
 
 

HDL Implementation of OMP Based 

Compressed Sampled Reconstruction 

Algorithm 
 

 

A thesis submitted in partial fulfilment of the requirement for 

M.Tech Dual Degree 

In 

Electronics and Communication Engineering 

(Specialization: VLSI Design and Embedded Systems) 

 

 

 

SUBMITTED BY 

Bibekananda Jena 

710EC2045 

 

 

Under the Guidance of: 

Prof. S. Deshmukh 

Assistant Professor 

Department of Electronics and Communication 

NIT Rourkela 

 

 

 

 

 

Department of Electronics and Communication Engineering 

National Institute of Technology, Rourkela 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80148554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

HDL Implementation of OMP Based 

Compressed Sampled Reconstruction 

Algorithm 
 

A thesis submitted in partial fulfilment of the requirement for 

M.Tech Dual Degree 

In 

Electronics and Communication Engineering 

(Specialization: VLSI Design and Embedded Systems) 

 

 

SUBMITTED BY 

Bibekananda Jena 

710EC2045 

 

 

Under the Guidance of: 

Prof. S. Deshmukh 

Assistant Professor 

Department of Electronics and Communication 

NIT Rourkela 

 

 

 

 

 

 

Department of Electronics and Communication Engineering 

National Institute of Technology, Rourkela 



i 
 

DEPT. OF ELECRTONICS AND COMMUNICATION ENGINEERING 

NATIONAL INSTITUTE OF TECHNOLOGY 

ROURKELA, ODISHA -769008 

 

 

CERTIFICATE 

This is to certify that the work presented in the thesis entitled “HDL Implementation 

of OMP Based Compressed Sampled Reconstruction Algorithm” by Bibekananda Jena 

is a bonafide record of the original research work carried out by him at National Institute of 

Technology, Rourkela under my supervision and guidance during 2014-2015 in partial 

fulfilment for the award of Dual Degree in Electronics and Instrumentation Engineering 

(Communication and Signal Processing), National Institute of Technology, Rourkela. 

 

 

 

Place: NIT Rourkela 

Date: 

 

 

 

 

 

 

 

 

Prof. S. Deshmukh 

Assistant Professor 

Dept. of Electronics and Communication 

NIT Rourkela 



 

 
 

DEPT. OF ELECRTONICS AND COMMUNICATION ENGINEERING 

NATIONAL INSTITUTE OF TECHNOLOGY 

ROURKELA, ODISHA -769008 

 

 

DECLARATION 

 I hereby declare that the work presented in the thesis titled “HDL Implementation of 

OMP Based Compressed sampled Reconstruction Algorithm” being submitted in partial 

fulfilment for the degree of Master of Technology is a bonafide record of the research work 

done by me under the supervision of Prof. Siddharth Deshmukh, Dept. of Electronics and 

Communication Engineering, National Institute of Technology, Rourkela, India and that no 

part of this work has been presented for  I also declare that due credit has been given to the 

information presented from other sources wherever used in this work through citations with 

details in the Reference section.  

 

Bibekananda Jena 

710EC2045  



 

iii 
 

DEPT. OF ELECRTONICS AND COMMUNICATION ENGINEERING 

NATIONAL INSTITUTE OF TECHNOLOGY 

ROURKELA, ODISHA -769008 

 

 

ACKNOWLEDGEMENT 

 The research work has been partly made possible due to the continuous support 

motivation of lot of people from every aspect of my life. I sincerely extend my heartfelt 

gratitude to my project guide Prof. Siddharth Deshmukh for suggesting me the research 

topic and providing his guidance and supervision throughout the period of research work. I 

would also like to thank all the faculty members of the Department of Electronics and 

Communication Engineering, NIT Rourkela for their valuable help. I extend my gratitude and 

sincere thanks to the fellow students, research scholars and Lab Assistant at the Mobile 

Communication Lab, Dept. of ECE, NIT Rourkela. Finally, I would also like to thank my 

family and friends for their support and help. 

 

 

Bibekananda Jena 

710EC2045 

  

 

  



 

iv 
 

INDEX 
Abstract .................................................................................................................................... vi 

List of Figures ......................................................................................................................... vii 

1. Introduction ...................................................................................................................... 2 

1.1. Compressive Sensing .................................................................................................. 3 

1.1.1. Sparsity ................................................................................................................ 4 

1.1.2. Incoherence .......................................................................................................... 4 

1.1.3. Representation Basis ............................................................................................ 5 

1.1.4. Dictionary ............................................................................................................ 5 

1.1.5. Sensing Matrix ..................................................................................................... 6 

1.2. Reconstruction ............................................................................................................. 7 

1.2.1. 𝑙1-optimization Algorithm ................................................................................... 8 

1.2.2. OMP ..................................................................................................................... 8 

2. Compressive Sensing System : Algorithms .................................................................. 11 

2.1. Sensing ...................................................................................................................... 11 

