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ABSTRACT 

 

Distributed wireless sensor networks play a key role due to its wide range of 

applications ranging from monitoring environmental parameters to satellite positioning. 

Adaptive algorithms are applied to the distributed networks to endow the network with 

adaptation capabilities. The distributed network consists of many small sensors deployed 

randomly in a geographic area, which are adaptive and share their local information. The 

efficiency of the adaptive distributed strategy relies on the mode of collaboration between the 

nodes and incremental mode of cooperation is considered throughout the work. A large 

number of adaptive algorithms are available in the literature, out of which choice is done 

according to the type of application, computational complexity and convergence rate. Least 

means square algorithm is the most popularly used adaptive algorithm due to its simplicity 

and least computational complexity. Distributed ILMS is used for parameter estimation and a 

spatial-temporal energy conservation relation is used to evaluate the steady state performance 

of the entire network. The simulated and theoretical steady state performances are compared. 

Digital implementation of adaptive filters results in quantization errors and finite 

precision errors. ILMS suffers from drift problem, where the parameter estimate will go 

unbounded in non-ideal or practical implementations due to the continuous accumulation of 

quantization errors, finite precision errors and insufficient spectral excitation or ill 

conditioning of input sequence. They result in overflow and near singular auto correlation 

matrix, which provokes slow escape of parameter estimate to go unbound. The proposed 

method ILLMS uses the Leaky LMS algorithm, which introduces a leakage factor in the 

update equation, and so prevents the weights to go unbounded by leaking energy out. But the 

overall performance of ILLMS is similar to ILMS in terms of convergence speed and thus an 

incremental Modified Leaky LMS is proposed based on MLLMS algorithms which in turn 

derived from the LSE algorithm. LSE algorithm employs sum of exponentials of errors in its 

cost function and it results in convex and smooth error surface with more steepness, which 

results in faster convergence rate. ILLMS and IMLLMS algorithms are simulated and 

compared, where IMLLMS gives superior performance compared to ILLMS in terms of 

convergence rate and steady state values. 
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CHAPTER 1 

INTRODUCTION 

The availability of embedded processors, low power micro sensors, actuators and radios 

empowered the utilization of distributed wireless sensor networks to an extensive variety of 

applications  which  include Precision agriculture,  Environmental monitoring (air, water, 

soil, chemistry), Target localization, Habitat monitoring, Physiological monitoring, 

Transportation, Condition based maintenance, Military applications, Disaster relief 

management, Smart spaces, Factory instrumentation, Medical applications  and Inventory 

tracking [1] [2] [3]. The traditional centralized processing includes micro sensors deployed in 

an area and are connected to the powerful central processor, where all the processing and 

estimation is performed. In contrast to the central processing, distributed wireless sensor 

networks are used in which signal processing is shared among the nodes. The need for 

wireless distributed sensing and processing is: 

 If the exact position of the signal to be estimated is obscure in an area of observation, 

then distributed sensing permits us to deploy sensors in the vicinity of the phenomena 

to be observed than if only a single sensor is utilized. This results in better SNR and 

robustness towards environmental deterrents. 

 A more advantageous approach for parameter estimation is wired networking of 

distributed sensors, but most of the environmental areas to be monitored will not have 

sufficient installed infrastructure for energy and communications. Thus the distributed 

micro sensors are forced to depend on limited local energy sources and 

communication channels. 

 Even though the sensors are wired and distributed in the proximity of the 

phenomenon of interest, the centralized architecture for signal processing drains the 

energy and communication resources. Energy budget and communication constraints 

are the primary design criterion as the transmitted signal gets attenuated due to ground 

reflections arising from short antenna height. So the data should be processed as much 

as possible inside the nodes to reduce the bandwidth of the data to be transmitted. 
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The distributed sensor signal processing deals with collection and processing of local noisy 

observations of a parameter of interest in a geographical area where the micro sensors or 

nodes are deployed. All the nodes share their information according to the network topology 

and estimate the parameter of interest in a collaborative manner by utilizing their local noisy 

observations and the shared information from their immediate neighbours. In the traditional 

centralized processing, all the nodes will collect its noisy local data and send them to a 

centralized processor, which will perform the job of parameter estimation and broadcasts the 

result back to all the individual nodes. This involves a very powerful centralized processor 

and huge communication burden. Whereas in distributed adaptive solution all the nodes will 

have processing capabilities and perform the job of parameter estimation individually using 

their local data and information received form neighbour nodes. This saves a lot of energy 

and bandwidth. 

The strategy of cooperation between the nodes will decide the data bandwidth and energy 

consumption. Basically there are three modes of collaboration namely incremental mode, 

diffusion mode, and probabilistic diffusion mode [4]. Each node in the adaptive distributed 

network is adaptive and the efficiency depends on the adaptation algorithm used and the 

mode of cooperation between the nodes. LMS algorithm is the most popularly used due to its 

less computational complexity and ease of implementation. Incremental mode of cooperation 

requires less power and communication and hence incremental mode is considered 

throughout the work.  

The convergence speed of the LMS algorithm depends on the eigen value spread of the input 

fed to the nodes. Eigen value spread is defined as the ratio of largest eigen value to the 

smallest eigen value of the autocorrelation matrix of the input sequence. The largest eigen 

value limits the allowable range of step size for stability assurance and the smallest eigen 

value accounts for slow convergence rate. So the best convergence rate is achieved when all 

the eigen values are equal, which can be achieved by pre-whitening the data before 

processing. A rigorous mathematical analysis is done to observe and compare the simulated 

and theoretical results of the incremental LMS algorithm. LMS algorithm suffers from drift 

problem, where the parameter estimate will go unbounded even though the input sequence 

and error quantities are bounded. The accuracy and stability of LMS cannot be assured in 

non-ideal or practical scenarios where finite precision effects, quantization errors, inadequate 

input excitation comes into picture [7] [8].  
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A modification of the LMS algorithm is the LLMS algorithm primarily developed to 

overcome the drift problem [11]. LLMS employs a leakage factor in its weight update 

equation and so bounds the weights within limits by leaking some energy out. So ILLMS is 

developed to overcome the drift problem, accuracy and stability issues arising in ILMS. The 

performance of ILLMS is similar to ILMS both in convergence speed and MSE. A modified 

Leaky LMS (MLLMS) is the enhanced version of the LLMS is developed to obtain superior 

performance compared to ILLMS [19]. MLLMS is based on LSE algorithm [20], which is a 

generalization of the mixed norm gradient descent algorithms and employs sum of 

exponentials of errors in its cost function. So the cost function will have sum of even powers 

of error and so will have the combined effect of the second order statistic (SOS) algorithms 

like LMS, NLMS and under Higher order statistic (HOS) algorithms like LMS.  This results 

in a convex and smooth error surface with more steepness assuring faster convergence rate 

and better MSE performance. Both LLMS and MLLMS are implemented in incremental case 

of the distributed network and are compared in terms of convergence speed and MSE. 

