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Abstract

The amount of video data has increased dramatically with the advent of dig-
ital imaging. Most of the video captured these days originates from a mobile
phones and handheld video cameras. Such videos are shaky compared to
videos that are shot with a tripod mounted camera. Stabilizing this video
to remove the shaky effect using software is called Digital video stabilization
which results in a stable and visually pleasant video. In order digitally stabi-
lize the image, we need to (1) Estimate the motion of camera, (2) Regenerate
the motion of camera without the undesirable artifacts and (3) Synthesize
new video frames. This dissertation is targeted at improving the last two
steps of stabilizing the video.

Most of the previous techniques of video stabilization produce a lower res-
olution stabilized video output and clip portions of frames to remove the
empty area formed by transformation of the video frames. We use a Gaus-
sian averaging filter to smoother the global motion in the video. Then the
frames are transformed using the new transformation matrices obtained by
subtracting the original transformation chain from the modified transforma-
tion chain. For the last step of synthesizing new video frames, we introduce
an improved completion technique which can produce full frame video by us-
ing the pixel information from nearby frames to estimate the intensity of the
missing pixels. This technique uses motion inpainting to ensure that the
video frames are filled in both the static image area and dynamic image area
with the same consistency. Additionally, the quality of the video is improved
by using a deblurring algorithm which further improves the smoothness of
video by eliminating undesirable motion blur. We do not estimate the PSF,
in its place, we transfer and interpolate the sharper pixels from nearby frames
to improve the sharpness and deblur current frame. Completing the video
with motion inpainting and deblurring technique allow us to construct a full
frame video stabilization system with good image quality. This is verified by
implementing the technique on different video sequences.
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Chapter 1

Introduction

As the digital imaging technology evolved, cameras have continued to become
smaller and more mobile. Majority of the videos these days are usually
captured by hand-held devices like smart phones and digital camcorders.
These videos are often shaky and appear to have an undirected motion.
Expensive professional equipment like tripod and camera rigs are used with
a camera to capture a stabilized video with no shake. Stabilizing a video
digitally post capture is an important video enhancement technology which
improves upon the video quality by digitally processing the videos captured
from consumer devices. Such devices are illustrated in Figure 1 on left.

Stabilizing video digitally mainly consists of three vital steps: (1) Estimate
the motion of camera to obtain the trajectory of the original shaky cam-
era path, (2) Regenerate the motion of camera trajectory by removing or
smoothing the shaky component. (3) Complete the video by synthesizing
new video frames using smoothed trajectory and other improvements like
inpainting to fill in the unknown or empty image areas. For the first step,
motion can be estimated in either 2D or 3D. According to the adopted mo-
tion model, the video stabilization technique can be identified as 3D-based,
2D-based or 2.5D-based techniques. 3D-based techniques use Structure from
Motion (SFM) algorithms to reconstruct and recover the 3D camera poses.
2D-based techniques use affine or homography model models to estimate mo-
tion transformations among consecutive frames. Camera path is constructed
by estimating and accumulating the rigid transforms obtained by these linear
transformations. 2.5D-based techniques adopt a partial 3D reconstruction by
using information such as epipolar geometry[3]. A comprehensive literature
review is presented in Chapter 2.

10



Figure 1: Left: Digital video stabilization improves the quality of the video
captured by hand-held devices. Right: Professional videos are often captured
by expensive camera rigs and external stabilizers like tripods.

2D-based techniques are much better and stronger and also work quicker
as they just estimate a lineaar trnsformation model among nearby frames.
But this technique is very poor to basically handle the paralax which take
place due to the non-trvial depth changes. The 3D stabilization techniques,
on other hand can can easily deal with parallax and produce better results.
However, 3D techniques are less robust to changes such as motion blur, rolling
shutter, camera zoom and feature tracking failures. In the following section,
the challenging issues of video stabilization and common artifacts that form
when stabilization fails are presented.

1.1 Challenges of the Video Stabilization problem

There have been great improvements in video stabilization algorithms. Some
of these algorithms have also been implemented commercially e.g., YouTube
stabilizer developed from homography model mixture model[2] and Warp
Stabilizer in Adobe Premiere Pro developed from the technique of subspace
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technique[4]. They produce good results on a wide variety of videos and also
can handle certain difficult examples. However, there are some challenging
scenarios that still need to be solved and cannot be properly handled by these
software tools. In this section, we first discuss some of the major challenges
that are present in casually captured videos from hand-held devices. We
also demonstrate the type of failure that these challenges cause in a video
stabilization algorithm. This discussion motivates our design of new video
stabilization algorithms.

Quick motion of camera: Certain motion of cameras like quick rotation
and zooming present a challenge for video stabilization. 3D and 2.5D tech-
niques make use of long feature trajectories to stabilize a video. However,
when a quick motion occurs, the length of these trajectories drop very quickly
and even approach zero in some extreme scenarios. This degrades the per-
formance of trajectory-based stabilization techniques. Figure 2 shows two
examples of quick camera zooming(top) and quick camera rotation(bottom).
These videos when stabilized contain large empty regions.

Figure 2: Quick camera movement results in missing image areas
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Large moving foreground: Large dynamic objects in a video can easily
mislead the video stabilizer during the motion of camera estimation. If size
of the dynamic object is not big, RANSAC can be used for both 2D and 3D
techniques, to eliminate moving objects. However, it is extremely difficult
to distinguish the foreground and background when a large moving object is
present in the video. In most of such scenarios, the video stabilizer assumes
the foreground motion to be the background motion of camera which would
lead to jitter and unstable results. There are a few user-assisted techniques[6]
to address this issue by allowing the user to select the background features
during motion estimation. The problem of motion segmentation however,
still remains as an elusive challenge for automatic systems. Figure 3 shows
the kind of video sequences where a large moving foreground could cause
problems in video stabilization.

Figure 3: Failure of motion of camera estimation in presence of large moving
foreground

Motion blur: When there is extreme camera shake, it can lead to significant
blurring of information in video frames. Figure 4 shows one such example
where camera shake has lead to intense motion blur in the video. Many video
stabilization algorithms can still process this footage and produce stabilized
results. However, the motion blur which occurs in the original motion of
camera is left untouched. This also leads to additional motion blur in the final
stabilized video that appears unnatural. Stabilization algorithms usually
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depend on feature tracking to estimate the motion of camera. However,
feature tracking over blurred frames is not reliable as there are no sharp image
features in the frame. Therefore, handling motion blur is a very important
task for a good video stabilization system.

