

m(m2−1)/m
.

The dimension of the orthogonal matrix is 2l generated from a l-scale filter banks.

In the matrix, the first and second rows correspond to the filters hl(n) and fl(n)

respectively. Each of the remaining rows will be generated by the succession of gi(n),

its time reverse and their shift by 2i+1 for i = 1, ..., l−1. The SLT matrix S computed

from the two-scale SLT filter banks using 2D signal will have dimension 4 (l = 2,

2l = 4). Similarly for the three-scale SLT filter banks, the dimension of the S is 8.

The SLT matrices of size (4× 4) and (8× 8) are shown in Figure 5.4.
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0.5 0.5 0.5 0.5

0.6708 0.2236 -0.2236 -0.6708

-0.5117 0.8279 -0.1208 -0.1954

-0.1954 -0.1208 0.8279 -0.5117

(a) S4×4

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536

0.5401 0.3858 0.2315 0.0772 -0.0772 -0.2315 -0.3858 -0.5401

-0.5062 -0.0874 0.3314 0.7502 -0.0793 -0.1078 -0.1362 -0.1646

-0.1646 -0.1362 -0.1078 -0.0793 0.7502 0.3314 -0.0874 -0.5062

-0.5117 0.8279 -0.1208 -0.1954 0 0 0 0

-0.1954 -0.1208 0.8279 -0.5117 0 0 0 0

0 0 0 0 -0.5117 0.8279 -0.1208 -0.1954

0 0 0 0 -0.1954 -0.1208 0.8279 -0.5117

(b) S8×8

Figure 5.4: Values of Slantlet matrices with dimensions 4 and 8.

5.3 Bayesian Logistic Regression Method

The Bayesian Logistic Regression (BLogR) method has been proposed by Cawley et

al. [83] in the year 2006 is an improvement of the sparse logistic regression approach

of Shevade et al. [84]. This algorithm is a parameterless technique in which the

regularization parameter is integrated out analytically to avoid its optimization. The

modified Bayesian Logistic Regression method outperforms the classical sparse logistic

regression algorithm in distinguishing a subset of the most significant features from

the larger set of extracted SLT features of mammographic ROIs.

Let a set D = {(xi, yi)}ni=1 of n samples in which xi ∈ χ ⊂ Rd denotes the

i-th sample that is associated with a binary class label Ci → yi ∈ {−1,+1}, which
represents positive class (C1) and negative class ( C2). Now, the classical logistic

regression approach which estimates a posteriori probability of class membership

based on the linear combination of input features and is given by,

prob (Ci |xi ) =
1

1 + exp−{f (xi)}
(5.8)

where

f (xi) =
d∑

j=1

αjxij + α0. (5.9)

92



Chapter 5 SLT + BLogR

The parameter α0 and αj is found by minimizing the negative log-likelihood.

ConsideringD to be independent identically distributed (i.i.d) sample from a Bernoulli

distribution, then the negative log likelihood is given by,

ED =
n∑

i=1

g {−yif (xi)} (5.10)

where g {ξ} = log {1 + exp (ξ)}. The first and second derivatives (∂ED
∂αj

, ∂2ED
∂α2

j
) with

respect to individual model parameters are continuous. A perfect model would

be favored which selects smaller number of most significant features. Regarding

this context a standard regularization strategy is added to negative log-likelihood

corresponding to a Laplace prior over α. This yields a modified training criterion,

M = ED + λEα (5.11)

where Eα =
d∑

i=1

|αi| and λ is a regularization parameter which controls the

bias-variance trade-off. At minima of M , the partial derivatives of M with respect to

the model parameter will be uniformly zero and gives∣∣∣∣∂ED

∂αj

∣∣∣∣ = λ if |αi| > 0 and

∣∣∣∣∂2ED

∂α2
j

∣∣∣∣ < λ if |αi| = 0 (5.12)

This infers that the sensitivity of the negative log-likelihood with respect to a model

parameter αi less than λ, then the value of that parameter is set to zero and the

corresponding input feature will be clipped from the model.

The key weakness of this methodology is that no optimization problem with

continuous derivatives is included. The optimization problem determines a

appropriate value for the regularization parameter λ. This weakness can be excreted

by the Bayesian regularization where the λ is integrated out analytically. At each

iteration, a model parameter with the gradient of largest magnitude is chosen for

the optimization. The active parameters (with non-zero values) are considered for

the optimization to enhance the speed of convergence. If no active parameters are

available, then only inactive parameters are considered for optimization. For the

most part, the value of gradient is not lessened exactly to zero. Thus, just the

parameters are considered for optimization if they have the gradient surpassing a

predefined tolerance parameter (τ). When no such parameter (τ) is found, then the

algorithm ends. The decreasing value of tolerance parameter increases the quality of

approximation to the correct posterior.
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The posterior distribution for α, the parameters of the model given in (5.8)

and (5.9), can be expressed in a Bayesian regularization of the minimization of

equation (5.11) as

prob (α |D, λ) ∝ prob (D |α) prob (α |λ)

Then, the prior over model parameters, α is given by a separable Laplace distributon

and written as

prob (α |λ) =
(
λ

2

)N

exp {−λEα} =
N∏
i=1

λ

2
exp {−λ |αi|} (5.13)

where N is the number of active parameters. In a Bayesian regularization, the suitable

value of λ is estimated by integrated out of it analytically. Here, the prior distribution

over model parameter is marginalized over λ and given by

prob (α) =

∫
prob (α |λ)prob (λ) dλ (5.14)

Now by replacing (5.13) in (5.14), it is reduced to

prob (α) =
1

2N

∫ ∞

0

λN−1 exp {−λEα}dλ (5.15)

Here λ is strictly positive. Further, a Gamma integral,
∫∞
0
xν−1e−µxdx = Γ(ν)

µν is used

to obtain

prob (α) =
1

2N
Γ (N)

EN
α

⇒ − log prob (α) ∝ N logEα (5.16)

Thus, an optimization criteria for sparse logistic regression with Bayesian

regularization is represented as,

Q = ED +N logEα (5.17)

where λ has been eliminated. Now, differentiating the original and modified training

criteria ((5.11) and (5.17) ) we get,

∆M = ∆ED + λ∆Eα, (5.18)

∆Q = ∆ED +
∼
λ∆Eα. (5.19)

where

1
∼
λ
=

1

N

N∑
i=1

|αi| (5.20)
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From a gradient descent perspective, minimizing Q becomes equivalent to minimizing

M where the λ is continuously updated according to (5.20) for every change in the

vector of model parameter α. This requires only a very minor modification of the

code implementing the sparse logistic regression algorithm, whilst eliminating the

only training parameter and hence the need for a model selection procedure in fitting

the model.

5.4 Feature Extraction and Selection

Let ROI be an N × N matrix of the picture element (pixels) intensity values of a

mammographic ROI. The ROI is divided into many square regions called as blocks

using the predefined block size bs. Every block in the division of ROI is known as

cropped image (CI) that is utilized to produce a coefficient matrix with the help of

Two-Dimensional Slantlet Transform applied on that image block. A SLT matrix S

having dimension P × P is computed from the l-scale SLT filter banks. The scale l

is specified by l = log2 bs, where bs is the predefined block size that is used for ROI

division. A Two-Dimensional Slantlet Transform is performed by the sequential row

and column transformations on each block, producing the block coefficient matrix as,

CICF = S × CI × ST (5.21)

where ST is the transposed SLT matrix. Subsequently, each coefficient matrix of every

individual block is concatenated to yield the coefficient matrix (CF ) of the whole ROI.

Further, all the generated coefficient matrices of the K number of ROIs are used to

build the feature matrix (FM) that has been described in the Algorithm 8.

A Bayesian Logistic Regression (BLogR) method has been employed to select

the most significant features from the obtained feature matrix, FM . The feature

selection algorithm utilizes a tolerance parameter (τ) and the target class vector

(target) that contains the labels of the instances, for generation of relevant feature set.

The algorithm calculates the weight of each feature value present in the feature matrix

and finds a list of relevant features of non-zero weights. The list of significant features

is arranged in a descending order of weights. The value of tolerance parameter (τ)

is to be chosen in the range of 0 to a maximum value after which no more features

will be selected by the selection algorithm. That value of the tolerance parameter

is considered as the stopping criteria for the execution of the algorithm. The detail

procedure of the generation of significant feature matrix (SFM) has been explained

in the Algorithms 9 and 10.
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Algorithm 8 Generation of feature matrix using 2D-SLT.

Require: K number of ROIs, block size (bs) and scale (l).

Ensure: FM [K][M ]: Feature matrix. Function resize() sets the dimension of each

ROI and sltmatrix() computes the SLT matrix (S).

