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ABSTRACT 

The present study outlines free vibration analysis of uniform and stepped beam subjected 

with single to multiple cracks using Finite Element Method (FEM) in MATLAB environment. 

The crack considered is transverse crack which open in nature. Due to the presence of crack, the 

total flexibility matrix is established by adding local additional flexibility matrix to the flexibility 

matrix of the corresponding intact beam element .The local additional flexibility matrix is 

obtained from Linear Elastic Fracture Mechanics theory.  An experimental study is carried out to 

check the accuracy of the numerical results. Mild steel specimens of square area of cross section 

are considered for the experiment and the experimental results are compared with numerical 

analysis using Finite Element Method (FEM) in MATLAB environment.  The results obtained 

from experimental are checked for accuracy with the present analysis by plotting non-

dimensional frequencies for first three modes as function of crack depth ratios for different 

locations of cracks.  
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NOTATIONS 

G = the strain energy release rate and 

Ac= the effective cracked area 

E=Modulus of Elasticity 

 υ = Poisson‟s ratio 

ρ = Density 

Lc = Distance between the right hand side end node and the crack location  

Le = Length of the beam element.  

A = Cross-sectional area of the beam  

x = Location of the crack from the fixed of the beam  

d = Depth of the rectangular beam  

b = Width of the beam  

a/d = Crack-depth ratio  

 

 

 

 

 

 

 

 

 

 

 



 
XIII 

 

ORGANIZATION OF THESIS 

The thesis is organized into 7 chapters. A brief introduction of the applications of uniform and 

stepped beam and degradation due to presence of crack along with the objective of the present 

study is presented in Chapter 1. 

Chapter 2 provides a detailed review of literature significant to the previous research works 

made in this field has been listed. Based on literature survey, critical discussion is presented. The 

scope of the present study is also outlined. 

Chapter 3 covers the theory and mathematical formulation of uniform and stepped beam with 

transverse open cracks .The theory of crack and vibration is also outlined this chapter. And the 

importance and history of vibration study in the engineering field is also highlighted in this 

chapter. 

Chapter 4 is devoted to the understanding of the experimental programme for the free vibration 

analysis of uniform and multiple stepped beams with transverse cracks. It includes the test setup 

and procedure for the vibration test. 

Chapter 5 deals with the results and discussions pertaining to the comparison drawn between the 

present (FEM) analysis and experimental study. A detailed investigation of the presence of 

multiple cracks on uniform and stepped beam has been outlined illustratively. 

Chapter 6 presents the conclusions inferred from the detailed description of the results obtained. 

A brief note regarding the future scope for the study is also mentioned in this chapter. 

Chapter 7 presents the books, journal publications which were referred during the present study.   
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Chapter 1 

1. INTRODUCTION 

1.1. Introduction 

For many engineering applications, beams are essential models for the structural elements 

and have been studied extensively.  Optimization requirements led to reduction in the weight of 

structure resulting to enhanced operating stress levels. Some of the applications of beam-like 

elements are helicopter rotor blades, robot arms, aircraft wings, spacecraft antennae, and long 

span bridges. Structural elements and systems are very frequently subject to loads changing with 

time. Ignoring the presence of material defects while designing led to spectacular failures.  Due 

to this the fatigue changes in the element conceive cracks that hinders the potential of the 

element to withstand its capacity. The sudden failure of structures is result of the crack damage 

propagation if it is not detected well before. So, it becomes essential regarding safety question of 

the structure performance to monitor such defects. Successful design of engineering structures 

for long term life requires the understanding of different modes of failures and degradation 

mechanisms (crack growth due to service loads, corrosion, hydrogen embrittlement, etc); so that 

sufficient margins against these mechanisms can be built-in during the design phase itself. 

The natural frequencies point out the dynamic stiffness of any structure. The frequency 

being higher indicates that the structure is stiffer dynamically. It depends on the values of mass, 

stiffness distributions and the end conditions. The vibration response is affected due to the local 

flexibility which is initiated due to presence of crack in structural member. It leads to decrease in 
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frequencies when compared to the frequencies that occurred naturally and changes in mode 

patterns of vibrations. Any detection of these differences makes likely to detect cracks. 

1.2. Research Significance 

  To assist in a constant safety evaluation of a structure it is very necessary to 

regularly review the health of its critical components. This makes it necessary for a continuous 

evaluation of changes in their dynamic behavior. The cracks initiate the change in the structure 

by local reduction of structural stiffness. The presence of crack is a warning that the behavior of 

structure should be checked carefully, it does not make the component completely out of use.  

Such scrutinizing can play a major role in giving surely an uninterrupted operation in service by 

the component. This has made the monitoring of components consisting of cracks or crack-like 

defects in service very vital on the basis of vibration and the vibration of components with crack 

are widely studied. 

1.3. Objective 

The main objective is to study and compare the numerical and experimental results of free 

vibration study of uniform and multiple stepped beams without and with cracks.  

 

 

 

 

 



 
3 

 

Chapter 2 

2. REVIEW OF LITERATURE 

2.1.  Introduction 

Many studies concerning two aspects mainly either to determine natural frequencies from 

crack details or to determine crack details from the measurement of vibration parameters, in 

beams has drawn attentions of researchers from many years. Researchers have mostly focused on 

the analytical modeling to describe in better way how the crack affects the natural frequency due 

to local flexibility induced by the crack. Some of the papers in which the different loading 

conditions like axial, shear, etc are considered are also discussed here. 

2.2.  Vibration of Uniform beam with cracks 

Shen and Pierre (1986) presented a finite element approach to predict the changes in the 

first few Eigen frequencies, Eigen modes due to presence of crack. Eight nodes Isoperimetric 

element is used to model across the thickness of the beam. Rizos et.al (1989) determined 

vibrations of a cantilever beam having transverse crack and analytical results are used to speak 

about the measured vibration modes to the depth and location of crack. Amplitudes are measured 

at two spots of the structure when it is vibrating at one of its natural modes, the frequency, 

analytical solution of the dynamic response along with the crack location are determined and the 

depth of crack is approximated. Qian etal (1990) developed a finite element model which is then 

validated to a cantilever beam with an edge crack. Eigen frequencies are determined for different 

crack locations and depths which are then verified experimentally. Pander teal (1991) employed 

a cantilever and hinged-hinged beam models to show that in the region of damage absolute 
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changes in the mode shapes are localized which is utilized to detect damage in structure. Shen 

and Pierre (1994) have derived the equation of motion and related end conditions for a uniform 

Bernoulli-Euler beam having one edge crack. The generalized principle used permits for 

displacement fields, modified strain and stress that satisfy the compatibility requirements in the 

vicinity of the crack. Rutolo and Surace (1997) used a finite element model of structure to 

analyze the dynamic behavior analytically to formulate the inverse problem .Cantilever steel 

beams each with a different damage scenario, the depth and position of the cracks has been 

demonstrated. 

Salawu (1997) discussed the relationships between the frequency changes and 

structural damage. Shifrin and Rutolo (1999) proposed a new technique for enumerating natural 

frequencies of a beam with a random number of transverse open cracks. Cracks are characterized 

as massless rotational springs. Compared to the substitute methods which make use of 

continuous model of beam, the computation time required here was reduced due to the decreased 

dimension of the matrix. Kisa etal (2000) modeled cracked structures by integrating the the 

finite element method, the linear elastic fracture mechanics theory and the component mode 

synthesis method. The experimental investigations of the effects of cracks on the first three 

modes of vibrating beams for both hinged-hinged and fixed –fixed boundary conditions is 

elaborated by Owolabi (2003). The Frequency Response Function (FRF) amplitudes and 

changes in natural frequencies obtained from the measurements of dynamic responses of cracked 

beams as a function of crack depth and location of crack are used for the detection of crack. 

Zheng et al. (2004) obtained the natural frequencies and modeshapes of cracked beam using 

Finite Element Method (FEM).  The total flexibility matrix is established by adding overall 

additional flexibility matrix to the flexibility matrix of the corresponding intact beam element 
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.The results when compared with analytical results show more accuracy than when the local 

additional flexibility matrix was used in the place of overall additional stiffness matrix. Khiem 

etal (2004) obtained numerical results for a cantilever beam with single, two and three cracks 

.Main focus is laid on the detection of multi-crack for structures by natural frequencies. 

Accuracy in detecting the crack depth is more if more natural frequencies are measured. 

Chen etal (2005) performed experimental investigation for spotting the location and size 

of crack. The intersection of curves of stiffness versus location of crack for the first three natural 

frequencies obtained from the vibration of the cantilever beam with crack predicts the crack 

location and crack depth .Nahvi et.al (2005) developed a method for finding the location of 

crack and crack depth of cantilever beam using linear fracture mechanics theory. To determine 

the natural frequencies and mode shapes of the beam, a finite element model is constructed. 

