
i

Formalization, Selection and

Detection

of Security Patterns

Mohd Suleman

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India

Formalization, Selection and

Detection of Security Patterns

Thesis submitted by

Mohd Suleman
[Roll: 710CS2041]

In partial fulfilment of the requirements for the award of the degree

of

Master of Technology

in

Computer Science and Engineering

under the guidance of

Prof. S. K. Rath
NIT Rourkela

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

May 25, 2015

Certificate

This is to certify that the work in the thesis entitled Formalization, Selection

and Detection of Security Patterns by Mohd Suleman is a record of an

original research work carried out under my supervision and guidance in partial

fulfillment of the requirements for the award of the degree of Master of Technology

in Computer Science and Engineering. Neither this thesis nor any part of it has

been submitted for any degree or academic award elsewhere.

Prof. S. K. Rath
Head of The Department
Department of Computer Science and Engineering
NIT Rourkela

iv

Acknowledgment

I express our sincere and heartfelt gratitude towards our guide Prof. S. K.

Rath for his expert guidance and motivation during the course of the project

which served as a spur to keep the work on schedule.

We convey our regards to all the other faculty members of Department of

Computer Science and Engineering, NIT Rourkela for their valuable guidance and

advises at appropriate times. Finally, I would like to thank Ms. Prayasee Pradhan

and Mr. Ashish Dwivedi for their help and assistance all through this project.

Mohd Suleman

Abstract

Generally, software requirement analysis and design methodologies based on dif-

ferent UML (Unified Modelling Language) diagrams need to be strengthened by

the use of a number of security patterns. Security Patterns provide a way for

the software developers to communicate at security level in more comprehensive

way. Over the last few years, a number of security patterns has been gradually

increased and still increasing. Large number of security patterns has given rise to

critical problem of selecting the appropriate security pattern to solve the problem

at hand. In this study, an attempt has been made for automated verification of

security pattern and an approach is proposed for selection of appropriate security

patterns that fulfils security requirements. In order to demonstrate this approach,

four security patterns have been selected such as Single Access Point, CheckPoint,

Role and Session. A grammar has been developed for the verification of selected

security patterns. Goal-Oriented Requirement Language (GRL) has been used for

creating the repository of formalized security patterns, this GRL model is used

for extracting facts which are then represented as relational instances. Queries

have been made to the instances to find appropriate security pattern which ful-

fils security requirements. This approach clearly identifies the contribution and

consequences of a security pattern towards the security related Non Functional Re-

quirements (NFRs). It also checks for the relationships and dependences among

the security patterns, which helps in finding the pre-requisite patterns for the se-

lected security patterns. Finally, a method for detection of security patterns using

similarity score is presented.

Keywords : Security Patterns, Formalization, Selection, Detection.

Contents

List of Figures vii

1 Introduction 2

1.1 Introduction . 3

1.2 Objective . 8

1.3 Organization of the thesis . 9

2 Literature Survey 10

2.1 Formalization and Validation of Security Patterns 11

2.2 Selection of Appropriate Security Patterns 13

2.3 Detection of Security Patterns . 15

3 Formalization and Validation of Security Patterns 17

3.1 Formalization and Validation of Security Patterns 18

3.1.1 Explanation of Grammar: 18

3.2 Case study . 24

3.2.1 Test Cases . 28

4 Selection of Appropriate Security Patterns 31

4.1 Modeling of Security Pattern for Building Repository 32

4.1.1 Extraction of Facts from GRL Model 34

4.1.2 Selection of Appropriate Security Pattern that Fulfills Secu-
rity Requirement . 35

5 Detection of Security Patterns 37

5.1 Detection of Security Patterns . 38

5.2 Implementation . 38

5.2.1 Hybrid Classifier . 38

5.2.2 Detection Using Similarity Score 40

6 Conclusion and Future Work 42

6.1 Conclusion . 43

6.1.1 Formalization and Validation of Security Patterns 43

6.1.2 Selection of Appropriate Security Patterns 43

6.1.3 Detection of Security Patterns 44

6.2 Future Work . 44

vi

List of Figures

1.1 Single Access Point Security Pattern 4

1.2 Check Point Security Pattern . 5

1.3 RBAC Security Pattern . 5

1.4 Session Security Pattern . 6

1.5 Pattern Language for selected patterns 6

3.1 Parser Rules . 19

3.2 Lexer Rules . 20

3.3 Class Association File . 23

3.4 Result : ANTLR Command Prompt 23

3.5 Result : ANTLR Parser Tree 1 . 23

3.6 Result - ANTLR Parser Tree 2 . 24

3.7 UML Class Diagram for Case Study 25

3.8 Extended UML class Diagram for Case Study 26

3.9 Result - ANTLR Command Prompt 28

3.10 Result - ANTLR Parser Tree . 28

3.11 Test-Case 1 . 29

3.12 Test-Case 2 . 29

3.13 Test-Case 3 . 30

4.1 GRL intentional elements . 32

4.2 GRL model of Check Point Security Pattern 33

4.3 GRL model of Role-Based Access Control Security Pattern 33

5.1 jRefactory - Composite Pattern Detection Result 39

5.2 jRefactory - Adapter Pattern Detection Result 39

5.3 Assosiation Matrix For Single Access Matrix 41

vii

1

List Of Abbreviation

UML Unified Modeling Language
GRL Goal-Oriented Requirement Language
NFR Non Functional Requirement
SAP Single Access Point
RBAC Role Based Access Control
ANTLR ANother Tool for Language Recognition
OMT Object Modeling Technique
XML eXtensible Markup Language
MARPLE Metrics and Architecture Reconstruction Plug-in for Eclipse
DTNB Decision Tree Naive Bayes

Chapter 1

Introduction

2

3

1.1 Introduction

In the past two decades, a good number of software patterns have been proposed

by researchers [1] [2] [3] [4] [5] [6] [7]. Many design pattern tools have also been

developed for detecting patterns in instantiating of design patterns [8]. Gamma et

al. [1] have proposed the concept of software design patterns which consist of the

standard templates for twenty three design patterns. Later, other software design

patterns used these templates as a base and further extended these templates for

their application area.

The security requirements of a system depend on the environment in which

system is developed. In the present day scenario, the aspect of software security is

different from end-to-end security requirements of an application. Security prin-

ciples say that by eliminating security risks at the functional and developmental

level, security business objects, data across logical tiers, and security communica-

tions can be improved. Also the protection of the application from unauthorized

internal and external threats and vulnerabilities need to be ascertained. For the

first time security patterns have been proposed by Yoder and Barcalow [9]. They

have proposed seven patterns which are applied in security development issues.

Later, a good number of other categories of security patterns have been intro-

duced [5] [6] [10]. In order to demonstrate our approach four security patterns

such as Single Access Point, Check Point, Session, and Role have been taken into

consideration. These security patterns are described as follows:

The single Access Point limits extraneous access to a single channel and fa-

cilitates control which may be used in any self-contained system communicating

with others. Single Access Point security pattern provides a scheme for static de-

sign of a system. Many systems can’t be protected against outside attacks due to

numerous access points. Hence, the main objective of Single Access Point is to de-

fine one single interface for all external entities to communicate with system. The

Single Access Point is used at the network-level as well as the application-level.

The UML class diagram for Single Access Point is shown in Figure 1.1. Three

participants for Single Access Point (SAP) are ’Internal Entity’, ’Single Access

Point’, and ’External Entity’. External Entities are the actors which are outside

the system and should be authenticated before they can communicated with the

system. They communicate with the system through Single Access Point. Internal

Entities are the components present inside the system which is accessible to the

4

external entities only when authenticated by Single Access Point available to the

external entities.

