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ABSTRACT 

Piezoelectric energy harvesting is one of the methods of obtaining energy from 

environment. It is often a cantilever beam with or without tip mass poled with piezoelectric 

material. The fixed end of cantilever beam is subjected to either base excitation or translation as 

occurring from an environmental source such as automobile or vibrating engine. The piezoelectric 

energy harvester generates maximum energy when it is excited at resonance frequency and the 

little variation below or above the resonance frequency will drastically reduce the power output. 

In this line, present work studies a broadband nonlinear piezoelectric energy harvester driven by 

periodic and random oscillations. The simulated response to the base excitation is illustrated in 

terms of harvested power. By introducing magnetic force, we can broaden the frequency zone so 

as to capture more energy even the beam do not vibrate close to source frequency. A magnetic tip 

is included at the free end of the cantilever beam and is excited by two permanent magnets fixed 

on either sides laterally. The symmetric bimorph cantilever beam piezoelectric energy harvester 

with magnetic tip is modeled as Single-degree of freedom lumped parameter system. The time 

domain history and frequency response diagrams for the cantilever displacement, voltage and 

power at the constant load resistance gives a stability picture as well as the amount of energy 

harvested. The effect of various parameters of energy harvester system on induced voltage and 

output power is studied. The distributed parameter model is formulated by using Euler-Bernoulli 

beam theory and Galerkin’s approximation technique. The finite element modeling equations are 

presented with piezoelectric coupling terms. Novelty in the work include; (i) adding a magnetic 

force in the system to make it as broadband harvester (ii) validation of approximation solutions 

with spring-mass modeling.   
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CHAPTER 1 

INTRODUCTION 

Energy harvesting materials and systems have emerged as a most important research fields 

and continues to grow at rapid pace. More precisely harvesting the energy from ambient waste for 

the purpose of running low-powered electronic devices has emerged during the last decade as an 

enabling technology for wireless applications. An energy harvester have been considered as a 

green resources and include several advantages such as long lifetime, high power density, low 

maintenance, simplicity of fabrication, etc. There are several sources available in the environment 

including sunlight, heat, vibrations, etc. which provoke in the development of various energy 

harvesters. Of various environmental energy sources vibration energy is found to be available 

widely and the mechanical vibrations can be converted into electrical energy in a simple way. The 

goal of the vibration-based energy harvesting technology is to supply power to the microelectronic 

devices such as sensors and actuators as well as to recharge storage devices like small batteries 

and capacitors. 

1.1 Vibration based energy harvesting 

There are main three conversion techniques available by which mechanical vibrations can 

be converted into electrical form namely electrostatic, electromagnetic and piezoelectric 

transduction [1, 2]. It can be seen that among all the alternatives available, piezoelectric 

transduction technique has received comparatively more attention because of high energy density 

as well as simplicity of conversion. If power density versus voltage output is compared for different 

transduction techniques, it can be seen that piezoelectric transduction receives the largest area in 

the plot with power density values comparable to those of lithium-ion batteries, electromagnetic 
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and thermoelectric generators [3]. Piezoelectric materials generates electric charge when they are 

subjected to dynamic strain. 

The cantilever beam with piezoelectric layers have been frequently used as a piezoelectric 

energy harvesters due to their high flexible behavior and low natural frequency. When vibration-

based cantilever beam energy harvester is excited at its resonance frequency it can generate 

maximum energy. When external frequency shifts below or above the resonance frequency, the 

performance of generator drastically reduces. The cantilever beam piezoelectric energy harvester 

is typically a substructure with one or two piezoceramic layers. If the piezoelectric layer is attached 

to only one side of the cantilever beam it is called as unimorph piezoelectric energy harvester. If 

the piezoelectric layer is attached to both the sides of cantilever beam it is called bimorph 

piezoelectric energy harvester. In the case of bimorph energy harvester; if the piezoceramic layers 

are oppositely poled in thickness direction then the configuration is known as series connection. 

Or else if the piezoceramic layers are poled in the same direction, configuration represents parallel 

connection. Piezoelectric energy harvesting system have wider operating range than other 

vibration based energy transduction mechanisms especially when dealing with low frequency 

ambient vibration. A tip-mass can be attached to the free end of the cantilever to reduce the 

excitation or natural frequency and increase its deflection. A conventional bimorph piezoelectric 

energy harvester with both the connections is shown in Fig. 1.1 below. A base excitation in the 

form of both translation (g) and rotation (h) is applied and the induced strain (displacement z) as 

well as voltage generated (as open circuit and short circuit) in both series and parallel 

configurations are illustrated. Due to load resistance (Rl), power is generated from the circuit. Just 

like solar, photovoltaic batteries the generated energy can be stored in small cells or could be used 

to drive directly the micro vehicle.    
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Fig. 1.1 Uniform bimorph piezoelectric energy harvester configurations with (a) Series 

connection (b) parallel connection of the piezoceramic layers 

For harvesting energy with a broadband time dependent frequency characteristics several 

approaches including oscillator arrays, oscillators with active frequency tuning, etc. were 

proposed. The dynamic nonlinearities in the harvester systems to enhance the performance can be 

included as a nonlinear stiffness or as a bistable oscillating system. In the first type of adding 

nonlinearity the effects of nonlinear stiffness on the energy harvesting ability was considered by 

several researchers. The bistable energy harvesting systems were implemented with various 

structures such as bistable magnetic repulsion harvester, bistable electromagnetic attraction 

harvester as well as buckled cantilever beam harvester. Most of the works focused on first two 

categories. A novel energy harvester composed of piezoelectric cantilever beam substructure with 

a magnetic tip mass and two or more external magnets of same polarities, so as to induce a 

repulsion or attraction force causing a bifurcation behavior which leads to cantilever beam to 
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behave as a bistable system that can possess two nontrivial stable equilibrium. So this type of 

systems exhibit a good broadband harvesting performance and produces a large voltage. 

1.2 Literature review 

 Energy harvesting from environmental sources especially mechanical vibrations have paid 

a lot of attention in the past five to ten years. In this section, various research works previously 

done are arranged in systematic manner. 

1.2.1 Single and Multi-DOF Piezoelectric Energy Harvester 

Single degree of freedom piezoelectric energy harvesters are only efficient near sole 

resonance limits. Tang and Yang [4] presented an article regarding a novel multi degree of freedom 

piezoelectric energy harvesting model. By analyzing the two degree of freedom energy harvester 

model they considered its two configurations for characterization. Finally the model is generalized 

to n-degree of freedom system and its mathematical solution is derived which can be used as a 

reference for parametric study and design of multi degree of freedom energy harvesters. The article 

is concluded by developing equivalent circuit model for multi-degree of freedom piezoelectric 

energy harvesters. 

Usually conventional energy harvester is excited at its first resonance mode and all the 

characteristics are studied at first mode only but Wu et al. [5] considered first two vibration modes. 

The presented design is giving significant power output and is functional in practical vibrational 

circumstances. 

Different types of excitations can be provided to the linear single-degree of freedom 

piezoelectric energy harvester. The ambient vibration energy is random in nature hence Joo and 

Sapsis [6] worked on applying different type of excitations to the harvesters so as to develop the 

performance criteria. They summarized their work by concluding that whatever may be the 
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excitation provided to the linear energy harvester, its output can’t be increased above the optimal 

performance of the linear harvester and it is less than nonlinear design.   

