
i

Formal Verification, Quantitative

Analysis and Automated Detection

of

Design Patterns

Prayasee Pradhan

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India

Formal Verification, Quantitative Analysis

and Automated Detection of Design Patterns

Thesis submitted by

Prayasee Pradhan
[Roll: 710CS1029]

In partial fulfilment of the requirements for the award of the degree

of

Master of Technology

in

Computer Science and Engineering

under the guidance of

Prof. S. K. Rath
NIT Rourkela

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

May 23, 2015

Certificate

This is to certify that the work in the thesis entitled Formal Verification,

Quantitative Analysis and Automated Detection of Design Patterns by

Prayasee Pradhan is a record of an original research work carried out under my

supervision and guidance in partial fulfillment of the requirements for the award of

the degree of Master of Technology in Computer Science and Engineering. Neither

this thesis nor any part of it has been submitted for any degree or academic award

elsewhere.

Prof. S. K. Rath
Professor
Department of Computer Science and Engineering
NIT Rourkela

iv

Acknowledgment

I express my sincere and heartfelt gratitude towards our guide Prof. S. K.

Rath for his expert guidance and motivation during the course of the project

which served as a spur to keep the work on schedule.

I convey my regards to all the other faculty members of Department of Com-

puter Science and Engineering, NIT Rourkela for their valuable guidance and

advices at appropriate times. Finally, I would like to thank Mr. Mohd Suleman

and Mr. Ashish Kumar Dwivedi for their help and assistance all through this

project.

Prayasee Pradhan

Abstract

Present day software engineering concepts emphasize on developing software based

on design patterns. Design patterns form the basis of generic solution to a recurring

design problem. The present day software engineering concept emphasizes that

software requirement analysis and design methodologies based on different Unified

Modeling Language (UML) diagrams need to be strengthened by the use of a

number of design patterns. In this study, an attempt has been made for automated

verification of the design patterns. A grammar has been developed for verification

and recognition of selected design patterns. ANTLR (ANother Tool for Language

Recognition) tool has been used for verification of developed grammar.

After proper verification and validation of design patterns, there comes a need

to quantitatively determine the quality of design patterns. Hence, we have pro-

vided a methodology to compare the quality attributes of a system having design

pattern solution with a system having non-pattern solution, both the system in-

tending to provide same functionalities. Using Quality Model for Object-Oriented

Design (QMOOD) approach, object oriented metrics are calculated in terms of the

number of classes and their relationships in a Unified Modeling Language (UML)

class diagram. The cut-off points are calculated in order to provide the exact size

of the system in terms of the number of classes, for which the solution adopted

using design pattern, provides more quality parameters.

Again Design Pattern Detection (DPD) has also been considered as an emerg-

ing fields of Software Reverse Engineering. An attempt has been made to present

a noble approach for design pattern detection with the help of Graph Isomorphism

and Normalized Cross Correlation(NCC) techniques. Eclipse Plugin i.e., Objec-

tAid is used to extract Unified Modeling Language (UML) class diagrams as well

as the eXtensible Markup Language (XML) files from the Software System and

Design Pattern. An algorithm is proposed to extract relevant information from

the XML files, and Graph Isomorphism technique is used to find the pattern sub-

graph. Use of NCC provides the percentage existence of the pattern in the system.

Keywords: Design Patterns; ANTLR; Formal Methods; Object-Oriented Met-

rics; QMOOD; Quality Attributes, Normalized Cross Correlation, Graph Isomor-

phism.

Contents

List of Figures viii

1 Introduction 1

1.1 Introduction . 2

1.2 Motivation . 6

1.3 Organization of the thesis . 7

2 Literature Survey 8

2.1 Formal Verification of Design Pattern 9

2.2 Quantitative Analysis of Quality Parameters 11

2.3 Design Pattern Detection . 12

3 Formalization of Design Patterns 14

3.1 Introduction . 15

3.2 Proposed Approach . 17

3.2.1 Illustrative Example . 17

3.2.2 Test Cases . 22

4 Quantitative Analysis of Quality of Design Patterns 24

4.1 Introduction . 25

4.2 Proposed Work . 25

4.2.1 Illustrative Example . 26

4.2.1.1 Average Metric Score Calculation for System hav-
ing Visitor Non-Pattern Solution 26

4.2.1.2 Average Metric Score Calculation for System hav-
ing Visitor Design Pattern Solution: 27

4.2.1.3 Quality Attribute Score Computation and Finding
Cut-off Points . 28

5 Design Pattern Detection 32

5.1 Introduction . 33

5.2 Proposed Work . 33

5.2.1 Proposed Methodology . 35

5.2.2 Filtering Algorithm . 36

5.2.3 Illustration . 37

5.3 Implementation and Results . 41

vi

vii

6 Conclusion and Future Work 42

6.1 Formalization of Design Pattern . 43

6.2 Quantitative Analysis of Quality of Design Patterns 43

6.3 Design Pattern Detection . 44

Bibliography 44

List of Figures

1.1 QMOOD model . 3

3.1 Pattern Language for Single Access Point 15

3.2 Pattern Language for CheckPoint 15

3.3 Pattern Language for Role . 16

3.4 Pattern Language for Session . 16

3.5 Pattern Language for selected patterns 16

3.6 Parser Rule . 18

3.7 Lexer Rule . 19

3.8 UML Class Diagram for Online Banking System 20

3.9 Extended UML class Diagram for Online Banking System 21

3.10 Test-Case 1 . 23

3.11 Test-Case 2 . 23

4.1 Class Diagram for Visitor Non-Pattern Solution 26

4.2 Class Diagram for Visitor Pattern Solution 27

5.1 UML class diagram for System Diagram 37

5.2 UML class diagram for Template design pattern 38

5.3 System Graph Matrix (SGM) . 39

5.4 Design Pattern Matrix (DPM) . 39

5.5 Connectivity Graph Matrix for System Graph(CGMs) 39

5.6 Connectivity Graph Matrix for Pattern Graph(CGMd) 39

5.7 Correspondence Graph(CRG) . 39

5.8 Updated Correspondence Graph(CRG) after Applying Candidate
Filtering Algorithm . 40

5.9 4-subgraph of CRG (CRG4) - Testcase1 40

5.10 4-subgraph of SGM (SGM4) - Testcase1 40

5.11 4-subgraph of CRG (CRG4) - Testcase2 40

5.12 Implementation Results . 40

viii

ix

List Of Abbreviation

ANTLR ANother Tool for Langauge Recognition
AQA Average Quality Attribute
CASE Computer Aided Software Engineering
CRG Correspondence Graph
CVC Contribution Value of Class
DPD Design Pattern Detection
DPM Design Pattern Matrix
DPS Design Pattern Solution
IDE Integrated Development Environment
NCC Normalized Cross Correlation
NPS Non Pattern Solution
OO Object Oriented
PG Pattern Graph
QMOOD Quality Model of Object Oriented Design
RBAC Role Based Access Control
SAP Single Access Point
SG System Graph
SGM System Graph Matrix
UML Unified Modelling Language
XML eXtensive Markup Language

Chapter 1

Introduction

1

2

1.1 Introduction

In the past two decades, a good number of software patterns have been discussed

by researchers [1] [2] [3] [4] [5] [6]. Many design pattern tools have also been

developed for detecting patterns in instantiating of design patterns [7] [8]. Gamma

et al. [1] have proposed the concept of design pattern. They proposed standard

templates for tweenty three number of design patterns. Other authors on software

design patterns used these templates as a base to further extend or modify these

templates for their application areas. Security patterns have been proposed by

Yoder and Barcalow [9]. They have proposed seven patterns which are applied

in security development issues. After that a good number of other category of

security are available in literature[4] [5] [10].

Design of an application system at present is supposed to be based on different

UML diagrams. UML class diagram shows the structural behavior of the classes,

but it is unable to express some other behavioral aspects. Hence extension of UML

diagram to visualize the design pattern methodology was proposed in [11]. It is

observed that there is a gradual evolution of representation of design pattern in

UML class diagram, incorporating Venn diagram style notation, Dotted-Bounding

Pattern Annotation, and Tagged Value Notation. Tagged Value Notation defines

the pattern-role behavior of the model elements such as classes, attributes and op-

erations. The verification and validation of any requirement are being carried out

using formal languages which are based on grammar and have certain production

rules.

