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Abstract 
 

It is well known that the differential equations are back bone of different physical 

systems. Many real world problems of science and engineering may be modeled by 

various ordinary or partial differential equations. These differential equations may be 

solved by different approximate methods such as Euler, Runge-Kutta, predictor-corrector, 

finite difference, finite element, boundary element and other numerical techniques when 

the problems cannot be solved by exact/analytical methods. Although these methods 

provide good approximations to the solution, they require a discretization of the domain 

via meshing, which may be challenging in two or higher dimension problems. These 

procedures provide solutions at the pre-defined points and computational complexity 

increases with the number of sampling points. 

In recent decades, various machine intelligence methods in particular connectionist 

learning or Artificial Neural Network (ANN) models are being used to solve a variety of 

real-world problems because of its excellent learning capacity. Recently, a lot of attention 

has been given to use ANN for solving differential equations. The approximate solution 

of differential equations by ANN is found to be advantageous but it depends upon the 

ANN model that one considers. Here our target is to solve ordinary as well as partial 

differential equations using ANN. The approximate solution of differential equations by 

ANN method has various inherent benefits in comparison with other numerical methods 

such as (i) the approximate solution is differentiable in the given domain, (ii) 

computational complexity does not increase considerably with the increase in number of 

sampling points and dimension of the problem, (iii) it can be applied to solve linear as 

well as non linear Ordinary Differential Equations (ODEs) and Partial Differential 

Equations (PDEs). Moreover, the traditional numerical methods are usually iterative in 

nature, where we fix the step size before the start of the computation. After the solution is 

obtained, if we want to know the solution in between steps then again the procedure is to 

be repeated from initial stage. ANN may be one of the ways where we may overcome this 

repetition of iterations. Also, we may use it as a black box to get numerical results at any 

arbitrary point in the domain after training of the model. 

Few authors have solved ordinary and partial differential equations by combining 

the feed forward neural network and optimization technique. As said above that the 

objective of this thesis is to solve various types of ODEs and PDEs using efficient neural 

network. Algorithms are developed where no desired values are known and the output of 

the model can be generated by training only. The architectures of the existing neural 

models are usually problem dependent and the number of nodes etc. are taken by trial



and error method. Also, the training depends upon the weights of the connecting nodes. 

In general, these weights are taken as random number which dictates the training. 

In this investigation, firstly a new method viz. Regression Based Neural Network 

(RBNN) has been developed to handle differential equations. In RBNN model, the number 

of nodes in hidden layer may be fixed by using the regression method. For this, the input 

and output data are fitted first with various degree  polynomials using regression analysis 

and the coefficients involved are taken as initial weights to start with the neural training. 

Fixing of the hidden nodes depends upon the degree of the polynomial.We have considered 

RBNN model for solving different ODEs with initial/boundary conditions. Feed forward 

neural model and unsupervised error back propagation algorithm have been used for 

minimizing the error function and modification of the parameters (weights and biases) 

without use of any optimization technique. 

Next, single layer Functional Link Artificial Neural Network (FLANN) 

architecture has been developed for solving differential equations for the first time. In 

FLANN, the hidden layer is replaced by a functional expansion block for enhancement 

of the input patterns using orthogonal polynomials such as Chebyshev, Legendre, 

Hermite, etc. The computations become efficient because the procedure does not need to 

have hidden layer. Thus, the numbers of network parameters are less than the traditional 

ANN model. 

Varieties of differential equations are solved here using the above mentioned 

methods to show the reliability, powerfulness, and easy computer implementation of the 

methods. As such singular nonlinear initial value problems such as Lane-Emden and 

Emden-Fowler type equations have been solved using Chebyshev Neural Network 

(ChNN) model. Single layer Legendre Neural Network (LeNN) model has also been 

developed to handle Lane-Emden equation, Boundary Value Problem (BVP) and system 

of coupled ordinary differential equations. Unforced Duffing oscillator and unforced Van 

der Pol-Duffing oscillator equations are solved by developing Simple Orthogonal 

Polynomial based Neural Network (SOPNN) model. Further, Hermite Neural Network 

(HeNN) model is proposed to handle the Van der Pol-Duffing oscillator equation. Finally, 

a single layer Chebyshev Neural Network (ChNN) model has also been implemented to 

solve partial differential equations. 

 

Keywords: Artificial neural network; Differential equation; Regression based neural 

network; Lane-Emden equation; Functional link artificial neural network; Duffing 

oscillator; Orthogonal polynomial. 
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Chapter 1 

Introduction 

 

Differential equations play a vital role in various fields of science and technology. Many 

real world problems of engineering, mathematics, physics, chemistry, economics, 

psychology, defense etc. may be modeled by ordinary or partial differential equations [1--

10]. In most of the cases, an analytical/exact solution of differential equations may not be 

obtained easily. So various type of numerical techniques such as Euler, Runge-Kutta, 

predictor-corrector, finite difference, finite element and finite volume etc. [11--19] have 

been employed to solve these equations. Although these methods provide good 

approximations to the solution, they require the discretization of the domain into the 

number of finite points/elements. These methods provide solution values at the pre-

defined points and computational complexity increases with the number of sampling 

points [20]. 

In recent decades, various machine intelligence procedures in particular 

connectionist learning or Artificial Neural Network (ANN) methods have been 

established as a powerful technique to solve a variety of real-world problems because of 

its excellent learning capacity [21--24]. ANN is a computational model or an information 

processing paradigm inspired by biological nervous system. Artificial neural network is 

one of the popular areas of artificial intelligence research and also an abstract 

computational model based on organizational structure of human brain [25].  It is a data 

modeling tool which depends on upon various parameters and learning methods [26--31]. 

It processes information through neuron/node in parallel manner to solve specific 

problems. ANN acquires knowledge through learning and this knowledge is stored with 

inter neuron connections strength which is expressed by numerical values called weights. 

These weights are used to compute output signal values for new testing input signal value. 

This method is successfully applied in various fields [32--42] such as function 

approximation, clustering, prediction, identification, pattern recognition, solving ordinary 

and partial differential equations etc.  
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Recently, a lot of attention has been devoted to the study of ANN for solving 

differential equations. The approximate solution of differential equations by ANN is 

found to be advantageous but it depends upon the ANN model that one considers. Here, 

our target is to solve Ordinary Differential Equations (ODEs) as well as Partial 

Differential Equations (PDEs) using ANN. The approximate solution of ODEs and PDEs 

by ANN has many benifits compared to traditional numerical methods such as [43, 44] 

(a) differentiable in the given domain, (b) computational complexity does not increase 

considerably with the increase in number of sampling points and the dimension, (c) it can 

be applied to solve linear as well as non linear ODEs and PDEs. Moreover, the 

traditional numerical methods are usually iterative in nature, where we fix the step size 

before the start of the computation. After the solution is obtained, if we want to know the 

solution in between steps then again the procedure is to be repeated from the initial stage. 

ANN may be one of the ways where we may overcome this repetition of iterations. Also, 

we may use it as a black box to get numerical results at any arbitrary point in the domain 

after the training of the model. 

As said above, the objective of this thesis is to solve various types of ODEs and 

PDEs using a neural network. Algorithms are developed where no desired values are 

known and the output of the model can be generated by training only. As per the existing 

training algorithm, the architecture of neural model is problem dependent and the 

number of nodes etc. is taken by trial and error method where the training depends upon 

the weights of the connecting nodes. In general, these weights are taken as random 

numbers which dictate the training. 

In this thesis, firstly a new method viz. Regression Based Neural Network (RBNN) 

[45, 46] has been developed to handle differential equations.  In RBNN model, the number 

of nodes in hidden layer has been fixed according to the degree of polynomial in the 

regression. The input and output data are fitted first with various degree  polynomials using 

regression analysis and the coefficients involved are taken as initial weights to start with the 

neural training. Fixing of the hidden nodes depends on upon the degree of the polynomial. 

We have considered RBNN model for solving different ODEs with initial/boundary 

conditions. Here, unsupervised error back propagation algorithm has been used for 

minimizing the error function and modification of the parameters is done without use of 

any optimization technique. 

Next, single layer Functional Link Artificial Neural Network (FLANN) architecture 

has been developed for solving differential equations for the first time. In FLANN, the 

hidden layer is replaced by a functional expansion block for enhancement of the input 

patterns using orthogonal polynomials such as Chebyshev, Legendre, Hermite, etc. It may 

however be noted here that FLANN has been used for problems of function 

approximation, system identification, digital communication etc. by other researchers [51-
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-62]. In FLANN, the computations become efficient because the procedure does not need 

to have hidden layer. Thus, the number of network parameters are less than the traditional 

ANN model. Some of the advantages of the new single layer FLANN based model for 

solving differential equations may be mentioned as below: 

 

 It is a single layer neural network, so number of network parameters are  

          less than traditional multi layer ANN; 

 Fast learning and computationally efficient; 

 Simple implementation; 

 The hidden layers are not required;  

  The back propagation algorithm is unsupervised; 

 No optimization technique is to be used. 

 

Varieties of differential equations are solved here using the above mentioned methods to 

show the reliability, powerfulness, and easy computer implementation of the methods. 

 As such, singular nonlinear initial value problems such as Lane-Emden and Emden-

Fowler type equations have been solved using Chebyshev Neural Network (ChNN) 

model. Single layer Legendre Neural Network (LeNN) model has been developed to 

solve Lane-Emden equation, Boundary Value Problem (BVP) of ODEs and system of 

coupled first order ordinary differential equations. Unforced Duffing oscillator problems 

and Van der Pol-Duffing oscillator equation have been solved by developing Simple 

Orthogonal Polynomial based Neural Network (SOPNN) and Hermite Neural Network 

(HeNN) models respectively. Finally, a single layer Chebyshev Neural Network (ChNN) 

model has also been proposed to solve elliptic partial differential equations. 

In view of the above, we now discuss few related works in the subsequent 

paragraphs. Acccordingly, we will start with ANN. In general, ANN has been used by 

many researchers for the variety of problems. So, it is a gigantic task to include all 

papers related to ANN. As such we include only the basic, important and related works 

of ANN. Next, various types of ANN models are reviewed. Further, we include the 

important works done by various authors to solve the targeted special type of differential 

equations by other numerical methods. Finally, very few works that have been done by 

others related to ODEs and PDEs using ANN are included. As such the literature review 

has been categorized as below: 

 

 ANN models; 

 RBNN models; 

 FLANN models; 

 Solution of ODEs and PDEs by Numerical Methods; 
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 Lane-Emden and Emden-Fowler equations; 

 Duffing and the Van der Pol-Duffing Oscillator Equations; 

 ANN Based Solution of ODEs; 

 ANN Based Solution of PDEs. 

  

1.1 Literature Review 

 

1.1.1   Artificial Neural Network (ANN) Models 

 

In recent years, Artificial Neural Network (ANN) has been established as a powerful 

technique to solve the variety of real-world applications because of its excellent learning 

capacity. An enormous amount of literature has been written on ANN. As mentioned 

above, few important and fundamental papers are reviewed and cited here. 

The first ANN model has been developed by McCulloch and Pitts in 1943 [25]. [21-

-24] introduced the computation of multi layered feed forward neural network. Error back 

propagation algorithm for feed forward neural network has been proposed by [27, 29 and 

32]. Hinton [31] developed fast learning algorithm for multi layer ANN model. [30--34] 

presented artificial neural network with various types of learning algorithm in an excellent 

way. Neural networks and their applications have been studied by Rojas [33]. [35--37] 

implemented various types of ANN models, principles and learning algorithms of ANN. 

[39] used neural networks for the identification the structural parameters of multi storey 

shear building. Also, ANN technique has been applied for wide variety of real world 

applications [38--42]. 

 

1.1.2   Regression Based Neural Network (RBNN) Models 

 

It is already pointed out earlier that RBNN model may be used to fix number of nodes in 

the hidden layer using regression analysis.   

As such Chakraverty and his co-authors [45, 46] have developed and investigated 

various application problems using RBNN. Prediction of response of structural systems 

subject to earthquake motions has been investigated by Chakraverty et al. [45] using 

RBNN model. Chakraverty et al. [46] studied vibration frequencies of annular plates 

using RBNN. Recently, Mall and Chakraverty [47--50] proposed regression based neural 

network model for solving initial/boundary value problems of ODEs. 
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1.1.3   Single Layer Functional Link Artificial Neural Network (FLANN) 

           Models 

 

The single layer Functional Link Artificial Neural Network (FLANN) model has been 

introduced by Pao and Philips [51]. In FLANN, the hidden layer is replaced by a 

functional expansion block for enhancement of the input patterns using orthogonal 

polynomials such as Chebyshev, Legendre, Hermite etc. The single layer FLANN model 

has some advantages such as simple structure and lower computational complexity due to 

less number of parameters than the traditional neural network model. The Chebyshev 

Neural Network (ChNN) has been applied to various problems viz. system identification 

[52--54], digital communication [55], channel equalization [56], function approximation 

[57], etc. Very recently, Mall and Chakraverty [63, 64] havedeveloped ChNN model for 

solving second order singular initial value problems viz. Lane-Emden and Emden-Fowler 

type equations.  

Similarly, single layer Legendre Neural Network (LeNN) has been introduced by 

Yang and Tseng [58] for function approximation. Also LeNN model has been used for 

channel equalization problems [59, 60], system identification [61] and for prediction of 

machinery noise [62]. 

 

1.1.4   Solution of ODEs and PDEs by Numerical Methods 

 

Various problems in engineering and science may be modeled by ordinary or partial 

differential equations [3--10]. In particular, Norberg [1] used Ordinary differential 

equations as conditional moments of present values of payments in respect of a life 

insurance policy. Budd and Iserles [2] developed geometric interpretations and numerical 

solution of differential equations. The exact solution of differential equations may not be 

always possible. So various types of well known numerical methods such as Runge-Kutta, 

predictor-corrector, finite difference, finite element and finite volume etc. have been 

developed by various researchers [11--19] to solve these equations. 

It is again a gigantic task to include varieties of methods and differential equations 

here. As such we include few differential equations models which are solved by the 

proposed ANN method. 

 

1.1.5   Lane-Emden and Emden-Fowler equations 

 

Many problems in astrophysics and Quantum mechanics may be modeled by second order 

ordinary differential equations. The thermal behavior of a spherical cloud of gas acting 
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under the mutual attraction of its molecules and subject to the classical laws of 

thermodynamics had been proposed by Lane [65] and described by Emden [66]. The 

governing differential equation then was known as Lane-Emden type equations. Further, 

Fowler [67, 68] studied Lane-Emden type equations in greater detail. The Lane-Emden 

type equations are singular at x=0. The solution of Lane-Emden equation and other 

nonlinear IVPs in astrophysics are challenging because of the singular point at the origin 

[69--73]. Different analytical approaches based on either series solutions or perturbation 

techniques have been used by few authors [74--92] to handle the Lane-Emden equations. 

Shawagfeh [74] presented an Adomian Decomposition Method (ADM) for solving 

Lane-Emden equations. ADM and modified decomposition method have been used by 

Wazwaz [75--77] for solving Lane-Emden and Emden-Fowler type equations 

respectively. Chowdhury and Hashim [78, 79] employed homotopy-perturbation method 

to solve singular initial value problems of time independent equations and Emden- Fowler 

type equations. Ramos [80] solved singular initial value problems of ordinary differential 

equations using Linearization techniques. Liao [81] presented an algorithm based on 

ADM for solving Lane-Emden type equations. Approximate solution of a differential 

equation arising in astrophysics using the variational iteration method has been done by 

Dehghan and Shakeri [82]. The Emden-Fowler equation has also been solved by 

Govinder and Leach [83] utilizing the techniques of Lie and Painleve analysis. An 

efficient analytic algorithm based on modified homotopy analysis method has been 

implemented by Singh et al. [84]. Muatjetjeja and Khalique [85] provided exact solution 

of the generalized Lane-Emden equations of the first and second kind. Mellin et al. [86] 

solved numerically, general Emden-Fowler equations with two symmetries. In [87], 

Vanani and Aminataei have implemented the Pade series solution of Lane-Emden 

equations. Demir and Sungu [88] gave numerical solutions of nonlinear singular initial 

value problems of Emden-Fowler type using Differential Transformation Method 

(DTM).Kusanoa and Manojlovic [89] presented asymptotic behavior of positive solutions 

of the second-order non linear ordinary differential equations of Emden–Fowler type. 

Bhrawy and Alofi [90] used a shifted Jacobi–Gauss collocation spectral method for 

solving the nonlinear Lane–Emden type equations. Homotopy analysis method for 

singular initial value problems of Emden–Fowler type has been studied by Bataineh et al. 

[91]. In another approach, Muatjetjeja and Khalique [92] presented conservation laws for 

a generalized coupled bi-dimensional Lane–Emden system. 

 

1.1.6   Duffing and the Van der Pol-Duffing Oscillator Equations 

 

The nonlinear Duffing oscillator equations have various engineering applications viz.  

nonlinear vibration of beams and plates [93], magneto-elastic mechanical systems [94], 
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model a one-dimensional cross-flow vortex-induced vibration [95] etc. Also, the Van der 

Pol-Duffing oscillator equation is a classical nonlinear oscillator which is very useful 

mathematical model for understanding different engineering problems and is now 

considered as very important model to describe variety of physical systems. Solution of 

the above problems has been a recent research topic because most of them do not have 

analytical solutions. So various numerical techniques and perturbation methods have been 

used to handle Duffing oscillator and the Van der Pol-Duffing oscillator equations. In this 

regard, Kimiaeifar et al. [96] used homotopy analysis method for solving single-well, 

double-well and double-hump Van der pol-Duffing oscillator equations. Nourazar and 

Mirzabeigy [97] employed modified differential transform method to solve Duffing 

oscillator with damping effect. Approximate solution of force-free Duffing Van der pol 

oscillator equations using homotopy perturbation method has been done by Khan et al. 

[98]. Panayotounakos et al. [99] provided analytic solution for damped Duffing oscillators 

using Abel’s equation of second kind. Duffing–van der Pol equation has been solved by 

Chen and Liu [100] using Liao’s homotopy analysis method. Akbarzade and Ganji [101] 

have implemented homotopy perturbation and variational method for solution of 

nonlinear cubic-quintic Duffing oscillators. Mukherjee et al. [102] evaluated solution of 

Duffing Van der pol equation by differential transform method. Njah and Vincent [103] 

presented chaos synchronization between single and double wells Duffing–van der Pol 

oscillators using active control technique. Ganji et al. [104] used He’s energy balance 

method to solve strongly nonlinear Duffing oscillators with cubic–quintic. Linearization 

method has been employed by Motsa and Sibanda [105] for solving Duffing and Van der 

Pol equations. Akbari et al. [106] solved Van der pol, Rayleigh and Duffing equations 

using algebraic method. Approximate solution of the classical Van der Pol equation using 

He’s parameter expansion method has been developed by Molaei and Kheybari [107]. 

Zhang and Zeng [108] have used a segmenting recursion method to solve Van der Pol-

Duffing oscillator. Stability analysis of a pair of van der Pol oscillators with delayed self-

connection, position and velocity couplings have been investigated by Hu and Chung 

[109].  Qaisi [110] used the power series method for determining the periodic solutions of 

the forced undamped Duffing oscillator equation. Marinca and Herisanu [111] gave 

variational iteration method to find approximate periodic solutions of Duffing equation 

with strong non- linearity.  

The Van der Pol Duffing oscillator equation has been used in various real life 

problems. Few of them may be mentioned as [112--116].   Hu and Wen [112] applied the 

Duffing oscillator for extracting the features of early mechanical failure signal. Also in 

[113], Zhihong and Shaopu used Van der Pol Duffing oscillator equation for weak signal 

detection. Amplitude and phase of weak signal have been determined by Wang et al. 

[114] using Duffing oscillator equation. Tamaseviciute et al. [115] investigated an 
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extremely simple analogue electrical circuit simulating the two-well Duffing-Holmes 

oscillator equation. The weak periodic signals and machinery faults have been explained 

by Li and Qu [116].  

Review of above literatures reveals that most of the numerical methods require the 

discretization of domain into the number of finite elements/points. Recently, few authors 

have solved the ordinary and partial differential equations using ANN. Accordingly, 

literature related to the solution of ODEs and PDEs using ANN are included below to 

have the knowledge about the present investigation. As such, various papers related to the 

above subject are cited in the subsequent sections. 

 

1.1.7   ANN Based Solution of ODEs 

 

Lee and kang [117] introduced a Hopfield neural network model to solve first order 

ordinary differential equation. Solution of linear and nonlinear ordinary differential 

equations using linear 
1B splines as basis function in feed forward neural network model 

has been approached by Meade and Fernandez [118, 119]. Lagaris et al. [43] proposed 

neural networks and Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization technique 

to solve both ordinary and partial differential equations. Liu and Jammes [120] used a 

numerical method based on both neural network and optimization techniques to solve 

higher order ordinary differential equations. The nonlinear ordinary differential equations 

have been solved by Aarts and Van der Veer [121] using Neural Network Method. Malek 

and Beidokhti [122] solved lower as well as higher order ordinary differential equations 

using artificial neural networks with optimization technique. Tsoulos et al. [123] utilized 

feed-forward neural networks, grammatical evolution and a local optimization procedure 

to solve ordinary, partial and system of ordinary differential equations. Choi and Lee 

[124] have compred the results of differential equations using radial basis and back 

propagation ANN algorithms. Selvaraju and Samant [125] proposed new algorithms 

based on neural network for solving matrix Riccati differential equations. In another 

work, Yazdi et al. [126] implemented unsupervised version of kernel least mean square 

algorithm and ANN for solving first and second order ordinary differential equations 

value problems. Kumar and Yadav [127] surveyed multilayer perceptrons and radial basis 

function neural network methods for the solution of differential equations. Ibraheem and 

Khalaf [128] solved boundary value problems using neural network method. Tawfiq and 

Hussein [129] have designed a feed forward neural network for solving second-order 

ordinary singular boundary value problems. Numerical solution of Blasius equation using 

neural networks algorithm has been implimented by Ahmad and Bilal [130]. 

 

 

http://en.wikipedia.org/wiki/Charles_George_Broyden
http://en.wikipedia.org/wiki/Roger_Fletcher_(mathematician)
http://www.columbia.edu/~goldfarb/
http://rutcor.rutgers.edu/~shanno/
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1.1.8   ANN Based Solution of PDEs 

 

Mcfall and Mahan [131] used an artificial neural network method for solution of mixed 

boundary value problems with irregular domain. Also, Lagaris et al. [132] have solved 

boundary value problems with irregular boundaries using multilayer perceptron in 

network architecture. He et al. [133] investigated a class of partial differential equations 

using multilayer neural network. Aarts and Van der veer [134] analyzed partial differential 

equation and initial value problems using feed forward ANN with evolutionary algorithm. 

Franke and Schaback [135] gave the solution of partial differential equations by 

collocation using radial basis function. A multi-quadric radial basis function neural 

network has been used by Mai-Duy and Tran-Cong [136] to solve linear ordinary and 

elliptic partial differential equations. A nonlinear Schrodinger equation with optical axis 

position z and time t as inputs has been solved by Monterola and Saloma [137] used an 

unsupervised neural network. Jianye et al. [138] solved an elliptical partial differential 

equation using radial basis neural network. In another work, a steady-state heat transfer 

problem has been solved by Parisi et al. [44] using unsupervised artificial neural network. 

Smaouia and Al-Enezi [139] applied multilayer neural network model for solving 

nonlinear PDEs. Also Manevitz et al. [140] gave the solution of time-dependent partial 

differential equations using multilayer neural network model with finite-element method. 

Hayati and Karami [141] developed feed forward neural network to solve the Burger’s 

equation viz. one dimensional quasilinear PDE. Numerical solution of Poisson’s equation 

has been implemented by Aminataei and Mazarei [142] using direct and indirect radial 

basis function networks (DRBFNs and IRBFNs). Multilayer perceptron with radial basis 

function (RBF) neural network method has been presented by Shirvany et al. [143] for 

solving nonlinear Schrodinger equation. Beidokhti and Malek [144] proposed neural 

networks and optimization techniques for solving systems of partial differential equations. 

Tsoulos et al. [145] used artificial neural network and grammatical evolution for solving 

ordinary and partial differential equations. Numerical solution of mixed boundary value 

problems has been studied by Hoda and Nagla [146] using multi layer perceptron neural 

network. Raja and Ahmad [147] implemented neural network for the solution of boundary 

value problems of one dimensional Bratu type equations. Sajavicius [148] solved 

multidimensional linear elliptic equation with nonlocal boundary conditions using radial 

basis function method. 
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1.2 Gaps 

 

In view of the above literature review, one may find many gaps in the titled problems. It 

is already mentioned earlier that there exist various numerical methods to solve 

differential equations, when those cannot be solved analytically. Although these methods 

provide good approximations to the solution, they require the discretization of the domain 

into the number of finite points/elements. These methods provide solution values at the 

pre-defined points and computational complexity increases with the number of sampling 

points. Moreover, the traditional numerical methods are usually iterative in nature, where 

we fix the step size before the start of the computation. After the solution is obtained, if 

we want to know the solution in between steps then again the procedure is to be repeated 

from the initial stage. ANN may be one of the ways where we may overcome this 

repetition of iterations. 

It may be noted that few authors have used ANN for solving ODEs and PDEs. But 

most of the researchers have used optimization technique along with feed forward neural 

network in their methods. Moreover, in ANN itself we do not have any straight forward 

method to estimate how many nodes are required in the hidden layer for acceptable 

accuracy. Similarly, it is also a challenge to decide about the number of hidden layers.  

Review of the literature reveals that the previous authors have taken the parameters 

(weights and biases) as random (arbitrary) for their investigation and these parameters are 

adjusted by minimizing the appropriate error function. The ANN architecture viz. the 

number of nodes in the hidden layer had been taken by trial and error. It depends on upon 

the simulation study and so it is problem dependent.  

As such, ANN training becomes time consuming to converge if the weights, number 

of nodes, etc. are not intelligently chosen. Sometimes they may not generalize the 

problem and also do not give good result. Having the above in mind, our aim here is to 

develop efficient artificial neural network learning methods to handle the said problems. 

Another challenge is how to fix or reduce the number of hidden layers in ANN model. As 

such, single layer Functional Link Artificial Neural Network (FLANN) models should be 

developed to solve differential equations. 

