
Connectionist Learning Based

Numerical Solution of Differential Equations

Dissertation submitted to the

National Institute of Technology Rourkela

in partial fulfillment of the requirements

of the degree of

Doctor of Philosophy

in

Mathematics

by

Susmita Mall

(Roll Number: 511MA303)

Under the supervision of

Prof. Snehashish Chakraverty

December, 2015

Department of Mathematics

National Institute of Technology Rourkela

Certificate of Examination

Roll Number: 511MA303

Name: Susmita Mall

Title of Dissertation: Connectionist Learning Based Numerical Solution of

 Differential Equations

We the below signed, after checking the dissertation mentioned above and the official

record book (s) of the student, hereby state our approval of the dissertation submitted

in partial fulfillment of the requirements of the degree of Doctor of Philosophy in

Mathematics at National Institute of Technology Rourkela. We are satisfied with the

volume, quality, correctness, and originality of the work.

 --------------------------- ---------------------------

Snehashish Chakraverty

 Co-Supervisor Principal Supervisor

 --------------------------- ---------------------------

 D.P. Mohapatra K.C. Pati

 Member (DSC) Member (DSC)

--------------------------- ---------------------------

 B.K. Ojha D.K. Sinha

 Member (DSC) Examiner

G.K. Panda

Chairman (DSC)

Mathematics

National Institute of Technology Rourkela

Prof. /Dr. Snehashish Chakraverty

Professor and Head, Department of Mathematics

December 15, 2015

Supervisor's Certificate

This is to certify that the work presented in this dissertation entitled “Connectionist

Learning Based Numerical Solution of Differential Equations‖ by ―Susmita Mall‖,

Roll Number 511MA303, is a record of original research carried out by him/her under

my supervision and guidance in partial fulfillment of the requirements of the degree of

Doctor of Philosophy in Mathematics. Neither this dissertation nor any part of it has

been submitted for any degree or diploma to any institute or university in India or

abroad.

Snehashish Chakraverty

Mathematics

National Institute of Technology Rourkela

Dedicated to
My Beloved

Parents

Declaration of Originality

I, Susmita Mall, Roll Number 511MA303 hereby declare that this dissertation entitled

“Connectionist Learning Based Numerical Solution of Differential Equations‖

represents my original work carried out as a doctoral/postgraduate/undergraduate

studentof NIT Rourkela and, to the best of my knowledge, it contains no material

previously published or written by another person, nor any material presented for the

award of any other degree or diploma of NIT Rourkela or any other institution. Any

contribution made to this research by others, with whom I have worked at NIT

Rourkela or elsewhere, is explicitly acknowledged in the dissertation. Works of other

authors cited in this dissertation have been duly acknowledged under the section

''Bibliography''. I have also submitted my original research records to the scrutiny

committee for evaluation of my dissertation.

I am fully aware that in case of any non-compliance detected in future, the Senate

of NIT Rourkela may withdraw the degree awarded to me on the basis of the present

dissertation.

December 15, 2015

NIT Rourkela Susmita Mall

Acknowledgment

This thesis is a result of the research that has been carried out at National Institute of

Technology Rourkela. During this period, I came across with a great number of people, I

wish to express my sincere appreciation to those who have contributed to this thesis and

supported me.

First and foremost, I am extremely grateful to my enthusiastic supervisor Professor

Snehashish Chakraverty, for his encouragement and unconditional support. His deep

insights helped me at various stages of my research. Above all, he offered me so much

invaluable advice, patiently supervising and always guiding me in the right direction. I

have learnt a lot from him and without his help, I could not have completed my Ph. D.

successfully. I am also thankful to his family especially his wife Mrs. Shewli Chakraborty

and daughters Shreyati and Susprihaa for their love and encouragement.

I would like to thank Prof. S. K. Sarangi, Director, National Institute of Technology

Rourkela for providing facilities in the institute for carrying out this research. I would like

to thank the members of my doctoral scrutiny committee for being helpful and generous

during the entire course of this work and express my gratitude to all the faculty and staff

members of the Department of Mathematics, National Institute of Technology Rourkela

for their support.

I would like to acknowledge the Department of Science and Technology (DST),

Government of India for financial support under the project Women Scientist Scheme-A.

 I will forever be thankful to my supervisor and his research family for their help,

encouragement and support during my stay in the laboratory and making it a memorable

experience in my life.

My sincere gratitude is reserved for my parents (Mr. Sunil Kanti Mall and Mrs. Snehalata

Mall) and my family members for their constant unconditional support and valuable

suggestions. I would also thank my father-in-law Mr. Gobinda Chandra Sahoo and

mother-in-law Mrs. Rama Mani Sahoo for their help and motivation.

Last but not the least, I am greatly indebted to my devoted husband Mr. Srinath Sahoo

and my beloved daughter Saswati. She is the origin of my happiness. My husband has

been a constant source of strength and inspiration. I owe my every achievement to both of

them.

December 15, 2015 Susmita Mall

NIT Rourkela Roll Number: 511MA303

Abstract

It is well known that the differential equations are back bone of different physical

systems. Many real world problems of science and engineering may be modeled by

various ordinary or partial differential equations. These differential equations may be

solved by different approximate methods such as Euler, Runge-Kutta, predictor-corrector,

finite difference, finite element, boundary element and other numerical techniques when

the problems cannot be solved by exact/analytical methods. Although these methods

provide good approximations to the solution, they require a discretization of the domain

via meshing, which may be challenging in two or higher dimension problems. These

procedures provide solutions at the pre-defined points and computational complexity

increases with the number of sampling points.

In recent decades, various machine intelligence methods in particular connectionist

learning or Artificial Neural Network (ANN) models are being used to solve a variety of

real-world problems because of its excellent learning capacity. Recently, a lot of attention

has been given to use ANN for solving differential equations. The approximate solution

of differential equations by ANN is found to be advantageous but it depends upon the

ANN model that one considers. Here our target is to solve ordinary as well as partial

differential equations using ANN. The approximate solution of differential equations by

ANN method has various inherent benefits in comparison with other numerical methods

such as (i) the approximate solution is differentiable in the given domain, (ii)

computational complexity does not increase considerably with the increase in number of

sampling points and dimension of the problem, (iii) it can be applied to solve linear as

well as non linear Ordinary Differential Equations (ODEs) and Partial Differential

Equations (PDEs). Moreover, the traditional numerical methods are usually iterative in

nature, where we fix the step size before the start of the computation. After the solution is

obtained, if we want to know the solution in between steps then again the procedure is to

be repeated from initial stage. ANN may be one of the ways where we may overcome this

repetition of iterations. Also, we may use it as a black box to get numerical results at any

arbitrary point in the domain after training of the model.

Few authors have solved ordinary and partial differential equations by combining

the feed forward neural network and optimization technique. As said above that the

objective of this thesis is to solve various types of ODEs and PDEs using efficient neural

network. Algorithms are developed where no desired values are known and the output of

the model can be generated by training only. The architectures of the existing neural

models are usually problem dependent and the number of nodes etc. are taken by trial

and error method. Also, the training depends upon the weights of the connecting nodes.

In general, these weights are taken as random number which dictates the training.

In this investigation, firstly a new method viz. Regression Based Neural Network

(RBNN) has been developed to handle differential equations. In RBNN model, the number

of nodes in hidden layer may be fixed by using the regression method. For this, the input

and output data are fitted first with various degree polynomials using regression analysis

and the coefficients involved are taken as initial weights to start with the neural training.

Fixing of the hidden nodes depends upon the degree of the polynomial.We have considered

RBNN model for solving different ODEs with initial/boundary conditions. Feed forward

neural model and unsupervised error back propagation algorithm have been used for

minimizing the error function and modification of the parameters (weights and biases)

without use of any optimization technique.

Next, single layer Functional Link Artificial Neural Network (FLANN)

architecture has been developed for solving differential equations for the first time. In

FLANN, the hidden layer is replaced by a functional expansion block for enhancement

of the input patterns using orthogonal polynomials such as Chebyshev, Legendre,

Hermite, etc. The computations become efficient because the procedure does not need to

have hidden layer. Thus, the numbers of network parameters are less than the traditional

ANN model.

Varieties of differential equations are solved here using the above mentioned

methods to show the reliability, powerfulness, and easy computer implementation of the

methods. As such singular nonlinear initial value problems such as Lane-Emden and

Emden-Fowler type equations have been solved using Chebyshev Neural Network

(ChNN) model. Single layer Legendre Neural Network (LeNN) model has also been

developed to handle Lane-Emden equation, Boundary Value Problem (BVP) and system

of coupled ordinary differential equations. Unforced Duffing oscillator and unforced Van

der Pol-Duffing oscillator equations are solved by developing Simple Orthogonal

Polynomial based Neural Network (SOPNN) model. Further, Hermite Neural Network

(HeNN) model is proposed to handle the Van der Pol-Duffing oscillator equation. Finally,

a single layer Chebyshev Neural Network (ChNN) model has also been implemented to

solve partial differential equations.

Keywords: Artificial neural network; Differential equation; Regression based neural

network; Lane-Emden equation; Functional link artificial neural network; Duffing

oscillator; Orthogonal polynomial.

Contents

Certificate of Examination iii

Supervisor's Certificate iv

Dedication v

Declaration of Originality vi

Acknowledgment vii

Abstract viii

 1 Introduction ... 1

1.1 Literature Review .. 4

1.1.1 Artificial Neural Network (ANN) Models .. 4

1.1.2 Regression Based Neural Network (RBNN) Models 4

1.1.3 Single Layer Functional Link Artificial Neural Network (FLANN) Models.... 5

1.1.4 Solution of ODEs and PDEs by Numerical Methods 5

1.1.5 Lane-Emden and Emden-Fowler equations... 5

1.1.6 Duffing and the Van der Pol-Duffing Oscillator Equations 6

1.1.7 ANN Based Solution of ODEs ... 8

1.1.8 ANN Based Solution of PDEs .. 9

1.2 Gaps .. 10

1.3 Aims and Objectives .. 10

1.4 Organization of the Thesis ... 11

2 Preliminaries ... 14

2.1 Definitions ... 14

2.1.1 ANN Architecture .. 14

2.1.2 Paradigms of Learning ... 15

2.1.3 Activation Functions .. 15

2.1.4 ANN Learning Rules .. 16

2.2 Ordinary Differential Equations (ODEs) .. 20

2.2.1 General formulation for Ordinary Differential Equations (ODEs) Based on

ANN ... 20

2.2.2 Formulation for thn Order Initial Value Problems (IVPs) 21

2.2.3 Formulation for Boundary Value Problems (BVPs) 24

2.2.4 Formulation for System of First Order ODEs ... 26

2.2.5 Computation of the Gradient of ODEs for multi layer ANN 27

2.3 Partial Differential Equations (PDEs) .. 29

2.3.1 General Formulation for PDEs Based on multi layer ANN 29

2.3.2 Formulation for Two Dimensional PDE Problems .. 30

2.3.3 Computation of the Gradient of PDEs for multi layer ANN 31

3 Traditional Multi Layer Artificial Neural Network Model for Solving

Ordinary Differential Equations (ODEs) .. 33

3.1 Multi Layer Artificial Neural Network (ANN) Model .. 33

3.1.1 Structure of Multi Layer ANN .. 34

3.1.2 Formulation and Learning Algorithm of Multi Layer ANN 34

3.1.3 Gradient Computation .. 34

3.2 Case Studies ... 35

3.2.1 First order initial value problems ... 35

3.2.2 Singular nonlinear second order initial value problems 39

3.3 Conclusion .. 46

4 Regression Based Neural Network (RBNN) Model for Solving Ordinary

Differential Equations (ODEs) .. 47

4.1 Regression Based Neural Network (RBNN) Model ... 48

4.1.1 Structure of RBNN Model .. 48

4.1.2 RBNN Training Algorithm .. 49

4.1.3 Formulation and Learning Algorithm of RBNN .. 50

4.1.4 Computation of Gradient for RBNN Model ... 51

4.2 Numerical Examples and Discussions .. 51

4.3 Conclusion .. 75

5 Chebyshev Functional Link Neural Network (FLNN) Model for Solving

ODEs ... 76

5.1 Chebyshev Neural Network (ChNN) Model .. 76

5.1.1 Structure of Chebyshev Neural Network... 76

5.1.2 Formulation and Learning Algorithm of Proposed ChNN Model 78

5.1.3 Computation of Gradient for ChNN Model... 79

5.2 Lane- Emden Equations ... 81

5.2.1 Numerical Results and Discussions .. 83

5.2.2 Homogeneous Lane-Emden equations .. 83

5.2.3 Non homogeneous Lane-Emden equation ... 90

5.3 Emden-Fowler Equations... 92

5.3.1 Case Studies ... 92

5.4 Conclusion ... 99

6 Legendre Functional Link Neural Network for Solving ODEs 100

6.1 Legendre Neural Network (LeNN) Model ... 100

6.1.1 Structure of LeNN Model ... 101

6.1.2 Formulation and Learning Algorithm of Proposed LeNN Model 101

6.1.3 Computation of Gradient for LeNN Model ... 103

6.2 Learning Algorithm and Gradient Computation for Multi layer ANN…………104

6.3 Numerical Examples.. 105

6.4 Conclusion .. 115

7 Simple Orthogonal Polynomial Based Functional Link Neural Network

Model for Solving ODEs .. 116

7.1 Simple Orthogonal Polynomial based Neural Network (SOPNN) Model 116

7.1.1 Architecture of Simple Orthogonal Polynomial based Neural Network

(SOPNN) Model ... 117

7.1.2 Formulation and Learning Algorithm of Proposed SOPNN Model 118

7.1.3 Gradient Computation for SOPNN ... 119

7.2 Duffing Oscillator Equations ... 120

7.3 Case Studies .. 121

7.4 Conclusion .. 130

 8 Hermite Functional Link Neural Network Model for Solving ODEs 131

8.1 Hermite Neural Network (HeNN) model ... 131

8.1.1 Structure of Hermite Neural Network (HeNN) Model 132

8.1.2 Formulation and Learning Algorithm of Proposed HeNN Model 133

8.1.3 Gradient Computation for HeNN .. 133

8.2 The Van der Pol-Duffing Oscillator Equation .. 134

8.3 Numerical Examples and Discussion .. 135

8.4 Conclusion .. 145

9 Chebyshev Functional Link Neural Network Model for Solving Partial

Differential Equations (PDEs) ... 146

9.1 Chebyshev Neural Network (ChNN) Model for PDEs 146

9.1.1 Architecture of Chebyshev Neural Network ... 146

9.1.2 Learning Algorithm of Proposed Chebyshev Neural Network (ChNN) for

PDEs .. 147

9.1.3 ChNN Formulation for PDEs ... 148

9.1.4 Computation of gradient for ChNN .. 149

9.2 Algorithm of ChNN Model .. 150

9.3 Numerical Examples.. 151

9.4 Conclusion .. 159

 10 Conclusion .. 160

Bibliography ... 163

Dissemination ... 174

1

Chapter 1

Introduction

Differential equations play a vital role in various fields of science and technology. Many

real world problems of engineering, mathematics, physics, chemistry, economics,

psychology, defense etc. may be modeled by ordinary or partial differential equations [1--

10]. In most of the cases, an analytical/exact solution of differential equations may not be

obtained easily. So various type of numerical techniques such as Euler, Runge-Kutta,

predictor-corrector, finite difference, finite element and finite volume etc. [11--19] have

been employed to solve these equations. Although these methods provide good

approximations to the solution, they require the discretization of the domain into the

number of finite points/elements. These methods provide solution values at the pre-

defined points and computational complexity increases with the number of sampling

points [20].

In recent decades, various machine intelligence procedures in particular

connectionist learning or Artificial Neural Network (ANN) methods have been

established as a powerful technique to solve a variety of real-world problems because of

its excellent learning capacity [21--24]. ANN is a computational model or an information

processing paradigm inspired by biological nervous system. Artificial neural network is

one of the popular areas of artificial intelligence research and also an abstract

computational model based on organizational structure of human brain [25]. It is a data

modeling tool which depends on upon various parameters and learning methods [26--31].

It processes information through neuron/node in parallel manner to solve specific

problems. ANN acquires knowledge through learning and this knowledge is stored with

inter neuron connections strength which is expressed by numerical values called weights.

These weights are used to compute output signal values for new testing input signal value.

This method is successfully applied in various fields [32--42] such as function

approximation, clustering, prediction, identification, pattern recognition, solving ordinary

and partial differential equations etc.

Chapter 1 Introduction

2

Recently, a lot of attention has been devoted to the study of ANN for solving

differential equations. The approximate solution of differential equations by ANN is

found to be advantageous but it depends upon the ANN model that one considers. Here,

our target is to solve Ordinary Differential Equations (ODEs) as well as Partial

Differential Equations (PDEs) using ANN. The approximate solution of ODEs and PDEs

by ANN has many benifits compared to traditional numerical methods such as [43, 44]

(a) differentiable in the given domain, (b) computational complexity does not increase

considerably with the increase in number of sampling points and the dimension, (c) it can

be applied to solve linear as well as non linear ODEs and PDEs. Moreover, the

traditional numerical methods are usually iterative in nature, where we fix the step size

before the start of the computation. After the solution is obtained, if we want to know the

solution in between steps then again the procedure is to be repeated from the initial stage.

ANN may be one of the ways where we may overcome this repetition of iterations. Also,

we may use it as a black box to get numerical results at any arbitrary point in the domain

after the training of the model.

As said above, the objective of this thesis is to solve various types of ODEs and

PDEs using a neural network. Algorithms are developed where no desired values are

known and the output of the model can be generated by training only. As per the existing

training algorithm, the architecture of neural model is problem dependent and the

number of nodes etc. is taken by trial and error method where the training depends upon

the weights of the connecting nodes. In general, these weights are taken as random

numbers which dictate the training.

In this thesis, firstly a new method viz. Regression Based Neural Network (RBNN)

[45, 46] has been developed to handle differential equations. In RBNN model, the number

of nodes in hidden layer has been fixed according to the degree of polynomial in the

regression. The input and output data are fitted first with various degree polynomials using

regression analysis and the coefficients involved are taken as initial weights to start with the

neural training. Fixing of the hidden nodes depends on upon the degree of the polynomial.

We have considered RBNN model for solving different ODEs with initial/boundary

conditions. Here, unsupervised error back propagation algorithm has been used for

minimizing the error function and modification of the parameters is done without use of

any optimization technique.

Next, single layer Functional Link Artificial Neural Network (FLANN) architecture

has been developed for solving differential equations for the first time. In FLANN, the

hidden layer is replaced by a functional expansion block for enhancement of the input

patterns using orthogonal polynomials such as Chebyshev, Legendre, Hermite, etc. It may

however be noted here that FLANN has been used for problems of function

approximation, system identification, digital communication etc. by other researchers [51-

Chapter 1 Introduction

3

-62]. In FLANN, the computations become efficient because the procedure does not need

to have hidden layer. Thus, the number of network parameters are less than the traditional

ANN model. Some of the advantages of the new single layer FLANN based model for

solving differential equations may be mentioned as below:

 It is a single layer neural network, so number of network parameters are

 less than traditional multi layer ANN;

 Fast learning and computationally efficient;

 Simple implementation;

 The hidden layers are not required;

 The back propagation algorithm is unsupervised;

 No optimization technique is to be used.

Varieties of differential equations are solved here using the above mentioned methods to

show the reliability, powerfulness, and easy computer implementation of the methods.

 As such, singular nonlinear initial value problems such as Lane-Emden and Emden-

Fowler type equations have been solved using Chebyshev Neural Network (ChNN)

model. Single layer Legendre Neural Network (LeNN) model has been developed to

solve Lane-Emden equation, Boundary Value Problem (BVP) of ODEs and system of

coupled first order ordinary differential equations. Unforced Duffing oscillator problems

and Van der Pol-Duffing oscillator equation have been solved by developing Simple

Orthogonal Polynomial based Neural Network (SOPNN) and Hermite Neural Network

(HeNN) models respectively. Finally, a single layer Chebyshev Neural Network (ChNN)

model has also been proposed to solve elliptic partial differential equations.

In view of the above, we now discuss few related works in the subsequent

paragraphs. Acccordingly, we will start with ANN. In general, ANN has been used by

many researchers for the variety of problems. So, it is a gigantic task to include all

papers related to ANN. As such we include only the basic, important and related works

of ANN. Next, various types of ANN models are reviewed. Further, we include the

important works done by various authors to solve the targeted special type of differential

equations by other numerical methods. Finally, very few works that have been done by

others related to ODEs and PDEs using ANN are included. As such the literature review

has been categorized as below:

 ANN models;

 RBNN models;

 FLANN models;

 Solution of ODEs and PDEs by Numerical Methods;

Chapter 1 Introduction

4

 Lane-Emden and Emden-Fowler equations;

 Duffing and the Van der Pol-Duffing Oscillator Equations;

 ANN Based Solution of ODEs;

 ANN Based Solution of PDEs.

1.1 Literature Review

1.1.1 Artificial Neural Network (ANN) Models

In recent years, Artificial Neural Network (ANN) has been established as a powerful

technique to solve the variety of real-world applications because of its excellent learning

capacity. An enormous amount of literature has been written on ANN. As mentioned

above, few important and fundamental papers are reviewed and cited here.

The first ANN model has been developed by McCulloch and Pitts in 1943 [25]. [21-

-24] introduced the computation of multi layered feed forward neural network. Error back

propagation algorithm for feed forward neural network has been proposed by [27, 29 and

32]. Hinton [31] developed fast learning algorithm for multi layer ANN model. [30--34]

presented artificial neural network with various types of learning algorithm in an excellent

way. Neural networks and their applications have been studied by Rojas [33]. [35--37]

implemented various types of ANN models, principles and learning algorithms of ANN.

[39] used neural networks for the identification the structural parameters of multi storey

shear building. Also, ANN technique has been applied for wide variety of real world

applications [38--42].

1.1.2 Regression Based Neural Network (RBNN) Models

It is already pointed out earlier that RBNN model may be used to fix number of nodes in

the hidden layer using regression analysis.

As such Chakraverty and his co-authors [45, 46] have developed and investigated

various application problems using RBNN. Prediction of response of structural systems

subject to earthquake motions has been investigated by Chakraverty et al. [45] using

RBNN model. Chakraverty et al. [46] studied vibration frequencies of annular plates

using RBNN. Recently, Mall and Chakraverty [47--50] proposed regression based neural

network model for solving initial/boundary value problems of ODEs.

Chapter 1 Introduction

5

1.1.3 Single Layer Functional Link Artificial Neural Network (FLANN)

 Models

The single layer Functional Link Artificial Neural Network (FLANN) model has been

introduced by Pao and Philips [51]. In FLANN, the hidden layer is replaced by a

functional expansion block for enhancement of the input patterns using orthogonal

polynomials such as Chebyshev, Legendre, Hermite etc. The single layer FLANN model

has some advantages such as simple structure and lower computational complexity due to

less number of parameters than the traditional neural network model. The Chebyshev

Neural Network (ChNN) has been applied to various problems viz. system identification

[52--54], digital communication [55], channel equalization [56], function approximation

[57], etc. Very recently, Mall and Chakraverty [63, 64] havedeveloped ChNN model for

solving second order singular initial value problems viz. Lane-Emden and Emden-Fowler

type equations.

Similarly, single layer Legendre Neural Network (LeNN) has been introduced by

Yang and Tseng [58] for function approximation. Also LeNN model has been used for

channel equalization problems [59, 60], system identification [61] and for prediction of

machinery noise [62].

1.1.4 Solution of ODEs and PDEs by Numerical Methods

Various problems in engineering and science may be modeled by ordinary or partial

differential equations [3--10]. In particular, Norberg [1] used Ordinary differential

equations as conditional moments of present values of payments in respect of a life

insurance policy. Budd and Iserles [2] developed geometric interpretations and numerical

solution of differential equations. The exact solution of differential equations may not be

always possible. So various types of well known numerical methods such as Runge-Kutta,

predictor-corrector, finite difference, finite element and finite volume etc. have been

developed by various researchers [11--19] to solve these equations.

It is again a gigantic task to include varieties of methods and differential equations

here. As such we include few differential equations models which are solved by the

proposed ANN method.

1.1.5 Lane-Emden and Emden-Fowler equations

Many problems in astrophysics and Quantum mechanics may be modeled by second order

ordinary differential equations. The thermal behavior of a spherical cloud of gas acting

Chapter 1 Introduction

6

under the mutual attraction of its molecules and subject to the classical laws of

thermodynamics had been proposed by Lane [65] and described by Emden [66]. The

governing differential equation then was known as Lane-Emden type equations. Further,

Fowler [67, 68] studied Lane-Emden type equations in greater detail. The Lane-Emden

type equations are singular at x=0. The solution of Lane-Emden equation and other

nonlinear IVPs in astrophysics are challenging because of the singular point at the origin

[69--73]. Different analytical approaches based on either series solutions or perturbation

techniques have been used by few authors [74--92] to handle the Lane-Emden equations.

Shawagfeh [74] presented an Adomian Decomposition Method (ADM) for solving

Lane-Emden equations. ADM and modified decomposition method have been used by

Wazwaz [75--77] for solving Lane-Emden and Emden-Fowler type equations

respectively. Chowdhury and Hashim [78, 79] employed homotopy-perturbation method

to solve singular initial value problems of time independent equations and Emden- Fowler

type equations. Ramos [80] solved singular initial value problems of ordinary differential

equations using Linearization techniques. Liao [81] presented an algorithm based on

ADM for solving Lane-Emden type equations. Approximate solution of a differential

equation arising in astrophysics using the variational iteration method has been done by

Dehghan and Shakeri [82]. The Emden-Fowler equation has also been solved by

Govinder and Leach [83] utilizing the techniques of Lie and Painleve analysis. An

efficient analytic algorithm based on modified homotopy analysis method has been

implemented by Singh et al. [84]. Muatjetjeja and Khalique [85] provided exact solution

of the generalized Lane-Emden equations of the first and second kind. Mellin et al. [86]

solved numerically, general Emden-Fowler equations with two symmetries. In [87],

Vanani and Aminataei have implemented the Pade series solution of Lane-Emden

equations. Demir and Sungu [88] gave numerical solutions of nonlinear singular initial

value problems of Emden-Fowler type using Differential Transformation Method

(DTM).Kusanoa and Manojlovic [89] presented asymptotic behavior of positive solutions

of the second-order non linear ordinary differential equations of Emden–Fowler type.

Bhrawy and Alofi [90] used a shifted Jacobi–Gauss collocation spectral method for

solving the nonlinear Lane–Emden type equations. Homotopy analysis method for

singular initial value problems of Emden–Fowler type has been studied by Bataineh et al.

[91]. In another approach, Muatjetjeja and Khalique [92] presented conservation laws for

a generalized coupled bi-dimensional Lane–Emden system.

1.1.6 Duffing and the Van der Pol-Duffing Oscillator Equations

The nonlinear Duffing oscillator equations have various engineering applications viz.

nonlinear vibration of beams and plates [93], magneto-elastic mechanical systems [94],

Chapter 1 Introduction

7

model a one-dimensional cross-flow vortex-induced vibration [95] etc. Also, the Van der

Pol-Duffing oscillator equation is a classical nonlinear oscillator which is very useful

mathematical model for understanding different engineering problems and is now

considered as very important model to describe variety of physical systems. Solution of

the above problems has been a recent research topic because most of them do not have

analytical solutions. So various numerical techniques and perturbation methods have been

used to handle Duffing oscillator and the Van der Pol-Duffing oscillator equations. In this

regard, Kimiaeifar et al. [96] used homotopy analysis method for solving single-well,

double-well and double-hump Van der pol-Duffing oscillator equations. Nourazar and

Mirzabeigy [97] employed modified differential transform method to solve Duffing

oscillator with damping effect. Approximate solution of force-free Duffing Van der pol

oscillator equations using homotopy perturbation method has been done by Khan et al.

[98]. Panayotounakos et al. [99] provided analytic solution for damped Duffing oscillators

using Abel’s equation of second kind. Duffing–van der Pol equation has been solved by

Chen and Liu [100] using Liao’s homotopy analysis method. Akbarzade and Ganji [101]

have implemented homotopy perturbation and variational method for solution of

nonlinear cubic-quintic Duffing oscillators. Mukherjee et al. [102] evaluated solution of

Duffing Van der pol equation by differential transform method. Njah and Vincent [103]

presented chaos synchronization between single and double wells Duffing–van der Pol

oscillators using active control technique. Ganji et al. [104] used He’s energy balance

method to solve strongly nonlinear Duffing oscillators with cubic–quintic. Linearization

method has been employed by Motsa and Sibanda [105] for solving Duffing and Van der

Pol equations. Akbari et al. [106] solved Van der pol, Rayleigh and Duffing equations

using algebraic method. Approximate solution of the classical Van der Pol equation using

He’s parameter expansion method has been developed by Molaei and Kheybari [107].

Zhang and Zeng [108] have used a segmenting recursion method to solve Van der Pol-

Duffing oscillator. Stability analysis of a pair of van der Pol oscillators with delayed self-

connection, position and velocity couplings have been investigated by Hu and Chung

[109]. Qaisi [110] used the power series method for determining the periodic solutions of

the forced undamped Duffing oscillator equation. Marinca and Herisanu [111] gave

variational iteration method to find approximate periodic solutions of Duffing equation

with strong non- linearity.

The Van der Pol Duffing oscillator equation has been used in various real life

problems. Few of them may be mentioned as [112--116]. Hu and Wen [112] applied the

Duffing oscillator for extracting the features of early mechanical failure signal. Also in

[113], Zhihong and Shaopu used Van der Pol Duffing oscillator equation for weak signal

detection. Amplitude and phase of weak signal have been determined by Wang et al.

[114] using Duffing oscillator equation. Tamaseviciute et al. [115] investigated an

Chapter 1 Introduction

8

extremely simple analogue electrical circuit simulating the two-well Duffing-Holmes

oscillator equation. The weak periodic signals and machinery faults have been explained

by Li and Qu [116].

Review of above literatures reveals that most of the numerical methods require the

discretization of domain into the number of finite elements/points. Recently, few authors

have solved the ordinary and partial differential equations using ANN. Accordingly,

literature related to the solution of ODEs and PDEs using ANN are included below to

have the knowledge about the present investigation. As such, various papers related to the

above subject are cited in the subsequent sections.

1.1.7 ANN Based Solution of ODEs

Lee and kang [117] introduced a Hopfield neural network model to solve first order

ordinary differential equation. Solution of linear and nonlinear ordinary differential

equations using linear
1B splines as basis function in feed forward neural network model

has been approached by Meade and Fernandez [118, 119]. Lagaris et al. [43] proposed

neural networks and Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization technique

to solve both ordinary and partial differential equations. Liu and Jammes [120] used a

numerical method based on both neural network and optimization techniques to solve

higher order ordinary differential equations. The nonlinear ordinary differential equations

have been solved by Aarts and Van der Veer [121] using Neural Network Method. Malek

and Beidokhti [122] solved lower as well as higher order ordinary differential equations

using artificial neural networks with optimization technique. Tsoulos et al. [123] utilized

feed-forward neural networks, grammatical evolution and a local optimization procedure

to solve ordinary, partial and system of ordinary differential equations. Choi and Lee

[124] have compred the results of differential equations using radial basis and back

propagation ANN algorithms. Selvaraju and Samant [125] proposed new algorithms

based on neural network for solving matrix Riccati differential equations. In another

work, Yazdi et al. [126] implemented unsupervised version of kernel least mean square

algorithm and ANN for solving first and second order ordinary differential equations

value problems. Kumar and Yadav [127] surveyed multilayer perceptrons and radial basis

function neural network methods for the solution of differential equations. Ibraheem and

Khalaf [128] solved boundary value problems using neural network method. Tawfiq and

Hussein [129] have designed a feed forward neural network for solving second-order

ordinary singular boundary value problems. Numerical solution of Blasius equation using

neural networks algorithm has been implimented by Ahmad and Bilal [130].

http://en.wikipedia.org/wiki/Charles_George_Broyden
http://en.wikipedia.org/wiki/Roger_Fletcher_(mathematician)
http://www.columbia.edu/~goldfarb/
http://rutcor.rutgers.edu/~shanno/

Chapter 1 Introduction

9

1.1.8 ANN Based Solution of PDEs

Mcfall and Mahan [131] used an artificial neural network method for solution of mixed

boundary value problems with irregular domain. Also, Lagaris et al. [132] have solved

boundary value problems with irregular boundaries using multilayer perceptron in

network architecture. He et al. [133] investigated a class of partial differential equations

using multilayer neural network. Aarts and Van der veer [134] analyzed partial differential

equation and initial value problems using feed forward ANN with evolutionary algorithm.

Franke and Schaback [135] gave the solution of partial differential equations by

collocation using radial basis function. A multi-quadric radial basis function neural

network has been used by Mai-Duy and Tran-Cong [136] to solve linear ordinary and

elliptic partial differential equations. A nonlinear Schrodinger equation with optical axis

position z and time t as inputs has been solved by Monterola and Saloma [137] used an

unsupervised neural network. Jianye et al. [138] solved an elliptical partial differential

equation using radial basis neural network. In another work, a steady-state heat transfer

problem has been solved by Parisi et al. [44] using unsupervised artificial neural network.

Smaouia and Al-Enezi [139] applied multilayer neural network model for solving

nonlinear PDEs. Also Manevitz et al. [140] gave the solution of time-dependent partial

differential equations using multilayer neural network model with finite-element method.

Hayati and Karami [141] developed feed forward neural network to solve the Burger’s

equation viz. one dimensional quasilinear PDE. Numerical solution of Poisson’s equation

has been implemented by Aminataei and Mazarei [142] using direct and indirect radial

basis function networks (DRBFNs and IRBFNs). Multilayer perceptron with radial basis

function (RBF) neural network method has been presented by Shirvany et al. [143] for

solving nonlinear Schrodinger equation. Beidokhti and Malek [144] proposed neural

networks and optimization techniques for solving systems of partial differential equations.