According to Yoder [9], secure system should maintain a proper associativity

among different security patterns. The first and most important measure for

Security Pattern is Single Access Point to limit the entry to the System through

only a single point. The Single Access Point takes the user identification to the

Check Point for the authentication and authorization of the user. When user

identification has been verified, Session is created for carrying the global variables

defining the user’s identification, its role and a connection to a class with the

objective of establishing security. The authorization area for system visualization

and modification is provided through the Role-Privilege Relationship. Users are

provided with the Limited View of the whole application or with Full View of

application with Error.

3

Presently, object-oriented (OO) paradigm is strongly recommended for soft-

ware development in contrast to traditional and function-oriented methodologies.

Object-oriented methodology has different characteristics, such as encapsulation,

polymorphism, and inheritance, which make the code reliable and understandable.

Based on these OO principles, different metrics are applied to measure the quality

of software using object-oriented methodology [12] [13].

For the quantitative analysis of the quality of software attributes, Bansiya

and Davis have proposed a hierarchical model for an object-oriented design qual-

ity assessment, called as QMOOD (Quality Model of Object Oriented Design)

approach [14]. This model relates the quantifiable object-oriented characteristics

to the higher caliber of software quality attributes. QMOOD model is charac-

terized by four levels and three mappings. Figure 1.1 illustrates the structure of

QMOOD approach.

Figure 1.1: QMOOD model

First level, L1, represents the Design Quality Attributes, which are Function-

ality, Reusability, Flexibility, Understandability, Effectiveness, and Extendibility

[14]. The second level, L2 of QMOOD represents Object-Oriented Design Prop-

erties including abstraction, encapsulation, inheritance, polymorphism, coupling,

cohesion, and complexity, etc. The third level, L3 represents the object-oriented

design metrics satisfying the design properties. In this work, some of the object

oriented design metrics associated with particular design properties are chosen;

which are provided in Table 1.1. The fourth level, L4, represents the Design com-

ponents, which may be either class or relationship. The first mapping L12 between

the first level and second level of QMOOD model provides a relation among the

various design quality attributes with the design properties, as presented in Table

1.2. The second mapping L23 provides the relationship among the design prop-

erties and the design metrics. The third mapping L34 provides the information

about which design metrics are applied to classes or relationship in a particular

UML (Unified Modelling Language) class diagram.

4

Table 1.1: Object-Oriented Metric and Description

Sl No Design Property Chosen Metric Metric Name

1. Design Size Size Size of Design

2. Hierarchies NOC
Number of
Children

3. Abstraction DIT
Depth of

Inheritance Tree

4. Encapsulation DAM
Data Access

Metric

5. Coupling CBO
Coupling

Between Object
Classes

6. Cohesion CAM
Cohesion

Among Methods
of a class

7. Composition MOA
Message of
Aggregation

8. Inheritance MFA
Measure of
Functional
Abstraction

9. Polymorphism NOP
Number of
Polymorphic
Methods

10. Messaging RFC
Response for

Class

11. Complexity WMPC
Weighted

Method Per
Class

Table 1.2: Quality Attributes and Associated Design Properties

Quality Attribute Design Properties

Reusability
Coupling, Cohesion,

Messaging, Design Size

Flexibility
Encapsulation, Coupling,

Composition,
Polymorphism

Understandability

Abstraction,
Encapsulation, Coupling,
Cohesion, Polymorphism,
Complexity, Design Size

Functionality
Cohesion, Polymorphism,
Messaging, Design Size,

Hierarchies

Extendebility
Abstraction, Coupling,

Inheritance, Polymorphism

Effectiveness

Abstraction,
Encapsulation,

Composition, Inheritance,
Polymorphism

5

To obtain the abstractions and views from a target system, system developers

rely on reverse engineering activities to maintain, evolve and eventually re-engineer

the system. Design pattern detection (DPD) is a vast area of research in the field

of reverse engineering and reconstruction of software [15] [16]. Detection of design

pattern also helps in the re-documentation phase of software development life cycle

and enhances the maintainability of the software. Design pattern detection is fur-

ther useful to provide better comprehension of a software system, its components

and its architecture without knowing the details of programming implementations.

There are various reasons why it is difficult to detect a design patterns in a soft-

ware. Finding a design pattern in large software systems is difficult because of

larger exploration space. Secondly, a class may play more than one role under dif-

ferent design patterns. Hence, identiification of a design pattern is difficult since it

produces ambiguous results. Further, the number of design patterns are increasing

day by day. The accuracy of detecting a design pattern can be increased by the

application of classification techniques.

Various techniques have been previously adopted to detect design pattern from

source code as well as design models [17] [18] [19]. However, these methods are

not fully automated.

In this study, a method is proposed by defining the grammar for formal spec-

ification of Design Patterns. The system, which follows the proposed grammar,

satisfies essential security goals such as integrity, confidentiality, availability, au-

thentication, authorization, and non-repudiation of the desired software. After

formal verification of the system, study has been extended towards the quantita-

tive analysis of quality parameters of design patterns. Using QMOOD approach,

a software with non-pattern solution can be evaluated to find out the quantita-

tive values for quality attributes and compared with the quality attributes of the

existing software using design patterns, where both the software satisfy same func-

tionalities. Cut-off points are provided in terms of the number of classes present in

the software for which the design pattern solution provides the best result towards

different software quality. This approach may also be helpful to provide a goal-

driven software solution. Finally, we have proposed a novel approach to detect

design patterns from UML class diagrams automatically. The reverse engineering

process of extracting UML class diagram from the source code was done by the

help of eclipse plugin i.e, ObjectAid[20]. The extracted xml files corresponding to

the system diagram as well as the design pattern diagram are further evaluated

6

to find the existence of the pattern instances. We have applied our technique on

various open source java projects for detection of several design patterns.

1.2 Motivation

During the development of software application, a number of defects grow expo-

nentially with the number of interacting system components. When formalizing

the parameters such as, concurrency, non-determinism, and security, it is observed

that they are very hard to model using standard designing techniques available in

the literature. System’s growing size and complexity, together with the pressure of

drastically reducing system development time, make the delivery of low-defect sys-

tems an enormously challenging and complex activity. Hence, a reusable technique

i.e., design pattern is considered to resolve these problems at the very beginning

of software development life cycle. But these patterns are semi-formal in nature,

hence they need to be verified and validated by using a suitable formal modeling

notations. Grammar is one of the formal notations to provide verification and

validation technique. Hence, design patterns are verified by the use of developed

formal grammar.

Software quality has been recognized as an important topic since the early

days of software engineering. Software is being built using traditional methodolo-

gies and gradually developers found it simple and reusable to build a system using

Object-Oriented (OO) paradigm. Since non-functional requirements are related to

object-oriented metrics, it has been proved that maintaining balance among var-

ious types of object-oriented metrics enhance a particular non-functional require-

ment. Hence, the need of quantitative analysis of quality parameters is required.

Taking the same system which uses design patten solution as well as non-pattern

solution, quantitative analysis of quality attributes provides the solution which

gives better quality attribute scores for the system using design pattern than the

system using non-pattern solution.

System reverse engineering activities are maintianed to eventually re-engineer

the system. Design pattern detection (DPD), being a vast area of research, helps

helps in the re-documentation phase of software development life cycle and en-

hances the maintainability of the software. Several methods are developed to

7

detect design pattern instances in a system, but most of them are not fully au-

tomated. Hence, there is a need to detect design pattern instances in a system.

Graph isomorphism technique can be used to detect design pattern in the system

to assure the existence of the pattern, and the use of Normalized Cross Correlation

technique proves to be a better index of providing the partial existence of pattern.

In this study, two approachs to formulate a new method in order to detect design

pattern in a system have been combined.

1.3 Organization of the thesis

The thesis is organized as follows.

In chapter 2, the literature survey on different works that has already been under-

taken in the field of formal verification of design patterns, quantitative analysis of

quality of design patterns, and design pattern detection, has been presented.

In chapter 3, methodology for the formalization of selected design patterns has

been discussed. Grammer, which satisfies the proposed pattern language has been

further explained.

In chapter 4, a methodology to assess the quality of design patterns has been

proposed and experimental details are presented.

In chapter 5, a method to detect design patterns using graph ismorphism and

normalized cross correlation techniques has been explained. Also an explained

example has been provided to demonstrate our approach.

In chapter 6 presents a conclusion and a focus on future research directions that

could be undertaken.

Chapter 2

Literature Survey

8

9

2.1 Formal Verification of Design Pattern

It is understood that software testing effort can be decreased by using formal

verification techniques. There are several formal verification techniques used so

far, which are provided in this section.

