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Abstract

This project deals with the mathematical formulation of flow during grout-
ing, specifically the Biogrout process in sand. The model takes cue from
the contaminant transport model, wherein both the concentration of both
the aqueous species(the reactants) and the non-aqueous species (the product
that acts as the cementing material) are taken into account. The porosity
is variable and thus is the hydraulic conductivity of the medium. The rate
of reaction is varying as it is set to depend on the initial concentration of
the reactants via a time decaying relation. The governing equations are dis-
cretized using Finite Difference. The numerical scheme is implemented in
MATLAB and relevant plots are obtained.
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Chapter 1

Introduction

Injection of a slurry or a liquid solution into a soil or rock formation is
termed grouting. Biogrout is a technology for the in-situ strengthening of
unconsolidated soil using naturally occcuring microorganisms.It is a new soil
reinforcement method based on microbial-induced carbonate precipitation
(MICP).

Figure 1.1: Permeation Grouting

First the microorganisms con-
taining the enzyme urease are cul-
tivated and are then transported to
the locations by water flow where
the soil is to be strengthened. A
fixation fluid is injected as a next
step to ensure homogenous distribu-
tion of the bacteria. This fixation
fluid overtakes the weakly adsorbed
bacteria and fixes strongly onto the
soil skeleton. Next the reactant
chemicals namely urea(CO(NH2)2)
and calcium chloride(CaCl2) are in-
jected. To get a more homoge-
neous distribution of calcium car-
bonate over a large distance and in order to prevent crystal accumulation
around the point of injection, the urea (CO(NH2)2) and calcium chloride
(CaCl2) solution are supplied only after bacterial placement. The reaction
involves two steps.

1. Hydrolysis of urea into NH+
4 and CO2−

3 catalyzed by urease.

CO(NH2)2(aq) + H2O
bacteria−−−−−→ 2NH+

4 (aq) + CO2−
3 (aq) (1.1)

2. In the presence of CO2−
3 and if the solution is over-saturated The
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precipitation of CaCO3 occurs.

Ca2+(aq) + CO2−
3 (aq)→ CaCO3(s) (1.2)

Combining the reaction equation for the production of carbonate,(2.1), and
the reaction equation for the precipitation of calcium carbonate, (2.13), gives
the overall Biogrout reaction equation:

CO(NH2)2(aq) + CO2−
3 (aq) + H2O

bacteria−−−−−→ 2NH+
4 + CaCO3(s) (1.3)

The CaCO3 crystals fill the void space and act as a cementing material, thus
increasing the stiffness and the strength of the soil mass. As a result the
porosity decreases. The decreasing porosity influences the permeability and
hence affects the flow.

1.1 Objective

The objective of this project is the development of a Finite Difference model
for the flow of a conservative tracer in porous media and coding for the same
in MATLAB. The model simulates the permeation grouting.

1.2 Methodology

� Derivation of the relevant governing differential equations for

– Aqueous species(the Advection-Diffusion-Reaction equation)

– Non-aqueous species

– Porosity

– Flow

� Solution of the above equations by suitable numerical method (FEM/FDM)
with boundary conditions typical of a grouting problem.

� MATLAB code for simulation of the model.

1.3 The Mathematical Model

The current mathematical model accounts for the following parameters:

� the concentrations of aqueous species e.g urea, calcium chloride, am-
monium chloride and nonaqueous calcium carbonate, which change
due to dispersion, advection and reaction;

� the density of the solution, which changes due to alteration of compo-
sition of the chemicals;
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� porosity and permeability, which decrease as a result of the solid cal-
cium carbonate precipitation;

� flow through the porous medium, which is influenced by injection, ex-
traction and variation in density, porosity and permeability, in which
the changes in the porosity and permeability are caused by the pre-
cipitation of calcium carbonate.
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Chapter 2

Literature Review

2.1 Governing Differential Equation

2.1.1 Transport of Aqueous Species

Figure 2.1: Mass Balance

The following theories are developed from
the study of [1]. Contaminants participate
in several physical, chemical, and biological
transformation processes during the course
of their travel. The basic physical law for
flow in a porous medium is derived from
mass balance of the chemical tracer. Mass
balance states that

the rate of change of the total
mass in an arbitrary region Ω of
the medium must equal the net
rate of mass inflow into the re-
gion through its boundaries ∂Ω,
plus the rate at which mass is
created, or destroyed, within Ω.

