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ABSTRACT

In this thesis we will have a study on homology theory of CW - complexes with an

emphasis on finite-dimensional CW -complexes. We will first give a brief introduction

on basic definitions and basic preliminaries of topological space and definition of CW -

complexes and brief discussion on some important keywords in CW -complexes. Then

certain definitions on singular homology theory of CW -complexes will be discussed.

Then, we will give a brief discussion on axioms of homology theory for topological

spaces and axioms of homology theory for CW -complexes. Finally, we will discuss

Whitehead theorem and its proof.
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Chapter 1

INTRODUCTION

For homology theory the most tractable family of topological spaces seems to be

the family of CW -complex. A CW -complex is made of basic building blocks called

cells.

In this dissertation,we have done a review of the homology theory and CW -

complexes. For this study in Chapter 2, we have done the preliminary results of

topological spaces, Hausdorff spaces, continuous function and so on.

In chapter 3, we have recalled the definition of CW -complexes. For this study

firstly we have gone through quotient space, adjuction spaces, pushout, attaching

maps. We have given vivid description of CW -complexes with examples.

In chapter 4, we have studied singular homology theory of topological spaces.For

this study first we interact free abelian group and an important concept from lin-

ear algebra, namely, affinely independent.This content is required to define standard

n-simplex. These seven homology theories are in algebric topology. The most im-

portant one is singular homology theory. This homology theory has been applied to

CW -complexes.
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In chapter 5, we have shown that Singular homology theory of topological spaces

for CW -complexes. The main purpose of this theorem is to study Whitehead Theo-

rem, which is the main intention of our work.

In all the result, definition and examples the appropriate reference have been added.

In case, In any event, if the appropriate reference is missing, then the author renders

her sincere apology for this.
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Chapter 2

TOPOLOGICAL

PRELIMINARIES

In this chapter we recall the general topology, some definition and results. Some more

definitions and results are included in the relevant chapters which serve as the base

and background for the subsequent chapters and when required, we shall keep on

referring back to it. For further details,refer [4].

2.1. Topological spaces

A topology on a set X is a collection = of subsets of X have the following properties.

1. ∅, X ∈ T .

2. The union of elements of any subcollection of T is in T .

3. The intersection of elements of any finite subcollection of T is in T .

A set X with a topology T is called a topological space(X,T ). If X is a topological

space with topology T , a subset U of X is called an open set of X if U ∈ T .

Basis

If X is a set, a basis for a topology on X is a collection B of subsets of X such that
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1. For each x ∈ X,

there is at least one basis element B. containing x.

2. If x ∈ B1

⋂
B2,

then there exists a basis element B3 containing x such that B3 ⊂ B1

⋂
B2.

The topology generated by B is defined as follows: A subset U of X is said to be

open in X if for each x ∈ U , there is a basis element B ∈ B such that x ∈ B and

B ⊂ U .

2.2. Types of topologies

There are some other topologies for a set X which are defined in the following.

1. Discrete topology : If X be any set, the collection of all subsets of X is called

as discete toplogy.

2. Indiscrete topology : Let X be any set, the set ∅, X is called trivial topology

or indiscrete topology .

3. Standard topology : The topology generated by B = {(a, b)|a, b ∈ R, a < b}
is called standard topology on the real line.

4. Product Topology :Let X be defined as X :=
∏
i∈I
Xi, then the Cartesian

product of the topological spaces Xi, i ∈ I, and the canonical projections

pi : X → Xi, the product topology on X is defined to be the coarsest topology

(i.e. the topology with the fewest open sets) for which all the projections pi are

continuous.

5. Subspace topology : Let X be a topological space with topology T .If Y is

a subset of X, the collection TY = {Y ∩ U |U ∈ T } is a topology, called the

Subspace topology and Y is called as a Subspace of X.

2.3. Hausdorff space

Consider,the space R and R2, where all one point sets are closed. But if we consider

the topology on three point set {a, b, c},the point set {b} is not closed. Since neigh-

borhood of b intersecting both neighborhood of a and c which are not in b. If we
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consider xn = b for all n, converges not only to the point b, but also to the point a

and to the point c which misleading the conception that the properties of convergent

sequence in R and R2. Hence, a new topology arised to overcome the problems which

is discussed below.

Definition 2.3.1. A topological space X is called Hausdorff space if for each pair

x1, x2 of distinct points of X, there exist neighborhoods U1, U2 of x1, x2 respectively.

In Hausdorff space X, every finite point set is closed and sequence of points of X

converges to at most one point of X.

2.4. Continuous function

Let function is defined between topological spaces X and Y as f : X → Y and T

and T
′

be the topologies on X and Y respectively.Then both are equivalent.

(a) f is called continuous if for every U ∈ T
′
, ∃ f−1(U) ∈ T

(b) f is continuous at x ∈ X if for every neighborhood V of f(x) there exists a

neighborhood U of x such that f(U) ⊂ V .