Figure 1.1: Single Access Point Security Pattern

The Single Access Point (SAP) class interacts with any class that needs to

communicate with external entities. All the security policies that are to be en-

forced, must be sent to Check Point class before requests are forwarded to their

intended recipients. Check Point performs a check for security policies that are to

be applied on system and penalizes the user for violation of security policies.

A Single Access Point is predesigned to be combined with Check Point. Class

diagram for Check Point is shown in Figure 1.2. Check Point class acts as an

Internal Entity to the Single Access Point class and checks for information flow

through this class. Three participants for Check Point security pattern are Check

Point, Countermeasure and Security Policy. The Check Point class implements a

method to check information according to the current security policy and triggers

action to protect system against attackers. Countermeasure class provides actions

to be triggered in order to react against access violation. Security Policy class

implements rules that are applied to determine whether an access or condition is

allowed or not.

Check Point grants access to the system for authorized users. The user must

be validated for the authorization areas of the system according to the role that

particular user plays. Validation and verification for user’s privileges are incor-

porated through Role Based Access Control (RBAC) security pattern. The class

diagram for RBAC is shown in Figure 1.3. RBAC security pattern aims for better

maintainability of the privileges in the system. RBAC security pattern is real-

ized by constructing a User-Role-Privilege relationship. The different participants

taking action in RBAC security pattern are Privilege and Role. Privilege class

defines the resources which are accessible to subjects that has been afforded to

5

Figure 1.2: Check Point Security Pattern

this privilege. Role class holds a set of privileges those are related to that specific

role object and furnishes information about the users and its privileges.

Figure 1.3: RBAC Security Pattern

Session security pattern deals with creation of object which keeps global infor-

mation about a user. This may be used to facilitate accountability and to enforce

privilege violations. Session objects keep security relevant information like roles,

privileges or authentication data. Session object may be created after the user logs

into the system which is to be done at the Check Point of system. The UML class

diagram for Session security pattern is shown in Figure 1.4. The participants of

this security pattern are Session and the System components which uses Session.

Session class stores information which are provided by Session. The stored infor-

mation are initialized on creation. System components, which use Session, know

the instance of the Session object they use, and call methods of session to retrieve

information.

According to Yoder and Barcalow [9], secure system should maintain a proper

associativity among different security patterns. In this study, four security patterns

6

Figure 1.4: Session Security Pattern

such as Single Access Point, Check Point, Session, and Role have been taken

into consideration. One of the important measures of security is Single Access

Point which limits the entry to the system only through a single entry point.

Single Access Point provides user identification related information to Check Point

for authentication and authorization of the user. When user identification has

been verified, Session is created for carrying the global variables which contain

user’s identification and role. The authorization area for system visualization and

modification is provided through role-privilege relationship. Figure 1.5 represents

the flow of associativity among the aforesaid patterns in order to provide a secure

system.

Single Access Point

Checkpoint

Role Session

Secure Policy

uses

Creates

might use

Used to ceate

has

interacts with

Creates

Figure 1.5: Pattern Language for selected patterns

Design of an application system at present is supposed to be based on different

UML diagrams. UML class diagram shows the structural aspects of the classes,

but it is unable to express some other behavioral aspects. Hence, the extension of

UML class diagram to visualize the design pattern methodology has been proposed

7

in [11]. A gradual evolution has been observed for representation of design patterns

in UML class diagram, including Venn diagram style notation, Dotted-Bounding

Pattern Annotation, and Tagged Value Notation. Tagged Value notation defines

the pattern-role behavior of the model elements such as classes, attributes, and

operations. These notation can also be used for representation of security patterns.

Dong et al. [12] have presented a UML profile that defines new stereotypes, tagged

values, and constraints for tracing design patterns in UML diagrams. In this study,

these notations [12] are used for improving analysis of security problem.

The role of formal methods in the area of design patterns is helpful to enhance

the understandability of their semantics. It can help to analyse the composition

of design patterns. In the verification and validation scenario, the design must

be checked for correct use of the design patterns. There are many advantages

of formal notations to improve design decisions. Formal notations provide new

methods to prove the correctness of the proposed design, to automatically check

the syntax and semantics of the design decisions, and to generate test cases [13].

The verification and validation of any requirement are being carried out by the

use of formal languages which are based on grammar and have certain production

rules. Large numbers of formal specification languages are available in the litera-

ture. Each language has its own syntax and semantics. The limitation of formal

language is that a single formal specification language can’t be applied universally

for all types of problems. For example, Taibi and Ngo [14] proposed a balanced

approach between structural and behavioral aspect, but the approach does not

provide any information like the role of the participating model elements such as

classes, attributes, and methods in a particular design pattern.

Different approaches have been proposed to deal with the problem of selecting

appropriate security patterns. Prevailing approaches emphasize on formalization

of security pattern in order to create the repository. Formalization of security pat-

tern provide the clear description of the structure of security pat-terns. Structure

of security pattern helps the software developer in understanding, how the security

pattern can be applied but it does not provide any information on when a security

pattern should be applied for a given security related problem.

In this study, formal specification in the form of grammar is proposed for

verification of security patterns. The extended UML class diagram is verified by

ANTLR using proposed grammar. All the security goals as intended by selected

8

security pattern are preserved after the verification of extended UML class dia-

gram. A centralized repository for storing security pattern is created. Queries has

been made to the repository in order to find the most appropriate design pattern

that fulfills Non Functional Requirements. A approach using similarity score has

been proposed in order to detect the security patterns from the provided source

code of a system.

1.2 Objective

Security is one of several non-functional requirement that software developers have

to consider during the software development lifecycle [18]. Recently, applications

have become increasingly large and complex and developers might now have the

kind of security expertise that the design of security system requires. Security

Patterns bridge the knowledge gap between software developers in different do-

mains, and especially between software security specialists and software designers.

A security pattern [15] is a well-understood and well-formed solution to a recurring

software design security problem. So, security patterns encapsulate the knowledge

accumulated by security experts in order to help software developers to develop a

secure software system

As the requirement for security of today’s systems is continuously increasing,

the number of security is also gradually increasing. Recently many number of

security patterns has been proposed by researchers. Rising’s Pattern directory

[16] has listed more than twelve hundred patterns. In the past ten years since the

publication of the Rising pattern directory, many new patterns book related to

security pattern have been published. In 2007 list of two thousand two hundred and

forty one patterns focusing solely software was given by Henninger and Correa [17].

Increase in number of security can be considered as beneficial for the development

of secure system but it gave given rise to new critical problem, the problem of

selection the most appropriate pattern from the pool containing many security

pattern. The problem of selecting pattern was first highlighted by Gamma (also

known as GoF), he said that it can be hard to find most appropriate pattern for

the problem at hand from the pool containing more than twenty patterns [17].

In this study, after the formalization of security pattern using grammar, GRL

model has been used to represent the contribution that a security pattern make

9

on the security related Non Functional Requirements (NFRs), it identifies which

NFR will be build and which NFR will be hurt by the use of particular security

pattern. GRL modelling also helps in visualizing the different relationship among

the patterns such as, weather a pattern can co-exist with other patterns and what

are the prerequisite patterns for the particular pattern. Therefore, GRL model is

used for creating a repository of security pattern. Facts are extracted from the

GRL model which is then represented in the form of Instances. Queries are made

to these instances for finding the appropriate security pattern that fulfils security

requirement.

1.3 Organization of the thesis

The thesis is organized as follows.

In chapter 2, the literature survey is provided, which focuses on different works

that has already been undertaken in the field of formalization, validation, selection

and detection of security patterns .

In chapter 3, a methodology for the formal verification of selected security pat-

terns has been discussed. Developed grammar which satisfies the proposed pattern

language has been explained.

In chapter 4, a methodology for the selection of appropriate security patterns

has been proposed. Implementation details of the approach is also shown in the

same chapter.