Tsoulos et al. [145] used artificial neural network and grammatical evolution for solving

ordinary and partial differential equations. Numerical solution of mixed boundary value

problems has been studied by Hoda and Nagla [146] using multi layer perceptron neural

network. Raja and Ahmad [147] implemented neural network for the solution of boundary

value problems of one dimensional Bratu type equations. Sajavicius [148] solved

multidimensional linear elliptic equation with nonlocal boundary conditions using radial

basis function method.

Chapter 1 Introduction

10

1.2 Gaps

In view of the above literature review, one may find many gaps in the titled problems. It

is already mentioned earlier that there exist various numerical methods to solve

differential equations, when those cannot be solved analytically. Although these methods

provide good approximations to the solution, they require the discretization of the domain

into the number of finite points/elements. These methods provide solution values at the

pre-defined points and computational complexity increases with the number of sampling

points. Moreover, the traditional numerical methods are usually iterative in nature, where

we fix the step size before the start of the computation. After the solution is obtained, if

we want to know the solution in between steps then again the procedure is to be repeated

from the initial stage. ANN may be one of the ways where we may overcome this

repetition of iterations.

It may be noted that few authors have used ANN for solving ODEs and PDEs. But

most of the researchers have used optimization technique along with feed forward neural

network in their methods. Moreover, in ANN itself we do not have any straight forward

method to estimate how many nodes are required in the hidden layer for acceptable

accuracy. Similarly, it is also a challenge to decide about the number of hidden layers.

Review of the literature reveals that the previous authors have taken the parameters

(weights and biases) as random (arbitrary) for their investigation and these parameters are

adjusted by minimizing the appropriate error function. The ANN architecture viz. the

number of nodes in the hidden layer had been taken by trial and error. It depends on upon

the simulation study and so it is problem dependent.

As such, ANN training becomes time consuming to converge if the weights, number

of nodes, etc. are not intelligently chosen. Sometimes they may not generalize the

problem and also do not give good result. Having the above in mind, our aim here is to

develop efficient artificial neural network learning methods to handle the said problems.

Another challenge is how to fix or reduce the number of hidden layers in ANN model. As

such, single layer Functional Link Artificial Neural Network (FLANN) models should be

developed to solve differential equations.

1.3 Aims and Objectives

In reference to the above gaps, the aim of the present investigation is to develop efficient

ANN models to solve differential equations. As such, this research is focused to develop

Regression Based Neural Network (RBNN) model and various types of single layer

FLANN models to handle differential equations. The efficiency and powerfulness of the

Chapter 1 Introduction

11

proposed methods are also to be studied by investigating different type of ODEs and

PDEs viz. initial value problems, boundary value problems, system of ODEs, singular

nonlinear ODEs viz. Lane-Emden and Emden-Fowler type equations, Duffing oscillator

and Van der- Pol-Duffing oscillator equations etc. In this respect, the main objectives of

the present research have been as follows:

 Use of traditional artificial neural network method to obtain solution of various

type of differential equations;

 New ANN algorithms by the use of various numerical techniques, their learning

methods and training methodologies;

 New and efficient algorithm to fix number of nodes in the hidden layer;

 Solution of various types of linear and nonlinear ODEs using the developed

algorithms. Comparison of the results obtained by the new method(s) with that of

the traditional methods. Investigation about their accuracy, training time, training

architecture etc.;

 Single Layer Functional Link Artificial Neural Networks (FLANN) such as

Chebyshev Neural Network (ChNN), Legendre Neural Network (LeNN), Simple

Orthogonal Polynomial based Neural Network (SOPNN) and Hermite Neural

Network (HeNN) to solve linear and nonlinear ODEs.

 Efficient ANN algorithm for solution of partial differential equations.

1.4 Organization of the Thesis

Present work is based on the development of new ANN models for solving various types

of ODEs and PDEs. This thesis consists of ten chapters which deal with investigation of

Regression Based Neural Network (RBNN), Chebyshev Neural Network (ChNN),

Legendre Neural Network (LeNN), Simple Orthogonal Polynomial based Neural Network

(SOPNN) and Hermite Neural Network (HeNN) models to solve ODEs and PDEs.

Accordingly, the developed methods have also been applied to mathematical

examples such as initial value problems, boundary value problems in ODEs, system of

first order ODEs, nonlinear second order ODEs viz. Duffing oscillator and the Van der-

Pol Duffing oscillator equations, singular nonlinear second order ODEs arising in

astrophysics viz. Lane-Emden and Emden-Fowler type equations and elliptic PDEs. Real

Chapter 1 Introduction

12

life application problems viz. (i) a Duffing oscillator equation used for extracting the

features of early mechanical failure signal as well as fault detection and (ii) the Van der

Pol Duffing oscilator equation applied for weak signal detection are also investigated.

We now describe below the brief outlines of each chapter.

Overview of this thesis has been presented in Chapter 1. Related literatures of various

ANN models, ODEs and PDEs are reviewed here. This chapter also contains gaps as well

as aims and objectives of the present study.

In chapter 2, we recall the methods which are relevant to the present investigation

such as definitions of Artificial Neural Network (ANN) architecture, learning methods,

activation functions, leaning rules etc. General formulation of Ordinary Differential

Equations (ODEs) using multi layer ANN, formulation of n
th

 order initial value as well as

boundary value problems, system of ODEs and computation of gradient are addressed

next. Also, general formulation for Partial Differential Equations (PDEs) using ANN,

formulation for two dimensional PDEs and their gradient computations are described.

Chapter 3 presents traditional multi layer ANN model to solve first order ODEs and

Lane- Emden type equations. In the training algorithm, the number of nodes in the hidden

layer is taken by trial and error method. The initial weights are taken as random number

as per the desired number of nodes. We have considered simple feed forward neural

network and unsupervised error back propagation algorithm. The ANN trial solution of

differential equations is written as sum of two terms, first part satisfies initial/boundary

conditions and contains no adjustable parameters. The second term contains the output of

feed forward neural network model.

In Chapter 4, Regression Based Neural Network (RBNN) model is developed to

handle ODEs. In RBNN model, the number of nodes in hidden layer has been fixed

according to the degree of polynomial in the regression and the coefficients involved are

taken as initial weights to start with the neural training. Fixing of the hidden nodes depends

upon the degree of the polynomial. Here, unsupervised error back propagation method has

been used for minimizing the error function. Modifications of the parameters are done

without use of any optimization technique. Initial weights are taken as combination of

random as well as by proposed regression based method. In this chapter, a variety of

initial and boundary value problems have been solved and the results with arbitrary and

regression based initial weights are compared.

Single layer Chebyshev polynomial based Functional Link Artificial Neural

Network named as Chebyshev Neural Network (ChNN) model has been investigated in

Chapter 5. We have developed single layer functional link artificial neural network

(FLANN) architecture for solving differential equations for the first time. Accordingly,

Chapter 1 Introduction

13

the developed ChNN model has been used to solve singular initial value problems arising

in astrophysics and Quantum mechanics such as Lane-Emden and Emden-Fowler type

equations. ChNN model has been used to overcome the difficulty of the singularity at

x=0. In single layer ChNN model, the hidden layer is eliminated by expanding the input

pattern by Chebyshev polynomials. A feed forward neural network model with

unsupervised error back propagation algorithm is used for modifying the network

parameters and to minimize the error function.

In Chapter 6, Single layer Legendre Neural Network (LeNN) model has been

developed to solve the nonlinear singular Initial Value Problems (IVP) viz. Lane-Emden

type equations, Boundary Value Problem (BVP) and system of coupled first order

ordinary differential equations. Here, the dimension of input data is expanded using set of

Legendre orthogonal polynomials. Computational complexity of LeNN model is found to

be less than that of the traditional multilayer ANN.

Simple Orthogonal Polynomial based Neural Network (SOPNN) for solving

unforced Duffing oscillator problems with damping and unforced Van der Pol-Duffing

oscillator equations have been considered in Chapter 7. It is worth mentioning that the

nonlinear Duffing oscillator equations have various engineering applications. SOPNN

model has been used to handle these equations.

 Chapter 8 proposes Hermite polynomial based Functional Link Artificial Neural

Network (FLANN) model which is named as Hermite Neural Network (HeNN). Here,

HeNN has been used to solve the Van der Pol-Duffing oscillator equation. Three Van der

Pol-Duffing oscillator problems and two application problems viz. extracting the features

of early mechanical failure signal and weak signal detection are also solved using HeNN

method.

Chebyshev Neural Network (ChNN) model based solution of Partial Differential

Equations (PDEs) has been described in Chapter 9. In this chapter, ChNN has been used

for the first time to obtain the numerical solution of PDEs viz. that of elliptic type.

Validation of the present ChNN model is done by three test problems of elliptic partial

differential equations. The results obtained by this method are compared with analytical

results and are found to be in good agreement. The same idea may also be used for

solving other type of PDEs.

Chapter 10 incorporates concluding remarks of the present work. Finally, future

works are also included here.

14

Chapter 2

Preliminaries

This chapter addresses basics of Artificial Neural Network (ANN) architecture,

paradigms of learning, activation functions, leaning rules etc. General formulation of

Ordinary Differential Equations (ODEs) using multi layer ANN, formulation of n
th

 order

initial value as well as boundary value problems and system of ODEs [43, 122] have been

discussed here. Also, the general formulation for Partial Differential Equations (PDEs)

using ANN, the formulation for two dimensional PDEs and their gradient computations

are described [43].

2.1 Definitions

In this section, some important definitions [22, 24, 32, 34] related to ANN are included.

It is a technique that seeks to build an intelligent program using models that simulate the

working of the neurons in the human brain. The key element of the network is structure of

the information processing system. ANN process information in a similar way the human

brain does. The network is composed of a large number of highly interconnected

processing elements (neurons) working in parallel to solve a specific problem.

2.1.1 ANN Architecture

Neural computing is a mathematical model inspired by the biological model. This

computing system is made up of a number of artificial neurons and huge number of inter

connections among them. According to the structure of connections, different classes of

neural network architecture can be identified as below.

Chapter 2 Priliminaries

15

 Feed Forward Neural Network

In feed forward neural network, the neurons are organized in the form of layers. The

neurons in a layer receive input from the previous layer and feed their output to the next

layer. Network connections to the same or previous layers are not allowed. Here, the data

goes from input to output nodes in strictly feed forward way. There is no feedback (back

loops) that is the output of any layer does not affect the same layer.

 Feedback Neural Network

These networks can have signals traveling in both directions by introduction of loops in

the network. These are very powerful and at times get extremely complicated. They are

dynamic and their state changes continuously until they reach an equilibrium point.

2.1.2 Paradigms of Learning

Ability to learn and generalize from a set of training data is one of the most powerful

features of ANN. The learning situations in neural networks may be classified into two

types. These are supervised and unsupervised learning.

 Supervised Learning or Associative Learning

In supervised or associative learning, the network is trained by providing input and output

patterns. These input-output pairs can be provided by an external teacher or by the system

which contains the network. A comparison is made between the network’s computed

output and the corrected expected output, to determine the error. The error can then be

used to change network parameters, which results in the improvement of performance.

 Unsupervised or Self organization Learning

Here the target output is not presented to the network. There is no teacher to present the

desired patterns and therefore the system learns on its own by discovering and adapting to

structural features in the input patterns.

2.1.3 Activation Functions

An activation function is a function which acts upon the net (input) to get the output of

the network.

Chapter 2 Priliminaries

16

The activation function acts as a squashing function, such that the output of the neural

network lies between certain values (usually 0 and 1, or -1 and 1).

In this investigation, we have used unipolar sigmoid and tangent hyperbolic activation

functions only, which are continuously differentiable. The output of uniploar sigmoid

function lies in [0, 1]. The output of bipolar and tangent hyperbolic activation function lies

between -1 to 1.

For example,
)1(

1
)(

xe
x





 is the unipolar sigmoid activation function and by taking

1 we derive the derivatives of the above sigmoid function below. This will be used in

the subsequent chapters.



,7126

,32

,

234

23

2













 (2.1)

The tangent hyperbolic activation function is defined as

xx

xx

ee

ee
xT








)(

The derivatives of the above tangent hyperbolic activation function may be formed as



TTTT

TTT

TT

123624

22

1

35

3

2







 (2.2)

2.1.4 ANN Learning Rules

Learning is the most important characteristic of the ANN model. Every neural network

possesses knowledge which is contained in the values of the connection weights.

Chapter 2 Priliminaries

17

Modifying the knowledge stored in the network as a function of experience implies a

learning rule for changing the values of the weights.

There are various types of learning rules for ANN [32, 34] such as

 Hebbian learning rule

 Perceptron learning rule

 Error back propagation or Delta learning rule

 Widrow- Hoff learning rule

 Winner- Take learning rule etc.

We have used error back propagation learning algorithm to train the neural network in

this thesis.

 Error Back Propagation Learning Algorithm or Delta Learning Rule

Error propagation learning algorithm has been introduced by Rumelhart et al. [27]. It is

also known as Delta learning rule [32] and is one of the most commonly used learning

rule. It is valid for continuous activation function and is used in supervised/unsupervised

training method.

The simple perceptron can handle linearly separable or linearly independent

problems. Taking the partial derivative of error of the network with respect to each of its

weights, we can know the flow of error direction in the network. If we take the negative

derivative and then proceed to add it to the weights, the error will decrease until it

approaches local minima. Then we have to add a negative value to the weight or the

reverse if the derivative is negative. Because of these partial derivatives and then applying

them to each of the weights, starting from the output layer to hidden layer weights, then

the hidden layer to input layer weights, this algorithm is called the back propagation

algorithm.

The training of the network involves feeding samples as input vectors, calculation of

the error of the output layer, and then adjusting the weights of the network to minimize

the error. The average of all the squared errors E for the outputs is computed to make the

derivative simpler. After the error is computed, the weights can be updated one by one. In

the batched mode the descent depends on the gradient ∇E for the training of the network.

Chapter 2 Priliminaries

18

 11w
 11v

 21w
 12v

 31w
 13v

 Input layer Output layer

 Hidden layer

Figure 2.1: Architecture of multi layer feed forward neural network

Let us consider a multi layer neural architecture containing one input node x, three nodes

in the hidden layer jy , 3,2,1j and one output node o. Now by applying feed forward

recall with error back propagation learning for above model (Figure 2.1) we have the

following algorithm [32]

Step1: Initialize the weights W from input to hidden layer and V form hidden to output

 layer. Choose the learning parameter  (lies between 0, 1) and error Emax.

 Next, initially error is taken as E=0.

Step 2: Training steps start here

 Outputs of the hidden layer and output layer are computed as below

),(xwfy jj

3,2,1j

),(yvfo kk 

1k

 where jw

is j

th
row of W for j=1,2,3

 kv

is k

th
 row of V for k=1 and f is the activation function.

Step 3: Error value is computed as

EodE kk  2)(

2

1

 Here, dk is the desired output, ok is output of ANN.

x 2y

3y

O

1y

Chapter 2 Priliminaries

19

Step 4: The error signal terms of the output and hidden layer are computed as

)]()[(yvfod kkkok

 (Error signal of output layer)

 kjokjjyj vxwfy )]()1[( (Error signal of hidden layer)

 where),(yvfo kk  3,2,1j and 1k .

Step 5: Compute components of error gradient vectors as

iyj

ji

x
w

E






for j=1,2,3 and i=1. (For the particular ANN model Figure 2.1)

jok

kj

y
v

E






for j=1,2,3 and k=1. (For Figure 2.1)

Step 6: Weights are modified using gradient descent method from input to hidden and

 from hidden to output layer as




















n

ji

n

ji

n

ji

n

ji

n

ji
w

E
wwww 1




















n

kj

n

kj

n

kj

n

kj

n

kj
v

E
vvvv 1

 where  is learning parameter, n is iteration step and E is the error function.

Step 7: If maxEE  terminate the training session otherwise go to step 2 with 0E and

 initiate the new training.

The generalized delta learning rule propagates the error back by one layer, allowing the

same process to be repeated for every layer.

Next, we describe general formulation of Ordinary Differential Equations (ODEs) using

multilayer Neural Network. In particular the formulations of n
th

 order initial value

problems, second and fourth order boundary value problems, system of first order ODEs

and computation of the gradient of the network parameters are incorporated.

Chapter 2 Priliminaries

20

2.2 Ordinary Differential Equations (ODEs)

2.2.1 General Formulation for Ordinary Differential Equations (ODEs)

 Based on ANN

In recent years, several methods have been proposed to solve ordinary as well as partial

differential equations. First, we consider a general form of differential equation which

represents ODEs [43]

,0))(),...,(),(),(,(2  xyxyxyxyxG n

RDx  (2.3)

Where G is the function which defines the structure of differential equation,)(xy

denotes the solution,  is differential operator and D is the discretized domain over

finite set of points. One may note that RDx  for ordinary differential equations. Let

),(pxy t denote the ANN trial solution for ODEs with adjustable parameters p (weights

and biases) and then the above general differential equation changes to the form

0)),(),...,(),,(),,(,(2  pxypxypxypxyxG t

n

ttt (2.4)

In the following paragraph we now discuss the ordinary differential equation

formulation. The trial solution (for ODEs)),(pxy t of feed forward neural network with

input x and parameters p may be written in the form [43]

)),(,()(),(pxNxFxApxy t  (2.5)

where)(xA satisfies initial or boundary condition and contains no adjustable

parameters, where as),(pxN is the output of feed forward neural network with the

parameters p and input data .x The second term)),(,(pxNxF makes no contribution to

initial or boundary conditions but this is output of the neural network model whose

weights and biases are adjusted to minimize the error function to obtain the final ANN

solution),(pxy t . It may be noted that in the training method, we start with given weights

and biases and train the model to modify the weights in the given domain of the problem.

In this procedure our aim is to minimize the error function. Accordingly, we include the

formulation of error function for initial value problems below.

Chapter 2 Priliminaries

21

2.2.2 Formulation for thn Order Initial Value Problems (IVPs)

Let us consider a general thn order initial value problem [122]















1

1

2

2

,...,,,,
n

n

n

n

dx

yd

dx

yd

dx

dy
yxf

dx

yd

],[bax (2.6)

with initial conditions ,)()(

i

i Aay 

1,...,1,0  ni

Corresponding ANN trial solution may be constructed as

),()(),(
1

0

pxNaxxupxy ni
n

i

it 




(2.7)

Where
1

0}{ 



n

iiu are the solutions to the upper triangle system of n linear equations in the

form [122]

 1,...,2,1,0  nj

The general formula of error function for ODEs may be written as follows

2

1

1

1),(
,...,

),(
),,(,

),(

2

1
),(






























h

i

n

it

n

it
itin

it

n

dx

pxyd

dx

pxdy
pxyxf

dx

pxyd
pxE

(2.8)

It may be noted that the multi layer ANN is considered with one input node x (having h

number of data) and single output node),(pxN for the ODEs.

Here, an unsupervised error back propagation algorithm is used for minimizing the

error function. In order to update the network parameters (weights and biases) from input

layer to hidden and from hidden to output layerswe use the following expressions [44]




















k

j

k
k

j

k

j

k

j

k

j
w

pxE
wwww

),(1  (2.9)

,!
1

ji

ji
n

ji

Auaj
i

j








 






Chapter 2 Priliminaries

22




















k

j

k
k

j

k

j

k

j

k

j
v

pxE
vvvv

),(1  (2.10)

As regard, the derivatives of error function with respect to jw and jv may be obtained as


























































2

1

1

1),(
,...,

),(
),(,

),(

2

1),(
h

i

n

it

n

it

itin

it

n

jj dx

pxyd

dx

pxdy
xyxf

dx

pxyd

ww

pxE

(2.11)


























































2

1

1

1),(
,...,

),(
),(,

),(

2

1),(
h

i

n

it

n

it

itin

it

n

jj dx

pxyd

dx

pxdy
xyxf

dx

pxyd

vv

pxE

(2.12)

For clear understanding, we include below the formulations for first and second order

Initial Value Problems (IVPs).

 Formulation of First Order Initial Value Problems (IVPs)

Let us consider first order ordinary differential equation as below

),(yxf

dx

dy


],[bax (2.13)

with initial condition Aay )(

In this case, the ANN trial solution is written as

),()(),(pxNaxApxyt  (2.14)

where),(pxN is the neural output of the feed forward network with input data

T

hxxxx),...,,(21 and parameters p .

 Differentiating Eq. 2.14 with respect to x we have

 dx

dN
pxNax

dx

pxdyt ),()(
),(

 (2.15)

The error function for this case may be formulated as

Chapter 2 Priliminaries

23

2

1

)),(,(
),(

2

1
),(













h

i

iti
it pxyxf

dx

pxdy
pxE

(2.16)

 Formulation of Second Order IVPs

The second order ordinary differential equation may be written in general as











dx

dy
yxf

dx

yd
,,

2

2

],[bax (2.17)

subject to Aay )(, Aay )(

The ANN trial solution is written as

),()()(),(2 pxNaxaxAApxyt  (2.18)

where),(pxN is the neural output of the feed forward network with input data x and

parameters p . The trial solution),(pxyt
satisfies the initial conditions.

From (Eq. 2.18) we have (by differentiating)

dx

dN
axpxNaxA

dx

pxdyt 2)(),()(2
),(

 (2.19)

and 2

2
2

2

2

)()(4),(2
),(

dx

Nd
ax

dx

dN
axpxN

dx

pxyd t 

 (2.20)

The error function to be minimized for second order ordinary differential equation is

found to be

2

1
2

2),(
),,(,

),(

2

1
),(






















h

i

it
iti

it

dx

pxdy
pxyxf

dx

pxyd
pxE (2.21)

As discussed above, the weights from input to hidden and hidden to output layer are

modified according to the back propagation learning algorithm.

The derivatives of the error function with respect to jw and jv are written as

Chapter 2 Priliminaries

24

















































2

2

2

1

),(
),,(,

),(

2

1),(

dx

pxdy
pxyxf

dx

pxyd

ww

pxE it

iti

it

h

ijj

(2.22)

















































2

2

2

1

),(
),,(,

),(

2

1),(

dx

pxdy
pxyxf

dx

pxyd

vv

pxE it
iti

it

h

ijj

 (2.23)

2.2.3 Formulation for Boundary Value Problems (BVPs)

Next, we include the formulation for second and fourth order BVPs.

 Formulation for Second Order BVPs

Let us consider a second order boundary value problem [122]











dx

dy
yxf

dx

yd
,,

2

2

],[bax (2.24)

subject to the boundary conditions BbyAay )(,)(

Corresponding ANN trial solution for the above boundary value problem is formulated as

),())((),(pxNbxaxx
ab

AB

ab

aBbA
pxyt 









 (2.25)

Differentiating Eq. 2.25 we have

dx

dN
bxaxpxNaxpxNbx

ab

AB

dx

pxdyt))((),()(),()(
),(







(2.26)

As such the error function may be obtained as
























h

i

it
iti

it

dx

pxdy
pxyxf

dx

pxyd
pxE

1

2

2

2),(
),,(.

),(

2

1
),((2.27)

Chapter 2 Priliminaries

25

 Formulations for fourth-order BVPs

A general fourth-order differential equation is considered as [122]











3

3

2

2

4

4

,,,,
dx

yd

dx

yd

dx

dy
yxf

dx

yd
 (2.28)

with boundary conditions

.)(,)(,)(,)(BbyAayBbyAay 

ANN trial solution for the above fourth order differential equation satisfing the boundary

conditions is constructed as

),()()(),(pxNxMxZpxy t  (2.29)

The trial solution satisfies following relations

.)(

,)(

,)(

,)(

BbZ

AaZ

BbZ

AaZ









 (2.30)

.0),()(),()(

,0),()(),()(

,0),()(

,0),()(









pbNbMpbNbM

paNaMpaNaM

pbNbM

paNaM

(2.31)

The function)(xM is chosen as,
22)()()(bxaxxM  which satisfies the set of

equations in (2.31). Here, xdxcxbxaxZ  234)(is the general polynomial of degree

four, where dcba  ,,, are constants. From the set of equations (2.30) we have

Bdbcbbba

Adacabaa

Bbdbcbbba

Aadacabaa









234

234

23

23

234

234

 (2.32)

Chapter 2 Priliminaries

26

Solvingthe above system of four equations with four unknowns, we obtain the general

form of the polynomial)(xZ .

Here the error function is expressed as



























h

i

itit

iti

it

dx

pxyd

dx

pxyd
pxyxf

dx

pxyd
pxE

1

2

3

3

2

2

4

4),(
,

),(
),,(,

),(

2

1
),(

(2.33)

2.2.4 Formulation for System of First Order ODEs

We consider now the following system of first order ODEs [122]

),...,,(1 yyxf
dx

dy
r

r 

,...,2,1r and],[bax (2.34)

subject to rr Aay )(, ,...,2,1r

Corresponding ANN trial solution has the following form

),()(),(rrrrt pxNaxApxy
r



,...,2,1r (2.35)

 For each r,),(rr pxN is the output of the multi layer ANN with input x and parameter
rp .

From (Eq. 2.35) we have

dx

dN
pxNax

dx

pxdy
r

rr

rt r ),()(
),(

,...,2,1r (2.36)

Then the corresponding error function with adjustable network parameters may be written

as

 
2

1 1

1),(),...,,(,
),(

2

1
),(

1
 











h

i r

ititir

rit
pxypxyxf

dx

pxdy
pxE r





(2.37)

For system of first order ODEs (Eq. 2.37) we have the derivatives of error function with

respect to jw and jv as below

Chapter 2 Priliminaries

27

 

 

 

2

1

1

12

2

11

1

),(),...,,(,
),(

...

),(),...,,(,
),(

),(),...,,(,
),(

2

1),(

1

1

2

1

1




































































































h

i

ititil

it

ititi

it

ititi

it

jj

pxypxyxf
dx

pxdy

pxypxyxf
dx

pxdy

pxypxyxf
dx

pxdy

ww

pxE

















(2.38)

 

 

 

2

1

1

12

2

11

1

),(),...,,(,
),(

...

),(),...,,(,
),(

),(),...,,(,
),(

2

1),(

1

1

2

1

1




































































































h

i

ititil

it

ititi

it

ititi

it

jj

pxypxyxf
dx

pxdy

pxypxyxf
dx

pxdy

pxypxyxf
dx

pxdy

vv

pxE

















(2.39)

It may be noted detail procedure of handling IVPs and BVPs using single layer ANN are

discussed in the subsequent chapters.

Next we address computation of gradient of ODEs using traditional multilayer ANN.

2.2.5 Computation of the Gradient of ODEs for multi layer ANN

The error computation not only involves the output but also the derivative of the network

output with respect to its input [43]. So it requires finding the gradient of the network

derivative with respect to its input. Let us now consider a multi layer ANN with one input

node, a hidden layer with m nodes and one output unit. For the given input data denoted

as T

hxxxx),..,,(21 that is the single input node x has h number of data. The network

output),(pxN is formulated as

)(),(

1

j

m

j

j zsvpxN 


 (2.40)

Chapter 2 Priliminaries

28

where jjjj wuxwz , denotes the weight from input to the hidden unit j, jv denotes

weight from the hidden unit j to the output unit,
ju are the biases and)(jzs is the

activation function (sigmoid, tangent hyperbolic etc.).

The derivatives of),(pxN with respect to input x is

)(

1

k

j

k

j

m

j

jk

k

swv
dx

Nd



 (2.41)

where)(jzss  and)(ks denotes the thk order derivative of an activation function.

The gradient of output with respect to the network parameters of the ANN may be

formulated as

)(j

j

zs
v

N





 (2.42)

)(jj

j

zsv
u

N





 (2.43)

xzsv
w

N
jj

j

)(



 (2.44)

N is the derivative of the network output to any of its input and

)(

1





 j

m

j

jj

n sPvNDN (2.45)

we have the relation






nk

k

jj wP

,...,2,1

 (2.46)

Derivatives of N with respect to other parameters is given as

)(



jj

j

sP
v

N 

 (2.47)

Chapter 2 Priliminaries

29

)1(



jjj

j

Pv
u

N


 (2.48)

,1)1( 



i

jjjjjj

j

wvsPxv
w

N
ni ,...,2,1 (2.49)

where  denotes the order of derivative.

 After getting all the derivatives we can find the gradient of error. Using error

propagation learning method for unsupervised training, we may minimize the error

function as per the desired accuracy.

Next section includes handling of PDEs using multi layer ANN.

2.3 Partial Differential Equations (PDEs)

2.3.1 General Formulation for PDEs Based on multi layer ANN

In this section, the formulation of Partial Differential Equations (PDEs) is described with

computation of the gradient of the network parameters.

Let us consider the general form of partial differential equation

,0))(),...,(),(),(,(2  XuXuXuXuXG n

nRDX  (2.50)

Where G is the function which defines the structure of differential equation,)(Xu and 

denote the solution and differential operator respectively. n

n RDxxxX ),...,(21
and

D is the discretized domain over finite set of points of .nR Let),(pXu t
denote the ANN

trial solution for PDEs with adjustable parameters p and then the above general

differential equation changes to the form

0)),(),...,,(),,(),,(,(2  pXupXupXupXuXG t

n

ttt
(2.51)

The trial solution),(pXu t of feed forward neural network with input),...,,,(321 nxxxxX 

and parameters p may be written in the form

)),(,()(),(pXNXFXApXu t  . (2.52)

Chapter 2 Priliminaries

30

First part of right hand side of Eq. 2.52 (viz.))(XA satisfies initial/boundary conditions.

The second part)),(,(pXNXF contains the single output),(pXN of feed forward

neural network with parameters p and input X .

Here, we have included below the two dimensional PDEs.

2.3.2 Formulation for Two Dimensional PDE Problems

First we consider two dimensional problems with Dirichlet boundary conditions as

below [43]

),(
),(),(

212

2

21

2

2

1

21

2

xxf
x

xxu

x

xxu











]1,0[1x ,]1,0[2x
 (2.53)

subject to Dirichlet boundary conditions

)(),0(202 xfxu  ,)(),1(212 xfxu 
 (2.54)

)()0,(101 xgxu  ,)()1,(111 xgxu 
.

The ANN trial solution may be formulated as (here),(21 xxX )

).,()1()1()(),(2211 pXNxxxxXApXu t 
 (2.55)

which satisfies the boundary conditions.

Here)(XA is expressed as

  
  )1()0()1()(

)1()0()1()()1(

)()()1()(

1111112

0101102

211201

gxgxxgx

gxgxxgx

xfxxfxXA







 (2.56)

Next we consider two dimensional problems with mixed (Dirichlet on part of the

boundary and Neumannelsewhere) boundary conditions

Let us take a two dimensional PDE with mixed boundary conditions [43]

Chapter 2 Priliminaries

31

),(
),(),(

212

2

21

2

2

1

21

2

xxf
x

xxu

x

xxu











]1,0[1x ,]1,0[2x (2.57)

subject to mixed boundary conditions

),(),0(202 xfxu )(),1(212 xfxu 

)()0,(101 xgxu  ,)(
)1,(

11

2

1 xg
x

xu





. (2.58)

The ANN trial solution is written in this case [43] as














2

1
1211

),1,(
),1,(),()1()(),(

x

pxN
pxNpXNxxxXBpXu t (2.59)

The first term)(XB may be chosen as (here),(21 xxX )

 

  )1()0()1()(

)1()0()1(

)()()()1()(

1111112

0101

10211201

gxgxxgx

gxgx

xgxfxxfxXB







 (2.60)

Corresponding error function for the above PDE may be formulated as

 

2

1

212

2

2

2

1

2

,
),(),(

2

1
),(

 


















h

k

kk

ktkt xxf
x

pXu

x

pXu
pXE (2.61)

For minimizing the error function),(pXE that is to update the network parameters

(weights, biases), we need to differentiate),(pXE with respect to the parameters. Thus

the gradient of network output with respect to their inputs is addressed below.

2.3.3 Computation of the Gradient of PDEs for multi layer ANN

The error computation involves both output and derivatives of the output with respect to

the inputs. So it is required to find the gradient of the network derivatives with respect to

the inputs. For the given input node (denoted as)),..,,(21 nxxxX  the output is given by

Chapter 2 Priliminaries

32

)(),(

1

j

m

j

j zsvpXN 


 (2.62)

where ji

n

i

jijij wuxwz ,

1




 denotes the weight from input data i to the hidden unit j ,

jv denotes weight from the hidden unit j to the output unit, ju denotes the biases and)(jzs

is the activation function.

The derivatives of),(pXN with respect to input X is

)(

1

))((k

j

k

ji

m

j

jk

k

zswv
X

N








 (2.63)

where
)())((k

jzs denotes the
thk order derivative of activation function.

Let N denotes the derivative of the network output with respect to the input and then we

have the relations

)(

1

n

ii

h

i

i

n vNDN   


 (2.64)

where 




h

k

jkj w

1


 (2.65)

The derivative of N with respect to other parameters may be obtained as

,)(
jj

j

s
v

N





 (2.66)

,)1(


 
jjj

j

sv
u

N
 (2.67)

)(

,1

1)1(  j

ikk

jijiijjjji

ji

swwvsvx
w

N
ki























 (2.68)

where  is the order of derivative.

After getting all the derivatives we can find the gradient of the error. Using

unsupervised error propagation learning method, we may minimize the error function as

per the desired accuracy.

33

Chapter 3

Traditional Multi Layer Artificial Neural

Network Model for Solving Ordinary

Differential Equations (ODEs)

In this chapter, we have used traditional multi layer Artificial Neural Network (ANN)

method for solving Ordinary Differential Equations (ODEs). First order and nonlinear

singular second order ODEs have been considered here. The trial solution of the

differential equation is a sum of two terms. The first term satisfies the initial or boundary

conditions while the second term contains output of the ANN with adjustable parameters.