1.1. Literature Survey 

The practical applications of wireless sensor networks and the need for distributed 

sensor signal processing have been discussed in [1] [2] [3]. Various developments have been 

evolved for parameter estimation in an adaptive manner. The limitations of the centralized 

solution and the implementation of adaptive algorithms and specifically incremental gradient 

descent, incremental LMS algorithms are discussed in [4]. An incremental block LMS 

algorithm has been developed for distributed networks to reduce the computational 

complexity as in [5]. The adaptive algorithms have been implemented in different modes of 

cooperation as per the requirement as in [6]. The drift problem in LMS algorithm has been 

addressed in [7] [8] [9]. The solution to the drift problem has been analysed as in [10] [11] 

[12] [13]. Variants of the leaky LMS have been developed for better performance as in [14] 

[15] [16] [17] [19]. The performance and stability analysis of the LMF and like higher order 

statistic algorithms have been discussed in [18]. An MLLMS based on LSE, which is 

generalized mixed norm stochastic gradient algorithm has been developed for better 

convergence rate as in [19] [20]. 
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1.2. Thesis Layout 

Chapter 2 explains the basics of Incremental adaptive strategies for distributed networks and 

the practical applications of the distributed networks. The consensus strategy, steepest 

descent solution and adaptive incremental algorithms like incremental least mean squares 

(ILMS) are well discussed in this chapter. A rigorous mathematical analysis is done for 

properly understanding the performance analysis of the considered distributed network using 

spatio-temporal energy conservation relation. Steady sate analysis is done mathematically for 

the quantities of interest used to measure the efficiency of the algorithms like MSE, EMSE 

and MSD. Computer simulations are provided by comparing the simulated results and the 

theoretical results simulated for steady state behaviour at all the nodes in the distributed 

network. There is an excellent match between the simulated results and the theoretical values. 

Chapter 3 deals with the problems arising in the ILMS and concludes with the solution for 

that. The drift problem arising due to practical implementations of Conventional LMS have 

been discussed. The reasons for the drift problem like finite precision effects, quantization 

errors and insufficient input excitation have been investigated theoretically and 

mathematically. The Leaky LMS has been quoted as the solution for the drift problem and 

mathematical analysis is done to show how LLMS overcomes the drift problem. Finally 

ILLMS is proposed to overcome drift problem arising in ILMS. 

Chapter 4 describes the Incremental modified leaky LMS which outperforms ILLMS in 

terms of steady state behaviour and convergence rate. The modified leaky LMS is a 

modification of LLMS and is based LSE algorithm. The LSE, MLLMS are analysed in this 

chapter. IMLLMS is proposed to achieve better performance than ILLMS, since ILLMS 

performs similar to ILMS. So IMLLMS not only overcomes the drift problem, but also gives 

superior performance than ILLMS. Simulation results are provides comparing IMLLMS and 

ILLMS in a network of N nodes. The MSE, EMSE, MSD curves at individual nodes are 

compared for both the algorithms and the results are analysed. 

Chapter 5 concludes the thesis and discusses regarding the future work and any further 

extensions to the present work. 
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CHAPTER 2 

INCREMENTAL ADAPTIVE STRATEGIES 

OVER DISTRIBUTED NETWORK 

2.1. Introduction 

 Distributed sensor networks comprises of many tiny sensors referred as nodes 

distributed in a geographic area over which we are interested to estimate the parameter of 

interest. Each sensor is referred as a node, which will collect the local noisy information 

about the parameter of interest available around it and processes the data and broadcast the 

information to the neighbours as per the network topology. All the nodes are adaptive and the 

network responds to real time excitations. The main objective is to estimate the parameter by 

processing and information sharing at each node such that the result is as accurate as the case 

if all nodes have information about the local data of all nodes in the network [1] [2]. The 

traditional solution for this linear estimation problem is that the local noisy observations 

sensed at each node will be transmitted to the centralized processor, which will estimate the 

parameter of interest and broadcast the parameter estimate back to all the nodes in the 

network. But this type of centralized processing requires a very powerful central processor 

and huge amount of communication between the processor and the nodes. Whereas, in 

distributed processing, each node will have their own tiny processor which will process the 

local noisy observations along with data received from their neighbourhood nodes. This 

significantly minimizes the amount of communication and processing. 

2.2. Applications 

The applications of distributed wireless sensor networks are enormous e.g. 

Environmental monitoring (air, water, chemistry), Habitat monitoring, Physiological 

monitoring, Transportation, disaster relief management, Precision agriculture, Target 

localization, Smart spaces, Military, Medical applications, Factory instrumentation and 

Inventory tracking [1] [2].  Some of the applications are discussed in detail to appreciate the 

importance of wireless sensor networks. 
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{T1} {T5}

{T4}

{T3}

{T2}

 

Fig. 2.1. Temperature Measurement in a distributed network with N nodes 

Consider N nodes that are deployed in a geographical area for temperature measurement as 

shown in Fig.2.1. Each node in this distributed network will collect the local noisy 

observations    from the temperature sensors. The main aim is to equip each node with the 

knowledge about the average Temperature  ̅  of the geographic area considered. Consensus 

implementation is one of the distributed solutions provided for this problem, where each node 

estimates the parameter by combining the measurements received from its adjacent nodes that 

are connected to it. So the new measurement at each node is  

  ( )      (   )      (   )      (   )(         ) (2.1) 

Where   ( ) is the 1
st
 node’s updated measurement at i

th  
iteration and    ’s are appropriately 

chosen coefficients. The same process is repeated where all the other nodes perform the same 

operation [1]. Proper choice of    and network topology results in convergence of all the 

nodes measurements to the average temperature   ̅ .  

 

Fig. 2.1. Monitoring of a diffusion process by a network of sensors  
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An advanced application is to monitor chemical concentration in air, soil or water by 

collecting local information in time and space by a network of micro sensors as shown in 

Fig.2.2. The parameters *        + dictating the diffusion of the chemical can be estimated 

from these local measurements by some diffusion equation subject to boundary conditions 

given as below: 

  (   )

  
   

   (   )

   
   

  (   )

  
    (   )   (   ) (2.2) 

 

Where c(   ) indicates the concentration at time t and at location x. Another application 

includes monitoring a moving target in a region, which is being monitored by a network of 

nodes or sensors [1] [3]. These sensors will communicate and share their noisy local data as 

per the network topology and will estimate the target location and trajectory. 

(a) (b) (c)
 

Fig. 2.2. Modes of collaboration (a) Incremental mode (b) Diffusion mode (c) Probabilistic diffusion mode 

2.3. Modes of collaboration 

The efficiency of any distributed sensor network implementation depends mostly on the 

amount of communication between the nodes i.e. mode of cooperation [4] [6]. Fig.2.3. 

depicts the three basic modes of collaboration available. 

 In an Incremental mode of collaboration, information flows in a sequential or cyclic 

manner from one node to the adjoining node. This mode requires least amount of 

power and communication. This mode of cooperation may result in network failure if 

one of the nodes starts malfunctioning. 
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 In a Diffusion mode of cooperation, each and every node collaborates with all of its 

neighborhood nodes as determined by the network topology. Even though a node in 

the network fails, the effect is negligible as the nodes have more information from all 

their neighbor nodes and so the amount of communication, power and the 

computational complexity is higher than that of incremental mode of collaboration. 

 In a Probabilistic diffusion mode of collaboration, each node is allowed to 

communicate with only a subset of neighbor nodes and the subset depends on the 

performance criteria and the requirement. So the communication burden is reduced 

compared to the Diffusion mode of cooperation, but still higher when compared with 

the Incremental mode of cooperation. 

Incremental mode of cooperation is used throughout the work. 

2.4. Consensus Strategy 

 

Consensus implementation includes two steps. In first step each node collects its local 

noisy observations over a stipulated period of time and the parameter of interest will be 

estimated based on its individual data. During this first step there will be limited 

communication between the nodes, and in the next step all the nodes will merge their 

parameter estimates through several iterations to reach global estimate of the parameter of 

interest [3] [4]. 