Theoretical and Experimental analysis indicates that the crack depth and location has noticeable 

effect on first and second natural frequencies of the cantilever beam. Patil et.al (2005) verified a 

method to envisage the location and depth of crack experimentally for cantilever beams with two 

and three edge cracks. The energy approach method is used for analysis and the crack is 

represented as a rotational spring. For a particular mode, varying crack location, a plot of 

stiffness versus crack location is obtained. The intersection of these curves consequent to the 

three modes gives the crack location and the associated rotational spring stiffness. Yoon et.al 

(2007) investigated analytically and experimentally the affect of presence of two open cracks on 

the dynamic response of a double cracked hinged-hinged ended beam. The simply supported 

beam is modeled by the Euler-Bernoulli beam theory. Karagaac et.al (2009) studied the effects 

of crack depth ratios and locations on the first natural frequencies and buckling loads of slender 

cantilever Euler beams with edge crack both experimentally and numerically using the finite 
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element method. Aluminium beams chosen for the experimental study have edge cracks of 

varying depths and at different positions to prove the accuracy of the numerical results obtained. 

Lee (2009) presented a simple method to recognize multiple cracks in a beam using the finite 

element method. The method for identifying double and triple cracks is illustrated by numerical 

examples. 

2.3. Vibration of stepped beam with cracks 

Satho (1980) presented a procedure to examine the free vibrations of stepped thickness 

beam using transfer matrix. The numerical calculations for one stepped, symmetrical beams with 

rectangular cross sections for two boundary conditions (Clamped and simply supported) are 

obtained. To check the accuracy of the results obtained are contrasted with the results obtained 

from the Galerkin‟s method. Subramanian and Subramanian (1987) studied the dynamic 

behavior of stepped beams with different boundary conditions and step ratios. They stated that 

the steps can be judiciously included for dynamic tuning. Saavedra and Cuitino (2001) 

presented an experimental and theoretical dynamic response for different multi-beams systems 

having a transverse crack. The additional flexibility is estimated using the strain energy density 

function which is given by linear fracture mechanics theory. Koplow et.al (2006) have presented 

an analytical solution for the dynamic response of a discontinuous beam with one step change 

and an aligned neutral axis. Free–free end condition was considered to obtain direct frequency 

response functions due to harmonic force or couple excitation at either end location. Jaworski 

and Dowell (2008) using Rayleigh Ritz formulation, Component modal analysis and Finite 

Element Method(FEM) results obtained from ANSYS to predict the three lowest natural 

frequencies of multiple-stepped beam. The confirmation of the results is done with the 

experimental results from impact testing data.  
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Zhang et.al (2009) illustrated the crack identification method combining wavelet 

analysis with transform matrix used for crack identification in a complex structure. The peaks of 

wavelet coefficients give the crack location. Based on the crack location and first two natural 

frequencies was used to determine the crack depth. The frequency data and mode is obtained 

from the modal analysis in ANSYS code .Mao (2011) employed Adomian Decomposition 

Method (ADM) to look into the free vibrations of the Euler–Bernoulli beams with multiple steps. 

The natural frequencies and corresponding mode shapes are obtained for different boundary 

conditions, step ratios and step locations. Ameneh et.al (2012) deliberated a simplistic way for 

finding, localizing and quantifying number of fractures formed in Euler-Bernoulli multi-stepped 

beams, by measurement of frequencies occurred naturally and evaluating the unfractured mode 

patterns. Apart from the procedure being simple, that it has the advantage to detect the unknown 

number of cracks. Attar (2012) illustrated an analytical approach to find the mode shapes and 

natural frequencies of stepped beam with number of   transverse cracks and different end 

conditions. The stepped beam with cracks is modeled based on the Euler Bernoulli beam theory 

as an assemblage of uniform sub segments which are connected by massless rotational springs. 

Guohui et.al (2013) studied the free vibration of beams with multiple step changes by discrete 

singular convolution (DSC). It is observed that the DSC results are even more accurate than the 

data obtained by the differential quadrature element method for much higher mode frequencies. 

Wang (2013) proposed Differential Quadrature Element Method (DQEM) which is simple and 

efficient, and can be used to analyze beams with any step changes in cross-section conveniently. 

Highly accurate natural frequencies of multiple-stepped beams are obtained with an aligned 

neutral axis.  
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2.4. Critical discussion on literature review  

The present review indicates that most of the studies are concerned either with the finding 

of natural frequency from details of crack or determination of details of crack from the 

measurement of vibration parameters, in beams. The studies regarding the multiple cracks are 

very limited. More attention is gained for vibration analysis of beam with single cracks.  

Minimal research related to the case of beam with double cracks is done. Experimental research 

have been carried out by a few researchers, that too, involving at most two cracks. So, the 

present study is mainly focused in proper understanding of dynamic behavior of stepped beam 

with multiple cracks. 

2.5.  Scope of the present study 

Regarding to the review of literature, the present work is mainly focused at filling 

some of the lacunae in proper understanding of the vibration analysis of stepped beam 

experimentally and numerically in the presence of multiple cracks. Therefore, the present 

study is designed in the following manner:  

 To study and compare the numerical and experimental results of free vibration of uniform 

and stepped beams of square cross section. 

 To study the effect of crack-depth ratio, location of crack in the beam, number of cracks 

in uniform and stepped beams.   
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Chapter 3  

3. THEORY AND MATHEMATICAL FORMULATION 

3.1.  Introduction 

In this chapter, the theory related to vibration and the Linear Elastic Fracture Mechanics 

(LEFM) are presented. Then the attention is given to the mathematical formulation of a cracked 

uniform cantilever beam. The presence of crack reduces the local stiffness matrix which alters 

the dynamic response of the system. 

3.2.  History and Importance of vibration study in Engineering 

Daniel Bernoulli derived the equation of motion for the transverse vibration of thin 

beams in 1735, and Euler gave the first solutions of the equation for different end conditions  in 

1744, which is known to be Euler-Bernoulli or Thin beam theory . Rayleigh included the effect 

of inertia and presented a beam theory. The improved theory by including the effect of rotary 

inertia and shear deformation known as Timoshenko or thick beam theory was presented by 

Stephen Timoshenko in 1921. 

The structures planned to support high speed engines and turbines are subjected to vibration. Due 

to faulty design and poor manufacture, disturbance occurs in engines which results in excessive 

and disagreeable stresses in the rotating system because of vibration. The vibration causes rapid 

wear of machine parts. Many buildings, structures and bridges fall because of vibration. The 

main aim of the vibration analysis to be applied in an industrial or maintenance environment is to 

reduce the equipment downtime by detecting the flaws and to reduce the maintenance cost. The 
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natural frequency of vibration is one of the characteristic feature of the vibration of a body when 

it is under free vibration. It is important to see that the structure is excited by frequencies far 

away from the natural frequency to limit the amplitude of vibration. If the excitation frequency is 

very near the natural frequency, the amplitude of the vibration will be excessively large which 

readily leads to failure due to resonance. 

 

3.3. Linear Elastic Fracture Mechanics (LEFM) Theory 

Kirsch (1898) studied the effect of circular hole in a plate by modeling the hole by polar 

coordinates. Inglis (1913) studied the effect of elliptical holes, only the affect due to the presence 

of crack was highlighted. Griffith (1920) presented crack growth ideas through the study of crack 

in glass. He formulated that the existing crack grows provided the total energy of the system is 

lowered by growth. But he was not able to express the parameter for it. 

Extension of Griffith‟s ideas for brittle solids to ductile high strength materials was done 

by Irwin in 1948. The main focus of Irwin‟s theory laid on crack tip rather than the crack, by 

moving the analysis to the crack-tip, Irwin devised workable parameters like Stress Intensity 

Factor (SIF) and energy release rate. LEFM accounts for Small Scale Yielding (SSY). It is quite 

useful for analyzing aerospace structures. 

Irwin observed that there are three independent ways in which two crack faces can move 

with respect to each other. The corresponding modes are labeled as Mode I, Mode II, Mode III. 

Figure 3.1 Input-Output relationship of a vibratory system.  
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The three modes describe all the possible modes of crack behavior in the most general elastic 

state. A cracked body can be loaded in anyone of the three modes, or as a combo of 2 or 3 

modes. 

Mode I or Opening mode  

Displacements of crack surfaces are perpendicular to the plane of crack. One of the most 

common and dangerous modes loading for crack growth. 

Mode II or Sliding mode 

Displacement of crack surface is in the plane of the crack and perpendicular to the leading edge 

of crack. In many instances, the presence of Mode II is to alter crack growth displacement. 

Generally referred to as in-plane shear mode. 

Mode III or Tearing mode  

Displacement of crack surfaces in the plane of crack and parallel to the leading edge of crack. 

Generally referred to as out of plane shear mode. 

 

The relationship used for estimating stress intensity factor is aCK   

Figure 3.2 Displacement of crack surface of a local element containing the crack front  
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Where K is the critical fracture toughness value, c  is a constant that depends on crack and 

specimen dimensions, σ the applied stress, and size of flaw is represented by a. 