In chapter 5, a methodology for detection of security patterns using similarity

score have been propose. Open source projects have been considered to find cor-

rectness of the proposed method.

In chapter 6 presents the concluding remarks with a focus on future research

directions that could be undertaken.

Chapter 2

Literature Survey

10

11

2.1 Formalization and Validation of Security Pat-

terns

The very first notation used for identification of design patterns in UML diagram

was Venn Diagram style Pattern Annotation [19]. In this method, the model

elements participating under the same pattern are clustered together. The concept

is well accepted for small system, but clustering of elements in a larger system was

not possible due to the lack of simplicity and overlapping of clusters. This method

simply shades the cluster with a color in order to make it distinguishable from

other ones, but still it was not widely accepted for large system.

In order to prevent the shortcoming of shading problem of Venn Diagram style

Pattern Annotation, the Dotted Bounding Pattern Annotation was developed by

Dong [20]. But still the notations were imprecise to decide the exact role of the

model elements which they play under the particular design pattern.

Berner et al. have proposed a notation based on UML stereotypes called as

restrictive stereotype [21]. The method defined the design pattern and role of

the model elements participating in a system. But, the stereotype notation was

difficult to handle in terms of expensiveness of designing, using and maintaining the

notation. Also, their approach was not clear about how to extend UML stereotype

notation to represent the compositions of design patterns.

Dong have proposed a new notation to represent explicitly the roles of each

class, operation, and attribute in a pattern, which is based on an extension to

UML [11]. The extension was defined mainly by applying the UML built-in exten-

sibility mechanisms. The new notation was called as Tagged Pattern Annotation.

This method also fulfilled the drawbacks of the Stereotype Annotation Pattern by

allowing the representation of composition of design patterns.

T.Taibi and D.C.L. Neo [14] proposed a formal notation known as, BPSL

(Balanced Pattern Specification Language). The main aim of this language was

to combine two subsets of Logic, one from First Order Logic (FOL) and other

from Temporal Logic of Actions (TLA). According to authors, BPSL has carefully

chosen the subsets of FOL and TLA to be used in order to be simple for users

and yet described design patterns accurately. The ultimate purpose of BPSL is to

help users to understand patterns to know exactly when and how to use them.

12

Dong et al. [22] proposed an approach to automate the verification of the

compositions of security patterns by model checking. They formally described

the behavioral aspect of security patterns in CCS (Calculus of Communicating

Systems) through their sequence diagram. They also proved the faithfulness of

the transformation from a sequence diagram to its CCS representation. In their

research, they used two case studies to demonstrate their approach and shown

its capability to detect composition errors. Dwivedi and Rath [23] formalized

a complex architectural style i.e., C2 (Component and Connector) using formal

modeling language Alloy. They have considered cruise control system as a case

study.

Bayley and Zhu [24] proposed a meta modeling approach toward formaliza-

tion of design patterns. This approach enables formal reasoning about patterns

and their composition, transformation, and facilitates automatic tool support for

applying patterns at the design stage. For the case study, authors have formally

specified all 23 Gamma’s design patterns. They claimed that the class diagram

of facade pattern given by GoF [1] is not even well formed and cannot be taken

at facevalue in terms of either the number of classes or their interconnections.

Dwivedi and Rath [25] have formalized an architectural style C2 using formal

modeling languages Alloy and Promela. For the model checking of these formal

notations, automated verifiers such as Alloy Analyzer and SPIN are used.

Dey and Bhattacharya [26] have proposed a formal specification language

FSDP (Formal Specification of Design Pattern) to formally specify design patterns

from UML class diagram. They have used ANTLR (ANother Tool for Language

Recognition) for verification of their developed grammar. They developed a tool

from FSDP grammar to formally automate pattern design techniques, to create,

store, and retrieve UML class diagrams within design patterns. The proposed

grammar is only able to verify the notation [11] for representing design patterns in

extended UML class diagram. Grammar verifies textual format of extended UML

class diagram but it does not check associativity between the different design pat-

terns and it also fails to check correct placement of roles for design patterns.

13

2.2 Selection of Appropriate Security Patterns

To select a precise implementation for a software design a cognitive model was

developed by Hinojosa [27]. This cognitive model deals with the behavioural design

patterns from Gamma et al. [17] because of the implementation strategies implied

by those patterns. A reasoning engine based on Prolog language was developed,

which consumed the set of features that were mapped to the patterns. Real world

implementation decision data was used in order to deduce which feature will help in

guiding engineers to a specific implementation. Thus, providing a set of relevantly

appropriate features for each behavioural design pattern. This approach provides

a cognitive model for human reasoning for selecting appropriate security pattern.

However, it is observed that this approach is not applicable in various domain and

this approach is not sufficiently scalable, because all patterns are required to be

transformed manually into sets of predicates. Decisions for selection of appropriate

patterns should also be manually processed.

Patterns-Box tool for assisting software developers in designing a software

architecture was developed by Albin Amiot et al. [28]. All the pattern were

modelled with the help of Formal Pattern Description Language (PDL), in order

to create the repository. For the selecting appropriate pattern, formal model for

current application context has been used. Patterns-Box tool also provides the

HTML interface to navigate between the patterns. However, it is observed that

this approach did not emphasize on relationship and dependencies among the

patterns

Design pattern recommendation system which satisfies the contextual require-

ments such as security, privacy was proposed by Pearson and Shen [29]. Rules

based engine was developed which takes context requirement of the required de-

sign as an input. For selecting appropriate pattern, engine triggers decision about

pattern based on the input. This approach is targeted to help non expert software

architects and developers. Patterns are connected with rules, which make them

independent of the representation format. Therefore patterns and rules much be

created based on the industry practices in each domain. This system is an expert

system which takes selection decision based on the knowledge represented in form

of rules.

An approach for selecting appropriate design patterns that fulfills the non func-

tional requirements of the architectural design was presented by Wang et al. [30].

14

A prioritized list of suitable patterns for a specific set of requirements is retrieved

with the help of Non Functional Requirements (NFR) framework. AND or OR

relationships for each pattern is identified hierarchically. These relationships are

then used for analysis of the traceability from the software design components to

the software architecture components. Appropriate applicability of design pattern

is obtained by the use the NFR framework.

Goal-Oriented Requirement Language (GRL) that formalizes the relation be-

tween the patterns and forces of patterns was proposed by Mussbacher et al. [31].

The formalization and clear representation of forces enables trade-off analysis of

forces during the selection of appropriate security patterns. Formalization of se-

curity pattern with the help of GRL graphs helps in capturing the pattern forces,

and it also helps in assessing the qualitative influence on numerous solutions to re-

quired functional goal. GRL model also helps in identifying the relationships and

dependencies among the patterns. Therefore this approach supports selections of

combinations of security patterns. At the moment author did not provide any tool

based on this selection approach.

Weiss and Mouratidis [32] have extended the work of Mussbacher et al. [31].

Formalization was done with the help of same GRL model. Their approach ap-

pends few more steps to the approach followed by the Mussbacher et al. [31].

Facts were extracted from the GRL model and were stored in Prolog for reason-

ing. For selecting appropriate security pattern user makes query to the Prolog

engine, which returns the list of security patterns which fulfils the requirements

specified in the query. Subsequently, this approach also check for the relationship

and dependencies among the pattern and return the list of prerequisite patterns.

However, Prolog is client side language updating security pattern repository will

be tedious tasks and it is observed that it is difficult to provide centrally man-

aged pool of security pattern using this approach. This work is the extension of

the work done by Weiss and Mouratidis[32]. In this study approach repository of

security pattern is stored centrally in server and an interface is provided to make

query to the repository in order to get the list of appropriate security pattern.