Let us consider an example of a network of nodes to investigate the consensus strategy. Let 

us assume that each and every node has information regarding a data vector    and a data 

matrix   . The distorted and noisy measurement     is  

      
     (2.3) 

Here      is some unknown vector, which is to be estimated and    is some noise.  Every 

node in the network evaluates the local cross correlation vector      
    and its 

autocorrelation matrix      
    for calculating the least-squares estimate of   . The local 

estimate of      can be evaluated as  ̂    
    . Each node will estimate its local 

estimation  ̂  in a similar way and then consensus iteration is applied to all the nodes to 

calculate  ̂ and  ̂ as below: 

 ̂  
 

 
∑   

 
      and    ̂  

 

 
∑   

 
    (2.4) 
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The global estimate of    is given as  ̂   ̂   ̂. The least squares solution in this style is an 

offline and non-recursive solution. If a node collects more entries than the other, then the 

problem arises for updating the optimal solution    . The offline averaging limits the 

consensus solution in networks with limited communication resources and fast changing 

environments. To address these issues, distributed adaptive solution is to be developed so that 

the estimation will not require any data statistics or direct data i.e. model independent. The 

main objective is to develop distributed adaptive algorithms which endow the nodes with 

adaptation capabilities [4].  

The main purpose of these distributed adaptive algorithms is: 

 To develop an adaptive network structure with interconnected network of nodes 

which can react to the data in real time and track the changes in the statistical 

characteristics of the data as follows: 

 Every time a node picks up a new piece of data which is willingly utilised by 

the node for local parameter estimation.  

 Each node shares its local parameter estimates with the neighbour nodes based 

on the network topology.  

 Distributed processing deals with “system of systems”, which makes the task much 

more difficult as they process the data sequentially at all nodes, both in time and 

space. Each individual node will converge to different steady state MSE depending on 

the statistical properties of the data and background noise. 

2.5. Estimation Problem & Adaptive Distributed Solution 

Extensive works have been done on optimization problems of incremental distributed 

networks. In the distributed solution, using incremental strategies a cost function can be 

minimized by decoupling it into a sum of separate individual cost functions. 

Let us consider a distributed network with N nodes as shown in Fig.2.4. Each and every node 

k has access to local noisy data realizations {  ( )     } of the zero mean spatial 

data*     +,         , where    is the desired  scalar and    is a regression input vector 

of size 1  . 

     *          +(   ) 

     *          +(   ) 



10 
 

 1 11 ,d u   2 22 ,d u  

 ,
N N

N d u   ,k kk d u   1 11 ,k kk d u   

 

Fig.2.4. Distributed network with N nodes collecting local noisy information 

 

The main intention is to estimate the vector w  of size M   by using the above data 

collected from all N nodes and it should solve 

      ( ) 
    

 

Where  ( ) indicates the cost function which signifies the MSE, given as bellow: 

  (w) =E‖    ‖  (2.5) 

Where E is the expectation operator .The optimal solution    can be obtained by using the 

orthogonality condition given as 

 ‖    ‖    

The solution to the above equation is given as  

   =    
  

Where    = E     (   )  ,       = E    = ∑      
 
    

Computation of    from above equations require knowledge of global statistical 

information*      +  at each node. An alternative solution for this problem is to compute the 

estimate centrally and broadcast the outcome back to the individual nodes, but this needs 

extensive communication and a powerful central processor. The sole solution is the 
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distributed solution, which allows limited communication between the nodes and equips the 

network with adaptation capabilities. 

2.5.1. Steepest Descent Solution 
 

A review of the steepest descent solution and its implementation is provided for better 

understanding of adaptive distributed solution. The cost function can be divided at each and 

every node as below: 

J ( ) =∑   ( ) 
    

Where   ( ) at each node is given as  

  ( )   |      |  

                                                                     
                         (2.6) 

And the second order moments are defined as 

    
   |  |

 ,          
   , and            

  

J (w) has been conveyed as the sum of N individual cost functions      ( ), one for each node 

k [4]. The traditional steepest descent solution for estimating     given as below: 

         ,  (    )-
 ,        initial condition 

              ∑ ,   (    )-
  

    

                                           ∑(              )

 

   

 (2.7) 

Here     is the step size parameter,    is estimation of     at  th
 iteration and   (    ) is 

the gradient of  ( )  which is calculated at       . For small step sizes,        as      

for all the initial conditions. The same processes can be implemented in another way as 

follows. 

The data processing in an adaptive distributed network is as shown in Fig.2.5. Let us define a 

cycle visiting each node, which will collect local noisy data and able to communicate with 

only it’s immediate neighbour node. Let us assume that    
( )

  is the local estimate of    at 
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time i and node k. so it has access to its neighbour’s local estimate     
( )

 . At every time 

instant i, start with the initial condition   
( )       at first node and continue the process 

iteratively, which  involves estimation of the parameter from local data , previous node’s 

estimate and passing its new local estimate to its immediate neighbour node. At the ending of 

the process the local estimate at N
th

  node will give the global estimate i.e.   
( )     . This 

whole implementation can be written as below:  

{
 
 

 
   

( )      

  
( )      

( )    ,   (    )-
                 

     
( )

 (2.8) 

For the above mentioned Steepest Descent Solution, the recursion for    
( )

 is over spatial 

index k. 

2.5.2. Incremental Steepest Descent Solution 

            The solution provided in eq.2.8 is cooperative as each node uses information only 

from their immediate neighbour node, but requires each node to have global information      

for calculation of      (    ) . To avoid this problem and to make the algorithm fully 

cooperative, incremental gradient algorithm is considered, where each node need     
( )

 from 

node k-1 to find the partial gradient     (    
( ))   . So the Incremental Steepest Descent is as 

follows: 

{
 
 

 
   

( )      

  
( )      

( )    [   (    
( ))]

 
             

     
( )

 (2.9) 

The above solution is full pledged distributed solution as each node solely depends on its 

local data and communicates only with its immediate neighbor node. This minimizes energy 

consumption and communication burden. 

2.5.3. Incremental Adaptive Solution 

            The adaptive solution provided in eq.2.9 requires information about the second order 

moments like cross correlation matrix (     ) and autocorrelation matrix (     ), which are 

required to calculate the local gradients vectors      . An adaptive solution of eq.2.9 is 
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acquired by approximation the second order moments with their instantaneous values. It can 

be shown as below: 

        ( )    
 ,          

      (2.10) 

So the algorithm uses the data  {  ( )     } at time i for adaptive implementation. This 

results in a distributed incremental adaptive solution or distributed ILMS algorithm as shown 

below [4]: 

              For each time     , repeat: 

               K = 1,    

{
 
 

 
   

( )      

  
( )      

( )        
 (  ( )           

( ))             

     
( )

 (211) 

 

The operation of algorithm given in eq.2.11 is well explained in the Fig.2.5.  

At every time   the node utilizes its local noisy data {  ( )     } and the estimated weight 

vector      
( )

 received from it’s the immediate neighbour node to accomplish the following 

three tasks:  

 Calculate the local error value :  ( )    ( )          
( )

; 

 Update the weight estimate :   
( )      

( )        
   ( ); 

 Pass the update weight estimate    
( )

 of node k to the immediate neighbour node 

k+1. 

 



14 
 

node 2

2 2,{ ( ), }id i u
node 3 node 4

node N

node 1 node N-1

,{ ( ), }N N id i u

1 1,{ ( ), }N N id i u 1 1,{ ( ), }id i u

4 4,{ ( ), }id i u3 3,{ ( ), }id i u

Node K, Time i 

Receive 1
( )

k
i

 from node K-1 

Update ( )
k

i using LMS 

algorithm  

1 , 1
( ) ( ) ( )

k k k i k
i i u e i  

 
   

Transmit ( )k i to next node 
 

 

Fig.2.5. Data Flow and updation in Incremental LMS 

2.6. Performance Analysis 

            The evaluation of the performance of the adaptive incremental solution involves 

determining how close the local estimate at each node (   
( )

 ) reached the desired solution 

  . The difficulties which arise for investigating performance analysis of the network are 

challenging due to the following reasons [1] [4]: 

 Each node k is distributed randomly in the geographical area and will be influenced 

by its local data statistics {          }  (Spatial data). 