Example 2.4.1. Let X be a non-empty set and let P1 and P2 be two partitions on

X and let T1 and T2 be the two associated partition topologies on X. Let f : X → X

be the identity function f(x) = x whose domain is equipped with T1 and codomain

with T2. Then f is continuous if and only if every element in P2 is a union of elements

from P1.
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Chapter 3

CW -COMPLEXES

The purpose of this chapter is to introduce the definition of CW -complexes of an

arbitrary topological space.

3.1. Quotient space

Let (X,T ) be the topological space and ∼ be an equivalent relation on X.Then

X/ ∼= X∗ is the set of all equivalent classes in X, such that X∗ = {[x]|x ∈ X} and

the function p : X −→ X∗ is called natural projection function defined as p(x) = [x],

then T ∗ = {O ⊂ X∗|p−1(O) ∈ T } is called as quotient topology and the mapping p

is called as quotient map and X∗ is called as quotient space.

Example 3.1.1. (Quotienting out by a subset). Let (X,TX) be a topological space

and let A ⊂ X be a subset of X. Let Y be the set Y = (X − A) ∪ {a} where a is

some abstract element not in X. Define the function p : X → Y by

π(x) =

{
x, x ∈ X − A;

a, x ∈ A.

and note that it is surjective. The space (Y,TX/π) is typically denoted by (X/A,TX/A)

and referred to as the quotient of X by A. Note that it is the quotient space X/PA

associated to the partition PA = {A, {x}|x ∈ X − A} of X.
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3.2. Adjunction space

Let X,Y be Hausdorff spaces and A ⊂
closed

X. Let g : A → Y . Define an equivalence

relation ∼ on X
∐
Y as a ∼ g(a), ∀ a ∈ A and z ∼ z, for all z ∈ ((X−A)

⋃
(Y −g(A)),

then X
∐
Y/ ∼∼= Y

⋃
gX.

Example 3.2.1. Let X = D1 = {x ∈ R : |x| ≤ 1} = [−1, 1], A = {−1, 1}, Y = {y0}.
Define g : A→ Y by g(−1) = g(1) = y0, then Y

⋃
gX
∼= S1.

3.3. Pushout

A diagram consisting of two morphisms f : A→ B and s : A→ C

A
f //

g
��

B

C

with a common domain is said to be a push-out diagram if and only if

1. the diagram can be completely be a commutative diagram.

A
f //

g
��

B

u
��

C v
// D

2. for any commutative diagram, i.e., uf=vg there exist a unique morphism θ :

D → Z such that

A
f //

g
��

B

u
�� s

��

C v
//

t //

D
θ

  
Z

such that θu = s and θv = t.
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Proposition 3.3.1. If

X
i //

iX ""

Y
⋃
gX

p
yy

X
∐
Y

and

Y
i //

iY ""

Y
⋃
gX

p
yy

X
∐
Y

then the following are true.

1. i(X − A) ⊂
open

Y
⋃
gX.

2. j(Y ) ⊂
closed

Y
⋃
gX.

3. i|X − A : X − A homeomorphism−−−−−−−−−→
onto its image

Y
⋃
gX.

4. j : Y
homeomorphism−−−−−−−−−→
onto its image

Y
⋃
gX.

5. X and Y are compact ⇒ Y
⋃
gX is compact.

3.4. Attaching maps

Let X = Dn A = Sn−1 Define g : Sn−1 → Y , then Y
⋃
gD

n is said to obtained

b attaching n-cells to Y . Then g : Sn−1 → Y is called an attaching map and

f : (Dn, Sn−1)→ (Y
⋃
enα, Y ) is called characteristic maps.

Example 3.4.1. Let X = D1 = [−1, 1], S = S0 = {−1, 1}. Define g : S0 → Y by

g(−1) = y0, g(1) = y1, y0 6= y1.

3.5. CW -complexes

A CW -complex X consists of

1. X is a Hausdorff topological space.
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2. X has the structure of a cell complex.

(a) A cell complex on X is a collection {enα : α ∈ Jn, Jn is an indexing set of

an non-negative integers } of subsets of X.

(b) {e0
α, α ∈ J0, an indexing set of non-negative integers}, are called 0-cells.

{e1
β, β ∈ J1, an indexing set of non-negative integers }, are called 1-cells.

...

{enδ , δ ∈ Jn, an indexing set of non-negative integers}, are called n-cells.

(c) X0 is called as 0-skeleton of X,defined as the collection of all 0-cells i.e.,

X0 = {e0
α : α ∈ J0, an indexing set} X1 is called as 1-skeleton of X,defined

as the collection of all 0-cells and 1-cells i.e., X1 = X0
⋃
{e1

β : β ∈

J1, an indexing set of non-negative integers} ... Xn is called as n-skeleton of

X defined as the collection of all 0-cells and 1-cells and · · · n-cells i.e., Xn =

X0
⋃
X1

⋃
· · ·

⋃
Xn−1

⋃
{enδ : δ ∈ Jn, an indexing set of non-negative integers}

(d)

|X0| =
⋃
α∈J0

e0
α ⊂
subsapces

X

|X1| =
⋃
α∈J0

e0
α

⋃ ⋃
β∈J1

e1
β ⊂
subsapces

X

...