Most of the researchers have contributed to get the experimental results and practical 

applications of already developed conventional piezoelectric energy harvesters. Khalatkar et al. 

[7] developed an energy harvester which can be excited by engine vibrations and harvest at least 

micro level electrical energy. 

1.2.2 Lumped Parameter Models 

Most of the early research is based on analyzing the piezoelectric energy harvester as a 

lumped parameter model in which the equations of motion are derived by using D’Alembert’s 

principle or by applying Newton’s second law in mechanical domain and Kirchhoff’s law in 

electrical domain. Most of the researchers worked on analyzing the optimal AC power output but 

Shu and Lien [8] investigated the optimal AC-DC power generation for rectified piezoelectric 

micro generator. They analyzed energy harvester as lumped parameter model and finally 

concluded their research by providing several design guidelines for real time applications of energy 

harvester. 

It is well known fact that when resonant frequency of energy harvester matches with the 

ambient vibration one can get maximum energy output. Generated power exponentially reduces 

ever for smaller difference between these two frequencies.  Zhu et al. [9] worked on different 

strategies of reducing the resonant frequency of excitation of energy harvester and summarized 

their work by providing advantages as well as disadvantages of each strategy. 

The position of tip mass along the length of cantilever beam also have a considerable effect 

on the power harvested from energy harvester. Piezoelectric energy harvester has a limited power 
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output and hence device performance should be enhanced to get the optimum power output. Ali 

and Ibrahim [10] worked on these issues along with some experiments. 

There two main limitations of conventional energy harvesters. Firstly, energy harvesting 

ability only along one direction. Secondly, its ability to harvest energy only in the narrow band of 

frequency. But in real case ambient vibrations are spread along several orientations which can 

reduces the power output. To overcome all these limitations many researchers are working on 

broadband, multi-directional vibrational energy harvesting. Ando et al. [11] presented bi-

directional, broadband piezoelectromagnetic energy harvester. They added nonlinearity by 

providing permanent magnets and two cantilever beams are kept perpendicular to each other.      

Generally piezoelectric energy harvesters are excited under sinusoidal base excitation but 

it is not the practical case because environmental excitations are random in nature. Jiang and Chen 

[12] proposed technique to determine approximately the voltage output of a nonlinear energy 

harvester excited under Gaussian white noise excitations. Equivalent linear system is derived from 

minimizing the mean squared of the error. The linear equivalent coefficients are presented by the 

method of normal truncation. The exact solution of equivalent linear system is obtained and the 

effectiveness of the method is demonstrated by numerical solutions. 

1.2.3 Distributed Parameter Models 

Along with lumped parameter modelling, the research is also focused on considering 

cantilever beam along piezoceramic layer as single or multi-degree of freedom distributed 

parameter model which can be solved by using Euler-Bernoulli or Thimoshenko beam theory. 

Erturk and Inman [13] gave an exact solution of energy harvester for unimorph harmonic base 

excitation case and investigated its behavior under short circuit and open circuit conditions. Erturk 

and Inman also reviewed [14] most general case of energy harvester that is cantilever beam. It is 
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modeled by using Euler-Bernoulli beam theory and results are compared with single degree of 

freedom energy harvester. It is concluded that single degree of freedom piezoelectric energy 

harvester gives highly inaccurate results and hence Erturk and Inman introduced correction factor. 

 Energy harvesting along the wide range of excitation frequency is called as Broadband 

energy harvesting and it is recently focused area in the field of piezoelectric energy harvesting. 

Adam [15] designed a real time energy harvester which can harvest energy by using car vibrations 

white driving. The design is modified by adding the non-linearity such as applying magnetic tip 

mass at its free end for broadband energy harvesting purpose. 

 When cantilever beam is excited near twice of its natural frequency it is termed as principal 

parametric excitation. A distributed parameter reduced order model is developed by Abdelkefi et 

al. [16] by using Euler-Lagrange principle and Gauss Law which is excited under parametric 

excitation. The model is discretized under Galerkin’s principle and the effect of different nonlinear 

piezoelectric coefficients on the power harvested are discussed. 

 Many researchers have attempted different shaped piezoelectric energy harvesters to get 

the optimum power output. Diyana et al. [17] presented comb shaped piezoelectric energy 

harvester and is solved using Euler-Bernoulli beam theory. Xiong and Oyadiji [18] contributed 

towards finding the optimum beam shape for cantilevered beam piezoelectric energy harvester and 

investigated that both convergent and divergent energy harvesters with tip mass attached can 

generate more energy. They also studied the effect various geometric parameters on energy 

harvesting capability. 

In the real time application of piezoelectric energy harvester excitation frequency range is 

below 1000 Hz. Proof mass at the end reduces the excitation frequency of energy harvester hence 

it should be chosen appropriately based on the ambient frequency range in which generator is 



8 
 

going to be mounted. Fakhzan and Muthalif [19] presented an energy harvester for multi-mode 

vibration which is modeled by considering Euler-Bernoulli beam theory. They also presented the 

importance of position proof mass over the cantilever beam. 

Fourier Transform Green’s function is an alternative technique to solve distributed 

parameter energy harvester. Danesh-Yazdi et al. [20] developed the solution of piezoelectric 

energy harvester beam under Green’s function method. 

 The main focus of Muthalif and Nordin [21] was to study the optimal beam shape of 

piezoelectric energy harvester for both single harmonic and broadband vibration. Mathematical 

derivations for unimorph piezoelectric energy harvester are presented. They also studied the effect 

of varying the length and shape of the beam on the output power. Triangular shape exhibits the 

highest voltage generated within the desired frequency range. 

1.2.4 Finite element Analysis of Piezoelectric Energy Harvester 

Finite element analysis is the effective tool for validation of all the types of energy 

harvesters discussed above and hence so many researchers worked in this area. Marqui formulated 

[22] coupled FE plate model for getting the output voltage and power of energy harvester. The 

results obtained from FE model are then compared with analytical solution of unimorph cantilever 

beam piezoelectric energy harvester. 

Wang [23] studied the effectiveness of Euler-Bernoulli and Thimoshenko beam theory for 

bimorph piezoelectric energy harvester. Euler-Bernoulli theory is applicable for slender 

piezoelectric beams whereas Thimoshenko theory should be applied for short beams. 

 Eziwarman [24] presented two numerical techniques for finite element analysis of energy 

harvester. Euler-Bernoulli beam assumption is used for formulation of fundamental beam 

equations and electromechanical discretization is used to model the piezoelectric structure along 
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with extended Hamiltonian principle. Again orthonormalised electromechanical FE response 

technique is used to get accurate frequency domain results. 

 Lead based materials have been banned from last five years in many countries hence PZT 

can’t be directly used for energy harvesting application hence an alternative piezoceramic material 

is to be found out. Material issues in piezoelectricity is another huge research area and many 

researchers are working in this field. Kumar et al. [25] worked on a performance of various 

piezoelectric materials piezoelectric energy harvesting application. The finite element method is 

used to model piezolaminated unimorph cantilever structure. First order shear deformation theory 

is implemented in finite element simulations. Genetic Algorithm is used to optimize the 

mechanical parameters for maximum power density and power output. 

 Most of the early research regarding FE analysis of energy harvester was concentrated on 

homogeneous beam structures. Recently some of the functionally graded piezoelectric materials 

are developed due to brittle behavior of conventional piezoelectric materials. Amini et al. [26] 

worked on finite element analysis of functionally graded piezoelectric energy harvesters for 

unimorph as well as bimorph case. 