 

1.3   Aims and Objectives 

 

In reference to the above gaps, the aim of the present investigation is to develop efficient 

ANN models to solve differential equations. As such, this research is focused to develop 

Regression Based Neural Network (RBNN) model and various types of single layer 

FLANN models to handle differential equations. The efficiency and powerfulness of the 
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proposed methods are also to be studied by investigating different type of ODEs and 

PDEs viz. initial value problems, boundary value problems, system of ODEs, singular 

nonlinear ODEs viz. Lane-Emden and Emden-Fowler type equations, Duffing oscillator 

and Van der- Pol-Duffing oscillator equations etc.  In this respect, the main objectives of 

the present research have been as follows:  

 

 Use of traditional artificial neural network method to obtain solution of various 

type of differential equations;  

 

 New ANN algorithms by the use of various numerical techniques, their learning 

methods and training methodologies; 

 

 New and efficient algorithm to fix number of nodes in the hidden layer;    

 

 Solution of various types of linear and nonlinear ODEs using the developed 

algorithms. Comparison of the results obtained by the new method(s) with that of 

the traditional methods. Investigation about their accuracy, training time, training 

architecture etc.; 

 

    Single Layer Functional Link Artificial Neural Networks (FLANN) such as 

Chebyshev Neural Network (ChNN), Legendre Neural Network (LeNN), Simple 

Orthogonal Polynomial based Neural Network (SOPNN) and Hermite Neural 

Network (HeNN) to solve linear and nonlinear ODEs.  

 

 Efficient ANN algorithm for solution of partial differential equations. 

 

1.4 Organization of the Thesis 

 

Present work is based on the development of new ANN models for solving various types 

of ODEs and PDEs. This thesis consists of ten chapters which deal with investigation of 

Regression Based Neural Network (RBNN), Chebyshev Neural Network (ChNN), 

Legendre Neural Network (LeNN), Simple Orthogonal Polynomial based Neural Network 

(SOPNN) and Hermite Neural Network (HeNN) models to solve ODEs and PDEs.  

Accordingly, the developed methods have also been applied to mathematical 

examples such as initial value problems, boundary value problems in ODEs, system of 

first order ODEs, nonlinear second order ODEs viz. Duffing oscillator and the Van der- 

Pol Duffing oscillator equations, singular nonlinear second order ODEs arising in 

astrophysics viz. Lane-Emden and Emden-Fowler type equations and elliptic PDEs. Real 
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life application problems viz. (i) a Duffing oscillator equation used for extracting the 

features of early mechanical failure signal as well as fault detection and (ii) the Van der 

Pol Duffing oscilator equation applied for weak signal detection are also investigated.  

 

We now describe below the brief outlines of each chapter. 

 

Overview of this thesis has been presented in Chapter 1. Related literatures of various 

ANN models, ODEs and PDEs are reviewed here. This chapter also contains gaps as well 

as aims and objectives of the present study.  

In chapter 2, we recall the methods which are relevant to the present investigation 

such as definitions of Artificial Neural Network (ANN) architecture, learning methods, 

activation functions, leaning rules etc. General formulation of Ordinary Differential 

Equations (ODEs) using multi layer ANN, formulation of n
th

 order initial value as well as 

boundary value problems, system of ODEs and computation of gradient are addressed 

next. Also, general formulation for Partial Differential Equations (PDEs) using ANN, 

formulation for two dimensional PDEs and their gradient computations are described. 

Chapter 3 presents traditional multi layer ANN model to solve first order ODEs and 

Lane- Emden type equations. In the training algorithm, the number of nodes in the hidden 

layer is taken by trial and error method. The initial weights are taken as random number 

as per the desired number of nodes. We have considered simple feed forward neural 

network and unsupervised error back propagation algorithm. The ANN trial solution of 

differential equations is written as sum of two terms, first part satisfies initial/boundary 

conditions and contains no adjustable parameters. The second term contains the output of 

feed forward neural network model. 

In Chapter 4, Regression Based Neural Network (RBNN) model is developed to 

handle ODEs. In RBNN model, the number of nodes in hidden layer has been fixed 

according to the degree of polynomial in the regression and the coefficients involved are 

taken as initial weights to start with the neural training. Fixing of the hidden nodes depends 

upon the degree of the polynomial. Here, unsupervised error back propagation method has 

been used for minimizing the error function. Modifications of the parameters are done 

without use of any optimization technique. Initial weights are taken as combination of 

random as well as by proposed regression based method. In this chapter, a variety of 

initial and boundary value problems have been solved and the results with arbitrary and 

regression based initial weights are compared.  

Single layer Chebyshev polynomial based Functional Link Artificial Neural 

Network named as Chebyshev Neural Network (ChNN) model has been investigated in 

Chapter 5. We have developed single layer functional link artificial neural network 

(FLANN) architecture for solving differential equations for the first time. Accordingly, 
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the developed ChNN model has been used to solve singular initial value problems arising 

in astrophysics and Quantum mechanics such as Lane-Emden and Emden-Fowler type 

equations. ChNN model has been used to overcome the difficulty of the singularity at 

x=0. In single layer ChNN model, the hidden layer is eliminated by expanding the input 

pattern by Chebyshev polynomials. A feed forward neural network model with 

unsupervised error back propagation algorithm is used for modifying the network 

parameters and to minimize the error function.  

In Chapter 6, Single layer Legendre Neural Network (LeNN) model has been 

developed to solve the nonlinear singular Initial Value Problems (IVP) viz. Lane-Emden 

type equations, Boundary Value Problem (BVP) and system of coupled first order 

ordinary differential equations. Here, the dimension of input data is expanded using set of 

Legendre orthogonal polynomials. Computational complexity of LeNN model is found to 

be less than that of the traditional multilayer ANN. 

Simple Orthogonal Polynomial based Neural Network (SOPNN) for solving 

unforced Duffing oscillator problems with damping and unforced Van der Pol-Duffing 

oscillator equations have been considered in Chapter 7. It is worth mentioning that the 

nonlinear Duffing oscillator equations have various engineering applications. SOPNN 

model  has been used to handle these equations. 

 Chapter 8 proposes Hermite polynomial based Functional Link Artificial Neural 

Network (FLANN) model which is named as Hermite Neural Network (HeNN). Here, 

HeNN has been used to solve the Van der Pol-Duffing oscillator equation. Three Van der 

Pol-Duffing oscillator problems and two application problems viz. extracting the features 

of early mechanical failure signal and weak signal detection are also solved using HeNN 

method. 

Chebyshev Neural Network (ChNN) model based solution of Partial Differential 

Equations (PDEs) has been described in Chapter 9. In this chapter, ChNN has been used 

for the first time to obtain the numerical solution of PDEs viz. that of elliptic type. 

Validation of the present ChNN model is done by three test problems of elliptic partial 

differential equations. The results obtained by this method are compared with analytical 

results and are found to be in good agreement. The same idea may also be used for 

solving other type of PDEs. 

Chapter 10 incorporates concluding remarks of the present work. Finally, future 

works are also included here.  
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Chapter 2 

Preliminaries 

 

This chapter addresses basics of Artificial Neural Network (ANN) architecture, 

paradigms of learning, activation functions, leaning rules etc. General formulation of 

Ordinary Differential Equations (ODEs) using multi layer ANN, formulation of n
th

 order 

initial value as well as boundary value problems and system of ODEs [43, 122] have been 

discussed here. Also, the general formulation for Partial Differential Equations (PDEs) 

using ANN, the formulation for two dimensional PDEs and their gradient computations 

are described [43]. 

 

2.1   Definitions 

 

In this section, some important definitions [22, 24, 32, 34] related to ANN are included. 

It is a technique that seeks to build an intelligent program using models that simulate the 

working of the neurons in the human brain. The key element of the network is structure of 

the information processing system. ANN process information in a similar way the human 

brain does. The network is composed of a large number of highly interconnected 

processing elements (neurons) working in parallel to solve a specific problem. 

2.1.1   ANN Architecture 

 

Neural computing is a mathematical model inspired by the biological model. This 

computing system is made up of a number of artificial neurons and huge number of inter 

connections among them. According to the structure of connections, different classes of 

neural network architecture can be identified as below. 
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 Feed Forward Neural Network 

In feed forward neural network, the neurons are organized in the form of layers. The 

neurons in a layer receive input from the previous layer and feed their output to the next 

layer. Network connections to the same or previous layers are not allowed. Here, the data 

goes from input to output nodes in strictly feed forward way. There is no feedback (back 

loops) that is the output of any layer does not affect the same layer. 

 

 Feedback Neural Network  

 

These networks can have signals traveling in both directions by introduction of loops in 

the network. These are very powerful and at times get extremely complicated. They are 

dynamic and their state changes continuously until they reach an equilibrium point.  

2.1.2   Paradigms of Learning 

 

Ability to learn and generalize from a set of training data is one of the most powerful 

features of ANN. The learning situations in neural networks may be classified into two 

types. These are supervised and unsupervised learning.  

 

 Supervised Learning or Associative Learning 

 

In supervised or associative learning, the network is trained by providing input and output 

patterns. These input-output pairs can be provided by an external teacher or by the system 

which contains the network. A comparison is made between the network’s computed 

output and the corrected expected output, to determine the error. The error can then be 

used to change network parameters, which results in the improvement of performance. 

 

 Unsupervised or Self organization Learning  

  

Here the target output is not presented to the network. There is no teacher to present the 

desired patterns and therefore the system learns on its own by discovering and adapting to 

structural features in the input patterns.  

 

2.1.3   Activation Functions 

 

An activation function is a function which acts upon the net (input) to get the output of 

the network.  
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The activation function acts as a squashing function, such that the output of the neural 

network  lies between certain values (usually 0 and 1, or -1 and 1).  

In this investigation, we have used unipolar sigmoid and tangent hyperbolic activation 

functions only, which are continuously differentiable. The output of uniploar sigmoid 

function lies in [0, 1]. The output of bipolar and tangent hyperbolic activation function lies 

between -1 to 1.   

For example,  
)1(

1
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



  is the unipolar sigmoid activation function and by taking 

1  we derive the derivatives of the above sigmoid function below. This will be used in 

the subsequent chapters. 
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The tangent hyperbolic activation function is defined as 
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The derivatives of the above tangent hyperbolic activation function may be formed as 
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2.1.4   ANN Learning Rules 

 

Learning is the most important characteristic of the ANN model. Every neural network 

possesses knowledge which is contained in the values of the connection weights.  
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Modifying the knowledge stored in the network as a function of experience implies a 

learning rule for changing the values of the weights. 

There are various types of learning rules for ANN [32, 34] such as 

 

 Hebbian learning rule 

 Perceptron learning rule 

 Error back propagation or  Delta learning rule 

 Widrow- Hoff learning rule 

 Winner- Take learning rule etc.  

 

We have used error back propagation learning algorithm to train the neural network in 

this thesis. 

 

 Error Back Propagation Learning Algorithm or Delta Learning Rule 

 

Error propagation learning algorithm has been introduced by Rumelhart et al. [27]. It is 

also known as Delta learning rule [32] and is one of the most commonly used learning 

rule. It is valid for continuous activation function and is used in supervised/unsupervised 

training method. 

The simple perceptron can handle linearly separable or linearly independent 

problems. Taking the partial derivative of error of the network with respect to each of its 

weights, we can know the flow of error direction in the network. If we take the negative 

derivative and then proceed to add it to the weights, the error will decrease until it 

approaches local minima. Then we have to add a negative value to the weight or the 

reverse if the derivative is negative. Because of these partial derivatives and then applying 

them to each of the weights, starting from the output layer to hidden layer weights, then 

the hidden layer to input layer weights, this algorithm is called the back propagation 

algorithm. 

The training of the network involves feeding samples as input vectors, calculation of 

the error of the output layer, and then adjusting the weights of the network to minimize 

the error. The average of all the squared errors E for the outputs is computed to make the 

derivative simpler. After the error is computed, the weights can be updated one by one. In 

the batched mode the descent depends on the gradient ∇E  for the training of the network. 
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Figure 2.1:  Architecture of multi layer feed forward neural network 

 

Let us consider a multi layer neural architecture containing one input node x, three nodes 

in the hidden layer jy , 3,2,1j  and one output node o. Now by applying feed forward 

recall with error back propagation learning for above model (Figure 2.1) we have the 

following algorithm [32] 

 

Step1:  Initialize the weights W  from input to hidden layer and  V  form hidden to output  

            layer. Choose the learning parameter   (lies between 0, 1) and error Emax. 

            Next, initially error is taken as E=0. 

 

 

Step 2:  Training steps start here  

             Outputs of the hidden layer and output layer are computed as below 

             
),( xwfy jj          

3,2,1j  

             
),( yvfo kk             

1k  

             where jw
 
is   j

th  
row of  W  for  j=1,2,3 

            kv
 
is k

th
  row of  V  for  k=1  and   f   is the activation function. 

 

 

Step 3:  Error value is computed as 

             
EodE kk  2)(
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            Here,  dk   is the desired output, ok  is output of ANN. 
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Step 4: The error signal terms of the output and hidden layer are computed as 

                
)]()[( yvfod kkkok

          (Error signal of output layer) 

                kjokjjyj vxwfy  )]()1[(     (Error signal of hidden layer) 

               where ),( yvfo kk  3,2,1j   and 1k . 

 

Step 5:  Compute components of error gradient vectors as 
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for  j=1,2,3  and  i=1.  (For the particular ANN model Figure 2.1) 
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for  j=1,2,3  and  k=1.   (For Figure 2.1) 

 

 

Step 6:  Weights are modified using gradient descent method from input to hidden and  

              from hidden to output layer as 
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               where  is learning parameter, n is iteration step and E is the error function.  

 

 

Step 7:  If maxEE   terminate the training session otherwise go to step 2 with 0E  and  

              initiate the new training. 

 

The generalized delta learning rule propagates the error back by one layer, allowing the 

same process to be repeated for every layer. 

 

Next, we describe general formulation of Ordinary Differential Equations (ODEs) using 

multilayer Neural Network. In particular the formulations of n
th

 order initial value 

problems, second and fourth order boundary value problems, system of first order ODEs 

and computation of the gradient of the network parameters are incorporated. 
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2.2   Ordinary Differential Equations (ODEs) 

 

2.2.1   General Formulation for Ordinary Differential Equations (ODEs) 

         Based on ANN 

In recent years, several methods have been proposed to solve ordinary as well as partial 

differential equations. First, we consider a general form of differential equation which 

represents ODEs [43] 

,0))(),...,(),(),(,( 2  xyxyxyxyxG n

  
RDx         (2.3) 

 

Where G is the function which defines the structure of differential equation, )(xy

denotes the solution,   is differential operator and D is the discretized domain over 

finite set of points. One may note that RDx   for ordinary differential equations. Let

),( pxy t denote the ANN trial solution for ODEs with adjustable parameters p (weights 

and biases) and then the above general differential equation changes to the form 

       
0)),(),...,(),,(),,(,( 2  pxypxypxypxyxG t

n

ttt                                    (2.4) 

In the following paragraph we now discuss the ordinary differential equation 

formulation. The trial solution (for ODEs) ),( pxy t  of feed forward neural network with 

input x and parameters p may be written in the form [43] 

          
)),(,()(),( pxNxFxApxy t                                                                            (2.5)                                

where )(xA satisfies initial or boundary condition and contains no adjustable 

parameters, where as ),( pxN  is the output of feed forward neural network with the 

parameters p and input data .x  The second term )),(,( pxNxF  makes no contribution to 

initial or boundary conditions but this is output of the  neural network  model whose 

weights and biases are adjusted to minimize the error function to obtain the final ANN 

solution ),( pxy t . It may be noted that in the training method, we start with given weights 

and biases and train the model to modify the weights in the given domain of the problem. 

In this procedure our aim is to minimize the error function. Accordingly, we include the 

formulation of error function for initial value problems below. 
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2.2.2   Formulation for thn  Order Initial Value Problems (IVPs) 

 

Let us consider a general thn  order initial value problem [122] 
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with initial conditions  ,)()(

i

i Aay 
  

1,...,1,0  ni  

Corresponding ANN trial solution may be constructed as  
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(2.7) 

 

Where 
1

0}{ 



n

iiu   are the solutions to the upper triangle system of n linear equations in the 

form [122] 

  

 

   1,...,2,1,0  nj  

 

   

The general formula of error function for ODEs may be written as follows  
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It may be noted that the multi layer ANN is considered with one input node x (having h 

number of data) and single output node ),( pxN for the ODEs. 

Here, an unsupervised error back propagation algorithm is used for minimizing the 

error function. In order to update the network parameters (weights and biases) from input 

layer to hidden and from hidden to output layerswe use the following expressions [44] 
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As regard, the derivatives of error function with respect to jw and jv   may be obtained as 
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For clear understanding, we include below the formulations for first and second order 

Initial Value Problems (IVPs). 

 

 Formulation of First Order Initial Value Problems (IVPs) 

 

Let us consider first order ordinary differential equation as below  

 
),( yxf

dx

dy


  
],[ bax        (2.13) 

 

with initial condition  Aay )(  

In this case, the ANN trial solution is written as 

 

),()(),( pxNaxApxyt         (2.14) 

 

where ),( pxN  is the neural output of the feed forward network with input data 

T

hxxxx ),...,,( 21 and parameters p .  

 

 Differentiating Eq. 2.14   with respect to x we have 

 

 dx
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pxNax

dx
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),(

 
     (2.15) 

 

The error function for this case may be formulated as 
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 Formulation of Second Order IVPs 

 

The second order ordinary differential equation may be written in general as 
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subject to Aay )( ,  Aay  )(  

 

The ANN trial solution is written as 

 

),()()(),( 2 pxNaxaxAApxyt         (2.18)   

  

where ),( pxN is the neural output of the feed forward network with input data x  and 

parameters p . The trial solution ),( pxyt  
satisfies the initial conditions. 

 

From (Eq. 2.18) we have (by differentiating) 
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    (2.20)          

 

The error function to be minimized for second order ordinary differential equation is 

found to be 
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As discussed above, the weights from input to hidden and hidden to output layer are 

modified according to the back propagation learning algorithm. 

The derivatives of the error function with respect to jw and jv are written as 
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2.2.3   Formulation for Boundary Value Problems (BVPs) 

 

Next, we include the formulation for second and fourth order BVPs. 

 

 Formulation for Second Order BVPs     

  

Let us consider a second order boundary value problem [122] 
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subject to the boundary conditions  BbyAay  )(,)(  

Corresponding ANN trial solution for the above boundary value problem is formulated as  
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Differentiating Eq. 2.25 we have 

 

dx

dN
bxaxpxNaxpxNbx

ab

AB

dx

pxdyt ))((),()(),()(
),(







  
(2.26) 

 

As such the error function may be obtained as 
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 Formulations for fourth-order BVPs 

 

A general fourth-order differential equation is considered as [122] 
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with boundary conditions 

.)(,)(,)(,)( BbyAayBbyAay   

 

ANN trial solution for the above fourth order differential equation satisfing the boundary 

conditions is constructed as 

 

),()()(),( pxNxMxZpxy t        (2.29)      

 

The trial solution satisfies following relations 
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The function )(xM  is chosen as, 
22 )()()( bxaxxM   which satisfies the set of 

equations in (2.31). Here, xdxcxbxaxZ  234)(  is the general polynomial of degree 

four, where dcba  ,,,  are constants. From the set of equations (2.30) we have 

 

Bdbcbbba

Adacabaa

Bbdbcbbba

Aadacabaa









234

234

23

23

234

234

      (2.32)                                                                                                      



Chapter 2  Priliminaries 

26 

 

Solvingthe above system of four equations with four unknowns, we obtain the general 

form of the polynomial )(xZ . 

Here the error function is expressed as  

 



























h

i

itit

iti

it

dx

pxyd

dx

pxyd
pxyxf

dx

pxyd
pxE

1

2

3

3

2

2

4

4 ),(
,

),(
),,(,

),(

2

1
),(

  

(2.33)                

 

2.2.4   Formulation for System of First Order ODEs 

 

We consider now the following system of first order ODEs [122] 

 

),...,,( 1 yyxf
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dy
r

r 
 

,...,2,1r   and ],[ bax    (2.34) 

 

subject to   rr Aay )(  ,     ,...,2,1r  

Corresponding ANN trial solution has the following form 
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,...,2,1r     (2.35) 

 

 For each r, ),( rr pxN  is the output of the multi layer ANN with input x and parameter
rp . 

From  (Eq. 2.35) we have 
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Then the corresponding error function with adjustable network parameters may be written 

as 
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For system of first order ODEs (Eq. 2.37) we have the derivatives of error function with 

respect to jw and jv as below 
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It may be noted detail procedure of handling IVPs and BVPs using single layer ANN are 

discussed in the subsequent chapters.  

 

Next we address computation of gradient of ODEs using traditional multilayer ANN. 

 

2.2.5   Computation of the Gradient of ODEs for multi layer ANN 

 

The error computation not only involves the output but also the derivative of the network 

output with respect to its input [43]. So it requires finding the gradient of the network 

derivative with respect to its input. Let us now consider a multi layer ANN with one input 

node, a hidden layer with m nodes and one output unit. For the given input data denoted 

as T

hxxxx ),..,,( 21 that is the single input node x has h number of data. The network 

output ),( pxN   is formulated as  
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where jjjj wuxwz ,  denotes the weight from input to the hidden unit j, jv denotes 

weight from the hidden unit j to the output unit, 
ju are the biases and )( jzs is the 

activation function (sigmoid, tangent hyperbolic etc.). 

 

The derivatives of ),( pxN  with respect to input x is  

)(

1

k

j

k

j

m

j

jk

k

swv
dx

Nd



         (2.41)  

where )( jzss   and )(ks denotes the thk order derivative of  an activation function.  

The gradient of output with respect to the network parameters of the ANN may be 

formulated as 
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N is the derivative of the network output to any of its input and 

)(

1





 j

m

j

jj

n sPvNDN         (2.45) 

 

we have the relation  
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Derivatives of N  with respect to other parameters is given as 
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where   denotes the order of derivative. 

         After getting all the derivatives we can find the gradient of error. Using error 

propagation learning method for unsupervised training, we may minimize the error 

function as per the desired accuracy. 

 

Next section includes handling of PDEs using multi layer ANN. 

 

2.3   Partial Differential Equations (PDEs) 

 

2.3.1   General Formulation for PDEs Based on multi layer ANN 

 

In this section, the formulation of Partial Differential Equations (PDEs) is described with 

computation of the gradient of the network parameters. 

Let us consider the general form of partial differential equation  
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nRDX      (2.50) 

 

Where G is the function which defines the structure of differential equation, )(Xu and   

denote the solution and differential operator respectively. n

n RDxxxX  ),...,( 21  
and

D is the discretized domain over finite set of points of .nR  Let ),( pXu t  
denote the ANN 

trial solution for PDEs with adjustable parameters p and then the above general 

differential equation changes to the form 
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n
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(2.51) 

 

The trial solution ),( pXu t of feed forward neural network with input ),...,,,( 321 nxxxxX 

and parameters p may be written in the form  
 

 
)),(,()(),( pXNXFXApXu t   .                       (2.52) 
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First part of right hand side of Eq. 2.52 (viz. ))(XA  satisfies initial/boundary conditions. 

The second part )),(,( pXNXF  contains the single output ),( pXN  of feed forward 

neural network with parameters p and input X . 

Here, we have included below the two dimensional PDEs.  

 

2.3.2   Formulation for Two Dimensional PDE Problems 

 

First we consider two dimensional problems with Dirichlet boundary conditions as 

below [43] 
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subject to  Dirichlet boundary conditions 

 

)(),0( 202 xfxu  , )(),1( 212 xfxu 
       (2.54) 

)()0,( 101 xgxu  ,  )()1,( 111 xgxu 
. 

 

The ANN trial solution may be formulated as (here ),( 21 xxX  ) 

 

 

).,()1()1()(),( 2211 pXNxxxxXApXu t 
     (2.55) 

 

which satisfies the boundary conditions.
 

 

Here )(XA is expressed as   
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       (2.56) 

 

 

Next we consider two dimensional problems with mixed (Dirichlet on part of the 

boundary and Neumannelsewhere) boundary conditions 

 

Let us take a two dimensional PDE with mixed boundary conditions [43] 
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subject to  mixed  boundary conditions  
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The ANN trial solution is written in this case [43] as 
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The first term )(XB  may be chosen as (here ),( 21 xxX  ) 
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Corresponding error function for the above PDE may be formulated as  
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For minimizing the error function ),( pXE that is to update the network parameters 

(weights, biases), we need to differentiate ),( pXE with respect to the parameters. Thus 

the gradient of network output with respect to their inputs is addressed below. 

 

2.3.3   Computation of the Gradient of PDEs for multi layer ANN 

 

The error computation involves both output and derivatives of the output with respect to 

the inputs. So it is required to find the gradient of the network derivatives with respect to 

the inputs. For the given input node (denoted as )),..,,( 21 nxxxX  the output is given by 
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where ji

n

i

jijij wuxwz ,

1




  denotes the weight from input data i  to the hidden unit j , 

jv  denotes weight from the hidden unit j to the output unit, ju denotes the biases and )( jzs

is the activation function. 

 

The derivatives of ),( pXN  with respect to input X is  
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 (2.63) 

where 
)())(( k

jzs denotes the
thk order derivative of activation function.  

Let N  denotes the derivative of the network output with respect to the input and then we 

have the relations 
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where 



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         (2.65)                                                             

 

The derivative of N with respect to other parameters may be obtained as 
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where   is the  order of derivative. 

After getting all the derivatives we can find the gradient of the error. Using 

unsupervised error propagation learning method, we may minimize the error function as 

per the desired accuracy. 
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Chapter 3 
 

Traditional Multi Layer Artificial Neural 

Network Model for Solving Ordinary 

Differential Equations (ODEs) 
  

 

In this chapter, we have used traditional multi layer Artificial Neural Network (ANN) 

method for solving Ordinary Differential Equations (ODEs). First order and nonlinear 

singular second order ODEs have been considered here. The trial solution of the 

differential equation is a sum of two terms. The first term satisfies the initial or boundary 

conditions while the second term contains output of the ANN with adjustable parameters. 

Feed forward neural network model and unsupervised error back propagation algorithm 

have been used. Modification of network parameters has been done without use of any 

optimization technique.* 

 

3.1   Multi Layer Artificial Neural Network (ANN) Model 

 

This section describes structure of traditional multi layer ANN model, ANN formulation 

of ODEs, learning algorithm and computation of gradient of multilayer ANN 

respectively. 

 

 

 

*Contents of this chapter have been communicated/published in the following Journals/ 

Conference: 
 
1. International Journal of Dynamical Systems and Differential Equations, (under review), (2013); 

2.  International Journal of Machine Learning and Cybernetics, (Revised version has been 

submitted), (2016); 

3. 39
th

 Annual conference and National Seminar of Odisha Mathematical Society, VIVTECH, 

Bhubaneswar, 2012. 
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3.1.1   Structure of Multi Layer ANN 

 

We have considered a three layer ANN model for the present problem. Figure 3.1 shows 

the structure of ANN that consists of single input node along with bias, a hidden layer and 

a single output layer consisting of one output node. Initial weights from input to hidden 

and hidden to output layer are taken as arbitrary (random) and the number of nodes in 

hidden layer are considered by trial and error method.  