15

2.3 Detection of Security Patterns

A system has been developed by Prechelt and Kramer [33] to detect a number of

design patterns present in C++ source code. They have built OMT class diagrams,

which incorporates design patterns, to provide Prolog rules. Hence, new Prolog

rules were proposed to detect the design pattern instances.

Wendehals [34] has proposed a method to detect the design pattern instances

present in a system by using the combination of static and dynamic analysis. UML

class diagrams are used to retrieve static information and dynamic information was

extracted from Collaboration or Sequence Diagrams.

Heuzeroth et al. [35] have proposed a methodology to perform static analysis to

obtain pattern candidates, and dynamic analysis of pattern instances was carried

out on the previously obtained candidate sets from static analysis. Since, static

and dynamic analysis are dependent on the formation of design patterns, distinct

algorithms are needed to perform the static and dynamic analysis for each design

pattern. Hence, it is difficult to develop an automated design pattern detection

methodology.

A technique has been proposed by Antoniol et al. to detect structural pat-

terns in a software system [36]. The approach uses metrics to identify probable

pattern candidates, and distance measures are considered for roles in the patterns

in the next stage. In the final stage, delegation constraints are generated. The

three stage approach aims at reducing search space. Final pattern instances are

identified based on structural information. Therefore, this approach has got very

low precision for pattern matching.

Balanyi et al. have proposed an approach to extract the abstract semantic

graph as well as DPML (Design Pattern Markup Language) by the help of Colum-

bus reverse engineering framework [37] [38]. The proposed approach matches roles

present in the DPML files, and the exploration space is reduced by filtering based

on structural information. This approach performs exact matching, hence it can’t

identify modified pattern versions.

Tsantails et. al. have proposed a methodology to detect a design pattern

based on similarity scoring between graph vertices which is capable of recognizing

patterns that are modified from their standard representations [39]. Instead of

relying on pattern-specific heuristic, the approach reduces the search space by

16

taking the fact into consideration that pattern resides in one or more inheritance

hierarchies.

Chapter 3

Formalization and Validation of

Security Patterns

17

18

3.1 Formalization and Validation of Security Pat-

terns

In this study, a formal specification in the form of grammar is proposed for ver-

ification and validation of security patterns. Proposed grammar is based on the

pattern language which is shown in Figure 1.5. Four basic security patterns taken

into consideration are Single Access Point, Check Point, Session, and RBAC. The

system may contain other security patterns, but presence of security patterns in a

particular association is of very much significance for secure system. Any language

which is accepted by the proposed grammar, may be said to preserve security as-

pects. The extended UML diagram is verified with the help of proposed grammar.

User is able to define security patterns as well as the role to define the be-

havioral characteristics of model elements such as class, attribute, and method.

The main aim of this study is to verify the associativity of Pattern-Class contain-

ing security patterns. A system having pattern language of security patterns as

shown in Figure 1.5, is abide to preserve security. Proposed grammar can verify

extended UML class diagram against the pattern language shown in Figure 1.5.

The grammar is developed according to the specification of ANTLR. The parser

rule and lexer rules for the proposed grammar are given in Figure 3.1 and Figure

3.2 respectively.

3.1.1 Explanation of Grammar:

The class associativity file contains the association of classes, i.e. classes associated

to a class either by association, by dependency, by generalization or by aggrega-

tion. The first rule verifies the validity of the class. Simultaneously, it checks

for the syntax for declaring security patterns associated with the class. The class

name must be a valid declaration, and must be having the pattern SingleAccess-

Point and role ExternalEntity.

classDecl : className sapExternal;

sapExternal : LEFTBRACE (patternSAP (patternInstance)? SLASH role-

SAPExternal (COMMA)?)+ ((COMMA)? patternName (patternInstance)? SLASH

19

Figure 3.1: Parser Rules

20

Figure 3.2: Lexer Rules

role)* RIGHTBRACE classSAPSingleton;

Above rule indicates class declaration must be according to the syntax

ClassName{PatternName[Instance]/Role}

The parser rule for patternSAP is as follows:

patternSAP : SINGLEACCESSPOINT;

The lexer rule for SINGLEACCESSPOINT is as follows:

SINGLEACCESSPOINT : ’SAP’;

(patternInstance)? says that the rule may or may not contain patternInstance,

which means it is optional. Pattern instance is used when a same security pattern

is present more than once in a UML class diagrams. Basically, patternInstance

helps to distinguish between different roles of same security patterns.

patternInstance : LEFTBRACKET instanceNo RIGHTBRACKET;

21

The above rule can be explained with the help of an example, [1], [2],

or [9] etc is accepted by the rule patternInstance. Here, ’[1]’ represents the first

presence of the security pattern, ’[2]’ represents the second presence of same secu-

rity pattern and so on.

The parser rule for roleSAPExternal is as follows:

roleSAPExternal : EXTENTITY;

The lexer rule for EXTENTITY is as follows:

EXTENTITY : ’ExternalEntity’;

((COMMA)? patternName (patternInstance)? SLASH role)* :

The above grammar says that the rule ”((COMMA)? patternName (patternIn-

stance)? SLASH role)” may occur multiple number of times or it may not occur.

Which signifies that each class must play at least one role of any security pattern.

If a class does not contain any security pattern then it should be in the form

classnameNull/Null.

The rule sapExternal enforces the presence of the pattern SingleAccessPoint

having the role ExternalEntity. The class may play any other role under any other

security pattern, but presence of SingleAccessPoint and the role ExternalEntity

is must. The presence of stereotype defined as SAP/ExternalEntity is verified by

this rule.

The rule sapExternal leads to the verification of the security pattern SAP/S-

ingleton by using another rule classSAPSingleton. The reason to choose Singleton

as the role is to provide single access point to the user. Definition of rule calssS-

APSingleton is given below:

classSAPSingleton : LEFTBRACKET className sapSingleton;

sapSingleton : LEFTBRACE (patternSAP (patternInstance)? SLASH roleSAPS-

ingleton (COMMA)?)+ ((COMMA)? patternName (patternInstance)? SLASH

22

role)* RIGHTBRACE (RIGHTBRACKET)? classCheckPoint;

The parser rule for roleSAPSingleton is as follows:

roleSAPSingleton : SAPSINGLETON;

The lexer rule for SAPSINGLETON is as follows:

SAPSINGLETON : ’Singleton’;

The class declaration may or may not contain other pattern-role pair, but it

must contain at least one matching pattern of SAP/Singleton. This constraint is

verified by the rule sapSingleton.

Association of external entity and singleton under the pattern Single Access

Point leads to the verification of class containing pattern SAP/Singleton asso-

ciated with another class containing patterns SAP/InternalEntity and Check-

Point/CheckPoint. This constraint is verified by using the rule classCheckPoint.

Definition of rule classCheckPoint is given below:

classCheckPoint : LEFTBRACKET className checkPoint;

checkPoint : LEFTBRACE (patternCheckPoint (patternInstance)? SLASH

roleCPCheckPoint (COMMA)?)+ ((COMMA)? patternSAP (patternInstance)?

SLASH roleSAPInternal)+ ((COMMA)? patternName (patternInstance)? SLASH

role)* RIGHTBRACE (RIGHTBRACKET)? classSecurityPolicy;

The sample of assosiation text file generated from the extended UML diagrams

is shown in Figure 3.3. The result generated by using the grammar proposed by

Dey and Shouvik [26] is shown is Figure 3.4 , Figure 3.5, and Figure 3.6. Figure

3.4 shows the command prompt output. Figure 3.5, and Figure 3.6 shows the

parse tree generated by ANTLR tool.