1.2.5 Piezoelectromagnetic Energy Harvesters 

 There are so many researchers worked on conventional piezoelectric energy harvesters 

however adding nonlinearity in the base excitation is recently focused area. Nonlinearity in the 

piezoelectromagnetic energy harvester can be incorporated by introducing softening and hardening 

response. An energy harvester presented by Stanton et al. [27] is bidirectional with both softening 

and hardening response within quadratic potential field. It is experimentally validated that 

nonlinear energy harvester will adopt broadband energy harvesting as compared to equivalent 

linear energy harvester. 
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 Zhou et al. [28] investigated vertically aligned magnetically coupled nonlinear 

piezoelectric energy harvester. By altering the angular orientation of its external magnets enhanced 

broadband frequency response can be achieved and low frequency response is achieved by 

changing the magnetic orientation. Finally the work is experimentally explored for validation 

purpose. 

Ibrahim et al. [29] worked on mathematical modelling and simulation of lumped parameter 

piezoelectric energy harvester with tip mass attached at the free end of the cantilever beam and 

fixed magnet at only one side of the beam. The proposed piezoelectromagnetic harvester is 

compared with conventional cantilever beam harvester with tip mass.  

Fan et al. [30] developed two magnetically coupled compact piezoelectric cantilever beams 

with orthogonal directions of deflection for broadband energy harvesting and results are validated 

with experiment. The proposed energy harvester shows improved performance in voltage output 

as compared to linear energy harvesters.  

The energy harvester presented by Kim and Seak [31] uses the magnetic attraction effect 

between the soft magnetic tip of the cantilever beam and the two externally fixed permanent 

magnets arranged in series. Finally nonlinear dynamic and energetic characteristics of the multi-

stable energy harvester were examined by utilizing the bifurcation analysis and a series of 

numerical simulations. 

 Jung et al. [32] modelled cantilever beam nonlinear dynamic piezoelectric energy 

harvester with tip magnet and two external rotatable external magnets fixed in free space using 

modified Hamilton’s principle. Mathematical modelling of cantilever beam and magnetic force 

expression is derived using Euler-Bernoulli beam theory and magnetic current model respectively 

and results are validated with the experiment. 
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Shafer and Garcia [33] presented upper limits of input acceleration and output power for a 

piezoelectric harvester device. 

Litak et al. [34] described the piezoelectromagnetic energy harvester with stationary 

Gaussian White noise. 

1.3 Scope and Objective of the present work 

Based on the above highlighted literatures, it is found that broadband energy harvesting is 

the recently focused area. To the conventional cantilever beam energy harvester, magnetic tip mass 

can be added and cantilever beam can be excited in additional magnetic field along with base 

excitation. In this regard, it is planned to develop a bistable piezoelectromagnetic energy 

harvesting system which can exhibit a good broadband harvesting performance and produces large 

voltage. Given below are the objectives of present work:- 

i. Mathematical modelling and simulation of lumped parameter bimorph cantilever beam 

piezoelectric energy harvester with magnetic tip and additional magnetic field. 

ii. To formulate and simulate distributed parameter bimorph piezoelectric energy harvester 

with tip magnet and additional magnetic force to the base excitation. 

iii. To study the various parameters which influence induced voltage and power. 

iv. Finite element analysis of piezoelectric energy harvester. 

The present thesis is organized as follows:- 

Chapter 2 presents the mathematical modeling of lumped parameter as well as distributed 

parameter model bimorph piezoelectric energy harvester with tip mass and additional magnetic 

field to the base excitation. The finite element analysis approach is also presented at the end. 

In Chapter 3, the results and discussion of the present work is arranged in systematic manner. 

Chapter 4 contains the conclusion of the present work along with the future scope. 
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CHAPTER 2 

MATHEMATICAL MODELING 

This chapter includes mathematical modeling of proposed piezoelectric energy harvester. 

The finite element modeling is also added at the end. 

2.1 Lumped parameter modeling 

A typical schematic of spring-mass-damper system of lumped parameter piezoelectric 

energy harvester is shown in Fig. 2.1, with the base excitation  0x t . The system can be modeled 

as a single degree of freedom system and the equations of motion [29] for piezoelectric energy 

harvester are derived by applying Newton’s law in the mechanical domain as well as Kirchhoff’s 

law in electrical domain. 

 

Fig. 2.1 Single-DOF piezoelectric energy harvester 

         0eq eq eq b m eqM x t C x t K x t v t f M x t                                       (2.1) 
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      0p fI t C v t x t                                                          (2.2) 

Equations (2.1) and (2.2) represents both mechanical and electrical domain of the piezoelectric 

energy harvester respectively.  x t is the relative displacement of the tip mass Mt  and Meq , Ceq

and Keq equivalent mass, damping and stiffness of the piezoelectric energy harvester respectively. 

 v t is the induced voltage in the harvester due to mechanical vibration. 
f

 and 
b
 are forward 

and backward electromechanical effects respectively. Equivalent mass, damping and stiffness can 

be calculated by using the equations below 

33

140
M m Meq t                                                              (2.3) 

33

3 3

Y IY I p ps sK K Keq substrate patch
L Ls psubstrate patch

  
     

   
   

                       (2.4) 

2C Meq eq n                                                               (2.5) 

Here,  is the damping ratio. The natural frequency of the energy harvester is calculated by using 

the fundamental relation as 

Keq
n

Meq
                                                                    (2.6) 

The term  is the amplitude correction factor for improving the lumped parameter model and it is 

calculated by using the equation [29] as 
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2

2

0.60 0.09

0.46 0.06

t t

b b

t t

b b

M M
M M

M M
M M



        
   
        
   

                                               (2.7) 

Where, t

b

M
M

 
 
 

is the ratio of tip mass to distributed mass of the beam;  I t and  v t  are induced 

current and voltage of the piezoelectric energy harvester due to vibration of the beam; C p is the 

clamped capacitance of the piezoelectric transducer. From Ohm’s law, 

   v t I t R
l

                                                                  (2.8)  

Here, lR  is the load resistance of the piezoelectric circuit. Putting the value of  I t in the eq. (2.2), 

one can get following equation 

      0
v t

C v t x tpR f
l

                                                        (2.9) 

The magnetic force term  mf to the right hand side of the eq. (2.1) is formulated on the basis of 

following assumptions 

I. There is magnetic dipole coupling between the magnets. 

II. The magnetic dipoles are always perpendicularly aligned when the piezoelectric beam 

vibrates.  

 

   

22 2

2 22 2

0 0 0 0

1 1 2

2

m m

m

m m m

A l r
f

l D D l D l





   
     

       

                                (2.10) 

When 0ml D  the approximation of magnetic force is 
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D








 
 

                                                              (2.11) 

Where, 0  is the permeability of the medium (i.e. air), 0D is the distance between the two magnets 

which is identical to the both sides.  is the magnetic flux density. The magnetic dipole moments 

1m and 2m  of the identical magnets are formulated by the following equation 

2
/

1 2
0

V
m m




                                                                 (2.12) 

Where, volume  V of each magnet depends upon the geometric parameters of the magnet. The 

fundamental law of magnetism states the following two cases 

I. For the two attractive magnets, 1 2m m   

II. For the two repulsive magnets, 1 2m m  

The proposed energy harvesting system contains fixed magnets at both the sides of tip magnet. 