 

 

                                          1w    1v  

     2w    2v    ),( pxN  

       3w
                          3v  

        4w                           4v  

                                                5w
                          5v  

 

 

 

 

Figure 3.1: Structure of multi layer ANN 

 

 

3.1.2   Formulation and Learning Algorithm of Multi Layer ANN 

 

ANN formulation of ODEs has been discussed in Sec. 2.2.1. In particular, the formulation 

for first order IVP (Eq. 2.14), second order IVP (Eq. 2.18) and derivation of error 

functions are given in Sec. 2.2.2 (Eq. 2.16 and Eq. 2.21). 

Training the neural network means updating the parameters (weights and biases) for 

acceptable accuracy. For differential equation we have used an unsupervised version of 

back propagation method which is described in Sec. 2.2.2 (Eqs. 2.9 to 2.12).  

 

3.1.3   Gradient Computation 

 

For minimizing the error function ),( pxE that is to update the network parameters we 

have to differentiate ),( pxE with respect to the parameters (Sec. 2.2.5). Thus the gradient 

of network output with respect to its input is to be computed.   

Input layer 

ju  

Bias 

 

Output layer 

x  

Hidden layer 
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After getting all the derivatives, we can find the gradient of the error. Using error back 

propagation for unsupervised training we may minimize the error function as per the 

desired accuracy. 

 

3.2   Case Studies 

 

Next, we have considered various linear and nonlinear ODEs to show the reliability of the 

proposed method.    

 

3.2.1  First Order Initial Value Problems 

 

Two first order initial value problems are taken in Examples 3.2.1 and 3.2.2. 

 

Example 3.2.1: 
 
A first order ordinary differential equation is  

 
12

)(
 x

dx

xdy
  ]1,0[x  

subject to   0)0( y  

According to Sec 2.2.2 (Eq. 2.14) the trial solution may be written as 

 ),(),( pxxNpxyt   

 
The network is trained using six equidistant points in [0, 1] and with five sigmoid hidden 

nodes. Table 3.1 shows the neural results at different error values and the convergence of 

the neural output up to the given accuracy. The weights are selected randomly. Analytical 

and the neural results with the accuracy of 0.0001 are cited in Figure 3.2. The error 

(between analytical and ANN solutions) is plotted in Figure 3.3. Neural results for some 

testing points with the accuracy of 0.0001 are shown in Tables 3.2 (inside the domain) 

and 3.3 (outside the domain) respectively. 
 

Table 3.1: Comparison among analytical and neural results for different error (Example 3.2.1) 

Input 

data 

 

Analytical 
 

Error 

0.5 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001 

Neural Results 

0 0 0 0 0 0 0 0 0 0 

0.2 0.2400 0.2098 0.2250 0.2283 0.2312 0.2381 0.2401 0.2407 0.2418 

0.4 0.5600 0.4856 0.4778 0.4836 0.4971 0.5395 0.5410 0.5487 0.5503 

0.6 0.9600 0.9818 0.7889 0.7952 0.8102 0.8672 0.9135 0.9418 0.9562 

0.8 1.4400 1.7915 1.1390 1.1846 1.2308 1.2700 1.3341 1.3722 1.4092 

1.0 2.0000 2.8339 1.4397 1.5401 1.6700 1.7431 1.8019 1.8157 1.9601 
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Figure 3.2: Plot of analytical and ANN results (Example 3.2.1) 

 

 
Figure 3.3: Error plot between analytical and ANN results (Example 3.2.1) 

 

Table 3.2: Analytical and neural results for testing points (Example 3.2.1) 

 

Testing 

 points 

0.8235 0.6787 0.1712 0.3922 0.0318 0.9502 

Exact  1.5017 1.1393 0.2005 0.5460 0.0328 1.8531 

ANN  1.6035 1.3385 0.2388 0.5701 0.0336 1.9526 
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Table 3.3:  Analytical and neural results for testing points (Example 3.2.1) 

 

Testing 

points 

1.2769 1.1576 1.0357 1.3922 1.4218 1.2147 

Exact  2.9074 2.4976 2.1084 3.3304 3.4433 2.6902 

ANN  2.8431 2.4507 2.0735 3.4130 3.5163 2.6473 

 

 

Example 3.2.2: 

 

Let us take a first order ordinary differential equation 

 

xey
dx

dy x cos2.0 2.0
    

       ]1,0[x  

subject to   0)0( y  

The trial solution is formulated as 

 ),(),( pxxNpxyt   

 

We have trained the network for ten equidistant points in [0, 1] and with four and five 

sigmoid hidden nodes. Table 3.4 shows the ANN results at different error values for four 

hidden nodes. ANN results with five hidden nodes at different error values have been given 

in Table 3.5. Comparison between analytical and ANN results for four and five hidden 

nodes (at error 0.001) are cited in Figures 3.4 and 3.5 respectively. 

 
Figure 3.4: Plot of analytical and ANN results at the error 0.001 for four hidden nodes 

(Example 3.2.2) 
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Table 3.4: Comparison among analytical and ANN results at different error values for four  

hidden nodes (Example 3.2.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.5: Comparison among analytical and ANN results at different error values forbfive  

hidden nodes (Example 3.2.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input data 

 

Analytical 

ANN results     

at
 Error=0.1 

ANN results     

at
 Error =0.01 

ANN results     

at
 Error =0.001 

0 0 0 0 0 

0.1 0.0979 0.0879 0.0938 0.0967 

0.2 0.1909 0.1755 0.1869 0.1897 

0.3 0.2783 0.2646 0.2795 0.2796 

0.4 0.3595 0.3545 0.3580 0.3608 

0.5 0.4338 0.4445 0.4410 0.4398 

0.6 0.5008 0.5325 0.5204 0.5208 

0.7 0.5601 0.6200 0.6085 0.5913 

0.8 0.6113 0.7023 0.6905 0.6695 

0.9 0.6543 0.7590 0.7251 0.6567 

1 0.6889 0.8235 0.7936 0.6825 

 

Input data 

 

Analytical 

 

ANN results     

at
  

Error =0.1 

 

 

ANN results     

at
  

Error= 0.01 

 

ANN results     

at
  

Error =0.001 

0 0 0 0 0 

0.1 0.0979 0.0900 0.0949 0.0978 

0.2 0.1909 0.1805 0.1874 0.1901 

0.3 0.2783 0.2714 0.2754 0.2788 

0.4 0.3595 0.3723 0.3605 0.3600 

0.5 0.4338 0.4522 0.4469 0.4389 

0.6 0.5008 0.5395 0.5213 0.5166 

0.7 0.5601 0.6198 0.6077 0.5647 

0.8 0.6113 0.6995 0.6628 0.6111 

0.9 0.6543 0.7487 0.7021 0.6765 

1 0.6889 0.8291 0.7790 0.7210 
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Figure 3.5: Plot of analytical and ANN results at error 0.001for five hidden nodes 

(Example 3.2.2) 

 

 

3.2.2   Singular Nonlinear Second Order Initial Value Problems 

 

Many problems in astrophysics and mathematical physics may be modeled by singular 

nonlinear second order initial value problems. In astrophysics, the equation which 

describes the thermal behavior of a spherical cloud of gas acting under the mutual 

attraction of its molecules and subject to the classical laws of thermodynamics has been 

proposed by Lane [65]. It has furtherbeen studied by Emden [66] which is then known as 

Lane-Emden equations.  The general form of Lane-Emden equation is 

 

)(),(
2

2

2

xgyxf
dx

dy

xdx

yd


  
0x  

 

with initial conditions )0(y ,  0)0( y . 

Where ),( yxf  is a nonlinear function of x and y and )(xg  is the function of x respectively. 

Nonlinear singular initial value problems viz. homogeneous Lane-Emden equation 

is considered in Example 3.2.3, equation of isothermal gas spheres where temperature 

remains constant is taken in Example 3.2.4 and an equation which describes Richardson’s 

theory of thermodynamic current is taken in Example 3.2.5. 
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Example 3.2.3: 
 

In this example, we take a homogeneous Lane-Emden equation with 
5),( yyxf   

0
2 5

2

2

 y
dx

dy

xdx

yd

 

 

with   initial conditions 1)0( y , 0)0( y  

The exact solution of the above equation is given in [81] as 

21
2

3
1)(













x
xy

   

0x . 

The ANN trial solution for this problem as given in Sec 2.2.2 (Eq. 2.18) may be expressed 

as  

),(1),( 2 pxNxpxyt 
 

 

Here we have trained the network for twenty equidistant points in [0, 1] and five nodes in 

the hidden layer. Comparison between analytical and ANN results are shown in Table 3.6. 

Figure 3.6 depicts the comparison of results between analytical and ANN. The error plot 

is shown in Figure 3.7.  

 

 
          Figure 3.6: Plot of analytical and ANN results (Example 3.2.3) 
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Table 3.6: Comparison between analytical and ANN results (Example 3.2.3) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.7: Error plot between analytical and ANN results (Example 3.2.3) 
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Input data Analytical 

[81]
 ANN Absolute 

Error 

0 1.0000 1.0001 0.0001 

0.1 0.9983 0.9983 0 

0.15 0.9963 0.9965 0.0002 

0.2 0.9934 0.9936 0.0002 

0.25 0.9897 0.9891 0.0006 

0.3 0.9853 0.9890 0.0037 

0.35 0.9802 0.9816 0.0014 

0.4 0.9744 0.9742 0.0002 

0.45 0.9679 0.9658 0.0021 

0.5 0.9608 0.9572 0.0036 

0.55 0.9531 0.9539 0.0008 

0.6 0.9449 0.9467 0.0018 

0.65 0.9362 0.9355 0.0007 

0.7 0.9271 0.9288 0.0017 

0.75 0.9177 0.9173 0.0004 

0.8 0.9078 0.9061 0.0017 

0.85 0.8977 0.8933 0.0044 

0.9 0.8874 0.8836 0.0038 

0.95 0.8768 0.8768 0 

1.0 0.8660 0.8680 0.0020 
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Example 3.2.4: 
 

Now let us consider a nonlinear Lane- Emden equation with 
ymexyxf ),(  

0
2

2

2

 ymex
dx

dy

xdx

yd
 

 

subject to ,0)0( y 0)0( y . 

 

For m=0, the above differential equation models an isothermal gas spheres problem. In 

the special case, the above equation describes the isothermal gas sphere where the 

temperature remains constant.  

 

We can write the related ANN trial solution as given in (Eq. 2.16)
 

),(),( 2 pxNxpxyt 
 

 

The network is trained for ten equidistant points in [0, 1] with five hidden nodes. 

Comparison between particular solution by using Adomian Decomposition Method 

(ADM) and ANN solutions has been given in Table 3.7. Figure 3.8 shows comparison 

between given results. Finally, Figure 3.9 depicts the plot of error between ADM and 

ANN results. ANN results at the testing points are shown in Table 3.8. This testing is 

done to check whether the converged ANN can give results directly by inputting the 

points which were not taken during training. 

 

Table 3.7: Comparison between ADM and ANN results (Example 3.2.4) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input 

data 

ADM 

[76] 

ANN Absolute 

Error 

0 0.0000 0.0000 0 

0.1 5.2983 5.3009 0.0026 

0.2 3.9120 3.9085 0.0035 

0.3 3.1011 3.1019 0.0008 

0.4 2.5257 2.5241 0.0016 

0.5 2.0794 2.0790 0.0004 

0.6 1.7148 1.7200 0.0052 

0.7 1.4065 1.4046 0.0019 

0.8 1.1394 1.1406 0.0012 

0.9 0.9039 0.9031 0.0008 

1.0 0.6931 0.6928 0.0003 
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Table 3.8: ADM and ANN results for testing points (Example 3.2.4) 

 

 

 

 

 

 

Figure 3.8:  Plot of ADM and ANN results (Example 3.2.4) 

 

 
Figure 3.9:  Error plot between ADM and ANN results (Example 3.2.4) 
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Testing points          0.189 0.251 0.407 0.766 0.949 

ADM 4.0252 3.4578 2.4910 1.2263 0.7978 

ANN    4.0261 3.4501 2.4897 1.2261 0.7942 



Traditional Multi Layer Artificial Neural Network Model for  

Chapter 3                                                  Solving Ordinary Differential Equations (ODEs) 

 

44 

 

Example 3.2.5: 
 

Finally, we consider an example of Lane-Emden equation with
ymexyxf ),( . 

0
2

2

2

 ymex
dx

dy

xdx

yd
 

 

with initial conditions 0)0( y , 0)0( y  

 

For m=0, the above equation models Richardson’s theory of thermionic current when the 

density and electric force of an electron gas is in the neighborhood of a hot body in 

thermal equilibrium.    

Particular solution by ADM of the above equation is given in [76] 


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
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


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2
ln)(

2x
xy

 

The ANN trial solution is written as 

),(),( 2 pxNxpxyt 
 

 

In this case, ten equidistant points in [0, 1] are considered. Table 3.9 shows ADM and 

ANN results. ADM (Particular) and ANN results are compared in Figure 3.10. Lastly, 

Figure 3.11 depicts the plot of error function. ANN results at some testing points are 

given in Table 3.10. 

 

Table 3.9: Comparison between ADM and ANN results (Example 3.2.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input 

data 

ADM 

[76] 

ANN 

0 0.0000 0.0000 

0.1 -5.2983 -5.2916 

0.2 -3.9120 -3.9126 

0.3 -3.1011 -3.1014 

0.4 -2.5257 -2.5248 

0.5 -2.0794 -2.0793 

0.6 -1.7148 -1.7159 

0.7 -1.4065 -1.4078 

0.8 -1.1394 -1.1469 

0.9 -0.9039 -0.9048 

1.0 -0.6931 -0.7001 



Traditional Multi Layer Artificial Neural Network Model for  

Chapter 3                                                  Solving Ordinary Differential Equations (ODEs) 

 

45 

 

Table 3.10: ADM and ANN results for testing points (Example 3.2.5) 

 

Testing points          0.209 0.399 0.513 0.684 0.934 

Particular  -3.8239 -2.5307 -2.0281 -1.4527 -0.8297 

ANN    -3.8236 -2.5305 -2.0302 -1.4531 -0.8300 

 

 
Figure 3.10:  Plot of ADM and ANN results (Example 3.2.5) 

 

 
 

Figure 3.11:  Error plot between ADM and ANN results (Example 3.2.5) 
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3.3   Conclusion 

 

Traditional multi layer Artificial Neural Network (ANN) model has been used in this 

chapter to solve first order ODEs and singular nonlinear initial value problems viz. Lane-

Emden equations. Corresponding initial weights from input to hidden and hidden to 

output are taken as random. Computed results by the proposed method have been shown 

in tables and graphs. ANN results are compared with analytical and other numerical 

methods. As such, the proposed ANN model is found to be efficient and straight forward 

for solving ODEs.
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Chapter 4 

Regression Based Neural Network 

(RBNN) Model for Solving 

Ordinary Differential Equations (ODEs) 
 

 

In this chapter, Regression Based Neural Network (RBNN) model has been introduced for 

solving Ordinary Differential Equations (ODEs) with initial/boundary conditions. In our 

proposed method the trial solution of the differential equation has been obtained by using 

RBNN model for single input and single output (SISO) system. Initial weights are taken as 

combination of random as well as by the proposed regression based model. Number of 

nodes in hidden layer has been fixed according to the degree of polynomial in the 

regression fitting and the coefficients involved are taken as initial weights to start with the 

neural training. For the example problems, present neural results have been compared with 

the analytical results (wherever possible) by taking arbitrary and regression based weights 

with four, five and six nodes in hidden layer and are found to be in good agreement.* 

 

 

   

*Contents of this chapter have been published in the following Journals/Conferences: 
 

1. Neural Computing and Applications,  25, 2014; 

2. Advances in Artificial Neural Systems,  2013; 

3. International Journal of Mathematical Modelling and Numerical Optimization, 4(2), 2013; 

4. National Conference on Computational and Applied Mathematics in Science and Engineering 

(CAMSE-2012), VNIT, Nagpur, 2012; 

5. 40
th

 Annual Conference and National conference on Fourier Analysis and Differential 

Equations of Odisha Mathematical Society, Sambalpur University, Sambalpur, 2012. 
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4.1   Regression Based Neural Network (RBNN) Model 

 

This section incorporates the structure of RBNN model, its training algorithm, 

formulation and computation of gradient respectively. 

 

4.1.1   Structure of RBNN Model 

 

Three layer RBNN model has been considered for the present problem. Figure 4.1 shows 

the neural network architecture, in which input layer consists of single input unit along 

with bias and output layer include one output node. Number of nodes in hidden layer 

depends upon the degree of regression fitting that is proposed here. If n
th 

degree 

polynomial is considered, then the number of nodes in the hidden layer will be 1n  and 

coefficients (constants say, ii ca , ) of the polynomial may be considered as initial weights 

from input to hidden as well as hidden to output layers or any combination of random and 

regression based weight.  The architecture of the network with fourth degree polynomial 

is shown in Figure 4.1. As discussed, it will have five nodes for the five constants in the 

hidden layer.  
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                                                                                              Hidden layer  

 

Figure 4.1: RBNN architecture with single input and single output node 
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4.1.2   RBNN Training Algorithm 

 

Regression Based Neural Network (RBNN) has been developed and investigated by 

Chakraverty et al. [45, 46] for various application problems. Let us consider training 

patterns as ),(),...,,(),,( 2211 nn yxyxyx . For every value of ix we may find iy  crudely by 

other traditional numerical methods. But these methods (traditional) are usually iterative in 

nature, where we fix the step size before the start of the computation. After the solution is 

obtained if we want to know the solution in between steps then again we have to iterate the 

procedure from the initial stage. ANN may be one of the reliefs where we may overcome 

this repetition of iterations. Also, neural network has an inherent advantage over numerical 

methods [43, 44]. 

As mentioned earlier, the initial weights from input to hidden layer are generated by 

coefficients of regression analysis. Let x and y are be the input and output patterns, then a 

polynomial of degree four is written as  

                   
4

4

3

3

2

210)( xaxaxaxaaxp 
                                                         

(4.1)
 

Where 43210 ,,,, aaaaa  are coefficients of the above polynomial which may be obtained by 

using least square fit.  These constants may be taken now as the initial weights from input to 

hidden layer. Then we calculate output of the nodes of hidden layer by using the activation 

functions 
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The regression analysis is applied again to find the output of the network by the relation 

    
,4433221100

iiiii hchchchchc 
                      

ni ,...3,2,1 .                               (4.7) 

Where 43210 ,,,, ccccc are the coefficients of the above multivariate linear regression 

polynomial and those may again be obtained by the least square fit. Subsequently these 

constants are then considered as initial weights from hidden to output layer. 

4.1.3   Formulation and Learning Algorithm of RBNN 

 

The RBNN trial solution ),( pxy t for ODEs with network parameters p (weights, biases) 

may be written in the form  
 

     
)),(,()(),( pxNxFxApxy t 

         
(4.8) 

 
 The first term )(xA  in right hand side does not contain adjustable parameters and satisfies 

only initial/boundary conditions, where as the second term )),(,( pxNxF  contains the 

single output ),( pxN  of RBNN with input x and adjustable parameters p.  

Here, we consider a three layered network with one input node, one hidden layer 

consisting of m number of nodes and one output unit ),( pxN . For every input data x and 

parameters p the output is defined as  

        

)(),(

1

j

m

j

j zsvpxN 


                       (4.9)  

where jjjj wuxwz ,  denotes the weight from input unit to the hidden unit j, jv

denotes weight from the hidden unit j to the output unit, ju are the biases and )( jzs is the 

activation function (sigmoid, tangent hyperbolic). 

In this regard, the formulation for first and second order initial value problems has 

been discussed in Sec. 2.2.2 (Eq. 2.14 and Eq. 2.18). Similarly, ANN formulation for 

boundary value problems in ODEs (second, fourth order) has also been described in Sec. 

2.2.3 (Eq. 2.25, Eq. 2.29). 

Training the neural network means updating the parameters (weights and biases) so 

that the error values converge to required accuracy. Unsupervised error back propagation 

learning algorithm (Eqs. 2.9 to 2.12)  has been used to update the network parameters 

(weights and biases) from input to hidden and from hidden to output layer and for 

minimizing error function of the RBNN model.  
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4.1.4   Computation of Gradient for RBNN Model 

 

The error computation not only involves the output but also the derivatives of the network 

output with respect to its input and parameters. So it requires finding out the gradient of 

the network derivatives with respect to its inputs. For Minimizing the error function 

),( pxE that is to update the network parameters (weights and biases), we differentiate 

),( pxE with respect to the parameters. The gradient of network output with respect to their 

inputs is computed in Sec. 2.2.5.   

 

4.2   Numerical Examples and Discussions 

 

In this section, we have presented solution of various example problems viz. first order 

IVP (Example 4.2.1) and second order IVP (Example 4.2.2), boundary value problem in 

ODE (Example 4.2.3) and fourth order ODE(Example 4.2.4) to show the reliability of the 

proposed RBNN procedure. Also the accuracy of results of the proposed RBNN method 

has been shown in the tables and figures. 

 

Example 4.2.1: 
 
Let us consider a first order ordinary differential equation 

yx
dx

dy


 
               ]1,0[x

  
 

with initial condition    1)0( y . 

The RBNN trial solution in this case may be written as 

 

 

We have trained the network for twenty equidistant points in [0, 1] and four hidden nodes 

are fixed according to regression analysis with third degree polynomial for RBNN model. 

Six hidden nodes have been considered for traditional ANN model. Here, the activation 

function is a sigmoid function. We have compared analytical results with neural 

approximate results with random and regression based weights in Table 4.1. One may very 

well see the better results are got by using the proposed method which is tabulated in third 

column.  Figure 4.2 shows comparison between analytical and neural results when initial 

weights are random. Analytical and neural results for regression based initial weights 

(RBNN) have been compared in Figure 4.3. The plot of the error functions between 

analytical and RBNN results is cited in Figure 4.4. 

),(1),( pxxNpxy t 
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Table 4.1: Analytical and neural results with arbitrary and regression based weights 

(Example 4.2.1) 

 

Input data Analytical ANN results with 

random weights 

RBNN 

0 1.0000 1.0000 1.0000 

0.0500 1.0525 1.0533 1.0522 

0.1000 1.1103 1.1092 1.1160 

0.1500 1.1737 1.1852 1.1732 

0.2000 1.2428 1.2652 1.2486 

0.2500 1.3181 1.3320 1.3120 

0.3000 1.3997 1.4020 1.3975 

0.3500 1.4881 1.5007 1.4907 

0.4000 1.5836 1.5771 1.5779 

0.4500 1.6866 1.6603 1.6631 

0.5000 1.7974 1.8324 1.8006 

0.5500 1.9165 1.8933 1.9132 

0.6000 2.0442 2.0119 2.0615 

0.6500 2.1811 2.1380 2.1940 

0.7000 2.3275 2.3835 2.3195 

0.7500 2.4840 2.4781 2.4825 

0.8000 2.6511 2.6670 2.6535 

0.8500 2.8293 2.8504 2.8305 

0.9000 3.0192 3.006 3.0219 

0.9500 3.2214 3.2482 3.2240 

1.0000 3.4366 3.4281 3.4402 
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Figure 4.3: Plot of analytical and neural results 

with regression based weights (Example 4.2.1) 

 

Figure 4.2: Plot of analytical and neural  

results with arbitrary weights   (Example 4.2.1) 
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Figure 4.4: Error plot between analytical and RBNN results (Example 4.2.1) 

 

 

Example 4.2.2: 
 
The second order differential equation with initial conditions which may describe a model 

of an undamped free vibration spring mass system problem.  

0
2

2

 y
dx

yd

  

]1,0[x  

with initial conditions  0)0( y   and 1)0( y . 

As discussed in Sec. 2.2.2 (Eq. 2.18) the RBNN trial solution is written as 

),(),( 2 pxNxxpxy t 
 

 

The network has been trained here with ten equidistant points in [0, 1] and five hidden 

nodes are fixed according to regression analysis with four degree polynomial for RBNN. 

We have considered the sigmoid function as activation function and seven hidden nodes 

for traditional ANN. Comparison between the analytical and neural approximate results 

with random and regression based weights have been given in Table 4.2. Analytical and 

neural results which are obtained for random initial weights are depicted in Figure 4.5. 

Figure 4.6 shows comparison between analytical and neural results for regression based 

initial weights. Finally, the error plot between analytical and RBNN results is cited in 

Figure 4.7. 
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Table 4.2: Analytical and neural approximate results with arbitrary and 

regression based weights (Example 4.2.2) 

 

 

 
Input data 

 

Analytical 

 

Traditional ANN 
(with random weights) 

 

RBNN 

0 0 0 0 

0.1 0.0998 0.0996 0.0999 

0.2 0.1987 0.1968 0.1990 

0.3 0.2955 0.2905 0.2963 

0.4 0.3894 0.3808 0.3904 

0.5 0.4794 0.4714 0.4792 

0.6 0.5646 0.5587 0.5618 

0.7 0.6442 0.6373 0.6427 

0.8 0.7174 0.7250 0.7161 

0.9 0.7833 0.8043 0.7792 

1 0.8415 0.8700 0.8293 
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Figure 4.5: Plot of analytical and neural 

results with arbitrary weights (Traditional 

ANN) (Example 4.2.2) 
 

Figure 4.6: Plot of analytical and neural results 

with regression based weights (RBNN) 

(Example 4.2.2) 
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Figure 4.7: Error plot between analytical and RBNN results (Example 4.2.2) 

 

Example 4.2.3: 
 
A  second order boundary value problem is taken  as 

2
2

2

 y
dx

yd

   
]1,0[x  

with boundary conditions 0)1(,1)0(  yy  

Corresponding RBNN trial solution is expressed as (Sec. 2.2.3, Eq. 2.25) 

),()1(1),( pxNxxxpxy t 
 

 

Twenty equidistant points in [0, 1] and five hidden nodes (fixed) have been considered for 

RBNN model. Seven nodes in the hidden layer have been taken for traditional ANN. 

Analytical results are given in Figure 4.8. Figures 4.9 and 4.10 show analytical and neural 

results with the initial weights as random (Traditional ANN) and regression based (RBNN). 

Finally, the graph of error between analytical and RBNN results is cited in Figure 4.11. 