Therefore, considering an arbitrary Ω of the medium, mass balance, written
symbolically, leads directly to the integral conservation law

d

dt

∫
Ω
Cθ dV = −

∫
∂Ω

Q · n dA+

∫
Ω
Fθ dV (2.1)

where
C(x, t) =concentration in mass/ unit volume of liquid
θ(x, t) =porosity

Rate of change of solute=
d

dt

∫
Ω
Cθ dV

Q(x, t) =flux in mass/unit area/unit time
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n(x) = outward normal at x

Flux of the solute through the boundary=−
∫
∂Ω

Q · n dA

F (x, t, C) =reaction term/source term in mass rate/unit volume of solution

Rate of reaction=

∫
Ω
Fθ dV

Using Gauss-Divergence Theorem∫
Ω

d(θC)

dt
dV = −

∫
Ω
∇ ·Q dV +

∫
Ω
θF dV (2.2)

leading to the differential form(assuming that the functions are sufficiently
smooth to allow application of the divergence theorem)

d(θC)

dt
= −∇ ·Q + θF (2.3)

At this point, a constitutive relation, usually based in empirics, must be
postulated regarding the form of the flux Q. There are three generally ac-
cepted ways as to how dissolved particles move from one position to another
in a porous medium.

1. advection, which means that particles are simply carried by the bulk
motion of the fluid. The Darcy velocity, therefore, is equal to the
advective flux

Q(a) = Cq

q.

2. molecular diffusion, This is the spreading caused by the random
collisions and molecular motion of the particles themselves. Molecular
diffusion is present regardless of whether or not the fluid is in motion.
This type of motion is driven by concentration gradients and the flux
due to diffusion is given by Fick’s law.This is called the molecular
diffusive flux

Q(m) = −θD(m)∇C

where D(m)(x, t) is the effective diffusion coefficient.

3. Mechanical Dispersion.This is the mixing phenomenon, or spread-
ing caused by the variability of the complex microscopic velocities
through the porespace in the medium. So, it is related to the hetero-
geneities present in the medium and is present only if the flow exists.
The idea being that different flow pathways have different velocities
and some have a greater than the average velocity to carry the solutes
ahead of a position based only on the mean velocity. The mathematical
form of the dispersion flux

Q(d) = −θD(d)∇C
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In a higher-dimensional formulation of the equations, the hydrody-
namic dispersion would be different in different directions, because
generally it is observed that in three dimensions the spreading caused
by dipersion is lower in the transverse direction of flow than in the
direction of the flow.

Thus the net flux is given by

Q = Cq− θD∇C (2.4)

where D = Q(m) + D(d) is the hydrodynamic dispersion coefficient.
Hence the mass balance equation becomes

d(θC)

dt
= −∇ · (Cq) +∇ · (θD∇C) + θF (2.5)

The above is the standard reaction-advection-dispersion equation.

The following equations are derived from the study of [3].

θ
∂C

∂t

urea

= ∇ · (θD · ∇Curea)− q · ∇Curea − θr (2.6)

θ
∂C

∂t

Ca2+

= ∇ · (θD · ∇CCa2+)− q · ∇CCa2+ − θr (2.7)

θ
∂C

∂t

NH+
4

= ∇ · (θD · ∇CNH+
4 )− q · ∇CNH+

4 + 2θr (2.8)

For Non-aqueous Species CaCO3

Once any CaCO2−
3 is generated, it precipitates immediately and attaches

itself onto the matrix of the porous medium. Hence, its concentration is
defined in terms of weight per unit volume (and not per unit volume of the
voids) and the differential equation is derived to be

∂CCaCO3

∂t
= mCaCO3θr (2.9)

2.1.2 Differential equation for porosity

As CaCO3 fills the void the void space,hence the porosity decreases by an
equal amount.The change in porosity ∆θ in time ∆t is

∆θ =
∆Vv
V

= −∆CCaCO3

ρCaCO3

The rate of change of porosity can be expressed as follows

∂θ

∂t
= − 1

ρCaCO3

∂CCaCO3

∂t
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2.1.3 Differential Equation for flow

The head h available for flow

h = p+ ρgz (2.10)

q = −k

µ
∇h = −k

µ
(∇p+ ρgez) (2.11)

2.1.4 Differential Equation for Pressure

The fluid has been assumed incompressible and it is also assumed that the
hydrolysis of urea and precipitation of CaCO3 has no effect on the total
volume of fluid. Hence the amount of fluid transported through any closed
surface(S) must be equal to the change in volume of the domain(Ω) enclosed
by the closed surface.Thus the following results.∫