3.4. Methodology 

A cracked uniform cantilever beam element of rectangular area of cross section with 

depth „h‟ and breadth „b‟ with crack depth „a‟ is as shown in Figure 1. The left side end which is 

fixed is denoted with node „i‟ and right side node is denoted with „j‟. The cracked beam element 

is subjected to shearing force „𝑃1′ and bending moment „𝑃2′.The governing equations of the 

vibration analysis of the uniform beam with open transverse crack are figured on the basis of the 

FEM model proposed by Zheng (2004).  

 

Figure 3.3 A typical cracked beam element subjected to shearing force and bending 

moment of rectangular cross-section 

According to Zheng (2004), the additional strain energy due to the presence of crack is 

𝝅 =   𝑮 𝒅𝑨𝒄
𝑨

 

G = the strain energy release rate and  

𝐴𝑐= the effective cracked area  

x 

y 
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Where, G = strain energy release rate 

 G = 
1

𝐸
   𝐾𝐼𝑛

2
𝑛=1  2 +    𝐾𝐼𝐼𝑛

2
𝑛=1  2   +   𝐾𝐼𝐼𝐼𝑛

2
𝑛=1  2  

𝐾𝐼,𝐾𝐼𝐼 , 𝐾𝐼𝐼𝐼   are stress intensity factors for opening, sliding and tearing type cracks. 

According to the principle of Saint-Venant, the stress field is affected only in the region 

adjacent to the crack. The element stiffness matrix, except for the cracked element, may 

be regarded as unchanged under a certain limitation of element size. 

Considering the effect of shearing force and bending moment the (neglecting action of axial 

force) above equation becomes, 

G = 
1

𝐸′ ;   𝐾𝐼1 +  𝐾𝐼2  
2  +   𝐾𝐼𝐼1  

2  

𝐾𝐼1  = 
6𝑃1 𝐿𝑐

2

𝑏ℎ2  𝜋𝜉𝐹𝐼  
𝜉

ℎ
  

𝐾𝐼2  = 
6𝑃2 

𝑏ℎ2  𝜋𝜉𝐹𝐼𝐼  
𝜉

ℎ
  

𝐾𝐼𝐼2  = 
𝑃2 

𝑏ℎ2  𝜋𝜉𝐹𝐼𝐼  
𝜉

ℎ
  

Where,𝐹𝐼 and 𝐹𝐼𝐼  are correction factors for stress intensity factors. 

𝐹𝐼 𝑠 =   
tan

𝜋𝑠

2
𝜋𝑠

2

 
0.923 + 0.199  (1 −  sin

𝜋𝑠

2
 

4

cos
𝜋𝑠

2

  

𝐹𝐼𝐼 𝑠  = 
1.122−0.561𝑠+0.085 𝑠2+0.180𝑠3

 1−𝑠
 



 
14 

 

Where s = 
𝜉

ℎ
 , ξ = crack depth during the process of penetrating from 0 to final depth(h). 

Using Paris equation, 𝛿𝑖  = 
𝜕𝜋𝑐

𝜕𝑃𝑖
 

𝐶𝑖𝑗   = 
𝜕𝛿𝑖

𝜕𝑃𝑗
 =

𝜕2𝜋𝑐

𝜕𝑃𝑖  𝜕𝑃𝑗
 

𝐶11 =  
2𝜋

𝐸; 𝑏
 
36𝐿𝑐

2

ℎ2
 𝑥 𝐹1

2

𝑎

ℎ

0

 𝑥 𝑑𝑥   𝑥 𝐹11
2

𝑎

ℎ

0

 𝑥 𝑑𝑥    

𝐶12   =  
72𝜋𝐿𝑐

𝐸; 𝑏 ℎ2
 𝑥 𝐹1

2

𝑎

ℎ

0

 𝑥 𝑑𝑥 =  𝐶21    

𝐶22   =  
72𝜋

𝐸; 𝑏 ℎ2
 𝑥 𝐹1

2

𝑎

ℎ

0

 𝑥 𝑑𝑥 

𝑐
𝑜𝑣𝑙  =  

𝐶11  𝐶12  
𝐶21  𝐶22  

 
 

From flexibility method,  

𝐶𝑖𝑛𝑡𝑎𝑐𝑡  =  

 
 
 
 
𝐿𝑒

3

3𝐸𝐼

𝐿𝑒
2

2𝐸𝐼

𝐿𝑒
2

2𝐸𝐼

𝐿𝑒

𝐸𝐼
 
 
 
 

 

𝐶𝑡𝑜𝑡𝑎𝑙  = 𝐶𝑜𝑣𝑙  + 𝐶𝑖𝑛𝑡𝑎𝑐𝑡  
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𝐶𝑡𝑜𝑡𝑎𝑙  =  

 
 
 
 
 
𝐿𝑒

3

3𝐸𝐼
+ 𝐶11  

𝐿𝑒
2

2𝐸𝐼
+ 𝐶12  

𝐿𝑒
2

2𝐸𝐼
+ 𝐶12  

𝐿𝑒

𝐸𝐼
+ 𝐶22  

 
 
 
 
 

 

The stiffness matrix of the cracked element 𝐾𝑐  from the principle of virtual work is given as, 

𝐾𝑐  =  𝐿  𝐶𝑡𝑜𝑡𝑎𝑙  
−1 𝐿 𝑇  

Where, 𝐿 =   

−1            0 
𝐿𝑒         − 1  
1              0
0               1

 ,𝐿𝑒    = Length of beam 

 𝑀 𝑢   +  𝐾 𝑢 = 0 is the equation of motion for an undamped free vibration analysis of beam 

which is reduced to  

[Kc ] - ɷ
2 
[Me] =0 

The mass matrix for an intact beam element is,  

Where  𝑀𝑒  = Mass matrix of the element. =  

156        22𝐿      54    − 13𝐿
22𝐿         4𝐿2       13𝐿   − 3𝐿2

     54          13𝐿     156     − 22𝐿
−13𝐿     − 3𝐿2    − 22𝐿         4𝐿2

  

A computer program is developed to perform all the necessary computations in MATLAB 

environment. 
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Chapter 4 

4. EXPERIMENTAL PROGRAMME 
 

4.1. Introduction 

This chapter presents the features of the experimental work carried out for the free 

vibration analysis of uniform and stepped beam with and without cracks. The material properties 

of the beam specimen, preparation of stepped beam, test setup and the procedure for the free 

vibration test is covered in this chapter. 

4.2.  Material properties 

Material: Mild Steel 

Modulus of Elasticity, E= 210GPa 

Poisson‟s ratio, υ = 0.3 

Density, ᵨ = 7850 kg/𝑚3 

4.3.  Preparation of stepped beam 

For the experimental work, the cracks were formed using saw cutter on the beam. To 

form the stepped beam specimen uniform beams of different areas were joined together by 

welding. 

 

 



 
17 

 

4.4. Test setup 
Equipment for vibration test: 

 Modal hammer ( type 2302-5) 

 

Striking the impact hammer on any structure, an impulsive force is applied to the 

structure. The load cell present in the head of the hammer senses an equal and opposite 

force. An output cable is connected to the vibration analyzer through which the electrical 

signals are transmitted. 

 Accelerometer (type 4507) 

 

The transducer used for the vibration measurement is the Accelerometer (type 

4507). It has better frequency range and relatively robust. It is mounted upon the 

specimen with the help of bees wax. 

 

 

 

 

 

Figure 4.1 Modal Impact Hammer (type 2302-5) 

Figure 4.2 Accelerometer (type 4507) 
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 FFT Analyzer (Bruel Kajer FFT analyzer type .3560) 

 

 

 

For processing and analyzing the signals from modal hammer and accelerometer, 

an electronic device used for the purpose is called FFT analyzer. FFT algorithm is used 

for the analysis of the electrical signals that provide the frequency amplitudes. 

 Notebook with PULSE software. 

This is the display unit which shows the FRF and coherence graph after the input 

data is analyzed. The peaks of FRF are the natural frequencies of the specimen. 

 

 

 

 

Figure 4.3 FFT Analyzer (Bruel Kajer FFT analyzer type .3560)  

Figure 4.4 Notebook with PULSE software.  
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 Specimens to be tested  

 

 

4.5. Procedure for Free Vibration test 

First, the beam specimen to be tested is arranged in the required boundary condition 

to the iron frame , if it is for cantilever else hanged through threads for free-free condition. All 

components of test setup, FFT analyzer, transducers, laptop, modal hammer and cables to the 

system are connected.  To access the pulse software, the pulse lab shop version-10.0 software 

key is inserted into the port of the computer. With the help of bees wax, the accelerometer 

(B&K,Type 4507) is mounted on the specimen. The beam is excited in a selected point by 

means of small impact with an impact hammer (Model 2302-5). At the time of striking with a 

modal hammer at the points on the specimen, it should be seen that the stroke is perpendicular 

to the surface of the beams. The input signals are captured by a force transducer, fixed on the 

hammer. The resulting vibrations of the specimens on the selected point are sensed by an 

accelerometer. Then signal is processed by the FFT Analyzer and the frequency spectrum is 

also obtained. Both input and output signals are investigated by means of spectrum analyzer 

(Bruel & kajer) and resulting frequency response functions are transmitted to a computer for 

modal parameter extraction. The output from the analyzer is displayed on the analyzer screen. 