Feed forward neural network model and unsupervised error back propagation algorithm

have been used. Modification of network parameters has been done without use of any

optimization technique.*

3.1 Multi Layer Artificial Neural Network (ANN) Model

This section describes structure of traditional multi layer ANN model, ANN formulation

of ODEs, learning algorithm and computation of gradient of multilayer ANN

respectively.

*Contents of this chapter have been communicated/published in the following Journals/

Conference:

1. International Journal of Dynamical Systems and Differential Equations, (under review), (2013);

2. International Journal of Machine Learning and Cybernetics, (Revised version has been

submitted), (2016);

3. 39
th

 Annual conference and National Seminar of Odisha Mathematical Society, VIVTECH,

Bhubaneswar, 2012.

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

34

3.1.1 Structure of Multi Layer ANN

We have considered a three layer ANN model for the present problem. Figure 3.1 shows

the structure of ANN that consists of single input node along with bias, a hidden layer and

a single output layer consisting of one output node. Initial weights from input to hidden

and hidden to output layer are taken as arbitrary (random) and the number of nodes in

hidden layer are considered by trial and error method.

 1w 1v

 2w 2v),(pxN

 3w
 3v

 4w 4v

 5w
 5v

Figure 3.1: Structure of multi layer ANN

3.1.2 Formulation and Learning Algorithm of Multi Layer ANN

ANN formulation of ODEs has been discussed in Sec. 2.2.1. In particular, the formulation

for first order IVP (Eq. 2.14), second order IVP (Eq. 2.18) and derivation of error

functions are given in Sec. 2.2.2 (Eq. 2.16 and Eq. 2.21).

Training the neural network means updating the parameters (weights and biases) for

acceptable accuracy. For differential equation we have used an unsupervised version of

back propagation method which is described in Sec. 2.2.2 (Eqs. 2.9 to 2.12).

3.1.3 Gradient Computation

For minimizing the error function),(pxE that is to update the network parameters we

have to differentiate),(pxE with respect to the parameters (Sec. 2.2.5). Thus the gradient

of network output with respect to its input is to be computed.

Input layer

ju

Bias

Output layer

x

Hidden layer

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

35

After getting all the derivatives, we can find the gradient of the error. Using error back

propagation for unsupervised training we may minimize the error function as per the

desired accuracy.

3.2 Case Studies

Next, we have considered various linear and nonlinear ODEs to show the reliability of the

proposed method.

3.2.1 First Order Initial Value Problems

Two first order initial value problems are taken in Examples 3.2.1 and 3.2.2.

Example 3.2.1:

A first order ordinary differential equation is

12

)(
 x

dx

xdy
]1,0[x

subject to 0)0(y

According to Sec 2.2.2 (Eq. 2.14) the trial solution may be written as

),(),(pxxNpxyt 

The network is trained using six equidistant points in [0, 1] and with five sigmoid hidden

nodes. Table 3.1 shows the neural results at different error values and the convergence of

the neural output up to the given accuracy. The weights are selected randomly. Analytical

and the neural results with the accuracy of 0.0001 are cited in Figure 3.2. The error

(between analytical and ANN solutions) is plotted in Figure 3.3. Neural results for some

testing points with the accuracy of 0.0001 are shown in Tables 3.2 (inside the domain)

and 3.3 (outside the domain) respectively.

Table 3.1: Comparison among analytical and neural results for different error (Example 3.2.1)

Input

data

Analytical

Error

0.5 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

Neural Results

0 0 0 0 0 0 0 0 0 0

0.2 0.2400 0.2098 0.2250 0.2283 0.2312 0.2381 0.2401 0.2407 0.2418

0.4 0.5600 0.4856 0.4778 0.4836 0.4971 0.5395 0.5410 0.5487 0.5503

0.6 0.9600 0.9818 0.7889 0.7952 0.8102 0.8672 0.9135 0.9418 0.9562

0.8 1.4400 1.7915 1.1390 1.1846 1.2308 1.2700 1.3341 1.3722 1.4092

1.0 2.0000 2.8339 1.4397 1.5401 1.6700 1.7431 1.8019 1.8157 1.9601

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

36

Figure 3.2: Plot of analytical and ANN results (Example 3.2.1)

Figure 3.3: Error plot between analytical and ANN results (Example 3.2.1)

Table 3.2: Analytical and neural results for testing points (Example 3.2.1)

Testing

 points

0.8235 0.6787 0.1712 0.3922 0.0318 0.9502

Exact 1.5017 1.1393 0.2005 0.5460 0.0328 1.8531

ANN 1.6035 1.3385 0.2388 0.5701 0.0336 1.9526

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

R
e
su

lt
s

Analytical

ANN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

x

E
rr

o
r

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

37

Table 3.3: Analytical and neural results for testing points (Example 3.2.1)

Testing

points

1.2769 1.1576 1.0357 1.3922 1.4218 1.2147

Exact 2.9074 2.4976 2.1084 3.3304 3.4433 2.6902

ANN 2.8431 2.4507 2.0735 3.4130 3.5163 2.6473

Example 3.2.2:

Let us take a first order ordinary differential equation

xey
dx

dy x cos2.0 2.0

]1,0[x

subject to 0)0(y

The trial solution is formulated as

),(),(pxxNpxyt 

We have trained the network for ten equidistant points in [0, 1] and with four and five

sigmoid hidden nodes. Table 3.4 shows the ANN results at different error values for four

hidden nodes. ANN results with five hidden nodes at different error values have been given

in Table 3.5. Comparison between analytical and ANN results for four and five hidden

nodes (at error 0.001) are cited in Figures 3.4 and 3.5 respectively.

Figure 3.4: Plot of analytical and ANN results at the error 0.001 for four hidden nodes

(Example 3.2.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

R
es

ul
ts

Analytical

ANN

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

38

Table 3.4: Comparison among analytical and ANN results at different error values for four

hidden nodes (Example 3.2.2)

Table 3.5: Comparison among analytical and ANN results at different error values forbfive

hidden nodes (Example 3.2.2)

Input data

Analytical

ANN results

at
 Error=0.1

ANN results

at
 Error =0.01

ANN results

at
 Error =0.001

0 0 0 0 0

0.1 0.0979 0.0879 0.0938 0.0967

0.2 0.1909 0.1755 0.1869 0.1897

0.3 0.2783 0.2646 0.2795 0.2796

0.4 0.3595 0.3545 0.3580 0.3608

0.5 0.4338 0.4445 0.4410 0.4398

0.6 0.5008 0.5325 0.5204 0.5208

0.7 0.5601 0.6200 0.6085 0.5913

0.8 0.6113 0.7023 0.6905 0.6695

0.9 0.6543 0.7590 0.7251 0.6567

1 0.6889 0.8235 0.7936 0.6825

Input data

Analytical

ANN results

at

Error =0.1

ANN results

at

Error= 0.01

ANN results

at

Error =0.001

0 0 0 0 0

0.1 0.0979 0.0900 0.0949 0.0978

0.2 0.1909 0.1805 0.1874 0.1901

0.3 0.2783 0.2714 0.2754 0.2788

0.4 0.3595 0.3723 0.3605 0.3600

0.5 0.4338 0.4522 0.4469 0.4389

0.6 0.5008 0.5395 0.5213 0.5166

0.7 0.5601 0.6198 0.6077 0.5647

0.8 0.6113 0.6995 0.6628 0.6111

0.9 0.6543 0.7487 0.7021 0.6765

1 0.6889 0.8291 0.7790 0.7210

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

39

Figure 3.5: Plot of analytical and ANN results at error 0.001for five hidden nodes

(Example 3.2.2)

3.2.2 Singular Nonlinear Second Order Initial Value Problems

Many problems in astrophysics and mathematical physics may be modeled by singular

nonlinear second order initial value problems. In astrophysics, the equation which

describes the thermal behavior of a spherical cloud of gas acting under the mutual

attraction of its molecules and subject to the classical laws of thermodynamics has been

proposed by Lane [65]. It has furtherbeen studied by Emden [66] which is then known as

Lane-Emden equations. The general form of Lane-Emden equation is

)(),(
2

2

2

xgyxf
dx

dy

xdx

yd


0x

with initial conditions )0(y , 0)0(y .

Where),(yxf is a nonlinear function of x and y and)(xg is the function of x respectively.

Nonlinear singular initial value problems viz. homogeneous Lane-Emden equation

is considered in Example 3.2.3, equation of isothermal gas spheres where temperature

remains constant is taken in Example 3.2.4 and an equation which describes Richardson’s

theory of thermodynamic current is taken in Example 3.2.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

R
es

ul
ts

Analytical

ANN

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

40

Example 3.2.3:

In this example, we take a homogeneous Lane-Emden equation with
5),(yyxf 

0
2 5

2

2

 y
dx

dy

xdx

yd

with initial conditions 1)0(y , 0)0(y

The exact solution of the above equation is given in [81] as

21
2

3
1)(













x
xy

0x .

The ANN trial solution for this problem as given in Sec 2.2.2 (Eq. 2.18) may be expressed

as

),(1),(2 pxNxpxyt 

Here we have trained the network for twenty equidistant points in [0, 1] and five nodes in

the hidden layer. Comparison between analytical and ANN results are shown in Table 3.6.

Figure 3.6 depicts the comparison of results between analytical and ANN. The error plot

is shown in Figure 3.7.

 Figure 3.6: Plot of analytical and ANN results (Example 3.2.3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

x

R
e
s
u

lt
s

Analytical

ANN

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

41

Table 3.6: Comparison between analytical and ANN results (Example 3.2.3)

Figure 3.7: Error plot between analytical and ANN results (Example 3.2.3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x

E
r
r
o

r

Input data Analytical

[81]
 ANN Absolute

Error

0 1.0000 1.0001 0.0001

0.1 0.9983 0.9983 0

0.15 0.9963 0.9965 0.0002

0.2 0.9934 0.9936 0.0002

0.25 0.9897 0.9891 0.0006

0.3 0.9853 0.9890 0.0037

0.35 0.9802 0.9816 0.0014

0.4 0.9744 0.9742 0.0002

0.45 0.9679 0.9658 0.0021

0.5 0.9608 0.9572 0.0036

0.55 0.9531 0.9539 0.0008

0.6 0.9449 0.9467 0.0018

0.65 0.9362 0.9355 0.0007

0.7 0.9271 0.9288 0.0017

0.75 0.9177 0.9173 0.0004

0.8 0.9078 0.9061 0.0017

0.85 0.8977 0.8933 0.0044

0.9 0.8874 0.8836 0.0038

0.95 0.8768 0.8768 0

1.0 0.8660 0.8680 0.0020

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

42

Example 3.2.4:

Now let us consider a nonlinear Lane- Emden equation with
ymexyxf ),(

0
2

2

2

 ymex
dx

dy

xdx

yd

subject to ,0)0(y 0)0(y .

For m=0, the above differential equation models an isothermal gas spheres problem. In

the special case, the above equation describes the isothermal gas sphere where the

temperature remains constant.

We can write the related ANN trial solution as given in (Eq. 2.16)

),(),(2 pxNxpxyt 

The network is trained for ten equidistant points in [0, 1] with five hidden nodes.

Comparison between particular solution by using Adomian Decomposition Method

(ADM) and ANN solutions has been given in Table 3.7. Figure 3.8 shows comparison

between given results. Finally, Figure 3.9 depicts the plot of error between ADM and

ANN results. ANN results at the testing points are shown in Table 3.8. This testing is

done to check whether the converged ANN can give results directly by inputting the

points which were not taken during training.

Table 3.7: Comparison between ADM and ANN results (Example 3.2.4)

Input

data

ADM

[76]

ANN Absolute

Error

0 0.0000 0.0000 0

0.1 5.2983 5.3009 0.0026

0.2 3.9120 3.9085 0.0035

0.3 3.1011 3.1019 0.0008

0.4 2.5257 2.5241 0.0016

0.5 2.0794 2.0790 0.0004

0.6 1.7148 1.7200 0.0052

0.7 1.4065 1.4046 0.0019

0.8 1.1394 1.1406 0.0012

0.9 0.9039 0.9031 0.0008

1.0 0.6931 0.6928 0.0003

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

43

Table 3.8: ADM and ANN results for testing points (Example 3.2.4)

Figure 3.8: Plot of ADM and ANN results (Example 3.2.4)

Figure 3.9: Error plot between ADM and ANN results (Example 3.2.4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

x

R
es

ul
ts

ADM

ANN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

x

E
rr

o
r

Testing points 0.189 0.251 0.407 0.766 0.949

ADM 4.0252 3.4578 2.4910 1.2263 0.7978

ANN 4.0261 3.4501 2.4897 1.2261 0.7942

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

44

Example 3.2.5:

Finally, we consider an example of Lane-Emden equation with
ymexyxf ),(.

0
2

2

2

 ymex
dx

dy

xdx

yd

with initial conditions 0)0(y , 0)0(y

For m=0, the above equation models Richardson’s theory of thermionic current when the

density and electric force of an electron gas is in the neighborhood of a hot body in

thermal equilibrium.

Particular solution by ADM of the above equation is given in [76]











2
ln)(

2x
xy

The ANN trial solution is written as

),(),(2 pxNxpxyt 

In this case, ten equidistant points in [0, 1] are considered. Table 3.9 shows ADM and

ANN results. ADM (Particular) and ANN results are compared in Figure 3.10. Lastly,

Figure 3.11 depicts the plot of error function. ANN results at some testing points are

given in Table 3.10.

Table 3.9: Comparison between ADM and ANN results (Example 3.2.5)

Input

data

ADM

[76]

ANN

0 0.0000 0.0000

0.1 -5.2983 -5.2916

0.2 -3.9120 -3.9126

0.3 -3.1011 -3.1014

0.4 -2.5257 -2.5248

0.5 -2.0794 -2.0793

0.6 -1.7148 -1.7159

0.7 -1.4065 -1.4078

0.8 -1.1394 -1.1469

0.9 -0.9039 -0.9048

1.0 -0.6931 -0.7001

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

45

Table 3.10: ADM and ANN results for testing points (Example 3.2.5)

Testing points 0.209 0.399 0.513 0.684 0.934

Particular -3.8239 -2.5307 -2.0281 -1.4527 -0.8297

ANN -3.8236 -2.5305 -2.0302 -1.4531 -0.8300

Figure 3.10: Plot of ADM and ANN results (Example 3.2.5)

Figure 3.11: Error plot between ADM and ANN results (Example 3.2.5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-5

-4

-3

-2

-1

0

x

R
es

ul
ts

ADM

ANN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x

E
rr

o
r

Traditional Multi Layer Artificial Neural Network Model for

Chapter 3 Solving Ordinary Differential Equations (ODEs)

46

3.3 Conclusion

Traditional multi layer Artificial Neural Network (ANN) model has been used in this

chapter to solve first order ODEs and singular nonlinear initial value problems viz. Lane-

Emden equations. Corresponding initial weights from input to hidden and hidden to

output are taken as random. Computed results by the proposed method have been shown

in tables and graphs. ANN results are compared with analytical and other numerical

methods. As such, the proposed ANN model is found to be efficient and straight forward

for solving ODEs.

47

Chapter 4

Regression Based Neural Network

(RBNN) Model for Solving

Ordinary Differential Equations (ODEs)

In this chapter, Regression Based Neural Network (RBNN) model has been introduced for

solving Ordinary Differential Equations (ODEs) with initial/boundary conditions. In our

proposed method the trial solution of the differential equation has been obtained by using

RBNN model for single input and single output (SISO) system. Initial weights are taken as

combination of random as well as by the proposed regression based model. Number of

nodes in hidden layer has been fixed according to the degree of polynomial in the

regression fitting and the coefficients involved are taken as initial weights to start with the

neural training. For the example problems, present neural results have been compared with

the analytical results (wherever possible) by taking arbitrary and regression based weights

with four, five and six nodes in hidden layer and are found to be in good agreement.*

*Contents of this chapter have been published in the following Journals/Conferences:

1. Neural Computing and Applications, 25, 2014;

2. Advances in Artificial Neural Systems, 2013;

3. International Journal of Mathematical Modelling and Numerical Optimization, 4(2), 2013;

4. National Conference on Computational and Applied Mathematics in Science and Engineering

(CAMSE-2012), VNIT, Nagpur, 2012;

5. 40
th

 Annual Conference and National conference on Fourier Analysis and Differential

Equations of Odisha Mathematical Society, Sambalpur University, Sambalpur, 2012.

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

48

4.1 Regression Based Neural Network (RBNN) Model

This section incorporates the structure of RBNN model, its training algorithm,

formulation and computation of gradient respectively.

4.1.1 Structure of RBNN Model

Three layer RBNN model has been considered for the present problem. Figure 4.1 shows

the neural network architecture, in which input layer consists of single input unit along

with bias and output layer include one output node. Number of nodes in hidden layer

depends upon the degree of regression fitting that is proposed here. If n
th

degree

polynomial is considered, then the number of nodes in the hidden layer will be 1n and

coefficients (constants say, ii ca ,) of the polynomial may be considered as initial weights

from input to hidden as well as hidden to output layers or any combination of random and

regression based weight. The architecture of the network with fourth degree polynomial

is shown in Figure 4.1. As discussed, it will have five nodes for the five constants in the

hidden layer.

4a

5a

 Hidden layer

Figure 4.1: RBNN architecture with single input and single output node

1z 1c

)(1zs

∑

2c
2z

3c

)(2zs

∑

x),(pxN

)(3zs

∑

∑

3z

Output layer 4c
4z Input layer

)(4zs

∑

5z
5c

ju

Bias

∑

∑

)(5zs

2a

1a

3a

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

49

4.1.2 RBNN Training Algorithm

Regression Based Neural Network (RBNN) has been developed and investigated by

Chakraverty et al. [45, 46] for various application problems. Let us consider training

patterns as ),(),...,,(),,(2211 nn yxyxyx . For every value of ix we may find iy crudely by

other traditional numerical methods. But these methods (traditional) are usually iterative in

nature, where we fix the step size before the start of the computation. After the solution is

obtained if we want to know the solution in between steps then again we have to iterate the

procedure from the initial stage. ANN may be one of the reliefs where we may overcome

this repetition of iterations. Also, neural network has an inherent advantage over numerical

methods [43, 44].

As mentioned earlier, the initial weights from input to hidden layer are generated by

coefficients of regression analysis. Let x and y are be the input and output patterns, then a

polynomial of degree four is written as

4

4

3

3

2

210)(xaxaxaxaaxp 

(4.1)

Where 43210 ,,,, aaaaa are coefficients of the above polynomial which may be obtained by

using least square fit. These constants may be taken now as the initial weights from input to

hidden layer. Then we calculate output of the nodes of hidden layer by using the activation

functions

01

1
0 a

i

e
h






ni ,...3,2,1 (4.2)

ixa

i

e
h

11

1
1 




ni ,...3,2,1 (4.3)

2
21

1
2

ixa

i

e
h






ni ,...3,2,1 (4.4)

3
31

1
3

ixa

i

e
h






ni ,...3,2,1 (4.5)

4
41

1
4

ixa

i

e
h






ni ,...3,2,1 (4.6)

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

50

The regression analysis is applied again to find the output of the network by the relation

,4433221100

iiiii hchchchchc 

ni ,...3,2,1 . (4.7)

Where 43210 ,,,, ccccc are the coefficients of the above multivariate linear regression

polynomial and those may again be obtained by the least square fit. Subsequently these

constants are then considered as initial weights from hidden to output layer.

4.1.3 Formulation and Learning Algorithm of RBNN

The RBNN trial solution),(pxy t for ODEs with network parameters p (weights, biases)

may be written in the form

)),(,()(),(pxNxFxApxy t 

(4.8)

 The first term)(xA in right hand side does not contain adjustable parameters and satisfies

only initial/boundary conditions, where as the second term)),(,(pxNxF contains the

single output),(pxN of RBNN with input x and adjustable parameters p.

Here, we consider a three layered network with one input node, one hidden layer

consisting of m number of nodes and one output unit),(pxN . For every input data x and

parameters p the output is defined as

)(),(

1

j

m

j

j zsvpxN 


 (4.9)

where jjjj wuxwz , denotes the weight from input unit to the hidden unit j, jv

denotes weight from the hidden unit j to the output unit, ju are the biases and)(jzs is the

activation function (sigmoid, tangent hyperbolic).

In this regard, the formulation for first and second order initial value problems has

been discussed in Sec. 2.2.2 (Eq. 2.14 and Eq. 2.18). Similarly, ANN formulation for

boundary value problems in ODEs (second, fourth order) has also been described in Sec.

2.2.3 (Eq. 2.25, Eq. 2.29).

Training the neural network means updating the parameters (weights and biases) so

that the error values converge to required accuracy. Unsupervised error back propagation

learning algorithm (Eqs. 2.9 to 2.12) has been used to update the network parameters

(weights and biases) from input to hidden and from hidden to output layer and for

minimizing error function of the RBNN model.

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

51

4.1.4 Computation of Gradient for RBNN Model

The error computation not only involves the output but also the derivatives of the network

output with respect to its input and parameters. So it requires finding out the gradient of

the network derivatives with respect to its inputs. For Minimizing the error function

),(pxE that is to update the network parameters (weights and biases), we differentiate

),(pxE with respect to the parameters. The gradient of network output with respect to their

inputs is computed in Sec. 2.2.5.

4.2 Numerical Examples and Discussions

In this section, we have presented solution of various example problems viz. first order

IVP (Example 4.2.1) and second order IVP (Example 4.2.2), boundary value problem in

ODE (Example 4.2.3) and fourth order ODE(Example 4.2.4) to show the reliability of the

proposed RBNN procedure. Also the accuracy of results of the proposed RBNN method

has been shown in the tables and figures.

Example 4.2.1:

Let us consider a first order ordinary differential equation

yx
dx

dy


]1,0[x

with initial condition 1)0(y .

The RBNN trial solution in this case may be written as

We have trained the network for twenty equidistant points in [0, 1] and four hidden nodes

are fixed according to regression analysis with third degree polynomial for RBNN model.

Six hidden nodes have been considered for traditional ANN model. Here, the activation

function is a sigmoid function. We have compared analytical results with neural

approximate results with random and regression based weights in Table 4.1. One may very

well see the better results are got by using the proposed method which is tabulated in third

column. Figure 4.2 shows comparison between analytical and neural results when initial

weights are random. Analytical and neural results for regression based initial weights

(RBNN) have been compared in Figure 4.3. The plot of the error functions between

analytical and RBNN results is cited in Figure 4.4.

),(1),(pxxNpxy t 

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

52

Table 4.1: Analytical and neural results with arbitrary and regression based weights

(Example 4.2.1)

Input data Analytical ANN results with

random weights

RBNN

0 1.0000 1.0000 1.0000

0.0500 1.0525 1.0533 1.0522

0.1000 1.1103 1.1092 1.1160

0.1500 1.1737 1.1852 1.1732

0.2000 1.2428 1.2652 1.2486

0.2500 1.3181 1.3320 1.3120

0.3000 1.3997 1.4020 1.3975

0.3500 1.4881 1.5007 1.4907

0.4000 1.5836 1.5771 1.5779

0.4500 1.6866 1.6603 1.6631

0.5000 1.7974 1.8324 1.8006

0.5500 1.9165 1.8933 1.9132

0.6000 2.0442 2.0119 2.0615

0.6500 2.1811 2.1380 2.1940

0.7000 2.3275 2.3835 2.3195

0.7500 2.4840 2.4781 2.4825

0.8000 2.6511 2.6670 2.6535

0.8500 2.8293 2.8504 2.8305

0.9000 3.0192 3.006 3.0219

0.9500 3.2214 3.2482 3.2240

1.0000 3.4366 3.4281 3.4402

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

x

R
es

ul
ts

Analytical

ANN reslts for

 random weights

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

x

R
es

ul
ts

Analytical

RBNN

Figure 4.3: Plot of analytical and neural results

with regression based weights (Example 4.2.1)

Figure 4.2: Plot of analytical and neural

results with arbitrary weights (Example 4.2.1)

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

53

Figure 4.4: Error plot between analytical and RBNN results (Example 4.2.1)

Example 4.2.2:

The second order differential equation with initial conditions which may describe a model

of an undamped free vibration spring mass system problem.

0
2

2

 y
dx

yd

]1,0[x

with initial conditions 0)0(y and 1)0(y .

As discussed in Sec. 2.2.2 (Eq. 2.18) the RBNN trial solution is written as

),(),(2 pxNxxpxy t 

The network has been trained here with ten equidistant points in [0, 1] and five hidden

nodes are fixed according to regression analysis with four degree polynomial for RBNN.

We have considered the sigmoid function as activation function and seven hidden nodes

for traditional ANN. Comparison between the analytical and neural approximate results

with random and regression based weights have been given in Table 4.2. Analytical and

neural results which are obtained for random initial weights are depicted in Figure 4.5.

Figure 4.6 shows comparison between analytical and neural results for regression based

initial weights. Finally, the error plot between analytical and RBNN results is cited in

Figure 4.7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

e
rr

o
r

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

54

Table 4.2: Analytical and neural approximate results with arbitrary and

regression based weights (Example 4.2.2)

Input data

Analytical

Traditional ANN
(with random weights)

RBNN

0 0 0 0

0.1 0.0998 0.0996 0.0999

0.2 0.1987 0.1968 0.1990

0.3 0.2955 0.2905 0.2963

0.4 0.3894 0.3808 0.3904

0.5 0.4794 0.4714 0.4792

0.6 0.5646 0.5587 0.5618

0.7 0.6442 0.6373 0.6427

0.8 0.7174 0.7250 0.7161

0.9 0.7833 0.8043 0.7792

1 0.8415 0.8700 0.8293

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

R
e
s
u

l
t
s

Analytical

ANN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

R
e
s
u

l
t
s

Analytical

RBNN

Figure 4.5: Plot of analytical and neural

results with arbitrary weights (Traditional

ANN) (Example 4.2.2)

Figure 4.6: Plot of analytical and neural results

with regression based weights (RBNN)

(Example 4.2.2)

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

55

Figure 4.7: Error plot between analytical and RBNN results (Example 4.2.2)

Example 4.2.3:

A second order boundary value problem is taken as

2
2

2

 y
dx

yd

]1,0[x

with boundary conditions 0)1(,1)0( yy

Corresponding RBNN trial solution is expressed as (Sec. 2.2.3, Eq. 2.25)

),()1(1),(pxNxxxpxy t 

Twenty equidistant points in [0, 1] and five hidden nodes (fixed) have been considered for

RBNN model. Seven nodes in the hidden layer have been taken for traditional ANN.

Analytical results are given in Figure 4.8. Figures 4.9 and 4.10 show analytical and neural

results with the initial weights as random (Traditional ANN) and regression based (RBNN).

Finally, the graph of error between analytical and RBNN results is cited in Figure 4.11.

Figure 4.8: Plot of analytical results (Example 4.2.3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

x

E
rr

o
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

 A
n

a
ly

ti
c
a
l

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

56

Figure 4.11: Error plot between analytical and RBNN results (Example 4.2.3)

Example 4.2.4:

Now, we solve a fourth order ordinary differential equation

x
dx

yd
120

4

4



]1,1[x

with boundary conditions ,1)1(y ,3)1(y ,5)1(y .5)1(y

The ANN trial solution, in this case, is represented as (Sec. 2.2.3, Eq. 2.29)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R
e
s
u

l
t
s

Analytical

ANN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R
e
s
u

l
t
s

Analytical

RBNN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

E
rr

o
r

Figure 4.9: Plot of analytical and ANN results
with arbitrary weights (Example 4.2. 3)

Figure 4.10: Plot of analytical and
RBNN results (Example 4.2.3)

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

57

),()1()1(422),(22234 pxNxxxxxxpxy t 

The network has been trained for eight equidistant points in [-1, 1] and four hidden nodes

(fixed) according to regression analysis. We have taken six nodes in hidden layer for

traditional ANN. Here, tangent hyperbolic function is considered as the activation function.

As in previous case analytical and obtained neural results with random initial weights are

shown in Figure 4.12. Comparisons between analytical and neural results for regression

based initial weights are depicted in Figure 4.13. Lastly, the error (between analytical and

RBNN results) is plotted in Figure 4.14.

Figure 4.14: Error plot between analytical and RBNN results (Example 4.2.4)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-3

-2

-1

0

1

2

3

4

5

6

7

8

x

R
e
s
u

l
t
s

Analytical

ANN

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-3

-2

-1

0

1

2

3

4

5

6

7

8

x

R
e
s
u

l
t
s

Analytical

RBNN

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

E
rr

o
r

Figure 4.12: Plot of analytical and neural
results with arbitrary weights (Example 4.2.4)

Figure 4.13: Plot ofanalytical and RBNN
results (Example 4.2.4)

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

58

Next, the initial weights are taken as a different combination of arbitrary and regression

based. We have considered combinations of arbitrary weights)(Aw (from input to hidden

layer),)(Av (from hidden to output layer) and regression based weights)(Rw (from input

to hidden layer) and)(Rv (from hidden to output layer) respectively for the following

problems. The sigmoid function viz.
)1(

1
)(

xe
x


 is considered as an activation

function for each hidden unit. We have taken three first order ODEs in Examples 4.2.5,

4.2.6 and 4.2.7 respectively.

Now example problems have been considered with arbitrary and regression based

weights with four, five and six nodes in the hidden layer. First order linear initial value

problems are given in Examples 4.2.8 and 4.2.10. Further, nonlinear initial value problem

is solved in Example 4.2.11. A second order damped free vibration equation is taken in

Example 4.2.9.

Example 4.2.5:

 Let us consider the following first order ordinary differential equation

234 23  xx
dx

dy

 bax ,

subject to 0)0(y

As discussed in Sec. 2.2.2 we can write the trial solution as

),(),(pxxNpxyt 

The network is trained for ten equidistant points in [0, 1] and with five sigmoid hidden

nodes according to regression based algorithm. In Table 4.3 we have compared the

analytical with neural solutions for all combinations of arbitrary (five nodes in hidden

layer) and regression based weights. Figure 4.15 shows comparison between analytical

and the solution which is obtained by using regression based weights. The converged

network parameters of RBNN are used then to have the results for some testing points

inside and outside of the domain. As such Tables, 4.4 and 4.5 incorporates corresponding

results directly by using the converged weights.

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

59

Table 4.3: Analytical and neural solution for all combination of arbitrary and regression based

weights (Example 4.2.5)

Figure 4.15: Plot of analytical and RBNN),(4 pxyt (Example 4.2.5)

Table 4.4: Analytical and RBNN for testing points (Example 4.2.5)

Testing points 0.1354 0.3600 0.5231 0.4560 0.9870

Analytical 0.2687 0.6901 0.9779 0.8604 1.9615

RBNN)(),(RvRw 0.2682 0.7073 1.0288 0.8958 2.0111

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x

R
e
s
u

lt
s

Analytical

RBNN

Input

data

Analytical Neural

)(),(

),(1

AvAw

pxyt

Neural

)(),(

),(2

AvRw

pxyt

Neural

)(),(

),(3

RvAw

pxyt

RBNN

)(),(

),(4

RvRw

pxyt

0 0 0 0 0 0

0.1 0.1991 0.1985 0.1987 0.1986 0.1988

0.2 0.3936 0.3947 0.3949 0.3949 0.3948

0.3 0.5811 0.5897 0.5910 0.5901 0.5899

0.4 0.7616 0.7849 0.7871 0.7855 0.7801

0.5 0.9375 0.9818 0.9848 0.9829 0.9805

0.6 1.1136 1.1826 1.1855 1.1842 1.1804

0.7 1.2971 1.3901 1.3914 1.3921 1.3897

0.8 1.4976 1.6078 1.6054 1.6100 1.6038

0.9 1.7271 1.8400 1.8316 1.8420 1.8296

1 2.0000 2.0910 2.0758 2.0927 2.0720

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

60

Table 4.5: Analytical and RBNN for testing points (Example 4.2.5)

Example 4.2.6:

Let us consider next the first order nonlinear ordinary differential equation

22 xy
dx

dy


subject to 1)0(y

This problem has no analytical solution [9]. We have solved the problem for  3.0,0x

and its trial solution can be written as discussed in Sec. 2.2.2 (Eq. 2.14)

),(1),(pxxNpxyt 

We have trained the network for sixteen equidistant points in [0, 0.3] and six number of

nodes in hidden layer. Table 4.6 shows the comparison between numerical (Euler) and

neural results for combinations of arbitrary and regression based weights with an accuracy

of 0.005. Euler and RBNN results are compared in Figure 4.16 and the error plot is

shown in Figure 4.17. Finally, results for some testing points inside the domain are shown

in Table 4.7.

Figure 4.16: Plot of Euler and neural results for)(),(RvRw (Example 4.2.6)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

x

R
e
su

lt
s

Euler

RBNN

Testing points 1.021 1.0303 1.0450 1.100

Analytical results 2.0664 2.0937 2.1250 2.3331

RBNN)(),(RvRw 2.1069 2.1508 2.1759 2.2978

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

61

Table 4.6: Euler and neural results for all combinations of arbitrary and regression based weights

(Example 4.2.6)

Input data

Euler

Neural

)(),(

),(1

AvAw

pxyt

Neural

)(),(

),(2

RvAw

pxyt

Neural

)(),(

),(3

AvRw

pxyt

RBNN

)(),(

),(4

RvRw

pxyt

0 1.0 1.0 1.0 1.0000 1.0000

0.02 1.02 1.0222 1.0222 1.0219 1.0223

0.04 1.0408 1.0445 1.0445 1.0440 1.0429

0.06 1.0624 1.0669 1.0669 1.0661 1.0648

0.08 1.0849 1.0894 1.0894 1.0883 1.0879

0.1 1.1084 1.1119 1.1120 1.1107 1.1114

0.12 1.1327 1.1346 1.1347 1.1332 1.1331

0.14 1.1581 1.1574 1.1575 1.1558 1.1565

0.16 1.1845 1.1784 1.1804 1.1785 1.1795

0.18 1.2121 1.2035 1.2036 1.2014 1.2040

0.2 1.2408 1.2268 1.2269 1.2245 1.2371

0.22 1.2708 1.2503 1.2503 1.2477 1.2619

0.24 1.3021 1.2740 1.2738 1.2710 1.2876

0.26 1.3349 1.2978 1.2989 1.2944 1.3141

0.28 1.3692 1.3218 1.3215 1.3179 1.3517

0.3 1.4051 1.3458 1.3457 1.3414 1.3802

It may be seen that the results found are to be good. Increasing the number of points

beyond 16 did not improve the reuslts.