S
q · n dS = −

∫
Ω

∂θ

∂t
dΩ

Using Gauss divergence theorem∫
Ω
∇ · q dΩ = −

∫
Ω

∂θ

∂t
dΩ

As this is true for any subdomain of Ω

∇ · q = −∂θ
∂t

Hence the resulting differential equation is

−∇ ·
(

k

µ
(∇p+ ρgez)

)
=
mCaCO3

ρCaCO3

θr (2.12)

2.1.5 Expression for Reaction

r = vmax
u

Km + u

(
1− t

tmax

)
(2.13)

for 0 ≤ t ≤ tmax and is zero else.
In the above equation a linear decay with time has been assumed : in tmax
seconds the reaction rate decreases from a maximum reaction rate, vmax, to
zero. Further, the reaction rate becomes zero, if there is no chemical present
and is maximum if an abundant amount of reactant chemical is present.
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2.1.6 Expression for Intrinsic Permeability

The intrinsic permeability is determined, using the Kozeny–Carman rela-
tion: an empiric relation between the intrinsic permeability and the porosity
that is commonly used in ground water flow modelling,

kx = ky = kz =
d2
m

180

θ3

(1− θ)2
(2.14)
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Chapter 3

One Dimensional Case:
Constant Coefficients

The 1D form of the general equation is given below.

θ
∂u

∂t
= −q∂u

∂x
+

∂

∂x
(θD

∂u

∂x
)− θr (3.1)

where

D = αL
|q|
θ

αL=longitudinal dispersivity

Constant θ and q

As θ and q are constants D is also a constant and hence can be taken outside
of the derivative.

∂u

∂t
= −q

θ

∂u

∂x
+D

∂2u

∂x2
− r (3.2)

The above equation is of second order and is non-linear because of r.

3.1 Finite Difference Discretization

The one dimensional spacial domain x is replaced by a grid of Nx+1 equidis-
tant points indexed i = 0, 1, 2, . . . , Nx− 1, Nx. The time domain is similarly
replaced by a grid j = 0, 1, 2, . . . , Nt − 1, Nt.

Now ∆x =
xNx − x0

Nx
and ∆t =

xNt − t0
Nt

.

The discretization is done by Crank-Nicholson scheme,which is obtained
by taking the average of the explicit and implicit schemes.This method is
unconditionally stable and is accurate to second order in both space and

12



time.

uj+1
i − uji

∆t
=
D

2

(
(uj+1
i−1 − 2uj+1

i + uj+1
i+1 ) + (uji−1 − 2uji + uji+1)

∆x2

)

− q

2θ

(
(uj+1
i+1 − u

j+1
i−1 ) + (uji+1 + uji−1)

2∆x

)
− rji

(3.3)

Rearranging and taking c =
q∆t

4θ∆x
and s =

D∆t

4∆x2
we get

(−c− s)uj+1
i−1 +(1 + 2s)uj+1

i + (c− s)uj+1
i+1

= (c+ s)uji−1 + (1− 2s)uji + (−c+ s)uji+1 − r
j
i∆t

(3.4)

These equations hold only for 1 ≤ i ≤ Nx − 1. In matrix form the above
equation can be written as


−c− s 1 + 2s c− s 0 . . . . . . . . . . . . . . . . . . . . .

0 −c− s 1 + 2s c− s 0 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . −c− s 1 + 2s c− s 0
. . . . . . . . . . . . . . . . . . . . . . . 0 −c− s 1 + 2s c− s





uj+1
0

uj+1
1
...

uj+1
Nx−1

uj+1
Nx


=


c+ s 1− 2s −c+ s 0 . . . . . . . . . . . . . . . . . . . . . . .

0 c+ s 1− 2s −c+ s 0 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . c+ s 1− 2s −c+ s 0
. . . . . . . . . . . . . . . . . . . . . 0 c+ s 1− 2s −c+ s





uj0
uj1
...

ujNx−1

ujNx


−



rj1
rj2
...

rjNx−2

rjNx−1


∆t

(3.5)

where rji is obtained by putting uji in (2.13).
There are Nx − 2 equations in Nx unknowns.The boundary conditions pro-
vide the two missing equations.

3.2 Boundary conditions

This specific problem is to be solved with a Dirichlet boundary condition at
x0 and a Neumann boundary condition at xNx .