 Each node k distributed randomly in the geographical area is affected by its 

immediate neighbour through the incremental mode of collaboration (Spatial 

interaction). 

 Each node is influenced by the local background noise with variance      
  (Spatial 

noise). 

The parameters of interest for the performance analysis are Excessive Mean Square error 

(EMSE) and Mean Square Deviation (MSD), which will approach to zero asymptotically if 

the step size is decreased. The Mean Square error (MSE) will converge asymptotically to the 
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background noise in the network. The performance analysis is investigated relying on the 

energy conservation relation in both space and time since distributed adaptive algorithm 

involves both time (i) and space (k) indices. The energy flow across the interconnected nodes 

is to be studied since each node will stabilize at individual MSE in the steady state. 

2.6.1. Data Model & Assumptions 

            The data model assumptions used for carrying out the performance analysis of the 

The desired unknown vector    relates {  ( )     } as 

  ( )       
    ( ) (2.12) 

Where   ( ) is white noise sequence with variance      
  and independent of 

{  ( )     } for   all l,j. 

      is independent of      for k   (Spatial independence). 

      is independent of      for     (time independence). 

The model given above is considered from the literature of adaptive algorithms where all the 

nodes will try to estimate the unknown vector   and so  referred as stationary model [4]. 

Distributed adaptive algorithms can also be used for non-stationary models. 

2.6.2. Weighted Energy Conservation Relation 

 

            Let us assume the local error signals at each node k in the distributed network:  

Weight error vector at time   :   ̃ 

( )
      

( )
 (2.13) 

A priori error :     ( )        ̃   

( )
 (2.14) 

A posterior error :     ( )       ̃ 

( )
 (2.15) 

Output error :   ( )    ( )          
( )

 (2.16) 

The vector  ̃ 

( )
 signifies the difference between the weight estimate at node k and the 

optimum weight vector   . The signal   ( ) signifies the estimation error, which is related to 

the a priori error by using the data model eq.2.12 is given as 

  ( )    ( )          
( )       

    ( )          
( )
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                                       =    ( )    ( )  (2.17) 

               so here   |  ( )|
   |    ( )|

 
     

  (2.18) 

The parameters of interest here are MSD, MSE and the EMSE, which can be obtained in 

steady state as follows: 

    ‖ ̃   
 
‖
 
(   ) (2.19) 

        |    ( )|
 
 (    ) (2.20) 

                           |  ( )|         
 (   ) (2.21) 

The weight norm notation for a vector x and a hermitian positive definite matrix     is 

defined as 

‖ ‖ 
 
     . 

Then, according to our assumptions we have 

    ‖ ̃   

( )
‖

 

 

   and        ‖ ̃   

( )
‖

    

 

 
(2.22) 

So we need to evaluate means of two weighted norms. For that purpose let’s first investigate 

the spatio-temporal energy conservation relation relating the local error variables. Let us 

define the weighted a priori and a posteriori local error signal at each node k as below: 

    
 ( )        ̃   

( )
          

 ( )        ̃ 

( )
   (2.23) 

Where    is a Hermitian positive definite matrix, which we are free to choose. Using 

algorithm eq.2.11 and subtracting     from both sides of the equation results as below: 

 ̃ 

( )
  ̃   

( )
       

   ( )  (2.24) 

Multiplying eq.2.24 both side from left by        results in below equation 

        ̃ 

( )
         ̃   

( )
   ‖    ‖  

 
  ( ) 

(2.25) 

From eq.2.23 we get 

    
 ( )      

 ( )    ‖    ‖  

 
  ( )  (2.26) 

It follows, 

  ( )  
 

  ‖    ‖  

 .    
 ( )      

 ( )/      (2.27) 

Substituting eq.2.27 into eq.2.24 and rearranging terms, we get 

 ̃ 

( )
 

    
     

 ( )

‖    ‖  

   ̃   

( )
 

    
     

 ( )

‖    ‖  

     
(2.28) 
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Equalizing the weighted norm of both sides, and cancelling out the cross terms the result will  

contain the energy terms only, as shown below: 

‖ ̃ 

( )
‖

 

 

 
|    

 ( )|
 

‖    ‖  

  ‖ ̃   

( )
‖

 

 

 
|    

 ( )|
 

‖    ‖  

   
(2.29) 

The above equation is the space-time weighted energy conservation relation, which shows the 

relation between the energies of several error variables in space and time. The above relation 

is for regular adaptive algorithms where no approximations are used. 

 

2.6.3. Variance Relation 

Subsequent analysis involves evaluation of performance at individual nodes based on 

the pace-time weighted energy conservation relation. The time index i is dropped for 

simplicity. Now by replacing eq.2.26 into eq.2.29 and rearranging terms we get  

‖ ̃ 

( )
‖

 

 

 ‖ ̃   

( )
‖

 

 

       
         

     
    

 |  | 
 |  |

   (2.30) 

Using eq.2.30 and taking expectation of both sides   

 ‖ ̃ 

( )
‖

 

 

  ‖ ̃   

( )
‖

 

 

        
         

      
    

  |  | 
 
|    |

 

  

(2.31) 

Using eq.2.23 and weighted error definitions, we can expand the eq.2.31 in terms of regressor 

data and weighted error vector as follows: 

 ‖ ̃ 

( )
‖

 

 

 

 ‖ ̃   

( )
‖

 

 

     ̃   
 
   

    ̃        ̃   
 
  

     ̃    

   
   ̃   

 
  

      
    ̃      

     
  ‖  ‖ 

 
  (2.32) 

Using the relation  ‖ ‖ 
  ‖ ‖ 

  ‖ ‖ 
    , and by using this eq.2.32 can be rewritten as 

 ‖ ̃ 

( )
‖

 

 

  (‖ ̃   

( )
‖

  

 

)    
     

  |  | 
 
  (2.33) 

Where the term    represents the stochastic weighted matrix given as 

       (  
        

      
 ‖  ‖ 

 
  

   )  (2.34) 

Since    is the independence regressor data we can write as 
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 (‖ ̃   

( )
‖

  

 

)   ‖ ̃   

( )
‖

   

 

  (2.35) 

Again rewriting eq.2.33 and eq.2.34 as 

 ‖ ̃ 

( )
‖

 

 

  (‖ ̃   

( )
‖

  

 

)    
     

  |  | 
 
  (2.36) 

       (  
        

      
 ‖  ‖ 

 
  

   )  (2.37) 

So     is now a deterministic matrix. 

2.6.4. Gaussian Data 

Equation 2.36 is the spatial variance equation and is used to perform the steady state 

analysis at every individual node k. From eq.2.37 one can conclude that     totally depends 

on the  regressor. So the further analysis of   the performance of the network depends on the 

following three parameters: 

        
   ,   E‖  ‖ 

 
   (     ), and E‖  ‖ 

 
  

     (2.38) 

For simplicity during the calculation of E‖  ‖ 
 
  

    the input vector is assumed to be 

Gaussian data. So let’s assume that *  +  arises from circular Gaussian distribution. The 

Eigen value decomposition of auto correlation matrix is             
  , where   the 

diagonal matrix with Eigen value of is      and       is the unitary matrix. Now the shifted 

quantities are  

 ̅    
  ̃ ,   ̅      

  ̃   ,   ̅      
,   ̅    

    ,   ̅    
        (2.39) 

As the matrix    is unitary, ‖ ̃   ‖ 

 
 ‖ ̅   ‖ ̅

 
     ‖  ‖ 

 
 ‖ ̅ ‖ ̅

 
 ,by using these 

relation , eq.2.36 and eq.2.37 can be rewritten as 

 ‖ ̅ ‖ ̅

 
  ‖ ̅   ‖ ̅ 

 
   