Rolling shutter effects: The rolling shutter effect is caused because of the
way the data is read out from a CMOS sensor inside the camera. Pixels that
are in a row are read simultaneously, but the vertical pixel read out is shifted
row by row. This results in the bending of straight lines in the captured
video frame as shown in figure 5. This effect is not very visible when the
motion of camera is slow. However, during quick motion of cameras, this
effect becomes much more noticeable. Since a large number of consumer
captured videos that are shaky have quick motion of cameras, they are also
more likely to have this rolling shutter effect. Most of the smart phones and
consumer capture devices use CMOS sensors because of their lower power
consumption. A good stabilization system should also address the rolling
shutter effect.

Figure 4: Motion Blur in Video Frames
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Figure 5: Rolling shutter effects

Large depth variation: Most of the videos have varying depth in them. In
2D video stabilization, affines or homographies are used to model the motion
among nearby frames. A single homography model technique is only valid for
a planar scene or camera under pure rotation. No single homography model
can best fit all the motions of the scene. This results in wobble artifacts.
For small depths, these stabilization algorithms can produce relatively good
result. However, when the depth variation is large, multiple homographies
are needed for motion estimation[7][8] and this can present a challenge to
the problem of video stabilization. In figure 6, two such video sequences are
shown which get wobble distortions in the final stabilized video.
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Figure 6: Large Depth Variation and Wobble distortions

1.2 Objective

Each of the challenge presented above is a research problem in itself. A
good video stabilization system should try to overcome as many challenges
as possible. Nonetheless, the problem becomes more pronounced and difficult
when multiple challenges are presented in a single video. e.g., rolling shutter
effect with large moving foreground or large depth variations with motion
blur. It is very likely that such challenges are also linked together in real
world scenarios. In fact, when the 3D reconstruction technique is feasible,
3D techniques often produce excellent results for a sequence with large depth
variations. Yet they lack the ability to handle other types of challenges. The
2D based stabilization techniques however, are robust to quick motion of
cameras, but are limited in their capacity to handle large depth variations. A
video with large dynamic objects or moving foreground often require motion
segmentation techniques to discover the motion of camera. If the size of
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the foreground is dominant, then it presents a very difficult challenge for
stabilization.

Other prominent problem is the issue of stability. Some stabilization tech-
niques successfully eliminate the high-frequency motion of camera, but fail
to correct the low-frequency camera shake that is unintentional. To develop
a high quality video stabilizer, we also need to identify the low-frequency
jitters that were unintentional and remove them. Another thing that could
be done is to give the user control over the frequencies of motion that need
to be eliminated. This could help the user to produce better results if the
first pass does not work. Another important issue is of the cropping of video
because of empty areas obtained from video stabilization. To address this
problem, we can introduce techniques such as motion inpainting and mo-
saicing to locally warp the pixels from nearby frames to populate the empty
pixels in the current frame. Artifacts like wobble would be introduced if the
camera path is not smoothed properly. Practically, a reduction in stability
suppresses the wobble in videos. However, we need to achieve a fine balance
among stability and reducing the wobble to produce a high quality output.

In summary, a good video stabilization system should produce a good stable
full frame video output with no geometrical distortions and wobbles. It
should also correct the rolling shutter effects and also handle motion blur in a
better way and eliminate the additional blur that is caused in the final output
because of non association of blur in the input video to that of the digitally
stabilized video. Existing techniques cannot satisfy all the goals. However,
it is worth exploring towards the direction of a perfect video stabilizer with
all the above mentioned features.

1.3 Contributions

This section provides a brief introduction to all the problems we have studied
in this work: Stabilizing videos using 2D Affine transformation model to
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estimate the motion among frames, A technique to complete the video using
motion inpainting and local pixel warping to obtain full frame stabilized
videos and a technique for deblurring the motion blur in the final result
using an interpolation based technique.

Motion Estimation and Smoothing: We estimate the Global motion
which represents the frame to frame image transform using a homography
model model to detail the geometric transformation among the two frames.
The hierarchial motion estmation framwork that is introduced by Bergen
et al.[5] is used. Local motion is estimated separately using the Lucas-
Kanade pyramidal model optical flow computation[9]. The high frequency
part present in global motion chain is removed by applying a Gaussian aver-
aging filter.

Completing the Video with Motion inpainting: We initially locally
adjust the image mosaics from nearby frames utilizing the motion field ob-
tained from local motion estimation. Next, a motion inpainting technique is
used propogate the local motion field into the empty areas of image at which
the local motion cannot be computed directly. After the motion field in the
area of image with empty pixels is obtained, we locally warp pixels from
the nearby frames using the local motion information using Fast Marching
technique[10]. Additional missing pixels are filled by using a blur filter.

Image Deblurring: In this technique we first evaluate how much higher
frquency component is eliminated from the frame compared to nearby frames.
We calculate the blurriness measure and determine which frames are rela-
tively blurry. We then use this information to transfer sharper pixels from
nearby frames[11][12] to respective blurred image areas in the current frame.

1.4 Thesis Organization

The remainder of this thesis is organized as following: Chapter 2 is literature
review and the previous works on video stabilization, motion inpainting and
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image deblurring are studied. Chapter 3 presents the work of video stabi-
lization using a homography model to describe the geometric transformation
among the two frames. Chapter 4 discusses the Video Completion technique
and motion inpainting. Chapter 5 details the work on Image deblurring.
Chapter 6 summarizes the thesis with a discussion of limitations and the
scope for future research in this direction.
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Chapter 2

Literature Review

Depending on the motion model used, video stabilization can be categorized
in to 3D, 2D and 2.5D techniques. Also, the problem of video completion
to yield full frame stabilized result and that of image deblurring are also
important when building a good video stabilization system.

3D techniques: These techniques need explicitly defined 3D structures
for video stabilization, including 3D camera poses and scene depth. These
structures can be defined from SFM algorithms or by using depth sensors.
The 3D camera path is determined from these structures and smoothing
is applied to it to remove the shaky component. The stabilized video is
obtained by rendering the original sequence with the modified path as if it
is taken from a new path. This rendering process is referred to as novel view
synthesis. When 3D reconstruction is feasible, it often produces the highest
quality stabilized video because of its theoretical and practical correctness.