1: Initialize N and bs, row ← 0, col← 0, c← 1

2: Create and set a matrix CF [N ][N ]← ϕ and a vector V

3: M ← N ×N , P ← bs { } M : Total number features

4: for k ← 1 to k do

5: Read ROIk

6: ROIk ← resize(ROIk, N)

7: Compute l← log2 bs and S[P ][P ]← sltmatrix(l)

8: for ii← 1 to N − bs+ 1 step bs do

9: for jj ← 1 to N − bs+ 1 step bs do

10: for i← ii to ii+ bs− 1 do

11: row ← row + 1

12: for j ← jj to jj + bs− 1 do

13: col ← col + 1

14: CI[row][col]← A[i][j]; CICF [P ][P ]← S × CI × ST

15: CFk ← CFk ∪ CICF
16: end for

17: col ← 0

18: end for

19: row ← 0

20: end for

21: end for

22: for p← 1 to N do

23: for q ← 1 to N do

24: Vk[c][1]← CFk[p][q]

25: c← c+ 1

26: end for

27: end for

28: Reset c← 1

29: for m← 1 to M do

30: FM [m][k]← Vk[m][1]

31: end for

32: end for

33: FM [K][M ]← (FM [M ][K])T
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Algorithm 9 Generation of significant feature matrix.

Require: FM [K][M ], target[K][1] and τ

Ensure: SFM [K][R]: Significant feature matrix. R: Total number of significant

features to be selected. Function size() sets the dimension of the array. Algorithm

Feature Selection selects the most significant features.

1: Initialize τ with required value

2: SFlist← Feature Selection(FM, target, τ)

3: R← size(SFlist)

4: for i← 1 to K do

5: for j ← 1 to R do

6: f ← SFlist[j]

7: SF [i][j]← FM [i][f ]

8: end for

9: end for

Algorithm 10 Feature selection using BLogR method.

Ensure: SFlist1: An array of significant features. Function bayes log reg()

computes the list of most significant features and sqrt() computes the square

root.

1: for k ← 1 to K do

2: A[K][1]← 1 {Creating unit vector A}
3: end for

4: sum← 0

5: for m← 1 to M do

6: for k ← 1 to K do

7: sum← sum+ FM [k][m]

8: end for

9: mean← sum/k

10: MEAN [1][m]← mean {Generating the mean vector}
11: Reset sum← 0

12: end for

13: for k ← 1 to K do

14: for m← 1 to M do

15: FM1[k][m]← FM [k][m]− A[k][1]×M [1][m]

16: end for

17: end for
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18: for k ← 1 to K do

19: for m← 1 to M do

20: SFM1[k][m]← FM1[k][m]× FM1[k][m]

21: end for

22: end for

23: sum← 0

24: for m← 1 to M do

25: for k ← 1 to K do

26: sum← sum+ SFM1[k][m]

27: end for

28: NF [1][m]← sqrt(sum) {Normalizing features}
29: Reset sum← 0

30: end for

31: for m← 1 to M do

32: RNF [1][m]← 1/NF [1][m] {Reciprocal of NF}
33: end for

34: Compute diagonal matrix DM [M ][M ] from RNF [1][M ]

35: FM1[K][M ]← FM1[K][M ]×DM [M ][M ]

36: SFlist1← bayes log reg(FM1, target, τ)

5.5 Balancing the Selected Feature Set

It is a general assumption that most machine learning algorithms assume the

probabilities of target classes occurrence are same. On the contrary in real world

applications like the detection of breast cancer, such assumptions are not true. We

have noticed that the proportion of instances among classes are unequal. This type

of condition is known as a class imbalance problem. The performance measure of

the classifier may not be well-suited for evaluating the scheme using the imbalanced

feature sets. To overcome this class imbalance problem, Gaussian distribution based

balancing algorithm in association with sampling of instances has been used in the

present case [85, 86]. The sampling based balancing approach is of two types namely,

over-sampling and under-sampling. In an over-sampling technique, the new instances

from minority class are replicated and added to the dataset until the dataset has an

equal number of positive and negative instances. In the under-sampling technique,

the instances belonging the majority class are selected until the balance is achieved

between positive ad negative instances.
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According to the central limit theorem, regardless of the actual sampling

distribution, the sampling distribution of the mean will always approach a normal

distribution [87]. Based on this criteria, the synthetic instances of minority class are

generated instead of knowing the actual real sampling distribution. A new dataset

is created that almost comply the actual dataset. After the new instances are put

together with the original minority ones, the original sampling distribution is kept

almost intact. So, the following assumptions are made about independence of the

attributes, (i) every attribute of the dataset is taken to be random, and (ii) all

attributes are considered to be independent of each other.

Now, assuming the derived feature dataset has K number of instances in which

xi, i = 1, 2..., K is associated with class label, Ci → yi ∈ {−1,+1}, we can take K

number of random variables for all the instances. In this method, the expected value

of each variable is calculated using the data of the minority classes of the training set.

Let us denote the standard deviation and mean of xi as σi and µi respectively for all

i = 1, ..., K. Consider µ
′
i as the mean and σ

′
i as the standard deviation of the unknown

random variable xi. For the minority class instances, we assume that all the values of

the attribute xi are independent and random variables that are similarly distributed.

The reason for such assumption is that they are results of different experiments, and

each of them follows the same distribution function. So, according to the central

limit theorem, as the sample size (sample size) becomes very large the underlying

distribution tends towards a standard normal distribution i.e.,

µi−µ
′
i

σi

/
√
n
→ N(0, 1)

as, sample size→∞
(5.22)

where n is the number of minority class instances. Further an equation is to be

induced for a given random number ri that obeys the standard normal distribution

expressed as,

µ′
i = ((µi − ri) σ′

i)
/(√

n
)

(5.23)

where µi and µ
′
i are the means of xi for the original and unknown minority class

feature dataset. Thus for any given instance xi, it is easy to synthesize the value for

that attribute by the following equation.

x′i = ((xi − ri)σ′
i)
/(√

n
)
, i ∈ 1, 2, ..., K (5.24)

As the value of σ
′
i is not known, its approximation is computed by using σi. To

99



Chapter 5 SLT + BLogR

generate the normal variates, equation (5.24) can be expressed as,

x′i = ((xi − ri) σi)
/(√

n
)
, i ∈ 1, 2, ..., K (5.25)

The steps for balancing the significant feature dataset are given in Algorithm 11,

which uses resampling strategy using Gaussian distribution.

Algorithm 11 Balancing of significant features.

Require: SFM [K][R], target[K][1] and C: total number of classes. K is the total

number of instances in the dataset.

Ensure: BSF [N ][R]: Balanced significant feature matrix. T : Total number of

instances to be re-sampled per class label in the dataset, R: Total number of

significant features.

1: Initialize T and BSF ← ϕ

2: Create two empty matrices M [C][K] and S[C][K]

3: for c← 1 to C do

4: for k ← 1 to K do

5: Compute µck and σck {µck: mean, σck: standard deviation of instance k in

class c}
6: M [c][k]← µck

7: S[c][k]← σck

8: end for

9: end for

10: for p← 1 to C do

11: for q ← 1 to T do

12: BSF ← BSF∪ instance of N(µp, σp) {N(µp, σp): normal distribution}
13: target[q][1]← p

14: end for

15: end for

5.6 Classification and Performance Evaluation

To validate the efficacy of the proposed scheme, several classifiers namely, Support

Vector Machine (SVM), Back-Propagation Neural Network (BPNN), K-Nearest

Neighbor (K-NN), Naive Bayes (NB), Logistic Model Tree (LMT), AdaBoost and

Random Forest (AdaBoost-RF), and LogitBoost and Random Forest (LogitBoost-RF)

are used for classification by utilizing the relevant Slantlet features for both the

databases on the similar platform. The performance of the proposed scheme has
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been assessed with the assistance of various metrics of confusion matrix (TP , FP ,

TN , and FN), classification accuracy rate (ACC), AUC value of Receiver Operating

Characteristic (ROC) curve, F1 score (Fscore), Matthews correlation coefficient

(MCC), and Kappa statistics (κ). Another useful metric has been used to evaluate

the performance of the classification task is a root-mean-square error (Erms). The

Erms measures the difference between the number of predicted instances belonging to

a class and actual class observed that is known as prediction errors. The classifier is

having the smaller value of Erms has a better performance.

5.7 Experimental Results and Discussion

For the simulation experiments, mammographic images are taken from MIAS and

DDSM databases. Two image class sets are built and used in the experiment namely,

abnormal–normal and malignant–benign for the evaluation of the performance.

The abnormal and malignant type of ROIs are considered as positive class in

the abnormal–normal and malignant–benign image class set respectively. Each

mammographic ROI has been taken of size 128 × 128 pixels used in the feature

extraction phase to find the feature elements. The overall simulation is divided into

three different experiments and discussed below in detail.

Experiment 1: Generation of Feature Matrix

In this scheme, a Two-Dimensional Slantlet Transform (2D-SLT) has been employed

to generate the coefficients from the mammographic ROIs. Several SLT matrices

are computed by using the different l-scale filter banks that have been described in

Section 5.2. The value of scale, l is specified by the predefined block size, bs that is

used in the division of ROI. In this experiment, suitable values of bs have been taken

as 4, 8, 16, 32, 64 and 128 for the division of a 128 × 128 ROI to yield a number

of cropped blocks or images. While, the value of bs = 128, then only one block is

obtained from the ROI, which is same as the original ROI. Subsequently, various

values of scale l are estimated by l = log2 bs. The corresponding SLT matrices (S)

are generated using the obtained value of scale l.