23

Customer { SAP/ExternalEntity}
 [Login { SAP/Singleton}
 [Verification{CheckPoint/CheckPoint, SAP/InternalEntity}
 [SecurePolicies{CheckPoint/SecurityPolicy}
 Penalties{CheckPoint/CounterMeasure}
 Sesssions{Session/Session}
 ManagingRoles{RABC/Role}
 [UserPrivileges{RABC/Privilege}
 Sessions{Session/Session}
]
]
]
]

Figure 3.3: Class Association File

Figure 3.4: Result : ANTLR Command Prompt

Figure 3.5: Result : ANTLR Parser Tree 1

24

Figure 3.6: Result - ANTLR Parser Tree 2

3.2 Case study

In order to demonstrate this approach, case study of online banking system have

been considered. Nowadays, customers need more personal security, more advo-

cacy and, more control in their banking relationships. The major challenge with

different banks is that they are looking to gain the flexibility, shared services, easy

to use and align business to technology. The solution of above challenges can be

found with the help of security patterns. In online banking system, customer per-

forms online financial transactions, which requires more security provision. The

UML class diagram and extended UML class diagram for the online banking sys-

tem are presented in Figure 3.7 and Figure 3.8 respectively.

Figure 3.7 shows the class diagram of Online Banking System for incorporating

security features. This diagram contains eleven classes such as Customer, Login,

Verification, SecurePolicies, Penalities, Sessions, ManagingRoles, UserPrivileges,

AccountManagement, TransferFund, and BalanceEnquiry. Figure 3.7 is extended

for the visualization of security patterns. Extended UML class diagram along with

the visualization of security patterns is represented in Figure 3.8. Explanation of

security patterns as visualized in extended UML class diagrams and how these

security pattern help in achieving the security goals is explained in the following

paragraphs.

For an online banking system, customer is the external entity to interact

with the system.To provide clearly defined entrance to all the external entities

25

Figure 3.7: UML Class Diagram for Case Study

SAP(Single Access Point) security pattern is considered.Customer class plays the

role of ExternalEntity which is a participant of SingleAccessPoint security pat-

tern. Therefore, stereotype notation for Customer class is Customer {SAP / Ex-

ternalEntity} which is represented as ’CLASSNAME {PATTERN NAME/ROLE

NAME}’. Customer opens the login screen to enter the system which is the only

entry point to the system. Accordingly, stereotype notation for Login class is

{SAP / Singleton}.

Customer authenticates itself by providing his required authentication infor-

mation, this information is used for the verification of customer identity. Ver-

ification class verifies this information and authenticates the user depending on

the security policies enforced by the system. CheckPoint security pattern is used

for implementing security policies as required by the system and it is also used

for penalizing the user for violating security policies. Verification class also plays

the role of InternalEntity under the security pattern SingleAccessPoint. After the

26

Figure 3.8: Extended UML class Diagram for Case Study

27

addition of roles, stereotype annotation for Verification class becomes Verification

{SingleAccessPoint/ InternalEntity, CheckPoint/CheckPoint}.

User authentication is checked in Verification class and if the user is not iden-

tified, then method of Verification class triggers an action to impose penalty. The

Penalties class performs a role of CounterMeasure under the pattern CheckPoint.

Stereotype annotation of Penalties class becomes {CheckPoint/CounterMeasure}.
After the authentication of user, system needs to identity the authorized area and

restricted area for identified user, for this purpose RABC (Role Based Access Con-

trol) security pattern is used. When user is authenticated, its role is retrieved from

the class ManagingRoles which plays the role of Role under the Role Based Access

Control security pattern and its authorized area is retrieved from class UserPrivi-

leges which plays the role of Privilege user the security pattern RBAC.Class which

plays the role of Privilege must be associated with the class which plays the role

of Role under the security pattern RBAC.

After the verification and recognition of the role and privileges of user, session

must be created to store the global variables in order to keep track of the user

identification information such identity, role and privilege. All other classes devel-

oped for handling actions such as transfer, withdrawal , deposit are supposed to be

attached to session class, because session contains the global variables which hold

information about the role and privileges of user. Session security pattern has

been used for creating session and for storing global variables in order to secure

the restricted areas. Sessions class performs the role of Session under the Session

security pattern. All the other classes such as BalanceEnquiry, AccountManage-

ment, TransferFund play the role of system component which uses sessions.

The above details show, how the four selected security pattern are helpful in

archiving desired security goals. Every system which aims at providing a single

entry point, user authentication, role and privileges for user, and needs to maintain

session, can be made secure at the time of system design by applying four selected

security patterns according to the pattern language shown in Figure 1.5.

The association text file is generated generate from Extended UML class dia-

gram with security patterns is the parsed in the grammar and the class Association

file generated looks like as given in Figure 3.3. Generated class association file is

verified according to the grammar developed for pattern language shown in Figure

1.5.

28

Figure 3.9: Result - ANTLR Command Prompt

Figure 3.10: Result - ANTLR Parser Tree

3.2.1 Test Cases

In order to explain the verification process, we have considered three test cases as

shown in the Figure 3.11, Figure 3.12, and Figure 3.13. These test cases are the

class associativity text files generated from the class text of extended UML class

diagram.

First test case shown in Figure 3.11 is generated from the extended UML class

diagram which is shown in Figure 3.8. This test case is accepted by the proposed

grammar because it strictly follows the pattern language shown in Figure 1.5.

29

Figure 3.11: Test-Case 1

Figure 3.12: Test-Case 2

30

Figure 3.13: Test-Case 3

Second test case shown in Figure 3.12 satisfies all the production rules accord-

ing to the proposed grammar which is developed for pattern language shown in

Figure 1.5. Therefore, it is accepted by the proposed grammar. Difference be-

tween the first and second test case is as follows: First test case does not contain

any security pattern other than the four selected security patterns, for which the

pattern language is composed. Second test case contains four selected security

patterns as well as other Gamma et.al. design patterns but at the same time it is

in accordance with proposed pattern language as shown in Figure 1.5.

Third test case shown in Figure 3.13 will not be accepted by the proposed

grammar. Because, the very first line containing the class declaration of Cus-

tomer class does not contain the pattern {SAP/ExternalEntity}, also the Verifi-

cation class must contain the pattern {SAP/InternalEntity} along with the pattern

{CheckPoint/CheckPoint} in order to comply with the proposed language. The

result generated by using improved grammar is shown is Figure 3.9 and, Figure

3.10. Figure 3.9 shows the command prompt output. Figure 3.6 shows the parser

tree generated by ANTLR tool.

Chapter 4

Selection of Appropriate Security

Patterns

31

32

4.1 Modeling of Security Pattern for Building

Repository

The first step in this approach is the creation of pattern repository. Creation of

pattern repository is done by formalizing security patterns using Goal Oriented

Requirement Language (GRL). The analyzation and decomposition of attributes,

relationships and various influences of all design/security patterns is done in few

steps and included in the repository in an orderly fashion. GRL model shows the

contribution that a security pattern make on the security related Non Functional

Requirements (NFRs), it identifies which NFR will be built and which NFR will

be hurt by the use of particular security pattern. GRL modelling also helps in

visualizing the different relationship among the patterns such as, whether a pat-

tern can co-exist with other patterns and what are the prerequisite patterns for

the particular pattern. Figure 4.1 shows intentional elements of GRL used for

modeling different attributes of security pattern. In GRL tasks are represented

by hexagonal shape and Soft Goals are represented by a cloud like curvilinear

shape. In this study tasks are modeled as security patterns and Soft Goals are

modeled as Non Functional Requirements (NFRs), contribution links are used for

specifying the contribution of security pattern towards a soft goal along with the

strength, and decomposition links are used for representing the relation among

different patterns. Strengths are specified numerically, Make (1.00), Help (0.75),

Unknown (0.50), Hurt (0.25), Break (0.00). The four well know architectural se-

curity patterns(Single Access Point, Security Session, Role-Based Access Control,

Check Point) proposed by Yoder has been considered to demonstrate proposed

approach.