2D techniques: 2D techniques estimate a linear transformation among the
nearby video frames. By accumulating the rigid transforms from these linear
transforms, the camera path in 2D space is obtained. The stabilized video
is obtained by smoothing this 2D camera path using a filter. Affines and
homographies are the most common 2D transformations used in this tech-
nique. A homography model is only valid for planar and pure rotational
motions and is invalid for scenes with large depth variations. Using 2D sta-
bilization with such videos will result in content distortion. Nevertheless, 2D
techniques are more robust and only requires that features math among the
nearby frames. This research is focused on motion estimation and smoothing
using 2D techniques of video stabilization.
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2.5D techniques: These techniques relax the requirement of full 3D re-
construction to some partial 3D information like epipolar geometry[3]. The
3D information is embedded in the feature trajectories. 2.5D techniques can
produce results comparable to that of full 3D techniques at a lower compu-
tational cost. Nonetheless, the requirement of long feature tracking is still a
barrier for the robustness of this technique.

Video completion techniques: The quality of a stabilized video is highly
dependent on the technique used for video stabilization. Most of the time,
this technique is simply cropping the video to remove the empty regions in the
image and up scaling the resulting image to match the original resolution. In
this section we explore the possibility of other completion techniques which
allow the creation of a video stabilizer which does not need clipping and can
produce full frame videos. This is done by locally adjusting the image pixels
from nearby frames to populate the empty region in the frame. One such
technique called motion inpainting[1] is deeply explored in this work.

Image deblurring techniques: After the process of stabilization, the mo-
tion blur which is unassociated with the new video sequence becomes very
noise like and distracting. This needs to be eliminated to improve the qual-
ity of the image. Previously, this was achieved by obtaining Point Spread
Functions in order to sharpen the frames and reduce the motion blur. This
technique is difficult and is not very reliable in producing good results. In
this work, we explore other types of Image deblurring techniques that are
not based on PSFs.

In the following sections, we briefly review the prior works based on the
categories. We highlight one representative work for each category.

2.1 3D Video Stabilization

3D stabilizing techniques estimate 3D motion of camera for stablization.
Beuhler er al.[13] introduced a 3D video stablization technique that is built on
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projective reconstruction of the scene with an uncalibrated camera. When-
ever Euclidean reconstruction is feasible, Zhang et al.[14] introduced tra-
jectory smoothing of the camera to decrease the acceleration in rotation,
translation and zooming. Liu et al.[15] introduced a full 3D stabilization
technique by introducing content-preserving warps(IPW) for the rendering
of the 3D motion of camera along the new path. Zhou et al.[16] further
extended the content-preserving warps with plan-based constraints. These
techniques are generally limited by their adopted 3D reconstruction algo-
rithms. Although there is a good amount of progress in 3D reconstruction,
reconstruction of a general video is still hard. We briefly review the technique
of content-preserving warp next.

Figure 7: (a) A pair of matched features (p, p̂) should be represented by the
same set of bi-linear interpolation weights of their four enclosing vertices.
(b) The smooth term requires each triangle ν̂1, ν̂2, ν̂3 to follow a similarity
transformation.

Content-Preserving Warp:

Liu et al.[15] introduced the content-preserving warp for the novel view syn-
thesis. This technique was inspired by as-rigid-as-possible shape manipula-
tion[17]. Given the input video frame Ît , the corresponding output video
frame It is generated by a warp from Ît. 3D reconstruction provides a sparse
set of 3D points. They can be projected onto both the input and output
cameras, giving two sets of respective 2D points. P̂ on the input frame and
P on the output frame.
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data term: Assume {p, p̂} is the p-th matchd feature pair from input and
output frame respectively. Then p can be indicated by a 2D bi-linear intr-
polation of the four vertices VP = [ν1p , ν

2
p , ν

3
p , ν

4
p ] of the enclosing grid cell;

p = Vpwp, where wp = [w1
p, w

2
p, w

3
p, w

4
p]
T are intrpolation weights that add up

to I. The coresponding feature P̂ can be indicated by the equal weights of the
warped grid vertices VP = [ν̂1p , ν̂

2
p , ν̂

3
p , ν̂

4
p ] . Figure 7(a) shows the relationship.

So, the data term is defined as

Ed(V̂ ) =
∑
P

||V̂pwp − p̂||2 (1)

Here V̂ consists all the warped grid vertices.

similarity transformation term As illustrated in Figure 7(b), the similarity
term is described as

Es(V̂ ) =
∑
v̂

||v̂ − v̂1 − sR90(v̂0 − v̂1)||2, R90 =

[
0 1

−1 0

]
(2)

where s = ||v − v1||/||v0 − v1|| is a already recognised scalar computed from
the primary mesh. This similarity transformation term needs the triangle of
nearby vertices v, v0, v1 undergoes a similarity transformation.

The final energy E(V̂ ) is obtained by combining two terms.

E(V̂ ) = Ed(V̂ ) + αEs(V̂ ), (3)

where α is a weight to direct the quantity of regularization. This energy
equation is quadratic and can be minimized by solving a sparse linear system.
Content preserving warp is applied to warp a frame to its novel view point. It
shows greater advantage over traditional image based rendering techniques.
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2.2 2D Video Stabilization

2D video stabilization techniques mostly use homography model or affine
transformations to estimate the motion of camera. Then these transforma-
tions are smoothed using a filter to stabilize the shaky video. If the trans-
formation among two consecutive frames can be described by homography
model, then the relationship among the two images I(P ) and I/(P /) can be
described by p ∼ Tp/. p = (x, y, 1)T and p/ = (x/, y/, 1)T are local of the
pixels in projective cordinates, and ~ describes equality up to scale as the
3x3 matrix T is not effected by scaling.

Hierarchial motion estmation framework:

This is introduced by Bergen er al.[5]. By implementing the parameter es-
timation for each pair of side by side frames, a global trnsformation chain
is extracted. This transformation chain contains both the high frequency
motion and low frequency motion of camera. As assumed in [18], we de-
fine the intentional motion of camera in the video as pleasent, lengthy and
smooth. As this corresponds to the low frequency component, we remove the
high frequency part from the global motion chain as unintended motion. In
other techniques, as smoothing is implemented to the original transformation
chain T 1

0 .....T
i
i−1, the eased transformation chain T̂ 1

0 .....T̂
i
i−1is calculated. In

this scenario, a motion compnsated frame I ′
i is computed by transforming

Ii with
∏i

n=0 T
n
n+1T̄

n+1
n . This flow of original and smoothed trnsformation

chain usually creates accumulation error. But our technique is free from such
error as it locally smooths displacement from the present frame to the nearby
frames.