Next, A Two-Dimensional Slantlet Transform is performed by the sequential

row and column transformations on the individual block (CI), that produces the

coefficient matrix CICF that has been explained in Section 5.4. Then, all the

obtained CICF are concatenated to form the coefficient matrix CF of the whole

ROI. The dimension of matrix CF is same as the size of ROI. The 2D-SLT of
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the mammographic ROI is presented in Figure 5.5 using different values of block

size, bs = 16, 32 and 64. Tables 5.1, 5.2, 5.3 and 5.4 show the different coefficient

matrices generated from the individual cropped blocks using the values of block size,

bs = 4, 8 for mammographic ROIs of MIAS and DDSM databases respectively. In the

feature extraction phase (Algorithm 8), theM (M = 128×128 = 16384) number of

coefficients are obtained from a mammographic ROI of size 128×128 pixels. A feature

matrix FM of size K ×M is constructed by keeping all the ROI indices present in

the database in rows and corresponding coefficients of each ROI in the column.

(a) Original ROI (b) Enhanced ROI

(c) SLT, bs = 16 (d) SLT, bs = 32 (e) SLT, bs = 64

Figure 5.5: 2D-SLT of the enhanced ROI using block sizes, bs = 16, 32, and 64.

Table 5.1: The CICF4×4 generated from individual blocks of different ROIs (128×128)
with bs = 4 using SLT matrix S4×4 for MIAS database.

ROI type Coefficient matrix (CICF4×4)

Normal

675.7500 0.3354 0.0977 0.2558
1.4534 -1.3500 -0.4680 0.3099
-0.2558 0.2018 0.0764 -0.1618
-0.0977 0.2725 0.0618 0.5236

Benign

579.7500 -1.9007 0.0977 0.2558
-7.2672 0.7500 -0.4139 -0.0604
-0.2185 2.8230 -0.3618 0.2236
0.5721 1.7623 -0.2236 -0.1382

Malignant

615.7500 1.9007 -0.4513 -0.6094
-6.1492 0.1500 -0.1144 -0.0437
-1.2792 0.7135 0.1618 -0.2472
-0.4886 0.0771 0.6472 -0.0618
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Table 5.2: The CICF8×8 generated from individual blocks of different ROIs (128×128)
with bs = 8 using SLT matrix S8×8 for MIAS database.

ROI type Coefficient matrix (CICF8×8)

Normal

1351.6250 -5.8101 -0.2753 -0.1200 -0.5854 0.0854 0.3191 0.4309
11.4292 5.9583 -4.1517 -5.2849 0.3646 0.0718 -0.1371 0.0825
0.6965 0.4372 -0.4108 0.0139 0.0631 0.1094 0.3950 0.2734
-0.4593 -0.6960 0.3194 -0.0725 -0.0631 -0.1094 -0.4760 0.2819
0.0264 -0.3588 -0.6984 -0.2336 0.0382 -0.0382 -0.1236 -0.1000
0.4736 0.0315 -0.4027 -0.2465 -0.2618 0.2618 -0.1000 0.3236
0.4736 0.0315 -0.4027 -0.2465 -0.2618 0.2618 -0.1000 0.3236
-0.6545 -0.1615 -0.1544 0.2855 0.4000 0.1000 0.0764 -0.1618

Benign

1159.8750 -0.3546 -3.7710 -3.5813 0.4472 -0.4472 0.0691 0.1809
5.7555 5.7321 0.9017 0.4612 -0.2484 -0.2972 -0.0266 -0.2462
-9.7290 0.0808 -8.5698 -8.7758 0.8789 -0.5972 -0.5293 0.1168
-10.7468 -0.2016 0.4330 0.5626 0.0030 0.3477 -0.3963 0.0183
0.5163 0.5935 -1.6531 -1.0000 0.0618 0.3000 -0.0854 0.1382
-0.2663 -0.2116 -2.4996 -2.9112 0.3000 -0.1618 0.3618 0.5854
-0.8090 -0.1809 1.9570 2.9484 -0.7708 -0.2618 -0.3618 0.2236
0.3090 -0.4737 1.6910 1.9417 -0.0382 0.5708 -0.2236 -0.1382

Malignant

1231.7500 -0.6001 0.0345 -0.0345 0.4309 0.3191 -0.0691 -0.1809
-12.8749 -11.7143 -0.4778 0.7193 -0.4746 -0.8893 0.3166 0.8290
3.3224 4.4116 0.0804 -0.0985 0.0262 0.2828 0.5707 -0.4456
-3.1643 5.7669 -0.0658 -0.7161 0.4751 0.0064 -0.2776 -0.3219
1.1219 -0.7558 0.1953 -0.4679 0.0854 0.2236 -0.0618 -0.3854
2.1281 -0.3898 -0.0702 -0.1316 -0.2236 -0.5854 0.2854 0.1618
-1.8517 0.3065 -0.2342 0.6649 0.1000 -0.1000 0.1618 -0.2472
-0.3983 0.1845 0.3708 -0.0108 -0.1000 0.1000 0.6472 -0.0618

Table 5.3: The CICF4×4 generated from individual blocks of different ROIs (128×128)
with bs = 4 using SLT matrix S4×4 for DDSM database.

ROI type Coefficient matrix (CICF4×4)

Normal

683.0000 4.6957 0.4743 -0.4743
-2.9069 -3.2000 0.0501 0.8986
0.1581 -0.8986 0.1000 -0.3236
-0.1581 -0.0501 0.1236 0.1000

Benign

536.5000 -3.3541 -1.8512 -0.2701
-4.9193 -0.2000 -0.7405 0.1080
-0.1581 -0.0707 -0.2618 0.0382
0.1581 0.0707 0.2618 -0.0382

Malignant

648.0000 -3.8013 -0.1581 0.1581
-3.8013 0.0000 -0.4743 -0.4743
-0.1581 -0.4743 0.2236 0.0000
0.1581 -0.4743 0.0000 -0.2236
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Table 5.4: The CICF8×8 generated from individual blocks of different ROIs (128×128)
with bs = 8 using SLT matrix S8×8 for DDSM database.

ROI type Coefficient matrix (CICF8×8)

Normal

1360.0000 -5.7828 2.5067 3.8178 -0.7236 -0.2764 0.5854 -0.0854
-6.2192 -6.4762 -5.5965 -4.2714 0.0258 -0.4622 -0.0702 1.0521
-0.9409 4.6917 0.1326 -0.2609 -0.0939 -0.2367 0.0087 -0.3681
-8.7041 -5.2092 0.2847 0.7436 -0.2763 0.2907 0.0787 0.5969
2.0427 1.4968 0.1352 -0.0542 0.2000 0.3854 0.0000 0.2236
1.7073 2.5947 -0.1136 -0.4418 -0.2854 0.2000 -0.2236 0.0000
-2.3517 -2.8099 -0.2619 0.0935 -0.2236 -0.3618 0.1000 -0.3236
-0.8983 -0.7361 0.1167 0.2098 -0.1382 0.2236 0.1236 0.1000

Benign

1063.8750 -7.1194 4.6744 -4.2792 1.8719 2.8781 -2.2826 -0.7174
-12.0838 -5.9940 -0.3130 0.5717 -0.5921 -0.2262 0.0129 -0.2311
-5.3364 0.1585 0.0941 0.0973 0.0031 -0.2920 0.1349 -0.1751
-4.3876 0.4108 -0.0664 0.2250 0.0780 -0.2634 -0.8047 0.2124
-0.3882 0.0129 0.1978 -0.0937 -0.0618 0.0618 0.6000 -0.1000
-0.6118 -0.2311 0.3945 0.1339 -0.1618 0.1618 -0.1000 0.6000
-0.0163 0.2750 -0.2544 -0.1596 0.1000 0.2618 -0.2618 0.0382
0.7663 0.5433 0.0690 -0.1294 0.0382 0.1000 0.2618 -0.0382

Malignant

1296.2500 -0.3273 -3.1435 -3.9716 0.7663 -0.0163 -0.2927 0.0427
5.7828 6.0833 0.3646 -0.8476 0.4156 0.2936 -0.3424 -0.3668
-4.7664 0.3661 -0.7367 -0.0397 0.0209 0.0898 0.2674 0.0302
-5.3529 -0.0556 -0.1270 -0.4966 0.1475 -0.4163 -0.3985 -0.3734
0.4472 0.2785 0.1990 -0.1450 0.0618 0.0236 -0.1854 0.5472
-0.4472 0.3761 -0.4606 0.0904 -0.4236 -0.1618 -0.3472 0.4854
-0.3354 -0.1637 -0.3336 -0.4236 0.1000 -0.1000 0.2236 0.0000
0.3354 -0.1637 0.2733 -0.4648 -0.1000 0.1000 0.0000 -0.2236