Figure 4.17: Error plot between Euler and RBNN),(4 pxyt results (Example 4.2.6)

0 0.05 0.1 0.15 0.2 0.25 0.3
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

x

E
rr

o
r

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

62

Table 4.7: Analytical and RBNN for testing points (Example 4.2.6)

Testing points 0.03 0.08 0.18 0.22 0.28

Euler results 1.0300 1.0849 1.2108 1.2708 1.3692

ANN results 1.0358 1.0960 1.2210 1.2720 1.3499

Example 4.2.7:

We have taken a first order nonlinear initial value problem in the domain [0, 0.5]

22 xy
dx

dy


]5.0,0[x

with initial condition 1)0(y

The RBNN trial solution is same as the above example.

We have trained the network for ten points in the given domain and five hidden nodes.

Table 4.8 shows the comparison between numerical (Euler) and neural results for four

combinations of arbitrary and regression based weights with an accuracy of 0.001. Euler

and RBNN results are compared in Figure 4.18.

Table 4.8: Euler and ANN results of arbitrary weights and regression based weights for

five hidden nods (Example 4.2.7)

Input

data

Euler

)(),(

),(1

AvAw

pxyt

)(),(

),(2

RvAw

pxyt

)(),(

),(3

AvRw

pxyt

)(),(

),(4

RvRw

pxyt

0 1.0000 1.0000 1.000 1.000 1.0000

0.05 1.0500 1.0666 1.0642 1.0651 1.0600

0.1 1.1053 1.1338 1.1257 1.1227 1.1151

0.15 1.1668 1.2018 1.1996 1.1935 1.1837

0.2 1.2360 1.2710 1.2505 1.2598 1.2456

0.25 1.3144 1.3418 1.3318 1.3401 1.3205

0.3 1.4039 1.4149 1.4237 1.4289 1.4115

0.35 1.5070 1.4909 1.4803 1.4900 1.4998

0.4 1.6267 1.5707 1.5895 1.5836 1.5973

0.45 1.7670 1.6549 1.6839 1.6799 1.7580

0.5 1.9332 1.8039 1.8404 1.8427 1.9044

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

63

Figure 4.18: Plot of Euler and neural results for)(),(RvRw (Example 4.2.7)

Example 4.2.8:

Let us consider the first order ordinary differential equation




























3

2
23

3

2

1

31
2

1

31

xx

x
xxxy

xx

x
x

dx

dy

]1,0[x

with initial condition 1)0(y

 The trial solution is same as Example 4.2.6

We have trained the network for 20 equidistant points in [0, 1] and compare results

between analytical and neural with arbitrary and regression based weights with four, five

and six nodes fixed in hidden layer. Comparison between analytical and neural results

with arbitrary and regression based weights is given in Table 4.9. Analytical results are

incorporated in second column. Neural results for arbitrary weights)(Aw (from input to

hidden layer) and)(Av (from hidden to output layer) with four, five and six nodes are

cited in third, fifth and seventh column respectively. Similarly, neural results with

regression weights)(Rw (from input to hidden layer) and)(Rv (from hidden to output

layer) with four, five and six nodes are given in fourth, sixth and ninth column

respectively.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

R
e
su

lt
s

Euler

RBNN

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

64

Analytical and neural results with arbitrary and regression based weights for six nodes in

hidden layer are compared in Figures 4.19 and 4.20. The error plot is shown in Figure

4.21. Absolute deviations in % values have been calculated in Table 4.9 and the

maximum deviation for arbitrary weights neural results (six hidden nodes) is 3.67 (eighth

column) and for regression based weights it is 1.47 (tenth column). From Figures 4.19

and 4.20 one may see that results from the regression based weights exactly agree at all

points with analytical results but for results with arbitrary weights these are not so. Thus

one may see that the neural results with regression based weights are more accurate.

It may be seen that by increasing the number of nodes in hidden layer from four to

six, the results are found to be better. Although the number of nodes in hidden layer had

been increased beyond six, the results were not improving further.

This problem has also been solved by well-known numerical methods viz. Euler and

Runge-kutta for the sake of comparison. Table 4.10 shows validation of the neural results

(with six hidden nodes) by comparing with other numerical results (Euler and Runge-

Kutta results).

Table 4.9: Analytical and neural solution for all combination of arbitrary and

regression based weights (Example 4.2.8)

Input

data

Analyti

cal

Neural Results

)(

),(

Av

Aw

(Four

nodes)

)(

),(

Rv

Rw

RBNN

(Four
nodes)

)(

),(

Av

Aw

(Five

nodes)

)(

),(

Rv

Rw

RBNN
(Five

nodes)

)(

),(

Av

Aw

(Six
Nodes)

Deviati
on%

)(

),(

Rv

Rw

RBNN

(Six nodes)

Deviation
%

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00 1.0000 0.00

0.05 0.9536 1.0015 0.9998 1.0002 0.9768 0.9886 3.67 0.9677 1.47

0.10 0.9137 0.9867 0.9593 0.9498 0.9203 0.9084 0.58 0.9159 0.24

0.15 0.8798 0.9248 0.8986 0.8906 0.8802 0.8906 1.22 0.8815 0.19

0.20 0.8514 0.9088 0.8869 0.8564 0.8666 0.8587 0.85 0.8531 0.19

0.25 0.8283 0.8749 0.8630 0.8509 0.8494 0.8309 0.31 0.8264 0.22

0.30 0.8104 0.8516 0.8481 0.8213 0.9289 0.8013 1.12 0.8114 0.12

0.35 0.7978 0.8264 0.8030 0.8186 0.8051 0.7999 0.26 0.7953 0.31

0.40 0.7905 0.8137 0.7910 0.8108 0.8083 0.7918 0.16 0.7894 0.13

0.45 0.7889 0.7951 0.7908 0.8028 0.7948 0.7828 0.77 0.7845 0.55

0.50 0.7931 0.8074 0.8063 0.8007 0.7960 0.8047 1.46 0.7957 0.32

0.55 0.8033 0.8177 0.8137 0.8276 0.8102 0.8076 0.53 0.8041 0.09

0.60 0.8200 0. 8211 0.8190 0.8362 0.8246 0.8152 0.58 0.8204 0.04

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

65

Table 4.10: Comparison of the results (Example 4.2.8)

0.65 0.8431 0.8617 0.8578 0.8519 0.8501 0.8319 1.32 0.8399 0.37

0.70 0.8731 0.8896 0.8755 0.8685 0.8794 0.8592 1.59 0.8711 0.22

0.75 0.9101 0.9281 0.9231 0.9229 0.9139 0.9129 0.31 0.9151 0.54

0.80 0.9541 0.9777 0.9613 0.9897 0.9603 0.9755 2.24 0.9555 0.14

0.85 1.0053 1.0819 0.9930 0.9956 1. 0058 1.0056 0.03 0.9948 1.04

0.90 1.0637 1.0849 1.1020 1.0714 1.0663 1.0714 0.72 1.0662 0.23

0.95 1.1293 1.2011 1.1300 1.1588 1.1307 1.1281 0.11 1.1306 0.11

1.00 1.2022 1.2690 1.2195 1.2806 1.2139 1.2108 0.71 1.2058 0.29

Input data Analytical Euler Runge-Kutta)(),(RvRw
RBNN

(Six nodes)

0 1.0000 1.0000 1.0000 1.0000

0.0500 0.9536 0.9500 0.9536 0.9677

0.1000 0.9137 0.9072 0.9138 0.9159

0.1500 0.8798 0.8707 0.8799 0.8815

0.2000 0.8514 0.8401 0.8515 0.8531

0.2500 0.8283 0.8150 0.8283 0.8264

0.3000 0.8104 0.7953 0.8105 0.8114

0.3500 0.7978 0.7810 0.7979 0.7953

0.4000 0.7905 0.7721 0.7907 0.7894

0.4500 0.7889 0.7689 0.7890 0.7845

0.5000 0.7931 0.7717 0.7932 0.7957

0.5500 0.8033 0.7805 0.8035 0.8041

0.6000 0.8200 0.7958 0.8201 0.8204

0.6500 0.8431 0.8178 0.8433 0.8399

0.7000 0.8731 0.8467 0.8733 0.8711

0.7500 0.9101 0.8826 0.9102 0.9151

0.8000 0.9541 0.9258 0.9542 0.9555

0.8500 1.0053 0.9763 1.0054 0.9948

0.9000 1.0637 1.0342 1.0638 1.0662

0.9500 1.1293 1.0995 1.1294 1.1306

1.000 1.2022 1.1721 1.2022 1.2058

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

x

R
e
s
u

lt
s

Analytical

ANN results with random weights

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

x

R
e
s
u

lt
s

Analytical

RBNN

Figure 4.19: Plot of analytical and neural results with arbitrary weights

(Example 4.2.8)

Figure 4.20: Plot of analytical and RBNN results for six nodes

(Example 4.2.8)

90

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

67

Figure 4.21: Error plot between analytical and RBNN results for six nodes

(Example 4.2.8)

Example 4.2.9:

In this Example, a second order damped free vibration equation is taken as

044
2

2

 y
dx

dy

dx

yd

 4,0x

with initial conditions 1)0(y , 1)0(y

As discussed in Sec.2.2.2 (Eq. 2.18) we can write the trial solution as

),(1),(2 pxNxxpxyt 

Here the network is trained for 40 equidistant points in [0, 4] and with four, five and six

hidden nodes according to the arbitrary and regression based algorithm. In Table 4.11 we

compare the analytical solutions with neural solutions taking arbitrary and regression

based weights for four, five and six nodes in the hidden layer. Here, analytical results are

given in the second column of Table 4.11. Neural results for arbitrary weights)(Aw

(from input to hidden layer) and)(Av (from hidden to output layer) with four, five and six

nodes are shown in third, fifth and seventh column respectively. Neural results with

regression based weights)(Rw (from input to hidden layer) and)(Rv (from hidden to

output layer) with four, five and six nodes are cited in fourth, sixth and eighth column

respectively.

Analytical and neural results which are obtained for random initial weights are

depicted in Figure 4.22. Figure 4.23 shows comparison between analytical and neural

0 0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

x

E
rr

o
r

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

68

results for regression based initial weights for six hidden nodes. Finally, the error plot

between analytical and RBNN results are shown in Figure 4.24.

Table 4.11: Analytical and neural solution for all combination of arbitrary and

regression based weights (Example 4.2.9)

Input

data

Analyti

cal

Neural Results

)(

),(

Av

Aw

(Four

nodes)

)(

),(

Rv

Rw

RBNN

(Four nodes)

)(

),(

Av

Aw

(Five

nodes)

)(

),(

Rv

Rw

RBNN

(Five

nodes)

)(

),(

Av

Aw

(Six nodes)

)(

),(

Rv

Rw

RBNN

(Six nodes)

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.1 1.0643 1.0900 1.0802 1.0910 1.0878 1.0923 1.0687

0.2 1.0725 1.1000 1.0918 1.0858 1.0715 1.0922 1.0812

0.3 1.0427 1.0993 1.0691 1.0997 1.0518 1.0542 1.0420

0.4 0.9885 0.9953 0.9732 0.9780 0.9741 0.8879 0.9851

0.5 0.9197 0.9208 0.9072 0.9650 0.9114 0.9790 0.9122

0.6 0.8433 0.8506 0.8207 0.8591 0.8497 0.8340 0.8082

0.7 0.7645 0.7840 0.7790 0.7819 0.7782 0.7723 0.7626

0.8 0.6864 0.7286 0.6991 0.7262 0.6545 0.6940 0.6844

0.9 0.6116 0.6552 0.5987 0.6412 0.6215 0.6527 0.6119

1.0 0.5413 0.5599 0.5467 0.5604 0.5341 0.5547 0.5445

1.1 0.4765 0.4724 0.4847 0.4900 0.4755 0.4555 0.4634

1.2 0.4173 0.4081 0.4035 0.4298 0.4202 0.4282 0.4172

1.3 0.3639 0.3849 0.3467 0.3907 0.3761 0.3619 0.3622

1.4 0.3162 0.3501 0.3315 0.3318 0.3274 0.3252 0.3100

1.5 0.2738 0.2980 0.2413 0.2942 0.2663 0.2773 0.2759

1.6 0.2364 0.2636 0.2507 0.2620 0.2439 0.2375 0.2320

1.7 0.2036 0.2183 0.2140 0.2161 0.2107 0.2177 0.1921

1.8 0.1749 0.2018 0.2007 0.1993 0.1916 0.1622 0.1705

1.9 0.1499 0.1740 0.1695 0.1665 0.1625 0.1512 0.1501

2.0 0.1282 0.1209 0.1204 0.1371 0.1299 0.1368 0.1245

2.1 0.1095 0.1236 0.1203 0.1368 0.1162 0.1029 0.1094

2.2 0.0933 0.0961 0.0942 0.0972 0.0949 0.0855 0.09207

2.3 0.0794 0.0818 0.0696 0.0860 0.0763 0.0721 0.0761

2.4 0.0675 0.0742 0.0715 0.0849 0.0706 0.0526 0.0640

2.5 0.0573 0.0584 0.0419 0.0609 0.0543 0.0582 0.0492

2.6 0.0485 0.0702 0.0335 0.0533 0.0458 0.0569 0.0477

2.7 0.0411 0.0674 0.0602 0.0581 0.0468 0.0462 0.0409

2.8 0.0348 0.0367 0.0337 0.0387 0.0328 0.0357 0.03460

2.9 0.0294 0.0380 0.0360 0.0346 0.0318 0.0316 0.0270

3.0 0.0248 0.0261 0.0207 0.0252 0.0250 0.0302 0.0247

3.1 0.0209 0.0429 0.0333 0.0324 0.0249 0.0241 0.0214

3.2 0.0176 0.0162 0.0179 0.0154 0.0169 0.0166 0.0174

3.3 0.0148 0.0159 0.0137 0.0158 0.0140 0.0153 0.0148

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

69

3.4 0.0125 0.0138 0.0135 0.0133 0.0130 0.0133 0.0129

3.5 0.0105 0.0179 0.0167 0.0121 0.0132 0.0100 0.0101

3.6 0.0088 0.0097 0.0096 0.0085 0.0923 0.0095 0.0090

3.7 0.0074 0.0094 0.0092 0.0091 0.0093 0.0064 0.0071

3.8 0.0062 0.0081 0.0078 0.0083 0.0070 0.0061 0.0060

3.9 0.0052 0.0063 0.0060 0.0068 0.0058 0.0058 0.0055

4.0 0.0044 0.0054 0.0052 0.0049 0.0049 0.0075 0.0046

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

R
e
s
u

lt
s

Analytical

 ANN results with random weights

Figure 4.22: Plot of analytical and neural results with arbitrary weights
(for six nodes) (Example 4.2.9)

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

70

Figure 4.24: Error plot between analytical and RBNN solutions

for six nodes (Example 4.2.9)

Table 4.12 shows the CPU time of computation for Examples 4.2.8 and 4.2.9 with four,

five and six hidden nodes respectively. One may note that the time of computation of

RBNN models are less than traditional artificial neural architecture.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

R
e
s
u

lt
s

Analytical

RBNN

0 0.5 1 1.5 2 2.5 3 3.5 4

-1.5

-1

-0.5

0

0.5

1

1.5

x

E
rr

o
r

Figure 4.23: Plot of analytical and RBNN results for six nodes

(Example 4. 2.9)

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

71

Table 4.12: Time of computation

Problems

CPU time of computation in sec.

Traditional ANN RBNN

(four nodes)

RBNN

(five nodes)

RBNN

(six nodes)

Four
nodes

Five
nodes

Six
nodes

Example

4.2.8

5652.19 5436.15 5364.12 4716.17 4572.11 3924.13

Example

4.2.9

10016.25 98020.09 8784.20 8028.14 5580.23 4968.10

Example 4.2.10:

Now we consider an initial value problem

xey
dx

dy 35 

subject to 0)0(y

 The RBNN trial solution is written as

),(),(pxxNpxyt 

Ten equidistant points in the given domain are taken with four, five and six hidden nodes

according to arbitrary and regression based algorithm have been considered. Comparison

of analytical and neural results with arbitrary and regression based weights have been

shown in Table 4.13. Also other numerical results viz. Euler and Runge-Kutta are

compared with RBNN in this Table.

Analytical and traditional neural results obtained using random initial weights and

six nodes are depicted in Figure 4.25. Similarly, Figure 4.26 shows comparison between

analytical and neural results with regression based initial weights for six hidden nodes.

Finally, the error plot between analytical and RBNN results are cited in Figure 4.27.

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

72

Table 4.13: Analytical, numerical and neural solutions with arbitrary and regression based weights

(Example 4.2.10)

Input

data

Analyti

cal

Euler

Runge

–Kutta

Neural Results

)(

),(

Av

Aw

(Four

nodes)

)(

),(

Rv

Rw

RBNN

(Four

nodes)

)(

),(

Av

Aw

(Five

nodes)

)(

),(

Rv

Rw

RBNN

(Five

nodes)

)(

),(

Av

Aw

(Six

nodes)

)(

),(

Rv

Rw

RBNN

(Six

nodes)

0 0 0 0 0 0 0 0 0 0

0.1 0.0671 0.1000 0.0671 0.0440 0.0539 0.0701 0.0602 0.0565 0.0670

0.2 0.0905 0.1241 0.0904 0.0867 0.0938 0.0877 0.0927 0.0921 0.0907

0.3 0.0917 0.1169 0.0917 0.0849 0.0926 0.0889 0.0932 0.0931 0.0918

0.4 0.0829 0.0991 0.0829 0.0830 0.0876 0.0806 0.0811 0.0846 0.0824

0.5 0.0705 0.0797 0.0705 0.0760 0.0748 0.0728 0.0714 0.0717 0.0706

0.6 0.0578 0.0622 0.0577 0.0492 0.0599 0.0529 0.0593 0.0536 0.0597

0.7 0.0461 0.0476 0.0461 0.0433 0.0479 0.0410 0.0453 0.0450 0.0468

0.8 0.0362 0.0360 0.0362 0.0337 0.0319 0.0372 0.0370 0.0343 0.0355

0.9 0.0280 0.0271 0.0280 0.0324 0.0308 0.0309 0.0264 0.0249 0.0284

1.0 0.0215 0.0203 0.0215 0.0304 0.0282 0.0255 0.0247 0.0232 0.0217

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x

R
e
s
u

l
t
s

Analytical

ANN results with

random weights

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x

R
e
s
u

l
t
s

comparision of solutions

Analytical

RBNN

Figure 4.25: Plot of analytical and neural results
with arbitrary weights (for six nodes)

(Example 4.2.10)

Figure 4.26: Plot of analytical and RBNN

results for six nodes (Example 4.2.10)

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

73

Figure 4.27: Error plot between analytical and regression based weights results

(Example 4.2.10)

Example 4.2.11:

In this example, afirst order IVP has been considered

y
dx

dy


with initial condition 1)0(y

The above equation represents exponential growth,where


1
represents time constant or

characteristic time.

Considering ,1 we have the analytical solution as
xey 

 The RBNN trial solution in this case is

),(1),(pxxNpxyt 

Now the network is trained for ten equidistant points in the domain [0, 1] with four, five

and six hidden nodes according to arbitrary and regression based algorithm. Comparison

of analytical and neural results with arbitrary ()(Aw ,)(Av) and regression based weights

()(Rw ,))(Rv have been given in Table 4.14. Analytical and traditional neural results

obtained using random initial weights with six nodes are shown in Figure 4.28. Figure

4.29 depicts comparison between analytical and neural results with regression based

initial weights for six hidden nodes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

E
rr

o
r

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

74

Table 4.14: Analytical and neural solution for all combination of arbitrary and

regression based weights (Example 4.2.11)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

R
e
su

lt
s

Analytical

ANN results with random weights

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x
R

e
su

lt
s

Analytical

RBNN

Input

data

Analytical

 Neural Results

)(

),(

Av

Aw

(Four
nodes)

)(

),(

Rv

Rw

RBNN
(Four

nodes)

)(

),(

Av

Aw

(Five
nodes)

)(

),(

Rv

Rw

RBNN
(Five

nodes)

)(

),(

Av

Aw

(Six
nodes)

)(

),(

Rv

Rw

RBNN
(Six

nodes)

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.1000 1.1052 1.1069 1.1061 1.1093 1.1060 1.1075 1.1051

0.2000 1.2214 1.2337 1.2300 1.2250 1.2235 1.2219 1.2217

0.3000 1.3499 1.3543 1.3512 1.3600 1.3502 1.3527 1.3498

0.4000 1.4918 1.4866 1.4921 1.4930 1.4928 1.4906 1.4915

0.5000 1.6487 1.6227 1.6310 1.6412 1.6456 1.6438 1.6493

0.6000 1.8221 1.8303 1.8257 1.8205 1.8245 1.8234 1.8220

0.7000 2.0138 2.0183 2.0155 2.0171 2.0153 2.0154 2.0140

0.8000 2.2255 2.2320 2.2302 2.2218 2.2288 2.2240 2.2266

0.9000 2.4596 2.4641 2.4625 2.4664 2.4621 2.4568 2.4597

1.0000 2.7183 2.7373 2.7293 2.7232 2.7177 2.7111 2.7186

Figure 4.28: Plot of analytical and neural
results with arbitrary weights

for six nodes (Example 4.2.11)

Figure 4.29: Plot of analytical and RBNN
for six nodes (Example 4.2.11)

Regression Based Neural Network (RBNN) Model

Chapter 4 for Solving ODEs

75

4.3 Conclusion

In this chapter, a regression based artificial neural network has been proposed. The initial

weights from input to hidden and hidden to output layer are taken from regression based

weight generation. The main value of the chapter is that the numbers of nodes in the

hidden layer are fixed according to the degree of polynomial in the regression.

Accordingly, comparisons of different neural architecture corresponding to different

regression models are investigated. One may see from the Tables 4.10 and 4.13 that

Runge-Kutta method although gives better result but the above repetitive nature is

required for each step size. Here, after getting the converged ANN, we may use it as a

black box to get numerical results of any arbitrary point in the domain.

76

Chapter 5

Chebyshev Functional Link Neural

Network (FLNN) Model for Solving ODEs

Single layer Chebyshev Functional Link Neural Network called Chebyshev Neural

Network (ChNN) model has been developed in this chapter. Second order non-linear

ordinary differential equations of Lane-Emden and Emden-Fowler type have been solved

using ChNN model. The hidden layer is eliminated by expanding the input pattern by

Chebyshev polynomials. These equations are categorized as singular nonlinear initial

value problems. Single layer ChNN model is used here to overcome the difficulty of the

singularity. We have used an unsupervised version of error back propagation for

minimizing error function and update the network parameters without using optimization

techniques. The initial weights from input to output layer are considered as random.*

5.1 Chebyshev Neural Network (ChNN) Model

In this section, we have described structure of single layer ChNN model, ChNN

formulation, its learning algorithm and gradient computation.

5.1.1 Structure of Chebyshev Neural Network

Single layer Chebyshev Neural Network (ChNN) model has been considered for the

present problem. Figure 5.1 shows the structure of ChNN consisting of the single input

node, a functional expansion block based on Chebyshev polynomials and a single output

node.

*Contents of this chapter have been published in the following Journals:

1. Applied Mathematics and Computation, 247, 2014;

2. Neurocomputing, 149, 2015.

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

77

The architecture of the neural model consists of two parts first one is numerical

transformation part and second part is learning part. In numerical transformation part,

each input data is expanded to several terms using Chebyshev polynomial. So the

Chebyshev polynomial can be viewed as a new input vector. Let us consider input data

denoted as T

hxxxx),..,,(21 that is the single input node x has h number of data and the

Chebyshev polynomials are a set of orthogonal polynomials obtained by a solution of the

Chebyshev differential equations [15]. The first two Chebyshev polynomials are known

as

 xxT

xT





)(

1)(

1

0 (5.1)

The higher order Chebyshev polynomials may be generated by the well known recursive

formula

)()(2)(11 xTxxTxT rrr   (5.2)

where)(xT r

denotes rth order Chebyshev polynomial. Here h dimensional input

pattern is expanded to m dimensional enhanced Chebyshev polynomials. The advantage

of the ChNN is to get the result by using single layer network. Although this is done by

increasing the dimension of the input through Chebyshev polynomial.The architecture of

the ChNN model with first five Chebyshev polynomials and single input and output layer

(with the single node) is shown in Figure 5. 1.

)(0 xT

1w

)(1 xT 2w

)(2 xT 3w

4w

)(3 xT

5w

6w

)(4 xT

)(5 xT

Figure 5.1: Structure of single layer Chebyshev Neural Network (ChNN)

 x N(x,p)

Input layer
ChNN output

Output layer

)tanh(

C
h

eb
y

sh
e
v

 E
x
p

a
n

si
o
n

 E

x
p
an

s

 i

o
n

io
n

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

78

5.1.2 Formulation and Learning Algorithm of Proposed ChNN Model

The ChNN trial solution),(pxy t for ODEs with parameters (weights) p may be written in

the form

)),(,()(),(pxNxFxApxy t 

(5.3)

 The first term)(xA does not contain adjustable parameters and satisfies only

initial/boundary conditions, where as the second term)),(,(pxNxF contains the single

output),(pxN of ChNN with input x and adjustable parameters p. The tangent hyperbolic

(tanh) function viz.
xx

xx

ee

ee







is considered here as the activation function.

The network output with input x and parameters (weights) p may be computed as

zz

zz

ee

ee
zpxN








)tanh(),((5.4)

where z is a weighted sum of expanded input data. It is written as

)(1
1

xTwz j

m

j

j 



 (5.5)

where x is the input data,)(1 xT j
 and

jw with },...3,2,1{ mj  denoting the expanded input

data and the weight vector respectively of the Chebyshev Neural Network.

Our aim is to solve the Lane- Emden and Emden-Fowler type differential equations.

As such we now discuss below the ChNN formulation for the following type (second

order initial value problem) of ODE











dx

dy
yxf

dx

yd
,,

2

2

 bax , (5.6)

with initial conditions Aay )(, Aay )(

The ChNN trial solution is constructed as

),()()(),(2 pxNaxaxAApxyt  (5.7)

where),(pxN is the output of the Chebyshev Neural Network with one input x and

parameters p .

The error function),(pxE is written as

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

79

2

2

2

1

),(
),,(,

),(

2

1
),(



















dx

pxdy
pxyxf

dx

pxyd
pxE it

iti
it

h

i .
 (5.8)

As discussed above, for ChNN ix s’ i=1,2,…h are the input data and the weights jw

from input to output layer are modified according to the unsupervised error back

propagation learning algorithm (Sec. 2.2.2, Eq. 2.9) as follows




















k

j

k
k

j

k

j

k

j

k

j
w

pxE
wwww

),(1  (5.9)

Where  is learning parameter, k is iteration step and),(pxE is the error function. One

may note that the parameter k is used for updating the weights as usual in ANN.

 Here

















































2

2

2

1

),(
),,(,

),(

2

1),(

dx

pxdy
pxyxf

dx

pxyd

ww

pxE it

iti

it

h

ijj

. (5.10)

5.1.3 Computation of Gradient for ChNN Model

The error computation involves both output and derivative of the network output with

respect to the corresponding input. So it is required to find the gradient of the network

derivatives with respect to the inputs.

As such, the derivative of pxN ,() with respect to input x is written as

 )(
)(

)()(
1

1
2))(())((

2))(())((2))(())((

11

1111

xTw
ee

eeee

dx

dN
jj

m

j
xTwxTw

xTwxTwxTwxTw

jjjj

jjjjjjjj














































(5.11)

Simplifying, the above we have

 )(1 1

1

2

))(())((

))(())((

11

11

xTw
ee

ee

dx

dN
jj

m

j

xTwxTw

xTwxTw

jjjj

jjjj









































 



 .

(5.12)

It may be noted that the above differentiation is done for all x, where x has h number of

data.

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

80

where

zz

zz

ee

ee
zpxN








)tanh(),(

 (5.13)






m

j

jj xTwz

1

1)(

Similarly, we can compute the second derivative of N(x,p) as

 

 







































































































































m

j

xTwxTw

xTwxTw

jj

jjxTwxTw

xTwxTwxTwxTw

xTwxTw

xTwxTw

jjjj

jjjj

jjjj

jjjjjjjj

jjjj

jjjj

ee

ee
xTw

xTw
ee

eeee

ee

ee

dx

Nd

1

.

2

))(())((

))(())((

1

2

12))(())((

2))(())((2))(())((

))(())((

))(())((

2

2

11

11

11

1111

11

11

1)(

)(
)(

)()(
2

(5.14)

After simplifying the above we get

 

 







































































































































































m

j

jjxTwxTw

xTwxTw

jjxTwxTw

xTwxTw

xTwxTw

xTwxTw

xTw
ee

ee

xTw
ee

ee

ee

ee

dx

Nd

jjjj

jjjj

jjjj

jjjj

jjjj

jjjj

1

1

2

))(())((

))(())((

2

1))(())((

))(())((
3

))(())((

))(())((

2

2

)(1

)(22

11

11

11

11

11

11

 (5.15)

Where jw denote parameters of network and)(),(11 xTxT jj 
 denote first and second

derivatives of Chebyshev polynomials.

Let
dx

dN
N  denote the derivative of the network output with respect to the input x.

The derivative of),(pxN and N with respect to other parameters (weights) may be

formulated as

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

81

 )(1 1

1

2

))(())((

))(())((

11

11

xT
ee

ee

w

N
j

m

j

xTwxTw

xTwxTw

j
jjjj

jjjj









 







































 (5.16)

   ))(())(tanh())())((())(tanh(111 xTzxTwxTz
w

N
jjjj

j






 
 (5.17)

After getting all the derivatives we can find out the gradient of error. Using error back

propagation learning algorithm we may minimize the error function as per the desired

accuracy.

Next, singular initial value problems viz. Lane-Emden type equations are considered.

5.2 Lane- Emden Equations

In astrophysics, the equation which describes the equilibrium density distribution in self

gravitating sphere of polytropic isothermal gas was proposed by Lane [65] and further

described by Emden [66] which are known as Lane-Emden equations. The general form

of Lane-Emden equation is

)(),(
2

2

2

xgyxf
dx

dy

xdx

yd


0x (5.18)

with initial conditions ,)0(y 0)0(y

where),(yxf is a nonlinear function of x and y and)(xg is the function of x

respectively. The above Lane-Emden type equations are singular at x=0. So analytical

solution of this type of equation is possible in the neighborhood of the singular point [69].

In Eq. (5.18),),(yxf describes several phenomena in astrophysics such as theory of

stellar structure, the thermal behavior of a spherical cloud of gas, isothermal gas spheres

etc. The most popular form of),(yxf is

,),(myyxf  ,1)0(y 0)0(y and 0)(xg (5.19)

So the standard form of the Lane-Emden equation may be written as

0
2

2

2

 my
dx

dy

xdx

yd
 (5.20)

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

82

 0)(
1 2

2
 my

dx

dy
x

dx

d

x

with initial conditions 1)0(y , 0)0(y

The Lane-Emden equation is dimensionless form of Poisson’s equation for the

gravitational potential of Newtonian self gravitating, spherically symmetric, polytrophic

fluid. Here m is a constant, which is called the polytrophic index. Eq. (5.20) describes the

thermal behavior of a spherical cloud of gas acting under the mutual attraction of its

molecules and subject to the classical laws of thermodynamics. Another nonlinear form of

),(yxf is the exponential function that is
yeyxf ),((5.21)

Substituting (5.21) into Eq. (5.20) we have

0
2

2

2

 ye
dx

dy

xdx

yd

 (5.22)

This describes isothermal gas spheres where the temperature remains constant.

Eq. (5.20) with
yeyxf ),(is

0
2

2

2

 ye
dx

dy

xdx

yd
 (5.23)

which gives a model that appears in the theory of thermionic current and has thoroughly

been investigated by [72].

Exact solutions of Eq. (5.20) for m=0, 1 and 5 have been obtained by [70, 71]. For

m=5, only one parameter family of solution is obtained in [73]. For other values of m, the

standard Lane-Emden equations can only be solved numerically. Solution of differential

equations with singularity behavior in various linear and nonlinear initial value problems

of astrophysics is a challenge. In particular, present problem of Lane-Emden and Emden-

Fowler equations which has singularity at x=0 is also important in practical applications

in astrophysics and Quantum mechanics. These equations are difficult to solve

analytically, so various techniques based on either series solutions or perturbation

techniques have been used to handle the Lane-Emden equations [74--89]. But our aim is

to solve these equations using single layer ChNN method.

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

83

5.2.1 Numerical Results and Discussions

In this section, homogeneous and non homogeneous Lane-Emden equations have been

considered to show the reliability of the proposed procedure. Here, we have trained the

proposed model for a different number of training points such as 10, 15, 20 etc. because

various problems converge with different number of training points. In each problem, the

number of points taken is mentioned which give good result with acceptable accuracy.