2.3 2.5D Video Stabilization

This technique uses partial 3D information to smooth the trajectory of the
feature points that are tracked. There are several developments in this area.
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Goldstein and Fattal[19] used an “epipolar transfer” method to prevent the
difficult process of 3D reconstruction. Wang er al.[20] represented each tra-
jectory of the feature point as a Bezier curve and smoothed with a spatial-
temporal optimization. Liu et al.[8] smoothed some basis trajectories of the
subspace[4] extracted from the feature tracks(longer than 60 frames). This
technique produces a result that is comparable to the full 3D techniques,
while decreasing the requirement from 3D reconstruction to long feature tra-
jectories. This technique is also used as “Warp stabilizer” in the commercial
software Adobe After Effects. Recently, this Liu et al.[8] extended the sub-
space technique to also deal with stereoscopic videos. The basic ideas of
subspace[4] is one of the representative work in 2.5D techniques.

Subspace Video Stabilization:

Figure 8: Subspace Low-path filtering. Left: filter each trajectory inde-
pendently introduce artifacts as ignoring of 3D information. Right: filter
eigen-trajecotries in the subspace. The figures are borrowed from [4]

We intend to find the proper positions for a given set of 2D point trajectories,
at the output frame to produce a stabilized video. The trajectories can be
expressed together as a trajectory matrix M:
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M2N∗F =


x11 x12 ... x1F
y11 y12 ... y1F

xN1 xN2 ... xNF
yN1 yN2 ... yNF

 (4)

with N features per frames and F frames in total. If we directly apply a low
pass filter to this matrix, there would be distortion since smoothing feature
trajectories independently will breakdown the relationship among the points.
Figure 8 shows such an example. To maintain this relationship during the
process of smoothing the trajectories, a subspace constraint is introduced.
Usually, trajectories of motion from a perspective camera will lie on a non-
linear manifold. We can calculate the probable manifold locally with a linear
subspace. Irani [21] showed that the trajectory matrix should have a rank of
at most 9. Such a low rank constraint implied that the trajectory matrix M
can be factored into the product of two lower rank matrices:

M2n∗k≈W. ∗ (C2n∗rEr∗k) (5)

where W is a binary mask matrix that indicates missing or unknown data,
and .* indicates component wise multiplication. E is the eigen trajectories
and C contains the coefficient for the linear combination. Output frames can
be obtained by content preserving warp guided by the control points in M
and M̂ . Figure 8 right shows an example. With the subspace constraint, the
relationship among the features are appropriately preserved.

2.4 Video Completion

This technique usually completes or finalizes the video by either trimming
the edges to remove the empty regions caused by video stabilization or by us-
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ing more advanced techniques such as image inpainting[22] to fill the missing
area. The first technique results in the reduction of resolution of the video.
Video completion techniques based on image inpainting do not produce con-
sistent results and so, are not reliable. These image inpainting techniques
fail when there is a large movement in the video or when there are too many
moving foreground elements. They also require huge computational resources
and take a long time for inpainting the entire video. To address this prob-
lem, A.Telea[23] introduced a new image inpainting algorithm based on fast
marching technique. FMM presents as a solution to the Eikonal problem.

Mathematical model of Fast Marching technique:

From figure 9, Consider that we need to inpaint the point p which is situated
on the boundary ∂Ω of the region Ω. Taking a small neighborhood Bε(p) of
size ε of the known image around p. As described in [22], the inpainting of p
needs to be done by examining the intensity values of the image points that
are known and are close to p which is the neighborhood Bε(p). For small
enough ε, we can assume a first order approximation Iq(p) of the point p in
image, given the image I(q) and gradient ∇I(q) values of point q.

Figure 9: The inpainting technique. Figure is borrowed from[23]

Iq(p) = I(q) +∇I(q)(p−q) (6)
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In further step, we use inpainting on point p as a function of points q in the
neighborhood Bε(p) by the summation of the estimates of all points q, that
are weighed by a normaliezed weighting function w(p, q).

I(p) =

∑
q∈Bε(p)w(p, q)[I(q) +∇I(q)(p−q)]∑

q∈Bε(p)w(p, q)
(7)

The weighing function w(p,q) is selected such that the inpainting of p prop-
agates the intensity value along with the sharp details of image over Bε(p).
The inpainting and extension to color images are further discussed in Chapter
4.

2.5 Image Deblurring

In the video stabilization process, motion blur that is not related with the
new modified sequence of video frames arises due to the inherent motion blur
present in the input video sequence. In the final output, this becomes very
noticeable and unnatural. So, removing the motion blur is an important step
in improving the quality of a stabilized video. To do this, we need to sharpen
frames where the motion blur is present. This boils down to a problem of
Image deblurring which mostly uses a Point Spread Function to estimate
the blurriness in the image and deconvolutes the image accordingly. But
estimating the PSFs from the blurred image is a difficult process. Tanaka
[24] developed a technique to accurately estimate the PSFs in the scenario of
linear motion blur. Jeong Ho Lee[25] improved upon this work to introduce a
technique for PSF parameters estimation by using the periodicity of motion
blurred images in the frequency domain. This technique is effective for both
Noise less and Noisy images. In the following, we briefly describe the Motion
Blur Parameter Estmation in Noise less Images. However, estimating PSFs
accurately for an unknown type of motion blur is still highly difficult and
time consuming.
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Motion Blur Parameter Estimation in Noise Less Images:

If G(u,v), F(u,v), and H(u,v) are the frequency responses of the observed
image, original image and the degradation function respectively, then when
the noise is absent, [25] concludes that

G(u, v) = F (u, v)·H(u, v) (8)

The parameters of the motion blur can be determined as follows:

Motion Direction Estimation:

The paralel dark lines that occur in the Fourier spectrum showed in Figure
10 are used. From [26], it is clear that the direction of motion blur (φ) is
equal to the angel (θ) among any of these paralel dark lines and the vertical
axis. So, to find the direction of the motion, it is sufficient to find the parallel
lines direction. We can use Radon transform in either of the following forms
to fit the line and determine the direction.