Experiment 2: Selection of Significant Features

The selection of relevant features from feature matrix is accomplished through the

Algorithms 9 and 10. The detail description of the feature selection phase has

been presented in the Section 5.4. A tolerance parameter (τ) has been utilized in the

feature selection algorithm to select different number of relevant features. A value of

0.0001 has been taken in the experiment for initializing the τ. The final value of the

τ is to be specified empirically, after which no further features are selected. Different

values of τ are used in the feature selection algorithm in the range between initial

and final values. However, the maximum and minimum number of relevant features

are selected at only a particular value of τ. These specific values of τ vary for various

extracted feature matrices based on the use of different block sizes (bs). Table 5.5

shows several maximum and minimum number of selected features (Rmax, Rmin) and

the corresponding values of tolerance parameters (τRmax , τRmin
) at which the values

of earlier parameters are obtained.
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Table 5.5: Various numbers of maximum and minimum selected features.
Database Class set bs Rmax τRmax Rmin τRmin

MIAS

Abnormal–
normal

4 65 0.005, 0.01 1 5
8 65 0.005, 0.01 1 5
16 63 0.005, 0.01 1 5
32 64 0.005, 0.01 1 4
64 61 0.005 1 5
128 59 0.005, 0.01 1 5

Malignant–
benign

4 31 0.05 7 1
8 31 0.0005, 0.001, 0.01 6 1
16 30 0.001, 0.01 7 1
32 30 0.0005 6 1
64 30 0.001 6 1
128 31 0.05 7 1

DDSM

Abnormal–
normal

4 105 0.05 1 13
8 107 0.05 1 13
16 102 0.005, 0.01 1 13
32 107 0.05 1 13
64 102 0.005, 0.01 1 13
128 1000 0.01 1 13

Malignant–
benign

4 116 0.005 1 3
8 120 0.005 1 3
16 117 0.005 1 3
32 120 0.005 1 3
64 118 0.005 2 2
128 111 0.005 1 2

Here, R denotes the total number of selected features present in the significant

feature list. It might be noted that the same number of maximum selected features

are obtained for different values of τ. As shown in the Table 5.5, this condition

is valid for all values of bs except bs = 64 in abnormal–normal class set of MIAS

database. Similarly, for the malignant–benign class set of the MIAS, the same number

of maximum features have been selected using bs = 8, and 16. In case of DDSM

database, the values of bs are 16 and 64 in the abnormal–normal class set for which the

above condition is valid. But, there is no such bs value in the malignant–benign class

set of DDSM for which the same number of maximum features selected at different

values of τ. The variation of the number of selected features (R) for different block

sizes (bs) with respect to the various values of tolerance parameter (τ) has been

indicated in Figure 5.6. The Figure shows that the number of selected features (R)

goes to peak at some values of τ and gradually decreases to zero when the higher

values of τ are used.
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Figure 5.6: The selection of significant features for various values of bs.

Experiment 3: Classification and Evaluation

As explained earlier in the Section 5.5, the classification performance is highly

influenced by the balanced, relevant feature set that is accomplished by the Gaussian

distribution based balancing procedure, than an imbalanced relevant feature set. In

this work, the same number of instances are sampled for each class (both positive

and negative classes) from the learnt Gaussian distribution to generate the balanced

feature dataset. The number of instances belonging to each class in a set of

abnormal–normal and malignant–benign of both the databases is re-sampled as given

in Table 5.6. After getting several sets of balanced significant features, a classification

experiment has been conducted utilizing different classifiers for both MIAS and DDSM

databases. In this experiment, a 10-fold cross-validation procedure has been employed

to partition the whole dataset into a train and test set for 10 number of rounds. In

this process, the entire dataset is partitioned into 10 number folds out of which, nine

folds are combined to form one dataset, and the remaining one fold is considered as

another set. In this way, two disjoint sets are obtained containing 90% and 10% of
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data that are used separately for training and validation purposes respectively. The

cross-validation process is repeatedly executed for ten number of rounds with the

random selection of training and testing dataset by classifiers. It has been observed

that, LogitBoost-RF classifier gives a better performance using the proposed Slantlet

features among all classifiers.

Table 5.6: Balancing of selected feature dataset. The abnormal and malignant types

of ROIs are considered as positive.

Database Class set

Number of instances to be
re-sampled per each class

yi = +1 yi = −1

MIAS
Abnormal–normal 115 207
Malignant–benign 51 64

DDSM
Abnormal–normal 500 500
Malignant–benign 264 236

Several Random Forests having 10, 20, 40 and 100 number of trees with a

maximum depth of two have been taken empirically in the classification experiment

that are used as base learner in the LogitBoost algorithm. The optimum performance

has been achieved by the Random Forest base learner with 20 number of trees.

Different of performance measures namely kappa-statistics (κ), accuracy (ACC),

and the root-mean-square error (Erms) are estimated using that optimal structure

of the classifier. The detailed computed values of various performance measures

using balanced and imbalanced relevant feature set are given in Table 5.7. It might

be noted in Table 5.7 that the obtained values of performance measures using the

balanced feature set outperform the use of imbalanced feature set. Another vital

factor has been observed that the same value of maximum accuracy is obtained at

the multiple values of the block size (bs). However, we have considered the optimum

block size (bs) at which the best accuracy (accmax) with respect to the minimum Erms

value is obtained. This optimum block size bs = 16 for our proposed scheme. The

best accuracy values (ACCmax) of 99.69% and 99.13% with a minimum Erms have

been achieved using the balanced feature set at bs = 16 for abnormal–abnormal and

malignant–benign class sets of MIAS database respectively. The similar measures of

99.80% and 99.40% with the minimum Erms are achieved using the balanced feature

set at the same value bs = 16 for abnormal–abnormal and malignant–benign class

sets of DDSM database respectively. The optimal fold-wise confusion matrices for

both the databases are computed at various values of bs with tolerance parameter,

τ = 0.01 and are given in Table 5.8.
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Table 5.8: Optimal confusion matrices of different databases (fold-wise) at block size,

bs = 16 with tolerance, τ = 0.01.

Database Folds
Class set

Normal-abnormal Benign-malignant

Training
instances

Testing
instances TP FP TN FN

Training
instances

Testing
instances TP FP TN FN

MIAS

Fold 1 289 33 12 0 21 0 103 12 6 0 6 0

Fold 2 289 33 12 0 21 0 103 12 4 0 7 1

Fold 3 290 32 12 0 20 0 103 12 5 0 7 0

Fold 4 290 32 10 0 22 0 103 12 5 0 7 0

Fold 5 290 32 11 0 21 0 103 12 5 0 7 0

Fold 6 290 32 11 0 21 0 104 11 5 0 6 0

Fold 7 290 32 11 0 21 0 104 11 5 0 6 0

Fold 8 290 32 12 0 20 0 104 11 5 0 6 0

Fold 9 290 32 11 0 20 1 104 11 5 0 6 0

Fold 10 290 32 12 0 20 0 104 11 5 0 6 0

DDSM

Fold 1 900 100 50 0 50 0 450 50 27 0 23 0

Fold 2 900 100 50 0 50 0 450 50 27 0 23 0

Fold 3 900 100 50 0 50 0 450 50 26 0 23 1

Fold 4 900 100 50 0 50 0 450 50 26 0 23 1

Fold 5 900 100 50 0 50 0 450 50 26 1 23 0

Fold 6 900 100 50 0 50 0 450 50 26 0 24 0

Fold 7 900 100 50 0 50 0 450 50 26 0 24 0

Fold 8 900 100 50 2 48 0 450 50 26 0 24 0

Fold 9 900 100 50 0 50 0 450 50 26 0 24 0

Fold 10 900 100 50 0 50 0 450 50 26 0 24 0

Further, a comparison among various values of Erms has been made by using the

different values of bs that are given in Figure 5.7 for both the class sets of MIAS

and DDSM databases. All the minimum Erms values are obtained at τ = 0.01

using bs = 16. The minimum Erms values of 0.0312 and 0.0985 are obtained for

abnormal–normal and malignant–benign class sets of MIAS database respectively.

The values of similar parameter are 0.0340 and 0.0663 for abnormal–normal and

malignant–benign class sets of DDSM database respectively. The comparison of

various accomplished performance measures namely ACC, Sn, κ, Erms, MCC, and

AUC of the LogitBoost-RF has been made with that of other classifiers using balanced

feature set and are presented in Table 5.9.
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Figure 5.7: Comparison of values of Erms using the various values of bs and τ.
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Chapter 5 SLT + BLogR

The classification performance of the proposed scheme has also been evaluated by

the analysis of Receiver Operating Characteristic (ROC) curve. The index value AUC

of area under the ROC curve achieved by the LogitBoost-RF classifier with that of

other classifiers has been compared and given in Figure 5.8. It may be noted that

the AUC values obtained by LogitBoost-RF is larger than that of other classifiers.