Various forms of frequency response functions (FRF) are directly measured. For FRF, at each 

Figure 4.5 Uniform and Stepped beam specimens  
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point the modal hammer is struck five times and the average value of the response is displayed 

on the screen of the display unit. Then by moving the cursor to the peaks of the FRF graph the 

frequencies are measured. 

 

 

 

 

Figure 4.6 Free Vibration test setup, beam suspended by two strings like free -free 

beam, accelerometer and modal hammer in position 

Figure 4.7 Vibration test setup for a cantilever beam with three cracks of uniform 

depth of 8mm present at x1=125mm, x2=250mm, x3= 345mm  
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Figure 4.8 Vibration test setup for stepped beam with edge crack of depth 

10mm located at x=352mm 

 

Figure 4.9 Vibration test setup for a stepped beam suspended through strings to 

look like free-free beam. 
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Chapter 5 

5. RESULTS AND DISCUSSIONS 
 

5.1.  Convergence study: 

In this section, the convergence study is done to verify the accuracy of the present FEM  

analysis. 

5.1.1.  Uniform Cantilever Beam with crack.  

The convergence study is done for the cantilever uniform beam of square cross-section 

with single crack with the case considered in Lee et.al (2000). A 300mm cracked cantilever 

beam of cross section (20 х 20) mm with Young‟s modulus, E= 206GPa and mass density, ϱ 

=7750 kg/𝑚3. It is observed that convergence starts when the number of elements is 14 and 

convergence up to 30 numbers of elements, is shown in Figure 5.1. As per the convergence 

study, 20 elements are considered for the discretization of whole structure. 
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Figure 5.1 Convergence of fundamental frequency of uniform cantilever beam 

with single crack. 
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5.1.2. Two-stepped cantilever beam without crack 

The convergence study for the two-stepped cantilever of rectangular cross-section is done 

with the case considered in Zhang et.al (2009).   The  thickness of beam is 12mm. The material 

properties of the beam are modulus of elasticity, E= 210Gpa, length of beam, L =500mm, 

density, ϱ = 7860 kg/𝑚3, ℎ1= 20mm, ℎ2 = 16mm. It is observed that convergence starts when the 

number of mesh divisions is 10 and convergence up to 30 numbers of elements is shown in 

Figure 5.2. Hence for the present study for all stepped beams, mesh division of 30 elements is 

considered. 

 

 

72.4

72.42

72.44

72.46

72.48

0 5 10 15 20 25 30

F
u
n
d
am

en
ta

l 
F

re
q
u
en

cy
 (

H
z)

Number of elements 

Figure 5.2 Convergence of fundamental frequency of Two- stepped 

cantilever beam of rectangular cross -section. 
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5.2. Comparison with previous study 

5.2.1.  Free Vibration Analysis of Cracked Uniform Cantilever Beam 

The present FEM formulation is validated with literature. The variation of natural 

frequency with respect to the uniform cantilever beam with single crack is studied and compared 

with Shiffrin (1999) as shown in the Table 5.1. 

The material properties of the beam are, Elastic modulus of the beam, E = 210MPa, 

Poisson‟s Ratio, υ = 0.3, Density, ᵨ = 7800 kg/m3, Beam Width, b = 0.02m, Beam depth, h = 

0.02 m, Beam length, L = 0.8m, Position of the crack from clamped end x1= 0.12m, Crack depth 

a1=0.002 m. 

 

 

Table 5.1 Comparison of natural frequency drawn between Shiffrin (1999) and 

present FEM analysis.  

MODE 
Natural Frequency (Hz) 

Shiffrin (1999) 

Present analysis FEM 

(Hz) 

MODE1 26.123 26.168 

MODE2 164.092 164.109 

MODE3 459.607 459.558 

 

Figure 5.3 Cracked cantilever beam (mm)  
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5.2.2. Free Vibration Analysis of Cracked Stepped Beams of Rectangular 

Cross-Section 

The problem contains computation of natural frequencies for cracked Bernoulli-Euler 

Cantilever beam using Finite Element Analysis are validated with the results obtained by Zhang 

et.al (2009).The thickness of beam is 12mm. The material properties of the beam are modulus of 

elasticity, E= 210Gpa, length of beam, L =500mm, density, ϱ = 7860 kg/𝑚3, ℎ1= 20mm, ℎ2 = 

16mm. 

 

Table 5.2 Comparison of natural frequency drawn between Zhang et.al (2009) and present FEM 

analysis 

 

Crack1 Crack2 
Natural frequency 

(Zhang et.al 2009) 

Present analysis 

(FEM) 

location 

𝜷𝟏 

depth 

𝜻𝟏 

location 

𝜷𝟐 

depth 

𝜻𝟐 
MODE1 MODE2 MODE1 MODE2 

Case 1 - - - - 72.40 373.61 72.40 373.65 

Case2 - - 0.6 0.25 72.138 365.67 72.129 365.75 

Case3 0.1 0.2 0.6 0.2 70.736 365.42 70.576 365.40 

Case4 0.25 0.25 0.6 0.3 70.368 355.06 70.68 355.06 

 

Figure 5.4 Cracked cantilever stepped beam (mm) 



 
26 

 

5.3. Free vibration of uniform beam subjected to single crack 

5.3.1. Uniform fixed-free beam 

The geometrical properties of the beam shown in Fig 5.5 is carried out for free vibration 

analysis . The variation of non-dimensional first natural frequency with relative location of the 

crack (x/L) for different crack depths of the Fixed-Free beam is plotted in Fig5.6 

 

 

 

For all the different locations of crack considered, the fundamental frequency is more 

affected when crack is located at x=0.0325L , the first mode of non-dimensional frequency 

decreases by 0.15%, 0.92%, 9.70%compared to intact beam for the  crack depth ratios 0.1,0.2,0.4 
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Figure 5.5 Cracked uniform beam  

Figure 5.6 Comparison of FEM and experimental results for non -dimensional 

first natural frequencies of single cracked cantilever beam with location of crack 

(x/L) for varying crack depth ratios.  
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respectively. It is observed that as the crack position moves away from the fixed end, the non-

dimensional first natural frequency increases and at the free end it is almost similar to intact 

beam. The effect of crack is effective when it is near to fixed end which could be made cleared 

by the fact that bending moment is maximum at the fixed end, thus, resulting in considerable loss 

of stiffness .Fig 5.7 shows a comparison of non-dimensional second natural frequencies of 

numerical and FEM, as a function of crack depth ratios for the crack positions considered 

experimentally and numerically. 

 

 

It is observed that the presence of crack has significant effect on the second mode non-

dimensional frequency for all the cases of crack positions except for the crack location at (x/L= 

0.20). When the crack is located at x/L= 0.20, the non-dimensional frequency of second mode is 

barely affected, the cause for this zero influence is that the nodal point for the second mode is 

located here. The crack located at x/L=0.0325 brings about 0.164%, 1.01%, 12.22% decrease in 
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Figure 5.7 Comparison of FEM and experimental results for non -

dimensional second natural frequencies of single cracked cantilever beam 

with location of crack (x/L) for varying crack depth ratios.  
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second mode of non-dimensional frequency compared to intact beam for the crack depth ratios 

0.1,0.2,0.4 respectively. It is also noticed that for the crack locations x/L= 0.34 to 0.85, the 

second mode non-dimensional frequency is diminished from maximum. Fig 5.8 shows the plot 

of the variations in third mode non-dimensional frequency for different crack depths and crack 

locations considered for experimental and numerical study. 

 

 

From the plot, it can be inferred that for crack locations, x/L=0.60, a drastic change in the 

third mode of non-dimensional natural frequency occurs. When the crack is located at x/L = 

0.0325, the non-dimensional frequency decreases by 0.34%, 2.13%, 18.41% compared to intact 

beam for the  crack depth ratios 0.1,0.2,0.4 respectively. And it is also observed that for x/L = 

0.375, 0.734 due to existence of nodal points, the reduction is slightly noticed. The effect of 

crack near fixed and free ends of the beam on the third mode non-dimensional natural frequency 

has very less effect. 
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Figure 5.8 Comparison of FEM and experimental results for non -dimensional 

third natural frequencies of single cracked cantilever beam with location of crack 

(x/L) for varying crack depth ratios.  
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5.3.2.  Uniform free-free beam 

Free vibration analysis of uniform beam with free ends is carried out .The geometrical 

properties of the beam is shown in Fig5.9. A comparison of numerical and FEM natural 

frequencies ratios of first mode for various crack locations for different crack depths along the 

beam is shown in Fig 5.10.  