R(ρ, θ) =

ˆ −∞

∞

ˆ −∞

∞
g(x, y)δ(ρ−xcosθ−ysinθ)dxdy (9)

R(ρ, θ) =

ˆ −∞

∞
g(ρcosθ−ssinθ, ρsinθ + scosθ)ds (10)
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Figure 10: (a) The lake image that is distorted by linear motion blur using
L = 20 pixels, φ = 45 ◦ , (b) Fourier spectrum of (a). Figure borrowed from
[25]

Motion Length Estimation:

After obtaining the direction of motion, the cordinate system of log | G(u,v)
| is rotated, instead of rotating the perceived image, to line it up with the
direction of motion. This solves the problems of intrpolation and out of
range pixels. Due to the effect of rotation, some components of the Fourier
spectrum will appear in the areas out of the cordinate system support, as
a consequence the same amount of valid data will not be available in all
columns in the new coordinate system. Most of correct data is present in
the column that is passing through the centre of frequency. The method
presented is built to operate on the central peaks and valleys in the Fourier
spectrum, therefore this rotation has no affect on preciscion and robustnes
of the algorithm.
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In this scenario, uniform motion blur is one dimensional.

h(i) =

 1
L

if − L
2
≤ i ≤ L

2

0 Otherwise
(11)

The continuos Fourier transform of h is a SINC function.

Hc(u) =
2Sin(uπL/2)

uπL
(12)

The discretetized variety of H in horizontal direction is:

H(u) =
Sin(Luπ/N)

LSin(uπ/N)
, 0≤u≤N−1, (13)

Where N is the image size. To find L, the equation H(u) = 0 is solved.

Sin(
Luπ

N
) = 0 (14)

u =
kπ

LW
such that W =

π

N
,K > 0. (15)

If u0 and u1 are two respective zero points in a way that H(u0) = H(u1) = 0,
then

u1−u0 =
N

L
(16)

which results in

L =
N

d
(17)

where d is the distance among the two successive dark lines in log(|G(u, v)|).To
compute d,we should use the first group of u.
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Chapter 3

2D Video Stabilization

3.1 Introduction

In 2D techniques of video stabilization, a geometric transformation model
is used to estimate the motion of the camera and create the transformation
chain. Then these transformations are concatenated to obtain the camera
path in 2D space. Then this path is smoothed using a low pass filter to
remove the unnecessary shake from the video. Using the modified path, a
new transformation chain is created by subtracting the new path from the
existing transformation chain. These new transformations are applied to
the video sequence to the respective frames to obtain the final stabilized
video. However, this video contains empty regions and has motion blur not
associated with the motion of the frames.

In this section we detail the technique used for stabilizing the videos before
sending them to the video completion system. We adopt a affine transfor-
mation model and estimate the motion among the two nearby frames or
images I(P ) and I/(P /). This relationship can be described as p ∼ Tp/.
p = (x, y, 1)T and p/ = (x/, y/, 1)T are locations of pixels in projective co-
ordinates, and ∼ denotes equality up to scale since the 3x3 matrix T is not
effected by scaling. The next section describes in detail the technique used
for Global motion estimation.

3.2 Global Motion Estimation

Global motion is obtained by aligning two consecutive frames at a time pre-
suming a geometric transformation model. In the current technique, we use
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affine model to describe relationship among the two frames. We utilize the
hierarchial motion estmation framework that is introduced by Bergen et al.
[5]. We apply this framework and estimate the parameters for all the pairs
of nearby frames to establish a global transformation chain.

We indicate the location of the pixel in the image coordinateIt as pt . The
subscript t denotes the index of the frame. We also indicate the global
transformation T ji to represent the coordinate transformation from frame i
to j. And so, the transformation of image It to the It−1 coordinate can
be described as It(T t−1t pt). Note that transformation T only denotes the
cordinate transform, hence It−1(T t−1t pt) has the values of pixel from frame
t− 1 in the cordinates of frame t.

3.3 Local Motion Estimation

Local motion is that component in video that departs from the global motion.
e.g., large depth variations or moving foreground objects. This motion is
obtained by calculating optical flow. This is done among the frames after
application of global transformation using only the common area that is
covered and is present among both the frames. To do this, we use Lucas-
Kanade’s pyramidal optical flow computation[9] to compute the optical flow
field F tp

t (pt) = [u(pt)v(pt)]
t � F tp

t (pt). This indicates an optical flow from
frame It(pt) to It(T ttpp

p
t) , and u and v indicate the flow vector along the x-

and y-direction respectively in pt cordinates. Local motion is not used in
the process of video stabilization but needs to be processed at this stage for
the simplicity. But this plays a very important role in the video completion
stage.
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3.4 Motion Smoothing

To obtain a stabilized motion path, the undesired motion fluctuations in the
video needs to be removed. From [2] we know that the intentional motion
in the video sequence is generally pleasent, lengthy and smooth. So the
high frequency part in the global motion chain is defined as the unintended
shaky motion. Smoothing techniques in past works directly smoothed out the
transformation chain or cumulative transform chain by using a base frame. In
our technique, we smooth the local displacement instead to obtain a smooth
motion.

If the technique of smoothing the original transformation chain T 1
0 .....T

i
i−1

is followed, the smoothed transformation chain T̂ 1
0 .....T̂

i
i−1 is calculated. In

this scenario, a motion compensated frame I ′
i is computed by transforming

Ii with
∏i

n=0 T
n
n+1T̄

n+1
n . This flow of original and eased transformation chain

usually creates an accumulation error. But our technique is free from such
error as it locally smooths displacement from the present frame to the nearby
frames.