|Xn| =
⋃
α∈J0

e0
α

⋃ ⋃
β∈J1

e1
β · · ·

⋃ ⋃
δ∈Jn

enδ ⊂
subsapces

X

⋃
α∈Jr

0≤r<∞

erα ⊂
subsapces

X

14



(e) ⋃
α∈Jr

0≤r<∞

erα = X

ėrα = erα
⋂
|Xn−1| = boundary ofėnα

e̊nα = ēnα − ėnα

e̊nα
⋂

e̊mβ 6= ∅ ⇒ n = m,α = β

X =
⋃
α∈Jr

0≤r<∞

e̊rα

The map f : (Dn, Sn−1)→ (en, e̊m) is surjective and maps Dn−Sn−1 = D̊n

homeomorphically into en − e̊n = ėn

The cells en is compact and hence closed in X.

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X

Xn is discrete space.

X1 is obtained from X0 by attaching 1-cells by the characteristic map

f : (D1, S0) → (X0, ∅), X2 is obtained from X1 by attaching 2-cells by

the characteristic map f : (D2, S1) → (X1, X0) · · · Xn is obtained from

Xn−1 by attaching n-cells by the characteristic map f : (Dn, Sn−1) →
(Xn−1, Xn−2)

3. Closure Finite Property : For each cell enα,its closure ēnα intersects only a

finite number of cells.

4. Weak Topology: A set B is open in X iff B
⋂
enα is open in enα for each n,α.

15



Chapter 4

SINGULAR HOMOLOGY

THEORY OF TOPOLOGICAL

SPACES

The purpose of this chapter is to introduce the singular homology theory of an arbi-

trary topological space. The essential computational tool is stated by following the

definitions and proof of homotopy invariance. The results discussed in this chapter

are applied to prove number of classical theorem : Whitehead theorem. For further

details, refer to [5] and [6].

4.1. Free abelian group

Let S be a non-empty set. Free abelian group generated by S is an abelian group

F (S) satisfying following properties.

• There exists a function i : S → F (S)

• For any abelian group A and a function j : S → A. Then there exists a unique

homomorphism ϕ : F (S) → A such that j = ϕi i.e., the following diagram

commutes.

S
i //

j
��

F (S)
Φ

||
A

16



This is called the universal property of F(S). The free abelian group is written

as (F (S), i) or simply F (S).

Proof. Let fun(S,Z) = {f : S → Z : f takes non-zero values only a finite subset of

S } and f, g ∈ fun(S,Z) such that (f + g)(s) = f(s) + g(s), s ∈ S (−f)(s) = −f(s)

0(s) = 0 for all s ∈ S. Then fun(S,Z) is an abelian group. Define a function s : S →
Z by the following.

s(x) = δsx =

{
1, x = s;

0, otherwise.

Let f ∈ fun(S,Z) be arbitrary. Let f(s1) = n1,f(s2) = n2,· · · ,f(sk) = nk, where

s1, s2, . . . , sk ∈ S. Clearly f = n1s1 + n2s2 + · · · + nksk Define a function i : S →
fun(S,Z) by i(s) = s, for alls ∈ S. Let A be any abelian group and j : S → A be

any function.

Define a function ϕ : fun(S,Z) → A by ϕ(f) = n1j(s1) + n2j(s2) + · · · + nkj(sk)

Thus the diagram

S
i//

j
��

Fun(S,Z)

Φ
zz

A

commutes and ϕ is unique.

4.2. Affinely independent

A subset S ⊂ Rn is called affinely independent if and only if for every finite subset

s0, s1, . . . , sk ⊂ S, the objects s1 − s0, . . . , sk − s0 are linearly independent.

Proposition 4.2.1. Let S ⊂ Rn.the following are equivalent.

1. S is affinely independent

2. For every finite subset s0, s1, . . . , sk ⊂ S,
∑k

i=0 tisi = 0 such that
∑k

i=0 ti = 0,

that implies ti = 0 for each i
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Proof. (1)⇒ (2) Let s0, s1, . . . , sk ⊂ S, then by the definition of affinely independent,∑k
i=0 tisi = 0,

∑k
i=0 ti = 0

0 =
k∑
i=0

tisi =
k∑
i=0

tisi − (
k∑
i=0

ti)s0 =
k∑
i=1

(si − s0)ti

Now since s1 − s0, . . . , sk − s0 are L.I, we have si = 0, i = 0, . . . , k. Hence s0 = 0

(2)⇒ (1) Let s0, s1, . . . , sk ⊂ S, then
∑k

i=0 ci(si − s0) = 0.