GRL Intentional Elements Intention Security Pattern Modelling

Tasks Specifies Security Pattern

Soft Goal Represents Non Functional

Requirements(NFRs)

 Contribution Link Shows Make and Hurt

contribution of Security pattern

towards the NFRs

 Decomposition Link Shows the relation between

different patterns

Figure 4.1: GRL intentional elements

33

Implications of Patterns proposed by Yoder:

• Single Access Point helps in building Integrity, Confidentiality, and Account-

ability, at the same time Single Access Point hurts the Availability of system.

Single Access Point also depends on Check Point for its existence.

• Role-Based Access Control helps in building Manageability, Availability, In-

tegrity and Confidentiality.

• Security Session helps in building Availability, Integrity, Confidentiality, Ac-

countability and Usability.

• Check Point security helps in building Confidentiality, Integrity, Availability,

same forces are also built by Security Session and RBAC.

Check Point

Confidentiality Integrity Availability

make make make

Security Session RBAC

or or

Figure 4.2: GRL model of Check Point Security Pattern

RBAC

Confidentiality Integrity Manageability

make make make

Availability

help

Figure 4.3: GRL model of Role-Based Access Control Security Pattern

GRL model for Check Point and Role Based Access Control scrutiny pattern

is shown in Figure 4.2 and 4.3 respectively [32]. In these figures Security Pat-

terns Check Point and Role Based Access control are represented using hexagonal

34

shape know as Task in GRL, tasks are connected with Non Functional Require-

ments(NFRs) through the contribution links. Contribution links can be marked

as make, help, unknown, hurt and break, this helps in deciding the strength by

which security pattern affect the connected Non Functional Requirement. Relation

among the security patterns is represented with the help of decomposition link, it

shows the relation between the two tasks. Decomposition links can be marked as

’and’ and ’or’, ’and’ contribution is positive and necessary and ’or’ contribution is

positive but not necessary.

4.1.1 Extraction of Facts from GRL Model

Fact are extracted from Goal Oriented Requirement Language (GRL) with the

help of XML and represented in the form of instance of relational algebra. Five

instances were built in order to store the security patterns.

• Instance P for storing the security pattern, it consists of two attributes ’pat-

ternid’ and ’patternname’.

• Instance NFR for storing the Non Functional Requirements (NFR), it con-

sists of two attributes ’nfrid’ and ’nfrname’.

• Instance F for storing the Non-Functional Requirement and ’patternid’ for

each NFR’s affected by a particular security pattern along with the ’strength’

by which pattern contributes to the corresponding NFR.

• Instance R for storing the relation among the pattern in order to return the

list of prerequisite patterns.

Table 4.1: Instance P

patternid patternname

1 Single Access Point

2 Role-Based Access Control

3 Security Session

4 Check Point

35

Table 4.2: Instance NFR

nfrid nfrname
1 Confidentiality
2 Integrity
3 Availability
4 Accountability
5 Usability
6 Manageability

Table 4.3: Instance F

patternid nfrid strength
1 2 .75
1 1 .75
1 4 .75
1 3 .25
2 6 1
2 3 .75
2 2 1
2 1 1
3 3 .75
3 2 .75
3 1 .75
3 4 .75
3 5 .75
4 3 1
4 2 1
4 1 1

Table 4.4: Instance F

patternid1 patternid2 relation
4 3 or
4 2 or
1 4 and

4.1.2 Selection of Appropriate Security Pattern that Ful-

fills Security Requirement

Selection of the appropriate security pattern is done with the help of queries made

to the instances. For this purpose another instance Goal is created containing

the ID(bfrid) of the Non Functional Requirements (NFR) along with the required

36

strength.

Fullfilled = σstrength>Goal.s and nfrid=Goal.nfrid(F) (4.1)

Tempfulfilled = Πnfrid(Fulfilled) (4.2)

NotFulfilled = (Πnfrid(G)− Tempfulfilled) (4.3)

PatternFullfiled = (Fulfilled on P) (4.4)

TmpPrerequisite = (Πpatternid(PatternFullfiled)) (4.5)

Fullfilled = σpatternId=TmpPrequisite.patternid(R) (4.6)

TmpPrerequisite = (Πpatternname(Πpatternid2(Tmp2Prerequisite)) on P) (4.7)

Query ’Fulfilled’ extract the ’patternid’ of all the pattern which satisfies the

NFR’s with the strength specified in the instance ’Goal’. ’Tempfulfilled’ extract

the ’nfrid’ of the fulfilled NFR leaving behind the unfulfilled NFR’s. Subsequently,

’NonFulfilled’ extract the unfulfilled NFR’s by subtracting the ’Tempfulfilled’ from

instance the ’Goal’. Now finally to extract the name of satisfying pattern a join is

made between instance ’P’ and ’Fulfilled’ which is then stored in ’PatternFulfiled’.

Last step is to extract the dependencies in order to find the prerequisite patterns

for the selected patterns. These dependencies are extracted with the help of query

’Prerequisite’, it will extract the name of perquisite security patterns. Proposed

relational algebra can be implemented on any relational database. In this study we

made an attempt to develop a service which will allow user to select appropriate

security pattern that fulfills the required nonfunctional requirements.

Chapter 5

Detection of Security Patterns

37

38

5.1 Detection of Security Patterns

Software maintenance is known as the most expensive one among all the phases

of software development life cycle, both in terms of money and time. Reverse

engineering activities are adopted to maintain, evolve and re-engineer the system.

Design pattern detection and software architecture reconstruction are the most

important fields of reverse engineering. Design pattern detection aims at identifi-

cation of design patterns that have been used in the implementation of a particular

system, whereas, software architecture reconstruction lets the software engineers

view different levels of abstractions of the system. Hence, the reverse engineer-

ing techniques let user focus on the overall architecture of system without having

adequate knowledge of detailed programming implementation. Security patterns

detection helps developers to find the security constrains that were focused, dur-

ing the development of system. Thus strengthening and helping in maintenance

of security related Non Functional Requirements of system.

An Eclipse plug-in i.e., MARPLE (Metrics and Architecture Reconstruction

Plug-in for Eclipse) has been developed by Fontana Et al.[40], which supports

both design pattern detection and Software architecture Reconstruction. They

have tried to improve the accuracy of result with the help of various classifiers.

5.2 Implementation

5.2.1 Hybrid Classifier

Many research have been done and it has been proven that use of hybrid classifiers

produce more accuracy than the usual ones [41] [42] [43].Naive Bayes induction

algorithms were proven to be significantly correct on many classification tasks

irrespective of assumptions made on conditional independence. Again, the cor-

rectness of Naive-Bayes is not as promising as Decision Tree classifiers. Hence,

a new hybrid classifier DTNB(Decision Tree Naive-Bayes), which induces a hy-

brid of Naive-Bayes classifiers and decision-tree classifiers is chosen. The leaves

contain Naive-Bayesian classifiers but the decision-tree nodes contain univariate

splits as regular decision-trees. The approach helps in retaining the interpretabil-

ity of Decision Tree and Naive-Bayes. Therefore, resulting in improved classifiers

39

Figure 5.1: jRefactory - Composite Pattern Detection Result

Figure 5.2: jRefactory - Adapter Pattern Detection Result

40

which frequently outperform both constituents, this classifiers shows drastically

improved performance especially in the larger databases. Result obtained using

MARPLE are shown in Table 5.1

Table 5.1: Result Using Similarity Score

Classifier Accuracy for Singleton
NaiveBayes 0.81

ZeroR 0.61
OneR 0.87

RandomForrest 0.93
DTNB 0.89

Application of DTNB instead of Naive-Bayes led to only a slight increase in the

accuracy of detection. Therefore similarity score method is used for the detection

of Security Patterns.