 
Figure 4.8: Plot of analytical results (Example 4.2.3) 
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Figure 4.11: Error plot between analytical and RBNN results (Example 4.2.3) 

 

Example 4.2.4: 
 
Now, we solve a fourth order ordinary differential equation 

x
dx

yd
120

4

4


     

]1,1[x  

with boundary conditions ,1)1( y ,3)1( y ,5)1( y .5)1( y  

The ANN trial solution, in this case, is represented as (Sec. 2.2.3, Eq. 2.29) 
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Figure 4.9: Plot of analytical and ANN results 
with arbitrary weights (Example 4.2. 3) 

 

Figure 4.10: Plot of analytical and 
RBNN results (Example 4.2.3) 
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),()1()1(422),( 22234 pxNxxxxxxpxy t 
 

 

The network has been trained for eight equidistant points in [-1, 1] and four hidden nodes 

(fixed) according to regression analysis. We have taken six nodes in hidden layer for 

traditional ANN. Here, tangent hyperbolic function is considered as the activation function. 

As in previous case analytical and obtained neural results with random initial weights are 

shown in Figure 4.12. Comparisons between analytical and neural results for regression 

based initial weights are depicted in Figure 4.13. Lastly, the error (between analytical and 

RBNN results) is plotted in Figure 4.14. 

 

 

 

    

 

 

Figure 4.14: Error plot between analytical and RBNN results (Example 4.2.4) 
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Figure 4.12: Plot of analytical and neural 
results with arbitrary weights (Example 4.2.4) 

 

Figure 4.13: Plot ofanalytical and RBNN 
results (Example 4.2.4) 
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Next, the initial weights are taken as a different combination of arbitrary and regression 

based. We have considered combinations of arbitrary weights )(Aw  (from input to hidden 

layer), )(Av (from hidden to output layer) and regression based weights )(Rw (from input 

to hidden layer) and )(Rv (from hidden to output layer) respectively for the following 

problems. The sigmoid function viz. 
)1(

1
)(

xe
x


   is considered as an activation 

function for each hidden unit. We have taken three first order ODEs in Examples 4.2.5, 

4.2.6 and 4.2.7 respectively. 

Now example problems have been considered with arbitrary and regression based 

weights with four, five and six nodes in the hidden layer. First order linear initial value 

problems are given in Examples 4.2.8 and 4.2.10. Further, nonlinear initial value problem 

is solved in Example 4.2.11. A second order damped free vibration equation is taken in 

Example 4.2.9. 

 

Example 4.2.5: 
 
 Let us consider the following first order ordinary differential equation  

234 23  xx
dx

dy

  
 bax ,  

 

subject to  0)0( y  

As discussed in Sec. 2.2.2 we can write the trial solution as 

),(),( pxxNpxyt 
 

 

The network is trained for ten equidistant points in [0, 1] and with five sigmoid hidden 

nodes according to regression based algorithm. In Table 4.3 we have compared the 

analytical with neural solutions for all combinations of arbitrary (five nodes in hidden 

layer) and regression based weights. Figure 4.15 shows comparison between analytical 

and the solution which is obtained by using regression based weights. The converged 

network parameters of RBNN are used then to have the results for some testing points 

inside and outside of the domain. As such Tables, 4.4 and 4.5 incorporates corresponding 

results directly by using the converged weights. 
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Table 4.3: Analytical and neural solution for all combination of arbitrary and regression based 

weights (Example 4.2.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Plot of analytical and RBNN ),(4 pxyt (Example 4.2.5) 

 

Table 4.4: Analytical and RBNN for testing points (Example 4.2.5) 

Testing points 0.1354 0.3600 0.5231 0.4560 0.9870 

Analytical 0.2687 0.6901 0.9779 0.8604 1.9615 

RBNN )(),( RvRw  0.2682 0.7073 1.0288 0.8958 2.0111 
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Input 
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Analytical Neural 

)(),(
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AvAw
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Neural 

)(),(

),(2

AvRw

pxyt

 

Neural 

)(),(

),(3

RvAw

pxyt

 

RBNN 

)(),(

),(4

RvRw

pxyt

 

0 0 0 0 0 0 

0.1 0.1991 0.1985 0.1987 0.1986 0.1988 

0.2 0.3936 0.3947 0.3949 0.3949 0.3948 

0.3 0.5811 0.5897 0.5910 0.5901 0.5899 

0.4 0.7616 0.7849 0.7871 0.7855 0.7801 

0.5 0.9375 0.9818 0.9848 0.9829 0.9805 

0.6 1.1136 1.1826 1.1855 1.1842 1.1804 

0.7 1.2971 1.3901 1.3914 1.3921 1.3897 

0.8 1.4976 1.6078 1.6054 1.6100 1.6038 

0.9 1.7271 1.8400 1.8316 1.8420 1.8296 

1 2.0000 2.0910 2.0758 2.0927 2.0720 
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Table 4.5: Analytical and RBNN for testing points (Example 4.2.5) 

 

  

  

 

 

 

Example 4.2.6: 
 
Let us consider next the first order nonlinear ordinary differential equation  

22 xy
dx

dy
  

subject to  1)0( y  

This problem has no analytical solution [9]. We have solved the problem for  3.0,0x

and its trial solution can be written as discussed in Sec. 2.2.2 (Eq. 2.14) 

),(1),( pxxNpxyt 
 

 

We have trained the network for sixteen equidistant points in [0, 0.3] and six number of 

nodes in hidden layer. Table 4.6 shows the comparison between numerical (Euler) and 

neural results for combinations of arbitrary and regression based weights with an accuracy 

of 0.005.  Euler and RBNN results are compared in Figure 4.16 and the error plot is 

shown in Figure 4.17. Finally, results for some testing points inside the domain are shown 

in Table 4.7. 

 

Figure 4.16: Plot of Euler and neural results for )(),( RvRw  (Example 4.2.6) 
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Euler

RBNN

Testing points 1.021 1.0303 1.0450 1.100 

Analytical results 2.0664 2.0937 2.1250 2.3331 

RBNN )(),( RvRw  2.1069 2.1508 2.1759 2.2978 
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Table 4.6:  Euler and neural results for all combinations of arbitrary and regression based weights 

(Example 4.2.6) 
 
 

 
 

Input data 

 
 

Euler 

Neural 

)(),(

),(1

AvAw

pxyt
 

Neural 

)(),(

),(2

RvAw

pxyt
 

Neural 

)(),(

),(3

AvRw

pxyt
 

RBNN 

)(),(

),(4

RvRw

pxyt
 

0 1.0 1.0 1.0 1.0000 1.0000 

0.02 1.02 1.0222 1.0222 1.0219 1.0223 

0.04 1.0408 1.0445 1.0445 1.0440 1.0429 

0.06 1.0624 1.0669 1.0669 1.0661 1.0648 

0.08 1.0849 1.0894 1.0894 1.0883 1.0879 

0.1 1.1084 1.1119 1.1120 1.1107 1.1114 

0.12 1.1327 1.1346 1.1347 1.1332 1.1331 

0.14 1.1581 1.1574 1.1575 1.1558 1.1565 

0.16 1.1845 1.1784 1.1804 1.1785 1.1795 

0.18 1.2121 1.2035 1.2036 1.2014 1.2040 

0.2 1.2408 1.2268 1.2269 1.2245 1.2371 

0.22 1.2708 1.2503 1.2503 1.2477 1.2619 

0.24 1.3021 1.2740 1.2738 1.2710 1.2876 

0.26 1.3349 1.2978 1.2989 1.2944 1.3141 

0.28 1.3692 1.3218 1.3215 1.3179 1.3517 

0.3 1.4051 1.3458 1.3457 1.3414 1.3802 

 

It may be seen that the results found are to be good. Increasing the number of points 

beyond 16 did not improve the reuslts. 

 

 

Figure 4.17: Error plot between Euler and RBNN ),(4 pxyt  results (Example 4.2.6) 
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Table 4.7: Analytical and RBNN for testing points (Example 4.2.6) 
 

Testing points 0.03 0.08 0.18 0.22 0.28 

Euler  results 1.0300 1.0849 1.2108 1.2708 1.3692 

ANN results 1.0358 1.0960 1.2210 1.2720 1.3499 

 

 

Example 4.2.7: 

 
We have taken a first order nonlinear initial value problem in the domain [0, 0.5] 

22 xy
dx

dy


  
]5.0,0[x
 

with initial condition 1)0( y  

The RBNN trial solution is same as the above example. 

 

We have trained the network for ten points in the given domain and five hidden nodes. 

Table 4.8 shows the comparison between numerical (Euler) and neural results for four 

combinations of arbitrary and regression based weights with an accuracy of 0.001.  Euler 

and RBNN results are compared in Figure 4.18. 

 

Table 4.8: Euler and ANN results of arbitrary weights and regression based weights for 

five hidden nods (Example 4.2.7) 

 

Input 

data 

 

Euler  

 

)(),(

),(1

AvAw

pxyt
 

 

)(),(

),(2

RvAw

pxyt
 

 

)(),(

),(3

AvRw

pxyt
 

 

)(),(

),(4

RvRw

pxyt
 

0 1.0000 1.0000 1.000 1.000 1.0000 

0.05 1.0500 1.0666 1.0642 1.0651 1.0600 

0.1 1.1053 1.1338 1.1257 1.1227 1.1151 

0.15 1.1668 1.2018 1.1996 1.1935 1.1837 

0.2 1.2360 1.2710 1.2505 1.2598 1.2456 

0.25 1.3144 1.3418 1.3318 1.3401 1.3205 

0.3 1.4039 1.4149 1.4237 1.4289 1.4115 

0.35 1.5070 1.4909 1.4803 1.4900 1.4998 

0.4 1.6267 1.5707 1.5895 1.5836 1.5973 

0.45 1.7670 1.6549 1.6839 1.6799 1.7580 

0.5 1.9332 1.8039 1.8404 1.8427 1.9044 
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Figure 4.18: Plot of Euler and neural results for )(),( RvRw  (Example 4.2.7) 

 

Example 4.2.8: 
 
Let us consider the first order ordinary differential equation  

 




























3

2
23

3

2

1

31
2

1

31

xx

x
xxxy

xx

x
x

dx

dy

  

]1,0[x  

 

with initial condition   1)0( y
 

 The trial solution is same as Example 4.2.6 

 

We have trained the network for 20 equidistant points in [0, 1] and compare results 

between analytical and neural with arbitrary and regression based weights with four, five 

and six nodes fixed in hidden layer. Comparison between analytical and neural results 

with arbitrary and regression based weights is given in Table 4.9. Analytical results are 

incorporated in second column. Neural results for arbitrary weights )(Aw  (from input to 

hidden layer) and )(Av (from hidden to output layer) with four, five and six nodes are 

cited in third, fifth and seventh column respectively. Similarly, neural results with 

regression weights )(Rw (from input to hidden layer) and )(Rv (from hidden to output 

layer) with four, five and six nodes are given in fourth, sixth and ninth column 

respectively.  
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Analytical and neural results with arbitrary and regression based weights for six nodes in 

hidden layer are compared in Figures 4.19 and 4.20. The error plot is shown in Figure 

4.21. Absolute deviations in % values have been calculated in Table 4.9 and the 

maximum deviation for arbitrary weights neural results (six hidden nodes) is 3.67 (eighth 

column) and for regression based weights it is 1.47 (tenth column). From Figures 4.19 

and 4.20 one may see that results from the regression based weights exactly agree at all 

points with analytical results but for results with arbitrary weights these are not so. Thus 

one may see that the neural results with regression based weights are more accurate. 

It may be seen that by increasing the number of nodes in hidden layer from four to 

six, the results are found to be better. Although the number of nodes in hidden layer had 

been increased beyond six, the results were not improving further. 

This problem has also been solved by well-known numerical methods viz. Euler and 

Runge-kutta for the sake of comparison. Table 4.10 shows validation of the neural results 

(with six hidden nodes) by comparing with other numerical results (Euler and Runge-

Kutta results). 

 

Table 4.9: Analytical and neural solution for all combination of arbitrary and 

regression based weights (Example 4.2.8) 

 

 

 
Input 

data 

 

 

 

 
Analyti 

cal 

 

Neural Results 

 

)(

),(

Av

Aw
 

(Four 

nodes) 

 

)(

),(

Rv

Rw
 

 

RBNN 

(Four 
nodes) 

 

 

)(

),(

Av

Aw
 

(Five 

nodes) 

 

 

)(

),(

Rv

Rw
 

 

RBNN 
(Five 

nodes) 

)(

),(

Av

Aw
 

(Six 
Nodes) 

Deviati
on% 

)(

),(

Rv

Rw

 

 
RBNN 

(Six nodes) 

Deviation
% 

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00 1.0000 0.00 

0.05 0.9536 1.0015 0.9998 1.0002 0.9768 0.9886 3.67 0.9677 1.47 

0.10 0.9137 0.9867 0.9593 0.9498 0.9203 0.9084 0.58 0.9159 0.24 

0.15 0.8798 0.9248 0.8986 0.8906 0.8802 0.8906 1.22 0.8815 0.19 

0.20 0.8514 0.9088 0.8869 0.8564 0.8666 0.8587 0.85 0.8531 0.19 

0.25 0.8283 0.8749 0.8630 0.8509 0.8494 0.8309 0.31 0.8264 0.22 

0.30 0.8104 0.8516 0.8481 0.8213 0.9289 0.8013 1.12 0.8114 0.12 

0.35 0.7978 0.8264 0.8030 0.8186 0.8051 0.7999 0.26 0.7953 0.31 

0.40 0.7905 0.8137 0.7910 0.8108 0.8083 0.7918 0.16 0.7894 0.13 

0.45 0.7889 0.7951 0.7908 0.8028 0.7948 0.7828 0.77 0.7845 0.55 

0.50 0.7931 0.8074 0.8063 0.8007 0.7960 0.8047 1.46 0.7957 0.32 

0.55 0.8033 0.8177 0.8137 0.8276 0.8102 0.8076 0.53 0.8041 0.09 

0.60 0.8200 0. 8211 0.8190 0.8362 0.8246 0.8152 0.58 0.8204 0.04 
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Table 4.10:  Comparison of the results (Example 4.2.8) 

 

0.65 0.8431 0.8617 0.8578 0.8519 0.8501 0.8319 1.32 0.8399 0.37 

0.70 0.8731 0.8896 0.8755 0.8685 0.8794 0.8592 1.59 0.8711 0.22 

0.75 0.9101 0.9281 0.9231 0.9229 0.9139 0.9129 0.31 0.9151 0.54 

0.80 0.9541 0.9777 0.9613 0.9897 0.9603 0.9755 2.24 0.9555 0.14 

0.85 1.0053 1.0819 0.9930 0.9956 1. 0058 1.0056 0.03 0.9948 1.04 

0.90 1.0637 1.0849 1.1020 1.0714 1.0663 1.0714 0.72 1.0662 0.23 

0.95 1.1293 1.2011 1.1300 1.1588 1.1307 1.1281 0.11 1.1306 0.11 

1.00 1.2022 1.2690 1.2195 1.2806 1.2139 1.2108 0.71 1.2058 0.29 

Input data Analytical Euler Runge-Kutta )(),( RvRw  
RBNN  

(Six nodes) 

0 1.0000 1.0000 1.0000 1.0000 

0.0500 0.9536 0.9500 0.9536 0.9677 

0.1000 0.9137 0.9072 0.9138 0.9159 

0.1500 0.8798 0.8707 0.8799 0.8815 

0.2000 0.8514 0.8401 0.8515 0.8531 

0.2500 0.8283 0.8150 0.8283 0.8264 

0.3000 0.8104 0.7953 0.8105 0.8114 

0.3500 0.7978 0.7810 0.7979 0.7953 

0.4000 0.7905 0.7721 0.7907 0.7894 

0.4500 0.7889 0.7689 0.7890 0.7845 

0.5000 0.7931 0.7717 0.7932 0.7957 

0.5500 0.8033 0.7805 0.8035 0.8041 

0.6000 0.8200 0.7958 0.8201 0.8204 

0.6500 0.8431 0.8178 0.8433 0.8399 

0.7000 0.8731 0.8467 0.8733 0.8711 

0.7500 0.9101 0.8826 0.9102 0.9151 

0.8000 0.9541 0.9258 0.9542 0.9555 

0.8500 1.0053 0.9763 1.0054 0.9948 

0.9000 1.0637 1.0342 1.0638 1.0662 

0.9500 1.1293 1.0995 1.1294 1.1306 

1.000 1.2022 1.1721 1.2022 1.2058 
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Figure 4.19: Plot of analytical and neural results with arbitrary weights 

(Example 4.2.8) 

 

Figure 4.20: Plot of analytical and RBNN results for six nodes 

(Example 4.2.8) 
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Figure 4.21: Error plot between analytical and RBNN results for six nodes 

(Example 4.2.8) 

 

 

Example 4.2.9: 
 
In this Example, a second order damped free vibration equation is taken as 

044
2

2

 y
dx

dy

dx

yd

  
 4,0x  

with initial conditions   1)0( y , 1)0( y  

As discussed in Sec.2.2.2 (Eq. 2.18) we can write the trial solution as 

),(1),( 2 pxNxxpxyt 
 

 

Here the network is trained for 40 equidistant points in [0, 4] and with four, five and six 

hidden nodes according to the arbitrary and regression based algorithm. In Table 4.11 we 

compare the analytical solutions with neural solutions taking arbitrary and regression 

based weights for four, five and six nodes in the hidden layer. Here, analytical results are 

given in the second column of Table 4.11. Neural results for arbitrary weights )(Aw  

(from input to hidden layer) and )(Av (from hidden to output layer) with four, five and six 

nodes are shown in third, fifth and seventh column respectively. Neural results with 

regression based weights )(Rw (from input to hidden layer) and )(Rv (from hidden to 

output layer) with four, five and six nodes are cited in fourth, sixth and eighth column 

respectively.  

Analytical and neural results which are obtained for random initial weights are 

depicted in Figure 4.22. Figure 4.23 shows comparison between analytical and neural 
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results for regression based initial weights for six hidden nodes. Finally, the error plot 

between analytical and RBNN results are shown in Figure 4.24. 

 

Table 4.11: Analytical and neural solution for all combination of arbitrary and 

regression based weights (Example 4.2.9) 

 

 
 

Input 

data 
 

 
 

Analyti 

cal 
 

Neural Results 

)(

),(

Av

Aw
 

(Four 

nodes) 

)(

),(

Rv

Rw
 

RBNN  

(Four nodes) 

)(

),(

Av

Aw
 

(Five 

nodes) 

)(

),(

Rv

Rw
 

RBNN 

(Five 

nodes) 

)(

),(

Av

Aw
 

(Six nodes) 

)(

),(

Rv

Rw
 

RBNN 

(Six nodes) 

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.1 1.0643 1.0900 1.0802 1.0910 1.0878 1.0923 1.0687 

0.2 1.0725 1.1000 1.0918 1.0858 1.0715 1.0922 1.0812 

0.3 1.0427 1.0993 1.0691 1.0997 1.0518 1.0542 1.0420 

0.4 0.9885 0.9953 0.9732 0.9780 0.9741 0.8879 0.9851 

0.5 0.9197 0.9208 0.9072 0.9650 0.9114 0.9790 0.9122 

0.6 0.8433 0.8506 0.8207 0.8591 0.8497 0.8340 0.8082 

0.7 0.7645 0.7840 0.7790 0.7819 0.7782 0.7723 0.7626 

0.8 0.6864 0.7286 0.6991 0.7262 0.6545 0.6940 0.6844 

0.9 0.6116 0.6552 0.5987 0.6412 0.6215 0.6527 0.6119 

1.0 0.5413 0.5599 0.5467 0.5604 0.5341 0.5547 0.5445 

1.1 0.4765 0.4724 0.4847 0.4900 0.4755 0.4555 0.4634 

1.2 0.4173 0.4081 0.4035 0.4298 0.4202 0.4282 0.4172 

1.3 0.3639 0.3849 0.3467 0.3907 0.3761 0.3619 0.3622 

1.4 0.3162 0.3501 0.3315 0.3318 0.3274 0.3252 0.3100 

1.5 0.2738 0.2980 0.2413 0.2942 0.2663 0.2773 0.2759 

1.6 0.2364 0.2636 0.2507 0.2620 0.2439 0.2375 0.2320 

1.7 0.2036 0.2183 0.2140 0.2161 0.2107 0.2177 0.1921 

1.8 0.1749 0.2018 0.2007 0.1993 0.1916 0.1622 0.1705 

1.9 0.1499 0.1740 0.1695 0.1665 0.1625 0.1512 0.1501 

2.0 0.1282 0.1209 0.1204 0.1371 0.1299 0.1368 0.1245 

2.1 0.1095 0.1236 0.1203 0.1368 0.1162 0.1029 0.1094 

2.2 0.0933 0.0961 0.0942 0.0972 0.0949 0.0855 0.09207 

2.3 0.0794 0.0818 0.0696 0.0860 0.0763 0.0721 0.0761 

2.4 0.0675 0.0742 0.0715 0.0849 0.0706 0.0526 0.0640 

2.5 0.0573 0.0584 0.0419 0.0609 0.0543 0.0582 0.0492 

2.6 0.0485 0.0702 0.0335 0.0533 0.0458 0.0569 0.0477 

2.7 0.0411 0.0674 0.0602 0.0581 0.0468 0.0462 0.0409 

2.8 0.0348 0.0367 0.0337 0.0387 0.0328 0.0357 0.03460 

2.9 0.0294 0.0380 0.0360 0.0346 0.0318 0.0316 0.0270 

3.0 0.0248 0.0261 0.0207 0.0252 0.0250 0.0302 0.0247 

3.1 0.0209 0.0429 0.0333 0.0324 0.0249 0.0241 0.0214 

3.2 0.0176 0.0162 0.0179 0.0154 0.0169 0.0166 0.0174 

3.3 0.0148 0.0159 0.0137 0.0158 0.0140 0.0153 0.0148 
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3.4 0.0125 0.0138 0.0135 0.0133 0.0130 0.0133 0.0129 

3.5 0.0105 0.0179 0.0167 0.0121 0.0132 0.0100 0.0101 

3.6 0.0088 0.0097 0.0096 0.0085 0.0923 0.0095 0.0090 

3.7 0.0074 0.0094 0.0092 0.0091 0.0093 0.0064 0.0071 

3.8 0.0062 0.0081 0.0078 0.0083 0.0070 0.0061 0.0060 

3.9 0.0052 0.0063 0.0060 0.0068 0.0058 0.0058 0.0055 

4.0 0.0044 0.0054 0.0052 0.0049 0.0049 0.0075 0.0046 
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Figure 4.22: Plot of analytical and neural results with arbitrary weights  
(for six nodes) (Example 4.2.9) 

 



 

 

Regression Based Neural Network (RBNN) Model 

Chapter 4                                                                                                   for Solving ODEs     

 

70 

 

 

 

 

 

 
Figure 4.24: Error plot between analytical and RBNN solutions  

for six nodes (Example 4.2.9) 

 

 

Table 4.12 shows the CPU time of computation for Examples 4.2.8 and 4.2.9 with four, 

five and six hidden nodes respectively. One may note that the time of computation of 

RBNN models are less than traditional artificial neural architecture. 
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Figure 4.23: Plot of analytical and RBNN results for six nodes 

(Example 4. 2.9) 
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Table 4.12: Time of computation 
 

 
 

Problems 

CPU time of computation in sec. 

Traditional ANN RBNN 

(four nodes) 

RBNN 

(five nodes) 

RBNN 

(six nodes) 

Four 
nodes 

Five 
nodes 

Six 
nodes 

Example 

4.2.8 

5652.19 5436.15 5364.12 4716.17 4572.11 3924.13 

Example 

4.2.9 

10016.25 98020.09 8784.20 8028.14 5580.23 4968.10 

 

 

Example 4.2.10: 
 
Now we consider an initial value problem  

xey
dx

dy 35   

subject to   0)0( y  

 The RBNN trial solution is written as  

),(),( pxxNpxyt 
 

 

Ten equidistant points in the given domain are taken with four, five and six hidden nodes 

according to arbitrary and regression based algorithm have been considered. Comparison 

of analytical and neural results with arbitrary and regression based weights have been 

shown in Table 4.13. Also other numerical results viz. Euler and Runge-Kutta are 

compared with RBNN in this Table. 

Analytical and traditional neural results obtained using random initial weights and 

six nodes are depicted in Figure 4.25. Similarly, Figure 4.26 shows comparison between 

analytical and neural results with regression based initial weights for six hidden nodes. 

Finally, the error plot between analytical and RBNN results are cited in Figure 4.27. 
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Table 4.13: Analytical, numerical and neural solutions with arbitrary and regression based weights  

(Example 4.2.10) 

 

 

 

Input 

data 

 

 

 

Analyti 

cal 

 

 

 

Euler  

 

Runge 

–Kutta 

 

Neural Results 

 

)(

),(

Av

Aw
 

(Four 

nodes)

 

)(

),(

Rv

Rw
 

RBNN 

(Four 

nodes) 

)(

),(

Av

Aw
 

(Five 

nodes)

 

)(

),(

Rv

Rw
 

RBNN 

(Five 

nodes)

 

)(

),(

Av

Aw
 

(Six 

nodes)

 

)(

),(

Rv

Rw
 

RBNN 

(Six 

nodes) 

0 0 0 0 0 0 0 0 0 0 

0.1 0.0671 0.1000 0.0671 0.0440 0.0539 0.0701 0.0602 0.0565 0.0670 

0.2 0.0905 0.1241 0.0904 0.0867 0.0938 0.0877 0.0927 0.0921 0.0907 

0.3 0.0917 0.1169 0.0917 0.0849 0.0926 0.0889 0.0932 0.0931 0.0918 

0.4 0.0829 0.0991 0.0829 0.0830 0.0876 0.0806 0.0811 0.0846 0.0824 

0.5 0.0705 0.0797 0.0705 0.0760 0.0748 0.0728 0.0714 0.0717 0.0706 

0.6 0.0578 0.0622 0.0577 0.0492 0.0599 0.0529 0.0593 0.0536 0.0597 

0.7 0.0461 0.0476 0.0461 0.0433 0.0479 0.0410 0.0453 0.0450 0.0468 

0.8 0.0362 0.0360 0.0362 0.0337 0.0319 0.0372 0.0370 0.0343 0.0355 

0.9 0.0280 0.0271 0.0280 0.0324 0.0308 0.0309 0.0264 0.0249 0.0284 

1.0 0.0215 0.0203 0.0215 0.0304 0.0282 0.0255 0.0247 0.0232 0.0217 
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Figure 4.25: Plot of analytical and neural results 
with arbitrary weights (for six nodes) 

(Example 4.2.10) 

 

 

Figure 4.26: Plot of analytical and RBNN 

results for six nodes (Example 4.2.10) 
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Figure 4.27:  Error plot between analytical and regression based weights results 

(Example 4.2.10) 

 

Example 4.2.11: 
 
In this example, afirst order IVP has been considered 

y
dx

dy
  

with initial condition 1)0( y  

The above equation represents exponential growth,where


1
represents time constant or 

characteristic time. 