Hence, the total magnetic force is 

3
0 1 2

4

0

m m
fm

D








 
 

                                                              (2.13) 

If the tip displacement of piezoelectric energy harvesting system is added to the magnetic force 

then magnetic force expression can be written as 

 
 

3
0 1 2

4

0

m m
f tm

x t D





  


 
 

                                                          (2.14) 
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Now, the coupled electromechanical governing equation of motion for the presented piezoelectric 

energy harvester can be represented by following expression 

       
 

 0 1 2
04

0

3
eq eq eq b eq

m m
M x t C x t K x t v t M x t

x t D


 



 
           

  

          (2.15) 

      0p f
l

v t
C v t x t

R
                                                       (2.16) 

The above two equations are electromechanically coupled as both contain displacement and 

voltage terms. Hence, these second order differential equations should be converted into multiple 

first order form by using state variables for solving them simultaneously. The corresponding state 

variables are shown in eq. (2.17) below. 

   1z t x t ,    2z t x t and    3z t v t                                                                                 (2.17) 

   1 2z t z t                                                                   (2.18) 

       
 

 0 1 2
2 2 1 3 04

1 0

3eq eq b

eq eq eq eq

C K m m
z t z t z t z t x t

M M M M z t D

 




 
      

   

              (2.19) 

     3 2 3

1f

p l p

z t z t z t
C R C


 


                                                     (2.20) 

The corresponding first order equations (2.18), (2.19) and (2.20) are solved by using Runge-Kutta 

method in Matlab software to get the tip mass displacement and equivalent voltage responses. To 

find out the maximum tip mass amplitude and corresponding induced voltage following equations 

[8] are to be considered. 
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  

12

max
12 2

M U j Ceq p
R

l
x

K M j C j C jeq eq eq p
R

l

 

    

    



         

 
  
 

 
  
 

                      (2.21) 

And 

  

3

max
12 2

j U
V

K M j C j C jeq eq eq p
R

l

 

    

  


         
 
  
 

                      (2.22) 

Here, 
n





 is the ratio of frequency of base excitation to the natural frequency of the harvester. 

The term U is the total excitation provided to the harvester. 

2.2 Distributed parameter modeling 

A novel energy harvester composed of piezoelectric cantilever beam with a tip mass and 

external magnets of same polarities, so as to induce a repulsion or attraction force causing a 

bifurcation behavior which leads to cantilever beam to become a bistable system that includes two 

nontrivial stable equilibrium. So this type of systems exhibit a good broadband harvesting 

performance and produces large voltage. In this section, the symmetric bimorph cantilever beam 

configuration is modelled as a uniform composite beam based on Euler-Bernoulli beam theory. 

The Fig. 2.2 represents the bimorph piezoelectric energy harvester with tip mass at the free end 

and additional magnetic field to the base excitation. 
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Fig. 2.2 Energy harvester with tip mass and fixed external magnets 

The base excitation of the cantilever beam is represented by translational displacement  g t in the 

transverse direction with superimposed small rotational displacement  h t . Hence, the effective 

base displacement can be written as                                                     

     ,w x t g t x h t
b

                                                            (2.23) 

The coupled mechanical equation [32] motion can be obtained for series connection as 

 
 

       

   

4 5 2

4 4 2

2 2

2 2

, , ,

, ,b

m

w x t d x d x L w x t w x t
YI v t CI m

x dx dx x t t

w x t w x t
m f

t x

 


    
      

    

 
 

 

                 (2.24) 

Where  ,w x t  is the transverse displacement of the beam relative to its base at position x and time 

t,  v t  is the voltage across electrodes of piezoceramic layers, m is the mass per unit length of the 

beam, tM is the tip mass, C is the strain-rate damping coefficient,  is the coefficient of backward 
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coupling term, mf is the x-directional magnetic force and  x  is the Dirac delta function.  The 

partial differential eq. (2.24) is solved with following assumptions: 

(1) External magnets are fixed in space. 

(2) Only transverse magnetic force is considered for boundary conditions. 

The corresponding boundary conditions are  

At 0x  ; 0w  and 0
w

x





                                                                                                    (2.25) 

At x L ; 

   2 3

2 2

, ,
0

w x t w x t
YI CI

x x t

 
 

  
                                                                                                (2.26) 

         2 4 2 2

2 3 2 2

, , , , ,b

m t

w x t w x t w x t w x t w x t
YI CI f M

x x t x t t

     
     

      
                             (2.27) 

The coefficient of backward coupling   , bending stiffness term  YI and mass per unit length 

 m of the composite cross-section of the piezoceramic are given [34] by 

2 2

31

2 2 4

s s
p

p

e h h
h

h


  
    

   

                                                        (2.28) 

33 3
2

3 8 2 8

s s s
s p p

h h hB
YI Y Y h

    
      

     

                                                 (2.29) 

 2s s p pm B h h                                                             (2.30) 
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The magnetic force expression in the eq. (2.24) is same as that of lumped parameter case as 

previously described hence magnetic force expression for proposed piezoelectric energy 

harvesting system is given by 

  
 

0 1 2

4

0

3
m

m m
f t

x t D





  


  

                                                          (2.31) 

Based on proportional damping assumption, the vibration response relative to the base of the 

bimorph cantilever can be represented as a convergent series of the Eigen functions as 

     , rw x t x t                                                              (2.32) 

Where   r x is the mass-normalized Eigen function for thr vibration mode and  t is modal 

mechanical coordinate expression of the series connection. Considering 1r  ,  x can be 

calculated as 

  cos cosh sin sinhx A x x x x
L L L L

   
 

  
     

  
                                        (2.33)          

Where  is obtained from 

 

 

sin sinh cos cosh

cos cosh sin sinh

t

t

M

mL

M

mL

    



    

 
   

 
 

   
 

                                           (2.34) 

 is the undamped natural frequency of first vibration mode. It is given by 

2

4

YI

mL
                                                                        (2.35) 
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The eigenvalues of the system are obtained from the equation [34] given below 

   

 

3

3

4

2 4

1 cos cosh cos cosh sin sinh cosh sin sinh cos

1 cos cosh 0

t t

t t

M I

mL mL

M I

m L


          


 

  
           

   

 
    
 

(2.36) 

After substituting eq. (2.32) into eq. (2.24) and applying boundary conditions for undamped 

problem, the mechanical equation of motion can be obtained as 

   
       

2

2

2
2 r m

d t d t
t v t f t f t

dt dt

 
                                          (2.37) 

Where the modal mechanical coupling term is 

 d x

dx

 



                                                                (2.38)  

The modal mechanical forcing function [34] and magnetic force due to tip magnet and two external 

fixed magnets can be expressed as 

 
 

 
 

   
   2 2 2 2

2 2 2 2

0 0

L L

r t

d g t d h t d g t d h t
f t m x dx x x dx M L L

dt dt dt dt
  

   
          

   
      (2.39) 
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  
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                                                      (2.40) 

Here,  is the equivalent modal mechanical damping ratio that includes both strain rate damping 

and air damping. The piezoelectric layers of the bimorph configuration shown in Fig. 2.2 are 
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connected in series. Kirchoff’s laws can be applied to obtain the coupled electrical circuit equation 

as given below 

     
0

2

p

l

C dv t v t d t

dt R dt


                                                        (2.41) 

33
p

p

BL
C

h

 
                                                                    (2.42) 

   
2

p p sY h h d x

dt




 
                                                            (2.43) 

Hence, the eq. (2.41) is the electrical circuit equation of the bimorph cantilever for the series 

connection of the piezoelectric layers. The eq. (2.37) and (2.41) are second order coupled equations 

with time dependent displacement parameter and voltage parameter. For the simulation purpose 

one can convert them into multiple first order form by using state variables presented in eq. (2.44). 