5.2.2 Detection Using Similarity Score

Similarity algorithm depends on the system graph size for convergence. Time

required for calculation of similarity score between pattern graph and all the ver-

tices of system graph gradually increases as the number of vertices of the graphs

increase [39] . In order to make the matching more efficient, graph size must be re-

duced without losing vital information for design pattern detection process. Since

most of design patterns involve hierarchies, similarity algorithm can be applied to

classes which involve inheritance structures. If a role of class is assigned a score

which is less than the score of role of another class, then the class will the lower

score should satisfy the fewer criteria as described in the pattern. The Similarity

Score Matrix S was calculated using the following algorithm [39].

1. Set Z0 = 1

2. Iterate the below equation even number of times

Zk+1 = BZkA
T+BTZkA

||BZkAT+BTZkA||

3. Last value of Zk will give the Similarity Score Matrix Where

• A is the adjacency matrix for graphs GA and B is the adjacency matrix

of graph GB

41

• Initially Z0 is filled with ones.

Figure 5.3: Assosiation Matrix For Single Access Matrix

Association graph and Association matrix for Single Access Point Security

Pattern is shown in Figure 5.3. Similarity score method was applied on open

source software JhotDraw and JRefactory. Result obtained is show in Table 5.2.

Table 5.2: Result Using Similarity Score

Security Pattern JhotDraw JRefactory
Single Access Point 2(TP) 0(FN)100(Recall) 12(TP) 0(FN) 100(Recall)

Chapter 6

Conclusion and Future Work

42

43

6.1 Conclusion

6.1.1 Formalization and Validation of Security Patterns

Security is a critical issue which can’t be only based on UML diagrams, hence it

requires proper verification in terms of formal language. In this study, an attempt

has been made to propose a grammar which satisfies the security pattern language

and formally verifies the security patterns. In order to demonstrate this approach,

a case study on online banking system has been considered. For this case study,

extended UML class diagram visualizing security patterns is generated by using

UML class diagram. Single Access Point, provides a single login screen to all

external entities of the system, which helps the system to trace the unusual requests

thus maintaining the availability of the system for other entities. Check Point

ensures the confidentiality of system by authenticating the user and it also enforce

certain security policies and penalizes the user for violating security policies. The

role-based access control (RBAC) maintains the integrity of the system authorizing

the user with the help of user role-privilege relationship. RBAC also improves the

confidentiality of the system by providing access rights.

6.1.2 Selection of Appropriate Security Patterns

Formalization of security patterns has been done in order to create a repository.

Queries are made to repository in order to find the most appropriate security

pattern for the set of given security related Non Functional Requirements. This

approach not only find list of most appropriate security patterns but it also check

for the dependencies among the patterns in order to find the prerequisite patterns.

With the help of GRL security pattern were formalized subsequently facts were

extracted from the formalized security patterns. Modelling security patterns with

the help of GRL allows to accurately and effectively describe how each patterns

make a distinct contribution to a security related Non Functional Requirements.

Facts extracted from GRL were represented in form of instances for relational

database. For finding list of appropriate security pattern and prerequisite pattern,

queries written using relational algebra were made to the instances. Thus mak-

ing the following contributions: (i) relational algebra have well found semantics;

hence used for modelling the data stored in relational databases. Therefore this

44

approach can be implemented as service using any relational database server. (ii)

relational databases, such as MySQL can be easily optimized even if the number

of security patterns gradually increases, where else on the other hand client side

language performance will decrease if the number of security patterns will gradu-

ally increase. (iii) in client side languages when the number of security patterns

will increase it will also lead to the increase in size of repository which will make

it difficult to distribute, where else on the other hand in this approach, repository

is stored in server and an interface for making query to the server is provided. (iv)

this approach will help in creating a centralized pool of security patterns, where all

the available security patterns are stored in the repository on the server. Security

Patterns Search Engine[44] was developed by using this approach. As a result,

security patterns were formalized which help in identifying the implications and

liability imposed by patterns which are not easy to identify in case of textual rep-

resentation, approach for finding appropriate security patterns and corresponding

prerequisite patterns with the help of relation algebra has been proposed.

6.1.3 Detection of Security Patterns

This method provides a approach to o detect security patterns in the source code of

a software. In the field of Software Reverse Engineering, this approach to detect

security pattern instances in a software, is quite adoptable as it automatically

detects design patterns. The use of Similarity Score method in the process of

design pattern detection provides a way not only to detect full occurrence of the

pattern but it also provides a measure to find the percentage matching of the

pattern. This method is useful for software engineers to get knowledge about

the pattern existence in the system. MARPLE has been to extract the security

pattern candidate from the source code of the system.

6.2 Future Work

A good number of security patterns can be added in order to extend the pattern

language. As per now, the association of classes is being checked. Grammar can be

extended for verifying the operations of class and role played by these operations

under security pattern. It means if a class contains some operation playing some

role under security pattern , then grammar can be developed to verify whether this

45

class declaration satisfies the pattern language or not. This will help developer

to resolve security issues at development stage itself, thus leading to rapid devel-

opment of software and saving lots of time invested in testing. Functionalities of

proposed approach can be developed as an extension for widely used UML drawing

software solutions such as IBM Rational Rose. Basic fundamental advantage of

security patterns is reusability, for this purpose XML file can be generated and

saved for further use, also skeleton source code can be generated out of the UML

class diagram for several programming languages.

Bibliography

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,

1995.

[2] Deepak Alur, Dan Malks, John Crupi, Grady Booch, and Martin Fowler. Core

J2EE Patterns (Core Design Series): Best Practices and Design Strategies.

Prentice Hall, 2nd edition, 2003.

[3] Martin Fowler. Patterns of enterprise application architecture. Addison-

Wesley, Boston, USA, 2002.

[4] Frank Buschmann, Kelvin Henney, and Douglas Schimdt. Pattern-Oriented

Software Architecture: On Patterns and Pattern Language, volume 4. John

Wiley & Sons Ltd., West Sussex, England, 2007.

[5] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank

Buschmann, and Peter Sommerlad. Security Patterns: Integrating security

and systems engineering. John Wiley & Sons, West Sussex, England, 2005.

[6] Christopher Steel, Ramesh Nagappan, and Ray Lai. Core Security Patterns:

Best Practices and Strategies for J2EE, Web Services, and Identity Manage-

ment. Prentice Hall PTR, 2005.

[7] Ashish Kumar Dwivedi and Santanu Kumar Rath. Incorporating security fea-

tures in service-oriented architecture using security patterns. ACM SIGSOFT

Software Engineering Notes, 40(1):1–6, 2015.

[8] Jörg Niere, Wilhelm Schäfer, Jörg P Wadsack, Lothar Wendehals, and Jim

Welsh. Towards pattern-based design recovery. In Proceedings of the 24th

international conference on Software engineering, pages 338–348. ACM, 2002.

46

47

[9] Joseph Yoder and Jeffrey Barcalow. Architectural patterns for enabling appli-

cation security. In In proceeding of the 4th Conference on Patterns Language

of Programming (PLoP’97), 1997.

[10] Robert Hanmer. Patterns for fault tolerant software. John Wiley & Sons,

2007.

[11] Jing Dong and Sheng Yang. Extending uml to visualize design patterns in

class diagrams. In Proceedings of the Fifteenth International Conference on

Software Engineering and Knowledge Engineering (SEKE), pages 124–131.

San Francisco Bay, California, USA, 2003.

[12] Jing Dong, Sheng Yang, and Kang Zhang. Visualizing design patterns in

their applications and compositions. IEEE Trans. Softw. Eng., 33(7):433–

453, July 2007. ISSN 0098-5589. doi: 10.1109/TSE.2007.1012. URL http:

//dx.doi.org/10.1109/TSE.2007.1012.