Considering   ,1  we have the analytical solution as 
xey   

 

 The RBNN trial solution in this case is 

),(1),( pxxNpxyt 
 

 

Now the network is trained for ten equidistant points in the domain [0, 1] with four, five 

and six hidden nodes according to arbitrary and regression based algorithm. Comparison 

of analytical and neural results with arbitrary ( )(Aw , )(Av ) and regression based weights 

( )(Rw , ))(Rv   have been given in Table 4.14. Analytical and traditional neural results 

obtained using random initial weights with six nodes are shown in Figure 4.28. Figure 

4.29 depicts comparison between analytical and neural results with regression based 

initial weights for six hidden nodes. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

E
rr

o
r



 

 

Regression Based Neural Network (RBNN) Model 

Chapter 4                                                                                                   for Solving ODEs     

 

74 

 

 

 

 

 

 

Table 4.14:  Analytical and neural solution for all combination of arbitrary and 

regression based weights (Example 4.2.11) 
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)(

),(

Av

Aw
 

(Four 
nodes)

 

)(

),(

Rv

Rw
 

RBNN 
(Four 

nodes) 

)(

),(

Av

Aw
 

(Five 
nodes)

 

)(

),(

Rv

Rw
 

RBNN 
(Five 

nodes)

 

)(

),(

Av

Aw
 

(Six 
nodes)

 

)(

),(

Rv

Rw
 

RBNN 
(Six 

nodes) 

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.1000 1.1052 1.1069 1.1061 1.1093 1.1060 1.1075 1.1051 

0.2000 1.2214 1.2337 1.2300 1.2250 1.2235 1.2219 1.2217 

0.3000 1.3499 1.3543 1.3512 1.3600 1.3502 1.3527 1.3498 

0.4000 1.4918 1.4866 1.4921 1.4930 1.4928 1.4906 1.4915 

0.5000 1.6487 1.6227 1.6310 1.6412 1.6456 1.6438 1.6493 

0.6000 1.8221 1.8303 1.8257 1.8205 1.8245 1.8234 1.8220 

0.7000 2.0138 2.0183 2.0155 2.0171 2.0153 2.0154 2.0140 

0.8000 2.2255 2.2320 2.2302 2.2218 2.2288 2.2240 2.2266 

0.9000 2.4596 2.4641 2.4625 2.4664 2.4621 2.4568 2.4597 

1.0000 2.7183 2.7373 2.7293 2.7232 2.7177 2.7111 2.7186 

Figure 4.28: Plot of analytical and neural 
results with arbitrary weights 

for six nodes  (Example 4.2.11) 

 

 

Figure 4.29: Plot of analytical and RBNN  
for six nodes (Example 4.2.11) 
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4.3   Conclusion 

 
In this chapter, a regression based artificial neural network has been proposed. The initial 

weights from input to hidden and hidden to output layer are taken from regression based 

weight generation. The main value of the chapter is that the numbers of nodes in the 

hidden layer are fixed according to the degree of polynomial in the regression. 

Accordingly, comparisons of different neural architecture corresponding to different 

regression models are investigated. One may see from the Tables 4.10 and 4.13 that 

Runge-Kutta method although gives better result but the above repetitive nature is 

required for each step size. Here, after getting the converged ANN, we may use it as a 

black box to get numerical results of any arbitrary point in the domain. 
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Chapter 5 

Chebyshev Functional Link Neural 

Network (FLNN) Model for Solving ODEs 
 

 

Single layer Chebyshev Functional Link Neural Network called Chebyshev Neural 

Network (ChNN) model has been developed in this chapter. Second order non-linear 

ordinary differential equations of Lane-Emden and Emden-Fowler type have been solved 

using ChNN model. The hidden layer is eliminated by expanding the input pattern by 

Chebyshev polynomials. These equations are categorized as singular nonlinear initial 

value problems. Single layer ChNN model is used here to overcome the difficulty of the 

singularity. We have used an unsupervised version of error back propagation for 

minimizing error function and update the network parameters without using optimization 

techniques. The initial weights from input to output layer are considered as random.* 

 

5.1   Chebyshev Neural Network (ChNN) Model 
 
In this section, we have described structure of single layer ChNN model, ChNN 

formulation, its learning algorithm and gradient computation. 

 

5.1.1   Structure of Chebyshev Neural Network 
 
Single layer Chebyshev Neural Network (ChNN) model has been considered for the 

present problem. Figure 5.1 shows the structure of ChNN consisting of the single input 

node, a functional expansion block based on Chebyshev polynomials and a single output 

node.  

 

*Contents of this chapter have been published in the following Journals: 

 
1. Applied Mathematics and Computation, 247, 2014; 

2. Neurocomputing, 149, 2015. 
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The architecture of the neural model consists of two parts first one is numerical 

transformation part and second part is learning part. In numerical transformation part, 

each input data is expanded to several terms using Chebyshev polynomial. So the 

Chebyshev polynomial can be viewed as a new input vector. Let us consider input data 

denoted as T

hxxxx ),..,,( 21 that is the single input node x has h number of data and the 

Chebyshev polynomials are a set of orthogonal polynomials obtained by a solution of the 

Chebyshev differential equations [15]. The first two Chebyshev polynomials are known 

as 

  xxT

xT





)(

1)(

1

0            (5.1) 

The higher order Chebyshev polynomials may be generated by the well known recursive 

formula 

)()(2)( 11 xTxxTxT rrr              (5.2) 

 
where )(xT r

denotes rth order Chebyshev polynomial. Here h dimensional input 

pattern is expanded to m dimensional enhanced Chebyshev polynomials. The advantage 

of the ChNN is to get the result by using single layer network. Although this is done by 

increasing the dimension of the input through Chebyshev polynomial.The architecture of 

the ChNN model with first five Chebyshev polynomials and single input and output layer 

(with the single node) is shown in Figure 5. 1. 

 

 

)(0 xT  

                                                                    
1w
 

 

)(1 xT           2w  

 

 

)(2 xT           3w  

     

                                                                     
4w
 

)(3 xT  

        
5w
  

 

6w  

)(4 xT  

 
)(5 xT
 

Figure 5.1:  Structure of single layer Chebyshev Neural Network (ChNN) 
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5.1.2   Formulation and Learning Algorithm of Proposed ChNN Model 

 

The ChNN trial solution ),( pxy t for ODEs with parameters (weights) p may be written in 

the form  
 

)),(,()(),( pxNxFxApxy t 
         

(5.3) 

 
 The first term )(xA does not contain adjustable parameters and satisfies only 

initial/boundary conditions, where as the second term )),(,( pxNxF  contains the single 

output ),( pxN of ChNN with input x and adjustable parameters p. The tangent hyperbolic 

(tanh) function viz. 
xx

xx

ee

ee







is considered here as the activation function. 

The network output with input x and parameters (weights) p may be computed as  

zz

zz

ee

ee
zpxN








 )tanh(),(            (5.4) 

where z is a weighted sum of  expanded input data.  It is written as 

)(1
1

xTwz j

m

j

j 



           (5.5) 

where x  is the input data, )(1 xT j
 and 

jw  with },...3,2,1{ mj  denoting the expanded input 

data and  the weight vector respectively of the Chebyshev Neural Network.  

Our aim is to solve the Lane- Emden and Emden-Fowler type differential equations. 

As such we now discuss below the ChNN formulation for the following type (second 

order initial value problem) of ODE 

 











dx

dy
yxf

dx

yd
,,

2

2

  

 bax ,        (5.6) 

 

with initial conditions   Aay )( ,  Aay  )(  

The ChNN trial solution is constructed as 
 

),()()(),( 2 pxNaxaxAApxyt        (5.7) 

 

where ),( pxN is the output of the Chebyshev Neural Network with one input x and 

parameters p .  

The error function ),( pxE is written as 
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As discussed above, for ChNN ix s’  i=1,2,…h are the input data and the weights jw  

from input to output layer are modified according to the unsupervised error back 

propagation learning algorithm (Sec. 2.2.2,  Eq. 2.9) as follows  


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pxE
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),(1          (5.9) 

Where   is learning parameter, k is iteration step and ),( pxE is the error function. One 

may note that the parameter k is used for updating the weights as usual in ANN. 
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5.1.3   Computation of Gradient for ChNN Model 

 

The error computation involves both output and derivative of the network output with 

respect to the corresponding input. So it is required to find the gradient of the network 

derivatives with respect to the inputs. 

As such, the derivative of pxN ,( ) with respect to input x  is written as  
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(5.11)            

 

Simplifying, the above we have 
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It may be noted that the above differentiation is done for all x, where x has h number of 

data.                             

 



 

 

Chebyshev Functional Link Neural Network (FLNN) Model 

Chapter 5                                                                                                   for Solving ODEs 

 

80 

 

where 
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
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 )tanh(),(

                                                                          (5.13)
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Similarly, we can compute the second derivative of  N(x,p)  as 
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After simplifying the above we get 
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Where jw denote parameters of network and )(),( 11 xTxT jj 
 denote first and second 

derivatives of Chebyshev polynomials. 

Let 
dx

dN
N  denote the derivative of the network output with respect to the input x. 

The derivative of ),( pxN  and N  with respect to other parameters (weights) may be 

formulated as 
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    (5.17)                        

 

After getting all the derivatives we can find out the gradient of error. Using error back 

propagation learning algorithm we may minimize the error function as per the desired 

accuracy. 

 

Next, singular initial value problems viz. Lane-Emden type equations are considered.   

 

5.2   Lane- Emden Equations 

 

In astrophysics, the equation which describes the equilibrium density distribution in self 

gravitating sphere of polytropic isothermal gas was proposed by Lane [65] and further 

described by Emden [66] which are known as Lane-Emden equations. The general form 

of Lane-Emden equation is 

 

)(),(
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2

xgyxf
dx
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xdx

yd


       
0x     (5.18)  

with initial conditions ,)0( y 0)0( y  

where ),( yxf  is a nonlinear function of x and y and )(xg is the function of x 

respectively. The above Lane-Emden type equations are singular at x=0. So analytical 

solution of this type of equation is possible in the neighborhood of the singular point [69]. 

In Eq. (5.18), ),( yxf describes several phenomena in astrophysics such as theory of 

stellar structure, the thermal behavior of a spherical cloud of gas, isothermal gas spheres 

etc. The most popular form of ),( yxf is  

,),( myyxf  ,1)0( y    0)0( y and 0)( xg      (5.19) 

 

So the standard form of the Lane-Emden equation may be written as 

0
2

2
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 my
dx

dy

xdx

yd
        (5.20)    
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 0)(
1 2

2
 my

dx

dy
x

dx

d

x  

 

with initial conditions 1)0( y , 0)0( y  

The Lane-Emden equation is dimensionless form of Poisson’s equation for the 

gravitational potential of Newtonian self gravitating, spherically symmetric, polytrophic 

fluid. Here m is a constant, which is called the polytrophic index. Eq. (5.20) describes the 

thermal behavior of a spherical cloud of gas acting under the mutual attraction of its 

molecules and subject to the classical laws of thermodynamics. Another nonlinear form of 

),( yxf  is the exponential function that is 
yeyxf ),(                (5.21) 

            
            
         
Substituting (5.21) into Eq. (5.20) we have 

0
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dx
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  (5.22) 

  

This describes isothermal gas spheres where the temperature remains constant.  

Eq. (5.20) with  
yeyxf ),(  is 

0
2

2

2

 ye
dx

dy

xdx

yd
         (5.23) 

 
 

which gives a model that appears in the theory of thermionic current and has thoroughly 

been investigated by  [72]. 

Exact solutions of Eq. (5.20) for m=0, 1 and 5 have been obtained by [70, 71]. For 

m=5, only one parameter family of solution is obtained in [73]. For other values of m, the 

standard Lane-Emden equations can only be solved numerically. Solution of differential 

equations with singularity behavior in various linear and nonlinear initial value problems 

of astrophysics is a challenge. In particular, present problem of Lane-Emden and Emden-

Fowler equations which has singularity at x=0 is also important in practical applications 

in astrophysics and Quantum mechanics. These equations are difficult to solve 

analytically, so various techniques based on either series solutions or perturbation 

techniques have been used to handle the Lane-Emden equations [74--89]. But our aim is 

to solve these equations using single layer ChNN method. 
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5.2.1   Numerical Results and Discussions 

 

In this section, homogeneous and non homogeneous Lane-Emden equations have been 

considered to show the reliability of the proposed procedure. Here, we have trained the 

proposed model for a different number of training points such as 10, 15, 20 etc. because 

various problems converge with different number of training points. In each problem, the 

number of points taken is mentioned which give good result with acceptable accuracy. 

 

5.2.2   Homogeneous Lane-Emden equations 

 

As mentioned before, the above Lane-Emden equation with index m is a basic equation in 

the theory of stellar structure [74--76]. Also, this equation describes the temperature 

variation of a spherical cloud of gas acting under the mutual attraction of its molecules 

and subject to the classical laws of thermodynamics [69, 72]. It was physically shown [70, 

71] that m can have the values in the interval [0, 5] and exact solutions exists only for 

m=0, 1 and 5.  So we have computed the ChNN solution with the above particular values 

of m and those will be compared with the known exact solutions to have a confidence in 

our present methodology. 

Here standard Lane-Emden equations are discussed in Examples 5.2.1 to 5.2.5 for 

index values m =0, 1, 5, 0.5 and 2.5 respectively. 

 

Example 5.2.1: 
 
 For m=0, the equation becomes linear ordinary differential equation 

01
2

2

2


dx

dy

xdx

yd

 

with initial conditions 1)0( y , .0)0( y  

As discussed above we can write the ChNN trial solution as 

),(1),( 2 pxNxpxyt 
 

 

The network is trained for ten equidistant points in [0, 1] with first five Chebyshev 

polynomials and five weights from input to output layer. In Table 5.1 we compare the 

analytical solutions with Chebyshev neural solutions with arbitrary weights. Figure 5.2 

shows the comparison between analytical and chebyshev neural results. Finally, the error 

plot between analytical and ChNN results are shown in Figure 5.3. 
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Table 5.1: Comparison between analytical and ChNN results (Example 5.2.1) 
 

Input data Analytical 

[69] 

ChNN Relative 

errors 

0 1.0000 1.0000 0 

0.1 0.9983 0.9993 0.0010 

0.2 0.9933 0.9901 0.0032 

0.3 0.9850 0.9822 0.0028 

0.4 0.9733 0.9766 0.0033 

0.5 0.9583 0.9602 0.0019 

0.6 0.9400 0.9454 0.0054 

0.7 0.9183 0.9139 0.0044 

0.8 0.8933 0.8892 0.0041 

0.9 0.8650 0.8633 0.0017 

1.0 0.8333 0.8322 0.0011 

 

 
                  Figure 5.2: Plot of analytical 

              and ChNN results (Example 5.2.1) 

 

 

Example 5.2.2: 
 
Let us consider Lane-Emden equation for m=1 with same initial conditions

 

0
2

2

2

 y
dx

dy

xdx

yd

 

The ChNN trial solution, in this case, is same as Example 5.2.1. 

 

Twenty equidistant points in [0, 1] and five weights with respect to first five Chebyshev 

polynomials are considered. Comparison of analytical and ChNN results has been shown 
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Figure 5.3: Error plot between analytical 
and ChNN results (Example 5.2.1) 
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in Table 5.2. Figure 5.4 depicts analytical and Chebyshev neural results. Finally, Figure 

5.5 shows the plot of error between analytical and ChNN results. 

 

Table 5.2: Comparison between analytical and ChNN results (Example 5.2.2) 
 

Input data 

 

Analytical 

[69] 

ChNN Relative 

errors 

0 1.0000 1.0000 0 

0.1000 0.9983 1.0018 0.0035 

0.1500 0.9963 0.9975 0.0012 

0.2000 0.9933 0.9905 0.0028 

0.2500 0.9896 0.9884 0.0012 

0.3000 0.9851 0.9839 0.0012 

0.3500 0.9797 0.9766 0.0031 

0.4000 0.9735 0.9734 0.0001 

0.4500 0.9666 0.9631 0.0035 

0.5000 0.9589 0.9598 0.0009 

0.5500 0.9503 0.9512 0.0009 

0.6000 0.9411 0.9417 0.0006 

0.6500 0.9311 0.9320 0.0009 

0.7000 0.9203 0.9210 0.0007 

0.7500 0.9089 0.9025 0.0064 

0.8000 0.8967 0.8925 0.0042 

0.8500 0.8839 0.8782 0.0057 

0.9000 0.8704 0.8700 0.0004 

0.9500 0.8562 0.8588 0.0026 

1.0000 0.8415 0.8431 0.0016 
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Figure 5.5: Error plot between analytical 

and ChNN results (Example 5.2.2) 

 

 

Figure 5.4:  Plot of analytical and ChNN 
results (Example 5.2.2) 
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Example 5.2.3:  
 
Next, we will take the Lane-Emden equation with  m=5 

0
2 5

2

2

 y
dx

dy

xdx

yd

 

with initial conditions 1)0( y , 0)0( y  

The exact solution of the above equation is given in [73] as 

21
2

3
1)(













x
xy

  

0x  

The ChNN trial solution may be expressed as  

),(1),( 2 pxNxpxyt 
 

 

Here we have trained the network for ten equidistant points in [0, 1] and five weights for 

computing the results. Comparison between analytical and Chebyshev neural results are 

cited in Table 5.3. Analytical and Chebyshev neural results are compared in Figure 5.6. 

The error plot is depicted in Figure 5.7. The results for some testing points are shown in 

Table 5.4. This testing is done to check whether the converged ChNN can give results 

directly by inputting the points which were not taken during training.  

 

Table 5.3: Comparison between analytical and  

Chebyshev neural results (Example 5.2.3) 

 

 

 

 

 

Input 
data 

Analytical 
[73] 

ChNN Relative 
errors 

0 1.000 1.0000 0 

0.1 0.9983 0.9981 0.0002 

0.2 0.9934 0.9935 0.0001 

0.3 0.9853 0.9899 0.0046 

0.4 0.9744 0.9712 0.0032 

0.5 0.9608 0.9684 0.0076 

0.6 0.9449 0.9411 0.0038 

0.7 0.9271 0.9303 0.0032 

0.8 0.9078 0.9080 0.0002 

0.9 0.8874 0.8830 0.0044 

1.0 0.8660 0.8651 0.0009 
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  Figure 5.6: Plot of analytical and ChNN results 

                    (Example 5.2.3) 

 

Table 5.4: ChNN solutions for testing points (Example 5.2.3) 

Testing points          0.1600 0.3801 0.5620 0.7300 0.9600 

Analytical results  0.9958 0.9768 0.9512 0.9215 0.8746 

ChNN results      0.9993 0.9750 0.9540 1.0201 0.8718 

 

In view of the above one may see that the exact (analytical) results compared very well 

with ChNN results. As such next we take some example with values of m = 0.5, 2.5 to get 

new approximate results of the said differential equation. 

 

Example 5.2.4: 
 
Let us consider Lane-Emden equation for m=0.5  

0
2 5.0

2

2

 y
dx

dy

xdx

yd

 

with initial conditions 1)0( y , 0)0( y  

The ChNN trial solution is written as 

),(1),( 2 pxNxpxyt 
 

 
Ten equidistant points and five weights with respect to first five Chebyshev polynomials 

considered here to train the model. Table 5.5 incorporates Chebyshev neural and 

Homotopy Perturbation Method (HPM) [79] results along with the relative errors at the 

given points.  Plot of error (between ChNN and HPM) are also cited in Figure 5.8. 
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Figure 5.7: Error plot between analytical 

and ChNN results (Example 5.2.3) 
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Table 5.5:  Comparison between ChNN and 

               HPM results (Example 5.2.4) 

 

 Figure 5.8: Error plot between ChNN 

      and HPM results (Example 5.2.4) 

 

 

Example 5.2.5: 
 
Here we take Lane-Emden equation for m=2.5 with same initial conditions as 

0
2 5.2

2

2

 y
dx

dy

xdx

yd
 

ChNN trial solution is same as Example 5.2.4.
 Again ten points in the given domain and five weights are considered to train the ChNN. 

Table 5.6 shows ChNN and Homotopy Perturbation Method (HPM) [79] results along 

with the relative errors respectively. 

 
Table 5.6:  Comparison between ChNN and HPM results (Example 5.2.5)
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Input 

data 

ChNN HPM 

[79]
 

Relative 

errors 

0 1.0000 1.0000 0 

0.1 0.9968 0.9983 0.0015 

0.2 0.9903 0.9933 0.0030 

0.3 0.9855 0.9850 0.0005 

0.4 0.9745 0.9734 0.0011 

0.5 0.9598 0.9586 0.0012 

0.6 0.9505 0.9405 0.0100 

0.7 0.8940 0.9193 0.0253 

0.8 0.8813 0.8950 0.0137 

0.9 0.8597 0.8677 0.0080 

1.0 0.8406 0.8375 0.0031 

Input data ChNN HPM [79] Relative errors 

0 1.0000 1.0000 0 

0.1 0.9964 0.9983 0.0019 

0.2 0.9930 0.9934 0.0004 

0.3 0.9828 0.9852 0.0024 

0.4 0.9727 0.9739 0.0012 

0.5 0.9506 0.9596 0.0090 

0.6 0.9318 0.9427 0.0109 

0.7 0.9064 0.9233 0.0169 

0.8 0.8823 0.9019 0.0196 

0.9 0.8697 0.8787 0.0090 

1.0 0.8342 0.8542 0.0200 
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Example 5.2.6: 
 

Below we now consider an example of Lane-Emden equation with yxyxf )32(2),( 2 

As such second order homogeneous Lane-Emden equation will be 

0)32(2
2 2

2

2

 yx
dx

dy

xdx

yd

  
0x  

with initial conditions 1)0( y , 0)0( y  

As discussed above we can write the ChNN trial solution as 

),(1),( 2 pxNxpxyt 
 

 

We have trained the network for ten equidistant points in [0, 1].  As in previous case 

analytical and obtained ChNN results are shown in Table 5.7. Comparisons between 

analytical and ChNN results are depicted in Figure 5.9. ChNN results at the testing points 

are given in Table 5.8. Lastly, the error (between analytical and ChNN results) is plotted 

in Figure 5.10. 

 

 

Table 5.7: Comparison between analytical and ChNN results (Example 5.2.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.8: ChNN solutions for testing points (Example 5.2.6) 

Testing points          0.232 0.385 0.571 0.728 0.943 

Analytical results  1.0553 1.1598 1.3855 1.6989 2.4333 

ChNN results      1.0597 1.1572 1.3859 1.6950 2.4332 

 

 

Input 

data 

Analytical 

[84] 

ChNN Relative 

errors 

0 1.0000 1.0000 0 

0.1 1.0101 1.0094 0.0007 

0.2 1.0408 1.0421 0.0013 

0.3 1.0942 1.0945 0.0003 

0.4 1.1732 1.1598 0.0134 

0.5 1.2840 1.2866 0.0026 

0.6 1.4333 1.4312 0.0021 

0.7 1.6323 1.6238 0.0085 

0.8 1.8965 1.8924 0.0041 

0.9 2.2479 2.2392 0.0087 

1.0 2.7148 2.7148 0 
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Figure 5.9: Plot of analytical and ChNN results 
                      (Example 5.2.6) 

 

 

5.2.3   Nonhomogeneous Lane-Emden equation 

 

Following nonhomogeneous Lane-Emden equations have been solved by [75, 84] using 

Adomian decomposition and modified homotopy analysis method. Here the same 

problem is solved using Chebyshev Neural Network. 

 

Example 5.2.7: 
 
The nonhomogeneous Lane-Emden equation is written as 

32

2

2

2126
2

xxxy
dx

dy

xdx

yd


  
10  x  

 

subject to 0)0( y , 0)0( y  

 

This equation has the exact solution for 0x  [84] as 
32)( xxxy 

 

Here, the related ChNN trial solution is written as 

 
),(),( 2 pxNxpxyt 

 

 

In this case, twenty equidistant points in [0, 1] and five weights with respect to first five 

Chebyshev polynomials are considered. Table 5.9 shows analytical and Chebyshev neural 
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Figure 5.10: Error plot between analytical 

and ChNN results (Example 5.2.6) 
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results. Analytical and ChNN results are compared in Figure 5.11. Finally, Figure 5.12 

depicts the plot of error between analytical and ChNN results. 
 

Table 5.9: Comparison between analytical and ChNN results (Example 5.2.7) 

 

 

 

 

 

 

 

 

 

 
             Figure 5.11: Plot of analytical and  
                 ChNN results   (Example 5.2.7) 
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Input data  Analytical  [84] ChNN  Relative 

errors 

0 0 0 0 

0.10 0.0110 0.0103 0.0007 

0.15 0.0259 0.0219 0.0040 

0.20 0.0480 0.0470 0.0010 

0.25 0.0781 0.0780 0.0001 

0.30 0.1170 0.1164 0.0006 

0.35 0.1654 0.1598 0.0056 

0.40 0.2240 0. 2214 0.0026 

0.45 0.2936 0.2947 0.0011 

0.50 0.3750 0.3676 0.0074 

0.55 0.4689 0.4696 0.0007 

0.60 0.5760 0.5712 0.0048 

0.65 0.6971 0.6947 0.0024 

0.70 0.8330 0.8363 0.0033 

0.75 0.9844 0.9850 0.0006 

0.80 1.1520 1.1607 0.0087 

0.85 1.3366 1.3392 0.0026 

0.90 1.5390 1.5389 0.0001 

0.95 1.7599 1.7606 0.0007 

1.00 2.0000 2.0036 0.0036 

Figure 5.12: Error plot betweenanalytical  
and ChNN results (Example 5.2.7) 
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Next, various types of Emden-Fowler equations have been included. 

 

5.3   Emden-Fowler Equations 

 

Singular second order nonlinear initial value problems describe several phenomenain 

mathematical physics and astrophysics.The Emden-Fowler equation is studied in detail 

by [66--68]. The general form of the Emden-Fowler equation may be written as 

 

),()()(
2

2

xhygxaf
dx

dy

x

r

dx

yd


      
0r      (5.24) 

 

with initial conditions ,)0( y 0)0( y  

The Emden-Fowler type equations are applicable for the theory of stellar structure, 

thermal behavior of a spherical cloud of gas, isothermal gas spheres, and theory of 

thermionic currents [69, 70]. A solution of differential equations with singularity 

behavior in various linear and nonlinear initial value problems of astrophysics is a 

challenge. In particular, present problem of Emden-Fowler equations which has the 

singularity at x =0 is also important in practical applications. These equations are 

difficult to solve analytically. We have proposed single layer ChNN method to handle 

these equations.   