0 =
k∑
i=0

ci(si − s0) =
k∑
i=0

cisi + (−
k∑
i=1

ci)s0

Let t0 = −
∑k

i=1 citi = ci, i = 1, . . . , k. Hence
∑k

i=0 tisi = 0,
∑k

i=0 ti = 0. Thus ti = 0

for each i and ci = 0 for each i

4.3. Standard n-simplex

Let R∞ = {x = (xi)
∞
i=0 : xi ∈ R, with only a finite number of non-zero entries } i.e.,

en = {0, 0, . . . , 1, 0, . . .}, e0 = {1, 0, . . .}, e1 = {0, 1, 0 . . .} and so on. Then the convex

set generated by {e0, e1, . . . , en} is called as standard n-simplex and denoted by ∆n

i.e., ∆0 = e0 Let ∆1 be the convex set generated by {e0, e1} = {t0(1, 0, . . .) +

t1(0, 1, 0, . . .)} for each t0, t1 ∈ I such that t0 + t1 = 1. Thus ∆1 = {(t0, t1, 0, · · · ) :

t0, t1 ∈ I, t0 + t1 = 1}

Properties of ∆n

• ∆n is path connected(hence connected).

• ∆n is compact.

• the set of vertices e0, e1, . . . , en is affinely independent.

18



4.4. Face maps

For 0 ≤ i ≤ n, define ∂in : ∆n−1 → ∆n by

∂in(ek) =

{
ek, k < i;

ek + 1, k ≥ i.

Since ∆n−1 is the convex set generated by e0, e1, . . . , en−1, each x ∈ ∆n−1 can be

written as x =
∑n−1

k=0 tkek, ∂
i
n(x) =

∑n−1
k=0 ∂

i
n(ek) For n = 1 ∂i1 : ∆0 → ∆1, i = 0, 1,

∂0
1 , ∂

1
1 : ∆0 → ∆1, ∂0

1(e0) = e1∂
1
1(e1) = e0. For n = 2 ∂i2 : ∆1 → ∆2, i = 0, 1, 2,

∂0
2 , ∂

1
2 , ∂

2
2 : ∆1 → ∆2, ∂0

2(e0) = e1, ∂
1
2(e1) = e2, ∂1

2(e0) = e0, ∂
1
2(e1) = e2, ∂2

2(e0) =

e0, ∂
2
2(e1) = e1.

4.5. Singular n-simplex

Let X be a topological space, then the map σn : ∆n → X is called a singular n-simplex

of X and Sn(X) is called as free abelian group generated by singular n-simplices σn

and the element of Sn(X) is called an n-chain of X.

For n ≥ 0 and for an n-chain c ∈ Sn(X), let

c = n1σ1 + n2σ2 + . . .+ nkσk

Then for i = 0, 1, . . . , n, σ ◦ ∂in is a singular (n-1)-simplex.

Define

dn : Sn(X) −→ Sn−1(X)

such that

dn(σ) =
n∑
i=0

(−1)nσ ◦ ∂in.

Proposition 4.5.1. For a singular n-simplex σ in X, d2 = 0.
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Proposition 4.5.2. Let

Sn(X)
dn // Sn−1(X)

dn−1 // Sn−2(X)

We prove that dn−1dn = 0.

Proof.

dn−1dn(σ) = dn−1

n∑
j=0

(−1)jσ ◦ ∂jn

=
n∑
j=0

(−1)jdn−1(σ ◦ ∂jn)

=
n∑
j=0

(−1)j
n−1∑
i=0

(−1)iσ ◦ ∂jn ◦ ∂in−1

=
n∑
j=0

n−1∑
i=0

(−1)i+jσ ◦ ∂jn ◦ ∂in−1

=
∑

0≤i<j≤n

(−1)i+jσ ◦ ∂jn ◦ ∂in−1 +
∑

0≤j≤i≤n−1

(−1)i+jσ ◦ ∂jn ◦ ∂in−1

=
∑

0≤i≤j≤n−1

(−1)i+jσ ◦ ∂jn ◦ ∂in−1 +
∑

0≤j≤i≤n−1

(−1)i+jσ ◦ ∂jn ◦ ∂in−1

Let i = j′ and j − 1 = i′

dn−1dn(σ) =
∑

0≤j′≤i′≤n−1

(−1)i
′+j′+1σ ◦ ∂in ◦ ∂

j−1
n−1 +

∑
0≤j≤i≤n−1

(−1)i+jσ ◦ ∂jn ◦ ∂in−1

+
∑

0≤j′≤i′≤n−1

(−1)i
′+j′+1σ ◦ ∂j′n ◦ ∂i

′

n−1 +
∑

0≤j≤i≤n−1

(−1)i+jσ ◦ ∂jn ◦ ∂in−1

= 0
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4.6. Singular homology

The chain complex is defined as

· · · // Sn+1(X)
dn+1 // Sn(X)

dn // Sn−1(X)
dn−1 // · · · // S1(X)

d1 // S0(X) // 0

Definition 4.6.1. Group of n-cycles is defined as

Zn(X) = ker(dn)

= {σ ∈ Sn(X) : dn(σ) = 0}

Definition 4.6.2. Group of n-boundaries is defined as

Bn(X) = Im(dn+1)

= {dn+1(σ) : σ ∈ Sn+1(X)}

Proposition 4.6.3.

Bm(X) ⊂ Zn(X)

Proof. Since

dn ◦ dn+1(σ) = 0

⇒ Bm(X) ⊂ Zn(X)

Let f : X → Y , then there exists an induced homomorphism f] : S∗(X) → S∗(Y )

such that f](σ) = f ◦ σ : ∆n −→ X −→ Y .