   1z t t ;  
 

 2

d t
z t t

dt


  and    3z t v t                                                                   (2.44)  

   1 2z t z t                                                                (2.45) 

           2

2 2 1 32mz t f t f t z t z t z t                                          (2.46) 

     3 3 3

2 2

l p p

z t z t z t
R C C


   


                                                  (2.47) 

These equations can be simulated in Matlab for getting time dependent parameter and voltage 

parameter. Finally by using the mathematical equations stated previously transverse displacement 

of the beam and corresponding voltage can be calculated. 
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2.3 Finite Element Modeling 

The schematic drawing of bimorph piezoelectric energy harvester with tip mass is shown 

in Fig. 2.3 below. 

 

Fig. 2.3 Bimorph piezoelectric energy harvester with tip mass 

In the above figure, z is the coordinate through the thickness direction of energy harvester and its 

origin is assumed to be located at the middle line of harvester as shown in above figure. Here, L

and B are the total length and width of the cantilever beam shown above. Mt is the tip mass 

attached at the free end. For the purpose of finite element modeling, the above cantilever beam is 

divided into discrete number of elements and each elemental length is Ll
n

 ( n is the number of 

elements).  The Fig. 2.4 below represents local degree of freedom for one of the discretized beam 

element. 
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Fig. 2.4 Local degree of freedom for beam element 

The elements and nodes are represented by symbol i and j respectively. In the above figure, an 

element i is represented by its two equivalent nodes j and j+1. At each node two degrees of freedom 

are considered. Wj is the transverse degree of freedom and 𝛷j is the equivalent rotational degree 

of freedom at each node. The finite element model presented here can be generalized for infinite 

number of elements. By using the extended Hamilton’s principle the following system of ordinary 

differential equations [26] is obtained for each element. 

  e e e e e e e eM C K v t Fij j ij j ij j i i                                            (2.48) 

   0
Tdv v e eCp i idt R

l

                                                       (2.49) 

Where, R
l

is the load resistance value and v is the induced voltage. eM , eK and 
eC are elemental 

mass, stiffness and damping matrices respectively. For the purpose of simplicity the damping term 

can be ignored. eF is equivalent force vector and e is described as 

 1 1

T
W Wj j j j

  
 

                                                   (2.50) 
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The equivalent mass matrix ( eMij ) and stiffness matrix ( eKij ) for an element are defined as follows 

0

dL d je iM D dxpij dx dx

 
  
 
 

                                                    (2.51) 

22

2 20

dL d je iK D dxpij
dx dx


                                                      (2.52) 

Where i and j are Hermitian Shape functions. The term Dp in the above equations can be 

formulated as                                                             

3

3

hp
Dp                                                                   (2.53) 

The term  is equivalent density of substrate and piezolayer. By using the Hermitian shape 

functions, elemental mass matrix and stiffness matrix of the proposed energy harvester can be 

calculated as 

 

156 22 54 13

2 222 4 13 3

420 54 13 156 22

2 213 3 22 4

l l

l l l lA leMij
l l

l l l l



 
 
 
 
 
 
    

                                            (2.54) 

Here, A is the mass per unit length of each element.  

 

12 6 12 6

2 26 4 6 2

3
12 6 12 6

2 26 2 6 4

l l

l l l lYIeKij
l l l

l l l l

 
 
 
 
   
 
  

                                               (2.55) 
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Here, YI is the flexural rigidity of each element. In the above eq. (2.48) and (2.49), the coupling 

term e
i and clamped capacitance C p are defined as 

 1
0 0

3 3
e B E B Ee ei v

                                                  (2.56) 

24

A L
Cp

hp

            (For series configuration)                 (2.57) 

Where the term 
3

E is electric field component in the poling direction and its value for the bimorph 

series connection is equal to
3 2

v
E

hp


 . For parallel connection, the electric fields in top layer and 

bottom layer are 
3

v
E

hp


 and

3

v
E

hp
 . The terms Be and A in the above equation are calculated 

as 

31
B B e z dze                                                             (2.58) 

 33
A B z dz                                                           (2.59) 

The above two equations should integrated over piezoelectric thickness only. Here 
31

e is 

piezoelectric stress constant and 
33
 is the permittivity constant. The base of the proposed 

piezoelectric energy harvester vibrates in the transverse direction. Therefore, the equivalent 

forcing term [26] can be given by 

2

0 2

d w
e bF Fi i

dt
                                                         (2.60) 
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Where, 

  0
0

L
F m M x L dxt ii

                                                (2.61) 

Where, m is the mass per unit length of the cantilever beam, Mt is the tip mass attached at the free 

end of the cantilever beam and 

2

2

d w
b

dt
is the base acceleration provided. All the above equations 

can be added to eq. (2.48) and eq. (2.49) so that global form of coupled mechanical and coupled 

electrical equations can be formulated as 

           
G G G G

M K v t F                                           (2.62) 

  0
T Gdv v G

Cp
dt R

l

            
                                        (2.63) 

Here 
G

M ,  
G

K and  
G

F are global mass, stiffness and force vector.  
G

 is the global 

coupling term. Finally above equations can be analytically simulated in Matlab software and can 

be solved by using Runge-Kutta solver technique. The transverse displacement and equivalent 

induced voltage can be calculated. 

2.4 Solution techniques 

  There are different solution techniques which can be adopted for the solution of partial 

differential equations. The distributed parameter model can be solved by using Galerkin’s method. 
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2.4.1 Galerkin’s approximate method 

 In this method the relative displacement is considered as the function of eigenfunction

 x and modal mechanical coordinate  t . The mechanical equation of motion 2.24 is partial 

differential equation. After substituting the eq. (2.32) into eq. (2.24) one can get 

     
   

   

   
 

   
2 ,

2

d x d x Liv ivYI x t v t CI x t
dx dx

d w x t
iibm x t m f x tm

dt

 
    

   

 
          

 

       

                    (2.64) 

The fourth order derivative of eigenfunction is 
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Substituting eq. (2.65) in eq. (2.64), the mechanical equation reduces to 
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Multiplying the above equation by eigenfunction  x and then putting  2
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reduces to 
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The equivalent electrical equation as mentioned previously is 

     
0

2

p

l

C dv t v t d t

dt R dt


                                                     (2.68) 

The above two equations (2.67) and (2.68) are coupled mechanical and electrical equations 

respectively. By using previously mentioned state variables in eq. (2.44), the above two second 

order equations can be converted into multiple first order form as given below. 
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The above three equations can be simulated in Matlab by using Runge-Kutta solver to get the 

displacement as well as induced voltage. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

 This chapter includes the results obtained during the analysis. Effects of various parameters 

of the energy harvester on the output power generated are described one by one. 

3.1 Lumped parameter Modeling 

 In the single degree of freedom lumped parameter model, piezoelectric bimorph energy 

harvester is considered to have a mass, stiffness and damping. A sinusoidal base excitation is 

applied to the cantilever and equivalent mass of the beam is considered. A series connection from 

the piezolayer is considered for illustration. 

3.1.1 Effect of substrate materials of cantilever 

  Copper and Aluminum are used as substrate materials in two independent cases by keeping 

PZT-5A as a piezoelectric material. The chemical representation of PZT-5A is Pb [ZrxTi1-x] O3 

(0≤x≤1). It is conventionally used piezoelectric material with excellent piezoelectric properties. 