     
  ‖ ̅ ‖ ̅

 
   (2.40) 

 ̅   ̅     ( ̅ 
  ̅  ̅   ̅ ̅ 

  ̅ )    
  ‖ ̅ ‖ ̅

 
 ̅ 

  ̅    (2.41) 

 ‖ ̅ ‖ ̅

 
   (   ̅) and   ̅ 

  ̅        (2.42) 

 ‖ ̅ ‖ ̅
 
 ̅ 

  ̅      ( ̅  )      ̅      (2.43) 

 

Where,      for circular complex data and      for real data. Now substituting eq.2.42 

and eq.2.43 into eq.2.40 and eq.2.41 we get 

 ‖ ̅ ‖ ̅

 
  ‖ ̅   ‖ ̅ 

 
   

     
   (   ̅)   (2.44) 
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 ̅   ̅    (   ̅   ̅  )    
 (    ( ̅  )      ̅  )  (2.45) 

 

2.6.5. Diagonalization 

As we are free to choose   , let’s choose   such that   ̅      ̅  will become  diagonal 

which simplifies further analysis. Let us define the     column vectors 

 ̅      * ̅+,   ̅      * ̅ + ,          *  +   (2.46) 

Where the  diag indication is used in two ways:  

 diag    represents diagonal matrix whose elements are the vector of   . 

 diag    represents a vector containing main diagonal entries of   . 

Using this concept eq.2.45 can be rewritten as  

 ̅  (           
   

 ) ̅    
 (  

  ̅)             ̅  ̅   (2.47) 

Here the coefficient matrix  ̅  is defined by 

 ̅             
   

    
     

 
   (2.48) 

So the expression eq.2.44 becomes 

 ‖ ̅ ‖    * ̅+

 
  ‖ ̅   ‖    * ̅  ̅+

 
   

     
 (  

  ̅)    (2.49) 

For simplicity  diag  notation is dropped, now the equation becomes 

  ‖ ̅ 
( )

‖
 ̅ 

 

  ‖ ̅   
( )

‖
 ̅  ̅ 

 

   
     

 (  
  ̅ )   (2.50) 

The time index i is restored and  ',   are replaced by  ',k k    to show that weighting 

matrix could be bode dependent. 
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2.6.6. Steady State Behaviour 

Let   ̅   ̅ 
( )

          
     

   
 
(a row vector). Then, for    , the variance  

relation eq.2.50 can be rewritten as 

 ‖ ̅ ‖ ̅ 

 
  ‖ ̅   ‖ ̅  ̅ 

 
    ̅                 (2.51) 

For evaluation of performance measurement we are after MSE, MSD, EMSE, which are 

defined as below: 

      ‖ ̅   ‖ 
 
          * +      (   )    (2.52) 

    ‖ ̅   ‖  

 
           *  +       (    )  (2.53) 

          
      (   )   (2.54) 

The equation eq.2.51 contains information from two spatial locations. The a set of N coupled 

equations obtained by iterating the equation eq.2.51 are given by 

 ‖ ̅ ‖ ̅ 

 
  ‖ ̅ ‖ ̅  ̅ 

 
    ̅   

 ‖ ̅ ‖ ̅ 

 
  ‖ ̅ ‖ ̅  ̅ 

 
    ̅   

   

 ‖ ̅   ‖ ̅   

 
  ‖ ̅   ‖ ̅    ̅   

 
      ̅      (2.55) 

 ‖ ̅   ‖ ̅   

 
  ‖ ̅   ‖ ̅    ̅   

 
      ̅     

   

 ‖ ̅ ‖ ̅ 

 
  ‖ ̅   ‖ ̅  ̅ 

 
    ̅    (2.56) 

These equations need to be solved by properly choosing the free parameters. 
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By choosing  ̅     ̅    ̅    and substituting in eq.2.55 we get 

 ‖ ̅   ‖
 
 ̅    ̅   

  ‖ ̅   ‖
 
 ̅    ̅    ̅   

      ̅    ̅       (2.57) 

 ‖ ̅   ‖
 
 ̅   

  ‖ ̅   ‖
 
 ̅    ̅    ̅   

      ̅    ̅         ̅     (2.58) 

By iterating in this manner, we get the equation involving only   ̅    

 ‖ ̅   ‖
 
 ̅   

  ‖ ̅   ‖
 
 ̅   ̅  ̅   ̅    ̅   

    ̅     ̅  ̅   ̅    ̅    

                                    ̅     ̅  ̅   ̅    ̅           ̅    ̅         ̅   

  
(2.59) 

Let us define N matrices as a of product of  ̅ matrices 

      ̅      ̅     ̅  ̅   ̅                     (2.60) 

Where all the subscripts are  mod N.      is the transition matrix of the weighting vector  ̅     

to arrive  node k in a cyclic order through nodes k-1, k-2, N-1,…, k. Rewriting  equation 

eq.2.59  as 

 ‖ ̅   ‖
 
(      ) ̅   

    ̅      (2.61) 

Where the row vector    is defined as 

                                   (2.62) 

ka  signifies the total mixed effect of transformed local noise and local data characteristics 

reaching k
th

 node from other nodes over the ring topology. By selecting the weight vector 

 ̅    as the solution for the linear equation (      ) ̅     , we arrive at the below 

expression for the MSD 

     (      )
  

     (   )  (2.63) 

 

Similarly for EMSE choose   ̅    as the solution of  (      ) ̅           

     (      )
  

     (    )  (2.64) 

          
     (   )  (2.65) 
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Presence of       and     signifies influence of the entire network on every individual node, 

with some importance given to the local data and noise statistics    and     
 .  

For small step sizes,  ̅          i.e.  ̅  has become a diagonal matrix, which implies that 

        ̅  ̅   ̅  will also be diagonal and can be approximated as below: 

  (       )(       ) ······ (       ) (2.66) 

    (                        ) (2.67) 

So that  

                            (2.68) 

For small step sizes and form eq.2.63 and eq.2.64 we get 

   (  
     

   
        

     
   

 )(                  )
1      (2.69) 

   (  
     

   
        

     
   

 )(                  )
1    (2.70) 

For small step sizes, there is an levelling impact on MSD throughout the network, signifying 

the intermediate averaging in consensus implementations and EMSE goes asymptotically to 

zero and so MSE converges to the noise level       
  . 

 

2.7. Simulation Results & Discussion 

 

Computer simulations are provided comparing with the theoretical performance. The 

whole analysis is based on independent assumptions and simulations are carried out using 

regressors with shift structure to cope up with realistic situations. The regression vectors are 

filled up as below: 

 , ( ), ( 1),...., ( 1)k i k k ku col u i u i u i M     (2.71) 

For generating learning curves, 200 independent experiments are performed and averaged. 

The steady-state performance curves are generated by running the network learning process 

for 1000 iterations. The quantities of interest, MSD, MSE, and EMSE, are then obtained by 

averaging the last 500 samples of the corresponding learning curves. 

The measurement data   
( )

 are achieved by using the data model in eq.2.12 at each node and 

the desired M×1vector to be estimated is  set as    =col {1, 1,…,1}/√  , where M is the tap 

size considered as M=10. The quantities of interest are defined as below: 
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EMSE (Excess Mean square error) = |    (  
( )   ̅ )|

 
    (2.72) 

MSE (Mean square error)   = |  ( )          
( )|

 
  (2.73) 

MSD (Mean square deviation)  = |(  
( )   ̅ )|

 
    (2.74) 

A network of 20 nodes i.e. N=20 is considered, with each input regressors vector of size 

 1 10 and each node collects time correlated data   
( ) generated as  

( ) ( 1) ( ) ,k k k ku i u i Z i i       (2.75) 

Where     =√    
 (    

 )
 

Where the correlation index,    ,   ) and ( )Z i  is a spatially independent WGN random 

process with zero mean and unit variance. The resulting regressor will have Toeplitz 

covariance matrix       , with correlation sequence   (i) =     
 (  )

| |,            . 