The optimum best AUC value is 1 for all the class sets of both MIAS and DDSM

database which has been accomplished by using τ = 0.01 with bs = 16. Finally,

a comparative analysis of different performance measures achieved by the proposed

work with existing approaches is summarized in Table 5.10. It is clearly observed that

the suggested scheme outperforms its competent approaches.
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Figure 5.8: Comparison of ROC curves obtained by LogitBoost-RF classifier with

that of other classifiers at τ = 0.01 and bs = 16.
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Table 5.10: Comparison of performances between proposed and existing schemes.

Scheme Technique Database Measurement

Biswas et al. Multiscale filter bank, MIAS ACC = 82.5%, AUC = 0.83

(2011) [35] mixture of Gaussian DDSM ACC = 88.3%, AUC = 0.87

distribution, (Architectural distortion)

EM algorithm

Ramos et al. Db3 wavelet, GA, DDSM AUC = 0.90

(2012) [38] Random Forest (abnormal–normal)

Eltoukhy et al. Curvelet transform, MIAS ACC = 95.98%

(2012) [39] statistical t-test, (abnormal–normal)

SVM ACC = 97.30%

(malignant–benign)

Nascimento et al. Biorthogonal 3.7 wavelet, DDSM AUC = 0.98

(2013) [43] Polynomial classifier (malignant–normal)

AUC = 0.95

(benign–normal)

AUC = 0.96

(malignant–benign)

Li et al. Texton features, DDSM ACC = 85.96%

(2015) [52] multiple subsampling (malignant–benign)

strategies, K-NN

Görgel et al. SWT, SVM MIAS ACC = 90.1%

(2015) [51] (malignant–benign)

I.U. ACC = 91.4%

database (malignant–benign)

Proposed SLT+BLogR MIAS ACC = 99.69%, AUC = 1

scheme +LogitBoost-RF (abnormal–normal)

ACC = 99.13%, AUC = 1

(malignant–benign)

DDSM ACC = 99.80%, AUC = 1

(abnormal–normal)

ACC = 99.40%, AUC = 1

(malignant–benign)
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5.8 Summary

In this chapter, a proficient mammogram classification scheme has been suggested

to help radiologists for the interpretation of suspicious mammographic tissues in

the early detection of breast cancer. The scheme applies a Two-Dimensional

Slantlet Transform (2D-SLT) for the extraction of features from mammographic

ROIs. The most discriminatory feature elements are selected by the use of the

Bayesian Logistic Regression (BLogR) method. The relevant features are balanced

by the Gaussian distribution based balancing method to attain the improved

classification performance. Several classifiers such as Naive Bayes (NB), K-Nearest

Neighbor (K-NN), Back-Propagation Neural Network (BPNN), Support Vector

Machine (SVM), AdaBoost and Random Forest (AdaBoost-RF), and Logistic Model

Tree (LMT) are used along with LogitBoost and Random Forest (LogitBoost-RF) for

the classification of mammograms using selected Slantlet features for both MIAS

and DDSM databases. The experimental results show an optimal classification

performance has been achieved by LogitBoost-RF classifier. The proposed approach

achieves the optimal accuracy results of 99.69% and 99.13% for abnormal–normal

and the malignant–benign class set on MIAS database respectively. The similar

parameters of 99.80% and 99.40% are accomplished for DDSM database. The optimal

AUC of value 1 with respect to ROC curve is achieved for all the class sets of

both the databases. Comparative analysis regarding various performance measures

demonstrates that the suggested scheme outperforms its competent approaches.
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Mammogram Classification using

Radial Symmetric Features

followed by t-SNE Feature

Selection

Across the globe, the breast cancer is frequently encountered in women, and it

is the second most cause of deaths after lung cancer. Currently, the death rates

have been declined sharply due to the early detection and effective treatments [88].

Recent developments in digital mammography imaging systems have aimed to better

diagnosis of abnormalities in the barest. Digital mammograms are computerized

scanned X-ray images of breasts. The early detection and diagnosis of breast

cancer can be achieved through the mammography screening programs assisted by

computer technologies [7]. In this regard, the Computer-Aided Diagnosis (CAD) is

a very popular and efficient method that includes the sets of automatic tools using

image processing and pattern recognition techniques to help the radiologists in the

detection and classification of tissue abnormalities. Generally a CAD system consists

of following three important stages, (a) extraction of features from ROI, (b) selection

of useful features, and (c) classification of the breast tissues.

In this chapter, Fast Radial Symmetry Transform (FRST) has been utilized to

extract the features from the mammographic ROI. A feature selection algorithm

based on t-distributed Stochastic Neighbor Embedding (t-SNE) method has

been used to select most significant features from a large number of radial
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symmetric features. Different classifiers namely, Support Vector Machine (SVM),

Back-Propagation Neural Network (BPNN), K-Nearest Neighbor (K-NN), Naive

Bayes (NB), AdaBoost and Random Forest (AdaBoost-RF), LogitBoost and Random

Forest (LogitBoost-RF), and Logistic Model Tree (LMT) are employed to characterize

the mammograms as malignant–normal, malignant–benign, and benign–normal class

sets using relevant features. It has been observed that LMT classifier shows a

better performance among all the classifiers. In this chapter, detail explanation of

classification performed by LMT has been given. Thus, the proposed scheme consists

of three principal phases: feature extraction, selection, and classification. The overall

block diagram of the proposed scheme is shown in Figure 6.1.

The chapter is organized as follows: The extraction of features using FRST method

is described in Section 6.1. Section 6.2 outlines the selection of significant features.

The classification and evaluation of the performance is explained in Section 6.3.

Section 6.4 describes the experimental results obtained on the standard database

MIAS. Section 6.5 summarizes the overall work proposed in this chapter.

Figure 6.1: Block diagram of proposed scheme using FRST and t-SNE.

6.1 Extraction of Features using FRST

The Fast Radial Symmetry Transform (FRST) is proposed by Loy et al. that uses the

local radial symmetry to derive the point of interest in an image [89]. The methodology

decides the contribution of each pixel to the symmetry of pixels around it, instead

of considering the contribution of a local neighborhood to a central pixel. Unlike
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the circular Hough transform it does not require the gradient to be quantized into

angular bins, the contribution of every orientation is calculated in a single pass over

the image. The approach is extremely efficient regarding its cost of computation.

The computational cost is of order O(P ×L) while considering local radial symmetry

in L × L neighborhoods over an image of P pixels. The FRST is exhibited in the

following steps to detect the radially symmetric features by using one or more radii

n ∈ N , where N is the set of radii of those features to be detected.

1. The gradient (g) is computed with the help of 3× 3 sobel operator.

2. The value of the transform at radius n indicates the contribution to radial

symmetry of the gradients with a distance n away from each point p.

3. Two images, orientation projection image (On) and magnitude projection image

(Mn) are generated at each radius n, by considering the gradient (g) at each

point p.

4. Two types of pixel, positive-affected pixel (P+(p)) and negative-affected pixel

(P−(p)) are determined from the corresponding point (p) at which the gradient

is computed as shown in Figure 6.2. The P+(p) is the pixel that the gradient of

it, g(p) is pointing to at a distance n away from p. Similarly, P−(p) is the pixel

that the gradient is away from that pixel at a distance n.

5. The coordinates of pixels P+(p) and P−(p) are given by,

P+ (p) = p+ round
(

g(p)
∥g(p)∥n

)
, and

P− (p) = p− round
(

g(p)
∥g(p)∥n

)
.

(6.1)

6. Initially, On = 0 and Mn = 0. Next, for each pair of affected pixels, the

corresponding P+(p) and P−(p) are updated as,

On (P+ (p)) = On (P+ (p)) + 1,

On (P− (p)) = On (P− (p))− 1,

Mn (P+ (p)) =Mn (P+ (p)) + ∥g (p)∥ ,
Mn (P− (p)) =Mn (P− (p))− ∥g (p)∥ .

(6.2)

7. Finally, the radial symmetry contribution at radius n is given as convolution

and expressed by,

Sn = Fn ∗ An (6.3)
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where

Fn (p) =
Mn(p)
kn

(
|Õn(p)|α

kn

)
, and

Õn (p) =

{
On (p) if On (p) < kn

kn otherwise.

(6.4)

Here, An: 2D Gaussian, α: radial strictness parameter, kn: scaling factor that

normalizes On and Mn over different radii.

The Gaussian kernel An is required to spread the influence of the pixels, P+(p) and

P−(p) as a function of n. In this approach, a rotational invariant 2D Gaussian (An) has

been chosen since it has a consistent effect over all the g(p). The An is also separable

for which the convolution performed by it can be resolved efficiently. The strictness

parameter, α determines how strictly the FRST produce a valid feature value. A

larger value of the α eliminates non-radially symmetric features. The normalizing

scale factor normalizes the On and Mn over the radius, n for representing them on a

similar scale. In this scheme, the On and Mn are normalized through the division by

their corresponding maximum values. The FRST is performed on the mammographic

ROIs based on the bright symmetry, for which only the positive-affected pixels, P+(p)

are considered to determine On and Mn. Thus, the mathematical components of the

computed radial symmetry contribution (Sn) of ROIs are kept in feature vectors (fvs)

and further these K number of vectors are used to construct the radial symmetric

feature matrix (FM) as described in Algorithm 12.