2.2. Reconstruction ........................................................................................................... 13 

2.2.1. Orthogonal matching Pursuit ............................................................................. 13 

2.2.2. Least Square Problem ........................................................................................ 14 

3. Implementation ............................................................................................................... 19 

3.1. Block Diagram .......................................................................................................... 19 

3.2. Sensing Stage ............................................................................................................ 19 

3.3. Communication Module ............................................................................................ 20 

3.4. Reconstruction Stage ................................................................................................. 22 

3.4.1. Block Diagram ....................................................................................................... 22 

3.4.2. Target Hardware ................................................................................................ 22 

3.4.3. Top Module – CS_Reco..................................................................................... 23 

4. Results .............................................................................................................................. 28 



 

v 
 

4.1. FISQ Error Analysis .................................................................................................. 28 

4.2. Simulation Results..................................................................................................... 31 

4.2.1. Simulation Results with Number of Measurements Varied .............................. 31 

4.2.2. Simulation Results with Sparsity varied ............................................................ 34 

4.3. Hardware Implementation Results ............................................................................ 36 

5. Conclusion ....................................................................................................................... 38 

References ............................................................................................................................... 39 

 

 

  



 

vi 
 

Abstract 

 Nearly all signal acquisition techniques follow the much celebrated Shannon’s 

sampling theorem which specifies that the sampling rate of the signal must be at least two 

times the highest frequency present in the signal. The sampled data is then compressed to 

make it efficient for storage and transmission. Conventional approach to sampling is 

expensive in terms of data storage and transmission due to the large number of samples 

generated. Some cases increasing sampling rate is also very expensive like high speed ADCs, 

imaging systems, etc. It is also inefficient since lot of the data produced is redundant in nature 

since most naturally occurring signals are sparse in nature. 

Compressive sensing addresses these inefficiencies by directly acquiring a 

compressed signal representation without going through the intermediate stage of acquiring 

all samples. The sampled data can be reconstructed using computationally intensive 

algorithm. CS is also superior to conventional approaches in the following regard that the CS 

performs the time consuming processes at the recovery end rather than the sensing end. 

Reconstruction algorithms are complex and implementation of these algorithms in 

software is extremely slow and power consuming due to the reason that it is based on several 

layer of abstraction and shared resources between multiple processes. On the other hand 

hardware implementation takes advantage of hardware parallelism, custom datapath creation 

ability and dedicated hardware for each task. The hardware implementation in the project will 

be utilizing the OMP algorithm due to its less complexity and faster solution time.  The 

algorithm will be implemented using VHDL. 

 The objective of the project will be to implement the OMP algorithm using optimal 

resources so as to reduce the reconstruction time without compromising with accuracy 

intended. 
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INTRODUCTION  
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1. Introduction 

 Traditional sampling follows the celebrated Shannon’s Sampling Theorem which 

states that the sampling rate must be at least twice the highest frequency content present in 

the signal for a faithful reconstruction of the signal. This approach works well for signal with 

low frequency and signals that are not sparse. When a signal with higher frequency content is 

encountered, the sampling produces a large amount of data, whose handling and storage 

becomes expensive and inefficient since higher frequency content requires higher sampling 

rate which in turn is expensive.  

 

 

 

Another biggest drawback of the conventional sampling approach is that the 

compression stage follows the sampling stage. Even if the signal is heavily sparse sampling 

has to be done before any compression can occur. This method results in large amount of 

redundant data being generated after sampling process which is then discarded during the 

compression process. Compressive sensing eliminates this drawback by incorporating sensing 

and compression in one stage and thus representing the original signal with less elements than 

suggested by its bandwidth.  

 

 

 

 

 

 

Signal or 

Image 
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Sampling 
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or storage 

Figure 1 Conventional Sampling Approach 
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1.1. Compressive Sensing  

Compressive Sensing or Compressed sampling is a novel method of sampling a signal 

below the stated Nyquist rate with the prior knowledge that the signal is sparse in the domain 

it is represented, if not then transformed to be represented in the domain in which it is sparse. 

The sampled signal is then reconstructed using optimization algorithm to produce an 

approximate replica of the original signal. The accuracy of the reproduced signal depends 

upon the accuracy requirement, computation time limit and the algorithm employed. 

Compressed Sensing is essentially to project a signal linearly to a series of 

measurements that consists of fewer elements than original signal. It is a method to obtain a 

unique solution from an underdetermined linear system taking advantage of the prior 

knowledge that the true solution is sparse. [1] 

Compressive sensing incorporates both compression and sensing in one stage thus 

eliminating the more time intensive compression stage which is usually present in the 

conventional sampling techniques to save data. The sensing and compression occur together 

in a single process as opposed to the conventional techniques in which compression process 

follows the sampling stage. 