The input regressor power profile     
  (   - , the correlation index     (   - and the 

Gaussian noise variance     
  (     - are chosen randomly and are depicted  in Fig.2.6, 

Fig.2.7, Fig.2.8. 

 

Fig.2.6. Correlation Index at each Node 
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Fig.2.7.  Regressor power profile at each Node 

 

Fig.2.8. Noise power profile at each Node 
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Fig.2.9. Comparison of simulated and theoretical steady state EMSE at each node 

 

 

Fig.2.10. Comparison of simulated and theoretical steady state MSE at each node 
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Fig.2.11. Comparison of simulated and theoretical steady state MSD at each node 

 

There is an excellent match between the theoretical and simulated steady state values for 

significantly larger step sizes. Though the statistical profile of noise and input is different at 

all the nodes, the Mean square deviation is approximately even throughout the network with a 

very less deviation from -20.6 db. EMSE and MSE are more vulnerable to the local statistics. 

MSE reflects the noise power at each node in the distributed network considered. 
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CHAPTER 3 

DISTRIBUTED INCREMENTAL LLMS   

3.1. Introduction 

            The incremental adaptive solution using LMS algorithm suffers from drift problem in 

non-ideal situations [7] [8]. LMS is widely used due to its ease of implementation, but it 

suffers from drift problem when implemented in finite precision environment. It is vulnerable 

to ill conditioning or inadequate excitation of the input [9]. In this chapter we propose 

Incremental LLMS algorithm to overcome the drift problem of LMS [10] [11]. Leaky LMS is 

a modified version of LMS where small leakage is allowed in the update equation and it 

introduces some bias in the parameter estimate. The Eigen spread of Leaky LMS is slightly 

lesser than LMS algorithm. So leaky LMS converges faster than LMS in case of inputs with 

high Eigen spread [17]. 

 

3.2. Weight Drift problem with LMS 

            Conventional LMS algorithm is the most generally used due to its simplicity, less 

computational complexity and ease of implementation. The optimization function or the cost 

function of LMS criterion is 

2
min ( )w J w E d uw 

 
 

(3.1) 

Solving the least mean squares criterion results in the weight estimate update equation 

( ) ( 1) ( ) ( ) ( )w k w k k u k e k    (3.2) 

Where ( )w k   is the filter weight vector, ( )k  is step size,   ( )u k is the input sequence and  

( ) ( ) ( ) ( 1)Te k d k u k w k    

0( ) ( ) ( )Td k u k w v k   

0w  refers to the optimum solution. 

LMS filter can produce unbounded weight estimates in non-ideal or practical, which is 
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referred as drift problem. The convergence and stability of LMS algorithm may be 

problematic in non-ideal conditions. In such cases the weight estimates don’t converge to the 

optimum value and go unbounded, i.e. they diverge. So the incremental adaptive solution 

using LMS algorithm suffers from drift problem in practical implementations. The difficulties 

with LMS algorithm are discussed below:                                                                   

3.2.1. Finite Precision Effects 

            In digital implementation of the adaptive filters, all the inputs and the intermediate 

values are quantized using an analog to digital converter as shown in Fig.3.1. This 

quantization results in some quantization error, which relies on the number of levels utilized 

and the threshold value of the quantizer. The quantization error gets accumulated 

continuously until an overflow occurs. The overflow is unacceptable for any application 

where the system is operated continuously. A real time system processes quantization errors 

in an unstable manner which doesn’t affect the performance immediately; it may take hours 

or days. The reason for unexpectedly large inaccuracies is the continuous accumulation of 

quantization errors with time until their effects reach   a level that causes the adaptive filter 

performance to be unacceptable [7] [8]. 

ADC

ADC
1

q

iw 

ADC

( )d i

( )u i

( )qd i

( )qu i ( )qy i

( )e i

( )qe i



 

Fig. 3.1. Block diagram representation of finite precision implementation of adaptive filter 

 

All the coefficients and quantities are stored in registers whose word length is finite. So all 

the values are truncated to some precision in order to store them in registers, which results in 

finite precision errors. Finite precision implementation results in bias in the estimate from the 
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ideal infinite precision conditions. These finite precision errors get accumulated continuously 

with time and it results in overflow. It is not a good idea to increase the precision as the 

implementation cost is strongly affected by the total number of bits used for the digital 

implementation. The noise or the finite precision arithmetic errors will become non-zero 

mean variables due to finite precision errors. 

3.2.2. Ill Conditioning of the input 
 

            The ill condition of the input means that there is wide Eigen spread, where Eigen 

spread is the ratio of the largest Eigen value to the least Eigen value of the auto correlation 

matrix of the input.  

Eigen Spread = max

min




 

 where max  and min  are the eigen values of  auto correlation matrix  . H

uR u u  . It results 

in near singular auto correlation matrix, which is makes the estimate to slowly escape from 

the expected value to infinity. Even though all the other signals are finite, the parameter 

estimate will go unbounded due to inadequacy of excitation [8] [9]. The effect of singular 

auto correlation matrix can be explained alternatively as given below: 

The error function of the LMS can be written as 

   min 0 0

H

uw w R w w      
(3.3) 

Using Eigen value decomposition for the auto correlation matrix 

H

uR V V 
 

Substituting in eq 3.3, we get 

    min 0 0

H
H HV w w V w w       

(3.4) 

If  uR is singular, it corresponds to the existence of the eigen value   0i  . So the cost 

function could be  min   , even though  0 0HV w w   i.e. w  will not be equal to the 

optimum weight 0w , which implies that w  will run away without effecting   i.e. drift 

problem.  
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3.2.3. Numerical Stability 
 

            An algorithm is said to be numerically stable if it limits the maximum deviation from 

the infinite precision implementation, whereas a numerically unstable algorithm allows the 

errors to accumulate with time, which results in divergence of the estimate. Increasing the 

precision does not affect the numerical stability [7]. Numerical stability is a strong function 

of the algorithm. A numerically stable algorithm keeps track of the finite precision errors and 

corrects itself. 

3.2.4. Accuracy 
 

            Accuracy of an algorithm implementation is the magnitude of the deviation from the 

infinite precision performance [8]. The smaller deviation indicates more accuracy. Accuracy 

greatly depends on the number of bits used for storage i.e. precision.  

So LMS algorithm suffers from numerical instability, accuracy affects and is sensitive to ill-

conditioning of the input sequence. The incremental adaptive solution provided for parameter 

estimation in distributed networks using LMS algorithm will result in unbounded parameter 

estimate in practical implementation. Leaky LMS solves the drift problem and this chapter 

deals with implementation of Incremental Leaky LMS for parameter estimate in distributed 

networks. 

3.3. Proposed Framework 
 

            Incremental Leaky LMS [21] is proposed to overcome the drift problem arising in 

ILMS. Leaky LMS is modified version of the LMS algorithm. The optimization equation for 

Leaky LMS is 

 

(3.5) 

Where     - positive real number referred as leakage factor ranging from 0 to 1. 