The very first notation used for identification of design patterns in UML dia-

gram was Venn-Diagram style Pattern Annotation [21]. In this method, the model

elements participating under the same pattern are clustered together. The concept

is well accepted for small system, but clustering of elements in a larger system was

not possible due to the lack of simplicity and overlapping of clusters. This method

simply shades the cluster with a color in order to make it distinguishable from

other ones, but still it was not widely accepted for large system.

In order to prevent the shortcoming of shading problem of Venn-Diagram style

Pattern Annotation, the Dotted-Bounding Pattern Annotation was developed by

Dong [22]. But still the notations were imprecise to decide the exact role of the

model elements which they play under the particular design pattern.

Berner et al. have proposed a notation based on UML stereotypes called as

restrictive stereotype [23]. The method defined the design pattern and role of

the model elements participating in a system. But, the stereotype notation was

difficult to handle in terms of expensiveness of designing, using and maintaining the

notation. Also, their approach was not clear about how to extend UML stereotype

notation to represent the compositions of design patterns.

Dong have proposed a new notation to represent explicitly the roles of each

class, operation, and attribute in a pattern, which is based on an extension to

UML [11]. The extension was defined mainly by applying the UML built-in exten-

sibility mechanisms. The new notation was called as Tagged Pattern Annotation.

This method also fulfilled the drawbacks of the Stereotype Annotation Pattern by

allowing the representation of composition of design patterns.

T.Taibi and D.C.L. Neo [24] proposed a formal notation known as, BPSL

(Balanced Pattern Specification Language). The main aim of this language was

to combine two subsets of Logic, one from First Order Logic (FOL) and other

from Temporal Logic of Actions (TLA). According to authors, BPSL has carefully

chosen the subsets of FOL and TLA to be used in order to be simple for users

10

and yet described design patterns accurately. The ultimate purpose of BPSL is to

help users to understand patterns to know exactly when and how to use them.

Dong et al. [25] proposed an approach to automate the verification of the

compositions of security patterns by model checking. They formally described

the behavioral aspect of security patterns in CCS (Calculus of Communicating

Systems) through their sequence diagram. They also proved the faithfulness of

the transformation from a sequence diagram to its CCS representation. In their

research, they used two case studies to demonstrate their approach and shown

its capability to detect composition errors. Dwivedi and Rath [26] formalized

a complex architectural style i.e., C2 (Component and Connector) using formal

modeling language Alloy. They have considered cruise control system as a case

study.

Bayley and Zhu [27] proposed a meta-modeling approach toward formaliza-

tion of design patterns. This approach enables formal reasoning about patterns

and their composition, transformation, and facilitates automatic tool support for

applying patterns at the design stage. For the case study, authors have formally

specified all 23 Gamma’s design patterns. They claimed that the class diagram

of facade pattern given by GoF [1] is not even well-formed and cannot be taken

at face-value in terms of either the number of classes or their inter-connections.

Dwivedi and Rath [28] have formalized an architectural style C2 using formal

modeling languages Alloy and Promela. For the model checking of these formal

notations, automated verifiers such as Alloy Analyzer and SPIN are used.

Dey and Bhattacharya [29] have proposed a formal specification language

FSDP (Formal Specification of Design Pattern) to formally specify design patterns

from UML class diagram. They have used ANTLR (ANother Tool for Language

Recognition) for verification of their developed grammar. They developed a tool

from FSDP grammar to formally automate pattern design techniques, to create,

store, and retrieve UML class diagrams within design patterns. The proposed

grammar is only able to verify the notation [11] for representing design patterns in

extended UML class diagram. Grammar verifies textual format of extended UML

class diagram but it does not check associativity between the different design pat-

terns and it also fails to check correct placement of roles for design patterns.

11

2.2 Quantitative Analysis of Quality Parameters

The amount of work that has been undertaken till date on the field of quantitative

analysis for quality of design patterns are provided in this section.

Ampatzoglou et al. presented a methodology to compare the design pattern

with alternative solutions considering several quality attributes [30]. They pro-

posed a methodology to find out major changes of axes in the design patterns and

provided metric scores in terms of the number of classes, which form the major

axes of change. The authors mentioned about the cut-off points for different metric

scores for the Bridge design pattern. But they did not mention about the cut-off

points for other quality attributes. Issaoui et al. presented a metric-based filter-

ing approach to improve software design patterns detection technique [31]. They

have shown a number of case studies, such as JHotDraw v5.1, JRefactory v1.0,

QuickUML2001, etc. for the evaluation of metric values for GoF design patterns.

Chang et al. presented the benefits of design pattern based framework [32].

They performed a quantitative analysis on pattern-based system to check the

improvement of quality parameters, such as abstraction, usability, complexity etc.

Hsueh et al. adopted a quantitative approach for evaluating the quality of design

patterns [33]. Authors suggested a method to validate whether a design pattern

is well-designed or not. But the drawback of the work is that the method can

be applied on a single design pattern taking a single object-oriented metric into

consideration. This work does not consider the effect of the design patterns on the

other design metrics. Hence, taking conclusion that the use of a particular design

pattern should be adopted because it enhances a single design metric, is not safe.

Ampatzoglou et al. presented a mapping result of a number of papers, which

are based on GoF design patterns [34]. They described the effect of software design

patterns (GoF design patterns) quality parameters, such as metrics, usability, com-

plexity, maintainability, adaptability, reliability, etc. Dong et al. proposed a de-

sign pattern visualization approach [35]. For the demonstration of their technique,

they performed quantitative evaluation of object-oriented attributes. Kataoka et

al. proposed a quantitative approach to measure the maintainability of program

refactoring [36]. They considered the coupling metrics to evaluate degree of main-

tainability enhancement. They applied their approach to different programs for

the comparative study. Brain Huston suggested a method for improving software

12

quality by collecting metric scores for a given design [37]. But this work does not

consider the effect of the design pattern on other metric scores.

2.3 Design Pattern Detection

Albin-Amiot et al. proposed an approach to use a meta-model in order to obtain

a representation of design patterns which will further allow both automatic code

generation and design pattern detection [38]. Heuzeroth et al. proposed a method

to detect design patterns in legacy code combining static and dynamic analyses

[39]. They have developed a tool and classified potential pattern instances accord-

ing to the information provided by their tool. They have provided their analyses

for various design patterns on the Java SwingSetExample.

Begenti e al. have presented a system called IDEA (Interactive Design Assis-

tant), which can automatically detect patterns in a UML class diagram and can

also produce critiques about the detected patterns [40]. They have also integrated

the concept of IDEA with the CASE tool Argo/UML. Gupta et al. have applied

a graph matching algorithm to detect design patterns in the UML class diagram

of a system [41]. The algorithm decomposes the graph matching process into K

phases, where K ranges from 1 to the minimum number of the numbers of nodes

in the two graphs to be matched.

Wenzel et al. have proposed a method to detect design pattern instances

in software systems regarding model-driven development [42]. Their proposed

approach allows developer to use UML diagram editors to specify patterns. They

have used a difference algorithm called as SiDiff to compute the differences between

graph-structured UML diagrams. Antoniol et al. have proposed an approach based

on multi-stage reduction strategy using object-oriented (OO) software metrics and

structural properties to extract structural design patterns from OO design [43].

They have also developed a tool to assess the effectiveness of the approach.

Gupta et al. have provided an approach to detect the design patterns by

the application of normalized cross correlation while taking design pattern as a

template to find its presence in the system design [44]. Ba-Brahem et al. have

proposed an approach to detect design pattern instances in a system design which

uses the graph implementation to produce both the system as well as the design

pattern UML diagrams in Graph of 4-tuples elements [45].

13

Tsantails et. al. have proposed a methodology to detect a design pattern

based on similarity scoring between graph vertices which is capable of recognizing

patterns that are modified from their standard representations [46]. Instead of

relying on pattern-specific heuristic, the approach reduces the search space by

taking the fact into consideration that pattern resides in one or more inheritance

hierarchies.

Dong et al. have adopted a template matching algorithm to detect design

patterns from a software system by the use of normalized cross correlation [47].

They have extracted exact matches as well as partial instances for design patterns.

Dongjin et al. have proposed a method to detect deign pattern instances in which

they have identified all the candidate classes in the system graph satisfying pattern

classes [48]. They have selected some of candidate classes to form the sub-graphs

to check their isomorphic behavior towards the pattern graph corresponding to

the design pattern.