 

 

 

It is observed that the first mode of non-dimensional frequencies is more affected when 

the crack is located at x/L=0.5. When the crack is located at x/L= 0.25 and 0.82, the decrease in 
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Figure 5.9 Uniform Beam with Crack (mm) 

Figure 5.10 Comparison of FEM and experimental results for non-dimensional 

first natural frequencies of single cracked free-free beam with location of crack 

(x/L) for varying crack depth ratios.  
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the non-dimensional frequency is in range of 0.15%, 0.92%, 9.7% for 0.1, 0.2, 0.4 crack depth 

ratios. This indicates that the first mode non-dimensional frequency is least affected when present 

near the free ends, but as the crack location varies the maximum affect is in the middle of the 

beam and it increases as the crack depth ratio increases. The variation of non-dimensional 

frequency of second mode for various crack locations for different crack depths, experimentally 

and numerically are shown in Fig 5.11 

 

 

It is observed that the second mode non-dimensional frequencies is least affected when 

the crack is located at mid span i.e. x/L=0.5. The non-dimensional frequencies of second mode 

for crack locations, x/L =0.25, 0.375, 0.625 positions for crack depths 0.1, 0.2, 0.4 considerable 

decrease than intact beam is noted. When the crack is located at free ends and mid span, the 

second mode non-dimensional frequency is least affected which is due to the presence of node 
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Figure 5.11 Comparison of FEM and experimental results for non -

dimensional second natural frequencies of  single cracked free-free beam with 

location of crack (x/L) for varying crack depth ratios  
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points at those locations. The effect of crack for different locations and crack depths on third 

mode non-dimensional frequency is shown in Fig 5.12 

 

 

Referring to Fig 5.12,it can be concluded that the third mode non-dimensional 

frequencies decrease by 0.45%, 2.7%, 19.13% when the crack is located at x/L = 0.25, 0.5,0.75 

for different crack depths 0.1, 0.2, 0.4 respectively.  

5.4. Free Vibration of uniform beam subjected to double cracks 

5.4.1.  Uniform fixed-free  

Variation of non-dimensional frequencies for first three modes for different locations of 

crack with varying crack depths are studied experimentally and numerically for fixed-free 

boundary condition. The schematic diagram of the beam, indicating the geometrical properties 
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Figure 5.12 Comparison of FEM and experimental results for non -dimensional first 

natural frequencies of single cracked free-free beam with location of crack (x/L) for 

varying crack depth ratios.  
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along with different locations of crack considered for the study is shown in Fig 5.13.Fig 5.14 

illustrates the non-dimensional first natural frequencies as function of crack depth ratios for 

different crack locations.  
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Figure 5.13 Sketch of uniform cantilever beam with two cracks considered at different 

locations for the present study.  

Figure 5.14 Comparison of FEM and experimental results for non -dimensional first 

natural frequencies of double cracked fixed-free beam with crack depth ratio (a/d) 

for different locations of crack.  
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It can be obviously seen from Fig 5.14 that with the increase in crack depth ratio , 

the frequency reduction increases. The results attained by present analysis, FEM are compared 

with those of experimental and as is noticed from Fig 5.14, good concurrence has been found 

between the results. As observable from the Fig 5.14, the second frequency reduction is higher 

when the crack is located at x1=0.266L,x2=0.53L, a decrease of 1.16%, 5.2%, 21.23% is noted 

for the 0.1,0.2,0.4 crack depth ratios respectively. The first non-dimensional frequencies is least 

effected when the crack locations are present far away from the fixed end that is x1= 

0.53L,x2=0.73L , a decrease of 0.94% ,4.46%, 21.17 %  for crack depth ratios 0.1, 0.2, 0.4 is 

observed. With the first crack position at x1=0.266L being constant and the position of second 

crack is varied away from the fixed end , x2=0.73L, the effect of crack is meager than the crack 

locations at x1=0.266L, x2=0.53L, 0.81%, 3.66%, 15.96% decrease for 0.1, 0.2, 0.4 crack depth 

ratios respectively is observed. Comparison drawn between the FEM and experimental results 

for variation of non-dimensional second natural frequency for different crack locations for 0.1, 

0.2, 0.4 crack depth ratios is demonstrated in Fig 5.15. 
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From Fig 5.15, it can be discerned that the greater drops in the non-dimensional 

second natural frequencies occur when the cracks are positioned at x1=0.266L, x2=0.53L, 

decrease of 4.36%, 18.02%, 48.28% for 0.1, 0.2, 0.4 crack depth ratios is observed. If the 

position of second crack is changed from x2=0.266L to x2=0.73L, the natural frequency in 

second mode is hardly affected .The decrease in non-dimensional second natural frequency is 

0.75%, 4.05%, 38.71% when compared to the intact beam for 0.1, 0.2, 0.4 crack depth ratios 

respectively. Fig 5.16 displays the variation of third non-dimensional natural frequency for 

different crack locations for 0.1, 0.2, 0.4 crack depth ratios. 
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Figure 5.15 Comparison of FEM and experimental results for non -dimensional 

second natural frequencies of double cracked fixed-free beam with crack depth 

ratio (a/d) for different locations of crack. 
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Referring to the  Fig 5.16 , it is clear that for crack positions at x1=0.266L, x2=0.53L, the 

natural frequency in the third mode is hardly affected, a decrease of 0.002%, 0.0278%, 19.01% 

when compared to that of the intact beam is noted for 0.1, 0.2, 0.4 crack depth ratios. The effect 

of double cracks located at x1=0.53L, x2=0.73L shows a decrease of 6.55%, 37.03%, 65.40% 

when compared to the intact beam for 0.1, 0.2, 0.4 crack depth ratios respectively.  

5.4.2.  Uniform free-free beam  

Free vibration analysis of beam with double cracks is carried out for different crack 

depths as considered in Fig 5.17. The variation of non-dimensional first natural frequency for 

two cracks is plotted for different crack locations and a different crack depth ratio is shown in 

Fig 5.18. 
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Figure 5.16 Comparison of FEM and experimental results for non -dimensional third 

natural frequencies of double cracked fixed-free beam with crack depth ratio (a/d) for 

different locations of crack.  
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It can be observed that the non-dimensional first natural frequency is very less affected 

when the cracks are located at x1=0.31L,x2=0.56L, the  decrease in the natural frequencies is 

0.65%, 2.95%, 13.15% with respect to the intact beam respectively. Crack located near the free 
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Figure 5.18 Comparison of FEM and experimental results for non-dimensional first 

natural frequencies of double cracked free-free beam with crack depth ratio (a/d) for 

different locations of crack.  

Figure 5.17 Sketch of uniform free-free beam with two cracks considered at 

different locations for the present study.  
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ends that is x1=0.31L,x2=0.75L reduces the non-dimensional first natural frequencies by 

1.30%, 5.86%, 24.12% than intact beam for crack depth ratios 0.1, 0.2, 0.4 respectively. Up to 

the crack depth ratios 0.1, 0.2 the reduction in non-dimensional frequencies for cracks located at 

x1= 0.56L, x2= 0.75L and x1=0.31L, x2=0.56L is marginal. The variation of non-dimensional 

second natural frequency with different depths of crack for various crack locations is shown in 

Fig 5.19 

 

 

Referring to Fig 5.19, it is observed that the non-dimensional second natural frequency is 

least affected when the cracks are present near the free ends. Keeping one of the crack location 

constant at 0.56L and the second crack located at either of end of beam, the decrease in non-

dimensional second natural frequency is almost the same. A decrease of 4.11%, 17.80%, 50.17% 

is noted when cracks are located at x1=0.31L, x2=0.56L for 0.1, 0.2, 0.4 crack depth ratios. 
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Figure 5.19 Comparison of FEM and experimental results for non -dimensional 

second natural frequencies of double cracked free-free beam with crack depth ratio 

(a/d) for different locations of crack.  
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Similarly variation of non-dimensional third natural frequency with different crack depths for 

different locations of crack is shown in Fig 5.20 

 

 

It is observed that the non-dimensional third natural frequency is affected more when the 

cracks are located at x1=0.56L,x2=0.75L , a decrease of 6.52%, 36.5%, 64.66% compared to 

intact beam is noticed for 0.1, 0.2, 0.4 crack depth ratios respectively.  

5.5. Free Vibration of uniform beam subjected to triple cracks 

5.5.1. Uniform free-free  

 The affect of triple cracks on the free vibration of a beam is studied experimentally and 

the plots showing the validation of experimental results with numerical results are presented. The 

different locations of cracks considered for the study is illustrated in the Fig 5.21 for free –free 
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Figure 5.20 Comparison of FEM and experimental results for non -dimensional third 

natural frequencies of double cracked free-free beam with crack depth ratio (a/d) for 

different locations of crack.  
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boundary condition. A comparison drawn between the FEM and numerical results for first mode 

of non- dimensional natural frequency is shown in the Fig 5.22 
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Figure 5.21 Sketch of uniform cantilever beam with three cracks 

considered at different locations for the present study. 