0 1   

The update equation for the LLMS algorithm [11] [12] is 

2 2
min ( )w J w w E d uw   
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(3.6) 

The subsequent analysis follows the following data model and the assumptions done for the 

algorithm implementation and performance analysis are listed below: 

3.3.1. Data Model and Assumptions 
 

1. The desired unknown vector  0w  relates  , , ( )k i ku d i  as  

, 0( ) ( )k k i kd i u w v i   (3.7) 

2. ( )kv i  is white Gaussian noise with variance 
2

,v k  and independent of   , , ( )k i ku d i  for 

all i,j 

3. Input sequence  
,k iu  is spatial and time independent. 

4. The input is assumed to be corrupt with white Gaussian noise
,k in , with zero mean and 

2

,n k  variance 

, , ,k i k i k iz u n   (3.8) 

Fig.3.2. shows the data flow and the weight updation in Incremental Leaky LMS strategy in a 

distributed network. 

node 2

2 2,{ ( ), }id i u
node 3 node 4

node N

node 1 node N-1

,{ ( ), }N N id i u

1 1,{ ( ), }N N id i u 1 1,{ ( ), }id i u

4 4,{ ( ), }id i u3 3,{ ( ), }id i u

Node K, Time i 

Receive 1( )k i  from node K-1 

Update ( )
k

i using leaky 

LMS algorithm  

1 , 1( ) (1 ) ( ) ( )k k k i ki i Z e i      

Z is noisy version of input u  

Transmit ( )k i to next node 
 

0

0

0 

 

Fig. 3.2. Data Flow and updation in Incremental leaky LMS 

 

( ) (1 ( ) ) ( 1) ( ) ( ) ( )w k k w k k u k e k     
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Algorithm for Incremental Leaky LMS Solution  

 

Let 
( )i

k  be the local estimate of 0w  at node k at time i.  

Start with 1 0w   

For each time 0i  , repeat : 

Set 
( )

0 1

i

iw   

     For nodes 1k  to N , repeat : 

     Receive 
( )

1

i

k  from previous node 

          ( ) ( ) * ( )

1 , , 1(1 ) ( ( ) )i i i

k k k k k i k k i kz d i u          1, 2, ..., Nk   

     End 

( )i

i Nw   

Send iw to node 1 

End 

 

3.3.2. Performance Analysis 
 

            In this section an example is given to illustrate the weight drift problem occurring in 

LMS update equation and how leaky LMS solves the problem [16]. Let’s consider that the 

input vector ( )u k is orthogonal to weight error vector  

( )w k = 0 ( 1)w w k   (3.9) 

Now the LMS update equation is  

( ) ( 1) ( ) ( ) ( )w k w k k u k e k    

Where  ( ) ( ) ( ) ( 1)Te k d k u k w k    

0( ) ( ) ( )Td k u k w v k   
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The weight error vector satisfies the equation  

( ) ( 1) ( ) ( ) ( )w k w k k u k v k    (3.10) 

Taking norm on both sides the above eq.3.10 can be written as  

2 2 22 2( ) ( 1) ( ) ( ) ( )w k w k k u k v k    

Solving this recursion for   ( )w N   , we get  

2 222 2

1

( ) ( ) ( ) ( ) (0)
N

K

w N k u k v k w


   
(3.11) 

From above eq.3.11, it is obvious that 
2

( )w N 
 
 with N if ( ) ( ) ( )k u k v k  is a power 

sequence or not a finite energy sequence. This situation doesn’t happen when LLMS is 

utilized, as weight update equation contains leakage factor. 

LLMS weight update equation is  

( ) (1 ) ( 1) ( ) ( ) ( )w k w k k u k e k      (3.12) 

Taking norm on both sides the above eq.3.12 results as 

2 2 22 2( ) (1 ) ( 1) ( ) ( ) ( )w k w k k u k v k      
(3.13) 

From eq.3.13, 
2

( )w k  remains bounded for 1o    

 

3.3.2.1. Convergence in the Mean 
 

The Leaky LMS weight update equation is  

( ) (1 ) ( 1) ( ) ( ) ( )w k w k k u k e k      (3.14) 

The weight error vector satisfies the equation  

0( ) (1 ) ( 1) ( ) ( )w k w k w u k e k        (3.15) 

Taking expectation on both sides the above eq.3.15 

 0( ) (1 ) ( 1) ( ) ( )E w k E w k w E u n e n         
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  0( ) 1 ( 1)uE w k I R E w k w              
 (3.16) 

The mean ( )E w k 
 

converges to zero, and consequently  ( )E w k  converges to w0   if and 

only if 
max

2
0 

 
 


, where max  is the largest Eigen value of the matrix  Ru = E[u(n)u(n)

T
 ]. 

In other words Leaky LMS is convergent in mean, if the stability condition is met [12].  

 

3.3.2.2. Solution to ill-conditioned input (Wide Eigen Spread) 
 

            For leaky LMS with leakage factor , the optimum weight is  
1

opt u duw R I R


  , 

where Ru  is the auto correlation of the input sequence and Rdu is the cross correlation 

between input and the desired data.
  

Let λmax, λmin be the maximum and minimum Eigen values of autocorrelation matrix, then 

Eigen spread for LMS algorithm is  
max

min



        
 

Whereas Eigen spread for Leaky LMS will be max

min

 

 




,   as the new auto correlation matrix is

uR I . 

As   0, the Eigen spread in case of LLMS is less than that of LMS [17] 

max max

min min

  

  





 

(3.17) 

So Leaky LMS overcomes the sensitivity to ill-conditioned input sequence. 

 

 

3.4. Discussions  

            An efficient approach is proposed to tackle the drift problem that arises in distributed 

incremental LMS approach due to finite precision effects, quantization errors, inadequate or 

ill-conditioned inputs by implementing Leaky LMS algorithm for distributed processing 

using incremental strategy. Incremental Leaky LMS solves the drift problem, by introducing 

leakage factor which results in the energy leakage preventing weight to go unbounded. But it 

introduces bias in the mean value of parameter estimate i.e. it will not converge to optimum 

value.  



35 
 

CHAPTER  4 

 INCREMENTAL MODIFIED LLMS   

4.1. Introduction 

            LLMS is proposed to overcome the problem of parameter drift arising in conventional 

LMS algorithm [10] [16]. Although LLMS mitigates the drift issue, the overall performance 

is same as that of LMS algorithm. Modified Leaky LMS is the enhanced version, which 

overcomes drift problem as well as provides better performance than LLMS [19]. This better 

performance is accomplished at the cost of slightest increase in the computational 

complexity.  

4.2. Modified LLMS 

            The LMS algorithm is one of the most famous adaptive algorithms for linear 

estimation due to its simplicity and ease of implementation. This has led to the development 

of variations of LMS algorithm, which are available in the literature. Some of the improved 

versions of LMS include NLMS, sign LMS, variable step size LMS, sign error LMS, sign 

regressor  LMS etc... All these improved versions are developed to achieve faster 

convergence and better MSE.  

One of the main difficulties facing with LMS algorithm is the drift problem, where the 

parameter estimate will diverge despite of the bounded input conditions [7] [8]. The leaky 

LMS (LLMS) is a modified version of conventional LMS algorithm and it overcomes the 

drift problem by bounding the parameter estimate using the leakage factor in the weight 

update equation. LLMS also solves the problems like stalling and improves stability, tracking 

capability. The main drawback of LLMs is its convergence speed. Though LLMS solves the 

drift problem, the convergence speed and MSE performance is almost same as that of LMS 

algorithm. A novel algorithm is proposed in the literature to improve the convergence speed 

based on the Least Sum of Exponentials algorithm (LSE) [20].  

LMS uses the second order error function, such Second Order Statistic (SOS) algorithms are 

very easy to implement and have less computational complexity [10]. Higher order error 

power algorithms like Least Mean Fourth (LMF) algorithm comes under Higher Order 
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Statistic (HOS) algorithms, which have high computational complexity, faster convergence 

rate and instability issues [10] [18]. To make use of both the advantages of SOS and HOS, 

mixed norm gradient descent algorithms have been developed [20]. LSE is one of such mixed 

norm gradient descent algorithm, which considers infinite number of error powers in the cost 

function. LSE algorithm employs sum of exponentials of errors in the cost function, which is 

the generalization of the mixed norm stochastic gradient algorithms. The cost function of the 

Modified Leaky LMS (MLLMS) algorithm is defines as below:  

            
2

exp exp TJ k e k e k w k w k     (4.1) 

So the error surface of the cost function defined in eq.4.1 is smooth and convex, which 

improves the convergence speed. MLLMS is the modification of LSE [19]. The error surface 

will be steeper and so the convergence speed is faster than the LLMS algorithm [20]. 