Let 𝑥 ∈ ℝ be a one dimensional signal and 𝚿 ∈ ℝ𝑛×𝑛 be an orthonormal transform 

matrix, where ℝ is the set of real numbers. This matrix 𝚿 is called representation basis. If 

𝑥 = 𝚿𝑧 and there are only 𝑠 ≪ 𝑛 nonzero entries in z, it is said that that 𝑥 is 𝑠-sparse in 𝚿 

domain. We sample 𝑥 by 𝚽 ∈ ℝ𝑚×𝑛, where 𝑠 < 𝑚 < 𝑛   to get [1] 

𝑦 = 𝚽𝑥 = 𝑨𝑧 ∈ ℝ𝑚 

 Where,  

  𝑦 = Sensed data 

  𝑨 = 𝚽𝚿, also known as the Sensing Matrix 

 If 𝚽 obeys the order 𝑠-restricted isometry property (RIP) and has low coherence with 

𝚿, then 𝑧 (and in turn 𝑥) can be effectively reconstructed. 

The crucial observation is that one can design efficient sensing or sampling protocols 

that capture the useful information content embedded in a sparse signal and condense it into a 
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small amount of data. These protocols are non-adaptive and simply require correlating the 

signal with a small number of fixed waveforms that are incoherent with the sparsifying basis. 

The most remarkable fact about these sampling protocols is that they allow a sensor to very 

efficiently capture the information in a sparse signal without trying to comprehend that 

signal. The full-length signal is reconstructed from the small amount of collected data by 

using numerical optimization. In other words, CS is a very simple and efficient signal 

acquisition protocol which samples—in a signal independent fashion—at a low rate and later 

uses computational power for reconstruction from what appears to be an incomplete set of 

measurements. [2] 

 

1.1.1. Sparsity 

Sparsity refers to the sparseness of a signal. Sparseness is given by the number of 

nonzero components of a signal. A signal with 𝑠 nonzero components is referred as 𝑠-sparse 

signal. It can also be said that the signal has a sparsity of 𝑠. Sparsity represents the idea that 

the information contained in the signal is far less than suggested by its bandwidth. 

Sparsity is an essential requirement for compressive sensing. Even if the signal is not 

sparse in its original domain it can be transformed into a suitable domain where it is sparse in 

nature. This transformation occurs by projection of original signal onto the new domain 

represented by the representation basis. Mathematically speaking it occurs by multiplying the 

original signal vector with the representation basis. 

 

1.1.2. Incoherence 

Incoherence extends the duality between time and frequency and expresses the idea 

that objects having a sparse representation in the basis must be spread out in the domain in 

which they are acquired. This implies that the sensing basis and the representation basis must 

be incoherent.  

Coherence measures the largest correlation between any two elements of the 

dictionary Φ and representation basis 𝚿. Coherence is denoted by 𝜇(𝚽, 𝚿).A measure of 

coherence is given by [3]: 
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𝜇(𝛟, 𝛙) =  √𝑛 ·  max
1≤𝑘,𝑗≤𝑛

|< 𝛟𝑘, 𝛙𝑗 >|  

 Where, 

  𝜇(𝚽, 𝚿) is the coherence between Φ and Ψ, 

  𝑛 is the original vector dimension 

  𝚽 is the dictionary 

  𝚿 is the representation basis. 

The maximum and minimum bounds for the coherence 𝜇(𝚽, 𝚿) is found to be [1, √𝑛] 

[3]. Compressive sensing mainly concerns itself with low coherence pairs, which means high 

incoherency. High incoherency between 𝚽 and 𝚿 means that the samples add new 

information that is not already represented by the known basis 𝚿.  

 

1.1.3. Representation Basis 

Compressive sensing relies on the fact that the signal to be sampled is sparse in 

nature. This doesn’t hold true for all sorts of signals. For example signal such as sinc function 

is spread out all over the time domain. But the Fourier transform of 𝑠𝑖𝑛𝑐 function is 𝑟𝑒𝑐𝑡 

function which is highly sparse considering the fact that the signal’s maximum energy 

component is present in the rectangular portion and rest of the portion is zero. 

Signals such as image in spatial domain is not sparse in nature, thus not useful for 

doing compressive sensing in spatial domain. As stated in the Incoherency section, there 

exists a representation for every signal in which it is sparse in nature. Image, in particular are 

found to be spare in the wavelet domain.  

 

1.1.4. Dictionary 

Dictionary, Φ is the matrix onto which the transformed sparse signal is projected into. 

This matrix causes the dimension reduction in sampled data acquired. Dictionary needs to be 

largely incoherent with the sparsifying representation basis Ψ. 

Fortunately it turns out that random matrices are largely incoherent with any fixed 

sparsifying basis Ψ. This has lead CS to strongly rely on random sensing matrices, since they 

provide universally incoherent sensing-sparsifying pairs and are well conditioned for 
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reconstruction. However to obtain better results measurement matrix can be optimized to 

have lesser coherence. 