Figure 6.2: The locations of pixels P+(p) and P−(p) affected by the gradient g(p) at

a point p for a range of radius, n.
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Algorithm 12 Feature matrix generation using FRST.

Require: K number of ROIs, n: radius, α: strictness parameter, and sf : standard

factor

Ensure: FM [K][M ]: Feature matrix. Here, M : Total number features. Function

gradient() computes the gradient of ROI using 3 × 3 Sobel operator. Function

round() rounds the value of the parameter to the nearest integer. Functions abs(),

and max() compute the absolute and maximum values, respectively.

1: Create empty feature vector fv

2: Initialize n and α, sf with required values, and c← 1

3: M ← N ×N {N : Size of the ROI}
4: Generate a 2D Gaussian filter, An using n and sf

5: for k ← 1 to K do

6: Read ROIk

7: g ← gradient(ROIk)

8: for i← 1 to N do

9: for j ← 1 to N do

10: Determine coordinate of point: p← (i, j)

11: compute gradient of point p: gp ← g(p)

12: Normalize the gp: gpnorm ←
√
gp × g′p

13: if gpnorm > 0 then

14: P+ (p)← p+ round (gp/gpnorm)× n
15: On (P+ (p))← On (P+ (p)) + 1

16: Mn (P+ (p))←Mn (P+ (p)) + gpnorm

17: end if

18: end for

19: end for

20: On ← abs (On (P+ (p))), Mn ← abs (Mn (P+ (p)))

21: Onnorm ← On/max (On) {Normalize On and Mn}
22: Mnnorm ←Mn/max (On)

23: Fn ←Mnnorm × (Onnorm)
α

24: Snk
← Fn ∗ An {Snk

: radial symmetry contribution}
25: for p← 1 to N do

26: for q ← 1 to N do

27: fvk[c][1]← Snk
[p][q]

28: c← c+ 1

29: end for

30: end for
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31: Reset c← 1

32: for m← 1 to M do

33: FM [m][k]← fvk[m][1]

34: end for

35: end for

36: FM [K][M ]← (FM[M][K])′

6.2 Selection of Features using t-SNE method

In feature selection phase, an optimal set of relevant features are selected from the

extracted feature matrix. The high-dimensional dataset is reduced to low-dimensional

space by the use of t-distributed Stochastic Neighbor Embedding (t-SNE) method [90].

The SNE is a probabilistic approach to the task of placing feature matrix

FM = {fv1, fv1, ..., fvK}, represented by high-dimensional dataset or by pairwise

similarities, in a low-dimensional significant dataset SFM = {sfv1, sfv1, ..., sfvK},
in such a way that it preserves neighbor identities. Under the Gaussian centered of

each object, the similarities of data points fvj to fvi in FM , and sfvj to sfvi in SFM

are the affinities of data points, and can be represented as conditional probabilities

pj|i and qj|i , respectively, and expressed as,

pj|i =
exp

(
−∥fvi − fvj∥2

/
2σ2

i

)∑
m̸=i exp

(
−∥fvi − fvm∥2

/
2σ2

i

) , (6.5)

qj|i =
exp

(
−∥sfvi − sfvj∥2

)∑
m̸=i exp

(
−∥sfvi − sfvm∥2

) , (6.6)

where σi is the variance of the Gaussian centered on data point fvi for computation

of pj|i . For computation of qj|i the value of σi is set to 1
/√

2.

A natural cost function that measures the faithfulness of pj|i and qj|i , is a sum of

Kullback-Leibler (KL) divergences over all data points and given as,

C =
∑
i

KL (Pi ∥Qi ) =
∑
i

∑
j

pj|i log
pj|i
qj|i

(6.7)

where Pi is the conditional probability distribution over all other data points given

data point fvi, and Qi represents the conditional probability distribution over all

other map points given map point sfvi. The value of σi is determined by the binary
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search performed by SNE that produces a Pi with a fixed perplexity (prep) parameter

that is determined by manually. The perplexity parameter is given as,

prep (Pi) = 2H(Pi), (6.8)

where H(Pi) is the Shannon entropy of Pi and expressed as,

H (Pi) = −
∑
j

pj|i log2pj|i . (6.9)

The perplexity determines the smooth measure of the effective number of neighbors.

A gradient descent method is used to minimize the cost function given in (6.7). The

form of gradient descent method is expressed as,

∂C

∂sfvi
= 2

∑
j

(
pj|i − qj|i + pi|j − qi|j

)
(sfvi − sfvj). (6.10)

The gradient descent is initialized by sampling map points randomly from an

isotropic Gaussian with a small variance that is centered around the origin. A

relatively high momentum term is added to the gradient to speed up the optimization

as well as avoid the poor local minima. That is, the current gradient is added to

an exponentially decaying sum of previous gradients to determine the changes in the

coordinates of the map points at each iteration of the gradient search. The gradient

update with a momentum term is defined as,

SFM (n) ← SFM (n−1) + η ∂C
∂SFM

+

α (n)
(
SFM (n−1) − SFM (n−2)

) (6.11)

where SFM (n) is the solution at iteration n, η is the learning rate, and α(n) is the

momentum at iteration n.

In t-SNE, a Student t-distribution with one degree of freedom as the heavy-tailed

distribution is used in the low-dimensional map. Utilizing this distribution, the joint

probabilities qij is given as,

qij ←
(
1 + ∥sfvi − sfvj∥2

)−1∑
m ̸=l

(
1 + ∥sfvi − sfvj∥2

)−1 . (6.12)

Now, the gradient of KL-divergence between joint probability distribution, P in

high-dimensional space and the joint probability distribution, Q in low-dimensional

space is given as,

∂C
∂SFM

← 4
∑
j

(pij − qij) (sfvi − sfvj)((
1 + ∥sfvi − sfvj∥2

)−1
)
.

(6.13)
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The mere description of the selection of subsets of significant features using the t-SNE

technique is given in Algorithm 13.

Algorithm 13 Significant feature selection using t-SNE.

Require: FM = {fv1, fv1, ..., fvK}: feature matrix containing K number of feature

vectors, prep: perplexity parameter, N : number of iteration, η: learning rate, and

α (n): momentum

Ensure: SFM (n) = {sfv1, sfv1, ..., sfvK}: reduced set of significant features. Here,

sfv is the vector contains reduced number (R) of significant features

1: Compute pairwise affinities with prep:

pj|i ←
exp

(
−∥fvi − fvj∥2

/
2σ2

i

)∑
m̸=i exp

(
−∥fvi − fvm∥2

/
2σ2

i

)
2: pij ←

pj|i+pi|j
2K

3: Sample initial solution:

SFM (0) ← {sfv1, sfv1, ..., sfvK} from N (0, 10−4I)

4: for n← 1 to N do

5: Compute low-dimensional affinities:

qij ←
(
1 + ∥sfvi − sfvj∥2

)−1∑
m̸=l

(
1 + ∥sfvi − sfvj∥2

)−1

6: Compute gradient:

∂C
∂SFM

← 4
∑
j

(pij − qij) (sfvi − sfvj)((
1 + ∥sfvi − sfvj∥2

)−1
)

7: Compute the gradient update:

SFM (n) ← SFM (n−1) + η ∂C
∂SFM

+

α (n)
(
SFM (n−1) − SFM (n−2)

)
8: end for

6.3 Classification and Performance Evaluation

In order to validate the efficacy of proposed scheme, several classifiers such as Support

Vector Machine (SVM), Back-Propagation Neural Network (BPNN), K-Nearest
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Neighbor (K-NN), Naive Bayes (NB), AdaBoost and Random Forest (AdaBoost-RF),

LogitBoost and Random Forest (LogitBoost-RF), and Logistic Model Tree (LMT)

are used utilizing the relevant feature sets. Various measurements namely, true

positive rate (TPR) or sensitivity (Sn), false positive rate (FPR), precision (p),

recall (r), accuracy (ACC), F-measure (Fscore), and Matthews correlation coefficient

(MCC) are used to evaluate the performance of classifiers. The Kappa-statistic

(κ), root-mean-square error (Erms), and area under curve (AUC) value of Receiver

Operating Characteristic (ROC) are also important performance evaluation metrics

that are assessed in this chapter. The root-mean-square error measures the difference

between the number of predicted samples belonging to a class and actual class

observed that is known as prediction errors. The classifier is having the smaller

value of Erms determines a better performance. In this chapter, LMT classifier shows

the better performance than all other classifiers.

6.4 Experimental Results and Analysis

For simulation, mammographic images are taken from MIAS and DDSM databases.

Each mammographic ROI has been taken of size 128× 128 pixels used in the feature

extraction phase to find the feature elements. The overall simulation is divided into

three different experiments and discussed below in detail.