Proposition 4.6.4.

1. If IX : X → X,then there exists a induced homomorphism IX] : Sn(X) →
Sn(X) called as identity homomorphism.

2. If f : X → Y and g : Y → Z ,then there exists f] : Sn(X) → Sn(Y ) and

g] : Sn(Y )→ Sn(Z) ,such that (g ◦ f)] = g] ◦ f]
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Proof. (1) IX](σ) = IX ◦ σ = σ. Since σ is arbitrary,IX] is a identity homomorphism.

(2)

(g ◦ f)](σ) = [gfσ]

= g](fσ)

= g] ◦ f](σ)

Since σ is arbitrary,this implies (g ◦ f)] = (g)] ◦ (f)]

4.7. Mapping cylinder

Let f : X → Y be a map of spaces. Then the mapping cylinder Mf is obtained

by gluing a cylinder X ∗ I on Y by identifying points (x, 1) equivalent to f(x)and is

defined by the following pushout:

X
f //

i
��

Y

j
��

X ∗ I
k
//Mf

i.e

Mf =
(X ∗ I)

∐
Y

(x, 1) ∼ f(x)
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Chapter 5

SINGULAR HOMOLOGY

THEORY FOR CW -COMPLEXES

5.1. Homology theory for topological space

By a homology theory H on C , H be a function assign to each topological space

(X,A) in a catagory C .For each integer q, an abelian group there exists a q-dimensional

homology group Hq(X,A) of topological pair (X,A). ∗ is assigned to each map

f : (X,A) → (Y,B) in C as f∗ : Hq(X,A) → Hq(Y,B) called as the homomorphism

induced by the map f in the homology theory H .

Let

∂ = ∂(X,A, q) : Hq(X,A)→ Hq−1(A)

be the boundary operator on the group Hq(X,A) in H
(a) Axiom-1: Commutativity axiom

If f : (X,A) −→ (Y,B) and g : A −→ B such that f(x) = g(x) ∀x ∈ A, then

∂of∗ = g∗ ◦ ∂ i.e.

Hq(X,A)
f∗ //

∂
��

Hq(Y,B)

∂
��

Hq−1(A)
g∗=(f |A)∗

// Hq−1(B)

(b)Axiom-2: Homotopy axiom

If f, g : (X,A) −→ (Y,B) such that f ' g, then there exist induced homomorphisms

f∗, g∗ : Hq(X,A) −→ Hq(Y,B) such that f∗ = g∗.
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Proof. To show f∗ = g∗, it is sufficient to show that : f], g] : S(X)→ S(Y ) are chain

homotopic i.e. there exists T1 : S(X)→ S(Y ) such that ∂T1 + T1∂ = f] − g]
f ' g implies that there exists a homotopy

F : (X ∗ I, A ∗ I)→ (Y,B)

such that

F (x, 0) = f(x), F (x, 1) = g(x) ∀x ∈ X

Define

g0, g1 : (X,A)→ (X ∗ I, A ∗ I)

by

g0(x) = (x, 0), g1(x) = (x, 1)∀x ∈ X

(Y,B)
77

f
OO

F

gg
g

(X,A) g0
// (X ∗ I, A ∗ I) oo g1 (X,A)

such that

f = F ◦ g0

g = F ◦ g1

Let

g0], g1] : S(X)→ S(X ∗ I)

such that there exists a homomorphism

T : S(X)→ S(X ∗ I)

which satisfy the following.

∂T + T∂ = g0] − g1]

That implies

⇒ F](∂T + T∂) = F](g0] − g1])

⇒ F](∂T ) + F](T∂) = F](g0])− F]g1]

⇒ ∂(F])T + (F]T )∂ = f] − g].
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Then

F]T : S(X)→ S(Y )

is chain homotopy between f] and g].

Let

τn ∈ Sn(An)

For any

σn : ∆n → X

σ] : Sn(∆n)→ Sn(X)

such that

σ](τn) = σ.

Define

T : Si(X)→ Si+1(X ∗ I)

for all X, n > 0 and i < n such that

∂T + T∂ = g0] − g1].

Assume that for any

h : X → W

Si(X)
TX //

h]
��

Si(X ∗ I)

(h∗I)]
��

Si(W )
TW
// Si+1(W ∗ I)

commutes for all i < n

TX(σ) = TX(σ](τn)) = (σ ∗ I)](T∆n(τn))

So to define TX it is sufficient to define T∆n on Sn(∆n).

Let d be the singular n-simplex on ∆n.

Let

c = g0](d)− g1](d)− T∆n(∂d).
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Then

∂c = ∂g0](d)− ∂g1](d)− ∂T∆n(∂d)

= g0](∂d)− g1](∂d)− (g0](∂d)− g1](∂d)− T∆n∂(∂d))

= 0

Thus c is a cycle of dimension n in the convex set σn ∗ I. Hence c is the boundary.