Figure 5.22 Comparison of FEM and experimental results for non -dimensional 

first natural frequencies of triple cracked free -free beam with crack depth ratio 

(a/d) for different locations of crack. 
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From Fig 5.22, it can be noted that the reduction is more in the case of cracks located at 

x1=0.56L,x2= 0.66L, x3=0.75L ,a decrease of  1.15%, 5.52%, 26.20% when compared to the 

intact beam is observed. Nextly, it is inferred from Fig 5.22 that for the cracks located at 

x1=0.31L, x2=0.435L, x3=0.56L, 1.09%, 4.91%, 20.54% reduction in the non-dimensional first 

natural frequencies when compared to the intact beam is observed. And also significant reduction 

is observed if the three cracks are located at x1=0.31L, x2=0.56L, x3=0.75L.Fig 5.23 shows a 

comparison second mode non-dimensional natural frequencies of numerical and FEM, as a 

function of crack depth ratios for the crack positions considered experimentally and numerically. 

 

 

 

From the plot, it can be inferred that the second mode non-dimensional frequencies are 

more effected by  6.98%, 28.05%, 60.78% compared to the intact beam when the cracks are 

located at x1=0.56L,x2=0.66L,x3=0.75L for crack depth ratios 0.1, 0.2 ,0.4 respectively. The 
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Figure 5.23 Comparison of FEM and experimental results for non -dimensional 

second natural frequencies of triple cracked free-free beam with crack depth ratio 

(a/d) for different locations of crack.  
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non-dimensional second natural frequencies is less affected when compared to intact beam when 

any one of the crack location is near the free end, it is observed clearly from the plot that for 

crack locations x1=0.31L, x2=0.435L, x3=0.56L and x1=0.31L, x2=0.56L, x3=0.75L, the drop 

in the natural frequencies is comparatively less for the crack depth ratios 0.1, 0.2, 0.4. The plot 

(fig 5.24) depicts   a comparison of non-dimensional third natural frequencies of numerical and 

FEM as a function of crack depth ratios for different crack positions. 

 

 

 

Referring to the Fig 5.24, it can be concluded that the third mode of non-dimensional natural 

frequencies is more effected when the cracks are located at x1=0.56L, x2=0.66L,x3=0.75L  

when compared to the intact beam for 0.1, 0.2, 0.4 crack depth ratios respectively. 
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Figure 5.24 Comparison of FEM and experimental results for non -dimensional 

third natural frequencies of triple cracked free-free beam with crack depth ratio 

(a/d) for different locations of crack.  
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5.5.2. Uniform fixed-free  

Free vibration analysis for a beam with fixed –free boundary condition in the presence of 

multiple cracks is carried out for the varying crack locations is displayed in Fig 5.25. The plot of 

variation of first mode natural frequencies as function of different crack depth ratios for the 

different positions of cracks is shown in the Fig 5.26. 

 

Figure 5.25 Sketch of uniform cantilever beam with three cracks considered 

at different locations for the present study.  
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Fig 5.26 illustrate that the reduction in the non-dimensional first natural  frequencies is 

higher when the cracks are located at x1= 0.266L, x2=0.4L, x3=0.53L , a reduction of  1.65%, 

7.15%, 26.33% when compared to the intact beam for the 0.1, 0.2, 0.4 crack depth ratios is 

noticed. The effect in the first mode non-dimensional frequencies is meager when the crack 

locations are away from  the fixed end that is x1=0.53L, x2=0.64L, x3=0.73L , a decrease of  

0.944%, 4.68%, 22.19% is observed when compared to the intact beam for 0.1, 0.2, 0.4 crack 

depth ratios respectively. A decrease of 1.45%, 6.44%, 25.60% compared to the intact beam is 

marked for the crack location x1=0.266L, x2= 0.53L, x3=0.73L for the crack depth ratios 0.1, 

0.2, 0.4 respectively. Fig 5.27 demonstrates the comparison of non-dimensional third natural 

frequencies for different crack depth ratios for different crack locations considered for the 

numerical and experimental study.  
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Figure 5.26 Comparison of FEM and experimental results for non-dimensional 

first natural frequencies of triple cracked fixed-free beam with crack depth ratio 

(a/d) for different locations of crack.  
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It is clear from Fig 5.27, similar trends in reduction of non-dimensional second natural 

frequencies is observed  for the cracks located at x1=0.266L,x2=0.53L,x3=0.73L and 

x1=0.266L,x2=0.4L,x3=0.53L , the range of decrease is (4.45- 4.51)%, (18.26-18.69)%, (48.70-

49.36)% for 0.1, 0.2, 0.4 crack depth ratios respectively. From Fig 5.27, it is also noticed that for 

the crack locations at x1=0.53L,x2=0.64L,x3=0.73L for crack depth ratios 0.1, 0.2, 0.4 

respectively decreases the normalized second mode natural frequencies by 6.88%, 21.90%, 

53.20% compared to that of intact beam. Due to the presence of the nodal point at x=0.2L, the 

natural frequency in the second mode is less affected when the any of the crack is located near 

the fixed end (vicinity of the nodal point). Fig 5.28 indicates the variation of non-dimensional 

third natural frequencies for 0.1, 0.2, 0.4 crack depth ratios for different crack locations. 
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Figure 5.27 Comparison of FEM and experimental results for non-dimensional 

second natural frequencies of triple cracked fixed-free beam with crack depth ratio 

(a/d) for different locations of crack.  
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It is inferred from the Fig 5.28  that there is greater fall in the non-dimensional third  

natural frequencies when the cracks are located at x1=0.53L, x2=0.64L, x3=0.73L , a decrease of  

14.30%, 43.22%, 66.78% compared to intact beam for 0.1, 0.2, 0.4 crack depth ratios is 

observed. Cracks present closer to the nodal points (have smaller effect of the non-dimensional 

third natural frequency. Due to the presence of cracks(x1= 0.266L, x2= 0.4L, x3=0.53L) in the 

vicinity of the nodal points(x/L= 0.375, 0.734), the decrease in the natural frequencies compared 

to the intact beam is comparatively less. A reduction of 4%, 19.69%, 54.11% when compared to 

intact beam for 0.1, 0.2, 0.4 crack depth ratios respectively is noticed for the cracks located at 

x1= 0.266L, x2= 0.4L, x3=0.53L. 
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Figure 5.28 Comparison of FEM and experimental results for non -dimensional third 

natural frequencies of triple cracked fixed-free beam with crack depth ratio (a/d) 

for different locations of crack.  
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5.6. Free vibration of Stepped beam subjected to single crack 

5.6.1.  Cantilever stepped beam 

The affect of crack in stepped beam is studied experimentally and the results obtained are 

compared with the Present (FEM) analysis, a good agreement has been found between the 

results. The schematic diagram (Fig 5.29) displays the geometrical properties of the stepped 

beam that is used for the study. Fig 5.30 demonstrates the non-dimensional first natural 

frequencies as function of crack depth ratios for several crack locations considered. 
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Figure 5.29 Cantilever Stepped beam (in mm) 

Figure 5.30 Comparison of FEM and experimental results for non -dimensional first 

natural frequencies of single cracked cantilever stepped beam with location of crack 

(x/L) for varying crack depth ratios.  
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From the Fig 5.30, it can observed that greater drops in the non-dimensional first natural 

frequencies have occurred when the crack is located in the vicinity of step, x=0.34L and 0.66L 

which could be explained by the reason that the stepped variation in the cross sectional reduces 

the stiffness of the beam along with the presence of crack near step. A decrease of 0.4%, 2.41%, 

8.25% when compared to the intact stepped beam for 0.1, 0.2, 0.4 crack depth ratios are 

observed. When crack is situated near the fixed end, the non-dimensional first natural 

frequencies are barely affected. The non-dimensional second natural frequencies as function of 

crack depth for cracks situated at different positions are illustrated in Fig 5.31. 

 

 

From the Fig 5.31, it can be seen that when the crack is located near the fixed end the 

reduction in the non-dimensional second natural frequency is highest. A decrease of 

0.05%,0.315%, 12.30% when compared to intact stepped beam for 0.1, 0.2, 0.4 crack depth 
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Figure 5.31 Comparison of FEM and experimental results for non -dimensional second 

natural frequencies of single cracked cantilever stepped beam with location of crack (x/L) 

for varying crack depth ratios.  



 
48 

 

ratios are observed for x=0.164L. Fig 5.32 displays the non-dimensional third natural frequency 

variation for different locations with 0.1, 0.2, 0.4 crack depth ratios. 

 

 

Referring to Fig 5.32, it can be observed that when crack is positioned at step part the 

reduction in the non-dimensional third natural frequency is significant 0.7%, 3.4%, 15.26% 

decrease is noticed compared to the intact stepped beam as the crack depths ratios vary as 0.1, 

0.2, and 0.4. 