Results for Feature Extraction:

Using FRST transform, the bright radial symmetric contribution (Sn) is computed

at radius n for each of the K number of mammographic ROIs as described in

Algorithm 12. A standard factor value of 0.1 has been used for the calculation of the

Gaussian kernel An. For generation of high performance feature, the α of value 2 is

used in the experiment. A totalM (M = 128×128 = 16384) number of mathematical

components are generated in each contribution, Sn. All the mathematical components

of each Sn are stored in the respective feature vectors (fv). A feature matrix FM of

size K ×M is constructed by keeping all K number of fvs in row wise fashion. In

this work, the values of radius, n = 1, 2, . . ., 25 are taken empirically to compute

Sn and it has been found that at n = 7, the useful feature sets are generated. The

FRSTs of ROI at radii, n = 1, 7, 13, 19, and 25 have been computed, and shown in

Figure 6.3. The FRST at n = 7 highlights the bright interest points excluding more

or less unwanted feature components.
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(a) Original ROI (b) n = 1 (c) n = 7

(d) n = 13 (e) n = 19 (f) n = 25

Figure 6.3: Fast radial symmetry transform (FRST) of the mammographic ROI, (a)

original malignant ROI (mdb117 of MIAS database), and (b), (c), (d), (e), and (f)

show the transformed ROIs that are computed at radii, n = 1, 7, 13, 19, and 25.

Results for Feature Selection:

The selection of significant features (SFM) from feature matrix is carried out through

the Algorithm 13. In the t-SNE method, the reduction of features is based on the

different values of perplexity (prep) parameter, and the dimension (R) of the SFM .

In this experiment, we have taken the typical values of the prep parameter between

5 and 50. It has been observed that, at the value of prep = 30, the reduced feature

subsets are very useful with respect to the classification performance. Similarly, the

values of dimension parameter (R) are taken as 30, 50, 70, 90, 110, . . . , 490, 510

to build the relevant feature matrix (SFM). Deciding the dimension of SFM is

a heuristic based on its usefulness. It has been noticed that the SFM of higher

dimension that starts from 450 gives the saturated performance in the classification

phase, which is presented in Figure 6.4. Therefore, the setting of the higher value of

the dimension has been stopped at R = 510 for reduction of the FM to SFM .

Results for Classification:

For classification, three image class sets are formed and used in the experiment

namely, malignant-normal, malignant–benign, and benign–normal. The malignant
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type of ROIs is considered as the positive class in both malignant–normal, and

malignant–benign class sets. Similarly, the benign type is considered as the positive

class in the benign–normal class set. The number of samples per each class set for

both MIAS and DDSM databases used in the classification experiment is given in

Table 6.1.

Table 6.1: The number of samples per each class set used in the classification.

Class set
Number of samples per each class

MIAS DDSM

Malignant–normal 258 764

Malignant–benign 115 500

Benign–normal 271 736

In this experiment, a 10-fold cross validation procedure has been employed to

partition the whole dataset into a train and test set for ten rounds. In this process,

the entire dataset is partitioned into ten folds out of which, nine folds are combined

to form one dataset, and the remaining one fold is considered as another set. In

this way, two disjoint sets are obtained containing 90% and 10% of data that are

used separately for training and validation purposes respectively. The cross-validation

process is repeatedly executed for ten rounds with the random selection of training and

testing dataset by the classifier. Several classifiers namely, Support Vector Machine

(SVM), Back-Propagation Neural Network (BPNN), K-Nearest Neighbor (K-NN),

Naive Bayes (NB), AdaBoost and Random Forest (AdaBoost-RF), and LogitBoost

and Random Forest (LogitBoost-RF) other than Logistic Model Tree (LMT) are used

to compare the classification performance.

Figure 6.4 summarizes the classification accuracies (ACC) achieved by four

different classifiers such as NB, AdaBoost-RF, LogitBoost-RF, and LMT using

different numbers of significant feature (R). It has been observed that the best values

of accuracies are obtained at R = 170 for all four classifiers on both MIAS and DDSM

database. Thus, R = 170 is considered as the optimal dimension of relevant feature

set for classification.

The classification performance of the proposed scheme has also been evaluated

by the analysis of Receiver Operating Characteristic (ROC) curve. The AUC value

of ROC curve achieved by the LMT classifier with that of other classifiers has been
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Figure 6.4: Comparison of values of classification accuracy (ACC) obtained by various

classifiers at different numbers of significant feature (R). The optimum values of

accuracy are obtained at R = 170 for all classifiers on both MIAS and DDSM

database.

126



Chapter 6 FRST + t-SNE

compared and given in Figure 6.5. It may be noted that the AUC values obtained

by LMT classifier are larger than that of other classifiers for all the image class sets

on MIAS and DDSM databases. The best values of AUC are 0.9997, 1, and 0.9998

for malignant–normal, malignant–benign, and benign–normal class sets, respectively

using MIAS database. Similarly, the parameters are 1, 1, and 0.9968 for DDSM

database. The optimal fold-wise confusion matrices of both the databases computed

by the LMT classifier using an optimal subset of relevant features is given in Table 6.2.

The performance of mammogram classification is also assessed by different

measures obtained through various classifiers using the optimal number of significant

features (R = 170) is presented in Table 6.3. Similarly, various performance metrics

namely, kappa-statistics (κ), accuracy (ACC), root-mean-square error (Erms), and

AUC value of ROC curve are estimated using the optimal structure of the classifier.

The detailed computed values of different performance metrics using relevant feature

set (SFM) having size, R = 170 are given in Table 6.4. The proposed approach

achieves the optimal accuracy (ACC) values of 99.61%, 99.13%, and 99.63% for

malignant–normal, malignant–benign, and benign–normal class sets, respectively

using MIAS database . For DDSM database, the similar parameters are of 99.87%,

99.40%, and 99.73%.

Lastly, a comparative analysis of different performance measures achieved by the

proposed work with existing approaches are summarized in Table 6.5. It is clearly

observed that the suggested scheme outperforms its competent approaches.
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Figure 6.5: Comparison of ROC curves obtained by LMT classifier with that of other

classifiers at optimal number of relvant features (R = 170).
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Table 6.2: fold-wise optimal confusion matrices for different databases computed by

the LMT classifier.

Class set Folds Database

MIAS DDSM

Training
instances

Testing
instancesTP FP TN FN

Training
instances

Testing
instancesTP FP TN FN

Malignant–
normal

Fold 1 232 26 5 0 21 0 687 77 27 0 50 0

Fold 2 232 26 5 0 21 0 687 77 27 0 50 0

Fold 3 232 26 5 0 21 0 688 76 26 0 50 0

Fold 4 232 26 4 0 21 1 688 76 26 0 50 0

Fold 5 232 26 5 0 21 0 688 76 26 0 50 0

Fold 6 232 26 5 0 21 0 688 76 26 0 50 0

Fold 7 232 26 5 0 21 0 688 76 26 0 50 0

Fold 8 232 26 6 0 20 0 688 76 26 0 50 0

Fold 9 233 25 5 0 20 0 688 76 26 0 50 0

Fold 10 233 25 5 0 20 0 688 76 26 1 49 0

Malignant–
benign

Fold 1 103 12 6 0 6 0 450 50 27 0 23 0

Fold 2 103 12 4 0 7 1 450 50 27 0 23 0

Fold 3 103 12 5 0 7 0 450 50 25 0 24 1

Fold 4 103 12 5 0 7 0 450 50 25 1 23 1

Fold 5 103 12 5 0 7 0 450 50 26 1 23 0

Fold 6 104 11 5 0 6 0 450 50 26 0 24 0

Fold 7 104 11 5 0 6 0 450 50 26 0 24 0

Fold 8 104 11 5 0 6 0 450 50 26 0 24 0

Fold 9 104 11 5 0 6 0 450 50 26 0 24 0

Fold 10 104 11 5 0 6 0 450 50 26 1 23 0

Benign–
normal

Fold 1 243 28 7 0 21 0 662 74 24 0 50 0

Fold 2 244 27 7 0 20 0 662 74 23 1 50 0

Fold 3 244 27 7 0 20 0 662 74 24 0 50 0

Fold 4 244 27 6 0 20 1 662 74 24 0 50 0

Fold 5 244 27 6 0 21 0 662 74 24 0 50 0

Fold 6 244 27 6 0 21 0 662 74 24 0 50 0

Fold 7 244 27 6 0 21 0 662 74 24 0 49 1

Fold 8 244 27 6 0 21 0 662 74 24 0 50 0

Fold 9 244 27 6 0 21 0 663 73 23 0 50 0

Fold 10 244 27 6 0 21 0 663 73 23 0 50 0
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Chapter 6 FRST + t-SNE

Table 6.5: Performance comparison of the proposed work with existing approaches.
Approach Technique Database Measures of performance

Cao et al. age, intensity, shape, MIAS AUC = 0.948
(2010) [30] texture, SVM (Malignant–benign)

Tahmasbi et al. Zernike moments, MIAS AUC = 0.976
(2011) [34] MLP (Malignant–benign)

Nanni et al. LTP, NPE, SVM DDSM AUC = 0.97
(2012) [41] (Malignant–benign)
Nascimento DWT, DDSM AUC = 0.98
et al. (2013) polynomial (Malignant-normal)
[43] classifier AUC = 0.95