 

1.1.5. Sensing Matrix 

Sensing matrix or the measurement matrix is the matrix onto which the original data 

vector is projected. This matrix denoted by 𝐴 is product of multiplication of dictionary Φ and 

representation basis Ψ. The measurement matrix doesn’t depend upon the data to be 

measured rather it is dependent on the fact that it should satisfy the incoherence criteria and 

the restricted isometric property. 
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1.2. Reconstruction 

The reconstruction of the compressed sampled signal involves solution of an 

underdetermined system of linear equations. The basic sensing equation is given by 

y = 𝐀x 

Where, 

  𝑦 is the measured values 

  𝐴 is the sensing matrix 

  𝑥 is the original signal  

  Reconstruction requires the solution of equation for 𝑥. Direct solution of the equation 

never yields a unique solution even with the prior knowledge of the sparseness of the 

solution. The inverse equation is given by [4] 

x̂ = {𝐀T𝐀}−1𝐀Ty 

The signal reconstruction process is essentially to choose the best estimate of the 

original signal from all the possible solutions obtained from the above inverse equation. This 

is achieved by the convex optimization algorithm. The success and accuracy of the 

reconstructed signal is heavily dependent on the sparsity of original signal, sensing matrix 

and the optimization algorithm used.  

The original signal is recovered by solving the following Convex Optimization 

problem: 

�̂� = arg min||𝑥||
1
 subject to y = 𝐀x 

 The minimum number of measurements, m required to faithfully reconstruct a 

compressed sampled signal is given by [2] 

𝑚 ≥ 𝐶. 𝜇(𝚽, 𝚿). 𝑠. log 𝑛 

Where, 

  𝑚 is the number of measurements 
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  𝐶 is some positive constant 

  𝜇(Φ, Ψ) is the coherence measure between Φ and Ψ 

  𝑠 is the sparsity of the signal 

  𝑛 is the vector length of the original signal 

 Optimization algorithm which are used most widely are 𝑙1 optimization algorithm and 

Orthogonal Matching Pursuit algorithm. 

 

1.2.1. 𝒍𝟏-optimization Algorithm 

𝑙1-optimization or 𝑙1-norm optimization algorithm is an linear programming problem 

in the framework of convex optimization. The problem is stated as [2] 

min
𝑥

||𝑥||
1

    subject to 𝑨𝑥 = 𝑦 

The 1 subscript in ||𝑥||
1
 denotes that it is norm 1 optimization algorithm. Replacing 1 

by other whole number, n changes the problem into norm n optimization problem. 

It is more complex in nature and time consuming. But the benefit of using this 

algorithm resides in the fact that the results from utilizing the said algorithm produces better 

result than any other algorithms present. Since it is time consuming, it becomes non useful in 

time critical reconstruction applications thus restricting its usage. 

 

1.2.2. OMP 

Orthogonal matching pursuit is a greedy iterative algorithm for approximatively 

solving the original 𝑙0 pseudo-norm problem OMP constructs an approximation by going 

through an iteration process. At each iteration the locally optimum solution is calculated. 

OMP works by finding a basis vector in 𝐴 that maximizes the correlation with the residual 

(initialized to 𝑦), and then recomputing the residual and coefficients by projecting the 

residual on all atoms in the dictionary using existing coefficients. OMP has the added 

advantage that the atom (each column vector of the sensing matrix is called atom) picked up 

once won’t be picked up in the next iteration. This is achieved by maintaining an atom index 
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which is updated on each iteration. As, a result OMP produces an estimate of the sparse 

signal in 𝑚 iterations. 

OMP is the mathematical optimization problem of the form: [5] 

min𝑥||𝑥||
0
 subject to 𝑦 = 𝑨𝑥 

Where, 

𝑥 is a 𝑁 ×  1 solution vector (signal),  

𝑦 is a 𝑀 ×  1 vector of observations (measurements), 

A is a 𝑀 ×  𝑁 sensing matrix (or measurement matrix) 

and 𝑀 <  𝑁. 

 The biggest advantage of this algorithm is that it is much faster than the 𝑙1 

optimization algorithm but the accuracy of the algorithm is less than the optimization 

algorithm. Thus the project will utilize the OMP algorithm during the reconstruction phase. 