5.2.2 Homogeneous Lane-Emden equations

As mentioned before, the above Lane-Emden equation with index m is a basic equation in

the theory of stellar structure [74--76]. Also, this equation describes the temperature

variation of a spherical cloud of gas acting under the mutual attraction of its molecules

and subject to the classical laws of thermodynamics [69, 72]. It was physically shown [70,

71] that m can have the values in the interval [0, 5] and exact solutions exists only for

m=0, 1 and 5. So we have computed the ChNN solution with the above particular values

of m and those will be compared with the known exact solutions to have a confidence in

our present methodology.

Here standard Lane-Emden equations are discussed in Examples 5.2.1 to 5.2.5 for

index values m =0, 1, 5, 0.5 and 2.5 respectively.

Example 5.2.1:

 For m=0, the equation becomes linear ordinary differential equation

01
2

2

2


dx

dy

xdx

yd

with initial conditions 1)0(y , .0)0(y

As discussed above we can write the ChNN trial solution as

),(1),(2 pxNxpxyt 

The network is trained for ten equidistant points in [0, 1] with first five Chebyshev

polynomials and five weights from input to output layer. In Table 5.1 we compare the

analytical solutions with Chebyshev neural solutions with arbitrary weights. Figure 5.2

shows the comparison between analytical and chebyshev neural results. Finally, the error

plot between analytical and ChNN results are shown in Figure 5.3.

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

84

Table 5.1: Comparison between analytical and ChNN results (Example 5.2.1)

Input data Analytical

[69]

ChNN Relative

errors

0 1.0000 1.0000 0

0.1 0.9983 0.9993 0.0010

0.2 0.9933 0.9901 0.0032

0.3 0.9850 0.9822 0.0028

0.4 0.9733 0.9766 0.0033

0.5 0.9583 0.9602 0.0019

0.6 0.9400 0.9454 0.0054

0.7 0.9183 0.9139 0.0044

0.8 0.8933 0.8892 0.0041

0.9 0.8650 0.8633 0.0017

1.0 0.8333 0.8322 0.0011

 Figure 5.2: Plot of analytical

 and ChNN results (Example 5.2.1)

Example 5.2.2:

Let us consider Lane-Emden equation for m=1 with same initial conditions

0
2

2

2

 y
dx

dy

xdx

yd

The ChNN trial solution, in this case, is same as Example 5.2.1.

Twenty equidistant points in [0, 1] and five weights with respect to first five Chebyshev

polynomials are considered. Comparison of analytical and ChNN results has been shown

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

x

R
e
s
u

lt
s

Analytical

ChNN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

x

E
r
r
o

r

Figure 5.3: Error plot between analytical
and ChNN results (Example 5.2.1)

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

85

in Table 5.2. Figure 5.4 depicts analytical and Chebyshev neural results. Finally, Figure

5.5 shows the plot of error between analytical and ChNN results.

Table 5.2: Comparison between analytical and ChNN results (Example 5.2.2)

Input data

Analytical

[69]

ChNN Relative

errors

0 1.0000 1.0000 0

0.1000 0.9983 1.0018 0.0035

0.1500 0.9963 0.9975 0.0012

0.2000 0.9933 0.9905 0.0028

0.2500 0.9896 0.9884 0.0012

0.3000 0.9851 0.9839 0.0012

0.3500 0.9797 0.9766 0.0031

0.4000 0.9735 0.9734 0.0001

0.4500 0.9666 0.9631 0.0035

0.5000 0.9589 0.9598 0.0009

0.5500 0.9503 0.9512 0.0009

0.6000 0.9411 0.9417 0.0006

0.6500 0.9311 0.9320 0.0009

0.7000 0.9203 0.9210 0.0007

0.7500 0.9089 0.9025 0.0064

0.8000 0.8967 0.8925 0.0042

0.8500 0.8839 0.8782 0.0057

0.9000 0.8704 0.8700 0.0004

0.9500 0.8562 0.8588 0.0026

1.0000 0.8415 0.8431 0.0016

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

x

R
e
s
u

lt
s

Analytical

ChNN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

x

E
r
r
o

r

Figure 5.5: Error plot between analytical

and ChNN results (Example 5.2.2)

Figure 5.4: Plot of analytical and ChNN
results (Example 5.2.2)

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

86

Example 5.2.3:

Next, we will take the Lane-Emden equation with m=5

0
2 5

2

2

 y
dx

dy

xdx

yd

with initial conditions 1)0(y , 0)0(y

The exact solution of the above equation is given in [73] as

21
2

3
1)(













x
xy

0x

The ChNN trial solution may be expressed as

),(1),(2 pxNxpxyt 

Here we have trained the network for ten equidistant points in [0, 1] and five weights for

computing the results. Comparison between analytical and Chebyshev neural results are

cited in Table 5.3. Analytical and Chebyshev neural results are compared in Figure 5.6.

The error plot is depicted in Figure 5.7. The results for some testing points are shown in

Table 5.4. This testing is done to check whether the converged ChNN can give results

directly by inputting the points which were not taken during training.

Table 5.3: Comparison between analytical and

Chebyshev neural results (Example 5.2.3)

Input
data

Analytical
[73]

ChNN Relative
errors

0 1.000 1.0000 0

0.1 0.9983 0.9981 0.0002

0.2 0.9934 0.9935 0.0001

0.3 0.9853 0.9899 0.0046

0.4 0.9744 0.9712 0.0032

0.5 0.9608 0.9684 0.0076

0.6 0.9449 0.9411 0.0038

0.7 0.9271 0.9303 0.0032

0.8 0.9078 0.9080 0.0002

0.9 0.8874 0.8830 0.0044

1.0 0.8660 0.8651 0.0009

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

87

 Figure 5.6: Plot of analytical and ChNN results

 (Example 5.2.3)

Table 5.4: ChNN solutions for testing points (Example 5.2.3)

Testing points 0.1600 0.3801 0.5620 0.7300 0.9600

Analytical results 0.9958 0.9768 0.9512 0.9215 0.8746

ChNN results 0.9993 0.9750 0.9540 1.0201 0.8718

In view of the above one may see that the exact (analytical) results compared very well

with ChNN results. As such next we take some example with values of m = 0.5, 2.5 to get

new approximate results of the said differential equation.

Example 5.2.4:

Let us consider Lane-Emden equation for m=0.5

0
2 5.0

2

2

 y
dx

dy

xdx

yd

with initial conditions 1)0(y , 0)0(y

The ChNN trial solution is written as

),(1),(2 pxNxpxyt 

Ten equidistant points and five weights with respect to first five Chebyshev polynomials

considered here to train the model. Table 5.5 incorporates Chebyshev neural and

Homotopy Perturbation Method (HPM) [79] results along with the relative errors at the

given points. Plot of error (between ChNN and HPM) are also cited in Figure 5.8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

x

R
e
s
u

lt
s

Analytical

ChNN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

x

E
r
r
o

r

Figure 5.7: Error plot between analytical

and ChNN results (Example 5.2.3)

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

88

Table 5.5: Comparison between ChNN and

 HPM results (Example 5.2.4)

 Figure 5.8: Error plot between ChNN

 and HPM results (Example 5.2.4)

Example 5.2.5:

Here we take Lane-Emden equation for m=2.5 with same initial conditions as

0
2 5.2

2

2

 y
dx

dy

xdx

yd

ChNN trial solution is same as Example 5.2.4.
 Again ten points in the given domain and five weights are considered to train the ChNN.

Table 5.6 shows ChNN and Homotopy Perturbation Method (HPM) [79] results along

with the relative errors respectively.

Table 5.6: Comparison between ChNN and HPM results (Example 5.2.5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x
E

rr
o

r

Input

data

ChNN HPM

[79]

Relative

errors

0 1.0000 1.0000 0

0.1 0.9968 0.9983 0.0015

0.2 0.9903 0.9933 0.0030

0.3 0.9855 0.9850 0.0005

0.4 0.9745 0.9734 0.0011

0.5 0.9598 0.9586 0.0012

0.6 0.9505 0.9405 0.0100

0.7 0.8940 0.9193 0.0253

0.8 0.8813 0.8950 0.0137

0.9 0.8597 0.8677 0.0080

1.0 0.8406 0.8375 0.0031

Input data ChNN HPM [79] Relative errors

0 1.0000 1.0000 0

0.1 0.9964 0.9983 0.0019

0.2 0.9930 0.9934 0.0004

0.3 0.9828 0.9852 0.0024

0.4 0.9727 0.9739 0.0012

0.5 0.9506 0.9596 0.0090

0.6 0.9318 0.9427 0.0109

0.7 0.9064 0.9233 0.0169

0.8 0.8823 0.9019 0.0196

0.9 0.8697 0.8787 0.0090

1.0 0.8342 0.8542 0.0200

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

89

Example 5.2.6:

Below we now consider an example of Lane-Emden equation with yxyxf)32(2),(2 

As such second order homogeneous Lane-Emden equation will be

0)32(2
2 2

2

2

 yx
dx

dy

xdx

yd

0x

with initial conditions 1)0(y , 0)0(y

As discussed above we can write the ChNN trial solution as

),(1),(2 pxNxpxyt 

We have trained the network for ten equidistant points in [0, 1]. As in previous case

analytical and obtained ChNN results are shown in Table 5.7. Comparisons between

analytical and ChNN results are depicted in Figure 5.9. ChNN results at the testing points

are given in Table 5.8. Lastly, the error (between analytical and ChNN results) is plotted

in Figure 5.10.

Table 5.7: Comparison between analytical and ChNN results (Example 5.2.6)

Table 5.8: ChNN solutions for testing points (Example 5.2.6)

Testing points 0.232 0.385 0.571 0.728 0.943

Analytical results 1.0553 1.1598 1.3855 1.6989 2.4333

ChNN results 1.0597 1.1572 1.3859 1.6950 2.4332

Input

data

Analytical

[84]

ChNN Relative

errors

0 1.0000 1.0000 0

0.1 1.0101 1.0094 0.0007

0.2 1.0408 1.0421 0.0013

0.3 1.0942 1.0945 0.0003

0.4 1.1732 1.1598 0.0134

0.5 1.2840 1.2866 0.0026

0.6 1.4333 1.4312 0.0021

0.7 1.6323 1.6238 0.0085

0.8 1.8965 1.8924 0.0041

0.9 2.2479 2.2392 0.0087

1.0 2.7148 2.7148 0

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

90

Figure 5.9: Plot of analytical and ChNN results
 (Example 5.2.6)

5.2.3 Nonhomogeneous Lane-Emden equation

Following nonhomogeneous Lane-Emden equations have been solved by [75, 84] using

Adomian decomposition and modified homotopy analysis method. Here the same

problem is solved using Chebyshev Neural Network.

Example 5.2.7:

The nonhomogeneous Lane-Emden equation is written as

32

2

2

2126
2

xxxy
dx

dy

xdx

yd


10  x

subject to 0)0(y , 0)0(y

This equation has the exact solution for 0x [84] as
32)(xxxy 

Here, the related ChNN trial solution is written as

),(),(2 pxNxpxyt 

In this case, twenty equidistant points in [0, 1] and five weights with respect to first five

Chebyshev polynomials are considered. Table 5.9 shows analytical and Chebyshev neural

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

R
e
s
u

lt
s

Analytical

ChNN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

x

E
rr

o
r

Figure 5.10: Error plot between analytical

and ChNN results (Example 5.2.6)

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

91

results. Analytical and ChNN results are compared in Figure 5.11. Finally, Figure 5.12

depicts the plot of error between analytical and ChNN results.

Table 5.9: Comparison between analytical and ChNN results (Example 5.2.7)

 Figure 5.11: Plot of analytical and
 ChNN results (Example 5.2.7)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x

R
e
s
u

lt
s

Analytical

ChNN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

x

E
r
r
o

r

Input data Analytical [84] ChNN Relative

errors

0 0 0 0

0.10 0.0110 0.0103 0.0007

0.15 0.0259 0.0219 0.0040

0.20 0.0480 0.0470 0.0010

0.25 0.0781 0.0780 0.0001

0.30 0.1170 0.1164 0.0006

0.35 0.1654 0.1598 0.0056

0.40 0.2240 0. 2214 0.0026

0.45 0.2936 0.2947 0.0011

0.50 0.3750 0.3676 0.0074

0.55 0.4689 0.4696 0.0007

0.60 0.5760 0.5712 0.0048

0.65 0.6971 0.6947 0.0024

0.70 0.8330 0.8363 0.0033

0.75 0.9844 0.9850 0.0006

0.80 1.1520 1.1607 0.0087

0.85 1.3366 1.3392 0.0026

0.90 1.5390 1.5389 0.0001

0.95 1.7599 1.7606 0.0007

1.00 2.0000 2.0036 0.0036

Figure 5.12: Error plot betweenanalytical
and ChNN results (Example 5.2.7)

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

92

Next, various types of Emden-Fowler equations have been included.

5.3 Emden-Fowler Equations

Singular second order nonlinear initial value problems describe several phenomenain

mathematical physics and astrophysics.The Emden-Fowler equation is studied in detail

by [66--68]. The general form of the Emden-Fowler equation may be written as

),()()(
2

2

xhygxaf
dx

dy

x

r

dx

yd


0r (5.24)

with initial conditions ,)0(y 0)0(y

The Emden-Fowler type equations are applicable for the theory of stellar structure,

thermal behavior of a spherical cloud of gas, isothermal gas spheres, and theory of

thermionic currents [69, 70]. A solution of differential equations with singularity

behavior in various linear and nonlinear initial value problems of astrophysics is a

challenge. In particular, present problem of Emden-Fowler equations which has the

singularity at x =0 is also important in practical applications. These equations are

difficult to solve analytically. We have proposed single layer ChNN method to handle

these equations.

5.3.1 Case Studies

In this section, we have considered non homogeneous Emden-Fowler equations in

Examples 5.3.1 and 5.3.2 and homogeneous Emden-Fowler equations in Examples 5.3.3

and 5.3.4 respectively to show the powerfulness of the proposed method.

Example 5.3.1:

A nonlinear singular initial value problem of Emden-Fowler is written as

5428
xxxyy

x
y 

0x

with initial conditions 1)0(y , 0)0(y

We have the ChNN trial solution

),(1),(2 pxNxpxyt 

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

93

We have trained the network for ten equidistant points in the domain [0, 1] with first six

Chebyshev polynomials. Six weights for ChNN and eight weights for traditional ANN

have been considered. Table 5.10 shows comparison among numerical solutions obtained

by Maple 11, Differential Transformation Method (DTM) for n=10 [88], Chebyshev

neural (ChNN) and traditional (MLP) ANN. Comparison between numerical solutions by

Maple 11 and Chebyshev neural are depicted in Figure 5.13. Figure 5.14 shows semi

logarithmic plot of the error (between Maple 11 and ChNN). From Table 5.10, one may

see that ChNN solutions agreed well at all points with the solutions of Maple 11 and

DTM numerical solutions. The converged ChNN is used then to have the results for some

testing points. As such Table 5.11 incorporates corresponding results directly by using the

converged weights.

Table 5.10: Comparison among numerical solutions using Maple 11, DTM, ChNN
and traditional ANN (Example 5.3.1)

Table 5.11: ChNN solutions for testing points (Example 5.3.1)

It is worth mentioning that the CPU time of computation for the proposed ChNN model is

10,429.97 sec. whereas CPU time for traditional neural network (MLP) is 15,647.58 sec.

As such we may see that ChNN takes less time of computation than traditional MLP.

Input data

Maple 11 [88] DTM

[88]

ChNN Traditional ANN

0 1.0000000 1.00000000 1.00000000 1.00000000

0.1 0.99996668 0.99996668 0.99986667 0.99897927

0.2 0.99973433 0.99973433 1.00001550 1.00020585

0.3 0.99911219 0.99911219 0.99924179 0.99976618

0.4 0.99793933 0.99793933 0.99792438 0.99773922

0.5 0.99612622 0.99612622 0.99608398 0.99652763

0.6 0.99372097 0.99372096 0.99372989 0.99527655

0.7 0.99100463 0.99100452 0.99103146 0.99205860

0.8 0.98861928 0.98861874 0.98861829 0.98867279

0.9 0.98773192 0.98772971 0.98773142 0.98753290

1.0 0.99023588 0.99022826 0.99030418 0.99088174

Testing points 0.130 0.265 0.481 0.536 0.815

ChNN o.99992036 0.99854752 0.99729365 0.99525350 0.98866955

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

94

Figure 5.13: Plot of numerical solutions using
 Maple 11 and ChNN (Example 5.3.1)

Example 5.3.2:

 Now let us consider a nonhomogeneous Emden-Fowler equation

xxxxxyy
x

y 3044
8 245 

0x

with initial conditions 0)0(y , 0)0(y

The analytical solution for above equation is [79]

34)(xxxy 

We can write the related ChNN trial solution as

),(),(2 pxNxpxyt 

Ten equidistant points in [0, 1] and six weights with respect to first six Chebyshev

polynomials are considered. Comparison of analytical and Chebyshev neural (ChNN)

solutions has been cited in Table 5.12. These comparisons are also depicted in Figure

5.15. Semi logarithmic plot of the error function between analytical and ChNN solutions

is cited in Figure 5.16. Finally results for some testing points are again shown in Table

5.13. This testing is done to check whether the converged ChNN can give results directly

by inputting the points which were not taken during training.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.985

0.99

0.995

1

1.005

x

R
e
s
u

lt
s

Maple 11 solutions

Chebyshev neural solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-6

10
-5

10
-4

10
-3

x
E

r
r
o

r

Figure 5.14: Semi logarithmic plot of error

between Maple 11 and ChNN solutions

(Example 5.3.1)

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

95

Table 5.12: Comparison between analytical and ChNN solutions (Example 5.3.2)

Input data

Analytical [79] ChNN

0 0 0

0.1 -0.00090000 -0.00058976

0.2 -0.00640000 -0.00699845

0.3 -0.01890000 -0.01856358

0.4 -0.03840000 -0.03838897

0.5 -0.06250000 -0.06318680

0.6 -0.08640000 -0.08637497

0.7 -0.10290000 -0.10321710

0.8 -0.10240000 -0.10219490

0.9 -0.07290000 -0.07302518

1.0 0.00000000 0.00001103

Table 5.13: ChNN solutions for testing points (Example 5.3.2)

 Figure 5.15: Plot of analytical and

 ChNN solutions (Example 5.3.2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

x

R
e
s
u

lt
s

Analytical

ChNN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-5

10
-4

10
-3

x

E
r
r
o

r

Testing
points

0.154 0.328 0.561 0.732 0.940

Analytical -0.00308981 -0.02371323 -0.07750917 -0.10511580 -0.04983504

ChNN -0.00299387 -0.02348556 -0.07760552 -0.10620839 -0.04883402

Figure 5.16: Semi logarithmic plot of

error between analytical and ChNN
solutions (Example 5.3.2)

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

96

Example 5.3.3:

In this example we take a non linear, homogeneous Emden-Fowler equation

yyyy
x

y ln414
6



0x

subject to 1)0(y , 0)0(y

The analytical solution is [80]

2

)(xexy 

Again we may write the ChNN trial solution as

),(1),(2 pxNxpxyt 

 The network is trained for ten equidistant points in the given domain. We have taken six

weights for ChNN and eight weights for traditional MLP. As in previous cases, the

analytical and Chebyshev neural solutions are cited in Table 5.14. Comparisons among

analytical, Chebyshev neural and traditional (MLP) ANN solutions are depicted in Figure

5.17. Figure 5.18 shows semi logarithmic plot of the error function (between analytical

and ChNN solutions). ChNN solutions for some testing points are given in Table 5.15.

Table 5.14: Comparison among Analytical, ChNN and traditional ANN solutions (Example 5.3.3)

 Table 5.15: ChNN solutions for testing points (Example 5.3.3)

Input data

Analytical

[80]

ChNN Traditional ANN

0 1.00000000 1.00000000 1.00000000

0.1 0.99004983 0.99004883 0.99014274

0.2 0.96078943 0.96077941 0.96021042

0.3 0.91393118 0.91393017 0.91302963

0.4 0.85214378 0.85224279 0.85376495

0.5 0.77880078 0.77870077 0.77644671

0.6 0.69767632 0.69767719 0.69755681

0.7 0.61262639 0.61272838 0.61264315

0.8 0.52729242 0.52729340 0.52752822

0.9 0.44485806 0.44490806 0.44502071

1.0 0.36787944 0.36782729 0.36747724

Testing points 0.173 0.281 0.467 0.650 0.872

Analytical 0.97051443 0.92407596 0.80405387 0.65540625 0.46748687

ChNN 0.97049714 0.92427695 0.80379876 0.65580726 0.46729674

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

97

The CPU time of computation for the proposed ChNN model is 7,551.490 sec. and for

traditional ANN (MLP) is 9,102.269 sec.

Example 5.3.4:

Finally we consider a nonlinear Emden-Fowler equation

02
3 22  yxy
x

y

with initial conditions 1)0(y , 0)0(y

The ChNN trial solution, in this case, is represented as

),(1),(2 pxNxpxyt 

Again the network is trained with ten equidistant points. Table 5.16 incorporates the

comparison among solutions obtained by Maple 11, Differential Transformation Method

(DTM) for n=10 [88], and present ChNN. Figure 5.19 shows comparison between

numerical solutions by Maple 11 and ChNN. Finally, the semi logarithmic plot of the

error (between Maple 11 and ChNN solutions) is cited in Figure 5.20.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

x

R
e
s
u

lt
s

Analytical

ChNN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-7

10
-6

10
-5

10
-4

10
-3

x
E

r
r
o

r
Figure 5.18: Semi logarithmic plot of error

between analytical and ChNN solutions

(Example 5.3.3)

Figure 5.17: Plot of analytical and
ChNN solutions (Example 5.3. 3)

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

98

Table 5.16: Comparison among numerical solutions by Maple 11, DTM for n=10 and ChNN

(Example 5.3.4)

 Figure 5.19: Plot of Maple 11 and
 ChNN solutions (Example 5.3.4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

x

R
e
s
u

lt
s

Maple 11 solutions

Chebyshev neural solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-5

10
-4

10
-3

x

E
r
r
o

r

Input data

Maple 11

[88]

DTM

[88]

ChNN

0 1.00000000 1.00000000 1.00000000

0.1 0.99999166 0.99999166 0.99989166

0.2 0.99986667 0.99986667 0.99896442

0.3 0.99932527 0.99932527 0.99982523

0.4 0.99786939 0.99786939 0.99785569

0.5 0.99480789 0.99480794 0.99422605

0.6 0.98926958 0.98926998 0.98931189

0.7 0.98022937 0.98023186 0.98078051

0.8 0.96655340 0.96656571 0.96611140

0.9 0.94706857 0.94711861 0.94708231

1.0 0.92065853 0.92083333 0.92071830

Figure 5.20: Semi logarithmic plot of error
between Maple 11 and ChNN solutions

(Example 5.3. 4)

Chebyshev Functional Link Neural Network (FLNN) Model

Chapter 5 for Solving ODEs

99

5.4 Conclusion

Chebyshev Neural Network (ChNN) based model has been developed for solving singular

initial value problems of second order ordinary differential equations. Variety of Lane-

Emden and Emden-Fowler equations are considered for validation of the developed

model. Here, the singularity at x=0 is handled by ChNN model. Time of computation

(CPU time) for our proposed ChNN model is found to be less than the traditional (MLP)

ANN model. ChNN results are compared with analytical and other numerical methods. It

may be seen that the proposed ChNN model is computationally efficient and straight

forward.

100

Chapter 6

Legendre Functional Link Neural

Network for Solving ODEs

This chapter implemented a single layer Legendre polynomial based Functional Link

Artificial Neural Network called Legendre Neural Network (LeNN) to solve ODEs. The

Legendre Neural Network (LeNN) has been introduced by Yang and Tseng [56] for

function approximation. Nonlinear singular Initial Value Problems (IVPs), Boundary

Value Problem (BVP) and system of coupled first order ordinary differential equations

are solved by the proposed approach to show the reliability of the method. Initial weights

of the single layer LeNN model are taken as random. Some of the advantages of the new

single layer LeNN based model for solving differential equations are as follows:*

 It is a single layer neural network, so number of parameters is less than MLP;

 Simple implementation and easy computation;

 The hidden layers are removed;

 The back propagation algorithm is unsupervised;

 No optimization technique is used.

6.1 Legendre Neural Network (LeNN) Model

This section introduces structure of single layer LeNN model. LeNN formulations for

ODEs, learning algorithm and computation of gradient have been explained.

*Contents of this chapter have been published in the following Journal/conference:

1. Applied Soft Computing, 43, 2016;

2. Third International Symposium on Women computing and Informatics (WCI-2015), Published

in Association for Computing (ACM) Machinery Proceedings, 678-683, 2015.

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

101

6.1.1 Structure of LeNN Model

Figure 6.1 depicts the structure of single layer LeNN, which consists of single input node,

one output layer (having one node) and a functional expansion block based on Legendre

polynomials. The hidden layer is eliminated by transforming the input pattern to a higher

dimensional space using these polynomials. Legendre polynomials are denoted by)(uLn ,

here n is the order and -1 < u< 1 is the argument of the polynomial. Which constitute a set

of orthogonal polynomials obtained as a solution of Legendre differential equation.

The first few Legendre polynomials are [59]

)13(
2

1
)(

)(

1)(

2

2

1

0







uuL

uuL

uL

 (6.1)

The higher order Legendre polynomials may be generated by the following well known

recursive formula

 )()()12(
1

1
)(11 unLuuLn

n
uL nnn  




. (6.2)

We have considered input vector),...,,(21 hxxxx  of dimension h.The enhanced pattern

is obtained by using the Legendre polynomials

)](),...,(),(),(),(

);(),...,(),(),(),();(),...,(),(),(),([

3210

223222120113121110

hnhhhh

nn

xLxLxLxLxL

xLxLxLxLxLxLxLxLxLxL

(6.3)

Here h input data is expanded to n dimensional enhanced Legendre polynomials.

6.1.2 Formulation and Learning Algorithm of Proposed LeNN Model

General formulation of ordinary differential equation using ANN is discussed in Sec.

2.2.1.

The LeNN trial solution for ODEs may be expressed as

)),(,()(),(pxNxFxApxyt  (6.4)

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

102

L
eg

en
d

re

 E
x
p

a
n

si
o
n

Input Layer

Figure 6.1: Structure of single layer LeNN model

where the first term)(xA satisfies initial/boundary conditions. The second term viz.

)),(,(pxNxF contains single output),(pxN of LeNN model with one input node x

(having h number of data) and adjustable parameters p.

Here

zz

zz

ee

ee
zpxN








)tanh(),((6.5)

and

)(1

1

xLwz j

m

j

j 





mj ,...,2,1 (6.6)

where x is the input data,)(1 xL j
 and jw for },...3,2,1{ mj  denote the expanded input

data and the weight vectors respectively of the LeNN. The nonlinear tangent hyperbolic

tanh (.) function is considered as activation function.

Unsupervised error back propagation learning algorithm is used for updating the

network parameters (weights) of LeNN. As such, the gradient of an error function with

respect to the parameters (weights) p is determined. The weights are initialized randomly

and then the weights are updated as follows

)(0 xL

)(2 xL

)(3 xL

)(4 xL

x

x

2w

3w



 Unsupervised

BP algorithm

Error

5w

LeNN output

Output layer
),(pxN

1w

4w

tanh (.)



)(1 xL

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

103




















k

j

k

j

k

j

k

j

k

j
w

pxE
wwww

),(1 

(6.7)

where  is the learning parameter between 0 and 1, k is iteration step which is used to

update the weights as usual in ANN and),(pxE is the error function.

In this investigation, our purpose is to solve nonlinear second order initial as well as

boundary value problems and system of ODEs. In particular, formulation of second order

IVP is given in Sec 2.2.2 (Eq. 2.18 and error function in Eq. 2.21), second order BVP in

Sec. 2.2.3 (Eq. 2.25) and for the system of first order ODEs in Sec. 2.2.4 (Eq. 2.35). One

may note that computation of gradient of LeNN is different from multi layer ANN.

Gradient computation for LeNN is incorporated below.

6.1.3 Computation of Gradient for LeNN Model

The error computation involves both output and derivative of the network output with

respect to the corresponding input. For minimizing the error function),(pxE we

differentiate),(pxE with respect to the network parameters. Thus the gradient of

network output with respect to input is computed as below.

The derivatives of pxN ,() with respect to input x is expressed as

 )(
)(

)()(
1

1

2))(())((

2))(())((2))(())((

11

1111

xLw
ee

eeee

dx

dN
jj

m

j

xLwxLw

xLwxLwxLwxLw

jjjj

jjjjjjjj







































 



(6.8)

Simplifying, Eq. (6.8) we have

 )(1 1

1

2

))(())((

))(())((

11

11

xLw
ee

ee

dx

dN
jj

m

j

xLwxLw

xLwxLw

jjjj

jjjj









































 



(6.9)

Similarly, we can compute the second derivative of N(x,p) as

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

104

 

 


















































































































m

j

xLwxLw

xLwxLw

jj

jjxLwxLw

xLwxLw

jjjj

jjjj

jjjj

jjjj

ee

ee
xLw

dx

d

xLw
ee

ee

dx

d

dx

Nd

1

2

))(())((

))(())((

1

1

2

))(())((

))(())((

2

2

11

11

11

11

1)(

)(1

(6.10)

After simplifying the above we get

 

 








































































































































































m

j

jjxLwxLw

xLwxLw

jjxLwxLw

xLwxLw

xLwxLw

xLwxLw

xLw
ee

ee

xLw
ee

ee

ee

ee

dx

Nd

jjjj

jjjj

jjjj

jjjj

jjjj

jjjj

1

1

2

))(())((

))(())((

2

1))(())((

))(())((
3

))(())((

))(())((

2

2

)(1

)(22

11

11

11

11

11

11

(6.11)

where ,jw)(1 xL j
 and)(1 xL j

 denote weights of network, first and second derivatives

of Legendre polynomials respectively.

Above derivatives may now be substituted in Eq. 6.7 to modify the weights.

Next, we have included learning algorithm and gradient computation of traditional Multi

Layer Perceptron (MLP) for the sake of completeness.

6.2 Learning Algorithm and Gradient Computation for

 Multi Layer ANN

In this chapter, we have considered seven nodes for the hidden layer (in MLP), one input

node x having h number of data and one output node.

Formulations and learning algorithm of the above problems using multi layer ANN

are discussed in Secs. 2.2.2, 2.2.3 and 2.2.4.

In the similar way as discussed in Sec. 2.2.2 we may use unsupervised error back

propagation algorithm for updating the network parameters (weights and biases) from

input layer to hidden and from hidden to output layer (Eqs. 2.9 to 2.12). Gradient

computation for multi layer ANN is described in Sec. 2.2.5 (Eqs 2.40 to 2.49).

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

105

6.3 Numerical Examples

In this section, various example problems have been considered viz. nonlinear singular

initial value problem (Example 6.3.1), a boundary value problem (Example 6.3.2) and

two systems of coupled first order ordinary differential equations (Examples 6.3.3 and

6.3.4). It is worth mentioning that MATLAB code has been written for the present LeNN

model and results are computed for various example problems.

Example 6.3.1:

Let us take a nonlinear singular initial value problem of Lane-Emden equation [80]

0)2(4
2

2
2

2



y

y ee
dx

dy

xdx

yd

with initial conditions 0)0(y , 0)0(y

The LeNN trial solution is

),(),(2 pxNxpxyt 

Ten equidistant points in [0, 1] and five weights with respect to first five Legendre

polynomials are considered. Comparison among analytical, Legendre neural (LeNN) and

multi layer ANN (MLP) results have been shown in Table 6.1. These comparisons are

also depicted in Figure 6.2. Plot of the error function between analytical and LeNN results

is cited in Figure 6.3. Finally, results for some testing points are shown in Table 6.2.

Table 6.1: Comparison among analytical, LeNN and MLP results (Example 6.3.1)

Input data Analytical [80] LeNN MLP

0.0000 0.0000 0.0000 0.0000

0.1000 -0.0199 -0.0195 -0.0191

0.2000 -0.0784 -0.0785 -0.0778

0.3000 -0.1724 -0.1725 -0.1782

0.4000 -0.2968 -0.2965 -0.3000

0.5000 -0.4463 -0.4468 -0.4421

0.6000 -0.6150 -0.6135 -0.6145

0.7000 -0.7976 -0.7975 -0.7990

0.8000 -0.9894 -0.9896 -0.9905

0.9000 -1.1867 -1.1869 -1.1839

1.0000 -1.3863 -1.3861 -1.3857

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

106

Figure 6.2: Plot of analytical and LeNN results

 (Example 6.3.1)

Table 6.2: Analytical and LeNN results for testing points (Example 6.3.1)

Example 6.3. 2:

We consider now a nonlinear boundary value problem [128]

)2(
2

1 23

22

2

yy
xdx

yd


with boundary conditions 1)1(y ,
3

4
)2(y

The related LeNN trial solution is written as

),()2)(1(
3

1

3

2
),(pxNxxxpxyt 

The network has been trained for ten equidistant points in the domain [1, 2] with first five

Legendre polynomials. Table 6.3 shows comparison among analytical, LeNN and MLP

results. Comparison between analytical and LeNN results are also depicted in Figure 6.4.

Figure 6.5 shows the error (between analytical and LeNN). Similar to the previous

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

x

R
e
s
u

lt
s

Analytical

LeNN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

x
E

r
r
o

r

Testing points 0.2040 0.4863 0.5191 0.7066 0.9837

Analytical [80] -0.0815 -0.4245 -0.4772 -0.8100 -1.3537

LeNN -0.0820 -0.4244 -0.4774 -0.8104 -1.3562

Figure 6.3: Error plot between analytical and

LeNN results (Example 6.3.1)

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

107

example, the converged LeNN is used then to have the results for some testing points. As

such Table 6.4 incorporates corresponding results directly by using the converged

weights.