Let b ∈ Sn+1(∆n ∗ I) with

∂b = c

Define

T∆n(d) = b

∂T (d) + T∂ = g0](d)− g1](d)

By definition for TX on n-chains of X

∂TX + TX∂ = g0] − g1]

g0](σ) = g0]σ](τn) = (σ ∗ I)]g0](τn)

and similarly

g1](σ) = g1]σ](τn) = (σ ∗ I)]g1](τn)

now

∂T (d) + T∂(d) = ∂Tσ](τn) + T∂σ](τn)

= ∂(σ ∗ I)]T (τn) + ∂(σ)]T (τn)

= (σ ∗ I)]∂T (τn) + (σ ∗ I)]T∂(τn)

= (σ ∗ I)](g0](τn)− g1](τn))

= g0](σ)− g1](σ)

(c)Axiom-3: Composition axiom

If

X
g◦f

--
f

// Y g
// Z
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,then

Hq(X,A)
g∗◦f∗

..
f∗

// Hq(Y,B) g∗
// Hq(Z,C)

Proof. Let f : (X,A)→ (Y,B) and g : (Y,B)→ (Z,C), then for any [z] ∈ Hq(X,A)

,

(g ◦ f)∗[z] =[(g ◦ f)](z)]

= [g]f](z)]

= g∗[f](z)]

= g∗f∗[z]

Since [z] is arbitrary, (fg)∗ = f∗g∗ for all [z] ∈ hn(X,A).

(d)Axiom-4: Excision axiom

U be a open set of a topological space X such that U ⊂ U ⊂ Ao ⊂ A ⊂ X and

e : (X\U,A\U) ↪→ (X,A), then e∗q : Hq(X\U,A\U) ∼= Hq(X,A)(isomorphic), where

e is called as excision of U and e∗q is q -dimensional excision isomorphism.

Proof. Refer to Theorem 2.20 in [1]

(e) Axiom-5: Exactness axiom

If i : A ↪→ X and j : X ↪→ (X,A), then

· · · // Hq+1(A)
i∗ // Hq+1(X)

j∗ // Hq(X,A) ∂ // · · ·

is exact.i.e.

1. im(i∗) ⊂ ker(j∗)

2. im(j∗) ⊂ ker(∂)

3. im(∂) ⊂ ker(i∗)

4. ker(j∗) ⊂ im(i∗)

5. ker(∂) ⊂ im(j∗)

6. ker(i∗) ⊂ im(∂)
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Proof. of (1) Let

· · · // Hq+1(A)
i∗ // Hq+1(X)

j∗ // Hq(X,A) ∂ // · · ·

Let α be any element of Hn(X) in the image Im(i∗) of the induced homomorphism

i∗. Then, by definition of Im(i∗), there exists an element β ∈ Hn(A) with

i∗(β) = α

Consider a singular cycle

z ∈ β ⊂ Cn(A)

By the definition of i∗,

[Cn(i)](z) ∈ α ⊂ Cn(X)

. Then by definition of j∗, we have

Cn(j)[Cn(i)(z)] ∈ j∗(α) ⊂ Cn(X,A)

Now,since

Cn(i) : Cn(A) ↪→ Cn(X)

is obviously the inclusion homomorphism and

Cn(j) : Cn(X) ↪→ Cn(X,A)

is obviously the natural projection, it follows that

Cn(j)[Cn(i)(z)] = 0 ∈ Cn(X,A)

This implies

j∗(α) = 0 ∈ Hn(X,A)

This implies

α ∈ ker(j∗)

Since α is arbitrary element of Im(i∗),this proves (1)
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Proof. of (2) Since

· · · // Hq+1(A)
i∗ // Hq+1(X)

j∗ // Hq(X,A) ∂ // · · ·

Let α be any element of Hn(X,A) in the image Im(i∗) of the induced homomorphism

i∗. Then by definition of Im(j∗), there exists an element β ∈ Hn(X) with

j∗(β) = α

Consider a singular cycle

z ∈ β ⊂ Cn(X)

By the definition of j∗,

[Cn(j)(z)] ∈ α ⊂ Cn(X,A)

Then by definition of j∗,we have

Cn(j)[Cn(i)(z)] ∈ j∗(α) ⊂ Cn(X,A)

Since Cn(j) is the natural projection of Cn(X) onto Cn(X,A),it follows from the

definition of boundary operator

∂ : Hn(X,A) −→ Hn(A)

that we have

∂(z) ∈ ∂(α) ⊂ Cn−1(A)

Since z ∈ Zn(X),we have ∂(z) = 0.This implies

∂(α) = 0 ∈ Hn−1(A)

Hence

α ∈ ker(∂)

Since α is arbitrary element of Im(j∗),this proves (2)

Proof. of (3) Since

· · · // Hq+1(A)
i∗ // Hq+1(X)

j∗ // Hq(X,A) ∂ // · · ·
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Let α be any element of Hn−1(A) in the image Im(∂) of the boundary operator ∂.