The algorithm also has an added benefit of being easier to implement than the 𝑙1 optimization 

algorithm. 
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2. Compressive Sensing System : Algorithms 

2.1. Sensing 

Given a s-sparse signal of dimension N×1, a measurement matrix A of dimension 

M×N (M is the no of measurements). The sensed data Y (Samples) is given by  

Y =  𝐀 ×  X 

The data Y is a projection of X on sensing matrix A. s, M and N follow the following 

inequality  

𝑠 <  𝑀 <  𝑁  

The measurement matrix does not depend on the data which is to be sensed. For 

compressive sensing to work, the data must be sparse and the measurement matrix 

incoherent. Signal may not be sparse in their usual form but they in transform domain they 

can be represented as sparse. Incoherent matrix can be generated randomly. Alternatively 

measurement matrix can be optimised to decrease the coherence further. In this project we 

have used Gradient Descent Algorithm to increase incoherence between the representation 

basis and measurement matrix. The algorithm is explained below:  

Optimisation of Measurement Matrix: To minimize the gradient using Gram 

Matrix we have used Gradient Descent Algorithm. Pseudo code for the same is given below  

Algorithm 1  

Input: Sparse representation basis 𝚿𝒏𝒏, Step size ‘step’, Maximum number of 

iterations s, Identity matrix 𝐈𝐧𝐧  

Output: Measurement matrix 𝚽  

begin  

Initialize 𝐃 to a M × N random matrix  

for k = 1 to s do  

for j = 1 to n do  

𝑑𝑗 =
𝑑𝑗

‖𝑑𝑗‖2
    

end  
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𝐃 =  𝐃 –  step × 𝐃(𝐃T𝐃 –  𝐈)   

end  

𝛟 =  𝐃𝛙−1  

end  

The algorithm starts with initialisation of matrix D by an M×N random matrix which 

is iteratively updated. The columns of this matrix are normalized at each iteration. The value 

of step size determines how fast the values are reduced.  

The main aim of this project is optimal reconstruction algorithm. Therefore sensing 

part is done using MATLAB. Reconstruction algorithm however is implemented using 

VHDL which take inputs from MATLAB. 
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2.2. Reconstruction 

The algorithm utilized in this project for Compressed Sampling Reconstruction is 

given by [4]: 

Algorithm 2: 

a. Initialize the residual R =  y, the index set �̃�  =  ∅ and the iteration counter 𝑡 =  1 

b. Find the index λt which is most correlated to Φ by solving the optimization 

problem 

λt  = arg max
j=1…N

|< 𝐑t−1, 𝚽j >|    

c. Update the index set 𝛬𝑡 and column set Φ̃  

Λt  =  Λt−1 ∪ {λt} 

�̃�  =  [�̃�  Φ𝜆𝑡
 ] 

d. Calculate the new residual according to 

Rt  =  Rt−1 −  (�̃�t �̃�t
′). Rt−1 

e. Increment 𝑡 and return to step b if t is less than m 

f. Solve the least square problem to find �̂� for the indices in Λ 

�̂� = arg min
𝑥

‖�̃�x − y‖ 

 

2.2.1. Orthogonal matching Pursuit 

Orthogonal matching pursuit (OMP) constructs an approximation by going through an 

iteration process. At each iteration the locally optimum solution is calculated. To begin with a 

residue is initialized with the vector which is required to be approximates i.e. r = Y. For each 

iteration a column vector in A is chosen which most closely resembles a residual vector r. 

The column number is stored in an index set and the entire column in a column set. This 

column set is solved using least square problem to find an approximated data x. The residue 
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is than updated by subtracting the correlation from it for next iteration. It is repeated K times 

to find K non-zero data.  

Algorithm 2  

Input: Measurement matrix A, sensed data Y  

Output: Approximation of sparse signal X ----- x  

begin  

Initialize: residue r = y; index set i = ø; Column set C = ø;  

Iteration counter p = 0  

for (p = 0; p <= K; p = p + 1 )  

begin  

i=arg max |< r ,Aj >|  

Update column set C = [C] ∪ Aj 

Solve least square problem using QR decomposition  

𝑟𝑝 = 𝑟𝑝−1 – (𝐶 · 𝐶’)𝑟𝑝−1.  

end  

end 

2.2.2. Least Square Problem 

The linear least square problem is given by  

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝐱 ∶  ||y – 𝚽x||
2
  

Since we find K maximum correlated column of the original measurement matrix, A 

is therefore a K×N matrix. 𝑥 is the n element solution vector. From the theory of CS we know 

that m < n. Thus the no of equations is less than the no of variables and the system is said to 

be under-determined. There exists infinite solution for this system. The solution which 

minimizes the equation is called the least square solution. Since the minimum value of this 

equation is zero, the equation can be rewritten as  
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𝑥 = 𝐴−1𝑦 

Thus we need to find inverse of matrix A. We used QR decomposition for the same 

which’s algorithm is explained in the next topic. The measurement matrix A can be 

factorized as  

𝐴 =  𝑄𝑅  

Where Q is an orthogonal matrix i.e. 𝑄𝑇𝑄 =  𝐼 and R is a right triangular matrix. The 

problem can now be solved as: [4] 