 

5.3.1   Case Studies 

 

In this section, we have considered non homogeneous Emden-Fowler equations in 

Examples 5.3.1 and 5.3.2 and homogeneous Emden-Fowler equations in Examples 5.3.3 

and 5.3.4 respectively to show the powerfulness of the proposed method. 

 

Example 5.3.1: 
 
A nonlinear singular initial value problem of Emden-Fowler is written as 

5428
xxxyy

x
y 

  
0x  

with initial conditions 1)0( y , 0)0( y  

We have the ChNN trial solution 

),(1),( 2 pxNxpxyt   



 

 

Chebyshev Functional Link Neural Network (FLNN) Model 

Chapter 5                                                                                                   for Solving ODEs 

 

93 

 

We have trained the network for ten equidistant points in the domain [0, 1] with first six 

Chebyshev polynomials. Six weights for ChNN and eight weights for traditional ANN 

have been considered. Table 5.10 shows comparison among numerical solutions obtained 

by Maple 11, Differential Transformation Method (DTM) for n=10 [88], Chebyshev 

neural (ChNN) and traditional (MLP) ANN. Comparison between numerical solutions by 

Maple 11 and Chebyshev neural are depicted in Figure 5.13. Figure 5.14 shows semi 

logarithmic plot of the error (between Maple 11 and ChNN). From Table 5.10, one may 

see that ChNN solutions agreed well at all points with the solutions of Maple 11 and 

DTM numerical solutions. The converged ChNN is used then to have the results for some 

testing points. As such Table 5.11 incorporates corresponding results directly by using the 

converged weights.  

 

 

Table 5.10: Comparison among numerical solutions using Maple 11, DTM, ChNN 
and traditional ANN (Example 5.3.1) 

 

 

Table 5.11: ChNN solutions for testing points (Example 5.3.1) 

 

 

It is worth mentioning that the CPU time of computation for the proposed ChNN model is 

10,429.97 sec. whereas CPU time for traditional neural network (MLP) is 15,647.58 sec. 

As such we may see that ChNN takes less time of computation than traditional MLP. 

 

Input data 

 

Maple 11 [88] DTM 

[88] 

ChNN Traditional ANN 

 

0 1.0000000 1.00000000 1.00000000 1.00000000 

0.1 0.99996668 0.99996668 0.99986667 0.99897927 

0.2 0.99973433 0.99973433 1.00001550 1.00020585 

0.3 0.99911219 0.99911219 0.99924179 0.99976618 

0.4 0.99793933 0.99793933 0.99792438 0.99773922 

0.5 0.99612622 0.99612622 0.99608398 0.99652763 

0.6 0.99372097 0.99372096 0.99372989 0.99527655 

0.7 0.99100463 0.99100452 0.99103146 0.99205860 

0.8 0.98861928 0.98861874 0.98861829 0.98867279 

0.9 0.98773192 0.98772971 0.98773142 0.98753290 

1.0 0.99023588 0.99022826 0.99030418 0.99088174 

Testing points     0.130 0.265 0.481 0.536 0.815 

ChNN o.99992036 0.99854752 0.99729365 0.99525350 0.98866955 
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Figure 5.13: Plot of numerical solutions using 
     Maple 11 and ChNN (Example 5.3.1) 

 

 

 

Example 5.3.2: 
 
 Now let us consider a nonhomogeneous Emden-Fowler equation 

xxxxxyy
x

y 3044
8 245 

 
0x  

with initial conditions 0)0( y , 0)0( y  

The analytical solution for above equation is [79] 

34)( xxxy 
 

We can write the related ChNN trial solution as 

),(),( 2 pxNxpxyt 
 

 

Ten equidistant points in [0, 1] and six weights with respect to first six Chebyshev 

polynomials are considered. Comparison of analytical and Chebyshev neural (ChNN) 

solutions has been cited in Table 5.12. These comparisons are also depicted in Figure 

5.15. Semi logarithmic plot of the error function between analytical and ChNN solutions 

is cited in Figure 5.16. Finally results for some testing points are again shown in Table 

5.13. This testing is done to check whether the converged ChNN can give results directly 

by inputting the points which were not taken during training. 
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Figure 5.14: Semi logarithmic plot of error 

between Maple 11 and ChNN solutions 

(Example 5.3.1) 
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Table 5.12: Comparison between analytical and ChNN solutions (Example 5.3.2) 

 

Input data 

 

Analytical [79] ChNN 

0 0 0 

0.1 -0.00090000 -0.00058976 

0.2 -0.00640000 -0.00699845 

0.3 -0.01890000 -0.01856358 

0.4 -0.03840000 -0.03838897 

0.5 -0.06250000 -0.06318680 

0.6 -0.08640000 -0.08637497 

0.7 -0.10290000 -0.10321710 

0.8 -0.10240000 -0.10219490 

0.9 -0.07290000 -0.07302518 

1.0 0.00000000 0.00001103 

 

 

Table 5.13: ChNN solutions for testing points (Example 5.3.2) 

 

 

 
            Figure 5.15: Plot of analytical and  

           ChNN solutions (Example 5.3.2) 
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Testing 
points   

0.154 0.328 0.561 0.732 0.940 

Analytical  -0.00308981 -0.02371323 -0.07750917 -0.10511580 -0.04983504 

ChNN -0.00299387 -0.02348556 -0.07760552 -0.10620839 -0.04883402 

Figure 5.16: Semi logarithmic plot of 

error between analytical and ChNN 
solutions (Example 5.3.2) 
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Example 5.3.3: 
 
In this example we take a non linear, homogeneous Emden-Fowler equation  

yyyy
x

y ln414
6


     

0x  

subject to   1)0( y , 0)0( y  

The analytical solution is [80] 

2

)( xexy   

Again we may write the ChNN trial solution as 

),(1),( 2 pxNxpxyt 
 

 

 The network is trained for ten equidistant points in the given domain. We have taken six 

weights for ChNN and eight weights for traditional MLP. As in previous cases, the 

analytical and Chebyshev neural solutions are cited in Table 5.14. Comparisons among 

analytical, Chebyshev neural and traditional (MLP) ANN solutions are depicted in Figure 

5.17. Figure 5.18 shows semi logarithmic plot of the error function (between analytical 

and ChNN solutions). ChNN solutions for some testing points are given in Table 5.15.  

 

Table 5.14: Comparison among Analytical, ChNN and traditional ANN solutions (Example 5.3.3)
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Table 5.15: ChNN solutions for testing points (Example 5.3.3) 
 

 

Input data 

 

Analytical   

[80]
 

 

ChNN Traditional ANN 

0 1.00000000 1.00000000 1.00000000 

0.1 0.99004983 0.99004883 0.99014274 

0.2 0.96078943 0.96077941 0.96021042 

0.3 0.91393118 0.91393017 0.91302963 

0.4 0.85214378 0.85224279 0.85376495 

0.5 0.77880078 0.77870077 0.77644671 

0.6 0.69767632 0.69767719 0.69755681 

0.7 0.61262639 0.61272838 0.61264315 

0.8 0.52729242 0.52729340 0.52752822 

0.9 0.44485806 0.44490806 0.44502071 

1.0 0.36787944 0.36782729 0.36747724 

Testing  points   0.173 0.281 0.467 0.650 0.872 

Analytical  0.97051443 0.92407596 0.80405387 0.65540625 0.46748687 

ChNN 0.97049714 0.92427695 0.80379876 0.65580726 0.46729674 
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The CPU time of computation for the proposed ChNN model is 7,551.490 sec. and for 

traditional ANN (MLP) is 9,102.269 sec. 

 

 

Example 5.3.4: 
 
Finally we consider a nonlinear Emden-Fowler equation  

02
3 22  yxy
x

y  

with initial conditions 1)0( y , 0)0( y  

The ChNN trial solution, in this case, is represented as 

),(1),( 2 pxNxpxyt   

 

Again the network is trained with ten equidistant points. Table 5.16 incorporates the 

comparison among solutions obtained by Maple 11, Differential Transformation Method 

(DTM) for n=10 [88], and present ChNN. Figure 5.19 shows comparison between 

numerical solutions by Maple 11 and ChNN. Finally, the semi logarithmic plot of the 

error (between Maple 11 and ChNN solutions) is cited in Figure 5.20. 
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Figure 5.18: Semi logarithmic plot of error 

between analytical and ChNN solutions 

(Example 5.3.3) 

Figure 5.17: Plot of analytical and 
ChNN solutions (Example 5.3. 3) 
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Table 5.16: Comparison among numerical solutions by Maple 11, DTM for n=10 and ChNN 

(Example 5.3.4) 

 

 

 

 
                Figure 5.19: Plot of Maple 11 and 
                   ChNN solutions (Example 5.3.4) 
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Input data 

 

Maple 11 

[88] 

DTM 

[88] 

ChNN 

0 1.00000000 1.00000000 1.00000000 

0.1 0.99999166 0.99999166 0.99989166 

0.2 0.99986667 0.99986667 0.99896442 

0.3 0.99932527 0.99932527 0.99982523 

0.4 0.99786939 0.99786939 0.99785569 

0.5 0.99480789 0.99480794 0.99422605 

0.6 0.98926958 0.98926998 0.98931189 

0.7 0.98022937 0.98023186 0.98078051 

0.8 0.96655340 0.96656571 0.96611140 

0.9 0.94706857 0.94711861 0.94708231 

1.0 0.92065853 0.92083333 0.92071830 

Figure 5.20: Semi logarithmic plot of error 
between Maple 11 and ChNN solutions 

(Example 5.3. 4) 
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5.4    Conclusion 

 

Chebyshev Neural Network (ChNN) based model has been developed for solving singular 

initial value problems of second order ordinary differential equations. Variety of Lane-

Emden and Emden-Fowler equations are considered for validation of the developed 

model. Here, the singularity at x=0 is handled by ChNN model. Time of computation 

(CPU time) for our proposed ChNN model is found to be less than the traditional (MLP) 

ANN model. ChNN results are compared with analytical and other numerical methods. It 

may be seen that the proposed ChNN model is computationally efficient and straight 

forward.
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Chapter 6 

Legendre Functional Link Neural 

Network for Solving ODEs 
 

 

This chapter implemented a single layer Legendre polynomial based Functional Link 

Artificial Neural Network called Legendre Neural Network (LeNN) to solve ODEs. The 

Legendre Neural Network (LeNN) has been introduced by Yang and Tseng [56] for 

function approximation. Nonlinear singular Initial Value Problems (IVPs), Boundary 

Value Problem (BVP) and system of coupled first order ordinary differential equations 

are solved by the proposed approach to show the reliability of the method. Initial weights 

of the single layer LeNN model are taken as random. Some of the advantages of the new 

single layer LeNN based model for solving differential equations are as follows:* 

 

 It is a single layer neural network, so number of parameters is less than MLP; 

 Simple implementation and easy computation; 

 The hidden layers are removed; 

 The back propagation algorithm is unsupervised; 

 No optimization technique is used. 

 

6.1   Legendre Neural Network (LeNN) Model 

 

This section introduces structure of single layer LeNN model. LeNN formulations for 

ODEs, learning algorithm and computation of gradient have been explained. 

 

 

*Contents of this chapter have been published in the following Journal/conference: 
 

1. Applied Soft Computing, 43, 2016; 

2. Third International Symposium on Women computing and Informatics (WCI-2015), Published 

in Association for Computing (ACM) Machinery Proceedings, 678-683, 2015. 
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6.1.1   Structure of LeNN Model 

 

Figure 6.1 depicts the structure of single layer LeNN, which consists of single input node, 

one output layer (having one node) and a functional expansion block based on Legendre 

polynomials. The hidden layer is eliminated by transforming the input pattern to a higher 

dimensional space using these polynomials. Legendre polynomials are denoted by )(uLn , 

here n is the order and -1 < u< 1 is the argument of the polynomial. Which constitute a set 

of orthogonal polynomials obtained as a solution of Legendre differential equation. 

The first few Legendre polynomials are [59] 

 

)13(
2

1
)(

)(

1)(

2

2

1

0







uuL

uuL

uL

          (6.1) 

 

The higher order Legendre polynomials may be generated by the following well known 

recursive formula 

 )()()12(
1

1
)( 11 unLuuLn

n
uL nnn  




.       (6.2)       

We have considered input vector ),...,,( 21 hxxxx   of dimension h.The enhanced pattern 

is obtained by using the Legendre polynomials  

 

)](),...,(),(),(),(

);(),...,(),(),(),();(),...,(),(),(),([

3210

223222120113121110

hnhhhh

nn

xLxLxLxLxL

xLxLxLxLxLxLxLxLxLxL

   

(6.3)

 

 

Here h input data is expanded to n dimensional enhanced Legendre polynomials. 

 

6.1.2   Formulation and Learning Algorithm of Proposed LeNN Model 

 

General formulation of ordinary differential equation using ANN is discussed in Sec. 

2.2.1. 

The LeNN trial solution for ODEs may be expressed as 

 

 

)),(,()(),( pxNxFxApxyt                     (6.4) 
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Figure 6.1: Structure of single layer LeNN model 

 
 
where the first term )(xA  satisfies initial/boundary conditions. The second term viz. 

)),(,( pxNxF  contains single output ),( pxN  of LeNN model with one input node x 

(having h number of data) and adjustable parameters p. 

 

Here  

zz
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ee

ee
zpxN




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 )tanh(),(       (6.5) 

and 

)(1

1

xLwz j

m

j

j 




 

mj ,...,2,1      (6.6) 

 

where x is the input data, )(1 xL j
 and jw  for },...3,2,1{ mj  denote the expanded input 

data and the weight vectors respectively of the LeNN. The nonlinear tangent hyperbolic 

tanh (.) function is considered as activation function. 

Unsupervised error back propagation learning algorithm is used for updating the 

network parameters (weights) of LeNN. As such, the gradient of an error function with 

respect to the parameters (weights) p is determined. The weights are initialized randomly 

and then the weights are updated as follows 

 

)(0 xL  

)(2 xL  

)(3 xL  

)(4 xL  
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
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),( pxN  

1w  

4w  

tanh (.) 

 

 
  

)(1 xL  



 

 

Legendre Functional Link Neural Network  

Chapter 6                                                                                                   for Solving ODEs 

 

103 

 




















k

j

k

j

k

j

k

j

k

j
w

pxE
wwww

),(1 
     

(6.7)
 

 

where  is the learning parameter between 0 and 1, k is iteration step which is used to 

update the weights as usual in ANN and ),( pxE is the error function. 

In this investigation, our purpose is to solve nonlinear second order initial as well as 

boundary value problems and system of ODEs. In particular, formulation of second order 

IVP is given in Sec 2.2.2 (Eq. 2.18 and error function in Eq. 2.21), second order BVP in 

Sec. 2.2.3 (Eq. 2.25) and for the system of first order ODEs in Sec. 2.2.4 (Eq. 2.35). One 

may note that computation of gradient of LeNN is different from multi layer ANN. 

Gradient computation for LeNN is incorporated below. 

 

6.1.3   Computation of Gradient for LeNN Model 

 

The error computation involves both output and derivative of the network output with 

respect to the corresponding input. For minimizing the error function ),( pxE  we 

differentiate ),( pxE  with respect to the network parameters. Thus the gradient of 

network output with respect to input is computed as below. 

 

The derivatives of pxN ,( ) with respect to input x  is expressed as 
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(6.8)

 

 

Simplifying, Eq. (6.8) we have 
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Similarly, we can compute the second derivative of  N(x,p)  as 
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After simplifying the above we get 

 

 

 








































































































































































m

j

jjxLwxLw

xLwxLw

jjxLwxLw

xLwxLw

xLwxLw

xLwxLw

xLw
ee

ee

xLw
ee

ee

ee

ee

dx

Nd

jjjj

jjjj

jjjj

jjjj

jjjj

jjjj

1

1

2

))(())((

))(())((

2

1))(())((

))(())((
3

))(())((

))(())((

2

2

)(1

)(22

11

11

11

11

11

11

(6.11)

 

 

where ,jw )(1 xL j
  and )(1 xL j

 denote weights of network, first and second derivatives 

of  Legendre polynomials respectively. 

Above derivatives may now be substituted in Eq. 6.7 to modify the weights. 

 

Next, we have included learning algorithm and gradient computation of traditional Multi 

Layer Perceptron (MLP) for the sake of completeness. 

 

6.2   Learning Algorithm and Gradient Computation for 

        Multi Layer ANN 

 

In this chapter, we have considered seven nodes for the hidden layer (in MLP), one input 

node x having h number of data and one output node. 

Formulations and learning algorithm of the above problems using multi layer ANN 

are discussed in Secs. 2.2.2, 2.2.3 and 2.2.4. 

In the similar way  as discussed in Sec. 2.2.2 we may use unsupervised error back 

propagation algorithm for updating the network parameters (weights and biases) from 

input layer to hidden and from hidden to output layer (Eqs. 2.9 to 2.12 ). Gradient 

computation for multi layer ANN is described in Sec. 2.2.5 (Eqs 2.40 to 2.49). 
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6.3   Numerical Examples 

 

In this section, various example problems have been considered viz. nonlinear singular 

initial value problem (Example 6.3.1), a boundary value problem (Example 6.3.2) and 

two systems of coupled first order ordinary differential equations (Examples 6.3.3 and 

6.3.4). It is worth mentioning that MATLAB code has been written for the present LeNN 

model and results are computed for various example problems. 

 

Example 6.3.1: 
 
Let us take a nonlinear singular initial value problem of Lane-Emden equation [80] 

0)2(4
2

2
2

2



y

y ee
dx

dy

xdx

yd

 

with initial conditions  0)0( y , 0)0( y  

The LeNN trial solution is 

),(),( 2 pxNxpxyt   

 

Ten equidistant points in [0, 1] and five weights with respect to first five Legendre 

polynomials are considered. Comparison among analytical, Legendre neural (LeNN) and 

multi layer ANN (MLP) results have been shown in Table 6.1. These comparisons are 

also depicted in Figure 6.2. Plot of the error function between analytical and LeNN results 

is cited in Figure 6.3. Finally, results for some testing points are shown in Table 6.2.  

 

Table 6.1:  Comparison among analytical, LeNN and MLP results (Example 6.3.1) 

 

 

 

 

 

 

 

 

 

 

 

Input data Analytical [80] LeNN MLP 

0.0000 0.0000 0.0000 0.0000 

0.1000 -0.0199 -0.0195 -0.0191 

0.2000 -0.0784 -0.0785 -0.0778 

0.3000 -0.1724 -0.1725 -0.1782 

0.4000 -0.2968 -0.2965 -0.3000 

0.5000 -0.4463 -0.4468 -0.4421 

0.6000 -0.6150 -0.6135 -0.6145 

0.7000 -0.7976 -0.7975 -0.7990 

0.8000 -0.9894 -0.9896 -0.9905 

0.9000 -1.1867 -1.1869 -1.1839 

1.0000 -1.3863 -1.3861 -1.3857 
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Figure 6.2: Plot of analytical and LeNN results 

                   (Example 6.3.1) 

 

 

Table 6.2: Analytical and LeNN results for testing points (Example 6.3.1)
 

 

 

 

 

 

Example 6.3. 2: 
 
We consider now a nonlinear boundary value problem [128]
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1 23
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with boundary conditions  1)1( y , 
3

4
)2( y  

The related LeNN trial solution is written as 
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The network has been trained for ten equidistant points in the domain [1, 2] with first five 

Legendre polynomials. Table 6.3 shows comparison among analytical, LeNN and MLP 

results. Comparison between analytical and LeNN results are also depicted in Figure 6.4. 

Figure 6.5 shows the error (between analytical and LeNN). Similar to the previous 
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Testing points 0.2040 0.4863 0.5191 0.7066 0.9837 

Analytical [80] -0.0815 -0.4245 -0.4772 -0.8100 -1.3537 

LeNN -0.0820 -0.4244 -0.4774 -0.8104 -1.3562 

Figure 6.3: Error plot between analytical and 

LeNN results (Example 6.3.1) 
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example, the converged LeNN is used then to have the results for some testing points. As 

such Table 6.4 incorporates corresponding results directly by using the converged 

weights. 
  

Table 6.3: Comparison among analytical, LeNN and MLP results (Example 6.3.2) 

 
 

 

 

 

 

 

 

 

 

 

 

 
          Figure 6.4: Plot of analytical and 

               LeNN results (Example 6.3. 2) 

 

 

Table 6.4:  Analytical, LeNN and MLP results for testing points (Example 6.3.2) 
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Input data Analytical LeNN MLP 

1.0000 1.0000 1.0000 1.0000 

1.1000 1.0476 1.0475 1.0471 

1.2000 1.0909 1.0919 1.0900 

1.3000 1.1304 1.1291 1.1310 

1.4000 1.1667 1.1663 1.1676 

1.5000 1.2000 1.2001 1.1943 

1.6000 1.2308 1.2302 1.2315 

1.7000 1.2593 1.2590 1.2602 

1.8000 1.2857 1.2858 1.2874 

1.9000 1.3103 1.3100 1.3119 

2.0000 1.3333 1.3333 1.3340 

Testing points 1.1320 1.3671 1.5980 1.8021 1.9540 

Analytical 1.0619 1.1551 1.2302 1.2862 1.3230 

LeNN 1.0620 1.1554 1.2300 1.2859 1.3231 

       MLP 1.0625 1.1568 1.2289 1.2831 1.3216 

Figure 6.5: Error plot between analytical 
and LeNN results (Example 6.3.2) 
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Example 6.3.3: 
 
We take a system of coupled first order ordinary differential equations [43] 

 

))(sin1()cos( 22

2

2

1
1 xxyyx

dx

dy
  

21

22 )sin()1(2 yyxxx
dx

dy


   

]2,0[x  

 

with initial conditions 0)0(1 y  and 1)0(2 y  

In this case, the LeNN trial solutions are  

 

),(1)(

),()(

22

11

2

1

pxxNxy

pxxNxy

t

t




 

 

Twenty equidistant points in [0, 2] and five weights with respect to first five Legendre 

polynomials are considered. Comparison among analytical  )(),( 21 xyxy , Legendre neural

 )(),( 21
xyxy tt  

and MLP results are given in Table 6.5. Analytical and LeNN results are 

compared in Figure 6.6 and the error plots are depicted in Figure 6.7.  

 

Table 6.5: Comparison of analytical, LeNN and MLP results (Example 6.3.3) 
 

Input 

data 

Analytical 

[43]
 
)(1 xy  

LeNN 
)(

1
xyt

 
MLP 

)(
1

xyt
 

Analytical 

[43] 

)(2 xy  

LeNN 
)(

2
xyt

 
MLP 

)(
2

xyt
 

0 0 0 0.0001 1.0000 1.0000 1.0000 

0.1000 0.0998 0.0995 0.1019 1.0100 0.9862 1.0030 

0.2000 0.1987 0.1856 0.2027 1.0400 1.0397 1.0460 

0.3000 0.2955 0.2970 0.2998 1.0900 1.0908 1.0973 

0.4000 0.3894 0.3892 0.3908 1.1600 1.1603 1.1624 

0.5000 0.4794 0.4793 0.4814 1.2500 1.2500 1.2513 

0.6000 0.5646 0.5679 0.5689 1.3600 1.3687 1.3628 

0.7000 0.6442 0.6422 0.6486 1.4900 1.4894 1.4921 

0.8000 0.7174 0.7152 0.7191 1.6400 1.6415 1.6425 

0.9000 0.7833 0.7833 0.7864 1.8100 1.8106 1.8056 

1.0000 0.8415 0.8391 0.8312 2.0000 1.9992 2.0046 

1.1000 0.8912 0.8919 0.8897 2.2100 2.2084 2.2117 

1.2000 0.9320 0.9327 0.9329 2.4400 2.4418 2.4383 

1.3000 0.9636 0.9633 0.9642 2.6900 2.6932 2.6969 

1.4000 0.9854 0.9857 0.9896 2.9600 2.9689 2.9640 

1.5000 0.9975 0.9974 0.9949 3.2500 3.2498 2.2542 
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Figure 6.6: Plot of analytical and LeNN results (Example 6.3.3) 

 

 
Figure 6.7: Error plots between analytical and LeNN results (Example 6.3.3) 
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Accuracy of the second LeNN y
t2

 results

1.6000 0.9996 0.9962 0.9960 3.5600 3.5705 3.5679 

1.7000 0.9917 0.9911 0.9907 3.8900 3.8911 3.8970 

1.8000 0.9738 0.9800 0.9810 4.2400 4.2402 4.2468 

1.9000 0.9463 0.9464 0.9470 4.6100 4.6129 4.6209 

2.0000 0.9093 0.9096 0.9110 5.0000 4.9995 5.0012 
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Example 6.3.4: 
 
In this Example, system of coupled first order ordinary differential equations is taken 

 

)sin(
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
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]2,0[x  

 

subject to   0)0(1 y  and 1)0(2 y  

 Analytical solutions for the above may be obtained as 
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Corresponding LeNN trial solutions are  

),(1)(

),()(

22

11

2

1

pxxNxy

pxxNxy

t

t




 

 

The network is trained here for twenty equidistant points in the given domain.  As in 

previous cases, the analytical, LeNN and MLP results are shown in Table 6.6. 

Comparisons between analytical  )(),( 21 xyxy and LeNN  )(),( 21
xyxy tt

 results are 

depicted in Figure 6.8 and are found to be in excellent agreement.  Plot of the error 

function is cited in Figure 6.9. Lastly, LeNN solutions for some testing points are given in 

Table 6.7.  