Figure 11: Global transformation chain and the transformation from original
trajectory to the smoothed trajectory. Figure borrowed from [1]
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Figure 12: Original and smoothed trajectories of a sample video

Without applying the smoothing on the original transform chain, we calculate
the transform S from one frame to the respective motion compensated frame
utilizing just the nearby transform matrices. The indices of nearby frames
are denoted as Nt = {j|t− k ≤ j ≤ t + k}. If the frame It is present at the
origin, and is lined up with the major axes, We can compute the position of
each of the nearby frame Is , in relation to frame It , by the local displacement
Ts

t. We can find the modifying transform S from the original video frame It
to the motion compensated video frame I ′

t according to the following

St =
∑
i∈Nt

Ti
tFG(k), (18)

where G(k) = 1√
2πσ

e−k
2/2σ2 is a Gaussian kernel, and the 8 operator rep-

resents convolution and σ =
√
k is used. Using the computed matrices
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S0, ...., St, the input frames can be warped to the motion compensated sta-
bilized frames by

I
′

t(p
′

t)← It(Stpt) (19)

In, Figure 12 we can observe the result of the motion smoothing technique
that we applied. In the results, both x- and y-translation elements and ro-
tation elements of the motion of camera paths are displayed. As it can be
observed from the figure, sudden changes in the motion of camera which are
considered unwanted are reduced by the smoothing process. This smoothness
can be changed by varying k and with increasing k, a smoother stabilization
result can be expected. k=6 corresponds to about 0.5 sec interval in NTSC
format videos. If a smoother video is preferred, the value of k can be in-
creased.

3.5 Experimental Results

To evaluate our technique, we have implemented our 2D video stabilization
algorithm on a number of shaky videos. Results of two samples are presented
here.
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3.5.1 Sample 1 : inter_iit.avi

Figure 13: Original and Smoothed Trajectories of Sample video sequence 1
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Figure 14: Comparision of frames from original sequence and 2D stabilized
sequence
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3.5.2 Sample 2: SANY0016.avi

Figure 15: Original and Smoothed Trajectories of Sample video sequence 239



Figure 16: Comparision of frames from original sequence and 2D stabilized
sequence
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3.6 Conclusion

We used affine transformation model to describe motion among frames and
we applied parametric estimation of transformations among each set of nearby
frames to smooth the shaky motion. We were able to stabilize the sequence
albeit the empty spaces due to the transformation of the frame. This problem
will be rectified in the next section.
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Chapter 4

Video Completion

4.1 Introduction

A video completion technique based on the method of motion inpainting[1] is
implemented. The main idea behind this technique is to propagate the local
motion, substituting color or intensity as commonly seen in image inpaint-
ing[22], in to the areas with missing pixels. The propogated motion is then
used to fill in the area of the image with empty pixels naturally. This tech-
nique also works for scene which have non-planar or dynamic content. Using
this motion information as a guide, pixel data from the nearby frames are
warped locally to keep the spatial and temporal consistencies in the modified
frame the same. Shum and Szeliski[27] introduced a de-ghosting algorithm
in which a panorama image is constructed by warping image based on lo-
cal motion. This technique is different in the sense that the local motion is
propogated in to an area where the local motion field cannot be computed
directly.

4.2 Completing the Video with Motion Inpainting

In this technique, we locally adjust the image mosaics by utilizing the local
motion field so that we can get seamless stitching of the mosaics in the image
areas with missing pixels. At the core of this technique, we use motion
inpainting to compute the local motion of the missing pixels using the local
motion data available in the nearby frames. We assume that the local motion
of the missing pixels is similar to that of pixels in adjoining image areas. The
flowchart of this algorithm is presented in Figure 13.

42



Figure 17: Flow Chart of motion inpainting

Initially, the local motion of the nearby frame is calculated over the common
image area that is covered in both the frames. The local motion field is then
propogated into image areas with missing pixels. Unlike the previous works
in image inpainting, we only propagate the motion field instead of intensity
or color. Finally, this local motion is used as a guide to locally warp the
image mosaics to get smooth stitching of the mosaics.

If total missing image area in a particular frame is represented by Mt, we
wish to completely fill this area for every frame t with good quality. The
following steps describe procedure in which we fill the missing image pixels.

4.2.1 Mosaicing with consistency constraint

This is the starting step in completing the video. In this technique, we
initially try to fill the missing image pixels that belong to the non dynamic
and static regions of the frame. A mosaic of the pixel with respect to the
pixels in same location in the nearby frames is taken with an evaluation of its
validity. When the 2D video completion step has been completed successfully
and if the missing pixel belongs to the static image area, the mosaic that
we have got should be consistent with the image area with missing pixels.
The mosaic obtained can be evaluated by examining the consistency of the
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different mosaics which cover the same area in the neighboring frames. The
variance of the mosaic pixels is taken as a measure of consistency. With an
increase in variance, the reliability of the obtained mosaic decreases. For
each pixel pt in the image area with missing pixels M t, the variance of the
mosaic pixel values is calculated as follows:

υt(pt) =
1

n− 1

∑
t!∈Nt

[It!(T
t!

t pt)− Īt!(Tt!

t pt)]
2 (20)

where
Īt′ (T

t
′

t pt) =
1

n

∑
t′∈Nt

It′ (T
t
′

t pt) (21)

and n is the total number of nearby frames that we taken in to consideration.
For colored images, we utilize the intensity values of the image pixel which is
calculated by 0.30R+0.59G+0.11B[17]. A pixel pt is filled in by the median
value of all the warped pixels only if calculated variance is lesser than a preset
threshold value T:

It(pt) =

mediant′ (It′ (Tt
′

t pt)) if υt < T

missing otherwise
(22)

If all of the pixels in M t are filled with this step, then we can leave the next
steps and directly proceed to the succesive frame.

4.2.2 Local motion computation

In this step, every nearby frame It′ is given a priority score based on the
alignment error. Generally, it is observed that the most nearby frame has a
smaller alignment error, and so it is given a higher priority for processing.
The alignment error is calculated by using the common area that is covered
between It(pt) and It(T t

′

t pt) by the following.
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et
t′

=
∑
pt

|It(pt)− I(T t
′

t pt)| (23)

The process of estimating local motion is already described in the section 3.3

4.2.3 Motion Inpainting

The local motion present in the known image areas is propogated in to the
empty image areas. This process starts at the pixels present at the boundary
of area containing all the empty pixels in the image. Utilizing the motion
values of the nearby pixels obtained from local motion estimation, the motion
values for the missing pixels on the boundary are defined. This boundary
advances gradually in to the empty image area M till it gets fully filled.