Then by definition of Im(∂), there exists an element β ∈ Hn(X,A) with

∂(β) = α

Consider a singular cycle

z ∈ β ⊂ Cn(X,A)

Now,since

Cn(j) : Cn(X)→ Cn(X,A)

is an epimorphism, there exists u ∈ Cn(X) such that

Cn(j)(u) = z

By the definition of the boundary operator ∂,

∂(u) ∈ α ⊂ Cn−1(A)

From the definition of i∗,

∂(u) ∈ i∗(α) ⊂ Cn−1(X)

Since ∂(u) ∈ Bn−1(X),this implies

i∗(α) = 0 ∈ Hn−1(X)

Hence α ∈ ker(i∗) Since α is arbitrary element of Im(∂),this proves (3)

Proof. of (4) Since

· · · // Hq+1(A)
i∗ // Hq+1(X)

j∗ // Hq(X,A) ∂ // · · ·

Let α be any element of Hn(X) in the ker Ker(j∗) of the induced homomorphism

j∗.Consider a singular cycle

z ∈ α ⊂ Cn(X)

Since j∗(α) = 0, we have

Cn(j)(z) ∈ Bn(X,A)
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Hence there exists y ∈ Cn+1(X,A) such that

∂n+1(y) = Cn(A)(z)

Since

Cn+1(j) : Cn+1(X)→ Cn+1(X,A)

is an epimorphism,there exists x ∈ Cn+1(X) such that

Cn+1(j)(x) = y

Then we have

Cn[z − ∂(x)] = Cn(z)− Cn[∂(x)] = Cn(z)− ∂[Cn+1(x)] = Cn(z)− ∂(y) = 0

This implies

z − ∂(x) ∈ Cn(A)

Since ∂[z − ∂(x)] = ∂(z)− ∂2(x) = 0,we have

z − ∂(x) ∈ Zn(A)

Let β ∈ Hn(A) which contains the singular cycle z − ∂(x). Since z ∈ α and ∂(x) ∈
Bn(X),

z − ∂(x) ∈ α ⊂ Cn(X,G)

.This implies

i∗(β) = α

Hence

α ∈ im(i∗)

Since α is arbitrary element of Ker(j∗),this proves (4)

Proof. of (5) Since

· · · // Hq+1(A)
i∗ // Hq+1(X)

j∗ // Hq(X,A) ∂ // · · ·

Let α be any element of Hn(X,A) in the ker Ker(∂) of the boundary operator

31



∂.Consider a singular cycle

z ∈ α ⊂ Cn(X,A)

Since,

Cn(j) : Cn(X)→ Cn(X,A)

is an epimorphism,there exists u ∈ Cn(X) such that

Cn(j)(u) = z

By definition of boundary operator ∂,

∂n ∈ ∂n(α) ⊂ Cn−1(A)

Since

∂n(α) = 0 ∈ Hn−1(A)

there exists v ∈ Cn(A) such that

∂n(u) = ∂n(v)

Let y = u− v ∈ Cn(X),we have

∂n(y) = ∂n(u) = ∂n(v) = 0

This implies

y ∈ Zn(X)

Let β ∈ Hn(X) which contains the singular cycle y. Since v ∈ Cn(A) ,we have

Cn(j)(y) = Cn(j)(u)− Cn(j)(v) = Cn(j)(u) = z

This implies

j∗(β) = α

Hence

α ∈ im(j∗)

Since α is arbitrary element of Ker(∂),this proves (5)
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Proof. of (6) Since

· · · // Hq+1(A)
i∗ // Hq+1(X)

j∗ // Hq(X,A) ∂ // · · ·

Let α ∈ ker(i∗).Choose a singular cycle

z ∈ α ⊂ Cn−1(A)

Since i∗(α) = 0 there exists u ∈ Cn(X) such that

∂(u) = z

Let

y = Cn(j)(u) ∈ Cn(X,A)

then

∂(y) = ∂[Cn(j)(u)] = Cn+1[∂(u)] = Cn+1(j)(z) = 0

This implies

y ∈ Zn(X,A)

Let β ∈ Hn(X,A) which contains the singular cycle y.Since

Cn(j)(u) = y

it follows from the definition of ∂(β) we have

z = ∂(u) ∈ ∂(β) ⊂ Cn−1(A)

This implies

∂(β) = α

Hence

α ∈ im(∂)

Since α is arbitrary element of Ker(∂),this proves (5)

For further details,refer theorem 7.1 of [2]
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(f) Axiom-6: Dimension axiom

If Hq(A) be a q dimensional homology group of a singleton spaceA,then Hq(A) = 0

∀ q 6= 0.

Proof. Let the chain homotopy be

· · · // Hn+1({∗}) dn+1 // Hn({∗}) dn // · · · // H2({∗}) d2 // H1({∗}) d1 // H0({∗})

and

· · · // Cn+1
dn+1 // Cn

dn // · · · // C2
// C1

// C0
// 0

Let

σn : ∆n → {∗}

such that

dn(σn) =
n∑
i=0

(−1)iσn∂
i
n

=

{
0, n odd;

σn−1, n even.

This implies

Hn({∗}) = Ker(dn)/Im(dn+1)

=

{
0, n even;

Cn/Cn = 0, n odd.

Hence Hn({∗}) = 0

5.2. Homology theory for CW -complexes

For each non-empty CW pair (X,A), there exists a sequence of abelian group hn(X,A).