Table 6.6: Comparison of analytical, LeNN and MLP results (Example 6.3.4) 

Input data  Analytical 

)(1 xy  

LeNN 
)(

1
xyt

 
MLP 

)(
1

xyt
 

Analytical  

)(2 xy  

LeNN 
)(

2
xyt

 
MLP 

)(
2

xyt
 

0 0 0 0 1.0000 1.0000 1.0000 

0.1000 0.0903 0.0907 0.0899 1.1052 1.1063 1.1045 

0.2000 0.1627 0.1624 0.1667 1.2214 1.2219 1.2209 

0.3000 0.2189 0.2199 0.2163 1.3499 1.3505 1.3482 

0.4000 0.2610 0.2609 0.2625 1.4918 1.5002 1.4999 

0.5000 0.2908 0.2893 0.2900 1.6487 1.6477 1.6454 

0.6000 0.3099 0.3088 0.3111 1.8221 1.8224 1.8209 
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Table 6.7: Analytical, LeNN results for testing points (Example 6.3.4) 

 

 
 

Figure 6.8: Plot of analytical and LeNN results (Example 6.3.4) 
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Analytical y
1

LeNN y
t1

Analytical y
2

LeNN y
t2

0.7000 0.3199 0.3197 0.3205 2.0138 2.0158 2.0183 

0.8000 0.3223 0.3225 0.3234 2.2255 2.2246 2.2217 

0.9000 0.3185 0.3185 0.3165 2.4596 2.4594 2.4610 

1.0000 0.3096 0.3093 0.3077 2.7183 2.7149 2.7205 

1.1000 0.2967 0.2960 0.2969 3.0042 3.0043 3.0031 

1.2000 0.2807 0.2802 0.2816 3.3201 3.3197 3.3211 

1.3000 0.2626 0.2632 0.2644 3.6693 3.6693 3.6704 

1.4000 0.2430 0.2431 0.2458 4.0552 4.0549 4.0535 

1.5000 0.2226 0.2229 0.2213 4.4817 4.4819 4.4822 

1.6000 0.2018 0.2017 0.2022 4.9530 4.9561 4.9557 

1.7000 0.1812 0.1818 0.1789 5.4739 5.4740 5.4781 

1.8000 0.1610 0.1619 0.1605 6.0496 6.0500 6.0510 

1.9000 0.1415 0.1416 0.1421 6.6859 6.6900 6.6823 

2.0000 0.1231 0.1230 0.1226 7.3891 7.3889 7.3857 

Testing points   0.3894 0.7120 0.9030 1.2682 1.5870 1.8971 

Analytical y1  0.2572 0.3206 0.3183 0.2686 0.2045 0.1421 

LeNN yt1 0.2569 0.3210 0.3180 0.2689 0.2045 0.1420 

Analytical y2  1.4761 2.0381 2.4670 3.5544 4.8891 6.6665 

LeNN yt2 1.4760 2.0401 2.4672 3.5542 4.8894 6.6661 
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Figure 6.9: Error plots between analytical and LeNN results (Example 6.3.4) 

 

The CPU time of computation for the proposed LeNN model and traditional neural 

network (MLP) are incorporated in Table 6.8. As such we may see that LeNN takes less 

time of computation than traditional MLP. 

 

Table 6.8: CPU time of computation 
 

CPU time of 

computation 
(in Sec.) 

Example 

6.3.1 

Example 

6.3. 2 

Example 

6.3.3 

Example 

6.3.4 

MLP 11,849.45 8,108,71 11,987.25 12,368.15 

LeNN 9,170.89 7,212,38 10,723.09 10,288.26 

 

 

Next, we have compared different ANN techniques viz. traditional MLP, single layer 

ChNN and LeNN for solving Lane-Emden and Emden-Fowler equations. Homogeneous 

Lane-Emden and Emden-Fowler equation are discussed in Examples 6.3.5 and 6.3.6 

respectively. 

 

Example 6.3.5: 
 
Let us consider second order homogeneous Lane-Emden equation 
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The analytical solution of the above equation is given in [84] as 

2

)( xexy   

As mentioned in Sec. 2.2.2 (Eq. 2.18), we have the trial solution as 

),(1),( 2 pxNxpxyt   

 

The network is trained for ten equidistant points in the given domain [0, 1]. We have 

considered six hidden nodes for MLP and six polynomials (Chebyshev, Legendre) for 

single layer neural network. Table 6.9 shows comparison among analytical [84] 

traditional MLP, ChebyshevNeural Network (ChNN) and Legendre Neural Network 

(LeNN) solutions. Also, comparison among analytical, traditional MLP, ChNN and LeNN 

results are also depicted in Figure 6.10.  

 

Table 6.9: Comparison among analytical, MLP, ChNN and LeNN solutions (Example 6.3.5) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Plot of analytical, MLP, ChNN and LeNN solutions (Example 6.3.5) 
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Input data  Analytical [84] MLP ChNN LeNN 

0 1.0000 1.0008 1.0001 0.9999 

0.1 1.0101 1.0201 1.0094 1.0178 

0.2 1.0408 1.0614 1.0421 1.0442 

0.3 1.0942 1.1257 1.0945 1.0936 

0.4 1.1732 1.1363 1.1598 1.1879 

0.5 1.2840 1.2747 1.2866 1.2856 

0.6 1.4333 1.5468 1.4312 1.4481 

0.7 1.6323 1.6197 1.6238 1.6380 

0.8 1.8965 1.9176 1.8924 1.8645 

0.9 2.2479 2.2242 2.2392 2.2435 

1.0 2.7148 2. 7320 2.7148 2.7201 
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In view of the above one may see that the analytical results compared very well with 

ChNN and LeNN results. 

 

Example 6.3.6: 
 
In this example we take a non linear Emden- Fowler equation. 

yyyy
x

y ln414
6


 

0x  

subject to   1)0( y , 0)0( y  

We can write the trial solution as 

),(1),( 2 pxNxpxyt 
 

 

Here we have trained the network for ten equidistant points in [0, 1]. Comparison among 

analytical [80], traditional MLP, single layer ChNN and LeNN results are given in Table 

6.10. Analytical, MLP, ChNN and LeNN results are compared in Figure 6.11.  
 

 

 

Table 6.10: Comparison among analytical, MLP, ChNN and LeNN solutions (Example 6.3.6) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CPU time of computation for Examples 6.3.5 and 6.3.6 are incorporated in Table 

6.11. It may be seen that ChNN and LeNN require less time than MLP. Moreover, 

between ChNN and LeNN, the ChNN requires less CPU time of computation for the 

present problems (Examples 6.3.5 and 6.3.6). 

 

Input data Analytical 

[80] 

MLP 

 

ChNN LeNN 

0 1.0000 1.0000 1.0002 1.0002 

0.1 0.9900 0.9914 0.9901 0.9907 

0.2 0.9608 0.9542 0.9606 0.9602 

0.3 0.9139 0.9196 0.9132 0.9140 

0.4 0.8521 0.8645 0.8523 0.8503 

0.5 0.7788 0.7710 0.7783 0.7754 

0.6 0.6977 0.6955 0.6974 0.6775 

0.7 0.6126 0.6064 0.6116 0.6125 

0.8 0.5273 0.5222 0.5250 0.5304 

0.9 0.4449 0.4471 0.4439 0.4490 

1.0 0.3679 0.3704 0.3649 0.3696 
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Figure 6.11: Plot of analytical, MLP, ChNN and LeNN solutions (Example 6.3.6) 

 

 

          Table 6.11: CPU time of computation 

CPU time of 
computation 

(in Sec.) 

MLP ChNN LeNN 

Example 6.3.5 10,168.41 8,552.15 8,869.19 

Example 6.3.6 9,588.26 7,716.49 8,142.33 

 

 

 

6.4   Conclusion 

 

In this chapter, we have proposed a single layer Legendre Neural Network (LeNN) model 

to solve ordinary differential equations viz. nonlinear singular initial value problem of 

Lane-Emden type, second order boundary value problem and system of coupled first 

order ODEs. Here we have considered single layer Functional Link Artificial Neural 

Network (FLANN) architecture. The dimension of input data is expanded using the set of 

Legendre orthogonal polynomials. Excellent agreement of the results between analytical 

and LeNN show the powerfulness and reliability of the proposed method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

R
e
su

lt
s

 

 

Analytical

MLP

ChNN

LeNN



116 

 

 

Chapter 7 

Simple Orthogonal Polynomial Based 

Functional Link Neural Network Model 

for Solving ODEs 
 

 

Single layer Simple Orthogonal Polynomial based Functional Link Artificial Neural 

Network (FLANN) model has been proposed in this chapter. We have considered Gram-

Schmidt orthogonal polynomial based FLANN model to obtain the numerical solution of 

force-free Duffing equations with various initial conditions for the first time. The present 

method eliminates the hidden layer by expanding the input patterns using Gram-Schmidt 

orthogonal polynomials. Feed forward neural model for single input, single output and 

back propagation algorithm have been used here. Results obtained by Simple Orthogonal 

Polynomial based Neural Network (SOPNN) are compared with the results obtained by 

other numerical methods. Accuracy of SOPNN, errors and phase diagrams are also shown 

graphically.* 

 

7.1   Simple Orthogonal Polynomial based Neural Network 

       (SOPNN) Model 

 

In this head, we have described the architecture of single layer SOPNN model, SOPNN 

formulation for ODEs, learning algorithm and computation of gradient. 

 

 

    *Content of this chapter has been communicated in the following Journal: 
 

1. Applied Mathematical Modeling, (under review), (2014). 
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7.1.1   Architecture of Simple Orthogonal Polynomial based Neural 

          Network (SOPNN) Model 

 

A single layer Simple Orthogonal polynomial based Neural Network model has been 

considered here. Figure 7.1 gives the structure of Simple Orthogonal Polynomial based 

Neural Network (SOPNN) which consists of single input node, single output node and a 

functional expansion block based on Gram-Schmidt orthogonal polynomials. The SOPNN 

model consists of two parts, the first one is numerical transformation part and the second 

part is learning part. In numerical transformation part, each input data of SOPNN model is 

expanded to several terms using Gram-Schmidt orthogonal polynomials. We have 

considered only one input node. For the linearly independent sequence ,...},,,1{ 32 uuu   

first six orthogonal polynomials obtained by Gram-Schmidt process are well known and 

may be written as 
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We have considered input data (time) as T

htttt ),...,,( 21  that is the single node t has h 

number of data.  
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Figure 7.1: Architecture of single layer SOPNN 

 

7.1.2   Formulation and Learning Algorithm of Proposed SOPNN Model 

 

General formulation for ODEs using ANN has been discussed in Sec. 2.2.1. 

The SOPNN trial solution ),( ptx for ODEs with input t and parameters p may be 

expressed as
 

)),(,()(),( ptNtFtAptx             
(7.2) 

 
 The first term )(tA  satisfies only initial/boundary conditions, where as the second term 

)),(,( ptNtF contains the single output ),( ptN of SOPNN with input t and adjustable 

parameters (weights) p. The tangent hyperbolic function is considered here as the 

activation function. 

As mentioned above, a single layer SOPNN is considered with one input node and 

single output node ),( ptN is formulated as  

 zz
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 )tanh(),(           (7.3) 

where z a linear combination of expanded input data.  It is written as 
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)(1
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tvz j
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j

j 



             (7.4) 

where t (time) is the input data, )(1 tj  and jv  with },...3,2,1{ mj  denote the expanded 

input data and weight vector respectively of the SOPNN model. 

Let us consider now the formulation for the second order ordinary differential 

equation in particular because our aim is here to solve the Duffing and Van der Pol-

Duffing oscillator equations. 

The targeted differential equation may be written as 

),,(
2

2

dt

dx
xtf
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xd
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 bat ,

        (7.5) 

with initial conditions   Aax )( ,  Aax  )(  

 

In this regard, SOPNN formulation for second initial value problems may be written as 

),()()(),( 2 ptNatatAAptx           (7.6) 

The error function is written as  
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Error back propagation learning principle (unsupervised) has been used for minimizing 

error function and to update the network parameters (weights) of the SOPNN model. The 

weights from input to output layer are updated by taking negative gradient at each 

iteration 
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7.1.3   Gradient Computation for SOPNN 

 

The error computation not only involves the output but also the derivative of the network 

output with respect to its input. So it requires finding out the gradient of the network 

derivatives with respect to its input. 

As such, the derivatives of ptN ,( ) with respect to input t  is written as 
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(7.9) 

 

Similarly, we can find other derivatives as (in Sec. 2.2.5, Eq. 2.44 and Eq. 2.49). Using 

unsupervised training as given in Sec. 2.2.2 (Eq. 2.9) we may minimize the error function 

as per the desired accuracy. 

 

7.2   Duffing Oscillator Equations 

 

Duffing oscillators play a crucial role in applied mathematics, physics and engineering 

problems. The nonlinear Duffing oscillator equations have various engineering 

applications viz. nonlinear vibration of beams and plates [93], magneto-elastic mechanical 

systems [94] and fluid flow induced vibration [95] etc. 

A solution of the above problems has been a recent research topic because most of 

them do not have analytical solutions. So various numerical techniques and perturbation 

methods have been used to handle Duffing oscillator equations [96--101] etc. But our aim 

is to solve these equations using single layer SOPNN method. 

 

Governing equation 
 
The general form of damped Duffing oscillator equation is expressed as 
 

tFxx
dt

dx

dt

xd
 cos3

2

2


  

0      (7.10) 

 

with initial conditions ax )0( , bx  )0(
 

Here   represents the damping coefficient, F and   denote the magnitude of periodic 

force and frequency of the force respectively and  t is the periodic time. 

Eq. (7.10) reduces to unforced damped Duffing oscillator equation when F=0. 

The unforced Van der Pol Duffing oscillator equation may be written as 

0)( 3

2

2

 xx
dt

dx
x

dt

xd
           (7.11) 

subject to  ax )0( , bx  )0(  

where  ,,  and   are arbitrary constants. 
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7.3   Case Studies 

 

This section includes unforced damped Duffing oscillator and Van der Pol-Duffing 

oscillator equations to show the powerfulness of the proposed method. We have taken 

unforced Duffing oscillator equations in Examples 7.3.1 and 7.3.2 respectively. Then an 

unforced Van der Pol-Duffing oscillator is given in Example 7.3.3. 

 

Example 7.3.1:   
 
Let us take a force-free damped Duffing oscillator problem [97] 

with ,5.0 ,25  1.0a and .0b  

Accordingly we have 

025255.0 3

2

2

 xx
dt

dx

dt

xd
 

subject to initial conditions 1.0)0( x ,  .0)0( x  

As discussed above we may write the SOPNN trial solution as 

),(1.0),( 2 ptNtptx   
 
The network has been trained for 50 points in the domain [0, 5] with six weights with 

respect to first six simple orthogonal polynomials. Table 7.1 shows comparison among 

numerical solutions obtained by Modified Differential Transformation Method (MDTM) 

[97] by the Pade approximate of [3/3], real part of MDTM by the Pade approximate of 

[4/4] and SOPNN. Comparison between results by real part of MDTM [97] and present 

SOPNN are depicted in Figure 7. 2. The plot of the error function (MDTM and SOPNN) 

has also been shown in Figure 7.3. The phase plane diagram is cited in Figure 7.4. 
 

 

Table 7.1: Comparison between MDTM and SOPNN results (Example 7.3.1) 

 
Input data 

t  (Time) 

MDTM by the Pade 
approximate of [3/3] 

[97] 

real part of MDTM 
by the Pade 

approximate of 

[4/4] [97] 

 
 

SOPNN 

0 0.0998 0.1000 0.1000 

0.1000 0.0876 0.0853 0.0842 

0.2000 0.0550 0.0511 0.0512 

0.3000 0.0110 0.0064 0.0063 

0.4000 -0.0331 -0.0380 -0.0377 

0.5000 -0.0665 -0.0712 -0.0691 

0.6000 -0.0814 -0.0854 -0.0856 

0.7000 -0.0751 -0.0782 -0.0764 
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0.8000 -0.0502 -0.0528 -0.0530 

0.9000 -0.0136 -0.0161 -0.0173 

1.0000 0.0249 0.0229 0.0224 

1.1000 0.0560 0.0547 0.0539 

1.2000 0.0722 0.0716 0.0713 

1.3000 0.0704 0.0703 0.0704 

1.4000 0.0518 0.0523 0.0519 

1.5000 0.0219 0.0227 0.0215 

1.6000 -0.0115 -0.0110 -0.0109 

1.7000 -0.0399 -0.0406 -0.0394 

1.8000 -0.0567 -0.0589 -0.0574 

1.9000 -0.0582 -0.0620 -0.0624 

2.0000 -0.0449 -0.0501 -0.0489 

2.1000 -0.0207 -0.0268 -0.0262 

2.2000 0.0078 0.0018 -0.0018 

2.3000 0.0336 0.0287 0.0279 

2.4000 0.0503 0.0473 0.0477 

2.5000 0.0543 0.0536 0.0534 

2.6000 0.0452 0.0467 0.0461 

2.7000 0.0260 0.0290 0.0289 

2.8000 0.0017 0.0051 0.0052 

2.9000 -0.0212 -0.0189 -0.0191 

3.0000 -0.0374 -0.0372 -0.0375 

3.1000 -0.0431 -0.0456 -0.0487 

3.2000 -0.0375 -0.0426 -0.0404 

3.3000 -0.0224 -0.0295 -0.0310 

3.4000 -0.0021 -0.0101 -0.0135 

3.5000 0.0182 0.0109 0.0147 

3.6000 0.0335 0.0283 0.0308 

3.7000 0.0404 0.0380 0.0400 

3.8000 0.0374 0.0380 0.0388 

3.9000 0.0259 0.0290 0.0279 

4.0000 0.0090 0.0134 0.0113 

4.1000 -0.0088 -0.0047 -0.0076 

4.2000 -0.0230 -0.0208 -0.0221 

4.3000 -0.0305 -0.0311 -0.0309 

4.4000 -0.0296 -0.0334 -0.0325 

4.5000 -0.0210 -0.0275 -0.0258 

4.6000 -0.0072 -0.0154 -0.0124 

4.7000 0.0082 -0.0001 0.0032 

4.8000 0.0213 0.0145 0.0193 

4.9000 0.0290 0.0248 0.0250 

5.0000 0.0297 0.0287 0.0288 
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Figure 7.2: Plot of MDTM and SOPNN results (Example 7.3.1) 

 
Figure 7.3: Error plot between MDTM and SOPNN results (Example 7.3.1) 
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Figure 7.4: Phase plane plot by SOPNN (Example 7.3.1) 

 

 

Example 7.3.2: 
 
Next, we have taken the damped Duffing oscillator problem  
 
with ,1 ,20 ,2 2.0a  and .2b  

The differential equation may be written as 

0220 3

2

2

 xx
dt

dx

dt

xd

 

subject to 2.0)0( x , .2)0( x  

The SOPNN trial solution, in this case, is represented as 

),(22.0),( 2 ptNttptx   

 

Again the network is trained with 50 equidistant points in the interval [0, 5] with first six 

simple orthogonal polynomials. Table 7.2 incorporates the comparison between solutions 

of the real part of Modified Differential Transformation Method (MDTM) [97] by the 

Pade approximate of [4/4] and SOPNN. Figure 7.5 shows comparison of results between 

[97] and SOPNN. The plot of the error is cited in Figure 7.6. Again Figure 7.7 depicts the 

phase plane diagram. 
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Figure 7.5: Plot of MDTM and SOPNN results (Example 7.3.2) 

 

 

Table 7.2: Comparison between MDTM and SOPNN results (Example 7.3.2) 
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Real part of MDTM by Pade [4/4]

SOPNN

Input data 
t  (Time) 

MDTM 
[97] 

SOPNN 

0 -0.2000 -0.2000 

0.1000 0.0031 0.0034 

0.2000 0.1863 0.1890 

0.3000 0.3170 0.3172 

0.4000 0.3753 0.3745 

0.5000 0.3565 0.3587 

0.6000 0.2714 0.2711 

0.7000 0.1427 0.1400 

0.8000 -0.0010 -0.0014 

0.9000 -0.1307 -0.1299 

1.0000 -0.2234 -0.2250 

1.1000 -0.2648 -0.2639 

1.2000 -0.2519 -0.2510 

1.3000 -0.1923 -0.1930 
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1.4000 -0.1016 -0.1013 

1.5000 -0.0002 -0.0005 

1.6000 0.0916 0.0919 

1.7000 0.1574 0.1570 

1.8000 0.1869 0.1872 

1.9000 0.1781 0.1800 

2.0000 0.1362 0.1360 

2.1000 0.0724 0.0726 

2.2000 0.0007 0.0006 

2.3000 -0.0642 -0.0661 

2.4000 -0.1108 -0.1095 

2.5000 -0.1319 -0.1309 

2.6000 -0.1259 -0.1262 

2.7000 -0.0965 -0.0969 

2.8000 -0.0515 -0.0519 

2.9000 -0.0009 -0.0003 

3.0000 0.0450 0.0456 

3.1000 0.0781 0.0791 

3.2000 0.0931 0.0978 

3.3000 0.0890 0.0894 

3.4000 0.0684 0.0671 

3.5000 0.0367 0.0382 

3.6000 0.0010 0.0021 

3.7000 -0.0315 -0.0338 

3.8000 -0.0550 -0.0579 

3.9000 -0.0657 -0.0666 

4.0000 -0.0629 -0.0610 

4.1000 -0.0484 -0.0501 

4.2000 -0.0261 -0.0285 

4.3000 -0.0009 -0.0005 

4.4000 0.0221 0.0210 

4.5000 0.0387 0.0400 

4.6000 0.0464 0.0472 

4.7000 0.0445 0.0439 

4.8000 0.0343 0.0358 

4.9000 0.0186 0.0190 

5.0000 0.0008 0.0006 
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Figure 7.6: Error plot between MDTM and SOPNN results (Example 7.3.2) 

 

 
Figure 7.7: Phase plane plot by SOPNN (Example 7.3.2) 

 

Example 7.3.3: 
 
In this example an unforcedVan Der Pol-Duffing oscillator equation has been considered 

as [98] 

with 1,
3

1
,3,

3

4
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Here the differential equation is
 

0
3

1
)3

3

4
( 3

2

2

 xx
dt

dx
x

dt

xd

 

with initial conditions 2887.0)0( x , .12.0)0( x  

The related SOPNN trial solution is 

),(12.02887.0),( 2 ptNttptx   

 

In this case, we have considered twenty five points in the interval [0, 10] with first six 

simple orthogonal polynomials. We have compared SOPNN results with New Homotopy 

Perturbation Method (NHPM) results [98] in Table 7.3. NHPM and SOPNN results are 

also compared graphically in Figure 7.8. Finally, Figure 7.9 depicts the plot of error 

between NHPM and SOPNN results. 

 

 
Figure 7.8: Plot of MHPM [98] and SOPNN results (Example 7.3.3) 
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Table 7.3: Comparison between NHPM and SOPNN results (Example 7.3.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input data 

t  (Time)
 

NHPM 

[98]
 

SOPNN 

0 -0.2887 -0.2887
 0.4000 -0.2456 -0.2450 

0.8000 -0.2106 -0.2099 

1.2000 -0.1816 -0.1831 

1.6000 -0.1571 -0.1512 

2.0000 -0.1363 -0.1400 

2.4000 -0.1186 -0.1206 

2.8000 -0.1033 -0.1056 

3.2000 -0.0900 -0.0912 

3.6000 -0.0786 -0.0745 

4.0000 -0.0686 -0.0678 

4.4000 -0.0599 -0.0592 

4.8000 -0.0524 -0.0529 

5.2000 -0.0458 -0.0436 

5.6000 -0.0400 -0.0405 

6.0000 -0.0350 -0.0351 

6.4000 -0.0306 -0.0297 

6.8000 -0.0268 -0.0262 

7.2000 -0.0234 -0.0237 

7.6000 -0.0205 -0.0208 

8.0000 -0.0179 -0.0180 

8.4000 -0.0157 -0.0160 

8.8000 -0.0137 -0.0139 

9.2000 -0.0120 -0.0115 

9.6000 -0.0105 -0.0113 

10.0000 -0.0092 -0.0094 
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Figure 7.9: Error plot between MHPM and SOPNN results (Example 7.3.3) 

 

 

7.4   Conclusion 

 

A single layer Simple Orthogonal Polynomial based Neural Network (SOPNN) has been 

proposed and applied to solve unforced damped Duffing oscillator and Van der Pol- 

Duffing oscillator equations. The hidden layer is eliminated by functional expansion 

block for enhancement of the input patterns using simple orthogonal polynomials. 

Comparison of the proposed SOPNN results with other numerical results shows that the 

present method is convenient and effective for solving nonlinear Duffing oscillator 

problems. 
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Chapter 8 

Hermite Functional Link Neural Network 

Model for Solving ODEs 

 

In this chapter, Hermite polynomial based Functional Link Artificial Neural Network 

(FLANN) named Hermite Neural Network (HeNN) has been proposed for solving the 

Van der Pol-Duffing oscillator equation. The Van der Pol-Duffing oscillator equation is a 

classical nonlinear oscillator which is very useful mathematical model for understanding 

different engineering problems. This equation is widely used to model various physical 

problems viz. electrical circuit, electronics, mechanics etc. [94]. Three mathematical 

example problems and two real life application problems viz. extracting the features of 

early mechanical failure signal and weak signal detection problems are solved using the 

proposed HeNN method. The hidden layer is replaced by expansion block of input pattern 

using Hermit orthogonal polynomials. The single layer HeNN model has some 

advantages such as simpler structure and lower computational complexity due to less 

number of parameters than the traditional neural network model. HeNN approximate 

solutions have been compared with results obtained by other numerical methods.  

Computed results are depicted in term of plots to show the validation of the 

methodology.* 

 

8.1   Hermite Neural Network (HeNN) model 

 

In this section, architecture of single layer HeNN model, its formulation, learning 

algorithm and gradient computation of network output have been introduced. 

 

 

*Content of this chapter has been accepted in following Journal: 
 

1. Neural Computation (Accepted), 2016. 
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8.1.1   Structure of Hermite Neural Network (HeNN) Model 

 

Figure 8.1 depicts the structure of HeNN model which consists of the single input node, 

the single output node and Hermite orthogonal polynomial based functional expansion 

block. HeNN model is a single layer neural model where each input data is expanded to 

several terms using Hermite polynomials. The first three Hemite polynomials may be 

written as  

 

1)(

)(

1)(

2

2

1

0







xxHe

xxHe

xHe

           

(8.1)

 

    

Higher order Hermite polynomials may then be generated by the recursive formula 

  
)()()(1 xeHxxHexHe nnn

        
(8.2) 

We consider input data (time) as 
T

htttt ),...,,( 21  that is the single node t is assumed to 

have h number of data. The architecture of the network with first seven Hermite 

polynomials, single input and output nodes are shown in Figure 8.1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

Figure 8.1:  Architecture of single layer Hermite Neural Network 
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8.1.2   Formulation and Learning Algorithm of Proposed HeNN Model 

 

The HeNN trial solution ),( ptxHe  for the ODEs with parameters (weights) p may be 

expressed as
 

)),(,()(),( ptNtGtAptxHe           (8.3)                                    

 

The first term )(tA does not contain adjustable parameters and satisfies only 

initial/boundary conditions, where as the second term )),(,( ptNtG  contains the single 

output ),( ptN of  HeNN model with input t and adjustable parameters p.  