1. Dirichlet: (x0, j) = u0 for j = 0, 1, . . . , Nt

2. Neumann:
(
∂u
∂x

)
xNx

= 0. Now applying a Backward difference at xNx

ujNx − u
j
Nx−1

2
= 0 =⇒ ujNx = ujNx−1
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3.3 Equations in Matrix Form

The matrix equation (3.5) can now be modified by applying the boundary
conditions.


1 + 2s c− s 0 . . . . . . . . . . . . . . . . .
−c− s 1 + 2s c− s 0 . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . −c− s 1 + 2s c− s
. . . . . . . . . . . . . . . 0 −c− s 1 + c+ s





uj+1
1

uj+1
2
...

uj+1
Nx−2

uj+1
Nx−1


+



(−c− s)uj+1
0

0
...
0
0


=


1− 2s −c+ s 0 . . . . . . . . . . . . . . . . .
c+ s 1− 2s −c+ s 0 . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . c+ s 1− 2s −c+ s
. . . . . . . . . . . . . . . 0 c+ s 1− c− s





uj1
uj2
...

ujNx−2

ujNx−1


+



(c+ s)uj0
0
...
0
0


−



rj1
rj2
...

rjNx−2

rjNx−1


∆t

(3.6)

In a compact form the above equation can be written as

Mlu
j+1 + bj+1

l = Mru
j + bjr − rj (3.7)

=⇒ uj+1 = M−1
l

(
Mru

j + (bjr − bj+1
l )− rj

)
(3.8)
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Chapter 4

One Dimensional Case:
General Formulation

4.1 Finite Difference Discretization

The one dimensional spacial domain x is replaced by a grid of Nx + 1
equidistant points indexed i = 0, 1, 2, . . . , Nx − 1, Nx. The time variable t
is nondimensionalized using t = τtm to avoid difficulties during numerical
computation as long term behavior of the model is sought .Then the τ
domain is similarly replaced by a grid j = 0, 1, 2, . . . , Nτ − 1, Nτ .

Now ∆x =
xNx − x0

Nx
and ∆τ =

τNτ − τ0

Nτ
.

For Pressure

− d

dx

(
k

µ

dp

dx

)
=
mCaCO3

ρCaCO3

θ

At each time-grid point j = 1, 2, . . . , Nt

ki+ 1
2

µ

dp

dx

∣∣∣∣
i+ 1

2

−
ki− 1

2

µ

dp

dx

∣∣∣∣
i− 1

2

=− mCaCO3

ρCaCO3

θi∆x

ki+ 1
2

µ
(pi+1 − pi)−

ki− 1
2

µ
(pi − pi−1) =− mCaCO3

ρCaCO3

θi∆x
2

ki− 1
2

µ
pi−1 −

(
ki− 1

2

µ
+
ki+ 1

2

µ

)
pi +

ki+ 1
2

µ
pi+1 =− mCaCO3

ρCaCO3

θiri∆x
2 (4.1)

The superscript j is omitted for compactness as it is a differential equation of only

x.
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For Flow

q =− k

µ

dp

dx

q0 =− k0

µ

p1 − p0

∆x
(4.2)

qi =− ki
µ

pi+1 − pi−1

2∆x
for 1 ≤ i ≤ Nx − 1 (4.3)

qNx =− kNx
µ

pNx − pNx−1

∆x
(4.4)

For Concentration of Aqueous Specis

θ
∂u

∂t
= −q∂u

∂x
+

∂

∂x

(
d
∂u

∂x

)
− θr

where d = θD = θαL
|q|
θ

= αL|q|

=⇒ θ
∂u

∂τ
= −e∂u

∂x
+

∂

∂x

(
f
∂u

∂x

)
− θg (4.5)

where e = qtm f = dtm g = rtm

The discretization is done by Crank-Nicholson scheme,which is obtained
by taking the average of the explicit and implicit schemes.This method is
unconditionally stable and is accurate to second order in both space and
time.