𝐴�̂� = 𝑦 

{𝐴𝑇𝐴}�̂� = 𝐴𝑇𝑦 

Let 𝐶 = {𝐴𝑇𝐴} 

𝐶�̂� = 𝐴𝑇𝑦 

�̂� = 𝐶−1𝐴𝑇𝑦 

�̂� = {𝑄𝑅}−1𝐴𝑇𝑦 

�̂� = 𝑅−1𝑄−1𝐴𝑇𝑦 

𝑦 = 𝑅−1𝑄𝑇𝐴𝑇𝑥  

QR Decomposition Algorithm: We used modified Gram–Schmidt algorithm for QR 

decomposition. Pseudo code is given below:  

Algorithm 3  

Input: Measurement matrix A of dimension 𝑆 × 𝑆  

Output: Matrix Q and R  

begin 

for k = 1:S  
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𝑄𝑘= 
𝐴𝑘

||𝐴𝑘||
2

  

for j = 1:k  

𝑅𝑘𝑗 = 𝑄𝑘′ × 𝐴𝑗   

𝐴𝑗 = 𝐴𝑗 − 𝑅𝑘𝑗 ∙ 𝐴𝑗   

end  

end  

end  

 

The algorithm starts by storing the elements of input matrix into the Q matrix. In 

every iteration we select one column of Q, calculate the diagonal element of R. This element 

is the Euclidean norm of column of matrix Q which has been selected. The Q matrix column 

is divided by the diagonal element of R. The other elements of the row of R is calculated by 

taking product of columns of matrix A and the column of matrix Q. The Q matrix is updated 

in the next step and the iteration runs again till we reach the last element of matrix R.  

Inversion of upper triangular matrix R: This is the second step in solving the least 

square problem. The inverse of a triangular matrix requires less calculation compared to full 

matrix because of zero entries. The algorithm for the same is given below:  

Algorithm 4  

Input: Right triangular matrix, R 

Output: Right Triangular matrix 𝑉 = 𝑅−1 

Begin 

for i=1:n 

 𝑉𝑖𝑖 = 1/𝑅𝑖𝑖 

end 

for j = 1:n  

begin 

for i = 1:j-1  
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begin  

for k = 1:j-1 begin  

𝑉(𝑖, 𝑗)  =  𝑉(𝑖, 𝑗)  +  𝑉(𝑖, 𝑘)  ∗ 𝑅(𝑘, 𝑗)  

end  

end  

   end 

end 

 end 

end 
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3. Implementation 

Implementation has been done on MATLAB for the sensing stage and on VHDL for 

the reconstruction stage. Target FPGA is Artix 7 100T. The communication protocol used for 

communication between the two stages is UART. UART is implemented on the FPGA to 

enable the FPGA to communicate with the PC where the UART is implemented as virtual 

COM port through the USB.  

Data format utilised for the project is of fixed point type. The data format of the 

measured values will be unsigned 0.16 (0 integer bits and 15 fraction bits) fixed point format 

with range of values from -0.999969482421875 to +0.999969482421875. The data format of 

the sensing matrix will be signed 0.15 (0 integer bits and 15 fraction bits) fixed point format 

as the measured values but with a restricted range of values from -0.999969482421875 to 

+0.999969482421875. The minimum resolution of the data format used will be 

0.000030517578125.  

 

3.1. Block Diagram 

 

 

 

 

3.2. Sensing Stage 

The sensing stage is implemented in MALAB 2014. The sensing stage implemented is 

designed to sample signals with max sparsity of 8 on a 256 length data vector with 64 

measurements taken. This requires for a dictionary of dimension 64 × 256. The dictionary is 

generated by using the random matrix generator and then it is transformed into a orthogonal 

matrix so as to satisfy the necessary requirements of sensing matrix. 

The original signal is unsigned or treated as having only positive signed values. The 

sensing is done using the measurement matrix and the sampled data is converted to binary 

Sensing Stage 

(Implemented 

on MATLAB) 
UART  

Reconstruction 

Stage (FPGA) 

Figure 2 Block Diagram of CS system 
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fixed point representation mentioned above. The sensed data is then sent through the 

communication module to the target hardware which in this case is a FPGA. 

 

3.3. Communication Module 

Communication between the sensing stage and the reconstruction stage is achieved 

through the use of UART. UART on the sensing stage, which happens to be a PC, is 

implemented by use of Virtual COM port over physical USB port. The data from the sensing 

stage is transmitted though the USB port. The reconstruction stage utilizes a USB – UART 

Bridge to convert USB data packets into serial communication data. 

The UART module is implemented using the FPGA resources. The UART is 

configured with 921600 bps (900 Kbps) Baud Rate, 8 Data bits, no Parity bits, 1 Stop Bits 

with Hardware Flow Control. The UART has provision to default to 9600 bps baud rate if the 

UART module for some reason doesn’t initialise to 921600 bps. The UART module on 

reconstruction stage has 2 wires (TX, RX) to connect to the sensing stage. Presence of USB – 

UART Bridge eliminates the need for implementing the whole protocol. UART module in the 

FPGA has internal signals (DIN, DOUT) connected to the reconstruction module. The signals 

are 24 bit wide. 