Figure 18: Motion inpainting. The motion field is gradually propogated in to
the missing image area until it is completely filled. Image is borrowed from
[1]

From figure 14, if pt is a pixel belonging to the empty image area M , and
H(pt) is collection of pixels in around the point pt, which earlier have a
motion value that is defined directly by the local motion computation or
by extrapolating through motion inpainting. The values for motion for the
pixel pt is calculated by a weighted average of the motion vectors of the
pixels H(pt).
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Ft
′

t (pt) =

∑
qt∈H(pt)

ω(pt,qt)F
t
′

t (qt)∑
qt∈H(pt)

ω(pt,qt)
(24)

In the above equation ω(pt,qt) indicates the amount of contribution of the
value of motion of qt ∈ H(pt) to pixel pt. We make use of the color similarity
for colored images as a measure for motion similarity presuming that the
nearby pixels with almost same colors represent to the same object in the
video and so, it is assumed that they will move in a common fashion. As the
colour of the pixel pt is not known in the frame It we use the nearby frame
It′ to estimate the ω(pt,qt). As shown in figure 14, qt′are initially located in
the nearby image It′ utilizing qt and their local motion. Utilizing geometry
among qt and pt , pt′ are obtained in It′ . Utilizing pt′and qt′ , the color
similarity is measured by ω(pt,qt) = 1/{ColorDistance(It′ (pt′ ), It′ (qt′ )+ε},
where ε is a some little value to avoid the case of dividing by zero. In this
way, the weight factor is calculated utilizing the color similarity, and the
value of the motion that is calculated is propogated to pt. In this method,
we calculate the color distance by using the l2-norm in RGB to save some
computing resources. But a better measure could also be used.

Motion inpainting is carried out in our technique by using the Fast Marching
technique(FMM)[18] which is detailed in the case of image inpainting by
A.Telea[19]. Using FMM, we can visit each undefined pixel, just one time
and advance the boundary inside the empty area M till all the unknown
pixels are propogated with the values of motion. The pixels are handled
in the increasing distance order from the principal boundary, in a way that
pixelswhich are closer to the area with known pixels are filled initially. The
consequence of using FMM is a smooth extrapolation of the local motion flow
to the area with empty pixels in a way that retains the object boundaries
with color similarity measure. FMM is described in detail in 4.3.
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4.2.4 Mosaicing with local warping

After we obtain the motion filed in the area with the missing pixels Mt, we
utilize it as a guide to locally warp the image frame It′ in order to create a
smooth mosaic even taking in to consideration the dynamic objects.

It(pt)← It′ (F
t
′

t (pt)) (25)

If a few pixels still are left empty in the frame It, then we go back to step
4.2.2 and use the next nearby frame.

After a loop of steps from 4.2.2 to 4.2.4, all the unknown or missing pixels
are generally filled. Nonetheless, in the scenario that there are still a few
missing pixels that have not been covered by warped mosaics, we just apply
a blurring filter to fill up these areas. Such areas are usually small and better
techniques can be used to fill them up at the expense of computing cost.

4.3 Fast Marching technique for Motion Inpainting

Using FMM[23], each pixel of the empty image area Mt can be visited only
once and be propogated with motion information from the nearby pixels.
This saves computation time and also helps to extrapolate the motion field
in a smooth way while preserving the spatial and temporal consistency. In
section 2.4, we describe the mathematical model of Fast Marching technique.
In the following, we describe the process of using motion inpainting in com-
bination with the FMM algorithm.

From section 2.4, we know that inpainting points in ascending distance order
from ∂Ωi make sure that the areas that are nearer to known image pixels are
first filled, similar to that of manual inpainting techniques. Implementing
the model described in section 2.4 requires an algorithm which would solve
the Eikonal equation:
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|∇T | = 1 on Ω, with T = 0 on ∂Ω. (26)

The solution of the above equation is the distance map of Ω pixels to the
boundary ∂Ω. The isolines of T are the exact successive boundaries ∂Ω of
the reducing space Ω that we have to inpaint. The normal N to ∂Ω, which
is also required for inpainting, is ∇T. The FMM technique ensures that the
pixels belonging to boundary are always processed in ascending order of their
distance-to-boundary T [23].

FMM technique is better compared to other Distance Transform (DT) tech-
niques which calculate the distance map T to a boundary ∂Ω. The main
benefit of FMM is that it seperately stores the narrow band which separates
the known pixels from the area of image with empty pixels and specifies
which pixel to inpaint next. Other DT techniques do not store this narrow
band as it would complicate their implementation. A complete pseudocode
of FMM is detailed in figure 15. For every pixel in the image, we store its
value T , its intensity value I, and a flag f that can contain one of the below
three values:

• BAND: The pixel belongs to narrow band. Its T value is is updated.

• KNOWN: The pixel lies out of the boundary ∂Ω, in the image area
with known pixels. Its T and I values are already known.

• INSIDE: The pixel is contained inside ∂Ω, in the area to inpaint. Its
T and I values are not yet known.
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Figure 19: Pseudo code for Fast Marching technique

Initially, we set the T value to 0 on and outside the boundary ∂Ω of the area
to inpaint and to a higher value (e.g., 106) inside, and we start propogating f
over the entire image. All the pixels belonging to narrow band called BAND
pixels are inserted in to a Priority Queue in an increasing order of their T
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values. Next, we propagate the T , f and I values utilizing the code that
is shown in Figure 15. Step 4 in the code propagates the value T of point
(i, j), to its neighbors (k, l) by solving the finite difference discretization of
the Eikonal equation which is given by:

max(D−xT,−D+xT, 0)2 +max(D−yT,−D+yT, 0)2 = 1 (27)

where D−xT (i, j) = T (i, j)−T (i−1, j) and D+xT (i, j) = T (i + 1, j)−T (i, j)

and in a similar fashion for y. Following [23], we solve the above equation
for (k, l)’s four quadrants and return the solution with the smallest value. In
the end, Step 5 inserts (k, l) again with its new T in the heap.

4.4 Experimental Results

4.4.1 Sample 1: inter_iit.avi

Figure 20: Comparison of 2D stabilized frames with motion inpainted frames
for sample 1
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4.4.2 Sample 2: SANY0016.avi

Figure 21: Comparison of 2D stabilized frames with motion inpainted frames
for sample 2

4.5 Conclusion

We used a different approach for video stabilization by implementing a mo-
tion inpainting based completion technique. In this technique, we warped
mosaics from nearby frames using the local motion obtained from optical
flow as the guide. A set of steps are followed until we fill all the missing
pixels in the video frames after 2D stabilization. It is found the results are
quite satisfactory for videos which do not have significant foreground motion.