θi
uj+1
i − uji

∆τ
= −

eji
2

(
(uj+1
i+1 − u

j+1
i−1 ) + (uji+1 + uji−1)

2∆x

)

+
1

2


(
f j
i− 1

2

uj+1
i−1 − (f j

i− 1
2

+ f j
i+ 1

2

)uj+1
i + f j

i+ 1
2

uj+1
i+1

)
∆x2

+

(
f j
i− 1

2

uji−1 − (f j
i− 1

2

+ f j
i+ 1

2

)uji + f j
i+ 1

2

uji+1

)
∆x2

− θji gji
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=⇒

(
−
eji∆τ

4∆x
−
f j
i− 1

2

∆τ

2∆x2

uj+1
i−1 +

θji +
f j
i− 1

2

∆τ

2∆x2
+
f j
i+ 1

2

∆τ

2∆x2

uj+1
i

+

eji∆τ
4∆x

−
f j
i+ 1

2

∆τ

2∆x2

uji+1

=

eji∆τ
4∆x

+
f j
i− 1

2

∆τ

2∆x2

uji−1 +

θji − f j
i− 1

2

∆τ

2∆x2
−
f j
i+ 1

2

∆τ

2∆x2

uji

+

−eji∆τ
4∆x

+
f j
i+ 1

2

∆τ

2∆x2

uji+1 − θ
j
i g
j
i∆τ

(4.6)

Concentration of CaCO3

∂uCaCO3

∂t
= mCaCO3θr

uj+1
i = uji +mθji r

j+1
i ∆t = uji +mθji g

j+1
i ∆τ (4.7)

For Porosity

∂θ

∂t
= − 1

ρCaCO3

∂uCaCO3

∂t

θji = θ0
i −

uji − u0
i

ρ
(4.8)

Updating Values of r and k

rji = vmax
uji

Km + uji

(
1− t

tmax

)
(4.9)

kji =
d2
m

180

θ3

(1− θ)2
(4.10)

4.2 Boundary Conditions

p Curea CCa2+ CNH+
4

x0 p = p1 (pressure driven case) Curea = cin CCa2+ = cin CNH+
4 = 0

xNx p = p2
∂Curea

∂n = 0 ∂CCa2+

∂n = 0 ∂CNH+
4

∂n = 0

The Neumann Boundary Condition at xNx ,
(
∂u
∂x

)
xNx

= 0 can be dealt with

by applying a Backward difference at xNx
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ujNx − u
j
Nx−1

2
= 0 =⇒ ujNx = ujNx−1

Using the above conditions the Finite difference schemes can be modified
and written in a matrix form as given below.

4.3 Equations in Matrix Form

For Pressure

At each time-grid point j = 1, 2, . . . , Nt
−(k 1

2
+ k 3

2
) k 3

2
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k 3
2

−(k 3
2

+ k 5
2
) k 5

2
0 . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . kNx− 5
2
−(kNx− 5

2
+ kNx− 3

2
) kNx− 3

2

. . . . . . . . . . . . . . . . . . . . . . . . . 0 kNx− 3
2

−(kNx− 3
2

+ kNx− 1
2
)





pj+1
1

pj+1
2
...

pj+1
Nx−2

pj+1
Nx−1


=



−k 1
2
p(x0)

0
...
0

−kNx− 1
2
p(xNx)


− mCaCO3

ρCaCO3

∆x2



θ1r1

θ2r2
...

θNx−2rNx−2

θNx−1rNx−1


(4.11)

For Concentration

In a compact form the matrix form of the equation can be written as:

Mlu
j+1 + bj+1

l = Mru
j + bjr − gj (4.12)

=⇒ uj+1 = M−1
l

(
Mru

j + (bjr − bj+1
l )− gj

)
(4.13)

where

uj =



uj1
uj2
...

ujNx−2

ujNx−1


bjl =



(
− ej1∆τ

4∆x −
fj1
2

∆τ

2∆x2

)
uj0

0
...
0
0


bjr =



(
ej1∆τ
4∆x +

fj1
2

∆τ

2∆x2

)
uj0

0
...
0
0


gj =



gj1θ
j
1

gj2θ
j
2

...