DIN signal, which is obviously an input to the UART module, has the format as 

specified below:  

 

   23       16  15            0 

The index represents the index of the estimated signal vector element sent through the 

bits 15 to 0. The data is sent MSB first and on top of that MSb first too. 

DOUT signal, which the output from the UART module, has the format as specified 

below: 

State Bank Select Data Bits 

     23    22 21                  16  15                      0 

The state represents the role of the data received in the Data Bits. Bank Select data 

field selects the bank from 64 banks of memory available for writing. 

Index Estimated Signal Data 
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RTL Design of the UART: 

 

Figure 3 RTL of UART Module 

 

Figure 4 RTL of the Submodules of the UART Module 
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3.4. Reconstruction Stage 

Reconstruction stage is implemented in the FPGA. The HDL program used for 

implementation is VHDL and the toolchain Vivado ISE WebPACK version.  

Basic Implementation Details are: 

• Fixed point number representation used. 

• Data width – 16 bits 

• Fixed point format (0.15Q), 1 bit for sign and rest 15 for fractional bits. 

• Data range is -1 to 1.  

• Implemented Vector length 

𝑥 = 256 

𝑦 = 64 

�̂� = 8 

• Sensing Matrix Dimension, 𝜙 : 64 × 256 

3.4.1. Block Diagram 

 

 

 

 

 

Figure 5 Block Diagram of Implementation Stage 

 

3.4.2. Target Hardware 

The target hardware for implementation of the reconstruction stage is Xilinx Artix 7 

100T FPGA on the Nexys 4 development board. 

 

Sensing 

Matrix 

Sampled 

Data 

Max Correlation 

Module 

Least Square 

Solution 
Estimated 

Signal 



 

23 
 

3.4.3. Top Module – CS_Reco 

The CS_Reco module is implemented through the use of six submodules which are as 

below: 

 MUL_RAM_Array Module 

 Adder Tree Module 

 Max Module 

 FISQ Module 

MUL_RAM_Array Module and Adder Tree Module are shared between the Max 

Correlated module and Least Square Solution module to minimize the resource usage. The 

Max Correlated Module finds the maximum correlated vector and the Least Square module 

solves the Least Square problem by using QR decomposition ,inverting the Right Triangular 

matrix and FISQ module. 

 

Figure 6 RTL of the CS_RECO Module 

 

MUL RAM Array Module 

 The MUL RAM Array Module implements an array of RAM and a 16 bit register 

followed by Multiplier particularly 64 in number for the parallel access to the all the elements 

of columns of the sensing matrix, Φ. The RAM is implemented on the Block RAM 
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Resources in the Single Port Configuration and the Multiplier on the DSP48e resources 

available on the FPGA. 

The RAM has data width of 15 bits and depth of 290 for the first 8 RAMs of the array 

and 256 for the rest of the RAMs in the array, to store 1 row of the sensing matrix, C Matrix, 

Q Matrix, R Matrix, V Matrix and the Residue register. The output of the Multiplier is recast 

into the signed 0.15 fixed point format to conserve resources. 

The MUL_RAM_Array module is shared between the Max Correlation Module and 

the Least Square Module for storing data, multiplication and parallel subtraction operations.  

 

Figure 7 RTL of the MUL RAM Array Module 

 

Adder Tree Module 

 The Adder Tree Module is implemented using 8:1 Adder Trees. The 64 inputs from 

the MUL RAM Array are input to the module and module produces the sum in two clock 
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cycles. Single Adder Tree produces output in single clock cycle. For Least Square Solutions, 

a single module is implemented for performing the addition work. 

 

Figure 8 RTL of the Adder Tree Module 

Max Block 

 The Max Module calculates the maximum correlated vector and outputs the max 

correlated sum and the index of the max correlated vector. It is essentially an comparator 

circuit. 

 

Figure 9 RTL of Max Module 
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FISQ Module 

 The FISQ Module implements the Fast Inverse Square Root algorithm along with the 

Newton’s Iteration method for increasing accuracy. The C algorithm for implementing the 

FISQ algorithm [11] is as below: 

float invSqrt(float x) 

{ 

        float xhalf = 0.5f*x; 

        union 

        { 

           float x; 

                int i; 

        } u; 

        u.x = x; 

        u.i = 0x5f3759df - (u.i >> 1); 

        x = u.x * (1.5f - xhalf * u.x * u.x); 

        return x; 

} 

Synthesized RTL of the FISQ Module is as below: 

 

Figure 10 RTL of the FISQ Module 
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4. Results 

4.1. FISQ Error Analysis 

FISQ or Fast Inverse Square Root has been implemented using an approximate 

algorithm to circumvent the usage of Divider and Square root operations. This algorithm as 

described in implementation introduces error into the calculation. Since the inverse square 

value is utilized in the Graham Schmidt QRD process, it remains essential to minimize the 

error from using the algorithm, which is done by applying the Newton’s Iteration Method. 