Table 6.3: Comparison among analytical, LeNN and MLP results (Example 6.3.2)

 Figure 6.4: Plot of analytical and

 LeNN results (Example 6.3. 2)

Table 6.4: Analytical, LeNN and MLP results for testing points (Example 6.3.2)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

R
e
s
u

lt
s

x

Analytical

LeNN

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

x

E
r
r
o

r

Input data Analytical LeNN MLP

1.0000 1.0000 1.0000 1.0000

1.1000 1.0476 1.0475 1.0471

1.2000 1.0909 1.0919 1.0900

1.3000 1.1304 1.1291 1.1310

1.4000 1.1667 1.1663 1.1676

1.5000 1.2000 1.2001 1.1943

1.6000 1.2308 1.2302 1.2315

1.7000 1.2593 1.2590 1.2602

1.8000 1.2857 1.2858 1.2874

1.9000 1.3103 1.3100 1.3119

2.0000 1.3333 1.3333 1.3340

Testing points 1.1320 1.3671 1.5980 1.8021 1.9540

Analytical 1.0619 1.1551 1.2302 1.2862 1.3230

LeNN 1.0620 1.1554 1.2300 1.2859 1.3231

 MLP 1.0625 1.1568 1.2289 1.2831 1.3216

Figure 6.5: Error plot between analytical
and LeNN results (Example 6.3.2)

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

108

Example 6.3.3:

We take a system of coupled first order ordinary differential equations [43]

))(sin1()cos(22

2

2

1
1 xxyyx

dx

dy


21

22)sin()1(2 yyxxx
dx

dy


]2,0[x

with initial conditions 0)0(1 y and 1)0(2 y

In this case, the LeNN trial solutions are

),(1)(

),()(

22

11

2

1

pxxNxy

pxxNxy

t

t





Twenty equidistant points in [0, 2] and five weights with respect to first five Legendre

polynomials are considered. Comparison among analytical  )(),(21 xyxy , Legendre neural

 )(),(21
xyxy tt

and MLP results are given in Table 6.5. Analytical and LeNN results are

compared in Figure 6.6 and the error plots are depicted in Figure 6.7.

Table 6.5: Comparison of analytical, LeNN and MLP results (Example 6.3.3)

Input

data

Analytical

[43]

)(1 xy

LeNN
)(

1
xyt

MLP

)(
1

xyt

Analytical

[43]

)(2 xy

LeNN
)(

2
xyt

MLP

)(
2

xyt

0 0 0 0.0001 1.0000 1.0000 1.0000

0.1000 0.0998 0.0995 0.1019 1.0100 0.9862 1.0030

0.2000 0.1987 0.1856 0.2027 1.0400 1.0397 1.0460

0.3000 0.2955 0.2970 0.2998 1.0900 1.0908 1.0973

0.4000 0.3894 0.3892 0.3908 1.1600 1.1603 1.1624

0.5000 0.4794 0.4793 0.4814 1.2500 1.2500 1.2513

0.6000 0.5646 0.5679 0.5689 1.3600 1.3687 1.3628

0.7000 0.6442 0.6422 0.6486 1.4900 1.4894 1.4921

0.8000 0.7174 0.7152 0.7191 1.6400 1.6415 1.6425

0.9000 0.7833 0.7833 0.7864 1.8100 1.8106 1.8056

1.0000 0.8415 0.8391 0.8312 2.0000 1.9992 2.0046

1.1000 0.8912 0.8919 0.8897 2.2100 2.2084 2.2117

1.2000 0.9320 0.9327 0.9329 2.4400 2.4418 2.4383

1.3000 0.9636 0.9633 0.9642 2.6900 2.6932 2.6969

1.4000 0.9854 0.9857 0.9896 2.9600 2.9689 2.9640

1.5000 0.9975 0.9974 0.9949 3.2500 3.2498 2.2542

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

109

Figure 6.6: Plot of analytical and LeNN results (Example 6.3.3)

Figure 6.7: Error plots between analytical and LeNN results (Example 6.3.3)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

R
e
su

lt
s

Analytical y
1

LeNN y
t1

Analytical y
2

LeNN y
t2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

x

E
r
r
o

r

Accuracy of the first LeNN y
t1

 results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x

E
r
r
o

r

Accuracy of the second LeNN y
t2

 results

1.6000 0.9996 0.9962 0.9960 3.5600 3.5705 3.5679

1.7000 0.9917 0.9911 0.9907 3.8900 3.8911 3.8970

1.8000 0.9738 0.9800 0.9810 4.2400 4.2402 4.2468

1.9000 0.9463 0.9464 0.9470 4.6100 4.6129 4.6209

2.0000 0.9093 0.9096 0.9110 5.0000 4.9995 5.0012

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

110

Example 6.3.4:

In this Example, system of coupled first order ordinary differential equations is taken

)sin(

)sin()cos(

21
2

2

1

xeyy
dx

dy

y

xx

dx

dy

x 




]2,0[x

subject to 0)0(1 y and 1)0(2 y

 Analytical solutions for the above may be obtained as

x

x

exy

e

x
xy





)(

)sin(
)(

2

1

Corresponding LeNN trial solutions are

),(1)(

),()(

22

11

2

1

pxxNxy

pxxNxy

t

t





The network is trained here for twenty equidistant points in the given domain. As in

previous cases, the analytical, LeNN and MLP results are shown in Table 6.6.

Comparisons between analytical  )(),(21 xyxy and LeNN  )(),(21
xyxy tt

 results are

depicted in Figure 6.8 and are found to be in excellent agreement. Plot of the error

function is cited in Figure 6.9. Lastly, LeNN solutions for some testing points are given in

Table 6.7.

Table 6.6: Comparison of analytical, LeNN and MLP results (Example 6.3.4)

Input data Analytical

)(1 xy

LeNN
)(

1
xyt

MLP

)(
1

xyt

Analytical

)(2 xy

LeNN
)(

2
xyt

MLP

)(
2

xyt

0 0 0 0 1.0000 1.0000 1.0000

0.1000 0.0903 0.0907 0.0899 1.1052 1.1063 1.1045

0.2000 0.1627 0.1624 0.1667 1.2214 1.2219 1.2209

0.3000 0.2189 0.2199 0.2163 1.3499 1.3505 1.3482

0.4000 0.2610 0.2609 0.2625 1.4918 1.5002 1.4999

0.5000 0.2908 0.2893 0.2900 1.6487 1.6477 1.6454

0.6000 0.3099 0.3088 0.3111 1.8221 1.8224 1.8209

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

111

Table 6.7: Analytical, LeNN results for testing points (Example 6.3.4)

Figure 6.8: Plot of analytical and LeNN results (Example 6.3.4)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

x

R
e
su

lt
s

Analytical y
1

LeNN y
t1

Analytical y
2

LeNN y
t2

0.7000 0.3199 0.3197 0.3205 2.0138 2.0158 2.0183

0.8000 0.3223 0.3225 0.3234 2.2255 2.2246 2.2217

0.9000 0.3185 0.3185 0.3165 2.4596 2.4594 2.4610

1.0000 0.3096 0.3093 0.3077 2.7183 2.7149 2.7205

1.1000 0.2967 0.2960 0.2969 3.0042 3.0043 3.0031

1.2000 0.2807 0.2802 0.2816 3.3201 3.3197 3.3211

1.3000 0.2626 0.2632 0.2644 3.6693 3.6693 3.6704

1.4000 0.2430 0.2431 0.2458 4.0552 4.0549 4.0535

1.5000 0.2226 0.2229 0.2213 4.4817 4.4819 4.4822

1.6000 0.2018 0.2017 0.2022 4.9530 4.9561 4.9557

1.7000 0.1812 0.1818 0.1789 5.4739 5.4740 5.4781

1.8000 0.1610 0.1619 0.1605 6.0496 6.0500 6.0510

1.9000 0.1415 0.1416 0.1421 6.6859 6.6900 6.6823

2.0000 0.1231 0.1230 0.1226 7.3891 7.3889 7.3857

Testing points 0.3894 0.7120 0.9030 1.2682 1.5870 1.8971

Analytical y1 0.2572 0.3206 0.3183 0.2686 0.2045 0.1421

LeNN yt1 0.2569 0.3210 0.3180 0.2689 0.2045 0.1420

Analytical y2 1.4761 2.0381 2.4670 3.5544 4.8891 6.6665

LeNN yt2 1.4760 2.0401 2.4672 3.5542 4.8894 6.6661

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

112

Figure 6.9: Error plots between analytical and LeNN results (Example 6.3.4)

The CPU time of computation for the proposed LeNN model and traditional neural

network (MLP) are incorporated in Table 6.8. As such we may see that LeNN takes less

time of computation than traditional MLP.

Table 6.8: CPU time of computation

CPU time of

computation
(in Sec.)

Example

6.3.1

Example

6.3. 2

Example

6.3.3

Example

6.3.4

MLP 11,849.45 8,108,71 11,987.25 12,368.15

LeNN 9,170.89 7,212,38 10,723.09 10,288.26

Next, we have compared different ANN techniques viz. traditional MLP, single layer

ChNN and LeNN for solving Lane-Emden and Emden-Fowler equations. Homogeneous

Lane-Emden and Emden-Fowler equation are discussed in Examples 6.3.5 and 6.3.6

respectively.

Example 6.3.5:

Let us consider second order homogeneous Lane-Emden equation

0)32(2
2 2

2

2

 yx
dx

dy

xdx

yd

10  x

with initial conditions 1)0(y , 0)0(y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

x

E
r
r
o

r

Accuracy of the first LeNN y
t1

 results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

x
E

r
r
o

r

Accuracy of the second LeNN y
t2

 results

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

113

The analytical solution of the above equation is given in [84] as

2

)(xexy 

As mentioned in Sec. 2.2.2 (Eq. 2.18), we have the trial solution as

),(1),(2 pxNxpxyt 

The network is trained for ten equidistant points in the given domain [0, 1]. We have

considered six hidden nodes for MLP and six polynomials (Chebyshev, Legendre) for

single layer neural network. Table 6.9 shows comparison among analytical [84]

traditional MLP, ChebyshevNeural Network (ChNN) and Legendre Neural Network

(LeNN) solutions. Also, comparison among analytical, traditional MLP, ChNN and LeNN

results are also depicted in Figure 6.10.

Table 6.9: Comparison among analytical, MLP, ChNN and LeNN solutions (Example 6.3.5)

Figure 6.10: Plot of analytical, MLP, ChNN and LeNN solutions (Example 6.3.5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

R
es

u
lt

s

Analytical

MLP

ChNN

LeNN

Input data Analytical [84] MLP ChNN LeNN

0 1.0000 1.0008 1.0001 0.9999

0.1 1.0101 1.0201 1.0094 1.0178

0.2 1.0408 1.0614 1.0421 1.0442

0.3 1.0942 1.1257 1.0945 1.0936

0.4 1.1732 1.1363 1.1598 1.1879

0.5 1.2840 1.2747 1.2866 1.2856

0.6 1.4333 1.5468 1.4312 1.4481

0.7 1.6323 1.6197 1.6238 1.6380

0.8 1.8965 1.9176 1.8924 1.8645

0.9 2.2479 2.2242 2.2392 2.2435

1.0 2.7148 2. 7320 2.7148 2.7201

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

114

In view of the above one may see that the analytical results compared very well with

ChNN and LeNN results.

Example 6.3.6:

In this example we take a non linear Emden- Fowler equation.

yyyy
x

y ln414
6



0x

subject to 1)0(y , 0)0(y

We can write the trial solution as

),(1),(2 pxNxpxyt 

Here we have trained the network for ten equidistant points in [0, 1]. Comparison among

analytical [80], traditional MLP, single layer ChNN and LeNN results are given in Table

6.10. Analytical, MLP, ChNN and LeNN results are compared in Figure 6.11.

Table 6.10: Comparison among analytical, MLP, ChNN and LeNN solutions (Example 6.3.6)

The CPU time of computation for Examples 6.3.5 and 6.3.6 are incorporated in Table

6.11. It may be seen that ChNN and LeNN require less time than MLP. Moreover,

between ChNN and LeNN, the ChNN requires less CPU time of computation for the

present problems (Examples 6.3.5 and 6.3.6).

Input data Analytical

[80]

MLP

ChNN LeNN

0 1.0000 1.0000 1.0002 1.0002

0.1 0.9900 0.9914 0.9901 0.9907

0.2 0.9608 0.9542 0.9606 0.9602

0.3 0.9139 0.9196 0.9132 0.9140

0.4 0.8521 0.8645 0.8523 0.8503

0.5 0.7788 0.7710 0.7783 0.7754

0.6 0.6977 0.6955 0.6974 0.6775

0.7 0.6126 0.6064 0.6116 0.6125

0.8 0.5273 0.5222 0.5250 0.5304

0.9 0.4449 0.4471 0.4439 0.4490

1.0 0.3679 0.3704 0.3649 0.3696

Legendre Functional Link Neural Network

Chapter 6 for Solving ODEs

115

Figure 6.11: Plot of analytical, MLP, ChNN and LeNN solutions (Example 6.3.6)

 Table 6.11: CPU time of computation

CPU time of
computation

(in Sec.)

MLP ChNN LeNN

Example 6.3.5 10,168.41 8,552.15 8,869.19

Example 6.3.6 9,588.26 7,716.49 8,142.33

6.4 Conclusion

In this chapter, we have proposed a single layer Legendre Neural Network (LeNN) model

to solve ordinary differential equations viz. nonlinear singular initial value problem of

Lane-Emden type, second order boundary value problem and system of coupled first

order ODEs. Here we have considered single layer Functional Link Artificial Neural

Network (FLANN) architecture. The dimension of input data is expanded using the set of

Legendre orthogonal polynomials. Excellent agreement of the results between analytical

and LeNN show the powerfulness and reliability of the proposed method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

R
e
su

lt
s

Analytical

MLP

ChNN

LeNN

116

Chapter 7

Simple Orthogonal Polynomial Based

Functional Link Neural Network Model

for Solving ODEs

Single layer Simple Orthogonal Polynomial based Functional Link Artificial Neural

Network (FLANN) model has been proposed in this chapter. We have considered Gram-

Schmidt orthogonal polynomial based FLANN model to obtain the numerical solution of

force-free Duffing equations with various initial conditions for the first time. The present

method eliminates the hidden layer by expanding the input patterns using Gram-Schmidt

orthogonal polynomials. Feed forward neural model for single input, single output and

back propagation algorithm have been used here. Results obtained by Simple Orthogonal

Polynomial based Neural Network (SOPNN) are compared with the results obtained by

other numerical methods. Accuracy of SOPNN, errors and phase diagrams are also shown

graphically.*

7.1 Simple Orthogonal Polynomial based Neural Network

 (SOPNN) Model

In this head, we have described the architecture of single layer SOPNN model, SOPNN

formulation for ODEs, learning algorithm and computation of gradient.

 *Content of this chapter has been communicated in the following Journal:

1. Applied Mathematical Modeling, (under review), (2014).

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

117

7.1.1 Architecture of Simple Orthogonal Polynomial based Neural

 Network (SOPNN) Model

A single layer Simple Orthogonal polynomial based Neural Network model has been

considered here. Figure 7.1 gives the structure of Simple Orthogonal Polynomial based

Neural Network (SOPNN) which consists of single input node, single output node and a

functional expansion block based on Gram-Schmidt orthogonal polynomials. The SOPNN

model consists of two parts, the first one is numerical transformation part and the second

part is learning part. In numerical transformation part, each input data of SOPNN model is

expanded to several terms using Gram-Schmidt orthogonal polynomials. We have

considered only one input node. For the linearly independent sequence ,...},,,1{ 32 uuu

first six orthogonal polynomials obtained by Gram-Schmidt process are well known and

may be written as



252

1

42

5

6

5

9

20

2

5
)(

70

1

7

2

7

9
2)(

20

1

5

3

2

93
)(

6

1
)(

2

1
)(

1)(

2345

5

234

4

23

3

2

2

1

0













uuuuuu

uuuuu

uuuu

uuu

uu

u













 (7.1)

We have considered input data (time) as T

htttt),...,,(21 that is the single node t has h

number of data.

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

118

)(0 t
 1v

)(1 t 2v

)(4 t

Figure 7.1: Architecture of single layer SOPNN

7.1.2 Formulation and Learning Algorithm of Proposed SOPNN Model

General formulation for ODEs using ANN has been discussed in Sec. 2.2.1.

The SOPNN trial solution),(ptx for ODEs with input t and parameters p may be

expressed as

)),(,()(),(ptNtFtAptx 
(7.2)

 The first term)(tA satisfies only initial/boundary conditions, where as the second term

)),(,(ptNtF contains the single output),(ptN of SOPNN with input t and adjustable

parameters (weights) p. The tangent hyperbolic function is considered here as the

activation function.

As mentioned above, a single layer SOPNN is considered with one input node and

single output node),(ptN is formulated as

 zz

zz

ee

ee
zptN








)tanh(),((7.3)

where z a linear combination of expanded input data. It is written as

t

),(ptN

Input layer
SOPNN Output

Output layer

)tanh(

)(3 t

)(5 t

4v

5v

6v

)(2 t

3v

S
im

p
le

 O
rt

h
o
g
o
n

a
l

E

x
p

a
n

si
o
n

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

119

)(1

1

tvz j

m

j

j 



  (7.4)

where t (time) is the input data,)(1 tj and jv with },...3,2,1{ mj  denote the expanded

input data and weight vector respectively of the SOPNN model.

Let us consider now the formulation for the second order ordinary differential

equation in particular because our aim is here to solve the Duffing and Van der Pol-

Duffing oscillator equations.

The targeted differential equation may be written as

),,(
2

2

dt

dx
xtf

dt

xd


 bat ,

 (7.5)

with initial conditions Aax )(, Aax )(

In this regard, SOPNN formulation for second initial value problems may be written as

),()()(),(2 ptNatatAAptx  (7.6)

The error function is written as

2

2

2

1

),(
),,(,

),(

2

1
),(

























dt

ptdx
ptxtf

dt

ptxd
ptE

i

ii

i

h

i






 (7.7)

Error back propagation learning principle (unsupervised) has been used for minimizing

error function and to update the network parameters (weights) of the SOPNN model. The

weights from input to output layer are updated by taking negative gradient at each

iteration




















k

j

k
k

j

k

j

k

j

k

j
v

ptE
vvvv

),(1  (7.8)

7.1.3 Gradient Computation for SOPNN

The error computation not only involves the output but also the derivative of the network

output with respect to its input. So it requires finding out the gradient of the network

derivatives with respect to its input.

As such, the derivatives of ptN ,() with respect to input t is written as

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

120

 )(
)(

)()(
1

1

2))(())((

2))(())((2))(())((

11

1111

tv
ee

eeee

dt

dN
jj

m

j

tvtv

tvtvtvtv

jjjj

jjjjjjjj







































 








(7.9)

Similarly, we can find other derivatives as (in Sec. 2.2.5, Eq. 2.44 and Eq. 2.49). Using

unsupervised training as given in Sec. 2.2.2 (Eq. 2.9) we may minimize the error function

as per the desired accuracy.

7.2 Duffing Oscillator Equations

Duffing oscillators play a crucial role in applied mathematics, physics and engineering

problems. The nonlinear Duffing oscillator equations have various engineering

applications viz. nonlinear vibration of beams and plates [93], magneto-elastic mechanical

systems [94] and fluid flow induced vibration [95] etc.

A solution of the above problems has been a recent research topic because most of

them do not have analytical solutions. So various numerical techniques and perturbation

methods have been used to handle Duffing oscillator equations [96--101] etc. But our aim

is to solve these equations using single layer SOPNN method.

Governing equation

The general form of damped Duffing oscillator equation is expressed as

tFxx
dt

dx

dt

xd
 cos3

2

2



0 (7.10)

with initial conditions ax )0(, bx )0(

Here  represents the damping coefficient, F and  denote the magnitude of periodic

force and frequency of the force respectively and t is the periodic time.

Eq. (7.10) reduces to unforced damped Duffing oscillator equation when F=0.

The unforced Van der Pol Duffing oscillator equation may be written as

0)(3

2

2

 xx
dt

dx
x

dt

xd
 (7.11)

subject to ax )0(, bx )0(

where  ,, and  are arbitrary constants.

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

121

7.3 Case Studies

This section includes unforced damped Duffing oscillator and Van der Pol-Duffing

oscillator equations to show the powerfulness of the proposed method. We have taken

unforced Duffing oscillator equations in Examples 7.3.1 and 7.3.2 respectively. Then an

unforced Van der Pol-Duffing oscillator is given in Example 7.3.3.

Example 7.3.1:

Let us take a force-free damped Duffing oscillator problem [97]

with ,5.0 ,25  1.0a and .0b

Accordingly we have

025255.0 3

2

2

 xx
dt

dx

dt

xd

subject to initial conditions 1.0)0(x , .0)0(x

As discussed above we may write the SOPNN trial solution as

),(1.0),(2 ptNtptx 

The network has been trained for 50 points in the domain [0, 5] with six weights with

respect to first six simple orthogonal polynomials. Table 7.1 shows comparison among

numerical solutions obtained by Modified Differential Transformation Method (MDTM)

[97] by the Pade approximate of [3/3], real part of MDTM by the Pade approximate of

[4/4] and SOPNN. Comparison between results by real part of MDTM [97] and present

SOPNN are depicted in Figure 7. 2. The plot of the error function (MDTM and SOPNN)

has also been shown in Figure 7.3. The phase plane diagram is cited in Figure 7.4.

Table 7.1: Comparison between MDTM and SOPNN results (Example 7.3.1)

Input data

t (Time)

MDTM by the Pade
approximate of [3/3]

[97]

real part of MDTM
by the Pade

approximate of

[4/4] [97]

SOPNN

0 0.0998 0.1000 0.1000

0.1000 0.0876 0.0853 0.0842

0.2000 0.0550 0.0511 0.0512

0.3000 0.0110 0.0064 0.0063

0.4000 -0.0331 -0.0380 -0.0377

0.5000 -0.0665 -0.0712 -0.0691

0.6000 -0.0814 -0.0854 -0.0856

0.7000 -0.0751 -0.0782 -0.0764

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

122

0.8000 -0.0502 -0.0528 -0.0530

0.9000 -0.0136 -0.0161 -0.0173

1.0000 0.0249 0.0229 0.0224

1.1000 0.0560 0.0547 0.0539

1.2000 0.0722 0.0716 0.0713

1.3000 0.0704 0.0703 0.0704

1.4000 0.0518 0.0523 0.0519

1.5000 0.0219 0.0227 0.0215

1.6000 -0.0115 -0.0110 -0.0109

1.7000 -0.0399 -0.0406 -0.0394

1.8000 -0.0567 -0.0589 -0.0574

1.9000 -0.0582 -0.0620 -0.0624

2.0000 -0.0449 -0.0501 -0.0489

2.1000 -0.0207 -0.0268 -0.0262

2.2000 0.0078 0.0018 -0.0018

2.3000 0.0336 0.0287 0.0279

2.4000 0.0503 0.0473 0.0477

2.5000 0.0543 0.0536 0.0534

2.6000 0.0452 0.0467 0.0461

2.7000 0.0260 0.0290 0.0289

2.8000 0.0017 0.0051 0.0052

2.9000 -0.0212 -0.0189 -0.0191

3.0000 -0.0374 -0.0372 -0.0375

3.1000 -0.0431 -0.0456 -0.0487

3.2000 -0.0375 -0.0426 -0.0404

3.3000 -0.0224 -0.0295 -0.0310

3.4000 -0.0021 -0.0101 -0.0135

3.5000 0.0182 0.0109 0.0147

3.6000 0.0335 0.0283 0.0308

3.7000 0.0404 0.0380 0.0400

3.8000 0.0374 0.0380 0.0388

3.9000 0.0259 0.0290 0.0279

4.0000 0.0090 0.0134 0.0113

4.1000 -0.0088 -0.0047 -0.0076

4.2000 -0.0230 -0.0208 -0.0221

4.3000 -0.0305 -0.0311 -0.0309

4.4000 -0.0296 -0.0334 -0.0325

4.5000 -0.0210 -0.0275 -0.0258

4.6000 -0.0072 -0.0154 -0.0124

4.7000 0.0082 -0.0001 0.0032

4.8000 0.0213 0.0145 0.0193

4.9000 0.0290 0.0248 0.0250

5.0000 0.0297 0.0287 0.0288

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

123

Figure 7.2: Plot of MDTM and SOPNN results (Example 7.3.1)

Figure 7.3: Error plot between MDTM and SOPNN results (Example 7.3.1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

t

R
e
s
u

lt
s

 MDTM by Pade 4/4

SOPNN

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

t

E
rr

or

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

124

Figure 7.4: Phase plane plot by SOPNN (Example 7.3.1)

Example 7.3.2:

Next, we have taken the damped Duffing oscillator problem

with ,1 ,20 ,2 2.0a and .2b

The differential equation may be written as

0220 3

2

2

 xx
dt

dx

dt

xd

subject to 2.0)0(x , .2)0(x

The SOPNN trial solution, in this case, is represented as

),(22.0),(2 ptNttptx 

Again the network is trained with 50 equidistant points in the interval [0, 5] with first six

simple orthogonal polynomials. Table 7.2 incorporates the comparison between solutions

of the real part of Modified Differential Transformation Method (MDTM) [97] by the

Pade approximate of [4/4] and SOPNN. Figure 7.5 shows comparison of results between

[97] and SOPNN. The plot of the error is cited in Figure 7.6. Again Figure 7.7 depicts the

phase plane diagram.

-0.1 -0.05 0 0.05 0.1 0.15
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x(t)

x'
(t

)

SOPNN

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

125

Figure 7.5: Plot of MDTM and SOPNN results (Example 7.3.2)

Table 7.2: Comparison between MDTM and SOPNN results (Example 7.3.2)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

t

R
e
s
u

lt
s

Real part of MDTM by Pade [4/4]

SOPNN

Input data
t (Time)

MDTM
[97]

SOPNN

0 -0.2000 -0.2000

0.1000 0.0031 0.0034

0.2000 0.1863 0.1890

0.3000 0.3170 0.3172

0.4000 0.3753 0.3745

0.5000 0.3565 0.3587

0.6000 0.2714 0.2711

0.7000 0.1427 0.1400

0.8000 -0.0010 -0.0014

0.9000 -0.1307 -0.1299

1.0000 -0.2234 -0.2250

1.1000 -0.2648 -0.2639

1.2000 -0.2519 -0.2510

1.3000 -0.1923 -0.1930

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

126

1.4000 -0.1016 -0.1013

1.5000 -0.0002 -0.0005

1.6000 0.0916 0.0919

1.7000 0.1574 0.1570

1.8000 0.1869 0.1872

1.9000 0.1781 0.1800

2.0000 0.1362 0.1360

2.1000 0.0724 0.0726

2.2000 0.0007 0.0006

2.3000 -0.0642 -0.0661

2.4000 -0.1108 -0.1095

2.5000 -0.1319 -0.1309

2.6000 -0.1259 -0.1262

2.7000 -0.0965 -0.0969

2.8000 -0.0515 -0.0519

2.9000 -0.0009 -0.0003

3.0000 0.0450 0.0456

3.1000 0.0781 0.0791

3.2000 0.0931 0.0978

3.3000 0.0890 0.0894

3.4000 0.0684 0.0671

3.5000 0.0367 0.0382

3.6000 0.0010 0.0021

3.7000 -0.0315 -0.0338

3.8000 -0.0550 -0.0579

3.9000 -0.0657 -0.0666

4.0000 -0.0629 -0.0610

4.1000 -0.0484 -0.0501

4.2000 -0.0261 -0.0285

4.3000 -0.0009 -0.0005

4.4000 0.0221 0.0210

4.5000 0.0387 0.0400

4.6000 0.0464 0.0472

4.7000 0.0445 0.0439

4.8000 0.0343 0.0358

4.9000 0.0186 0.0190

5.0000 0.0008 0.0006

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

127

Figure 7.6: Error plot between MDTM and SOPNN results (Example 7.3.2)

Figure 7.7: Phase plane plot by SOPNN (Example 7.3.2)

Example 7.3.3:

In this example an unforcedVan Der Pol-Duffing oscillator equation has been considered

as [98]

with 1,
3

1
,3,

3

4
  and F=0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

t

Er
ro

r

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x(t)

x
'(

t)

SOPNN

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

128

Here the differential equation is

0
3

1
)3

3

4
(3

2

2

 xx
dt

dx
x

dt

xd

with initial conditions 2887.0)0(x , .12.0)0(x

The related SOPNN trial solution is

),(12.02887.0),(2 ptNttptx 

In this case, we have considered twenty five points in the interval [0, 10] with first six

simple orthogonal polynomials. We have compared SOPNN results with New Homotopy

Perturbation Method (NHPM) results [98] in Table 7.3. NHPM and SOPNN results are

also compared graphically in Figure 7.8. Finally, Figure 7.9 depicts the plot of error

between NHPM and SOPNN results.

Figure 7.8: Plot of MHPM [98] and SOPNN results (Example 7.3.3)

0 1 2 3 4 5 6 7 8 9 10
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

t

R
es

u
lt

s

NHPM

SOPNN

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

129

Table 7.3: Comparison between NHPM and SOPNN results (Example 7.3.3)

Input data

t (Time)

NHPM

[98]

SOPNN

0 -0.2887 -0.2887
 0.4000 -0.2456 -0.2450

0.8000 -0.2106 -0.2099

1.2000 -0.1816 -0.1831

1.6000 -0.1571 -0.1512

2.0000 -0.1363 -0.1400

2.4000 -0.1186 -0.1206

2.8000 -0.1033 -0.1056

3.2000 -0.0900 -0.0912

3.6000 -0.0786 -0.0745

4.0000 -0.0686 -0.0678

4.4000 -0.0599 -0.0592

4.8000 -0.0524 -0.0529

5.2000 -0.0458 -0.0436

5.6000 -0.0400 -0.0405

6.0000 -0.0350 -0.0351

6.4000 -0.0306 -0.0297

6.8000 -0.0268 -0.0262

7.2000 -0.0234 -0.0237

7.6000 -0.0205 -0.0208

8.0000 -0.0179 -0.0180

8.4000 -0.0157 -0.0160

8.8000 -0.0137 -0.0139

9.2000 -0.0120 -0.0115

9.6000 -0.0105 -0.0113

10.0000 -0.0092 -0.0094

Simple Orthogonal Polynomial Based

Chapter 7 FLNN Model for Solving ODEs

130

Figure 7.9: Error plot between MHPM and SOPNN results (Example 7.3.3)

7.4 Conclusion

A single layer Simple Orthogonal Polynomial based Neural Network (SOPNN) has been

proposed and applied to solve unforced damped Duffing oscillator and Van der Pol-

Duffing oscillator equations. The hidden layer is eliminated by functional expansion

block for enhancement of the input patterns using simple orthogonal polynomials.

Comparison of the proposed SOPNN results with other numerical results shows that the

present method is convenient and effective for solving nonlinear Duffing oscillator

problems.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

t

E
rr

o
r

131

Chapter 8

Hermite Functional Link Neural Network

Model for Solving ODEs

In this chapter, Hermite polynomial based Functional Link Artificial Neural Network

(FLANN) named Hermite Neural Network (HeNN) has been proposed for solving the

Van der Pol-Duffing oscillator equation. The Van der Pol-Duffing oscillator equation is a

classical nonlinear oscillator which is very useful mathematical model for understanding

different engineering problems. This equation is widely used to model various physical

problems viz. electrical circuit, electronics, mechanics etc. [94]. Three mathematical

example problems and two real life application problems viz. extracting the features of

early mechanical failure signal and weak signal detection problems are solved using the

proposed HeNN method. The hidden layer is replaced by expansion block of input pattern

using Hermit orthogonal polynomials. The single layer HeNN model has some

advantages such as simpler structure and lower computational complexity due to less

number of parameters than the traditional neural network model. HeNN approximate

solutions have been compared with results obtained by other numerical methods.

Computed results are depicted in term of plots to show the validation of the

methodology.*

8.1 Hermite Neural Network (HeNN) model

In this section, architecture of single layer HeNN model, its formulation, learning

algorithm and gradient computation of network output have been introduced.

*Content of this chapter has been accepted in following Journal:

1. Neural Computation (Accepted), 2016.

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

132

8.1.1 Structure of Hermite Neural Network (HeNN) Model

Figure 8.1 depicts the structure of HeNN model which consists of the single input node,

the single output node and Hermite orthogonal polynomial based functional expansion

block. HeNN model is a single layer neural model where each input data is expanded to

several terms using Hermite polynomials. The first three Hemite polynomials may be

written as

1)(

)(

1)(

2

2

1

0







xxHe

xxHe

xHe

(8.1)

Higher order Hermite polynomials may then be generated by the recursive formula

)()()(1 xeHxxHexHe nnn


(8.2)

We consider input data (time) as
T

htttt),...,,(21 that is the single node t is assumed to

have h number of data. The architecture of the network with first seven Hermite

polynomials, single input and output nodes are shown in Figure 8.1.

Figure 8.1: Architecture of single layer Hermite Neural Network

t

),(ptN

Input layer HeNN Output

Output layer

)tanh(

)(0 tHe

)(1 tHe

)(2 tHe

)(2 tHe

)(3 tHe

)(5 tHe

)(6 tHe

3w

7w

)(4 tHe

6w

5w

4w

2w

1w

H
er

m
it

 E

x
p

a
n

si
o
n

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

133

8.1.2 Formulation and Learning Algorithm of Proposed HeNN Model

The HeNN trial solution),(ptxHe for the ODEs with parameters (weights) p may be

expressed as

)),(,()(),(ptNtGtAptxHe  (8.3)

The first term)(tA does not contain adjustable parameters and satisfies only

initial/boundary conditions, where as the second term)),(,(ptNtG contains the single

output),(ptN of HeNN model with input t and adjustable parameters p.