51



Chapter 5

Image Deblurring

5.1 Introduction

After the process of video stabilization, the motion blur which is not related
to the motion of the new video becomes very noticeable and acts like a noise.
As already discussed in section 2.5, it is difficult to accurately estimate Point
Spread Functions for a blurred image from a camera that can move freely.
So, deblurring the image by using deconvolution and PSF is not possible
in this scenario. To sharpen the blurred frames without the help of PSFs,
we use an interpolation-based deblurring technique described in [1]. In this
technique, we mainly transfer sharper pixels from the nearby frames to the
respective pixel locations in blurred frame.

5.2 Determining Relative Blurriness

Relative Blurriness represents the amount of high frequency part that has
been eliminated from the frame compared to the nearby frames. Image
Sharpness, which is inverse to blurriness, is already studied properly in mi-
croscopic imaging where a tight focus is important[11][12]. To evaluate the
relative blurriness, we utilize the inverse of sum of squared gradient measure
due to its robustness to image alignment error and computing speed. By
taking two derivative filters along the x− and y−directions by fx and fy

respectively, the measure of blurriness can be defined as

bt =
1∑

pt
{((fxFIt)(pt))2 + (fyFIt)(pt))2}

(28)
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However, this measure of blurriness does not provide the absolute evaluation
of image blurriness, but it gives a relative image blurriness among similar im-
ages when compared to other blurred images. So, we only use this technique
in a limited number of nearby frames where prominent changes in the scene
are not observed. Also, the blurriness is calculated using a common coverage
area that is observed in all the nearby frames. Relatively blurry frames can
be obtained by caclulating the ratio bt/bt′ , t

′ ∈ Nt. When bt/bt′ is greater
than 1, frame It′ is considered as sharper than frame It.

5.3 Frame Sharpening

Figure 22: Image deblurring

Once the relative blurriness is found out, the blurred frames are sharpened
by transferring and interpolating the respective pixels from sharper frames.
To lower relying on pixels related to dynamic objects, a weight factor that is
calculated by pixel-wise alignment error Et

t!
from It! to It is utilized:

Et
t′

(pt) = |It′ (Tt
′

t pt)− It(pt)|. (29)
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Greater alignment error is generally caused either by dynamic objects or
error computing of global transformation. Utilizing the inverse of pixel-wise
alignment error E as a weight factor for the interpolation, blurred pixels are
replaced by interpolating sharper pixels. This process of deblurring can be
described by

Ît(pt) =
It(pt) +

∑
t′∈N w

t
t′

(pt)It′ (T
t
′

t pt)

1 +
∑

t′∈N w
t
t′

(pt)
(30)

where w is the weight factor which contains the pixel-wise alignment error
Et
t′
and relative blurriness bt/bt′ , expressed as

wt
t′

(pt) =


0 if bt

b
t
′
< 1

bt
b
t
′

α
Et

t
′ (pt)+α

Otherwise
(31)

α ∈ [0,∞] controls the sensitivity of the alignment error, e.g., by increasing
α the alignment error contributes less to the weight. As it is seen in the
weighting factor defined above, the interpolation uses only frames that are
sharper than the current frame. Figure 16 shows the result of the deblurring
algorithm we used.

5.4 Experimental Results

5.4.1 Sample 1: inter_iit.avi

The result is already shown in figure 22 for a particular frame.
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5.4.2 Sample 2: SANY0016.avi

Figure 23: Image deblurring observed in sample 2 frame

5.5 Conclusion

We implemented a deblurring algorithm to get rid of the annoying motion
blur and sharpen the blurred frames. It produced satisfactory results.
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Chapter 6

Conclusions

6.1 Chapter Summaries

In this thesis, a robust technique for full frame video stabilization with video
completion is detailed. In chapter 1, the problem of video stabilization is in-
troduced and the challenges related to the topic were discussed. We described
how quick motion of cameras and large moving foreground can pose a signif-
icant challenge to the problem of video stabilization. We also introduced the
problem of rolling shutter effects and motion blur which are commonly found
in videos that require stabilization. We also demonstrated the artifacts that
are caused by these challenges on various video stabilization techniques.

According to the adopted motion models, video stabilization can be catego-
rized into 2D, 3D and 2.5D. In chapter 2, we described the common video
stabilization approaches in all the three categories and where they are more
suitable for use. Additionally, we also described the common video comple-
tion techniques used and the problem of Image deblurring and how it can be
rectified. In this thesis, a 2D video stabilization technique is implemented
along with a video completion technique using motion inpainting that are
described in chapter 3 and 4. To sharpen the video, we used a different ap-
proach of image deblurring without using PSFs which is described in chapter
5.

Chapter 3 presented a technique for video stabilization in 2D by using a geo-
metric transformation to describe the relationship among the frames. Instead
of smoothing the original transformation chain, we smoothed local displace-
ment to avoid the problem of accumulation error. Then we calculate the new
transformations to stabilize the video and apply them to the corresponding
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frames. The resulting stabilized video is passed on to the video completion
process then.

Chapter 4 presented a different video completion technique which used mo-
tion inpainting to locally warp the image mosaics from nearby frames to fill
up the empty regions in the current frame. Motion is propogated by using
Fast Marching technique to ensure the smooth extrapolation and the preser-
vation of spatial and temporal consistencies. By following a series of steps,
the entire frame is filled with the corresponding intensity value.

Chapter 5 describes an image deblurring technique that is not based on
deconvolution using PSFs. Since videos usually come from a free motion
camera, it is very difficult to determine the kind of motions that may be
present in the video. This makes it very difficult to estimate an accurate
PSF that can model the blur. So, instead, we calculate the relative blurriness
and then transfer and interpolate sharper pixels from nearby frames to the
blurred pixel in the current frame.

6.2 Future Work

There are several directions for work presented in this thesis. The problem
of large foreground movement is one, for which a solution could be developed
by allowing the user to define locked features which serve as key points in
the video, and based on which the stabilization algorithm could be tweaked
so that the video is stabilized according to the movement of the background.
Advanced motion segmentation could also be used in conjunction with video
stabilization to allow only certain features to be in the tracking scheme.

Stabilizing videos using hardware can also be improved. Nowadays, micro
controllers and mini PCs are available cheaply and these could be used along
with gyroscopes and accelerometers to design a self stabilizing platform or
gimbal on which a video capture device could be mounted.
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On this note, we would like to conclude this thesis.
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