The material properties of substrate as well as piezolayer are summarized in Table 3.1 below. 

Table 3.1 Material properties of Substrate and piezolayer 

Parameter 

Substrate 1 

(Copper) 

Substrate 2 

(Aluminum) 

Piezolayer 

(PZT-5A) 

Length (mm) L=55 L=55 L=55 

Width (mm) B=5 B=5 B=5 

Thickness (mm) sh =1 
sh =1 

ph =2 

Density (kg/m3) s =8900 
s =2700 p =7750 
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Elastic modulus (GPa) sY =125 
sY =72 pY =61 

Electromechanical coupling 

coefficient (N/V) --- ---  =1.496×10-5 

Permittivity constant (nF/m) --- --- 33E =13.3 

Piezoelectric constant (m/V) --- --- 33d =390×10-12 

  

The material and geometric properties of tip mass are shown in Table 3.2.  

Table 3.2 Tip Mass geometrical properties 

Parameter Value 

Length (mm) mL =10 

Width (mm) mB =5 

Thickness (mm) hm =7 

Density (kg/m3) m =7800 

 

The additional magnetic force is provided to the proposed piezoelectric energy harvester along 

with the base excitation. Some of the important magnetic parameters are summarized in Table 3.3. 

Table 3.3 Electromagnetic parameters [29] 

Parameter Value 

Distance between magnets (mm) 0
D = 8 

Permeability of the medium (H/m) 0
 = 4π×10-7 

Surface flux  = 1.4 
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This model is simulated for two cases namely aluminum as a substrate with PZT-5A as a piezolayer 

(blue line) and copper as a substrate with PZT-5A as a piezolayer (red line). In order to solve the 

coupled differential equations with displacement and voltage as variables the fourth order Runge-

Kutta numerical time marching method is used. The equivalent mass of the beam and stiffness are 

first computed and a program is developed in Matlab for obtaining the solution. A part of Matlab 

code and corresponding output results are presented below.  

PART OF MATLAB CODE WITH RUNGE-KUTTA SOLVER 

_____________________________________________________________________________________________ 

Meq=((33/140)*Mb)+Mt; % equivalent mass         

Ib=(w*(tb^3))/12; % MI of beam, 

Ip=(w*(tp^3))/12; % MI of piezolayer 

EI= (Eb*Ib)+(2*w*Ep*(H^3)/3)-(Ep*Ip);  % flexural rigidity 

Keq=(3*EI)/(l^3);  % equivalent stiffness  

Wn=(Keq/Meq)^0.5; % natural frequency   

Ceq=2*D*Meq*Wn; % equivalent damping 

S=Mt/Mb;  

U=(S^2+0.603*S+0.08955)/(S^2+0.4637*S+0.0571); % Correction factor 

R=1/(Wn*CS); % load resistance 

V= (ml*mw*mt); % volume of the magnet 

m1= (2*B*V)/Tm; % moment of magnetic dipole 

m2=-m1; % moment of magnetic dipole 

Fm=-(3*Tm*m1*m2)/(pi*(md^4)); % magnetic force 

f(1)= x(2); 

f(2)= -(Ceq/Meq)*x(2)-(Keq/Meq)*x(1)-(Tf/Meq)*x(3)+Fm+(U*500*sin(10*t)); 

f(3)= (Tf/CS)*x(2)-(1/(R*CS))*x(3); 

f=[f(1);f(2);f(3)]; 

clear all 

clc 

x=[0,0,0]; % Initial conditions 

t0=0; % initial time 

tf=0.01; % finsl time 

tspan=linspace(t0,tf,100000); % timespan 

[t,x]=ode45('lumped1',tspan,x); % function call 

plot(t,x(:,3),'-b','LineWidth',2); 

xlabel('time'); 

ylabel('Induced Voltage'); 

grid on 

___________________________________________________________________________________________ 



33 
 

The Fig 3.1 shows time domain history of induced voltage. It is clear that the aluminum has much 

sensitivity compared to copper.   

 

Fig. 3.1 Induced voltage response with time ( 7
1 10R

l
   ) 

Fig. 3.2 represents tip mass amplitude response with respect to resonance frequency. It can be seen 

that for aluminum case the maximum amplitude is approximately 0.0071 mm at resonance 

frequency 687.21Hz and for copper it is 0.0055 mm at the resonance frequency of 646.47Hz.    

 

Fig. 3.2 Tip mass amplitude response at resonance frequency 
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Fig. 3.3 represents the FFT of induced voltage response. It can be seen that for aluminum and 

approximate voltage generated at the maximum amplitude is 2.05 V and 1.6 V respectively.  

 

Fig. 3.3 Induced voltage response at resonance frequency 

Induced voltage also depends upon load resistance and hence Fig. 3.4 shows the variation of 

amplitude of voltage at resonance frequency with respect to load resistance. It can be seen that 

after 1×107 Ω of load resistance, the induced voltage amplitude becomes constant. 

 

Fig. 3.4 Variation of amplitude of voltage at resonance 
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The equivalent output Power FRF is shown in Fig. 3.5. The maximum power harvested for copper 

as well as aluminum case at resonance is 0.95 μw and 1.25 μw respectively.    

 

Fig. 3.5 Power FRF at resonance 

3.1.2 Effect of piezoelectric material 

 In this section, two different piezoelectric materials are considered independently. 

Conventional PZT-5A is well known piezoelectric material but it is hazardous. Polyvinylidene 
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temperature is 1100 C hence it can be used at elevated temperature conditions. PVDF produces 

exponentially high voltage and possesses excellent piezoelectric properties. The geometric and 

material properties of PZT-5A and PVDF along with aluminum (Substrate) are summarized in 

Table 3.4. The geometric properties of tip mass and important magnetic properties of magnet are 
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Table 3.4 Material properties of substrate and piezolayer [35] 

Parameter 

Substrate 

(Aluminum) 

Piezolayer 

(PZT 5A) 

Piezolayer 

PVDF 

Length (mm) L=55 L=55 L=55 

Width (mm) B=5 B=5 B=5 

Thickness (mm) sh =1 
sh =2 =2 

Density (kg/m3) s =2700 p =7750 p =1750 

Elastic modulus (GPa) sY =72 pY =61 pY =2.8 

Electromechanical coupling 

coefficient (N/V) ---  =1.496×10-5  =7.5×10-5 

Permittivity constant (nF/m) --- 33E =13.3 
33E =112.2 

Piezoelectric constant (m/V) --- 33d =390×10-12 
33d =-33×10-12 

 

The two cases considered in this section has aluminum as substrate material and two different 

independent piezoelectric materials are PZT-5A (red) and PVDF (blue). The resonance frequency 

of the energy harvester depends upon material as well as geometric properties of substrate and 

piezoelectric material. PVDF is more flexible than PZT-5A and hence it will deflect more giving 

lesser resonance frequency. The resonance frequency by considering PVDF as a piezolayer is 

161.8Hz. For PZT-5A case, the resonance frequency is 687.21Hz. The tip mass amplitude response 

for both the cases is shown in the Fig. 3.6. It can be seen that the maximum amplitude for PVDF 

is 0.036 mm and for PZT-5A is 0.007 mm and hence former will definitely induce more voltage 

than later.  
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Fig. 3.6 Tip mass amplitude response at resonance frequency 

The Fig. 3.7 represents induced voltage response at load resistance of 71 10  . It can be seen that 

the maximum voltage induced by PVDF case is about 10.01 V and PZT-5A case is about 2.05 V. 