5.6.2. Free-free stepped beam  

Free vibration analysis of stepped beam subjected to free –free condition in the presence 

of crack is studied both experimentally and numerically. The geometrical properties of the 

stepped beam utilized for the present study is shown in Fig 5.33. Fig 5.34 demonstrates the 

comparison drawn between the FEM and numerical results of the stepped beam subjected to 

single crack at various locations with crack depth ratio varying as 0.1, 0.2, and 0.4. 
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Figure 5.32 Comparison of FEM and experimental results for non -dimensional third 

natural frequencies of single cracked cantilever stepped beam with location of crack 

(x/L) for varying crack depth ratios.  
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From Fig 5.34, it can be concluded that crack present near the step, x=0.38L reduces the 

non-dimensional natural frequencies to much more extent than other position of crack. Higher 

decrease is noticed when the crack is located at x=0.38L for 0.1, 0.2, and 0.4 crack depth ratios. 

The presence of crack at the free ends, x=0.76L and x=0.21L, the natural frequencies is affected 

less. The variation in non-dimensional second natural frequencies for the presence of crack at 

various locations with different crack depth ratios (0.1, 0.2, and 0.4) is depicted in Fig  5.35. 
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Figure 5.33 Free-Free stepped beam with crack (in mm) 

Figure 5.34 Comparison of FEM and experimental results for non-dimensional first 

natural frequencies of single cracked free-free stepped beam with location of crack 

(x/L) for varying crack depth ratios.  



 
50 

 

 

 

It can inferred from Fig 5.35 that when cracks are located near free ends and at mid-span, 

x=0.21L, 0.38L, 0.76L, the second natural frequencies are least affected. A considerable 

decrease in noticed when the crack is located at x=0.30L and x=0.68L, 0.3%, 2%, 10.4% when 

compared to intact stepped beam for 0.1, 0.2, 0.4 crack depth ratios. Fig 5.36 illustrates the 

comparison of FEM and experimental study of non-dimensional third natural frequencies as 

crack location varies from one free end to other with varying crack depth ratios. 
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Figure 5.35 Comparison of FEM and experimental results for non -dimensional 

second natural frequencies of single cracked free-free stepped beam with location of 

crack (x/L) for varying crack depth ratios.  
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Referring to Fig 5.36, it can be noticed that cracks when located at x=0.30L, 0.38L, 

0.68L, significant decrease in the non-dimensional third natural frequencies occurs. The decrease 

is 0.32%, 15.27%, 38% when position of crack is at x= 0.30L for 0.1, 0.2, and 0.4 crack depth 

ratios when compared with the intact stepped beam. 

5.7. Free vibration of Stepped beam subjected to double crack 

5.7.1.  Free-free stepped beam 

Free vibration analysis for the stepped beam in the presence of two cracks is carried out 

experimentally and accuracy is validated with the present (FEM) analysis. Different locations of 

cracks considered for the study is illustrated in Fig 5.37. The plot showing the variation of non-
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Figure 5.36 Comparison of FEM and experimental results for non -dimensional third 

natural frequencies of single cracked free-free stepped beam with location of crack (x/L) 

for varying crack depth ratios.  
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dimensional first natural frequency for the different positions of cracks considered is given in Fig 

5.38. 
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Figure 5.37 Sketch of stepped free-free beam with two cracks considered at 

different locations for the present study.  

Figure 5.38 Comparison of FEM and experimental results for non -dimensional first 

natural frequencies of double cracked free-free stepped beam with varying crack 

depth ratios for different locations of crack.  
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Referring to Fig 5.38, it can be observed that high fall in non-dimensional first mode 

natural frequencies is when the cracks are located at x1=0.34L,x2=0.80L ,7.4%,11.5%,17% 

decrease when compared to the intact stepped beam is found. It can be also noted that when any 

of the two cracks is located in the higher step brings more reduction in the natural frequency and 

upon varying the position of crack from free end of the higher step to the step location, reduction 

level goes on increasing. Fig 5.39 illustrates the non-dimensional second natural frequency 

varying for different crack depth ratios at different locations considered for the study. 

 

 

Fig 5.39 depicts that the non-dimensional second natural frequencies decrease more when 

the cracks are located at x1=0.164L,x2=0.66L, 15.4%, 26%,42% reduction when compared to 

intact stepped beam is noticed. The location of cracks one near the vicinity of step in higher step 
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Figure 5.39 Comparison of FEM and experimental results for non-dimensional 

second natural frequencies of double cracked free-free stepped beam with varying 

crack depth ratios for different locations of crack.  
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and other varying in the lower step brings (x1=0.34L,x2=0.80L; x1=0.34L,x2=0.66L) reduces 

the natural frequency by 36%  when compared to the intact stepped beam for 0.4  crack depth 

ratio. 

 

  

The plot (Fig 5.40) explains that the non-dimensional third natural frequency reduces 

more when the cracks are located at (x1=0.34L,x2=0.66L), 28%,29.2%, 30% decrease in natural 

frequency compared to the intact stepped beam for different crack depth ratios is observed. 

5.7.2. Cantilever stepped beam  

Free vibration analysis for the stepped beam in the presence of two cracks is carried out 

experimentally and accuracy is validated with the present (FEM) analysis. Different locations of 

cracks considered for the study is illustrated in Fig 5.41.The plot showing the variation of non-
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Figure 5.40 Comparison of FEM and experimental results for non -dimensional third 

natural frequencies of double cracked free-free stepped beam with varying crack 

depth ratios for different locations of crack.  
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dimensional first natural frequency for the different positions of cracks considered is given in Fig 

5.42. 
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Figure 5.41 Sketch of stepped fixed-free beam with two cracks considered at 

different locations for the present study.  

Figure 5.42 Comparison of FEM and experimental results for non -dimensional first 

natural frequencies of double cracked fixed-free stepped beam with varying crack 

depth ratios for different locations of crack.  
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From Fig 5.42, it can be understood that the decrease is high during the location of cracks 

at step (x1=0.30L,x2=0.64L; x1=0.30L,x2=0.83L), 10%,15%,22% reduction is noticed 

comparing to the intact beam for 0.1,0.2,0.4 crack depth ratios.  

 

 

From the Fig 5.43, it is observed that for cracks positioned at x1=0.30L,x2=0.64L, a 

decrease of 16.6%, 28.8%, 36.8% when compared to intact stepped beam for different crack 

depth ratios is noticed. But in the same case if the second crack location moves from x2=0.64L 

to x2=0.83L (free end) , meager decrease occurs. 
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Figure 5.43 Comparison of FEM and experimental results for non -dimensional 

second natural frequencies of double cracked fixed-free stepped beam with varying 

crack depth ratios for different locations of crack.  
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Fig 5.44 represents the variation of non-dimensional third natural frequencies for varying 

crack depth ratios for different locations of cracks considered for the study. If any of the crack is 

present near the free end (x1=0.106L,x2=0.83l; x1=0.30L,x2=0.83l), the natural frequencies in 

the third mode is barely affected. Cracks positioned at x1=0.104L,x2=0.6L( one near the fixed 

end and other at the step location) brings maximum decrease of all the locations considered . 

5.8. Free vibration of Stepped beam subjected to triple crack 

5.8.1.  Cantilever stepped beam 

Free vibration analysis for the stepped beam in the presence of three cracks is carried out 

experimentally and accuracy is validated with the present (FEM) analysis. Different locations of 

cracks considered for the study is illustrated in Fig 5.45.The plot showing the variation of non-

dimensional first natural frequency for the different positions of cracks considered is given in Fig 
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Figure 5.44 Comparison of FEM and experimental results for non -dimensional third 

natural frequencies of double cracked fixed-free stepped beam with varying crack 

depth ratios for different locations of crack.  
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5.46.

 

 

 

 

From the Fig 5.46, it can be understood that greater reduction in non-dimensional first 

natural frequency is noticed in the vicinity of step part. The cracks located at x1=0.11L, 

x2=0.30L, x3=0.64L (one near the fixed end and other two being located near step) bring 

decrease of 3%, 6.4%, 22.5% when compared to the intact stepped beam for 0.1, 0.2, 0.4 crack 

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4

N
o
n
-d

im
en

si
o
n

al
 f

ir
st

 n
at

u
ra

l 

fr
eq

u
en

cy
 

Crack depth ratio (a/d)

FEM-x1=0.29L,x2=0.65L,x3=0.83L

Exp-x1=0.29L,x2=0.65L,x3=0.83L

FEM-x1=0.11L,x2=0.30L,x3=0.64L

Exp-x1=0.11L,x2=0.30L,x3=0.64L

FEM-x1=0.28L,x2=0.54L,x3=0.64L

Exp-x1=0.28L,x2=0.54L,x3=0.64L

FEM-x1=0.106L,x2=0.66L,x3=0.83L

Exp-x1=0.106L,x2=0.66L,x3=0.83L

Figure 5.46 Comparison of FEM and experimental results for non-dimensional first natural 

frequencies of triple cracked fixed-free stepped beam with varying crack depth ratios for 

different locations of crack.  
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depth ratios respectively. The next high reduction takes place when two cracks are located at step 

and other crack present near the free end(x1=0.29L, x2=0.65L, x3=0.83L). Fig 5.48 draws plot 

which compares the FEM and experimental results of non-dimensional second natural frequency 

for different locations of crack as a function of crack depth ratios. 