 

 

Figure 11 Comparison of the values obtained from the algorithm with the actual values 

 

As evident from the graph above using only the approximate algorithm gives out 

output with notable differences from the original value. Using the FISQ module in this state 

will increase the error in the whole system. 
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Figure 12 Error % between the original value and approximate values 

 

 

Figure 13 Comparison of the values from FISQ Module after application of Newton's 

Iteration Method and Original Values 
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Figure 14 Error % between Original values and FISQ value after application of Newton's 

Iteration Method 

 As evident from the above graph utilization of the Newton’s Iteration Method reduces 

the error in approximation by considerable amount. Theoretical calculations suggest that 

utilization of another iteration of Newton’s method will exhaust the precision bits of single 

precision floating point number. In this project, only one iteration is used to save resource 

and reconstruction time. 
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4.2. Simulation Results 

Simulation of the whole sensing and reconstruction stages of the Compressed 

Sampling problem has been done on the MATLAB. 

 

4.2.1. Simulation Results with Number of Measurements Varied 

Simulation is carried out on a 4096 length random signal with sampled vector length 

of 256 for sparsity of 8. Signal was generated at random using sparse random generator and 

low amplitude Gaussian noise was added to the signal to simulate real world scenario where 

the low amplitude values below certain threshold are considered zero so as to consider the 

signal sparse. 

 

Simulation waveforms as attached below: 

 

Figure 15 CS Reconstruction with Number of Measurements, m=16. MSE of reconstructed 

signal is 0.00290763897881587 

 



 

32 
 

 

Figure 16  CS Reconstruction with Number of Measurements, m=32. MSE of reconstructed 

signal is 9.49620736657815e-05 

 

Figure 17 CS Reconstruction with Number of Measurements, m=64. MSE of reconstructed 

signal is 5.31479595498806e-05 
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Figure 18 CS Reconstruction with Number of Measurements, m=128. MSE of reconstructed 

signal is 3.95939928824365e-05 

 

  

Figure 19 MSE of Reconstructed signal with variation in number of measurements 
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As, seen from the graph, it is clear that the larger the number of measurements, larger 

is the probability of reconstruction with less error. We see that the reconstructed signal MSE 

or Mean Square Error decreases with increase of number of measurements for number of 

measurements low, but remains almost constant in higher number of measurements area. This 

shows that, we can reconstruct the success with high probability for number of measurements 

greater than or equal to 3 times the sparsity for this type of dictionary. 

 

4.2.2. Simulation Results with Sparsity varied 

Another parameter that can be varied is the sparsity level of the signal. For this 

purpose we use the same dictionary but with number of measurements fixed at 128. The 

sparsity is varied from 16 to128. It is found that lower the sparsity, higher the chance of 

recovery of signal. 

 

Figure 20 CS Reconstruction with Sparsity, s=16. MSE of reconstructed signal is 

4.80328602702109e-05 
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Figure 21 CS Reconstruction with Sparsity, s=32. MSE of reconstructed signal is 

5.34504725853364e-05 

 

Figure 22 CS Reconstruction with Sparsity, s=64. MSE of reconstructed signal is 

5.25423356642963e-05. 
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Figure 23 CS Reconstruction with Sparsity, s=128. MSE of reconstructed signal is 

0.0210434520458666. 

 

4.3. Hardware Implementation Results 

The whole reconstruction stage design was implemented on the target hardware Artix 

7 100T FPGA. System clock of the FPGA ran at 100MHz and was used throughout the 

design. Implementation result show that the whole reconstruction for a vector of length 256 

and sparsity 8 with number of measurements 64 takes about 25 𝜇s, ignoring the overhead for 

UART communication whereas the MATLAB simulation of the code took about 0.31 s. 
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5. Conclusion 

This work implements the CS reconstruction algorithm on FPGA. The signals sampled 

here are 1D signals which are sparse in their natural domain. We found that the minimum 

bound for number of measurements for faithful recovery of the compressed sampled signal to 

be more than or equal to the 4 times the sparsity of the signal sampled. This is in 

conformance with the theory as stated before. We also found that the lesser the sparsity, less 

number of measurements required. We also found that the randomly generated dictionary 

used here works as an excellent sensing matrix for sampling purposes. As expected the 

reconstruction time on the hardware beat the time to reconstruct on the software environment. 

For future work, the reconstructed time can be reduced by running the individual 

modules at different clock frequency, such that the overall system runs at a higher speed than 

the currently use single clock throughout the system. The sensing stage can be implemented 

on the hardware. The communication used here is UART which can be replace by much 

faster networking protocol such as the Wi-Fi and Ethernet, etc. The work can further be 

extended to compress sample images, audio signals and video signals. 
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