gjNx−2θ
j
Nx−2

gjNx−1θ
j
Nx−1


∆τ

Ml =



θj1 +
fj1
2

∆τ

2∆x2
+

fj3
2

∆τ

2∆x2
ej+1
1 ∆τ
4∆x −

fj3
2

∆τ

2∆x2
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− ej2∆τ
4∆x −

fj3
2

∆τ

2∆x2
θj2 +

fj3
2

∆τ

2∆x2
+

fj5
2

∆τ

2∆x2
ej2∆τ
4∆x −

fj5
2

∆τ

2∆x2
0 . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − ejNx−2∆τ

4∆x −
fj
Nx− 5

2

∆τ

2∆x2
θjNx−2 +

fj
Nx− 5

2

∆τ

2∆x2
+

fj
Nx− 3

2

∆τ

2∆x2
ejNx−2∆τ

4∆x −
fj
Nx− 3

2

∆τ

2∆x2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 − ejNx−1∆τ

4∆x −
fj
Nx− 3

2

∆τ

2∆x2
θjNx−1 +

fj
Nx− 3

2

∆τ

2∆x2
+

ejNx−1∆τ

4∆x


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Mr =



θj1 −
fj1
2

∆τ

2∆x2
−

fj3
2

∆τ

2∆x2
− ej1∆τ

4∆x +
fj3
2

∆τ

2∆x2
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ej2∆τ
4∆x +

fj3
2

∆τ

2∆x2
θj2 −

fj3
2

∆τ

2∆x2
−

fj5
2

∆τ

2∆x2
− ej2∆τ

4∆x +
fj5
2

∆τ

2∆x2
0 . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ejNx−2∆τ

4∆x +
fj
Nx− 5

2

∆τ

2∆x2
θjNx−2 −

fj
Nx− 5

2

∆τ

2∆x2
−

fj
Nx− 3

2

∆τ

2∆x2
− ejNx−2∆τ

4∆x +
fj
Nx− 3

2

∆τ

2∆x2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
ejNx−1∆τ

4∆x +
fj
Nx− 3

2

∆τ

2∆x2
θjNx−1 −

fj
Nx− 3

2

∆τ

2∆x2
− ejNx−1∆τ

4∆x


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Chapter 5

Computer Simulation

5.1 Algorithm

Initially, the concentration of calcium carbonate, urea, calcium and ammo-
nium are equal to zero.
At each time step, Eqs. (4.1)-(4.10) are solved.

1. First the equation for the pressure, (4.1), is solved, using the porosity,
density, intrinsic permeability and reaction rate from the previous time
step.

2. Subsequently, the velocities are calculated, using Eq. (4.2),(4.3) and
(4.4). Again, the density and the intrinsic permeability from the pre-
vious time step are to be used.

3. The differential equation for concentration of urea has the non-linear
reaction term and it is solved using Eq. (4.6), using the porosity from
the previous time step.

4. The differential equations for the concentrations of chemical species
present are solved using using Eq. (4.6) and reaction r obtained from
the differential equation for urea.

5. Subsequently, the equation for CaCO3 concentration, (4.7), is solved,
using the porosity from the previous time step and the reaction rate
from the current one.

6. Finally, the intrinsic permeability k and the porosity θ are recalculated
with Eq. (4.10) and (4.8), respectively.

7. Also the boundary conditions and the density of the fluid ρ are up-
dated, if necessary,
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5.2 Constants Used in MATLAB Program

x0 = 0 xNx = 1
Nx = 100 Nt = 105

mCaCO3 = 100.1 Kg Kmol−1 ρCaCO3 = 2710 Kg m−3

tmax = 2.88× 105s(=80h) vmax = 9× 10−5 kmol m−3s−1

µ = 1.15× 10−3Pa s θ0 = .35
αL = .01m Km = .01
dm = 2× 10−4m cin = 1.0 kmol m−3

5.3 MATLAB Codes

1 clear all
2

3 L=1; %length of x domain
4 tm=288000; %tmax
5 T=1; %tau max
6 vm=9e−5; %Vmax
7 Km=.01;
8 m2=100.1; %molar mass of CaCO3
9 dm=2e−4; %mean particle size

10 mu=1.15e−3;
11 rho2=2710; %density of mass of CaCO3
12 Cin=1;
13 p1=100854;
14 p2=1e5;
15 Nx=100;
16 Nt=100000;
17 dx=L/Nx;
18 dt=T/Nt;
19 alpha=.01; %horizontal dispersivity
20

21 %C1=concentration of urea
22 %C2=concentration of CaCO3
23 %initial condition
24 for i=1:Nx+1
25 x(i)=(i−1)*dx;
26 C1(i,1)=0;
27 C2(i,1)=0;
28 end
29

30 %boundary conditions at X0(Dirichlet)
31 for j=1:Nt+1
32 t(j)=(j−1)*dt;
33 end
34 C1(1,1:Nt+1)=Cin;
35 C2(1,1:Nt+1)=0;
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36 p(1,1:Nt+1)=p1;
37 p(Nx+1,1:Nt+1)=p2;
38