 

 

Fig 5.47 draws the inference that when anyone of the three cracks is located near the 

fixed end, the non-dimensional second natural frequencies is hardly affected. The cracks located 

at x1=0.28L, x2=0.54L, x3=0.64L bring a reduction about 17.56%,20.75 %, 36.42% when 

compared to the intact stepped beam for 0.1, 0.2, 0.4 crack depth ratios. Two cracks being 

located near the step and another away from the fixed end has more affect comparatively. The 

deviation in the non-dimensional third natural frequencies for different locations of crack with 

different crack depth ratios is depicted in Fig  5.48 
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Figure 5.47 Comparison of FEM and experimental results for non-dimensional 

second natural frequencies of triple cracked fixed -free stepped beam with 

varying crack depth ratios for different locations of crack.  
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From Fig 5.48, it can be observed that the cracks located at x1=0.11L, 

x2=0.30L,x3=0.64L, a decrease of 12.97%, 23.61%, 35.91% is noticed when compared to that of 

intact stepped beam for 0.1, 0.2, 0.4 crack depth ratios respectively. 

5.8.2.  Free-free stepped beam  

Free vibration analysis for the free-free stepped beam in the presence of three cracks is 

carried out experimentally and accuracy is validated with the present (FEM) analysis. Different 

locations of cracks considered for the study is illustrated in Fig 5.49.The plot showing the 

variation of non-dimensional first natural frequency for the different positions of cracks 

considered is given in Fig 5.50. 
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Figure 5.48 Comparison of FEM and experimental results for non -dimensional third 

natural frequencies of triple cracked fixed-free stepped beam with varying crack 

depth ratios for different locations of crack.  
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Fig 5.50 indicates that for location of cracks at x1=0.164L, x2=0.344L, x3=0.66L, the 

non-dimensional first natural frequencies decrease to greater extent than compared to the other 

locations of crack. A reduction of 0.87%, 4.40%, 20.83% compared to intact stepped beam for 

0.1, 0.2, 0.4 crack depth ratios is noticed. Concentration of two cracks on the lower step and 
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Figure 5.49 Different locations of triple cracks considered for Free -Free Stepped beam (in mm) 

Figure 5.50 Comparison of FEM and experimental results for non-dimensional first natural 

frequencies of triple cracked free-free stepped beam with varying crack depth ratios for 

different locations of crack.  
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another on the higher step of beam does not affect the natural frequencies which is illustrated by 

the cracks located at (x1=0.324L,x2=0.57L,x3=0.66L) and (x1=0.16L,x2=0.68L,x3=0.84L). The 

reduction in natural frequencies in the above locations in the first mode is 10.30% range when 

compared to intact stepped beam for 0.4 crack depth ratios. Fig 5.51 demonstrates the non-

dimensional second natural frequency variation for the different positions of cracks considered 

with varying crack depth ratios. 

 

 

The Fig 5.51 illustrates that the non-dimensional second natural frequency is 

affected more when the cracks are located at x1=0.324L, x2=0.57L, x3=0.66L. A decrease of 

26.01%, 29.47%, 43.53% when compared to intact stepped beam for 0.1, 0.2, 0.4 crack depth 

ratios is present .When cracks are positioned at x1=0.164L, x2=0.344l, x3=0.66L, reduction of  

15.63%, 16.09%, 31.27% when compared to intact stepped beam for 0.1, 0.2, 0.4 crack depth 

ratios is noticed. The crack positions which has more affect on the non-dimensional first natural 
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Figure 5.51 Comparison of FEM and experimental results  for non-dimensional second 

natural frequencies of triple cracked free-free stepped beam with varying crack depth 

ratios for different locations of crack.  



 
63 

 

frequency barely affects the non-dimensional second natural frequencies. The comparison drawn 

between the FEM and experimental results for the non-dimensional third natural frequencies for 

different locations of cracks considered for study with varying crack depth ratios is shown in Fig 

5.52. 

 

 

 It is observed from Fig 5.52 that when two cracks are concentrated on lower step 

and another crack on the higher step (x1=0.164L, x2=0.344L, x3=0.66L) brings reduction about 

30.97%, 43%,55% when compared to the intact stepped beam for 0.1, 0.2, and 0.4 crack depth 

ratios respectively. Two cracks being concentrated near step and another crack in the lower step 

(x1=0.324L, x2=0.57L, x3=0.66L and x1=0.3336L, x2=0.672L, x3=0.84l) has meager affect on 

the non-dimensional third natural frequency. A decrease of 25.03%, 28.44%, 34% when 

compared to the intact stepped beam for 0.1, 0.2, 0.4 crack depth ratios for the above crack 

location. 
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Figure 5.52 Comparison of FEM and experimental results for non -dimensional third 

natural frequencies of triple cracked free-free stepped beam with varying crack depth 

ratios for different locations of crack.  
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Chapter 6 

6. CONCLUSIONS 

6.1. Conclusions of the work. 

Free vibration analysis of uniform and stepped beam subjected with single to multiple 

cracks is done using Finite Element Method (FEM) in MATLAB environment. An experimental 

study is carried out to check the accuracy of the numerical results. 

 Mathematical formulation for free vibration of uniform and stepped beam with transverse 

open cracks is presented in detail. 

 In all the modes of vibration, as the crack depth ratio increases, the frequency reduction 

increases irrespective of uniform or stepped beam and boundary condition. 

 The natural frequencies of the beam are more influenced by the location of cracks than 

the depth of crack. 

 In the case of uniform cantilever beam, crack positioned near the fixed end affects the 

natural frequency in first mode more than the crack present in the free end of the beam. 

This is explained from the reason that position of crack is significant in the region of 

higher bending moment. Due to the presence of node points, the effect of crack near fixed 

and free ends of the beam on the third mode non-dimensional natural frequency has very 

less effect. 

 For free-free boundary condition, the crack positioned in the center of beam is more 

critical for the first and third mode natural frequency. The second mode natural frequency 

is barely affected when cracks are located at free ends and mid span of beam.  
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 For cantilever stepped beam, greater drops in the non-dimensional first and third natural 

frequencies occur when the crack is located in the vicinity of step which could be 

explained by the reason that the stepped variation in the cross sectional reduces the 

stiffness of the beam along with the presence of crack near step. If the crack is located 

near fixed end, the natural frequencies reduction in the second mode is highest. 

 For free-free stepped beam, crack present at step part, the first mode natural frequency 

decreases more than when crack is located at free end. The effect of crack present at step 

and free ends is barely affected.  

 The influence of double crack in the case of fixed-free boundary condition is seen when 

the concentration of crack near step reduces frequency more than any one of the crack is 

located near the fixed end. The second natural frequency has meager affect when anyone 

of the crack is present near free end. The natural frequency in third mode is hardly 

affected when anyone of crack is near free end. 

 The affect of double crack present for free-free stepped beam is studied experimentally 

and numerically compared for checking the accuracy. It is observed that when any of the 

two cracks is located in the higher step brings more reduction in the first natural 

frequency and upon varying the position of crack from free end of the higher step to the 

step location, reduction level goes on increasing. It is also noted that the third natural 

frequency is barely affected when any of the crack is present near the free end. 

 Three cracks are more critical when they are present in the step part for first natural 

frequency, the natural frequency in second mode is hardly affected when any of the three 

cracks is near the fixed end and the third natural frequency is more influenced when two 
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cracks are present near the step irrespective of presence of third crack in higher or lower 

step for a cantilever stepped beam.  

 For a free-free stepped beam, the concentration of three cracks (two on the higher step 

and other on the lower step) reduces the natural frequency in first and third mode. The 

presence of crack in the vicinity of step and concentration of atleast one crack in higher 

step has more influence. It is seen that the second natural frequency is barely affected for 

the crack position where first natural frequency is affected (i.e. more affect is seen when 

cracks are located on lower step). 

6.2. Scope for the future work. 

There is a lot of scope to extend this project work in the directions listed underneath 

1. The present work focus is based on Euler-Bernoulli beam theory; it can be further 

carried out for Timoshenko beam considering the hygrothermal effects. 

2. The study has dealt with square area of cross section; it can be extended to study 

the effect of multiple cracks in stepped beam for circular cross section. 

3. Buckling analysis of stepped beam can be carried out numerically and 

experimentally. 

4. The study can be extended for the composite materials to study the variations in 

the composite beams in the presence of multiple cracks. 
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