Chapter 3

Formalization of Design Patterns

14

15

3.1 Introduction

Design patterns are the generic solution to the mostly recurring problems. Design

patterns form a specific association among themselves with in a system in order

to perform specific functions. The four design patterns are Single Access Point,

Check Point, Role, and Session. The pattren language for these design patterns

are shown in Figure 3.1, Figure 3.2, Figure 3.3, and Figure 3.4 respectively.

Figure 3.1: Pattern Language for Single Access Point

Figure 3.2: Pattern Language for CheckPoint

According to Yoder and Barcalow [9], secure system should maintain a proper

associativity among different design patterns. Single Access Point limits the entry

to the system only through a single entry point and provides user identification

related information to Check Point for authentication and authorization of the

user. When user identification has been verified, Session is created for carrying the

global variables which contain user’s identification and its role. The authorization

area for system visualization and modification is provided through role-privilege

relationship.

16

Figure 3.3: Pattern Language for Role

Figure 3.4: Pattern Language for Session

Single Access Point

Checkpoint

Role Session

Secure Policy

uses

Creates

might use

Used to ceate

has

interacts with

Creates

Figure 3.5: Pattern Language for selected patterns

17

3.2 Proposed Approach

A formal specification in the form of grammar is proposed for verification and

validation of design patterns. Proposed grammar is based on the pattern language

which is shown in Figure 3.5. Four design patterns taken into consideration are

Single Access Point, Check Point, Session, and Role. The system may contain

other design patterns, but presence of design patterns in a particular association

is of very much significance for secure system. Any language which is accepted by

the proposed grammar, may be said to preserve security aspects. With the help

of proposed tool, user can add design pattern in UML class diagram in order to

generate the extended UML class diagram. The extended UML diagram is verified

with the help of proposed grammar.

The main aim of this paper is to verify the associativity of Pattern-Class

containing the aforesaid design patterns. The grammar is developed according

to the specification of ANTLR. The parser rule and lexer rules for the proposed

grammar are given in Figure 3.6 and Figure 3.7 respectively.

3.2.1 Illustrative Example

In order to demonstrate our approach, online banking system have been considered

as a case study. Nowadays, customers need more advocacy, more personal security

and, more control in their banking relationships. The major challenge with differ-

ent banks is that they are looking to gain the flexibility, shared services, easy to use

and align business to technology. The solution of above challenges can be found

with the help of design patterns. In online banking system, customer performs

online financial transactions, which requires more security provision. The UML

class diagram and extended UML class diagram for the online banking system are

presented in Figure 3.8 and Figure 3.9 respectively.

Figure 3.8 shows the class diagram of Online Banking System for incorporating

security features. This diagram contains eleven classes such as Customer, Login,

Verification, SecurePolicies, Penalities, Sessions, ManagingRoles, UserPrivileges,

AccountManagement, TransferFund, and BalanceEnquiry. Figure 3.9 is extended

for the visualization of design patterns. Extended UML class diagram along with

the visualization of design patterns is represented in Figure 3.9. Explanation

18

Figure 3.6: Parser Rule

19

Figure 3.7: Lexer Rule

of design patterns as visualized in extended UML class diagrams and how these

design patterns help in achieving the security goals is explained in the following

paragraphs.

For an online banking system, customer is the external entity to interact

with the system.To provide clearly defined entrance to all the external entities

SAP(Single Access Point) design pattern is considered.Customer class plays the

role of ExternalEntity which is a participant of SingleAccessPoint design pat-

tern. Therefore, stereotype notation for Customer class is Customer {SAP / Ex-

ternalEntity} which is represented as ’CLASSNAME {PATTERN NAME/ROLE

NAME}’. Customer opens the login screen to enter the system which is the only

entry point to the system. Accordingly, stereotype notation for Login class is

{SAP / Singleton}.

Customer authenticates itself by providing his required authentication infor-

mation, this information is used for the verification of customer identity. Verifi-

cation class verifies this information and authenticates the user depending on the

security policies enforced by the system. CheckPoint is used for implementing se-

curity policies as required by the system and it is also used for penalizing the user

for violating security policies. Verification class also plays the role of InternalEntity

under the design pattern SingleAccessPoint. After the addition of roles, stereo-

type annotation for Verification class becomes Verification {SingleAccessPoint/

20

Figure 3.8: UML Class Diagram for Online Banking System

InternalEntity, CheckPoint/CheckPoint}.

User authentication is checked in Verification class and if the user is not iden-

tified, then method of Verification class triggers an action to impose penalty. The

Penalties class performs a role of CounterMeasure under the pattern CheckPoint.

Stereotype annotation of Penalties class becomes {CheckPoint/CounterMeasure}.
After the authentication of user, system needs to identity the authorized area and

restricted area for identified user, for this purpose RABC (Role Based Access Con-

trol) design pattern is used. When user is authenticated, its role is retrieved from

the class ManagingRoles which plays the role of Role under the Role Based Access

Control design pattern and its authorized area is retrieved from the class User-

Privileges which plays the role of Privilege user the design pattern RBAC. Class

which plays the role of Privilege must be associated with the class which plays the

role of Role under the design pattern RBAC. These associations are checked by

proposed tools, which is discussed in next section.

21

Figure 3.9: Extended UML class Diagram for Online Banking System

22

After the verification and recognition of the role and privileges of user, session

must be created to store the global variables in order to keep track of the user iden-

tification information such identity, role and privilege. All other classes developed

for handling actions such as transfer, withdrawal , deposit must be attached to

session class, because session contains the global variables which hold information

about the role and privileges of user. Session design pattern has been used for

creating session and for storing global variables in order to secure the restricted ar-

eas. Sessions class performs the role of Session under the Session design pattern.

All the other classes such as BalanceEnquiry, AccountManagement, TransferFund

play the role of system component which uses sessions.

The above details show, how the four selected design patterns are helpful in

achieving desired security goals. Every system which aims at providing a single

entry point, user authentication, role and privileges for user, and needs to maintain

session, can be made secure at the time of system design by applying four selected

design patterns according to the pattern language shown in Figure 3.5.

3.2.2 Test Cases

In order to explain the verification process which is performed by proposed tool,

two test cases have been considered as shown in the Figure 3.10 and Figure 3.11.

These test cases are the class associativity files generated by tool from the class

text of extended UML class diagram.

First test case i.e., Figure 3.9 is generated from the extended UML class di-

agram which is shown in Figure 3.8. This test case is accepted by the proposed

tool because it strictly follows the pattern language as shown in Figure 3.5.

Second test case i.e., Figure 3.10 satisfies all the production rules according to

the proposed grammar which is developed for pattern language shown in Figure

3.5. Therefore, it is accepted by the proposed tool. Difference between the first and

second test case is as follows: First test case does not contain any design pattern

other than the four selected design patterns, for which the pattern language is

composed. Second test case contains four selected design patterns as well as other

Gamma et.al. design patterns but at the same time it is in accordance with the

pattern language shown in Figure 3.5.

23

Figure 3.10: Test-Case 1

Figure 3.11: Test-Case 2

Chapter 4

Quantitative Analysis of Quality

of Design Patterns

24

25

4.1 Introduction

Quality Model of Object-Oriented Design(QMOOD) is the basis of quantitative

analysis of quality parameters of design patterns as QMOOD approach relates

the quantifiable object-oriented characteristics to the higher caliber of software

quality attributes.Using QMOOD approach, a software with non-pattern solution

is evaluated to find out the quantitative values for quality attributes and compared

with the quality attributes of the existing software using design patterns, where

both the software satisfy same functionalities.

4.2 Proposed Work

A method has been proposed to compare the software solutions with use of design

patterns and without use of design patterns taking a number of object-oriented

metrics into consideration. Case studies for Bridge, Visitor and Abstract Factory

design pattern are adopted in order to prove the methodology. The QMOOD

approach [14] has been adopted to evaluate the quality attributes of the software

system before applying design pattern and after applying the design pattern. The

proposed methodology is as follows:

1. Total number of classes in the UML class diagram of the system before using

design pattern and after using design pattern, are identified.

2. Based on the definition, various metrics for the two structures of the same

system, i.e. before using design pattern and after using design pattern, are

found out.

3. Average metric scores are found by dividing the metric scores by the total

number of classes.

4. The average quality attribute score using average metric scores for the non-

pattern solution and the design pattern solution of the system are found

out.

5. For each quality attribute, the quality score difference, i.e. the difference

between the average quality attribute score of the system having non-pattern

solution and that of the system having design pattern solution are found out.