(benign-normal)
AUC = 0.96
(Malignant–benign)

Diaz et al. Spatial, texture, MIAS AUC = 0.976%
(2014) [49] spectral feature, (Abnormal–normal)

SVM
Kim et al. Stellate feature, DDSM AUC = 0.956
(2014) [50] AdaBoost, SVM (Malignant–benign)

Rouhi et al. Thresholding, GLCM MIAS ACC = 96.47%
(2015) [53] Zernike moments, (Malignant–benign)

GA, ANN
DDSM ACC = 90.6%

(Malignant–benign)

Korkmaz et al. Texture, mRMR, DDSM ACC = 98.3%
(2015) [54] KL-classifier (Malignant–benign-normal)

Jiang et al. SIFT, weighted DDSM ACC = 90.8%
(2015) [55] majority vote (Abnormal–normal)

Oliveira et al. Taxonomic indexes, DDSM ACC = 98.88%
(2015) [59] SVM (Abnormal–normal)

Dhahbi et al. Curvelet transform, MIAS ACC = 91.27%
(2015) [56] moment theory, (Abnormal–normal)

t-test, K-NN ACC = 81.35% )
(Malignant–benign

DDSM ACC = 86.46%
(Abnormal–normal)
ACC = 60.43%
(Malignant–benign)

Karabatak Nine features of Wisconsin ACC = 98.25%
(2015) [57] each record database (Malignant–benign)

Xie et al. Gray level & texture MIAS ACC = 96.02%, AUC = 0.9659
(2015) [58] features, SVM, ELM (Malignant–benign)

Proposed FRST+t-SNE MIAS ACC = 99.61%, AUC = 0.9997
scheme +LMT (Malignant–normal)

ACC = 99.13%, AUC = 1
(Malignant–benign)
ACC = 99.63%, AUC = 0.9998
(Benign–normal)

DDSM ACC = 99.87%, AUC = 1
(Malignant–normal)
ACC = 99.40%, AUC = 1
(Malignant–benign)
ACC = 99.73%, AUC = 0.9968
(Benign–normal)
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Chapter 6 FRST + t-SNE

6.5 Summary

In this chapter, an efficient mammogram classification scheme has been proposed

to help radiologists for the identification of suspicious mammographic tissues in early

diagnosis of breast cancer. The scheme utilizes the radial symmetric features produced

by the Fast Radial Symmetry Transform (FRST) of mammographic ROIs. The subset

of relevant features is chosen by the use of the t-distributed Stochastic Neighbor

Embedding (t-SNE) method. Various classifier like Naive Bayes (NB), K-Nearest

Neighbor (K-NN), Back-Propagation Neural Network (BPNN), Support Vector

Machine (SVM), AdaBoost and Random Forest (AdaBoost-RF), LogitBoost and

Random Forest (LogitBoost-RF), and Logistic Model Tree (LMT) have been employed

to classify the mammographic ROIs into malignant–normal, malignant–benign, and

benign–normal classes. The proposed LMT classifier achieves the optimal accuracies

(ACCs) of 99.61%, 99.13%, and 99.63% for malignant–normal, malignant–benign, and

benign–normal class sets respectively using MIAS database . The similar parameters

are 99.87%, 99.40%, and 99.73% for DDSM database. In general, it has been observed

that the suggested FRST features with LMT classifier shows superior performance as

compared to others.
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Chapter 7

Conclusions and Future Work

In this thesis we suggest five new features for the characterization of mammograms

in the diagnosis of breast cancer. In addition to the development of feature, efficient

feature reduction schemes along with improved classifiers are implemented to increase

classification accuracy. The suggested contributions are distributed in five chapters

with the corresponding simulation results.

In Chapter 2, a mammogram classification scheme has been proposed to support

the decision of radiologists. The scheme utilizes 2D-DWT and GLCM in succession

to derive feature matrix form mammograms. To select relevant features from the

feature matrix, both t-test and F-test have been applied independently along with

random forest method. Chapter 3 suggests a scheme that utilizes SFTA method to

extract the features from the digital mammograms. An effective feature selection

technique FCBF has been used to select the most significant feature set from the

extracted features. Chapter 4 deals with the proposed mammogram classification

in which, 2D-DOST is utilized to extract features from the mammographic images.

A null-hypothesis technique using the two-sample t-test is used to select the most

discriminant features from high dimensional feature space. In Chapter 5, a proficient

mammogram classification scheme has been suggested that applies 2D-SLT for the

extraction of features from mammographic ROIs. The most discriminatory feature

elements are selected by the use of the Bayesian Logistic Regression (BLogR) method.

The relevant features are balanced by the Gaussian distribution based balancing

method to achieve an improved classification performance. Another mammogram

classification scheme has been proposed in Chapter 6 based on radial symmetric

features produced by Fast Radial Symmetry Transform (FRST) of mammograms. The
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Conclusions and Future Work

useful subset of feature elements is chosen by the use of the t-distributed Stochastic

Neighbor Embedding (t-SNE) method.

To validate the efficacy of the suggested features and feature reduction techniques,

the relevant features so obtained are applied to several classifiers namely, Naive Bayes

(NB), K-Nearest Neighbor (K-NN), Back-Propagation Neural Network (BPNN),

Support Vector Machine (SVM), AdaBoost and Random Forest (AdaBoost-RF),

LogitBoost and Random Forest (LogitBoost-RF), and Logistic Model Tree (LMT).

The training and testing samples are kept similar in all classifiers. Further, other

existing features are also used in all classifiers under the similar scenario. The

suggested features are compared with existing features in each case and an overall

inference is drawn with respect to classifier’s accuracy performance. For each feature,

the corresponding classifier which outperforms others is considered to be winner

and elaborated in detail. Finally, an overall comparison has been made among our

suggested schemes and is shown in Table 7.1.

Table 7.1: Classification Performance comparison between the proposed schemes and

existing approaches.
Approach Technique Database Classification accuracy (ACC) (%)

Proposed DWT MIAS ACC = 98.13%, (Abnormal–normal)
scheme 1 +GLCM ACC = 94.20% (Malignant–benign)
[Chapter 2] +t-test

+BPNN DDSM ACC = 98.80% (Abnormal–normal)
ACC = 97.40% (Malignant–benign)

Proposed SFTA MIAS ACC = 98.76%, (abnormal–normal)
scheme 2 +FCBF ACC = 95.65%, (Malignant–benign)
[Chapter 3] +SVM

DDSM ACC = 99.20%, (Abnormal–normal)
ACC = 98.00% (Malignant–benign)

Proposed DOST MIAS ACC = 98.75%, (Abnormal–normal)
scheme 3 +null-hypothesis ACC = 98.26% (Malignant–benign)
[Chapter 4] +AdaBoost-RF

DDSM ACC = 99.30% (Abnormal–normal)
ACC = 98.80% (Malignant–benign)

Proposed SLT MIAS ACC = 99.69% (Abnormal–normal)
scheme 4 +BLogR ACC = 99.13% (Malignant–benign)
[Chapter 5] +LogitBoost-RF

DDSM ACC = 99.80% (Abnormal–normal)
ACC = 99.40% (Malignant–benign)

Proposed FRST MIAS ACC = 99.61% (Malignant–normal)
scheme 5 +t-SNE ACC = 99.13% (Malignant–benign)
[Chapter 6] +LMT ACC = 99.63% (Benign–normal)

DDSM ACC = 99.87% (Malignant–normal)
ACC = 99.40% (Malignant–benign)
ACC = 99.73% (Benign–normal)
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Conclusions and Future Work

It may be observed that, the performances achieved by all the schemes are very

close to each other. The proposed schemes 4 and 5 perform the same best result

on malignant-benign class set. However, the proposed scheme 5 (FRST + t-SNE +

LMT) achieves optimal results on the different class sets.

The objective of each scheme suggested in this thesis is to classify the types of

suspicious breast tumor as cancerous or non-cancerous. The thesis does not cover

on prediction of different types of cancer if the suspicious tissue is found cancerous.

Depending on the morphology, there are different types of masses namely, round, oval,

lobulated, stellate etc. present in the breast. The common types of microcalcification

such as ring shaped, punctuate, linear, needle shaped, coarsely granular are seen

on the mammographic images. The detection of thesis masses and its type also an

important task in the CAD of mammograms which are limitations of this thesis. In

future work, we have planned to carry out this diagnosis by designing the suitable

image segmentation methods. The next thrust will be given to investigate more

feature extraction, selection, and classification techniques. The existing scheme will

be validated on the real time scenario in the nearby hospital, where mammogram

facilities are available. To initiate the process an understanding has been made in

Ispat General Hospital (IGH), Rourkela. Further, at present the ROIs are extracted

manually which needs to be automated using suitable techniques. We are looking for a

suitable enhancement scheme to improve the mammogram quality so that the features

extracted are more accurate. Our final thrust will be to generate a large database by

collecting mammograms with their classification labels from different health centers

so that validation of schemes will be trustworthy and be accepted by the practitioners.
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