If f : (X,A) → (Y,B), then f∗ : hn(X,A) → hn(Y,B) is called as a sequence of in-

duced homomorphism and the function defined on hn(X,A), ∂(n,X,A) : hn(X,A)→
hn−1(A) is called as boundary operator and any CW pair (X,A) the following axioms

are satisfied.

(a) Axiom-1: Identity axiom
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If Id : (X,A)→ (X,A), then there exists a induced homomorphism Id∗ : hn(X,A)→
hn(X,A) such that Id∗ = Id.

Proof. Suppose [z] ∈ hn(X,A).

Then Id∗[z] = [Id](z)] = [z] Since [z] is arbitrary, Id∗ = Id for all elements in

hn(X,A).

(b)Axiom-2: Composition axiom

If

X
g◦f

--
f

// Y g
// Z

,then

hq(X,A)
g∗◦f∗

..
f∗

// hq(Y,B) g∗
// hq(Z,C)

Proof. Refer to Axiom-4 of 5.1.

(c) Axiom-3: Homotopy axiom

If f ' g : (X,A) −→ (Y,B) ,then f∗ = g∗ : hq(X,A) −→ hq(Y,B)

Proof. Refer to axiom-2 of 5.1.

(d) Axiom-4: Commutativity axiom

If f : (X,A) −→ (Y,B) and g : A −→ B are such that f(x) = g(x) ∀x ∈ A, then

∂of∗ = g∗o∂ i.e.

hq(X,A)
f∗ //

∂
��

hq(Y,B)

∂
��

hq−1(A)
g∗=(f |A)∗

// hq−1(B)

(e) Axiom-5: Exactness axiom

If i : A ↪→ X and j : X ↪→ (X,A), then

· · · // hq+1(A)
i∗ // hq+1(X)

j∗ // hq(X,A) ∂ // · · ·

is exact.

Proof. Refer to Axiom-4 of 5.1.
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(f) axiom-6 :

For a wedge sum X =
∨
αXα with inclusions

iα : Xα ↪→ X,

the direct sum map
⊕

α iα∗ :
⊕

α h̃n(Xα)→ h̃n(X) is an isomorphism for each n.

(g). Axiom-7: Dimension axiom

For a single point space {∗},the n dimensional homology group hn({∗}) = 0 for n 6= 0.

Proof. Refer to Axiom-5 of 5.1.

Definition 5.2.1. A pair (X,A) is 0-connected if every path component of X meets

A i.e. path connected.

Definition 5.2.2. A pair (X,A) is called as n-connected iff

1. (X,A) is 0-conneted.

2. πr(X,A, a) = 0 for all 1 ≤ r ≤ n for all a ∈ A

Proposition 5.2.3. For any pair (X,A) is n-connected, n ≥ 0 iff there exists a

function i∗ : πr(A, x0) −→ πr(X, x0)

1. bijective for r < n

2. surjective for r = n for all x0 ∈ A

Definition 5.2.3 . f is called as n-equivalence if and only if (Mf , X) is n-connected.

5.3. Whitehead Theorem

Theorem 5.3.1. If (X,A) is an (n-1)-connected pair, for n ≥ 2 and A is 1-connected,

then

h : πq(X,A, x0)→ Hq(X,A, z)

is an isomorphism for q ≤ n and epimorphism for q = n+ 1.

Theorem 5.3.2 .Whitehead Theorem

Let f : X → Y be a map of spaces which are 0-connected (path connected). Then the

followings are true.
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1. If f is an n-equivalence (n = inf allowed) then f∗ : H̃q(X,Z) → H̃q(Y, Z) is

an isomorphism for q < n and epimorphism for q = n.

2. If X, Y are 1-connected and f∗ : H̃q(X,Z) → H̃q(Y, Z) is an isomorphism for

q < n and epimorphism for q = n then f is an n-equivalence.

Proof. (1) By the definition of n-equivalence, f is an n-equivalence if and only if

(Mf , X) is n-connected. Since

· · · // H̃n(X,Z)
f∗ // H̃n(Y, Z) // Hn(Mf , X;Z) ∂ // H̃n(X,Z)

f∗ // · · ·

is exact.

This implies f∗ : H̃q(X,Z)→ H̃q(Y, Z) is an isomorphism for q < n and epimorphism

for q = n iff

Hq(Mf , X, Z) = 0, for all q ≤ n.

Suppose f is a n-equivalence. Then πq(Mf , X, ∗) = 0 for all q ≤ n. By theorem 5.3.1,

since there exists a function such that

h : πq(Mf , X, ∗) −→ Hq(Mf , X, Z)

is an isomorphism, Hq(Mf , X, Z) = 0 , for all q ≤ n

(2) If

Hq(Mf , X, Z) = 0 for all q ≤ n

and X, Y are 1-connected this implies (Mf , X) is 1-connected. For n = 2, by theorem

5.3.1,

h : π2(Mf , X, ∗)→ H2(Mf , X;Z)

is an isomorphism.

If n ≥ 2, then (Mf , X) is 2-connected. If we continue by using mathematical

induction, we find (Mf , X) is n-connected i.e.f is n-equivalence.
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