26

6. To find the cut-off point for which design pattern solution promotes better

result of quality attribute values, the following in-equality is solved:

(AQA)DPS − (AQA)NPS ≥ 0 (4.1)

Where (AQA)DPS = Average Quality Attribute Score of the system after

applying design pattern and

(AQA)NPS = Average Quality Attribute Score of the system before applying

design pattern.

4.2.1 Illustrative Example

This approach is being illustrated using Visitor design pattern in a system. Visitor

design pattern, a behavioral design pattern[1], is used in a scenario when an oper-

ation is needed to be performed on elements of an object structure. Visitor design

pattern helps in defining a new operation without changing the classes of the el-

ements on which it operates. The UML class diagram for Visitor Non-Pattern

Solution and Visitor Design Pattern solution are shown in Figure 4.1 and Figure

4.2 respectively [1, 37].

Figure 4.1: Class Diagram for Visitor Non-Pattern Solution

4.2.1.1 Average Metric Score Calculation for System having Visitor

Non-Pattern Solution

• Let, Total number of ConcreteImplementor class = n;

27

Figure 4.2: Class Diagram for Visitor Pattern Solution

• Total number of operations to be performed = m;

• Total number of classes = n+2 (as shown in Figure 4.1)

The average metric scores in terms of number of classes are calculated for the

system without using Visitor design pattern. The values are listed in Table 4.1.

4.2.1.2 Average Metric Score Calculation for System having Visitor

Design Pattern Solution:

• Let, Total number of ConcreteImplementor class = n;

• Total number of operations to be performed = m;

• Total number of ConcreteVisitor classes = m

• Total number of classes = n+m+3 (as shown in Figure 4.2)

The average metric scores in terms of number of classes are calculated and

listed in Table 4.2.

28

Table 4.1: Average Metric Score for Visitor Non-pattern Solution

Sl No Metric
Average
Metric
Value

Explanation

1. SIZE nm+m+2
n+2

No. of methods in Client class is 2. No. of methods in
AbstractClass is ’m’. No. of methods in

ConcreteImplementor class is ’m’.

2. NOC n
n+2

No. of children for AbstractClass is ’n’, for other
classes, it is 0.

3. DIT n
n+2

For ConcreteImplementor class, DIT is 1, for other
classes, it is 0.

4. DAM
No

Meaning
No attribute is taken into consideration.

5. CBO 1
n+2

No. of classes associated with Client class is 1, for
others, it is 0.

6. CAM
No

Meaning

No operations other than polymorphic operations are
considered in the UML class diagram, hence CAM

metric can not be determined.

7. MOA 0
No part-whole relation exists in the UML class

diagram.

8. MFA
No

Meaning

It is the ratio of total number of inherited methods to
the total number of methods accessed by the class. In
the case study, only polymorphic methods are taken

into consideration.

9. NOP m
n+2

No. of Polymorphic Methods in AbstractClass is ’m’,
for other classes, it is 0.

10. RFC 2+2m+nm
n+2

Client class has 2 local methods and it can invoke ’m’
number of methods in AbstractClass class. For Client
class, RFC is 2+m. AbstractClass has ’m’ number of
methods and each of ConcreteImplementors class has

’m’ number of methods.

11. WMPC 2+m+nm
n+2

For the Client class, Cyclometic Complexity = 2. For
the Abstraction class, Cyclometic Complexity is ’m’.

For the ’n’ classes that represent
ConcreteImplementors, Cyclometic Complexity is ’m’.

4.2.1.3 Quality Attribute Score Computation and Finding Cut-off Points

According to Table 1.2, quality attribute scores are calculated which takes the met-

rics values into consideration. Average Quality Attribute Scores for non-pattern

solution and design pattern solution are calculated and difference was found out.

In order to find the cut-off points for which design pattern solution gives better

result of quality attribute score, The inequality in equation 4.1 has been solved.

29

Table 4.2: Average Metric Score for Visitor Design Pattern Solution

Sl No Metric
Average
Metric
Value

Explanation

1. SIZE 2n+nm+4
n+m+2

No. of methods in Client class is 3. No. of methods in
AbstractClass is 1. No. of methods in

ConcreteImplementor class is 1. AbstractVisitor and
ConcreteVisitor classes contain ’n’ number of

operations.

2. NOC n+m
n+m+2

No. of children for AbstractClass is ’n’, for
AbstractVisitor class, it is ’m’, and for other classes, it

is 0.

3. DIT n+m
n+m+2

For ConcreteImplementor class, DIT is 1,for
ConcreteVisitor class, DIT is 1, and for other classes, it

is 0.

4. DAM
No

Meaning
no attribute is taken into consideration.

5. CBO 2
n+m+2

No. of classes associated with Client class is 2, for
others, it is 0.

6. CAM
No

Meaning

No operations other than polymorphic operations are
considered in the UML class diagram, hence CAM

metric can not be determined.

7. MOA 0
No part-whole relation exists in the UML class

diagram.

8. MFA
No

Meaning

It is the ratio of total number of inherited methods to
the total number of methods accessed by the class. In
the case study, only polymorphic methods are taken

into consideration.

9. NOP n+1
n+m+2

No. of Polymorphic Methods in AbstractVisitor class
is ’m’, for AbstractClass, it is 1, and for other classes,

it is 0.

10. RFC 5+3n+nm
n+m+2

Client class has 3 local methods and it can invoke ’n’
number of methods in AbstractVisitor class as well as
the single method in AbstractClass. For Client class,

RFC is 4+n. AbstractVisitor and
ConcreteImplementor classes have ’n’ number of

methods. AbstractClass and each of
ConcreteImplementor classes have got one(1) method.

11. WMPC 2n+nm+4
n+m+2

For the Client class, Cyclometic Complexity is 3. For
the Abstraction class, Cyclometic Complexity is 1. For
ConcreteImplementor class, Cyclometic Complexity is

1. For AbstractVisitor class, it is ’n’. For
ConcreteVisitor class, it is ’n’.

Let Quality Attribute be ”Reusability” [14]

Reusability = -0.25*Coupling + 0.25*Cohesion + 0.3* Messaging + 0.5 * Design

Size

Relating the design properties with metrics; Reusability Score can be calculated

30

as

Reusability Score = -0.25* CBO + 0.25* CAM + 0.5*RFC +0.5*SIZE

Average Reusability Score of Non-Pattern Solution = (Reusability)NPS

Average Reusability Score of Design Pattern Solution = (Reusability)DPS

Average Reusability Score Difference = (Reusability)DPS - (Reusability)NPS

To find the cut-off points, the inequality to be solved is

(Reusability)DPS − (Reusability)NPS ≥ 0 (4.2)

The above inequality is satisfied for

m >= 1; n >=

√
(32m2 + 144m + 137)− 11

8
(4.3)

Similarly other quality attribute scores are calculated and cut-off points are

estimated by solving the general equation 4.1.

Table 4.3: Quality Attribute Cut Off points for Design patterns

Sl
No.

Quality At-
tribute

Visitor Bridge Abstract
Factory

1. Resuability m >= 1; n >=√
(32m2+144m+137)−11

8

m >= 1; n >=√
(4m6−28m5+41m4+364m3+402m2−304m+41)

2(5m−2) +
2m3−7m2−12m+3

2(5m−2)

m >=
1; n >= 3

2. Flexibility m >= 1; n >=√
(20m2+20m+1)+(2m−5)

4

m > 2; n >=

√
(m4−6m3+19m2−14m+9)

2(m−2) + m2−3m+7
2(m−2) m < 3; n >=

1

3. Understandabilitym >= 1; n >=
1

m >= 1; n >=

√
(4m6−32m4+44m3+340m2+412m+121)

2(2m+3) +
2m3−12m−13

2(2m+3)

No Integer So-
lution

4. Functionality m < 3; n >= 1 m > 0; n >=√
(121m6−506m5+3675m4+16704m3+65407m2+18786m−407)

2(45m+22) +
11m3−23m2+53m−33

2(45m+22)

m >=
1; n >= 2

5. Extendability m >= 1; n >=√
(5m2−2m−3)+(m−1)

2

m >= 1; n >=

√
(9m4+58m3+129m2+96m+32)

2(m+1) +
3m2+11m+4

2(m+1)

m >=
1; n >= 1

6. Effectiveness m >= 1; n >=√
(5m2−4)+(m−2)

2

No Integer Solution m >=
1; n >= 1

The proposed methodology was adopted for the ’Bridge’ and ’Abstract Fac-

tory’ design patterns. ’Bridge’ design pattern is a structural GoF pattern, which

supports the abstraction from implementation so that they can vary independently

[1]. There are two major participants in the Bridge design pattern, whose number

may change during system expansion. The participants are Refined Abstraction

31

and Concrete Implementor. Considering ’n’ number of RefinedAbstraction classes

and ’m’ number of ConcreteImplementor classes in the design pattern solution [30],

quality attribute scores and cut-off points are derived for Bridge Design Pattern.