As such, network output with input t and parameters (weights) p may be computed as  

zz

zz

ee

ee
zptN








 )tanh(),(           (8.4) 

where z  is a linear combination of expanded input data and  is written as 

)(1

1

tHewz j

m

j

j 



            (8.5) 

here t  (time) is the input data, )(1 tHe j  and jw  with },...3,2,1{ mj  denote the expanded 

input data and  the weight vector respectively of the HeNN.   

Our aim is to solve the Van der Pol-Duffing oscillator equation. As such we have 

discussed the formulation of the second order initial value problem of in Eq. 7.5 and 7.6 

and error function in Eq. 7.7 (Chapter 7). 

Unsupervised error back propagation learning principle (in Eqs. 2.9 to 2.12) has 

been used here to update the network parameters (weights) of the Hermite Neural 

Network (HeNN) model and the tangent hyperbolic function tanh(.) is considered as the 

activation function.  

 

8.1.3   Gradient Computation for HeNN 

 

The error computation involves both output and derivative of the output with respect to 

the corresponding input. So it is required to find the gradient of the network derivatives 

with respect to the input. 

 

As such, the derivatives of ptN ,( ) with respect to input t  is written as 
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Similarly, the second derivative of  N(t,p)  is computed as 
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where jw  denote weights and )(),( 11 xeHxeH jj 
 denote first and second derivatives of  

Hermite polynomials. 

 

8.2   The Van der Pol-Duffing Oscillator Equation 

 

The Van der Pol-Duffing oscillator equation is a classical nonlinear oscillator which is a 

very useful mathematical model for understanding different engineering problems. This 

equation is widely used to model various physical problems viz. electrical circuit, 

electronics, mechanics etc. [94]. The Van der Pol oscillator equation was proposed by a 

Dutch scientist Balthazar Van der Pol, which describes triode oscillations in electrical 

circuits. The Van der Pol- Duffing oscillator is a classical example of the self oscillatory 

system and is now considered as the very important model to describe variety of physical 

systems. Also, this equation describes self-sustaining oscillations in which energy is fed 

into small oscillations and removed from large oscillations. The Van der Pol-Duffing 

oscillator equation has been used in various real life problems. Few of them may be 

mentioned here.  Hu and Wen [112] applied the Duffing oscillator for extracting the 

features of early mechanical failure signal.  Zhihong and Shaopu [113] used Van der Pol 

Duffing oscillator equation for weak signal detection. Amplitude and phase of the weak 

signal have been determined by [114] using Duffing oscillator equation. Tamaseviciute et 

al. [115] investigated an extremely simple analogue electrical circuit simulating the two-

well Duffing-Holmes oscillator equation. The weak periodic signals and machinery faults 

have been explained by Li and Qu [116]. The nonlinear Duffing oscillator and Van der 

Pol-Duffing oscillator equations are difficult to solve analytically. In recent years, various 
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types of numerical and perturbation techniques such as Runge-Kutta, homotopy 

perturbation, linearization, variational iteration methods have been used to solve the 

nonlinear equation [103--110] etc. The objective of the present chapter is to propose 

Hemite Neural Network (HeNN) to solve the Van der Pol-Duffing oscillator equations. 

 

Model Equation 

 

The Van der Pol-Duffing oscillator equation is governed by a second order nonlinear 

differential equation 

tFxx
dt

dx
x

dt

xd
 cos)1( 32

2

2

          (8.8) 

 

with initial conditions   ,)0( ax  bx  )0(  

 

where x stands for  displacement,  is the damping parameter, F and   denote the 

excitation amplitude and  frequency of the periodic force respectively and t is the periodic 

time.  is known as phase nonlinearity parameter.  

 

8.3   Numerical Examples and Discussion 

 

In this section, the Van der Pol-Duffing oscillator equation and two application problems 

have been investigated to show the efficiency of the proposed method. Two Van der Pol-

Duffing oscillator equations with force are considered in Examples 8.3.1 and 8.3.2.  A  

Duffing oscillator equation with force is taken in Examples 8.3.3. We have discussed two 

real life application problems viz. (i) a Duffing oscillator equation used for extracting the 

features of early mechanical failure signal and detect the early fault in Example 8.3.4 and 

(ii) the Van der Pol-Duffing oscilator equation applied for weak signal detection in 

Example 8.3.5.  

 

Example 8.3.1: 
 
First, we take the Van der Pol-Duffing oscillator equation [108] as 

txx
dt

dx
x

dt

xd
cos53.0)1(2.0 32

2

2


 

subject to initial conditions 1.0)0( x , 2.0)0( x
 

The HeNN trial solution, in this case, is represented as 
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),(2.01.0),( 2 ptNttptxHe 
 

 

The network has been trained with 250 equidistant points in the domain that is from 0t

to 50t sec. for computing the results. We have considered seven weights with respect to 

first seven Hermite polynomials for the present problem. Here t denotes the periodic time 

and x(t) is the displacement at time t. Comparison between numerical results obtained by 

fourth-order Runge Kutta Method (RKM) and HeNN are depicted in Figure 8.2. The 

phase plane diagram that is plots between )(tx  (displacement) and )(tx (velocity) for 

HeNN and RKM are shown in Figures 8.3 and 8.4. Then results for some testing points 

are shown in Table 8.1. This testing is done to check whether the converged HeNN can 

give results directly by inputting the points which were not taken during training.   

 

 
Figure 8.2: Plot of RKM and HeNN results (Example 8.3.1) 
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   Figure 8.3: Phase plane plot by HeNN 

                     (Example 8.3.1) 

 

 

 

Table 8.1: RKM and HeNN results for testing points (Example 8.3. 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 8.3.2: 
 
The Van der Pol-Duffing oscillator equation is written as [103] 

txx
dt

dx
x

dt

xd
79.0cos5.05.05.0)1(1.0 32

2

2


 

with initial conditions   0)0( x ,  0)0( x . 
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49.7700 1.6881 1.6879 

Figure 8.4:  Phase plane plot by RKM 

                   (Example 8.3.1) 
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HeNN trial solution may be written as 

),(),( 2 ptNtptxHe 
 

In this case, 250 equidistant points from t=0 to t=50sec. and seven weights with respect 

to first seven Hermite polynomials have been considered for present problem. RKM and 

HeNN results are compared in Figure 8.5. Finally, Figures 8.6 and 8.7 show the phase 

plane plots obtained by the methods of HeNN and RKM respectively.  

 

 

 
 

Figure 8.5: Plot of RKM and HeNN results (Example 8.3.2) 
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      Figure 8.6: Phase plane plot by HeNN 
                         (Example 8.3.2)     

 

 

 

Example 8.3.3: 
 
In this Example a Duffing oscillator equation with force is taken as [106] 

txx
dt

xd
2sin2.0)2.0(3.0 322

2

2

  

with initial conditions   15.0)0( x , 0)0( x  

As discussed in Eq. 7.6, the HeNN trial solution is constructed as 

),(15.0),( 2 ptNtptxHe 
 

 

Again the network is trained with 225 equidistant points in the time interval [0, 45] with 

seven first Hermite polynomials. Figure 8.8 shows comparison of numerical results )(tx

among RKM, HeNN and Algebraic method (AGM) [106]. Again Figures 8.9 and 8.10 

depict the phase plane diagram between displacement and velocity using HeNN and RKM 

respectively. From Figure 8.8 one may see that results obtained by RKM and AGM 

exactly agree at all points with HeNN results. 
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Figure 8.7: Phase plane plot by RKM      

(Example 8.3.2) 
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Figure 8.8: Plot of RKM, HeNN and AGM [106] results (Example 8.3.3)
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Figure 8.9: Phase plane plot by HeNN 
(Example 8.3.3) 

 

Figure 8.10: Phase plane plot by RKM 
(Example 8.3.3) 
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Example 8.3.4: 
 
A Duffing oscillator equation used for extracting the features of early mechanical failure 

signal and detects the early fault has been taken [112] 

)(cos3

2

2

tstxx
dt

dx

td

dx
   

subject to  0.1)0( x , 0.1)0( x  

where ,5.0 8275.0  (Amplitude of external exciting periodic force) and 

tts cos0005.0)(   (frequency of  external weak signal). The first term of the right side of 

the above equation is the reference signal and the second term is the signal to be detected. 

  varies from small to big the system varies from small periodic motion to chaotic motion 

and at last, to great periodic motion. 

For the above problem, we may write the HeNN trial solution as  

),(0.10.1),( 2 ptNttptxHe 
 

 
We have considered time t from 0 to 500 sec., step length h=1.0 and seven weights with 

respect to first seven Hermite polynomials. The authors [112] solved the problem by 

Runge Kutta method (RKM) and we used the same method to obtain their solution. The 

time series plots by RKM [112] and HeNN have been shown in Figures 8.11 and 8.12.  

The phase plane plots obtained by HeNN and RKM [112] method for  8275.0  have 

been depicted in Figures 8.13 and 8.14. Similarly, phase plane plots for 828.0   by 

HeNN and RKM [112] are given in Figures 8.15 and 8.16. 

 

Figure 8.11: Time series diagram of RKM [112] (Example 8.3.4) 
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Figure 8.12: Time series diagram of HeNN (Example 8.3.4) 
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Figure 8.13: Phase plane plot by HeNN 
(Example 8.3.4) 

 

Figure 8.14: Phase plane plot by RKM [112] 
(Example 8.3. 4) 
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Example 8.3.5: 
 
Finally, the Van der Pol-Duffing oscillator equation applied for weak signal detection has 

been written as  [113] 

tFxx
dt

dx
x

dt

xd
 cos)1( 32

2

2

  

subject to the  initial conditions 1.0)0( x , 1.0)0( x  

 

with the parameters as 5 , 01.0 , 463.2w and 9.4F  

The HeNN trial solution in this case is  

),(1.01.0),( 2 ptNttptxHe 
 

 

Again the network is trained for total time t=300 Sec. and h=0.5. It may be noted that 

[113] have solved the problem by fourth order Runge Kutta method (RKM). The time 

series plots by RKM [113] and HeNN methods are depicted in Figures 8.17 and 8.18. 

Lastly, the phase plane plots by using the methods of   RKM [113] and HeNN have been 

given in Figures 8.19 and 8.20. 

          It may be noted that the amplitude of force F varies from small to large, the Van der 

Pol-Duffing system varies from the chaos to the periodic state. The results show that the 

orbits maintain the chaotic state. The detected signal can be viewed as a perturbation of 

the main sinusoidal deriving force tF cos . The noise can only affect the local trajectory 

on phase plane diagram without causing any phase transition. 
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Figure 8.16: Phase plane plot by RKM [112]  
(Example 8.3. 4) 

 

Figure 8.15: Phase plane plot by HeNN 
(Example 8.3. 4) 
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Figure 8.17: Time series diagram of RKM [113] (Example 8.3.5) 

 
Figure 8.18: Time series diagram of HeNN (Example 8.3.5) 
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It may be noted that the amplitude F varies from small to large, the Van der Pol Duffing 

system varies from the chaos to the periodic state. Again one may see the excellent 

agreement of results between RKM [113] and present (HeNN) methods for time series 

results (viz. Figures 8.17 and 8.18) and phase plane plots (Figures 8.19 and 8.20). 

 

 

8.4   Conclusion 

 

Single layer Hermite Neural Network (HeNN) architecture has been considered in this 

chapter to handle the Van der Pol- Duffing oscillator equation. The dimension of input 

data is expanded using set of Hermite orthogonal polynomials. Thus, the numbers of 

network parameters of HeNN are less than the traditional ANN model. Obtained results 

have been compared with numerical results by the other methods. Excellent agreement of 

the results between HeNN and other numerical methods shows the effectiveness and 

reliability of the proposed method.  
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Figure 8.19: Phase plane plot by RKM [113] 

(Example 8.3.5) 

 

Figure 8.20: Phase plane plot by HeNN 

(Example 8.3.5) 
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Chapter 9 

Chebyshev Functional Link Neural 

Network Model for Solving 

Partial Differential Equations (PDEs) 

 

 

In this chapter, we mainly focus on the development of a single layer Functional Link 

Artificial Neural Network (FLANN) model for solving partial differential equations 

(PDEs). Numerical solution of elliptic PDEs has been obtained here by applying 

Chebyshev Neural Network (ChNN) model for the first time. Computations become 

efficient because the hidden layer is eliminated by expanding the input pattern by 

Chebyshev polynomials. The results obtained by this method are compared with the 

analytical results and are found to be in good agreement.* 

 

9.1   Chebyshev Neural Network (ChNN) Model for PDEs 

 

In this section, the architecture of single layer ChNN model, its learning algorithm, ChNN 

of formulation for PDEs and computation of gradient have been described. 

 

9.1.1   Architecture of Chebyshev Neural Network 

 

A single layer Chebyshev Neural Network (ChNN) model for PDEs has been considered 

for the present problem.  

 

 

*Content of this chapter has been communicated in following Journal: 

1. Neural Processing Letters, (under review), (2015). 
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Figure 9.1 shows the structure of ChNN consisting of an input layer with two input nodes 

(because of two independent variables), a functional expansion block based on Chebyshev 

polynomials and a single output node. The ChNN model consists of two parts, the first 

one is numerical transformation part and the second part is learning algorithm of ChNN. 

In numerical transformation part, each input data is expanded to several terms using 

Chebyshev polynomials. Thus, the Chebyshev polynomials can be viewed as new input 

vectors. The Chebyshev polynomials are a set of orthogonal polynomials obtained by a 

solution of the Chebyshev differential equation. First, two Chebyshev polynomials are 

known as 

 

  
uuT

uT





)(

1)(

1

0
          (9.1) 

 

The higher order Chebyshev polynomials may be generated by the well known recursive 

formula 

)()(2)( 11 uTuuTuT nnn  
         (9.2) 

 

where )(xT n denotes nth order Chebyshev polynomial and -1<u<1 is the argument of the 

polynomials. Here n dimensional input pattern is expanded to m dimensional enhanced 

Chebyshev polynomials. We consider input pattern as 
2

21 ),( RxxX T  and the nodes 

1x and 2x have h number of data. Then the enhanced pattern is obtained by using 

Chebyshev polynomials as 

),...](),(),(),...;(),(),([ 222120121110 kkkkkk
xTxTxTxTxTxT

,  
hk ,...,2,1    (9.3)

 

 

 The architecture of the network with first four Chebyshev polynomials, single input layer 

(having two nodes) and an output layer (having single node) are shown in Figure 9.1. 

 

9.1.2   Learning Algorithm of Proposed Chebyshev Neural Network 

           (ChNN) for PDEs 

 

In this head, learning algorithm and procedure of applying ChNN in the solution of PDE 

are discussed. 
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Figure 9.1: Structure of single layer Chebyshev Neural Network for PDEs 

 

 

Unsupervised error back propagation algorithm is used for learning and the weights are 

updated by taking negative gradient at each iteration. As such, the gradient of an error 

function with respect to the network parameters (weights) is determined. The nonlinear 

tangent hyperbolic function viz. is considered as the activation function. Weights 

are initialized randomly. 

 

9.1.3   ChNN Formulation for PDEs 

 

We write the trial solution for PDE of Chebyshev neural network (ChNN) with 

parameters p and input vector as
 

 

     (9.4)   
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As mentioned (Sec. 2.3.1), the first term does not contain adjustable parameters 

and satisfies only boundary conditions (Dirichlet, mixed, etc.), where as the second term 

contains  which is the single output of ChNN having input nodes

 with h number of data and adjustable parameters p.  

Here the single layer ChNN is considered with two input nodes and single output 

node  and it may be written as  

 

)tanh(),( zpXN             (9.5)           
 
where z is a weighted sum of  expanded input data and this is expressed as 
 

          (9.6)                                                       

 
where is the input vector,  and  with denoting the 

expanded input data and the weight vector respectively of the Chebyshev Neural 

Network. 

Formulation of two dimensional problems with Dirichlet boundary conditions and 

two dimensional problems with mixed (Dirichlet on part of the boundary and Neumann 

elsewhere) boundary conditions have discussed in Sec. 2.3.2  (in particular  Eq. 2.55 and 

2.59). Formulation for error function is given in Eq. 2.61 of Sec. 2.3.2. It may be noted 

that computation of gradient of ChNN model is different from traditional multi layer 

ANN. 

For minimizing the error function that is to update the network parameters 

(weights), we differentiate with respect to the parameters. Thus the gradient of 

network output with respect to their inputs is computed below. 

 

9.1.4   Computation of Gradient for ChNN 

 

The error computation involves both output and derivatives of the network output with 

respect to the corresponding inputs. So it is required to find the gradient of the network 

derivatives with respect to the inputs. 

 

As such, the derivatives of ) with respect to input  is written as  
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       (9.7)

 

Similarly we may compute the second derivative of  N(x,p)  as 

 

 

(9.8) 

 

 

Let 
X
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N






),(
 denote the derivative of the network output with respect to the input 

X. The derivative of ),( pXN  and N  with respect to other parameters (weights) may be 

formulated as 
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After getting all the derivatives, we can find out the gradient of error. Using unsupervised 

error back propagation learning algorithm, we may minimize the error function as per the 

desired accuracy. 

 

9.2   Algorithm of ChNN Model 

 

Following are the steps to train the ChNN network 
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               and consider  an error function  e>0. 

 

Step 2:  Generate randomly selected weight vectors   

            where j  is the  number of functional elements of ChNN model. 

 

Step 3:  Make ChNN functional block of input data as 

   ,    . 

Step 4:  Compute       
 . 

Step 5:   Calculate the output of the ChNN model as )tanh(),( zpXN   

              and calculate the error function. 

 

Step 6:   Update the weight vectors using unsupervised back propagation algorithm 

        
 

Step 7:   If the error function , (or any desired value required by the user) then go  

              to step 8 otherwise go to step 2. 

 

Step 8:  Print the output of the ChNN model. After completing the training with an 

acceptable accuracy, the final weights are stored and then the converged 

network may be used for testing or new solution. 

 

9.3   Numerical Exmples 

 

In this section, we have considered various types of elliptic partial differential equations 

in Examples 9.3.1, 9.3.2 and 9.3.3 to show the powerfulness of the proposed method. 

 

Example 9.3.1: 
 
In this example, a two dimensional elliptic PDE is taken [136] 
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on the rectangle ,  

subject to the Dirichlet boundary conditions 

, , 

,  . 

The ChNN trial solution, in this case is represented as 

 

 

This problem is solved using single layer ChNN model on the domain [0,1]×[0,1]. We 

have considered mesh of 100 points obtained by ten equidistant points (along x1, x2) in the 

given domain [0,1]×[0,1] with first four chebyshev polynomials. Figures 9.2 and 9.3 show 

the analytical and ChNN results. The error plot between analytical and ChNN results is 

cited in Figure 9.4. Table 9.1 incorporates corresponding results for some testing points. 

This testing is done to check the converged weights of ChNN model can give results 

directly by inputting the points which were not taken during training.  

 

 

 

Figure 9.2: Plot of analytical results (Example 9.3.1) 
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Figure 9.3: Plot of ChNN results (Example 9.3.1) 

 

 
Figure 9.4: Plot of error between analytical and ChNN results (Example 9.3.1) 
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Table 9.1: Analytical and ChNN results for testing points (Example 9.3.1) 

 

 

 

 

 

 

 

 

 

 

 

 

Example 9.3.2: 
 
Next a two dimensional elliptic PDE with mixed boundary conditions is considered [43] 

 

,  

 

with mixed boundary conditions 

, , 

,   

As mentioned above, the ChNN trial solution is formulated as 

 

 

where )(XB may be obtained from Eq. (2.60) 
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The network is trained for ten equidistant points (in both variables 
1x and

2x ) in the given 

domain ]1,0[]1,0[   with first four chebyshev polynomials. As in the previous case, the 

analytical and ChNN results are cited in Figures 9.5 and 9.6. Figure 9.7 shows the plot of 

the error function (between analytical and ChNN results). Finally, Table 9.2 incorporates 

corresponding results directly by using the converged weights.  

 

 

Figure 9.5: Plot of analytical results (Example 9.3.2) 

 

 
Figure 9.6: Plot of ChNN results (Example 9.3.2) 
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Figure 9.7: Plot of error between analytical and ChNN results (Example 9.3.2) 

 

 

Table 9.2: Analytical and ChNN results for testing points (Example 9.3.2) 
 

 

 

 

 

 

 

 

 

 

One may see that in both the example problems analytical results excellently agree with 

ChNN results. 
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Example 9.3.3: 
 
Finally, we will consider an elliptic PDE with Dirichlet boundary conditions   
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Here, the ChNN trial solution is 
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Again, we have trained the network for a mesh of 100 points obtained by considering ten 

points (
1x and

2x ) in the given domain ]1,0[]1,0[  for computing the results. The analytical 

and ChNN results are shown in Figures 9.8 and 9.9 respectively. Lastly, Figure 9.10 

depicts the error plot between analytical and ChNN results. 

 

 
Figure 9.8: Plot of analytical results (Example 9.3.3) 
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Figure 9.9: Plot of ChNN results (Example 9.3.3) 

 

 

 

Figure 9.10:  Plot of error between analytical and ChNN results (Example 9.3.3) 

 

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x
1

x
2

 R
es

u
lt

s

ChNN results

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

-2

-1.5

-1

-0.5

0

0.5

1

x 10
-3

 

x
1

x
2

 

E
r
r
r
o

r

-15

-10

-5

0

5

x 10
-4



 

 

 

Chebyshev Functional Link Neural Network Model for Solving 

Chapter 9                                                                   Partial Differential Equations (PDEs) 

 

159 

 

One may see that in all the example problems analytical results excellently agree with 

ChNN results. 
 

 

9.4   Conclusion 

 

Finally, Chebyshev Neural Network (ChNN) based model has been developed to solve 

partial differential equations. Here elliptic PDEs are considered for validation of the 

model. The dimension of input data is expanded using Chebyshev polynomials. Thus the 

numbers of parameters of ChNN are less than the traditional multi layer neural network. 

Feed forward neural model with unsupervised error back propagation algorithm is used to 

minimize the error function. Example problems show that the proposed ChNN method 

may easily be implemented to solve various PDEs.  
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Chapter 10 

Conclusion 

 

This chapter includes overall conclusions of the present study and suggestions for future 

work. It is already mentioned that new multilayer ANN models viz. RBNN and single 

layer FLANN viz. ChNN, LeNN, SOPNN and HeNN have been developed to handle 

various ODEs. Finally, single layer ChNN model has been extended for solving PDEs viz. 

elliptic type. 

 

As such, conclusions are drawn below with respect to various proposed methods and 

application problems.  

 

 In this thesis, initially traditional multi layer ANN model has been used to handle 

various linear and nonlinear ODEs (Chapter 3). Here, simple feed forward neural 

network using a single input and single output neuron with a single hidden layer of 

processing elements to approximate the solution of ODEs has been considered. 

Unsupervised training method is useful for formulating the differential equations 

when the target is unknown. It has been observed that neural output depends on the 

number of inputs that are to be trained as well as on the number of hidden nodes. In 

traditional artificial neural network the parameters (weights/biases) are usually taken 

as arbitrary (random) and the number of nodes in hidden layer are considered by trial 

and error method. 

 

 Next, Regression Based Neural Network (RBNN) model has been developed for 

solving ordinary differential equations (Chapter 4). Validation of the proposed method 

has been examined by solving  a first order, a second order undamped free vibration 

spring mass system problem, a second order boundary value problem and a fourth order 

ordinary differential equations. Here, the numbers of nodes in hidden layer are fixed 

according to the considered degree of polynomial in regression fitting. The coefficients 
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involved are taken as initial weights to start with the neural training. Combination of 

arbitrary and regression based weights have been considered here for different 

simulation studies.   

 

 Further, we have developed a single layer Chebyshev Functional Link Artificial 

Neural Network (FLANN) where no hidden layer is required for the solution. The 

dimension of the input pattern is enhanced by using Chebyshev polynomials. Lane-

Emden and Emden-Fowler equations are solved in Chapter 5. The computations 

become efficient because the procedure only requires input and output layer. Feed 

forward neural model and unsupervised version of error back propagation are used 

for minimizing error function and to update the network parameters without using 

optimization techniques. The initial weights from input to output layer are considered 

as random. We have compared existing results with the approximate results obtained 

by proposed ChNN method. Their good agreements and less CPU time in 

computations (than the traditional Artificial Neural Network (ANN)) show the 

efficiency of the present methodology. 

 

 A new method based on single layer Legendre Neural Network (LeNN) model has 

been developed then to solve initial and boundary value problems and system of first 

order ODEs (Chapter 6). In LeNN, the hidden layer is replaced by a functional 

expansion block for enhancement of the input patterns using Legendre polynomials. 

 

 In view of the success of the ChNN and LeNN (where we use Chebyshev and 

Legendre polynomials) models, next we use simple orthogonal polynomials generated 

by Gram-Schmidt procedure. As such, simple orthogonal polynomial based single 

layer FLANN model named as Simple Orthogonal Polynomial based Neural Network 

(SOPNN) has been proposed. The newly developed model is used to solve unforced 

Duffing oscillator problems with damping (Chapter 7). Further, single layer Hermite 

Neural Network (HeNN) model is developed to solve the Van der Pol-Duffing 

oscillator equation (Chapter 8).  

 

 Finally, Chebyshev Neural Network (ChNN) based model has been developed and 

the same has been applied to solve partial differential equations. Again the 

computations become efficient because the hidden layer is eliminated by expanding 

the input pattern by Chebyshev polynomials.  
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Although we have developed different ANN models in a systematic way, but we do not 

claim that the proposed methods are most efficient. As such, there are few limitations on 

the proposed models and we may identify various scopes of improvement. Accordingly, 

these limitations and scopes may open new vistas for future research which are discussed 

next.  

 

 

Scope for Further Research 
 

 

 Higher dimension PDEs may be solved using the developed ANN models. 

 

 New Single layer FLANN using another type of orthogonal polynomials may be 

targeted to handle linear/nonlinear ODEs and PDEs. 

 

 The procedure may be extended to develop methods such as ANN finite element, 

ANN finite difference, ANN boundary element method etc. 

 

 In RBNN what should be the maximum degree of polynomial in regression fitting 

that may give the best result. 

 

 Another problem was about choosing the number of polynomials to be used in the 

FLNN.  

 

 Combining RBNN and FLNN models and to see whether the methods become more 

powerful and efficient.  

 

 Other functional link neural networks may be targeted to enhance the training. 

 

 ANN methods may also be developed to handle stochastic, fuzzy and another type 

of differential equations. 

 

 It may also be interesting to investigate the theoretical error analysis of the proposed 

methods. 
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