Where   e k  is the error defined as below: 

( ) ( ) ( ) ( 1)Te k d k u k w k    (4.2) 

Differentiating eq. 4.1 with respect to  w k  , we get 

 

 
            2 exp exp 2

J k
u k e k u k e k w k

w k





      

(4.3) 

Now the weight update equation is given as: 

   
 

 
1

2

J k
w k w k

w k




    

(4.4) 

Substituting eq.4.3 in eq.4.4, the resulting update equation is as below: 

          1 1 2 sinhw k w k u k e k      (4.5) 

 

4.3. Proposed Framework 

            Incremental Modified Leaky LMS algorithm is proposed to improve the performance 

of ILLMS. So IMLLMS will overcome drift problem with improved performance compared 

to ILMS.  



37 
 

4.3.1 Data Model and Assumptions 

            The data model and the assumptions used for carrying out the performance analysis of 

the adaptive algorithm are listed below: 

 The desired unknown vector    relates {  ( )     } as 

  ( )       
    ( ) 

(4.6) 

Where   ( ) is white noise sequence with variance      
  and independent of 

{  ( )     } for   all l,j. 

      is independent of      for k   (Spatial independence). 

      is independent of      for     (time independence). 

 

node 2

2 2,{ ( ), }id i u
node 3 node 4

node N

node 1 node N-1

,{ ( ), }N N id i u

1 1,{ ( ), }N N id i u 1 1,{ ( ), }id i u

4 4,{ ( ), }id i u3 3,{ ( ), }id i u

Node K, Time i 

Receive 1( )k i  from node K-1 

Update ( )
k

i using Modified 

Leaky LMS algorithm  

1 , 1( ) (1 ) ( ) 2 sinh( ( ))k k k i ki i u e i      

Transmit ( )k i to next node 
 

 
 

Fig. 4.1. Data Flow and updation in Incremental modified leaky LMS 

Fig.4.1. shows the data flow and the weight updation in IMLLMS strategy in a distributed 

adaptive sensor network with N nodes.Incremental Modified LLMS algorithm can be shown 

as below: 
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Algorithm for Incremental Modified LLMS Solution  

 

Let ( )i

k  denote a local estimate of 0w  at node k at time i.  

Start with 
1 0w   

For each time 0i  , repeat : 

Set 
( )

0 1

i

iw   

For nodes 1k  to N , repeat : 

Receive ( )

1

i

k 
from previous node 

( ) ( ) * ( )

1 , , 1(1 ) 2 sinh( ( ) )i i i

k k k k k i k k i ku d i u          1, 2, ..., Nk   

End 

( )i

i Nw   

Send iw to node 1 

End 

 

4.4. Simulation Results & Discussion 

            The computer simulations are provided by performing 300 independent experiments 

and averaging. ILLMS and IMLLMS are implemented and then compared in terms of 

convergence speed, MSE, MSD and EMSE. The input at each node is considered as shift 

structure in order to cope up with the realistic scenarios. The regression vectors are filled up 

as below: 

 , ( ), ( 1),...., ( 1)k i k k ku col u i u i u i M   
 

The measurement data   
( )

 are generated at each node by using the regular data model as 

mentioned in eq.4.6 and the desired M×1vector to be estimated is  set as    =col {1, 

1,…,1}/√  , where M is the tap size and take as M=5. The quantities of interest are defined 

as below: 
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EMSE (Excess Mean square error) = |    (  
( )   ̅ )|

 
    (4.7) 

MSE (Mean square error)   = |  ( )          
( )|

 
  (4.8) 

MSD (Mean square deviation)  = |(  
( )   ̅ )|

 
    (4.9) 

 

A network of 20 nodes is considered in this experiment i.e. N=20 with each input regressor of 

size  1 5 . The input is created by a first order auto regressive model given as below:  

     00.2 1k k ku i u i i    (4.6) 

Where  0 k  is a WGN with mean zero and variance 
0

2

n =0.36. The input signal is assumed 

to be corrupt with white Gaussian noise with zero mean and variance 
0

2

v =0.0001. Step size 

taken as 0.003   and leakage factor considered as  0.01  . The learning curves for MSE, 

EMSE, MSD for IMLLMS and ILLMS at node 1 are shown in Fig.4.2, Fig.4.3, Fig 4.4. 

 

Fig.4.2. MSE at  node 1 for Incremenatl LLMS and Incremental MLLMS 
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Fig.4.3. EMSE at  node 1 for Incremenatl LLMS and Incremental MLLMS 

 

 

 Fig.4.4. MSD at  node 1 for Incremenatl LLMS and Incremental MLLMS 
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A new algorithm has been proposed which improves the performance of ILLMS by 

implementing MLLMS in place of LLMS, which is obtained by slight modification of cost 

function of LLMS according to the LSE algorithm. Simulation results show that the 

IMLLMS algorithm outperforms the ILLMS in terms of convergence rate and the steady state 

performance in the presence of white Gaussian noise. 
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CHAPTER  5 

 CONCLUSION AND FUTURE WORK   

            Distributed sensor signal processing has a huge scope due to its wide range of 

applications. The parameter of interest has to be estimated using a variety of algorithms that 

have been developed for this purpose. The centralized solution for the parameter estimation 

in wireless sensor networks requires a high power central processor and huge amounts of 

communication between the nodes. An incremental adaptive distributed solution minimizes 

the communication burden and power consumption. In this thesis work various adaptive 

algorithms like LMS, LLMS, and MLLS are implemented for parameter estimation. The 

choice of the adaptive algorithm depends on the requirement, computational complexity and 

the convergence rate. Incremental LMS is the simplest algorithm used for parameter 

estimation in a distributed network containing independent nodes which are adaptive. 

Simulation results of ILMS conclude that the MSD is uniform at all the nodes in the network, 

even though all the nodes are having different noise levels, which signifies good performance 

of the network. MSE reflected the background noise and there is an excellent match between 

the simulation and theory results.  

            An efficient approach to solve the drift problem that arises in distributed incremental 

LMS approach due to finite precision effects, quantization errors, inadequate or ill-

conditioned inputs has been developed by implementing Leaky LMS algorithm for 

distributed processing using incremental strategy. Incremental Leaky LMS solves the drift 

problem, by introducing leakage factor which results in the energy leakage preventing weight 

to go unbounded. But it introduces bias in the mean value of parameter estimate i.e. it will not 

converge to optimum value. Mathematical analysis is provided to explain the drift problem 

for LMS and to show how LLMS solves it. To improve the performance of ILMS and 

ILLMS, IMLLMS is proposed. IMLLMS algorithm converges faster with a better steady 

state performance with a slight increase in the computational complexity. IMLLMS have 

both the benefits of improved performance and drift problem removal. 

            All the adaptive algorithms are applied under Gaussian noisy environment. The work 

can be extended to impulsive noise, where outliers come into picture. IMLLMS can be used 
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to deal impulse noise and Gaussian correlated noise. Incremental mode of cooperation is 

considered throughout the work, but malfunctioning of a single node in this mode results in 

network failure. All the algorithms implemented in this thesis can be implemented in other 

modes of cooperation which could be the future work. Block Leaky LMS and Block 

Modified Leaky LMS can be implemented in incremental mode so that the computational 

complexity decreases. 
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