Abstract Factory pattern is a GoF creational pattern, which enables to en-

capsulate a number of individual factories having a common concern without

specifying their concrete classes [1]. ’Abstract Factory’ design pattern having

two major participants i.e., ConcreteFactory and AbstractProduct classes, which

may change in number while expanding the system. Considering ’n’ number of

AbstractProduct classes and ’m’ number of ConcreteFactory classes in the de-

sign pattern solution, quality attribute scores and cut-off points are found out for

Abstract Factory Design Pattern. The values obtained for the cut-off points for

various quality attributes for Visitor, Bridge and Abstract Factory design patterns

are provided in Figure ??.

Chapter 5

Design Pattern Detection

32

33

5.1 Introduction

Design patterns are detected by the help of graph isomorphism and normalized

cross correlation techniues. Both the system UML class diagram and the design

pattern class diagrams are converted into directed graphs. The nodes of the graph

act as classes where as the edges connecting the nodes, refer to the relationship

among the corresponding classes. Design pttern subgraph is extracted from the

system graph using graph isomorphism technique, and with the help of Normalized

Cross Correlation (NCC). It is possible to find the percentange existence of the

design pattern . We have applied our approach for the detection of five design

patterns, such as Composite, Facade, Flyweight, State, and Template Method on

four open source software tools.

5.2 Proposed Work

To apply our methodology, some assumptions should be adopted as follows:

Assumption 1 : Graph G, is represented as a 3-tuple entity. G= (V, E, f(E)),

where,

1. V = Set of nodes corresponding to classes of a UML class diagram.

2. E is a function: V → V , corresponds to the set of edges connecting the

nodes.

3. f (E) : (E → We), function relating the edge to a numeric weightage. The

value of We depends on the type of relationship among the classes. We have

taken certain values to define various relationships which is shown in Table

5.1.

If any two classes are connected, having more than one relationship, then

the relationship weight becomes the multiplication of the individual weights

corresponding to the relationship. e.g. for two classes having both Associa-

tion and Generalization relationship, the edge connecting the classes should

have relationship weight = 2*3 = 6. If two classes are not connected by any

of these relationships, then the relationship weight becomes 1. Hence We =

{2,3,5,6,10,15,30}.

34

Table 5.1: Relationship Weight Table

Sl. No. Relationship Relationship Weight
1. Association 2
2. Generalization 3
3. Realization 5
4. Other Case or Disconnected 1

Assumption 2: If number of classes in system graph (SG) : Sn and number of

classes in pattern graph (PG) : Pn , then

1. SGM corresponds to System Graph Matrix (V, E, f(E)). SGM [i , j] ∈ We , ’i’

and ’j’ are nodes corresponding to classes of system graph.

2. DPM corresponds to Design Pattern Graph Matrix (V, E, f(E)), DPM [i , j] ∈
We , ’i’ and ’j’ are nodes corresponding to classes of design pattern graph.

3. CGM is the Connectivity Graph Matrix (V,E,p); where

p = 1 iff (E) = 1

= 0 otherwise
(5.1)

CGMs is the Connectivity Graph Matrix for System graph (SG) and CGMd

is the connectivity Graph Matrix for Design Pattern Graph (PG).

Assumption 3: Contribution value of the class (CVC): It is the multiplication

value of the weights of edges connecting to all of the classes in a class diagram. If

’s’ and ’d’ are the classes in system graph and design pattern graph respectively,

then their contribution value of class are :

1. CVCs =
∏Sn

j=1 SGM [s , j]where s , j ∈ SG(V), the set of nodes in System

Graph.

2. CVCd =
∏Pn

j=1DPM [d , j]where d , j ∈ PG(V), the set of nodes in Design

Pattern Graph.

Assumption 4 : We call a class Cs in system grapha(SG) to be the candidate

of a class Cd in design pattern graph (PG) if and only if CVC for Cs is a multiple

of the CVC for Cd . Candidate Set of a class Cd = S(Cd), in design pattern graph

35

is the set of all candidate classes Cs in system graph. S(Cd) = Cs where CVC(Cs)

is a multiple of CVC(Cd).

Assumption 5: Correspondence Graph (CRG): Pn*Sn graph, where CRG [i , j] =

1 , if class ’j’ in system graph is one of the Candidate Set of the class ’i’ in pattern

graph. i.e.

CRG [i , j] = 1if Cj ∈ S (Ci),where i ∈ PG(V) and j ∈ SG(V).

5.2.1 Proposed Methodology

1. Generate xml files corresponding the system class diagram as well as the

pattern class diagram.

2. Extract information regarding the relationship among classes in both the

graphs corresponding to class diagrams.

3. Find CVC for all the classes in both system graph (SG) and pattern graph

(PG).

4. Find candidate set for all the classes of design pattern graph, i.e. S(Cd) is

to be found.

5. Use Filtering algorithm to find most probable candidates for all the pattern

classes.

6. Find bijective relations between pattern class and the system class and ex-

tract the Pn-subgraph, which may contain the pattern instance.

7. Extract Pn-subgraph of Connectivity Graph Matrix for System graph (CGMs)

and compare with the Connectivity Graph Matrix for Design Pattern Graph

(CGMd). If both the matrices are same, then extract the system Pn-subgraph

matrix from SGM, denoted as SGMk , where k = Pn .

8. Perform normalized cross correlation (NCC) between the extracted system

Pn-subgraph and the pattern graph.

9. From the NCC value, find percentage of matching occurrences.

The above method is implemented by C++ programming language, which

takes the xml files corresponding the system UML diagram and the design

pattern diagram and provides total number of fully matched occurrences and

partially matched occurrences.

36

5.2.2 Filtering Algorithm

Algorithm Filtering Candidates

Input : Correspondence Graph (CRG), System Graph Matrix (SGM), Design Pat-

term Matrix (DPM)

Pn = total number of pattern classes in design pattern graph (PG).

Sn= total number of classes in system graph (SG).

for i = 0 to Pn

for j = 0 to Sn

value = DPM [i , j];

for p = 0 to Sn

if CRG [i , p] = 1

flag = 0

for k = 0 to Sn

if CRG [j , k] = 1 and

isfactorial(SGM [p, k], value) = true

flag = 1;

endif

endfor

if flag = 0

CRG [i , p] = 0

endif

endif

endfor

endfor

endfor

Algorithm isfactorial (a, b)

if a%b = 0

return true

else

return false

endif

37

5.2.3 Illustration

Figure 5.1 represents the system diagram to be evaluated. Figure 5.2 represents

template design pattern diagram. According to the assumptions, the system graph

matrix (SGM) and design pattern matrix (DPM) are shown in Figure 5.3 and 5.4

respectively. Similarly, Connectivity Graph Matrix for System graph and Pattern

Graph are shown in Figure 5.5 and Figure 5.6 respectively. Contribution value of

class (CVC) for all classes in System Diagram and Design Pattern Diagram are as

follws:

CVC(SGC1)=1

CVC(SGC2)=1

CVC(SGC3)=3

CVC(SGC4)=5

CVC(SGC5)=3

CVC(SGC6)=3

CVC(SGC7)=5

CVC(SGC8)=2

CVC(PGC1)=1

CVC(PGC2)=1

CVC(PGC3)=3

CVC(PGC4)=3

Figure 5.1: UML class diagram for System Diagram

The Correspondence Graph is shown in Figure 5.7, in which value CGM[i,j]

= 1 indicates the candidateship of system graph class ’j’ for pattern class ’i’.

After applying filtering algorithm, the updated Correspondence Graph is shown

in Figure 5.8.