 

       Fig. 3.7 Induced voltage response at resonance frequency 
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Fig. 3.8 represents variation of amplitude of induced voltage at resonance with respect to load 

resistance. It can be seen that the amplitudes with PVDF are much higher compared to PZT-5A. 

 

Fig. 3.8 Variation of amplitude of voltage at resonance 

The Power FRF is shown in Fig. 3.9. It can be seen that for PZT-5A as well as PVDF case the 

power output is 1.25 μw and 3.1 μw respectively at resonance frequency. 

 

Fig. 3.9 Power FRF at resonance 
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3.1.3 Effect of tip mass on the power 

 If the tip mass is varied then there is equivalent change in induced voltage and power. In 

this section, aluminum is considered as a substrate material with PZT-5A as piezolayer. Here tip 

mass is varied by keeping all the other parameters constant and its effect on power output is 

studied. From Fig. 3.10 it can be seen that, as tip mass increases the resonance frequency decreases 

and power output increases. For the tip mass 4.5 g, the maximum power harvested is 6.7 μw at the 

resonance frequency of 657.5 Hz. 

 

Fig. 3.10 Power FRF with respect to change in tip mass 
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response with variation in distance
0

D . It is observed that induced voltage is maximum at distance 

 0D =0.015 mm and it is equal to 2.265 V. It should be noted that if the distance is increased or 

decreased from this value the induced voltage decreases.  

 

Fig. 3.11 Induced voltage response with variation in distance
0

D  
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PART OF MATLAB CODE WITH RUNGE-KUTTA SOLVER 

_____________________________________________________________________________________________ 
 

%%%%%% Calculation of Additional magnetic force 

V=(ml*mw*mt); % Volume of the magnet 

m1=(2*B*V)/Tm; % moment of magnetic dipole 

m2=-m1; % moment of magnetic dipole 

F=-(3*Tm*m1*m2)/(pi*(md^4)); % magnetic force 

%%%%%% base excitation 

mm=1; 

nn=1; 

pp=2; 

qq= wgn(mm,nn,pp); % Gaussian White Noise generation 

%%%%%% Defining Coupled equations 

f(1)=x(2); 

f(2)=-(Ceq/Meq)*x(2)-(Keq/Meq)*x(1)-(Tf/Meq)*x(3)+(3*Tm*m1*m2)/(pi*(x(1)+md^4))+qq; 

f(3)=(Tf/CS)*x(2)-(1/(R*CS))*x(3); 

f=[f(1);f(2);f(3)]; 

______________________________________________________________________________ 

 

Fig. 3.12 Time domain history of displacement 
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the given random excitation, the maximum induced voltage is 1.45 V. 

0 1 2 3 4 5 6 7 8

x 10
-3

-1

-0.5

0

0.5

1
x 10

-6

time (s)

D
is

p
la

ce
m

en
t

Time domain history of displacement



42 
 

 

Fig. 3.13 Induced voltage response 

3.2 Continuous system modeling 

Distributed parameter model is reliable but at the same time it is computationally 

cumbersome. It is difficult to obtain the exact solution but the results obtained by using distributed 

parameter model are very close to exact solution. The distributed parameter bimorph piezoelectric 

energy harvesting model is solved by using Euler-Bernoulli beam theory in previous chapter. The 

coupled second order differential equations are decoupled into multiple first order differential form 

which then can be solved using Runge-Kutta numerical solution. The material and geometric 

properties of substrate and piezolayer are summarized in the Table 3.5 below.  

Table 3.5 Material properties of substrate and piezolayer [34] 
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Width (mm) L=5 L=5 

Thickness (mm) sh =0.05 ph =0.15 

Density (kg/m3) s =2700 p =7750 

Elastic modulus (GPa) sY =72 pY =61 

Electromechanical coupling 

coefficient (N/V) ---  =1.496×10-5 

Permittivity constant (nF/m) --- 33E =13.3 

Piezoelectric constant (C/m2) --- 31e =-10.4 

 

The material and geometric properties of tip mass and some of the important properties of 

additional magnetic field are same as pervious lumped parameter case. 

PART OF MATLAB CODE WITH RUNGE-KUTTA SOLVER 

Mt=(ml*mw*mt*mq); % tip mass m=B*((qs*Hs)+(2*qp*Hp)); % mass/length of beam  
YI=(2*B/3)*((Ys*(Hs^3)/8)+Yp*((Hp+(Hs/2))^3-(Hs^3/8)));% Equivalent stiffness  
omg=lm^2*(YI/(m*(L^4)))^0.5; 
syms x 
Sr=((sin(lm)-sinh(lm))+((lm*Mt)/(m*L))*(cos(lm)-cosh(lm)))/((cos(lm)-cosh(lm))-((lm*Mt)/(m*L))*(sin(lm)-

sinh(lm)));  
fi=Ar*(cos(lm*x/L)-cosh(lm*x/L)+Sr*(sin(lm*x/L)-sinh(lm*x/L))); % mass normalized Eigen function 

IMP=diff(fi,x); % differentiation of Eigen function 

fr=-m*((G*INTEG1)+(H*INTEG2))-((Mt*D)*(G+(L*H))); % total mechanical force  
%%%%%% coupled electrical circuit equation 
Cp=(E33*B*L)/Hp; % internal capacitance 
kr=((E31*(Hp+Hs)*B)/2)*d; % dependent current source 
Rl=1000000; % load resistance 

V= (ml*mw*mt); % volume of the magnet 

m1= (2*B*V)/Tm; % moment of magnetic dipole 

m2=-m1; % moment of magnetic dipole 

Fm=-(3*Tm*m1*m2)/(pi*(md^4)); % magnetic force 

%%%%%% Representation of equations 
t=tt; 
AA=vpa(fr+Fm-(19.3*z(2))-((omg^2)*z(1))+(xrs*z(3))); 
AA=subs(AA); 
f(1)=z(2); 
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f(2)=AA; 
f(3)=(-2/(Rl*Cp))*z(3)-(2*kr/Cp)*z(2); 
f=[f(1);f(2);f(3)]; 

 

clear all 
clc 
z=[0,0,0]'; % initial conditions 
Rl=1000000; % load resistance 
t0=0; % initial time 
tf=0.5; % final time 
 [t,z]=ode45('continuous',[0,0.5],z); % R-K solver 
plot(t,z(:,3),'-b','linewidth',2); 
xlabel('time(s)'); 
ylabel('Induced Voltage (V)'); 
grid on 

 

In order to reduce the partial differential equations into Ordinary Differential Equations form, 

single mode approximation is considered and Matlab symbolic mathematics toolbox is employed 

to integrate and simplify the terms. The resultant Ordinary Differential Equations in time variable 

are solved using Runge-Kutta solver in Matlab software. The Fig. 3.14 represents the time domain 

history of tip mass displacement. 

 

Fig. 3.14 Tip mass displacement Response 
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The corresponding induced voltage is shown in the Fig. 3.15 below. It can be seen that the 

maximum voltage obtained here is about 0.033 V or 33 mV.  

 

Fig. 3.15 Induced Voltage Response 

From the Fig. 3.16, it can be seen that the resonance frequency of the proposed energy harvester 

is 33.3 Hz and the maximum energy harvested is about 2.201×10-8 watt. 