39 g(:,1)=tm*vm*(1−t(1))*C1(:,1)./(Km+C1(:,1));% initial ...
reaction rate

40 por(1:Nx+1,1)=.35;
41 k(:,1)=dmˆ2/180*por(:,1).ˆ3./(1−por(:,1).ˆ2);%intrinsic ...

permeability
42

43 for j=1:Nt
44

45 %
46 %Solution for pressure
47 for i=1:Nx
48 kk(i)=(k(i,j)+k(i+1,j))/2;
49 end
50

51 Q=−m2/rho2*por(2:Nx,j).*g(2:Nx,j)*dx*dx/(tm);
52 Q(1)=Q(1)−p1*kk(1);
53 Q(Nx−1)=Q(Nx−1)−p2*kk(Nx);
54 aa(1:Nx−2)=kk(2:Nx−1);
55 for i=1:Nx−1
56 bb(i)=−(kk(i)+kk(i+1));
57 end
58 cc(1:Nx−2)=kk(2:Nx−1);
59 MMp=diag(bb,0)+diag(aa,−1)+diag(cc,1);
60 p(2:Nx,j)=MMp\Q;
61 %
62

63 %
64 %solution for flow
65 q(1,j)=−k(1,j)/mu*(p(2,j)−p(1,j))/dx; %forward diff.
66 for i=2:Nx
67 q(i,j)=−k(i,j)/mu*(p(i+1,j)−p(i−1,j))/(2*dx); %central ...

diff.
68 end
69 q(Nx+1,j)=−k(Nx+1,j)/mu*(p(Nx+1,j)−p(Nx,j))/dx; %backward diff.
70 %
71

72 %
73 %solution for urea concentration(C1)
74 e=tm*q(:,j);
75 f=tm*alpha*abs(q(:,j));
76 ff=zeros(Nx,1);
77 for i=1:Nx
78 ff(i)=(f(i)+f(i+1))/2;
79 end
80

81 aal(1:Nx−2)=−(ff(2:Nx−1)/(2*dxˆ2)+e(3:Nx)/(4*dx))*dt;
82 for i=1:Nx−2
83 bbl(i)=por(i+1,j)+(ff(i)+ff(i+1))*dt/(2*dxˆ2);
84 end
85 bbl(Nx−1)=por(Nx,j)+dt/(2*dxˆ2)*ff(Nx−1)+e(Nx)*dt/(4*dx);
86 ccl(1:Nx−2)=−(ff(2:Nx−1)/(2*dxˆ2)−e(2:Nx−1)/(4*dx))*dt;
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87 MMl=diag(aal,−1)+diag(bbl,0)+diag(ccl,1);
88 rl=zeros(Nx−1,1);
89

90 aar(1:Nx−2)=(ff(2:Nx−1)/(2*dxˆ2)+e(3:Nx)/(4*dx))*dt;
91 for i=1:Nx−2
92 bbr(i)=por(i+1,j)−(ff(i)+ff(i+1))*dt/(2*dxˆ2);
93 end
94 bbr(Nx−1)=por(Nx,j)−dt/(2*dxˆ2)*ff(Nx−1)−e(Nx)*dt/(4*dx);
95 ccr(1:Nx−2)=(ff(2:Nx−1)/(2*dxˆ2)−e(2:Nx−1)/(4*dx))*dt;
96 MMr=diag(bbr,0)+diag(aar,−1)+diag(ccr,1);
97 rr=zeros(Nx−1,1);
98

99 rl(1)=−dt*(ff(1)/(2*dxˆ2)+e(2)/(4*dx))*C1(1,j+1);
100 rr(1)=dt*(ff(1)/(2*dxˆ2)+e(2)/(4*dx))*C1(1,j);
101 uu=C1(2:Nx,j);
102 C1(2:Nx,j+1)=(MMl)\(rr−rl+MMr*uu−por(2:Nx,j).*g(2:Nx,j)*dt);
103 %
104

105 %
106 %calculation of reaction−rate,CaCO3 concentration(C2) and ...

porosity
107

108 g(:,j+1)= ...
tm*vm*(1−t(j+1))*C1(:,j+1)./(Km+C1(:,j+1));%reaction rate

109 C2(1:Nx,j+1)=C2(1:Nx,j)+dt*m2*por(1:Nx,j).*g(1:Nx,j+1);
110 por(:,j+1)=por(:,1)−(C2(:,j+1)−C2(:,1))/rho2;
111 k(:,j+1)=dmˆ2/180*por(:,j+1).ˆ3./(1−por(:,j+1)).ˆ2;
112 j
113 end
114