From the updated Correspondence Graph, bijective mapping are found to

further evaluation of the pattern existence in the 4-subgraph extracted from the

38

Figure 5.2: UML class diagram for Template design pattern

Connectivity Graph Matrix of System Diagram. Let the bijective matching be

(PGC1 → SGC1,PGC2 → SGC8,PGC3 → SGC3,PGC4 → SGC5). The 4-

subgraph of Connectivity Graph Matrix of System Diagram containing SGC1,

SGC8, SGC3, SGC5 becomes the same as the Connectivity Graph Matrix of De-

sign Pattern Diagram as shown in Figure 5.9. Hence, the 4-subgraph of System

Graph Matrix containing SGC1, SGC8, SGC3, SGC5 as nodes, is extracted from

System Graph Matrix, which is shown in Figure 5.9. The normalized cross corre-

lation is applied on the matrix shown in Figure 5.10 with the design pattern graph

matrix (DPM), shown in Figure 5.4.

NCC =

∑Pn

i=1

∑Pn

j=1 SGM4[i , j] ∗ DPM [i , j]− P2
n ∗ µs ∗µd√

(
∑Pn

i=1

∑Pn

j=1 SGM4[i , j]2 − P2
n ∗ µ2

s) ∗ (
∑Pn

i=1

∑Pn

j=1 DPM [i , j]2 − P2
n ∗ µ2

d)

(5.2)

where,

µs =
1

P2
n

Pn∑
i=1

SGM4[i , j] (5.3)

µd =
1

P2
n

Pn∑
i=1

DPM 4[i , j] (5.4)

NCC value becomes 1, which assures 100% or full occurrence of template

design pattern in the system graph.

Taking another bijective matching (PGC1 → SGC3,PGC2 → SGC8,PGC3 →
SGC5,PGC4 → SGC6), the 4-subgraph of Connectivity Graph Matrix of System

Diagram containing SGC3, SGC8, SGC5, SGC6 as nodes has been extracted as

shown in Figure 5.11 and it does not become the same as the Connectivity Graph

Matrix of Design Pattern Diagram as shown in Figure 5.6 . Hence, this set of

classes is discarded for further evaluation.

39

Figure 5.3: System Graph Matrix (SGM)

Figure 5.4: Design Pattern Matrix (DPM)

Figure 5.5: Connectivity Graph Matrix for System Graph(CGMs)

Figure 5.6: Connectivity Graph Matrix for Pattern Graph(CGMd)

Figure 5.7: Correspondence Graph(CRG)

40

Figure 5.8: Updated Correspondence Graph(CRG) after Applying Candidate
Filtering Algorithm

Figure 5.9: 4-subgraph of CRG (CRG4) - Testcase1

Figure 5.10: 4-subgraph of SGM (SGM4) - Testcase1

Figure 5.11: 4-subgraph of CRG (CRG4) - Testcase2

Figure 5.12: Implementation Results

41

5.3 Implementation and Results

The proposed approach is applied on four widely adopted open souce softwares

having toal no. of classes ranging from 76 to 109. We have performed our method

on Jrat, Junit, Lexi-alpha and Informa tools for evaluation of the existence of

5 design patterns, such as Composite, Facade, Flyweight, State and Template

Method design patterns. Results for 100% existence and partial existence more

than 90% are shown in Figure 5.12.

Chapter 6

Conclusion and Future Work

42

43

6.1 Formalization of Design Pattern

Design patterns are based on UML diagrams, which support semi-formal notation

to design a particular system. In this study, an attempt has been made to propose

a grammar which satisfies the design pattern language and formally verifies the

security patterns. In order to demonstrate this approach, a case study on online

banking system has been considered. For this case study, extended UML class

diagram visualizing design patterns is generated by using UML class diagram.

Single Access Point, provides a single login screen to all external entities of the

system, which helps the system to trace the unusual requests thus maintaining the

availability of the system for other entities. Check Point ensures the confidentiality

of system by authenticating the user and it also enforce certain security policies

and penalizes the user for violating security policies. The role-based access control

(RBAC) maintains the integrity of the system authorizing the user with the help

of user-role-privilege relationship. RBAC also improves the confidentiality of the

system by providing access rights.

In future, a good number of design patterns can be added in order to extend

the pattern language. As per now, the association of classes is being checked

by the tool. Grammar can be extended for verifying the operations of class and

role played by these operations under design pattern. Prposed approach can be

encorporated as a plugin or an extension for widely used UML drawing software

solutions such as IBM Rational Rose. Basic fundamental advantage of security

patterns is reusability, for this purpose, XML file can be generated and saved

for further use, also skeleton source code can be generated out of the UML class

diagram for several programming languages.

6.2 Quantitative Analysis of Quality of Design

Patterns

We have suggested a methodology to assess the effects of design patterns in an

object-oriented system environment. Using QMOOD approach, object-oriented

metrics are calculated in terms of the number of classes and their relationships

assumed in a UML class diagram. The cut-off points are calculated in order

to provide the exact size of the system in terms of the number of classes, for

44

which design pattern solution provides better result in terms of quality attribute

as compared to the non-pattern solution for the same system. This work can fortify

the goal-oriented design making, since it is expected that every design attribute

demands a categorical solution, according to its special needs with reference to

quality.

Also, the suggested approach to assess the effects of design patterns in an

object-oriented system environment, can be applicable for other design patterns

and similar estimation can be done in order to find out various quality improver.

This methodology can be extended to compare the quality of system which uses

multiple number of design patterns.

6.3 Design Pattern Detection

This method provides a novel way to detect design patterns from the source code

of a software. In the field of Software Reverse Engineering, this approach to

detect design pattern instances in a software, is quite adoptable as it automatically

detects design patterns. The use of Normalized Cross Correlation method in the

process of design pattern detection provides a way not only to detect full occurrence

of the pattern but it also provides a measure to find the percentage matching of

the pattern. This method is useful for software engineers to get knowledge about

the pattern existence in the system.

As a future work, this approach can be applicable for other design patterns and

similar evaluation can be done for various open source softwares. The proposed

approach can be adopted to develop a plugin or an extension for Eclipse IDE which

will take the source codes of the projects as input and produce the total number

of matching occurrences of design patterns as output.

Bibliography

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,

1995.

[2] Deepak Alur, Dan Malks, John Crupi, Grady Booch, and Martin Fowler. Core

J2EE Patterns (Core Design Series): Best Practices and Design Strategies.

Prentice Hall, 2nd edition, 2003.

[3] Martin Fowler. Patterns of enterprise application architecture. Addison-

Wesley, Boston, USA, 2002.

[4] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank

Buschmann, and Peter Sommerlad. Security Patterns: Integrating security

and systems engineering. John Wiley & Sons, West Sussex, England, 2005.

[5] Christopher Steel, Ramesh Nagappan, and Ray Lai. Core Security Patterns:

Best Practices and Strategies for J2EE, Web Services, and Identity Manage-

ment. Prentice Hall PTR, 2005.

[6] Ashish Kumar Dwivedi and Santanu Kumar Rath. Incorporating security fea-

tures in service-oriented architecture using security patterns. ACM SIGSOFT

Software Engineering Notes, 40(1):1–6, 2015.

[7] Jörg Niere, Wilhelm Schäfer, Jörg P Wadsack, Lothar Wendehals, and Jim

Welsh. Towards pattern-based design recovery. In Proceedings of the 24th

international conference on Software engineering, pages 338–348. ACM, 2002.

[8] Hong Zhu and Ian Bayley. An algebra of design patterns. ACM Transactions

on Software Engineering and Methodology (TOSEM), 22(3):23:1–23:35, July

2013.

45

46

[9] Joseph Yoder and Jeffrey Barcalow. Architectural patterns for enabling appli-

cation security. In In proceeding of the 4th Conference on Patterns Language

of Programming (PLoP’97), 1997.

[10] Robert Hanmer. Patterns for fault tolerant software. John Wiley & Sons,

2007.

[11] Jing Dong and Sheng Yang. Extending uml to visualize design patterns in

class diagrams. In Proceedings of the Fifteenth International Conference on

Software Engineering and Knowledge Engineering (SEKE), pages 124–131.

San Francisco Bay, California, USA, 2003.

[12] F Brito e Abreu. The mood metrics set. In Proceedings of the 9th Euro-

pean Conference on Object-Oriented Programming (ECOOP 95) Workshop

Metrics, volume 95, 1995.

[13] Shyam R Chidamber, David P Darcy, and Chris F Kemerer. Managerial use

of metrics for object-oriented software: An exploratory analysis. Software

Engineering, IEEE Transactions on, 24(8):629–639, 1998.

[14] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-oriented

design quality assessment. Software Engineering, IEEE Transactions on,

28(1):4–17, 2002.