 

Fig. 3.16 Output power FRF at resonance 
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3.3 Experimental Work 

 The proposed bimorph cantilever beam piezoelectric energy harvester with tip mass and 

additional magnetic field is tried to fabricate in laboratory. The cantilever beam substrate material 

should be electrically conductive and hence Aluminum is taken as substrate material along with 

mild steel as a tip mass. The cantilever beam and tip mass dimensions are precisely obtained by 

performing various operations like grinding, filing, etc. The geometric dimensions of substrate and 

tip mass are summarized in Table 3.6 below.  

Table 3.6 Geometric properties of substrate and tip mass 

Parameter 

Substrate 

(Aluminum) 

Tip mass 

(Mild steel)  

Length (mm) L=62 mL =15.70 

Width (mm) B=14.5 mB =7.10 

Thickness (mm) hs =0.7 hm =5.90 

 

The tip mass is fixed to the cantilever beam by using feviquick as adhesive and adding mild steel 

particles for giving the strength. It is planned to patch the Barium Zirconate Titanate (BZT) as a 

piezolayer over both the thickness directions of cantilever beam. But due to some limitations of 

available BZT in laboratory only the aluminum cantilever beam with mild steel tip mass is 

experimentally analyzed. To find out the first mode resonance frequency of aluminum cantilever 

beam with tip mass, base excitation is provided by using vibration shaker and additional magnetic 

force is provided at tip by using fixed external magnets. Fig. 3.17 shows the cantilever beam with 

tip mass.   
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Fig. 3.17 Cantilever beam with tip mass in magnetic field 

The complete experimental set-up contains following devices- 

1. Vibration shaker 

2. Function generator 

3. Power amplifier 

4. Accelerometer 

5. Digital oscilloscope 

 

Fig. 3.18 Experimental Set-up 
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These devices are connected as shown in Fig. 3.18 above so as to provide the base excitation to 

the cantilever beam and also to measure the input base vibrations at the fixed end as well as output 

vibrations from free end. Oscilloscope is the electronic display device. There are two channels in 

the oscilloscope, channel 1 shows the base excitation provided at the fixed end of cantilever beam 

and channel 2 gives displacement of tip mass. Both the outputs of the oscilloscope are in mV. The 

corresponding oscilloscope screen shot is shown in Fig. 3.19 below. 

 

Fig. 3.19 Oscilloscope screen shot 

The oscilloscope reading is recorded and first mode resonance frequency of the cantilever beam 

with mild steel tip mass is experimentally determined. Fig. 3.20 shows the tip mass amplitude 

response of proposed cantilever beam with the resonance frequency 97 Hz. 
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Fig. 3.20 Tip mass amplitude response 
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CHAPTER 4 

CONCLUSIONS 

This chapter includes the overall summary of all the research topics presented in this thesis. 

The chapter is concluded by the future scope. 

4.1 Summary 

The bimorph cantilever beam piezoelectric energy harvester with magnetic tip was 

modeled by considering lumped parameter model and distributed model. The proposed energy 

harvester was excited in additional magnetic field for broadband energy harvesting performance. 

Using ANSYS model the natural frequencies of piezoelectric cantilever are obtained. The effects 

of various parameters of energy harvester system on induced voltage and output power were 

studied. In the first case, aluminum and copper are considered as substrate materials independently 

with PZT-5A as a piezolayer. It is observed that aluminum is giving more reliable results as it is 

flexible than copper. In the second case, PZT-5A and PVDF are considered as a piezolayer 

materials independently by considering aluminum as a substrate material. Obviously polymer 

composite PVDF material is giving more reliable results as compared to PZT-5A. The effect of tip 

mass on the power harvested is also studied and it is concluded that with the increase in tip mass, 

resonance frequency reduces and output power increases. The distance between tip magnet and 

one of the side of fixed magnet also influences the induced voltage and hence power output of the 

harvester. The simulation study shows that the optimum distance (
0

D ) for proposed energy 

harvester system is 15 mm. Random base excitation in the form of Gaussian white noise is also 

provided to the Single-degree of freedom lumped parameter model. 
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The continuous system model is employed by considering Euler-Bernoulli beam theory. 

The Galerkin’s technique is used to reduce the equations of motion with first mode approximation. 

The experimental analysis is attempted for proposed energy harvester. In this regard, aluminum 

cantilever beam with mild steel tip mass is fabricated without piezolayer and it is excited in 

additional magnetic field for the purpose of finding out resonance frequency. From experimental 

investigation resonance frequency is found to be 97 Hz. 

4.2 Future Scope 

 The multi-mode Galerkin’s approximation is more reliable and it can be tried as a future 

work. The proposed distributed parameter energy harvester is modeled only by using Euler-

Bernoulli beam theory but the more accurate modeling can be done by using Thimoshenko as well 

as Rayleigh beam theory. Finite element modeling results are to be obtained and validated. The 

effect of different parameters of energy harvesting system on the induced voltage and power will 

be deeply studied so as to get the optimum performance of the system. Finally, the experimental 

work needs to be carried out by mounting the piezoelectric patches on the beam and preparing an 

electric circuit to estimate the amount of power developed for these specifications. 
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APPENDIX- 1 

FAST FOURIER TRANSFORMS WITH MATLAB 

The functions  Y= fft x and  y=ifft X  implement the transform pair given for vectors of 

the length N by following equations. 

   
N j-1 k-1

X k = x j ×ω
Nj=1

  
  
                                                                                                            (A.1) 

     
N - j-1 k-1

1x j = X k ω
NN k=1

  
  
                                                                                             (A.2) 

Here ω
N

is an Nth root of unity and given by following equation. 

-2πi

Nω =e
N

 
 
 

                                                                                                                            (A.3) 

Solution technique:- 

 Y= fft x  returns the discrete Fourier transform (DFT) of vector x, computed with the fast Fourier 

transform algorithm. If the input X is matrix,  Y= fft X  returns the Fourier transform of each 

column of the matrix. If the input X is multidimensional array, fft operates on the first nonsingleton 

dimension.  Y= fft X,n returns the n-point DFT.  fft X  is equivalent to  fft X,n , where n is the 

size of the X in the first nonsingleton dimension.   Y=fft X, ,dim and  Y=fft X,n,dim applies 

the FFT operation across the dimension dim. 
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APPENDIX- 2 

RUNGE-KUTTA SOLVER 

 It solves ordinary differential equations. The general steps for solving the equation y=f(x) 

with y(0)=y0 are summarized in the following equations. 

   k_1=hF_xy x i ,y i                                                                                                                 (A.4) 

  k_2=hF_xy x(i)+0.5h, y i +0.5×h×k_1 
                                                                                 (A.5) 

    k_3=hF_xy x i +0.5h, y i +0.5×h×k_2 
                                                                                (A.6) 

    k_4=hF_xy x i +h, y i +k_3×h 
                                                                                            (A.7) 

       1y i+1 =y i + × k_1+2×k_2+2×k_3+k_4
6

                                                                     (A.8)        

In the above equations, h is the step size. By using the main equation (A.8) and following the steps 

(A.4) to (A.7) Runge-Kutta solver solves the ordinary differential equation. The approach can be 

extended for second-order differential equations, where it is written as two first order differential 

equations. Matlab employs the ode45 function to solve ODE provided the function or functions 

are defined properly. We employed the ode45 for solving the equations in generation of time 

histories in this work. 

 