115 %Neumann Boundary Conditions at Xn
116 C1(Nx+1,:)=C1(Nx,:);
117

118 %Plots
119 %urea−x
120 figure(1);
121 plot(x,C1(:,ceil(72000/2.88+1)),'−',x,...
122 C1(:,ceil(144000/2.88+1)),'−',x,C1(:,ceil(216000/2.88+1)),'−',...
123 x,C1(:,ceil(288000/2.88+1)),'−');
124

125 %urea−T
126 figure(2);
127 time=tm*t;
128 plot(time,C1(1,:),'−',time,C1(ceil(0.2/.01+1),:),'−',time,...
129 C1(ceil(0.5/.01+1),:),time,C1(ceil(1/.01+1),:))
130

131 %CaCO3−X
132 figure(3)
133 plot(x,C2(:,ceil(72000/2.88+1)),'−',x,...
134 C2(:,ceil(144000/2.88+1)),'−',x,C2(:,ceil(216000/2.88+1)),...
135 '−',x,C2(:,ceil(288000/2.88+1)),'−')
136

137 %porosity
138 figure(4)

23



139 plot(x,por(:,Nt+1))
140 %permeability
141 plot(x,k(:,Nt+1))
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5.4 Plots

Figure 5.1: The urea concentration as a function of x at several times.
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Figure 5.2: The urea concentration as a function of t at several positions

Figure 5.3: The concentration of calcium carbonate as a function of x at
several times.
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Figure 5.4: the porosity as a function of the position at t = tmax

Figure 5.5: the intrinsic permeability as a function of the position at t = tmax
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Chapter 6

Inference

In the pressure driven case modelled above, initially, the inflow velocity is
high . Both the porosity and the permeability decrease due to the precip-
itation of calcium carbonate. Since the pressure at the inflow and outflow
boundary remain constant, the inflow velocity decreases.

The calcium carbonate concentration in the domain at several times for
the pressure driven case. For example, in the first 80 hours, in about 20 %
of the domain, calcium carbonate has been formed in the pressure driven
case. Eventually, the inflow velocity became so low that the urea molecules
could not reach the end of the column. As a result no calcium carbonate
has been formed in the remaining part of the domain.

An increase of the generated calcium carbonate concentration, gives a de-
crease of both intrinsic permeability and the porosity. This phenomenon is
confirmed in the above figures.

Conclusion

A model has been formulated to describe the Biogrout process. The model
gives insight into several aspects of the Biogrout process. The Biogrout
process influences several properties of the subsoil. The precipitation of
the solid calcium carbonate decreases the porosity and the permeability. A
consequence of a decreasing permeability is that the pressure should increase
to keep up the same flow rate, or, if the pressure is constant, that the
flow rate decreases. The model contains the concentrations of the dissolved
species that are present in the biochemical reaction. These concentrations
can be solved from a advectiondispersionreaction equation with a variable
porosity. Other model equations involve the bacteria, the solid calcium
carbonate concentration, the (decreasing) porosity, the flow and the density
of the fluid.
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Scope for Future Study

The model has been created under several assumptions. These assumptions
should be validated using experiments.

� The first assumption was that the process is governed by the given
biochemical reaction. In reality, however, this reaction happens in
several steps, some of which being equilibrium reactions that depend
on the pH.

� The retardation factors have been assumed to be 1 and it is also as-
sumed that the total volume of the fluid remain unaltered due to the
hydrolysis of urea and the precipitation of calcium carbonate.

� It has also been assumed that calcium carbonate precipitates locally
and will not be transported. Calcium carbonate can precipitate in
several ways e.g. it can attach to sand grains but can also form crystals.
When these crystals are large enough, they will stick in the porespace
and it can be assumed that they are not transported. However, when
these crystals are small, they should be considered to be transported.

� Another assumption was that of the distribution of bacteria being
homogeneous and that the reaction rate has a linear decay with time.

� To calculate the intrinsic permeability the Kozeny-Carman relation
has been used, the validity of which is to be verified in case of Biogrout
process.

� The viscosity has been assumed to be constant and independent on
the concentrations of various chemicals involved.

Only pressure driven case has been discussed. The flow driven case can be
investigated where the flow is constant at the boundary points.

The model deals with only one dimensional case. Similar models can be
developed for two and three dimensional cases.
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