[13] Hong Zhu and Ian Bayley. An algebra of design patterns. ACM Trans. Softw.

Eng. Methodol., 22(3):23:1–23:35, July 2013. ISSN 1049-331X. doi: 10.1145/

2491509.2491517. URL http://doi.acm.org/10.1145/2491509.2491517.

[14] Toufik Taibi and David Chek Ling Ngo. Formal specification of design pat-

terns - a balanced approach. Journal of Object Technology, 2(4):127–140,

2003.

[15] Linda Rising. The pattern almanac. Addison-Wesley Longman Publishing

Co., Inc., 2000.

[16] Scott Henninger and Victor Corrêa. Software pattern communities: Current

practices and challenges. In Proceedings of the 14th Conference on Pattern

Languages of Programs, page 14. ACM, 2007.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns: elements of reusable object-oriented software. Pearson Education,

1994.

[18] Martin Glinz. On non-functional requirements. In Requirements Engineering

Conference, 2007. RE’07. 15th IEEE International, pages 21–26. IEEE, 2007.

[19] John Vlissides. Notation, Notation, Notation. C++ Report. Technical report,

April 1998.

http://dx.doi.org/10.1109/TSE.2007.1012
http://dx.doi.org/10.1109/TSE.2007.1012
http://doi.acm.org/10.1145/2491509.2491517

48

[20] Jing Dong. Uml extensions for design pattern compositions. Journal of object

technology, 1(5):151–163, 2002.

[21] Stefan Berner, Martin Glinz, and Stefan Joos. A classification of stereotypes

for object-oriented modeling languages. In Proceedings of the Second Inter-

national Conference on the Unified Modeling Language (UML), LNCS1723,,

pages 249–264. Springer-Verlag, October 1999.

[22] Jing Dong, Tu Peng, and Yajing Zhao. Automated verification of security

pattern compositions. Information and Software Technology, 52(3):274–295,

2010.

[23] Ashish Kumar Dwivedi and Santanu Kumar Rath. Analysis of a complex

architectural style c2 using modeling language alloy. Information and Software

Technology, 3(2):152–164, 2014.

[24] Ian Bayley and Hong Zhu. Formal specification of the variants and behavioral

features of design patterns. Journal of Systems and Software, 83(2):209–221,

2010.

[25] Ashish Kumar Dwivedi and Santanu Kumar Rath. Selecting and formalizing

an architectural style: A comparative study. In Contemporary Computing

(IC3), 2014 Seventh International Conference on, pages 364–369. IEEE, 2014.

[26] Shouvik Dey and Swapan Bhattacharya. Formal specification of structural

and behavioral aspects of design patterns. Journal of Object Technology, 9

(6):99–126, 2010.

[27] Arturo Hinojosa and Joshua Brett Tenenbaum. A cognitive model of design

pattern selection. Department of Brain and Cognitive Sciences, Massachusetts

Institute of Technology, 2004.

[28] Hervé Albin-Amiot, Pierre Cointe, Y-G Guéhéneuc, and Narendra Jussien.

Instantiating and detecting design patterns: Putting bits and pieces together.

In Automated Software Engineering, 2001.(ASE 2001). Proceedings. 16th An-

nual International Conference on, pages 166–173. IEEE, 2001.

[29] Siani Pearson and Yun Shen. Context-aware privacy design pattern selection.

In Trust, Privacy and Security in Digital Business, pages 69–80. Springer,

2010.

49

[30] Jing Wang, Yeong-Tae Song, and Lawrence Chung. From software architec-

ture to design patterns: A case study of an nfr approach. In Software Engi-

neering, Artificial Intelligence, Networking and Parallel/Distributed Comput-

ing, 2005 and First ACIS International Workshop on Self-Assembling Wire-

less Networks. SNPD/SAWN 2005. Sixth International Conference on, pages

170–177. IEEE, 2005.

[31] Gunter Mussbacher, Michael Weiss, and Daniel Amyot. Formalizing architec-

tural patterns with the goal-oriented requirement language. In Nordic Pattern

Languages of Programs Conference, 2006.

[32] Michael Weiss and Haralambos Mouratidis. Selecting security patterns that

fulfill security requirements. In International Requirements Engineering,

2008. RE’08. 16th IEEE, pages 169–172. IEEE, 2008.

[33] Lutz Prechelt and Christian Krämer. Functionality versus practicality: Em-

ploying existing tools for recovering structural design patterns. Journal of

Universal Computer Science, 4(11):866–882, 1998.

[34] Lothar Wendehals. Improving design pattern instance recognition by dy-

namic analysis. In Proc. of the ICSE 2003 Workshop on Dynamic Analysis

(WODA), Portland, USA, pages 29–32, 2003.

[35] Dirk Heuzeroth, Thomas Holl, Gustav Hogstrom, and Welf Lowe. Automatic

design pattern detection. In Program Comprehension, 2003. 11th IEEE In-

ternational Workshop on, pages 94–103. IEEE, 2003.

[36] Giuliano Antoniol, Gerardo Casazza, Massimiliano Di Penta, and Roberto

Fiutem. Object-oriented design patterns recovery. Journal of Systems and

Software, 59(2):181–196, 2001.

[37] Zsolt Balanyi and Rudolf Ferenc. Mining design patterns from c++ source

code. In Software Maintenance, 2003. ICSM 2003. Proceedings. International

Conference on, pages 305–314. IEEE, 2003.

[38] Columbus Reverse Engineering Tool. https://frontendart.com//, 2006.

[39] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spy-

ros T Halkidis. Design pattern detection using similarity scoring. Software

Engineering, IEEE Transactions on, 32(11):896–909, 2006.

 https://frontendart.com/ /

50

[40] Francesca Arcelli Fontana and Marco Zanoni. A tool for design pattern de-

tection and software architecture reconstruction. Information sciences, 181

(7):1306–1324, 2011.

[41] Peter D. Turney. Cost-sensitive classification: Empirical evaluation of a hy-

brid genetic decision tree induction algorithm. Journal of artificial intelligence

research, pages 369–409, 1995.

[42] Rajat Raina, Yirong Shen, Andrew Mccallum, and Andrew Y Ng. Classifi-

cation with hybrid generative/discriminative models. In Advances in neural

information processing systems, page None, 2003.

[43] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learn-

ing: A review of classification techniques, 2007.

[44] Mohd Suleman. Security patterns search engine.

http://computerinfo.in/securityps/, 2014.

	List of Figures
	1 Introduction
	1.1 Introduction
	1.2 Objective
	1.3 Organization of the thesis

	2 Literature Survey
	2.1 Formalization and Validation of Security Patterns
	2.2 Selection of Appropriate Security Patterns
	2.3 Detection of Security Patterns

	3 Formalization and Validation of Security Patterns
	3.1 Formalization and Validation of Security Patterns
	3.1.1 Explanation of Grammar:

	3.2 Case study
	3.2.1 Test Cases

	4 Selection of Appropriate Security Patterns
	4.1 Modeling of Security Pattern for Building Repository
	4.1.1 Extraction of Facts from GRL Model
	4.1.2 Selection of Appropriate Security Pattern that Fulfills Security Requirement

	5 Detection of Security Patterns
	5.1 Detection of Security Patterns
	5.2 Implementation
	5.2.1 Hybrid Classifier
	5.2.2 Detection Using Similarity Score

	6 Conclusion and Future Work
	6.1 Conclusion
	6.1.1 Formalization and Validation of Security Patterns
	6.1.2 Selection of Appropriate Security Patterns
	6.1.3 Detection of Security Patterns

	6.2 Future Work