[15] Hausi A Müller, Jens H Jahnke, Dennis B Smith, Margaret-Anne Storey,

Scott R Tilley, and Kenny Wong. Reverse engineering: A roadmap. In

Proceedings of the Conference on the Future of Software Engineering, pages

47–60. ACM, 2000.

[16] Jean-Marie Favre. Cacophony: Metamodel-driven software architecture re-

construction. In Reverse Engineering, 2004. Proceedings. 11th Working Con-

ference on, pages 204–213. IEEE, 2004.

[17] Rudolf Ferenc, Arpad Beszedes, Lajos Fulop, and Janos Lele. Design pat-

tern mining enhanced by machine learning. In Software Maintenance, 2005.

ICSM’05. Proceedings of the 21st IEEE International Conference on, pages

295–304. IEEE, 2005.

[18] Yann-Gaël Guéhéneuc, Houari Sahraoui, and Farouk Zaidi. Fingerprinting

design patterns. In Reverse Engineering, 2004. Proceedings. 11th Working

Conference on, pages 172–181. IEEE, 2004.

47

[19] Heyuan Huang, Shensheng Zhang, Jian Cao, and Yonghong Duan. A practical

pattern recovery approach based on both structural and behavioral analysis.

Journal of Systems and Software, 75(1):69–87, 2005.

[20] Eclipse Plugin-ObjectAid. http://www.objectaid.com/.

[21] John Vlissides. Notation, Notation, Notation. C++ Report. Technical report,

April 1998.

[22] Jing Dong. Uml extensions for design pattern compositions. Journal of object

technology, 1(5):151–163, 2002.

[23] Stefan Berner, Martin Glinz, and Stefan Joos. A classification of stereotypes

for object-oriented modeling languages. In Proceedings of the Second Inter-

national Conference on the Unified Modeling Language (UML), LNCS1723,,

pages 249–264. Springer-Verlag, October 1999.

[24] Toufik Taibi and David Chek Ling Ngo. Formal specification of design pat-

terns - a balanced approach. Journal of Object Technology, 2(4):127–140,

2003.

[25] Jing Dong, Tu Peng, and Yajing Zhao. Automated verification of security

pattern compositions. Information and Software Technology, 52(3):274–295,

2010.

[26] Ashish Kumar Dwivedi and Santanu Kumar Rath. Analysis of a complex

architectural style c2 using modeling language alloy. Information and Software

Technology, 3(2):152–164, 2014.

[27] Ian Bayley and Hong Zhu. Formal specification of the variants and behavioral

features of design patterns. Journal of Systems and Software, 83(2):209–221,

2010.

[28] Ashish Kumar Dwivedi and Santanu Kumar Rath. Selecting and formalizing

an architectural style: A comparative study. In Contemporary Computing

(IC3), 2014 Seventh International Conference on, pages 364–369. IEEE, 2014.

[29] Shouvik Dey and Swapan Bhattacharya. Formal specification of structural

and behavioral aspects of design patterns. Journal of Object Technology,

9(6):99–126, 2010.

http://www.objectaid.com/

48

[30] Apostolos Ampatzoglou, Georgia Frantzeskou, and Ioannis Stamelos. A

methodology to assess the impact of design patterns on software quality. In-

formation and Software Technology, 54(4):331–346, 2012.

[31] Imène Issaoui, Nadia Bouassida, and Hanêne Ben-Abdallah. Using metric-

based filtering to improve design pattern detection approaches. Innovations

in Systems and Software Engineering, Springer, December 2014.

[32] Chih-Hung Chang, Chih-Wei Lu, and Pao-Ann Hsiung. Pattern-based frame-

work for modularized software development and evolution robustness. Infor-

mation and Software Technology, 53(4):307–316, 2011.

[33] Nien-Lin Hsueh, Peng-Hua Chu, and William Chu. A quantitative approach

for evaluating the quality of design patterns. Journal of Systems and Software,

81(8):1430–1439, 2008.

[34] Apostolos Ampatzoglou, Sofia Charalampidou, and Ioannis Stamelos. Re-

search state of the art on gof design patterns: A mapping study. Journal of

Systems and Software, 86(7):1945–1964, 2013.

[35] Jing Dong, Yang Sheng, and Kang Zhang. Visualizing design patterns in their

applications and compositions. Software Engineering, IEEE Transactions on,

33(7):433–453, 2007.

[36] Yoshio Kataoka, Takeo Imai, Hiroki Andou, and Tetsuji Fukaya. A quanti-

tative evaluation of maintainability enhancement by refactoring. In Software

Maintenance, 2002. Proceedings. International Conference on, pages 576–585.

IEEE, 2002.

[37] Brian Huston. The effects of design pattern application on metric scores.

Journal of Systems and Software, 58(3):261–269, 2001.

[38] Hervé Albin-Amiot and Yann-Gaël Guéhéneuc. Meta-modeling design pat-

terns: Application to pattern detection and code synthesis. In Proceedings

of ECOOP Workshop on Automating Object-Oriented Software Development

Methods, 2001.

[39] Dirk Heuzeroth, Thomas Holl, Gustav Hogstrom, and Welf Lowe. Automatic

design pattern detection. In Program Comprehension, 2003. 11th IEEE In-

ternational Workshop on, pages 94–103. IEEE, 2003.

49

[40] Federico Bergenti and Agostino Poggi. Improving uml designs using auto-

matic design pattern detection. In 12th International Conference on Software

Engineering and Knowledge Engineering (SEKE), pages 336–343. Citeseer,

2000.

[41] Manjari Gupta, R Singh Rao, and Anil Kumar Tripathi. Design pattern de-

tection using inexact graph matching. In Communication and Computational

Intelligence (INCOCCI), 2010 International Conference on, pages 211–217.

IEEE, 2010.

[42] Sven Wenzel and Udo Kelter. Model-driven design pattern detection using

difference calculation. In 1st Int. Workshop on Pattern Detection for Reverse

Engineering, Co-located with 13th Working Conf. on Reverse Engineering,

2006.

[43] Giuliano Antoniol, Gerardo Casazza, Massimiliano Di Penta, and Roberto

Fiutem. Object-oriented design patterns recovery. Journal of Systems and

Software, 59(2):181–196, 2001.

[44] Manjari Gupta, Akshara Pande, R Singh Rao, and AK Tripathi. Design

pattern detection by normalized cross correlation. In Methods and Models

in Computer Science (ICM2CS), 2010 International Conference on, pages

81–84. IEEE, 2010.

[45] Afnan Salem Ba-Brahem and M Qureshi. The proposal of improved inex-

act isomorphic graph algorithm to detect design patterns. arXiv preprint

arXiv:1408.6147, 2014.

[46] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spy-

ros T Halkidis. Design pattern detection using similarity scoring. Software

Engineering, IEEE Transactions on, 32(11):896–909, 2006.

[47] Jing Dong, Yongtao Sun, and Yajing Zhao. Design pattern detection by

template matching. In Proceedings of the 2008 ACM symposium on Applied

computing, pages 765–769. ACM, 2008.

[48] Yu Dongjin, Jianlin Ge, and Wei Wu. Detection of design pattern instances

based on graph isomorphism. In Software Engineering and Service Science

(ICSESS), 2013 4th IEEE International Conference on, pages 874–877. IEEE,

2013.

	List of Figures
	1 Introduction
	1.1 Introduction
	1.2 Motivation
	1.3 Organization of the thesis

	2 Literature Survey
	2.1 Formal Verification of Design Pattern
	2.2 Quantitative Analysis of Quality Parameters
	2.3 Design Pattern Detection

	3 Formalization of Design Patterns
	3.1 Introduction
	3.2 Proposed Approach
	3.2.1 Illustrative Example
	3.2.2 Test Cases

	4 Quantitative Analysis of Quality of Design Patterns
	4.1 Introduction
	4.2 Proposed Work
	4.2.1 Illustrative Example
	4.2.1.1 Average Metric Score Calculation for System having Visitor Non-Pattern Solution
	4.2.1.2 Average Metric Score Calculation for System having Visitor Design Pattern Solution:
	4.2.1.3 Quality Attribute Score Computation and Finding Cut-off Points

	5 Design Pattern Detection
	5.1 Introduction
	5.2 Proposed Work
	5.2.1 Proposed Methodology
	5.2.2 Filtering Algorithm
	5.2.3 Illustration

	5.3 Implementation and Results

	6 Conclusion and Future Work
	6.1 Formalization of Design Pattern
	6.2 Quantitative Analysis of Quality of Design Patterns
	6.3 Design Pattern Detection

	Bibliography