As such, network output with input t and parameters (weights) p may be computed as

zz

zz

ee

ee
zptN








)tanh(),((8.4)

where z is a linear combination of expanded input data and is written as

)(1

1

tHewz j

m

j

j 



 (8.5)

here t (time) is the input data,)(1 tHe j and jw with },...3,2,1{ mj  denote the expanded

input data and the weight vector respectively of the HeNN.

Our aim is to solve the Van der Pol-Duffing oscillator equation. As such we have

discussed the formulation of the second order initial value problem of in Eq. 7.5 and 7.6

and error function in Eq. 7.7 (Chapter 7).

Unsupervised error back propagation learning principle (in Eqs. 2.9 to 2.12) has

been used here to update the network parameters (weights) of the Hermite Neural

Network (HeNN) model and the tangent hyperbolic function tanh(.) is considered as the

activation function.

8.1.3 Gradient Computation for HeNN

The error computation involves both output and derivative of the output with respect to

the corresponding input. So it is required to find the gradient of the network derivatives

with respect to the input.

As such, the derivatives of ptN ,() with respect to input t is written as

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

134

 





















































m

j

jjtHewtHew

tHewtHewtHewtHew

teHw
ee

eeee

dt

dN
jjjj

jjjjjjjj

1

12))(())((

2))(())((2))(())((

)(
)(

)()(
11

1111

(8.6)

Similarly, the second derivative of N(t,p) is computed as

 

 








































































































































































m

j

jjxHewxHew

xHewxHew

jjxHewxHew

xHewxHew

xHewxHew

xHewxHew

xeHw
ee

ee

xeHw
ee

ee

ee

ee

dt

Nd

jjjj

jjjj

jjjj

jjjj

jjjj

jjjj

1

1

2

))(())((

))(())((

2

1))(())((

))(())((
3

))(())((

))(())((

2

2

)(1

)(22

11

11

11

11

11

11

(8.7)

where jw denote weights and)(),(11 xeHxeH jj 
 denote first and second derivatives of

Hermite polynomials.

8.2 The Van der Pol-Duffing Oscillator Equation

The Van der Pol-Duffing oscillator equation is a classical nonlinear oscillator which is a

very useful mathematical model for understanding different engineering problems. This

equation is widely used to model various physical problems viz. electrical circuit,

electronics, mechanics etc. [94]. The Van der Pol oscillator equation was proposed by a

Dutch scientist Balthazar Van der Pol, which describes triode oscillations in electrical

circuits. The Van der Pol- Duffing oscillator is a classical example of the self oscillatory

system and is now considered as the very important model to describe variety of physical

systems. Also, this equation describes self-sustaining oscillations in which energy is fed

into small oscillations and removed from large oscillations. The Van der Pol-Duffing

oscillator equation has been used in various real life problems. Few of them may be

mentioned here. Hu and Wen [112] applied the Duffing oscillator for extracting the

features of early mechanical failure signal. Zhihong and Shaopu [113] used Van der Pol

Duffing oscillator equation for weak signal detection. Amplitude and phase of the weak

signal have been determined by [114] using Duffing oscillator equation. Tamaseviciute et

al. [115] investigated an extremely simple analogue electrical circuit simulating the two-

well Duffing-Holmes oscillator equation. The weak periodic signals and machinery faults

have been explained by Li and Qu [116]. The nonlinear Duffing oscillator and Van der

Pol-Duffing oscillator equations are difficult to solve analytically. In recent years, various

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

135

types of numerical and perturbation techniques such as Runge-Kutta, homotopy

perturbation, linearization, variational iteration methods have been used to solve the

nonlinear equation [103--110] etc. The objective of the present chapter is to propose

Hemite Neural Network (HeNN) to solve the Van der Pol-Duffing oscillator equations.

Model Equation

The Van der Pol-Duffing oscillator equation is governed by a second order nonlinear

differential equation

tFxx
dt

dx
x

dt

xd
 cos)1(32

2

2

 (8.8)

with initial conditions ,)0(ax  bx )0(

where x stands for displacement,  is the damping parameter, F and  denote the

excitation amplitude and frequency of the periodic force respectively and t is the periodic

time.  is known as phase nonlinearity parameter.

8.3 Numerical Examples and Discussion

In this section, the Van der Pol-Duffing oscillator equation and two application problems

have been investigated to show the efficiency of the proposed method. Two Van der Pol-

Duffing oscillator equations with force are considered in Examples 8.3.1 and 8.3.2. A

Duffing oscillator equation with force is taken in Examples 8.3.3. We have discussed two

real life application problems viz. (i) a Duffing oscillator equation used for extracting the

features of early mechanical failure signal and detect the early fault in Example 8.3.4 and

(ii) the Van der Pol-Duffing oscilator equation applied for weak signal detection in

Example 8.3.5.

Example 8.3.1:

First, we take the Van der Pol-Duffing oscillator equation [108] as

txx
dt

dx
x

dt

xd
cos53.0)1(2.0 32

2

2



subject to initial conditions 1.0)0(x , 2.0)0(x

The HeNN trial solution, in this case, is represented as

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

136

),(2.01.0),(2 ptNttptxHe 

The network has been trained with 250 equidistant points in the domain that is from 0t

to 50t sec. for computing the results. We have considered seven weights with respect to

first seven Hermite polynomials for the present problem. Here t denotes the periodic time

and x(t) is the displacement at time t. Comparison between numerical results obtained by

fourth-order Runge Kutta Method (RKM) and HeNN are depicted in Figure 8.2. The

phase plane diagram that is plots between)(tx (displacement) and)(tx (velocity) for

HeNN and RKM are shown in Figures 8.3 and 8.4. Then results for some testing points

are shown in Table 8.1. This testing is done to check whether the converged HeNN can

give results directly by inputting the points which were not taken during training.

Figure 8.2: Plot of RKM and HeNN results (Example 8.3.1)

0 5 10 15 20 25 30 35 40 45 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

 Time t

 D
is

pl
ac

em
en

t

x(
t)

RKM

HeNN

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

137

 Figure 8.3: Phase plane plot by HeNN

 (Example 8.3.1)

Table 8.1: RKM and HeNN results for testing points (Example 8.3. 1)

Example 8.3.2:

The Van der Pol-Duffing oscillator equation is written as [103]

txx
dt

dx
x

dt

xd
79.0cos5.05.05.0)1(1.0 32

2

2



with initial conditions 0)0(x , 0)0(x .

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x(t)

x'
(t

)

HeNN

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-3

-2

-1

0

1

2

3

x(t)

x
'(

t)

RKM

Testing points RKM HeNN

1.3235 0.3267 0.3251

3.8219 0.9102 0.9092

6.1612 -1.1086 -1.1078

11.7802 -1.3496 -1.3499

18.6110 2.1206 2.1237

26.1290 0.5823 0.5810

31.4429 -0.9638 -0.9637

35.2970 -1.4238 -1.4229

43.0209 0.6988 0.6981

49.7700 1.6881 1.6879

Figure 8.4: Phase plane plot by RKM

 (Example 8.3.1)

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

138

HeNN trial solution may be written as

),(),(2 ptNtptxHe 

In this case, 250 equidistant points from t=0 to t=50sec. and seven weights with respect

to first seven Hermite polynomials have been considered for present problem. RKM and

HeNN results are compared in Figure 8.5. Finally, Figures 8.6 and 8.7 show the phase

plane plots obtained by the methods of HeNN and RKM respectively.

Figure 8.5: Plot of RKM and HeNN results (Example 8.3.2)

0 5 10 15 20 25 30 35 40 45 50
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 Time t

D
is

p
la

ce
m

en
t

x(
t)

RKM

HeNN

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

139

 Figure 8.6: Phase plane plot by HeNN
 (Example 8.3.2)

Example 8.3.3:

In this Example a Duffing oscillator equation with force is taken as [106]

txx
dt

xd
2sin2.0)2.0(3.0 322

2

2



with initial conditions 15.0)0(x , 0)0(x

As discussed in Eq. 7.6, the HeNN trial solution is constructed as

),(15.0),(2 ptNtptxHe 

Again the network is trained with 225 equidistant points in the time interval [0, 45] with

seven first Hermite polynomials. Figure 8.8 shows comparison of numerical results)(tx

among RKM, HeNN and Algebraic method (AGM) [106]. Again Figures 8.9 and 8.10

depict the phase plane diagram between displacement and velocity using HeNN and RKM

respectively. From Figure 8.8 one may see that results obtained by RKM and AGM

exactly agree at all points with HeNN results.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-3

-2

-1

0

1

2

3

x(t)

x
'(

t)

HeNN

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-3

-2

-1

0

1

2

3

x(t)
x
'(

t)

RKM

Figure 8.7: Phase plane plot by RKM

(Example 8.3.2)

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

140

Figure 8.8: Plot of RKM, HeNN and AGM [106] results (Example 8.3.3)

0 5 10 15 20 25 30 35 40 45
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time t

D
is

p
la

ce
m

en
t

 x
(t

)

RKM

HeNN

AGM

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

x(t)

x
'(

t)

HeNN

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

x(t)

x
'(

t)

RKM

Figure 8.9: Phase plane plot by HeNN
(Example 8.3.3)

Figure 8.10: Phase plane plot by RKM
(Example 8.3.3)

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

141

Example 8.3.4:

A Duffing oscillator equation used for extracting the features of early mechanical failure

signal and detects the early fault has been taken [112]

)(cos3

2

2

tstxx
dt

dx

td

dx
 

subject to 0.1)0(x , 0.1)0(x

where ,5.0 8275.0 (Amplitude of external exciting periodic force) and

tts cos0005.0)( (frequency of external weak signal). The first term of the right side of

the above equation is the reference signal and the second term is the signal to be detected.

 varies from small to big the system varies from small periodic motion to chaotic motion

and at last, to great periodic motion.

For the above problem, we may write the HeNN trial solution as

),(0.10.1),(2 ptNttptxHe 

We have considered time t from 0 to 500 sec., step length h=1.0 and seven weights with

respect to first seven Hermite polynomials. The authors [112] solved the problem by

Runge Kutta method (RKM) and we used the same method to obtain their solution. The

time series plots by RKM [112] and HeNN have been shown in Figures 8.11 and 8.12.

The phase plane plots obtained by HeNN and RKM [112] method for 8275.0 have

been depicted in Figures 8.13 and 8.14. Similarly, phase plane plots for 828.0 by

HeNN and RKM [112] are given in Figures 8.15 and 8.16.

Figure 8.11: Time series diagram of RKM [112] (Example 8.3.4)

0 50 100 150 200 250 300 350 400 450 500
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 Time t

D
is

pl
ac

em
en

t
 x

(t
)

RKM

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

142

Figure 8.12: Time series diagram of HeNN (Example 8.3.4)

0 50 100 150 200 250 300 350 400 450 500
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 Time t

D
is

p
la

ce
m

en
t

 x
(t

)

HeNN

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

x(t)

x
'(

t)

HeNN

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

x(t)

x
'(

t)

RKM

Figure 8.13: Phase plane plot by HeNN
(Example 8.3.4)

Figure 8.14: Phase plane plot by RKM [112]
(Example 8.3. 4)

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

143

Example 8.3.5:

Finally, the Van der Pol-Duffing oscillator equation applied for weak signal detection has

been written as [113]

tFxx
dt

dx
x

dt

xd
 cos)1(32

2

2



subject to the initial conditions 1.0)0(x , 1.0)0(x

with the parameters as 5 , 01.0 , 463.2w and 9.4F

The HeNN trial solution in this case is

),(1.01.0),(2 ptNttptxHe 

Again the network is trained for total time t=300 Sec. and h=0.5. It may be noted that

[113] have solved the problem by fourth order Runge Kutta method (RKM). The time

series plots by RKM [113] and HeNN methods are depicted in Figures 8.17 and 8.18.

Lastly, the phase plane plots by using the methods of RKM [113] and HeNN have been

given in Figures 8.19 and 8.20.

 It may be noted that the amplitude of force F varies from small to large, the Van der

Pol-Duffing system varies from the chaos to the periodic state. The results show that the

orbits maintain the chaotic state. The detected signal can be viewed as a perturbation of

the main sinusoidal deriving force tF cos . The noise can only affect the local trajectory

on phase plane diagram without causing any phase transition.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

x(t)

x'
(t

)

HeNN

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

x(t)

x'
(t

)

RKM

Figure 8.16: Phase plane plot by RKM [112]
(Example 8.3. 4)

Figure 8.15: Phase plane plot by HeNN
(Example 8.3. 4)

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

144

Figure 8.17: Time series diagram of RKM [113] (Example 8.3.5)

Figure 8.18: Time series diagram of HeNN (Example 8.3.5)

0 50 100 150 200 250 300
-3

-2

-1

0

1

2

3

 Time t

D
is

p
la

c
e
m

e
n

t
 x

(t
)

RKM

0 50 100 150 200 250 300
-3

-2

-1

0

1

2

3

 Time t

 D
is

p
la

c
e
m

n
t

x
(t

)

HeNN

Hermite Functional Link Neural Network Model

Chapter 8 for Solving ODEs

145

It may be noted that the amplitude F varies from small to large, the Van der Pol Duffing

system varies from the chaos to the periodic state. Again one may see the excellent

agreement of results between RKM [113] and present (HeNN) methods for time series

results (viz. Figures 8.17 and 8.18) and phase plane plots (Figures 8.19 and 8.20).

8.4 Conclusion

Single layer Hermite Neural Network (HeNN) architecture has been considered in this

chapter to handle the Van der Pol- Duffing oscillator equation. The dimension of input

data is expanded using set of Hermite orthogonal polynomials. Thus, the numbers of

network parameters of HeNN are less than the traditional ANN model. Obtained results

have been compared with numerical results by the other methods. Excellent agreement of

the results between HeNN and other numerical methods shows the effectiveness and

reliability of the proposed method.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-10

-8

-6

-4

-2

0

2

4

6

8

10

x(t)

x
'(

t)

RKM

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-10

-8

-6

-4

-2

0

2

4

6

8

10

x
'(

t)

x(t)

HeNN

Figure 8.19: Phase plane plot by RKM [113]

(Example 8.3.5)

Figure 8.20: Phase plane plot by HeNN

(Example 8.3.5)

146

Chapter 9

Chebyshev Functional Link Neural

Network Model for Solving

Partial Differential Equations (PDEs)

In this chapter, we mainly focus on the development of a single layer Functional Link

Artificial Neural Network (FLANN) model for solving partial differential equations

(PDEs). Numerical solution of elliptic PDEs has been obtained here by applying

Chebyshev Neural Network (ChNN) model for the first time. Computations become

efficient because the hidden layer is eliminated by expanding the input pattern by

Chebyshev polynomials. The results obtained by this method are compared with the

analytical results and are found to be in good agreement.*

9.1 Chebyshev Neural Network (ChNN) Model for PDEs

In this section, the architecture of single layer ChNN model, its learning algorithm, ChNN

of formulation for PDEs and computation of gradient have been described.

9.1.1 Architecture of Chebyshev Neural Network

A single layer Chebyshev Neural Network (ChNN) model for PDEs has been considered

for the present problem.

*Content of this chapter has been communicated in following Journal:

1. Neural Processing Letters, (under review), (2015).

Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

147

Figure 9.1 shows the structure of ChNN consisting of an input layer with two input nodes

(because of two independent variables), a functional expansion block based on Chebyshev

polynomials and a single output node. The ChNN model consists of two parts, the first

one is numerical transformation part and the second part is learning algorithm of ChNN.

In numerical transformation part, each input data is expanded to several terms using

Chebyshev polynomials. Thus, the Chebyshev polynomials can be viewed as new input

vectors. The Chebyshev polynomials are a set of orthogonal polynomials obtained by a

solution of the Chebyshev differential equation. First, two Chebyshev polynomials are

known as

uuT

uT





)(

1)(

1

0
 (9.1)

The higher order Chebyshev polynomials may be generated by the well known recursive

formula

)()(2)(11 uTuuTuT nnn  
 (9.2)

where)(xT n denotes nth order Chebyshev polynomial and -1<u<1 is the argument of the

polynomials. Here n dimensional input pattern is expanded to m dimensional enhanced

Chebyshev polynomials. We consider input pattern as
2

21),(RxxX T  and the nodes

1x and 2x have h number of data. Then the enhanced pattern is obtained by using

Chebyshev polynomials as

),...](),(),(),...;(),(),([222120121110 kkkkkk
xTxTxTxTxTxT

,
hk ,...,2,1 (9.3)

 The architecture of the network with first four Chebyshev polynomials, single input layer

(having two nodes) and an output layer (having single node) are shown in Figure 9.1.

9.1.2 Learning Algorithm of Proposed Chebyshev Neural Network

 (ChNN) for PDEs

In this head, learning algorithm and procedure of applying ChNN in the solution of PDE

are discussed.

Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

148

)(10 xT

)(11 xT

 21w

 31w

)(13 xT 41w

 12w

)(20 xT 22w

)(21 xT 32w

)(22 xT 42w

 Input layer

)(23 xT

Figure 9.1: Structure of single layer Chebyshev Neural Network for PDEs

Unsupervised error back propagation algorithm is used for learning and the weights are

updated by taking negative gradient at each iteration. As such, the gradient of an error

function with respect to the network parameters (weights) is determined. The nonlinear

tangent hyperbolic function viz. is considered as the activation function. Weights

are initialized randomly.

9.1.3 ChNN Formulation for PDEs

We write the trial solution for PDE of Chebyshev neural network (ChNN) with

parameters p and input vector as

 (9.4)

xx

xx

ee

ee








),(pXu t

),(21 xxX 

)),(,()(),(pXNXFXApXu t 

Output layer

ChNN output

),(pXN



1x


 Unsupervised

BP algorithm

Error

2x

)tanh(

11w

)(12 xT

C
h

eb
y
sh

ev
 E

x
p

a
n

si
o
n

Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

149

As mentioned (Sec. 2.3.1), the first term does not contain adjustable parameters

and satisfies only boundary conditions (Dirichlet, mixed, etc.), where as the second term

contains which is the single output of ChNN having input nodes

 with h number of data and adjustable parameters p.

Here the single layer ChNN is considered with two input nodes and single output

node and it may be written as

)tanh(),(zpXN  (9.5)

where z is a weighted sum of expanded input data and this is expressed as

 (9.6)

where is the input vector, and with denoting the

expanded input data and the weight vector respectively of the Chebyshev Neural

Network.

Formulation of two dimensional problems with Dirichlet boundary conditions and

two dimensional problems with mixed (Dirichlet on part of the boundary and Neumann

elsewhere) boundary conditions have discussed in Sec. 2.3.2 (in particular Eq. 2.55 and

2.59). Formulation for error function is given in Eq. 2.61 of Sec. 2.3.2. It may be noted

that computation of gradient of ChNN model is different from traditional multi layer

ANN.

For minimizing the error function that is to update the network parameters

(weights), we differentiate with respect to the parameters. Thus the gradient of

network output with respect to their inputs is computed below.

9.1.4 Computation of Gradient for ChNN

The error computation involves both output and derivatives of the network output with

respect to the corresponding inputs. So it is required to find the gradient of the network

derivatives with respect to the inputs.

As such, the derivatives of) with respect to input is written as

)(XA

)),(,(pXNXF),(pXN

),(21 xxX 

),(pXN

 




















2

1

1

1

)(
i

ij

m

j

ji XTwz

),(21 xxX i)(1 XT j jiw },...3,2,1{ mj 

),(pXE

),(pXE

pXN ,(
TxxX),(21

Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

150

 (9.7)

Similarly we may compute the second derivative of N(x,p) as

(9.8)

Let
X

pXN
N






),(
 denote the derivative of the network output with respect to the input

X. The derivative of),(pXN and N with respect to other parameters (weights) may be

formulated as

 )(1
),(

1

1

2

))(())((

))(())((

11

11

XT
ee

ee

w

pXN
j

m

j
XTwXTw

XTwXTw

j
jjjj

jjjj

















































 (9.9)

   ))(())(tanh())())((())(tanh(111 XTzXTwXTz
w

N
jjjj

j






 
 (9.10)

After getting all the derivatives, we can find out the gradient of error. Using unsupervised

error back propagation learning algorithm, we may minimize the error function as per the

desired accuracy.

9.2 Algorithm of ChNN Model

Following are the steps to train the ChNN network

Step 1: Initialize the input vectors where

 )(
)(

)()(),(
1

1
2))(())((

2))(())((2))(())((

11

1111

XTw
ee

eeee

X

pXN
jji

m

j
XTwXTw

XTwXTwXTwXTw

jjijji

jjijjijjijji

















































 

 











































































































































































m

j

jjiXTwXTw

XTwXTw

jjiXTwXTw

XTwXTw

XTwXTw

XTwXTw

XTw
ee

ee

XTw
ee

ee

ee

ee

X

pXN

jjijji

jjijji

jjijji

jjijji

jjijji

jjijji

1

1

2

))(())((

))(())((

2

1))(())((

))(())((
3

))(())((

))(())((

2

2

)(1

)(22

),(

11

11

11

11

11

11

kk xx 21 , hk ,...,2,1

Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

151

 and consider an error function e>0.

Step 2: Generate randomly selected weight vectors

 where j is the number of functional elements of ChNN model.

Step 3: Make ChNN functional block of input data as

 , .

Step 4: Compute
 .

Step 5: Calculate the output of the ChNN model as)tanh(),(zpXN 

 and calculate the error function.

Step 6: Update the weight vectors using unsupervised back propagation algorithm

Step 7: If the error function , (or any desired value required by the user) then go

 to step 8 otherwise go to step 2.

Step 8: Print the output of the ChNN model. After completing the training with an

acceptable accuracy, the final weights are stored and then the converged

network may be used for testing or new solution.

9.3 Numerical Exmples

In this section, we have considered various types of elliptic partial differential equations

in Examples 9.3.1, 9.3.2 and 9.3.3 to show the powerfulness of the proposed method.

Example 9.3.1:

In this example, a two dimensional elliptic PDE is taken [136]

jw mj ,...,2,1

),...](),(),(),...;(),(),([222120121110 kkkkkk
xTxTxTxTxTxT hk ,...,2,1

);(1

1

XTwz j

m

j

j 



),(2,1 kk xxX  hk ,...,2,1




















k

ji

k

ji

k

ji

k

ji

k

ji
w

PXE
wwww

),(1  2,1i

01.0e

)sin()sin(212

2

2

2

1

2

xx
x

u

x

u











Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

152

on the rectangle ,

subject to the Dirichlet boundary conditions

, ,

, .

The ChNN trial solution, in this case is represented as

This problem is solved using single layer ChNN model on the domain [0,1]×[0,1]. We

have considered mesh of 100 points obtained by ten equidistant points (along x1, x2) in the

given domain [0,1]×[0,1] with first four chebyshev polynomials. Figures 9.2 and 9.3 show

the analytical and ChNN results. The error plot between analytical and ChNN results is

cited in Figure 9.4. Table 9.1 incorporates corresponding results for some testing points.

This testing is done to check the converged weights of ChNN model can give results

directly by inputting the points which were not taken during training.

Figure 9.2: Plot of analytical results (Example 9.3.1)

10 1  x 10 2  x

0),0(2 xu 0),1(2 xu

0)0,(1 xu 0)1,(1 xu

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x
1

x
2

R
e
su

lt
s

Analytical results

),()1()1(),(2211 pXNxxxxpXut 

Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

153

Figure 9.3: Plot of ChNN results (Example 9.3.1)

Figure 9.4: Plot of error between analytical and ChNN results (Example 9.3.1)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x
1

x
2

R
e
su

lt
s

ChNN results

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

-8

-6

-4

-2

0

2

4

6

x 10
-3

x
1

x
2

E
rr

or

-6

-4

-2

0

2

4

x 10
-3

Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

154

Table 9.1: Analytical and ChNN results for testing points (Example 9.3.1)

Example 9.3.2:

Next a two dimensional elliptic PDE with mixed boundary conditions is considered [43]

,

with mixed boundary conditions

, ,

,

As mentioned above, the ChNN trial solution is formulated as

where)(XB may be obtained from Eq. (2.60)

 

  )1()0()1()(

)1()0()1(

)()()()1()(

1111112

0101

10211201

gxgxxgx

gxgx

xgxfxxfxXB







)sin()2(1

2

2

2

2

2

2

2

1

2

xx
x

u

x

u










10 1  x 10 2  x

0),0(2 xu 0),1(2 xu

0)0,(1 xu).sin(2
)1,(

1

2

1 x
x

xu



















2

1
1211

),1,(
),1,(),()1()(),(

x

pxN
pxNpXNxxxXBpXut

 Analytical ChNN

0 0.8910 0 0

0.1710 0.0770 -0.6049 -0.6050

0.3900 0.1940 -2.6578 -2.6578

0.4700 0.2840 -3.8245 -3.8247

0.8250 0.5390 -2.5591 -2.5598

0.3400 0.68200 -3.6366 -3.6365

0.7410 0.5680 -3.5052 -3.5054

0.9500 0.3940 -0.7296 -0.7300

0.1530 0.88200 -0.8266 -0.8265

0.9730 0.4720 -0.4165 -0.4164

1x 2x

Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

155

The network is trained for ten equidistant points (in both variables
1x and

2x) in the given

domain]1,0[]1,0[ with first four chebyshev polynomials. As in the previous case, the

analytical and ChNN results are cited in Figures 9.5 and 9.6. Figure 9.7 shows the plot of

the error function (between analytical and ChNN results). Finally, Table 9.2 incorporates

corresponding results directly by using the converged weights.

Figure 9.5: Plot of analytical results (Example 9.3.2)

Figure 9.6: Plot of ChNN results (Example 9.3.2)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

1.2

x
1x

2

R
es

u
lt

s

Analytical results

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

x
1x

2

R
es

u
lt

s

ChNN results

Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

156

Figure 9.7: Plot of error between analytical and ChNN results (Example 9.3.2)

Table 9.2: Analytical and ChNN results for testing points (Example 9.3.2)

One may see that in both the example problems analytical results excellently agree with

ChNN results.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

-3

-2

-1

0

1

2

3

x 10
-3

x
1x

2

E
rr

or

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

x 10
-3

1x 2x Analytical ChNN

0 0.2318 0 0

0.2174 0.7490 0.3541 0.3542

0.5870 0.3285 0.1039 0.1041

0.3971 0.6481 0.3983 0.3983

0.7193 0.2871 0.0636 0.0638

0.8752 0.5380 0.1106 0.1103

0.9471 0.4691 0.0364 0.0361

0.4521 0.8241 0.6715 0.6714

0.2980 0.9153 0.6747 0.6747

0.6320 0.1834 0.0308 0.0309

Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

157

Example 9.3.3:

Finally, we will consider an elliptic PDE with Dirichlet boundary conditions

)62(2

3

212

2

2

2

1

2

1 xxxe
x

u

x

u x









 

10 1  x , 10 2  x

subject to the boundary conditions

3

22),0(xxu  ,
13

22)1(),1( exxu ,

1

11)0,(
x

exxu


 , 1)1()1,(11

x
exxu


 .

Here, the ChNN trial solution is

where)4()2()1()1()(113

21

3

21 yxxyexyyxeexxxxXA x  

Again, we have trained the network for a mesh of 100 points obtained by considering ten

points (
1x and

2x) in the given domain]1,0[]1,0[ for computing the results. The analytical

and ChNN results are shown in Figures 9.8 and 9.9 respectively. Lastly, Figure 9.10

depicts the error plot between analytical and ChNN results.

Figure 9.8: Plot of analytical results (Example 9.3.3)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

x
1

x
2

R
es

u
lt

s

Analytical results

),()1()1()(),(2211 pXNxxxxXApXut 

Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

158

Figure 9.9: Plot of ChNN results (Example 9.3.3)

Figure 9.10: Plot of error between analytical and ChNN results (Example 9.3.3)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x
1

x
2

 R
es

u
lt

s

ChNN results

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

-2

-1.5

-1

-0.5

0

0.5

1

x 10
-3

x
1

x
2

E
r
r
r
o

r

-15

-10

-5

0

5

x 10
-4

Chebyshev Functional Link Neural Network Model for Solving

Chapter 9 Partial Differential Equations (PDEs)

159

One may see that in all the example problems analytical results excellently agree with

ChNN results.

9.4 Conclusion

Finally, Chebyshev Neural Network (ChNN) based model has been developed to solve

partial differential equations. Here elliptic PDEs are considered for validation of the

model. The dimension of input data is expanded using Chebyshev polynomials. Thus the

numbers of parameters of ChNN are less than the traditional multi layer neural network.

Feed forward neural model with unsupervised error back propagation algorithm is used to

minimize the error function. Example problems show that the proposed ChNN method

may easily be implemented to solve various PDEs.

160

Chapter 10

Conclusion

This chapter includes overall conclusions of the present study and suggestions for future

work. It is already mentioned that new multilayer ANN models viz. RBNN and single

layer FLANN viz. ChNN, LeNN, SOPNN and HeNN have been developed to handle

various ODEs. Finally, single layer ChNN model has been extended for solving PDEs viz.

elliptic type.

As such, conclusions are drawn below with respect to various proposed methods and

application problems.

 In this thesis, initially traditional multi layer ANN model has been used to handle

various linear and nonlinear ODEs (Chapter 3). Here, simple feed forward neural

network using a single input and single output neuron with a single hidden layer of

processing elements to approximate the solution of ODEs has been considered.

Unsupervised training method is useful for formulating the differential equations

when the target is unknown. It has been observed that neural output depends on the

number of inputs that are to be trained as well as on the number of hidden nodes. In

traditional artificial neural network the parameters (weights/biases) are usually taken

as arbitrary (random) and the number of nodes in hidden layer are considered by trial

and error method.

 Next, Regression Based Neural Network (RBNN) model has been developed for

solving ordinary differential equations (Chapter 4). Validation of the proposed method

has been examined by solving a first order, a second order undamped free vibration

spring mass system problem, a second order boundary value problem and a fourth order

ordinary differential equations. Here, the numbers of nodes in hidden layer are fixed

according to the considered degree of polynomial in regression fitting. The coefficients

161

involved are taken as initial weights to start with the neural training. Combination of

arbitrary and regression based weights have been considered here for different

simulation studies.

 Further, we have developed a single layer Chebyshev Functional Link Artificial

Neural Network (FLANN) where no hidden layer is required for the solution. The

dimension of the input pattern is enhanced by using Chebyshev polynomials. Lane-

Emden and Emden-Fowler equations are solved in Chapter 5. The computations

become efficient because the procedure only requires input and output layer. Feed

forward neural model and unsupervised version of error back propagation are used

for minimizing error function and to update the network parameters without using

optimization techniques. The initial weights from input to output layer are considered

as random. We have compared existing results with the approximate results obtained

by proposed ChNN method. Their good agreements and less CPU time in

computations (than the traditional Artificial Neural Network (ANN)) show the

efficiency of the present methodology.

 A new method based on single layer Legendre Neural Network (LeNN) model has

been developed then to solve initial and boundary value problems and system of first

order ODEs (Chapter 6). In LeNN, the hidden layer is replaced by a functional

expansion block for enhancement of the input patterns using Legendre polynomials.

 In view of the success of the ChNN and LeNN (where we use Chebyshev and

Legendre polynomials) models, next we use simple orthogonal polynomials generated

by Gram-Schmidt procedure. As such, simple orthogonal polynomial based single

layer FLANN model named as Simple Orthogonal Polynomial based Neural Network

(SOPNN) has been proposed. The newly developed model is used to solve unforced

Duffing oscillator problems with damping (Chapter 7). Further, single layer Hermite

Neural Network (HeNN) model is developed to solve the Van der Pol-Duffing

oscillator equation (Chapter 8).

 Finally, Chebyshev Neural Network (ChNN) based model has been developed and

the same has been applied to solve partial differential equations. Again the

computations become efficient because the hidden layer is eliminated by expanding

the input pattern by Chebyshev polynomials.

162

Although we have developed different ANN models in a systematic way, but we do not

claim that the proposed methods are most efficient. As such, there are few limitations on

the proposed models and we may identify various scopes of improvement. Accordingly,

these limitations and scopes may open new vistas for future research which are discussed

next.

Scope for Further Research

 Higher dimension PDEs may be solved using the developed ANN models.

 New Single layer FLANN using another type of orthogonal polynomials may be

targeted to handle linear/nonlinear ODEs and PDEs.

 The procedure may be extended to develop methods such as ANN finite element,

ANN finite difference, ANN boundary element method etc.

 In RBNN what should be the maximum degree of polynomial in regression fitting

that may give the best result.

 Another problem was about choosing the number of polynomials to be used in the

FLNN.

 Combining RBNN and FLNN models and to see whether the methods become more

powerful and efficient.

 Other functional link neural networks may be targeted to enhance the training.

 ANN methods may also be developed to handle stochastic, fuzzy and another type

of differential equations.

 It may also be interesting to investigate the theoretical error analysis of the proposed

methods.

163

Bibliography

[1] Ragnar Norberg. Differential equations for moments of present values in life insurance.

Insurance: Mathematics and Economics, 17(2): 171 -- 180, October 1995.

[2] C.J. Budd and A. Iserles. Geometric integration: numerical solution of differential
equations on manifolds. Philosophical Transactions: Royal. Society, 357: 945 -- 956,

November 1999.

[3] William E. Boyce and Richard C. Diprima . Elementary differential equations and

boundary value problems. John Wiley & Sons, Inc., 2001.

[4] Mark A. Pinsky. Partial differential equations and boundary-value problems with

applications. Waveland Press, 2003.

[5] Y. Pinchover and J. Rubinsteinan. Introduction to partial differential
equations.Cambridge University Press, 2005.

[6] D.W. Jordan and Peter Smith. Nonlinear ordinary differential equations: problems and
solutions. Oxford University press, 2007.

[7] Ravi P. Agrawal and Donal O’Regan. An introduction to ordinary differential equations.

Springer, 2008.

[8] Dennis G. Zill and Michael R. Cullen. Differential equations with boundary value

problems. Brooks/Cole, Cengage Learning, 2008.

[9] Henry J. Ricardo. A modern introduction to differential equations. Second edition,

Elsevier, 2009.

[10] Abdul-Majid Wazwaz. Partial Differential Equations Methods and Applications, CRC

Press, 2002.

[11] J. Douglas and B.F. Jones. Predictor-Corrector methods for nonlinear parabolic

differential equations. Journal for Industrial and Applied Mathematics, 11(1): 195 -- 204,

March 1963.

[12] G. Smith. Numerical solution of partial differential equations: Finite Difference

Methods. Oxford University Press, 1978.

[13] A. Wambecq. Rational Runge–Kutta methods for solving systems of ordinary differential

equations. Computing, 20 (4): 333 -- 342, December 1978.

http://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=William+E.+Boyce&search-alias=stripbooks
http://www.amazon.in/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Richard+C.+DiPrima&search-alias=stripbooks
http://www.amazon.com/Dennis-G.-Zill/e/B001H6UH18/ref=dp_byline_cont_book_1
http://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Michael+R.+Cullen&search-alias=books&field-author=Michael+R.+Cullen&sort=relevancerank
http://store.elsevier.com/authorDetails.jsp?authorId=ELS_1034529

164

[14] S.V. Patankar. Numerical heat transfer and fluid flow. McGraw-Hill, 1980.

[15] S.D. Conte and C. Boor. Elementary numerical analysis: An Algorithmic
Approach.McGraw-Hill press, 1980.

[16] J. N. Reddy. An introduction to the finite element method. McGraw-Hill, 1993.

[17] E. Suli and D.F. Mayers. An introduction to numerical analysis.Cambridge University

Press, 2003.

[18] S.T. Karris. Numerical analysis: Using MATLAB and Spreadsheets. Orchard publication,

2004.

[19] R.B. Bhat and S. Chakravety. Numerical analysis in engineering.Alpha Science Int, Ltd.,

2004.

[20] Caesar Saloma. Computation complexity and observations of physical signals, Journal of

Applied Physics, 74: 5314--5319, May 1993.

[21] Kurt Hornik. Maxwell Stinchcombe and Halbert White. Multilayer feed forward networks

are universal approximators. Neural Networks, 2(5): 359 -- 366, January 1989.

[22] Tarun Khanna. Foundations of neural networks. Addison-Wesley press, 1990.

[23] R.J. Schalkoff. Artificial neural networks. McGraw-Hill, 1997.

[24] P.D. Picton. Neural networks, second edition, Palgrave Macmillan, 2000.

[25] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5(4): 115 -- 133, December 1943.

[26] M. Minsky and S. Papert. Perceptrons. MIT Press, 1969.

[27] D. E. Rumelhart, G.E. Hinton and J.L.McClelland. Parallel distributed processing. MIT

Press, 1986.

[28] R.P. Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazine, 4

-- 22, 1987.

[29] J. A. Freeman and D.M. Skapura. Neural networks: algorithms, applications, and
programming techniques. Addison-Wesley Publishing Company, 1991.

[30] James A. Anderson. An introduction to neural networks. MIT press, 1995.

[31] Geoffrey E. Hinton, Simon Osindero and Yee-Whye Teh. A fast learning algorithm for

deep belief nets. Neural Computation, 18: 1527 -- 1554, 2006.

[32] Jacek M. Zurada. Introduction to artificial neural systems. West Publ. Co., 1994.

[33] Raul Rojas. Neural networks: a systematic introduction. Springer, 1996.

http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.amazon.in/James-A.-Anderson/e/B001H6UZA6/ref=dp_byline_cont_book_1

165

[34] Simon S. Haykin. Neural networks a comprehensive foundation. Prentice Hall Inc. 1999.

[35] B. Yegnanarayana. Artificial neural networks. Eastern Economy Edition, 1999.

[36] M. Hajek. Neural network.University of KwaZulu-Natal press, 2005.

[37] D. Graupe. Principles of artificial neural networks. World scientific publishing Co. Ltd.,

2007.

[38] Nikos D. Lagaros and Manolis Papadrakakis. Learning improvement of neural networks

used in structural optimization. Advances in Engineering Software, 35(1): 9 -- 25,

January 2004.

[39] S. Chakraverty. Identification of structural parameters of two-storey shear building by the

iterative training of neural networks. Architectural Science Review Australia, 50 (4): 380 -

- 384, July 2007.

[40] Tshilidzi Marwala and S. Chakraverty. Fault classification in structures with incomplete

measured data using auto associative neural networks and genetic algorithm. Current
Science, 90(4): 542 -- 548, February 2006.

[41] Tshilidzi Marwala. Damage Identification Using Committee of Neural Networks. Journal

of Engineering Mechanics, 126(1): 43 -- 50, January 2000.

[42] Nikos D. Lagaros and Manolis Papadrakakis. Reliability-based structural optimization

using neural networks and Monte Carlo simulation, Computer Methods in Applied
Mechanics and Engineering, 191(32):3491 -- 3507, June 2002.

[43] Isaac Elias Lagaris, Aristidis Likas and Dimitrios I. Fotiadis. Artificial neural networks

for solving ordinary and partial differential equations. IEEE Transactions on Neural
Networks, 9(5): 987 -- 1000, September 1998.

[44] Daniel R. Parisi, Maria C. Mariani and Miguel A. Laborde. Solving differential equations
with unsupervised neural networks. Chemical Engineering and Processing: 42: 715 --

721, September 2003.

[45] S. Chakraverty, V.P. Singh and R.K. Sharma. Regression based weight generation

algorithm in neural network for estimation of frequencies of vibrating plates. Journal of

Computer Methods in Applied Mechanics and Engineering, 195: 4194 -- 4202. July 2006.

[46] S. Chakraverty, V.P. Singh, R.K. Sharma and G.K. Sharma. Modelling vibration

frequencies of annular plates by regression based neural Network, Applied Soft

Computing, 9(1): 439 -- 447, January 2009.

[47] Susmita Mall and S. Chakraverty.Comparison of Artificial Neural Network Architecture

in Solving Ordinary Differential Equations. Advances in Artificial Neural Systems, 2013:

1 -- 24, October 2013.

[48] Susmita Mall and S. Chakraverty. Regression-based neural network training for the

solution of ordinary differential equations. International Journal of Mathematical

Modelling and Numerical Optimization, 4(2): 136 --149, 2013.

http://www.sciencedirect.com/science/journal/00457825
http://www.sciencedirect.com/science/journal/00457825
http://www.sciencedirect.com/science/journal/00457825

166

[49] S. Chakraverty and Susmita Mall. Regression based weight generation algorithm in
neural network for solution of initial and boundary value problems. Neural Computing

and Applications, 25(3): 585 -- 594, September 2014.

[50] Susmita Mall and S. Chakraverty. Regression based neural network model for the

solution of initial value problem.National conference on Computational and Applied

Mathematics in Science and Engineering (CAMSE-2012), December 2012.

[51] Yoh-Han Pao and Stephen M. Philips. The functional link net and learning optimal

control. Neurocomputing,9(2):149 -- 164, October 1995.

[52] S. Purwar, I.N. Kar and A.N. Jha. Online system identification of complex systems using

Chebyshev neural network. Applied Soft Computing, 7(1): 364 -- 372, January 2007.

[53] Jagdish C. Patra, Ranendra N. Pal, B.N. Chatterji, and Ganapati Panda. Identification of

nonlinear dynamic systems using functional link artificial neural networks. IEEE

Transactions On Systems, Man, And Cybernetics—Part B: Cybernetics, 29(2): 254 -- 262,

April 1999.

[54] Jagdish C. Patra and A.C. Kot. Nonlinear dynamic system identification using Chebyshev

functional link artificial neural network. IEEE Transactions Systems, Man and
Cybernetics, Part B-Cybernetics, 32 (4): 505 -- 511, August 2002.

[55] Jagdish C. Patra, M. Juhola and P.K. Meher. Intelligent sensors using computationally

efficient Chebyshev neural networks. IET Science, Measurement and Technology, 2(2):
68 -- 75, March 2008.

[56] Wan-De Weng, Che-shih Yang and Rui-Chang Lin. A channel equalizer using reduced
decision feedback Chebyshev functional link artificial neural networks, Information

Sciences, 177(13): 2642 -- 2654, July 2007.

[57] Tsu-Tian Lee and Jin-Tsong Jeng. The Chebyshev-polynomials-based unified model

neural networks for function approximation. IEEE Transactions on Systems, Man and

Cybernetics –part B: Cybernetics, 28(6): 925 -- 935, December 1998.

[58] Shiow-Shung Yang and Ching-Shiow Tseng. An orthogonal neural network for function

approximation. IEEE Transactions on Systems, Man, and Cybernetics-Part B:

Cybernetics, 26(5): 779 -- 784, October 1996.

[59] Jagdish C. Patra, W. C. Chin, P. K. Meher and G. Chakraborty. Legendre-FLANN-based

nonlinear channel equalization in wireless. IEEE International Conference on Systems,
Man and Cybernetics, pages 1826 -- 1831, October 2008.

[60] Jagdish C. Patra, Pramod K. Meher and Goutam Chakraborty. Nonlinear channel

equalization for wireless communication systems using Legendre neural networks. Signal
Processing, 89 (11): 2251 -- 2262, November 2009.

[61] Jagdish C. Patra and C. Bornand. Nonlinear Dynamic System Identification Using
Legendre Neural Network. IEEE, International joint conference on Neural Networks, 1--

7, July 2010.

167

[62] Santosh K. Nanda and Debi P. Tripathy. Application of functional link artificial neural

network forprediction of machinery noise in opencast mines.Advances in Fuzzy Systems,
2011: 1 -- 11, April 2011.

[63] Susmita Mall and S. Chakraverty. Chebyshev neural network based model for solving
Lane–Emden type equations. Applied Mathematics and Computation, 247:100 -- 114,

November 2014.

[64] Sumita Mall and S. Chakraverty. Numerical solution of nonlinear singular initial value
problems of Emden–Fowler type using Chebyshev neural network method.

Neurocomputing, 149: 975 -- 982, February 2015.

[65] Homer J. Lane. On the theoretical temperature of the sun under the hypothesis of a
gaseous mass maintaining its volume by its internal heat and depending on the laws of

gases known to terrestrial experiment. American Journal of Science and Arts, 50: 57 --74,

July 1870.

[66] Robert Emden. Gaskugeln Anwendungen der mechanischen Warmen-theorie auf

Kosmologie and meteorologische Probleme. Leipzig, Teubner, 1907.

[67] R.H. Fowler. The form near infinity of real, continuous solutions of a certain differential

equation of the second order. Quarterly Journal of Mathematics, 45: 341 -- 371, 1914.

[68] R.H. Fowler. Further studies of Emden’s and similar differential equations, Quarterly

Journal of Mathematics, 2(1): 259 -- 288, 1931.

[69] Harold T. Davis. Introduction to nonlinear differential and integral equations. Dover

publications Inc., 1962.

[70] S. Chandrasekhar. Introduction to study of stellar structure. Dover publications Inc.,
1967.

[71] B.K. Datta. Analytic solution to the Lane-Emden equation. II Nuovo Cimento B, 111(11):
1385--1388, November 1996.

[72] O.W. Richardson. The Emission of Electricity from Hot Bodies.Longman, Green and Co.,
1921.

[73] L. Dresner. Similarity solutions of nonlinear partial differential equations. Pitman

advanced Publishing Program, 1983.

[74] N.T. Shawagfeh. Non perturbative approximate solution for Lane–Emden equation,

Journal of Mathematical Physics, 34 (9): 4364 -- 4369, September 1993.

[75] Abdul-Majid Wazwaz. A new algorithm for solving differential equation Lane–Emden

type. Applied Mathematics and Computation, 118 (3): 287 -- 310, March 2001.

[76] Abdul-Majid Wazwaz. Adomian decomposition method for a reliable treatment of the

Emden–Fowler equation. Applied Mathematics and Computation, 161(2): 543 -- 560,

February 2005.

http://www.google.co.in/search?safe=active&biw=1366&bih=667&q=harold+thayer+davis&stick=H4sIAAAAAAAAAOPgE-LRT9c3NEoqzi2pTLJU4tLP1TdIKqxKsszRkslOttJPys_P1i8vyiwpSc2LL88vyrZKLC3JyC8CADpGid06AAAA&sa=X&ved=0ahUKEwjCpvHyhrPJAhVQBI4KHRpwC6YQmxMIaygBMA8

168

[77] Abdul-Majid Wazwaz. The modified decomposition method for analytical treatment of

differential equations. Applied Mathematics and Computation, 173(1): 165 -- 176,
February 2006.

[78] M.S.H. Chowdhury and I. Hashim. Solutions of a class of singular second order initial
value problems by homotopy- perturbation Method. Physics Letters A, 365(5-6): 439 --

447, June 2007.

[79] M.S.H. Chowdhury and I. Hashim. Solutions of Emden-Fowler Equations by homotopy-
perturbation Method. Nonlinear Analysis: Real Word Applications, 10(1):104 -- 115,

February 2009.

[80] J.I. Ramos. Linearization techniques for singular initial-value problems of ordinary

differential equations. Applied Mathematics and Computation, 161(2): 525 -- 542,

February 2005.

[81] Shijun Liao. A new analytic algorithm of Lane–Emden type equations. Applied

Mathematics and Computation, 142(1): 1 -- 16, September 2003.

[82] Mehdi Dehghan and Fatemeh Shakeri. Approximate solution of a differential equation

arising in astrophysics using the variational iteration method. New Astronomy, 13(1):53 --

59, January 2008.

[83] K.S. Govinder and P.G.L. Leach. Integrability analysis of the Emden-Fowler equation.

Journal of NonlinearMathematical Physics, 14(3): 435 -- 453, April 2007.

[84] Om P. Singh, Rajesh K. Pandey and Vineet K. Singh. Analytical algorithm of Lane-

Emden type equation arising in astrophysics using modified homotopy analysis method.

Computer Physics Communications, 180(7): 1116 -- 1124, July 2009.

[85] Ben Muatjetjeja and Chaudry M. Khalique. Exact solutions of the generalized Lane-

Emden equations of the first and second kind. Pramana, 77(3): 545 -- 554, August 2011.

[86] Conrad M. Mellin, F.M. Mahomed and P.G.L. Leach. Solution of generalized Emden-

Fowler equations with two symmetries. International Journal of Nonlinear Mechanics,

29(4): 529 -- 538, July 1994.

[87] S. Karimi Vanani and A. Aminataei. On the numerical solution of differential equations

of Lane-Emden type. Computers and Mathematics with applications, 59(8): 2815 --
2820, April 2010.

[88] Huseyin Demir and Inci C. Sungu. Numerical solution of a class of nonlinear Emden-
Fowler equations by using differential transformation method. Journal of Arts and

Science, 12:75 -- 81, 2009.

[89] Takasi Kusano and Jelena Manojlovic. Asymptotic behavior of positive solutions of sub
linear differential equations of Emden–Fowler type. Computers and Mathematics with

Applications, 62(2): 551 -- 565, July 2011.

[90] A.H. Bhrawy and A.S. Alofi. A Jacobi- Gauss collocation method for solving nonlinear

Lane-Emden type equations. Communication in Nonlinear Science Numerical Simulation,

17(1): 62 -- 70, January 2012.

169

[91] A. Sami Bataineh, M.S.M. Noorani and I. Hashim. Homotopy analysis method for
singular initial value problems of Emden-Fowler type. Communications in Nonlinear

Science and Numerical Simulation, 14(4): 1121 -- 1131, April 2009.

[92] Ben Muatjetjeja and Chaudry M. Khalique. Conservation laws for a generalized coupled

bi dimensional Lane–Emden system. Communications in Nonlinear Science and

Numerical Simulation, 18(4): 851 -- 857, April 2013.

[93] M.T. Ahmadian, M. Mojahedi and H. Moeenfard. Free vibration analysis of a nonlinear

beam using homotopy and modified Lindstedt–Poincare methods. Journal of Solid

Mechanics, 1(1): 29 -- 36, 2009.

[94] John Guckenheimer and Philip Holmes. Nonlinear Oscillations, Dynamical Systems and

Bifurcations of Vector Fields. Springer-Verlag, 1983.

[95] Narakorn Srinil and Hossein Zanganeh. Modelling of coupled cross-flow/in-line vortex-

induced vibrations using double Duffing and Van der Pol oscillators. Ocean Engineering,

53: 83 -- 97, October 2012.

[96] A. Kimiaeifar, A.R. Saidi, G.H. Bagheri, M. Rahimpour and D.G. Domairr. Analytical

solution for Van der Pol–Duffing oscillators. Chaos, Solutions and Fractals, 42(5): 2660 -
- 2666, December 2009.

[97] S. Nourazar and A. Mirzabeigy Approximate solution for nonlinear Duffing oscillator

with damping effect using the modified differential transform method, Scientia Iranica,
20(2): 364 -- 368, April2013.

[98] Najeeb A. Khan, Muhammad Jamil, Syed A. Ali, and Nadeem A. Khan.Solutions of the
force-free Duffing-van der pol oscillatorequation. International Journal of Differential

Equations, 2011: 1 -- 9, August 2011.

[99] Dimitrios E. Panayotounakos, Efstathios E. Theotokoglou and Michalis P. Markakis.

Exact analytic solutions for the damped Duffing nonlinear oscillator. Computer Rendus

Mecanique, 334(5): 311 -- 316, May 2006.

[100] Y.M. Chen and J.K. Liu. Uniformly valid solution of limit cycle of the Duffing–Van der

Pol equation. Mechanics Research Communications, 36(7): 845 -- 850, October 2009.

[101] Mehdi Akbarzade and D.D. Ganji. Coupled method of homotopy perturbation method

and variational approach for solution to Nonlinear Cubic-Quintic Duffing oscillator.

Advances in Theoretical and Applied Mechchanics, 3(7): 329 -- 337, 2010.

[102] Supriya Mukherjee, Banamali Roy and Sourav Dutta.Solutions of the Duffing–van der

Pol oscillator equation by a differential transform method. Physica Scripta, 83: 1--12,

December 2010.

[103] A.N. Njah and U.E. Vincent. Chaos synchronization between single and double wells

Duffing Van der Pol oscillators using active control. Chaos, Solitons and Fractals, 37(5):
1356 -- 1361, September 2008.

http://www.hindawi.com/36417863/
http://www.hindawi.com/81463271/
http://www.hindawi.com/64960740/
http://www.hindawi.com/32596757/
http://iopscience.iop.org/1402-4896/

170

[104] D.D. Ganji, M. Gorji, S. Soleimani and M. Esmaeilpour. Solution of nonlinear cubic-

quintic Duffing oscillators using He’s Energy Balance Method. Journal of Zhejiang
University Science A, 10(9): 1263 -- 1268, September 2009.

[105] Sandile S. Motsa and Precious Sibanda. A note on the solutions of the Van der Pol and
Duffing equations using a linearization method. Mathematical Problems in Engineering,

2012: 1 -- 10, July 2012.

[106] M.R. Akbari, D.D. Ganji, A. Majidian and A.R. Ahmadi. Solving nonlinear differential
equations of Vander Pol, Rayleigh and Duffing by AGM. Frontiers of Mechanical

Engineering, 9(2): 177 -- 190, June 2014.

[107] H. Molaei and S. Kheybari. A numerical solution of classical Van der Pol-Duffing

oscillator by He’s parameter-expansion method. International Journal of Contemporary

Mathematical Sciences, 8(15): 709 -- 714, 2013.

[108] Chengli Zhang and Yun Zeng. A simple numerical method For Van der Pol-Duffing

Oscillator Equation. International Conference on Mechatronics, Control and Electronic

Engineering, Atlantis Press,Pages 476 -- 480,September 2014.

[109] Ku Hu and Kwok W.Chung. On the stability analysis of a pair of Van der Pol oscillators

with delayed self-connection position and velocity couplings. AIP Advances, 3:112 --118.
(2013),

[110] M.I. Qaisi. Analytical solution of the forced Duffing oscillator, Journal of Sound and

Vibration, 194 (4): 513 -- 520, July 1996.

[111] Vasile Marinca and Nicolae Herisanu. Periodic solutions of Duffing equation with strong

non-linearity. Chaos, Solitons and Fractals, 37(1): 144 -- 149, July 2008.

[112] N.Q. Hu and X.S. Wen. The application of Duffing oscillator in characteristic signal

detection of early fault. Journal of Sound and Vibration, 268(5): 917 -- 931, December
2003.

[113] Zhao Zhihong and Yang Shaopu. Application of van der Pol–Duffing oscillator in weak

signal detection. Computers and Electrical Engineering, 41: 1 -- 8, January 2015.

[114] Guanyu Wang, Wei Zheng and Sailing He. Estimation of amplitude and phase of a weak

signal by using the property of sensitive dependence on initial conditions of a nonlinear
oscillator. Signal Processing, 82(1): 103 -- 115, January 2002.

[115] E. Tamaseviciute, A. Tamasevicius, G. Mykolaitis and E. Lindberg. Analogue Electrical
Circuit for Simulation of the Duffing-Holmes Equation.Nonlinear Analysis: Modelling

and Control, 13(2): 241--252, June 2008.

[116] Chongsheng Li and Liangsheng Qu. Applications of chaotic oscillator in machinery fault
diagnosis. Mechanical Systems and Signal Processing, 21(1):257 -- 269, January 2007.

[117] Hyuk Lee and In S. Kang. Neural algorithm for solving differential equations. Journal of
Computational Physics, 91(1): 110 -- 131, November 1990.

http://www.hindawi.com/32821853/
http://link.springer.com/journal/11465
http://link.springer.com/journal/11465
http://www.google.co.in/url?sa=t&rct=j&q=int.%20j.%20contemp.%20math.%20sciences&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjO5OOzkrXJAhXUco4KHcD6DGUQFggcMAA&url=http%3A%2F%2Fwww.m-hikari.com%2Fijcms.html&usg=AFQjCNF7hOFOmoO0ajKsEhin_zVQ9qg1jg&sig2=LE-Y-qSxue3UMrgrJoEH7A&bvm=bv.108194040,d.c2E
http://www.google.co.in/url?sa=t&rct=j&q=int.%20j.%20contemp.%20math.%20sciences&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjO5OOzkrXJAhXUco4KHcD6DGUQFggcMAA&url=http%3A%2F%2Fwww.m-hikari.com%2Fijcms.html&usg=AFQjCNF7hOFOmoO0ajKsEhin_zVQ9qg1jg&sig2=LE-Y-qSxue3UMrgrJoEH7A&bvm=bv.108194040,d.c2E
http://www.google.co.in/url?sa=t&rct=j&q=int.%20j.%20contemp.%20math.%20sciences&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjO5OOzkrXJAhXUco4KHcD6DGUQFggcMAA&url=http%3A%2F%2Fwww.m-hikari.com%2Fijcms.html&usg=AFQjCNF7hOFOmoO0ajKsEhin_zVQ9qg1jg&sig2=LE-Y-qSxue3UMrgrJoEH7A&bvm=bv.108194040,d.c2E
http://www.sciencedirect.com/science/article/pii/S0888327005001032
http://www.sciencedirect.com/science/article/pii/S0888327005001032

171

[118] A.J. Meade and A.A. Fernandez. The numerical solution of linear ordinary differential

equations by feed forward neural networks. Mathematical and Computer Modelling,
19(2): 1 -- 25, June 1994.

[119] A.J. Meade and A.A Fernandez. Solution of nonlinear ordinary differential equations by
feed forward neural networks. Mathematical and Computer Modelling, 20(9): 19 -- 44,

November 1994.

[120] Bo-An Liu and B. Jammes. Solving ordinary differential equations by neural networks.
Proceeding of 13th European Simulation Multi-Conference Modelling and Simulation: A

Tool for the Next Millennium, Warsaw, Poland, June 1999.

[121] Lucie P. Aarts and Peter Van der Veer. Solving nonlinear differential equations by a

neural network method. Lecture Notes in Computer Science, 2074:181 -- 189, July 2001.

[122] A. Malek and R.S. Beidokhti. Numerical solution for high order deferential equations,

using a hybrid neural network-Optimization method. Applied Mathematics and

Computation, 183(1): 260 -- 271, December 2006.

[123] Ioannis G. Tsoulos and I.E. Lagaris. Solving differential equations with genetic

programming. Genetic Programming and Evolvable Machines, 7(1):33 -- 54, March

2006.

[124] Burnghi Choi and Ju-Hong Lee. Compression of generalization ability on solving

differential equations using back propagation and reformulated radial basis function

networks. Nerocomputing, 73: 115 -- 118, August 2009.

[125] N. Selvaraju and Jabar A. Samant. Solution of matrix Riccati differential equation

fornonlinear singular system using neural networks. International Journal of Computer
Applications, 29: 48 -- 54, 2010.

[126] Hadi S. Yazdi, Morteza Pakdaman and Hamed Modaghegh. Unsupervised kernel least
mean square algorithm for solving ordinary differential equations. Nerocomputing, 74(12-

13): 2062 -- 2071, June 2011.

[127] Manoj Kumar and Neha Yadav. Multilayer perceptrons and radial basis function neural
network methods for the solution of differential equations: a survey. Computers and

Mathematics with Applications, 62(10): 3796 -- 3811, November 2011.

[128] Kais I. braheem and Bashir M. Khalaf. Shooting neural networks algorithm for solving

boundary value problems in ODEs. Applications and Applied Mathematics, 6(11): 1927 -

- 1941, June 2011.

[129] Luma N.M. Tawfiq and Ashraf A.T. Hussein. Design feed forward neural network to

solve singular boundary value problems, ISRN Applied Mathematics, 2013: 1 -- 7, June

2013.

[130] Iftikhar Ahmad and Muhammad Bilal. Numerical Solution of Blasius Equation through

Neural Networks Algorithm. American Journal of Computational Mathematics, 4(3): 223
-- 232, June 2014.

172

[131] Kevin S. McFall and James Robert Mahan. Artificial neural network for solution of

boundary value problems with exact satisfaction of arbitrary boundary conditions. IEEE
Transactions on Neural Networks, 20(8): 1221 -- 1233, August 2009.

[132] Isaac E. Lagaris, Aristidis C. Likasand Dimitrios G. Papageorgiou. Neural network
methods for boundary value problems with irregular boundaries. IEEE Transactions On

Neural Networks, 11(5): 1041 -- 1049, September 2000.

[133] S. He, K. Reif and R. Unbehauen. Multilayer neural networks for solving a class of
partial differential equations. Neural Networks, 13(3): 385 -- 396, April 2000.

[134] Lucie P. Aarts and Peter Van der veer. Neural network method for solving partial
differential equations. Neural Processing Letters, 14(3): 261 -- 271, December 2001.

[135] C. Franke and R. Schaback. Solving partial differential equations by collocation using
radial basis functions. Applied Mathematics and Computation, 93(1): 73 -- 82, July1998.

[136] Nam Mai-Duy and Thanh Tran-Cong. Numerical solution of differential equations using

multi quadric radial basis function networks. Neural Networks, 14(2):185 -- 199, Mrach
2001.

[137] C. Monterola and C. Saloma. Solving the nonlinear Schrodinger equation with an
unsupervised neural network. Optics Express, 9(2): 72 -- 84, July 2001.

[138] Li Jianyu, Luo Siwei, Qi Yingjian and Huang Yaping. Numerical solution of elliptic partial

differential equation using radial basis function neural networks. Neural Networks, 16(5-
6): 729 -- 734, July 2003.

[139] Nejib Smaoui and Suad Al-Enezi. Modelling the dynamics of nonlinear partial differential
equations using neural networks. Journal of Computational and Applied Mathematics,

170(1): 27 -- 58, September 2004.

[140] Larry Manevitz, Akram Bitar and Dan Givoli. Neural network time series forecasting of

finite-element mesh adaptation. Neurocomputing, 63: 447 -- 463, January 2005.

[141] Mohsen Hayati and Behnam Karami. Feed forward neural network for solving partial
differential equations. Journal of Applied Science, 7(19): 2812 -- 2817, 2007.

[142] A. Aminataei and M.M. Mazarei. Numerical solution of Poisson’s equationusing radial
basis function networks on the polar coordinate. Computers and Mathematics with

Applications, 56(11): 2887 -- 2895, December 2008.

[143] Yazdan Shirvany, Mohsen Hayati and Rostam Moradian. Multilayer perceptron neural

networks with novel unsupervised training method for numerical solution of the partial

differential equations. Applied Soft Computing, 9(1): 20 -- 29, January 2009.

[144] R.S. Beidokhti and A. Malek. Solving initial-boundary value problems for systems of

partial differential equations using neural networks and optimization techniques. Journal

of the Franklin Institute, 346(9): 898 -- 913, November 2009.

http://www.sciencedirect.com/science/article/pii/S0893608003000832
http://www.sciencedirect.com/science/article/pii/S0893608003000832
http://www.sciencedirect.com/science/article/pii/S0893608003000832
http://www.sciencedirect.com/science/article/pii/S0893608003000832
http://www.sciencedirect.com/science/article/pii/S0925231204003078
http://www.sciencedirect.com/science/article/pii/S0925231204003078
http://www.sciencedirect.com/science/article/pii/S0925231204003078

173

[145] Ioannis G. Tsoulos, Dimitris Gavrilis and Euripidis Glavas. Solving differential equations

with constructed neural network. Neurocmputing, 72(10-12): 2385 -- 2391, June 2009.

[146] S.A. Hoda and H.A. Nagla. Neural network methods for mixed boundary value problems.

International Journal of Nonlinear Science, 11(3): 312 -- 316, March 2011.

[147] Muhammad A. Z. Raja and Siraj-ul-Islam Ahmad. Numerical treatment for solving one-

dimensional Bratu problem using neural network. Neural Computing and Application,

24(3): 549 -- 561, March 2014.

[148] Svajunas Sajavicius. Radial basis function method for a multidimensional linear elliptic

equation with nonlocal boundary conditions. Computers and Mathematics with
Applications, 67(7): 1407 -- 1420, April 2014.

mailto:Muhammad.asif@ciit-attock.edu.pk%20rasifzahoor@yahoo.com%20asif.phdee10@iiu.edu.pk
http://www.sciencedirect.com/science/article/pii/S0898122114000261

174

Dissemination

Journal Articles

(Published/Accepted)

1. Susmita Mall and S. Chakraverty, Application of Legendre neural network for solving

ordinary differential equations, Applied Soft Computing, 43: 347-356, (2016);

2. Susmita Mall and S. Chakraverty, Hermite functional link neural network for solving

the Van der Pol-Duffing oscillator equation, Neural Computation, (Accepted),

(2016);

3. Susmita Mall and S. Chakraverty, Numerical solution of nonlinear singular initial

value problems of Emden–Fowler type using Chebyshev neural network method,

Neurocomputing, 149: 975 – 982, (2015);

4. Susmita Mall and S. Chakraverty, Chebyshev neural network based model for solving

Lane–Emden type equations, Applied Mathematics and Computation, 247: 100 –

114, (2014);

5. S. Chakraverty and Susmita Mall, Regression based weight generation algorithm in

neural network for solution of initial and boundary value problems, Neural

Computing and Applications, 25: 585 -- 594, (2014);

6. Susmita Mall and S. Chakraverty, Comparison of artificial neural network architecture

in solving ordinary differential equations, Advances in Artificial Neural Systems,

2013: 1 – 24, (2013);

7. Susmita Mall and S. Chakraverty, Regression-based neural network training for the

solution of ordinary differential equations, International Journal of Mathematical

Modelling and Numerical Optimization, 4(2): 136 – 149, (2013).

175

(Communicated)

1. Susmita Mall and S. Chakraverty, Artificial neural network based numerical solution

of ordinary differential equations, International Journal of Dynamical Systems and

Differential Equations, (under review), (2013);

2. Susmita Mall and S. Chakraverty, Artificial neural network based numerical solution

of nonlinear Lane-Emden type equations, International Journal of Machine Learning

and Cybernetics, (Revised version has been submitted), (2016);

3. Susmita Mall and S. Chakraverty, Numerical solution for force-free damped Duffing

oscillator using simple orthogonal polynomial based functional link neural network,

Applied Mathematical Modeling, (under review), (2014);

4. Susmita Mall and S. Chakraverty, Single layer Chebyshev neural network model for

solving elliptic partial differential equations, Neural Processing Letters, (under

review), (2015).

Conference Presentations

1. Susmita Mall and S. Chakraverty, Comparison of traditional and regression based

neural network model for temperature data, 39
th

 Annual conference and National

Seminar of Odisha Mathematical Society, VIVTECH, Bhubaneswar, February, 4-

5, (2012);

2. Susmita Mall and S. Chakraverty, Regression based neural network model for the

solution of initial value problem, National conference on Computational and

Applied Mathematics in Science and Engineering (CAMSE-2012), VNIT,

Nagpur, December, 21-22, (2012);

3. Susmita Mall and S. Chakraverty, Connectionist learning based numerical solution of

ordinary differential equations, 40
th

 Annual conference and National conference

on Fourier Analysis and Differential Equations of Odisha Mathematical Society,

Sambalpur University, Sambalpur, December, 29-30, (2012);

176

4. Susmita Mall and S. Chakraverty, Multi layer versus functional link single layer

neural network for solving nonlinear singular initial value problems, Third

International Symposium on Women computing and Informatics (WCI-2015),

SCMS college, Kochi, Kerala, August,10-13, published in Association for

Computing Machinery (ACM) Proceedings, 678 – 683, (2015);

5. Susmita Mall and S. Chakraverty, Solving partial differential equations using

artificial neural network, 103rd Indian Science Congress, University of Mysore,

Mysore, January, 3-7, (2016).

