

HDL Implementation of OMP Based

Compressed Sampled Reconstruction

Algorithm

A thesis submitted in partial fulfilment of the requirement for

M.Tech Dual Degree

In

Electronics and Communication Engineering

(Specialization: VLSI Design and Embedded Systems)

SUBMITTED BY

Bibekananda Jena

710EC2045

Under the Guidance of:

Prof. S. Deshmukh

Assistant Professor

Department of Electronics and Communication

NIT Rourkela

Department of Electronics and Communication Engineering

National Institute of Technology, Rourkela

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80148554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HDL Implementation of OMP Based

Compressed Sampled Reconstruction

Algorithm

A thesis submitted in partial fulfilment of the requirement for

M.Tech Dual Degree

In

Electronics and Communication Engineering

(Specialization: VLSI Design and Embedded Systems)

SUBMITTED BY

Bibekananda Jena

710EC2045

Under the Guidance of:

Prof. S. Deshmukh

Assistant Professor

Department of Electronics and Communication

NIT Rourkela

Department of Electronics and Communication Engineering

National Institute of Technology, Rourkela

i

DEPT. OF ELECRTONICS AND COMMUNICATION ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA, ODISHA -769008

CERTIFICATE

This is to certify that the work presented in the thesis entitled “HDL Implementation

of OMP Based Compressed Sampled Reconstruction Algorithm” by Bibekananda Jena

is a bonafide record of the original research work carried out by him at National Institute of

Technology, Rourkela under my supervision and guidance during 2014-2015 in partial

fulfilment for the award of Dual Degree in Electronics and Instrumentation Engineering

(Communication and Signal Processing), National Institute of Technology, Rourkela.

Place: NIT Rourkela

Date:

Prof. S. Deshmukh

Assistant Professor

Dept. of Electronics and Communication

NIT Rourkela

DEPT. OF ELECRTONICS AND COMMUNICATION ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA, ODISHA -769008

DECLARATION

 I hereby declare that the work presented in the thesis titled “HDL Implementation of

OMP Based Compressed sampled Reconstruction Algorithm” being submitted in partial

fulfilment for the degree of Master of Technology is a bonafide record of the research work

done by me under the supervision of Prof. Siddharth Deshmukh, Dept. of Electronics and

Communication Engineering, National Institute of Technology, Rourkela, India and that no

part of this work has been presented for I also declare that due credit has been given to the

information presented from other sources wherever used in this work through citations with

details in the Reference section.

Bibekananda Jena

710EC2045

iii

DEPT. OF ELECRTONICS AND COMMUNICATION ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA, ODISHA -769008

ACKNOWLEDGEMENT

 The research work has been partly made possible due to the continuous support

motivation of lot of people from every aspect of my life. I sincerely extend my heartfelt

gratitude to my project guide Prof. Siddharth Deshmukh for suggesting me the research

topic and providing his guidance and supervision throughout the period of research work. I

would also like to thank all the faculty members of the Department of Electronics and

Communication Engineering, NIT Rourkela for their valuable help. I extend my gratitude and

sincere thanks to the fellow students, research scholars and Lab Assistant at the Mobile

Communication Lab, Dept. of ECE, NIT Rourkela. Finally, I would also like to thank my

family and friends for their support and help.

Bibekananda Jena

710EC2045

iv

INDEX
Abstract .. vi

List of Figures ... vii

1. Introduction .. 2

1.1. Compressive Sensing .. 3

1.1.1. Sparsity .. 4

1.1.2. Incoherence .. 4

1.1.3. Representation Basis .. 5

1.1.4. Dictionary .. 5

1.1.5. Sensing Matrix ... 6

1.2. Reconstruction ... 7

1.2.1. 𝑙1-optimization Algorithm ... 8

1.2.2. OMP ... 8

2. Compressive Sensing System : Algorithms .. 11

2.1. Sensing .. 11

2.2. Reconstruction ... 13

2.2.1. Orthogonal matching Pursuit ... 13

2.2.2. Least Square Problem .. 14

3. Implementation ... 19

3.1. Block Diagram .. 19

3.2. Sensing Stage .. 19

3.3. Communication Module .. 20

3.4. Reconstruction Stage ... 22

3.4.1. Block Diagram ... 22

3.4.2. Target Hardware .. 22

3.4.3. Top Module – CS_Reco... 23

4. Results .. 28

v

4.1. FISQ Error Analysis .. 28

4.2. Simulation Results... 31

4.2.1. Simulation Results with Number of Measurements Varied 31

4.2.2. Simulation Results with Sparsity varied .. 34

4.3. Hardware Implementation Results .. 36

5. Conclusion ... 38

References ... 39

vi

Abstract

 Nearly all signal acquisition techniques follow the much celebrated Shannon’s

sampling theorem which specifies that the sampling rate of the signal must be at least two

times the highest frequency present in the signal. The sampled data is then compressed to

make it efficient for storage and transmission. Conventional approach to sampling is

expensive in terms of data storage and transmission due to the large number of samples

generated. Some cases increasing sampling rate is also very expensive like high speed ADCs,

imaging systems, etc. It is also inefficient since lot of the data produced is redundant in nature

since most naturally occurring signals are sparse in nature.

Compressive sensing addresses these inefficiencies by directly acquiring a

compressed signal representation without going through the intermediate stage of acquiring

all samples. The sampled data can be reconstructed using computationally intensive

algorithm. CS is also superior to conventional approaches in the following regard that the CS

performs the time consuming processes at the recovery end rather than the sensing end.

Reconstruction algorithms are complex and implementation of these algorithms in

software is extremely slow and power consuming due to the reason that it is based on several

layer of abstraction and shared resources between multiple processes. On the other hand

hardware implementation takes advantage of hardware parallelism, custom datapath creation

ability and dedicated hardware for each task. The hardware implementation in the project will

be utilizing the OMP algorithm due to its less complexity and faster solution time. The

algorithm will be implemented using VHDL.

 The objective of the project will be to implement the OMP algorithm using optimal

resources so as to reduce the reconstruction time without compromising with accuracy

intended.

vii

List of Figures

Figure 1 Conventional Sampling Approach .. 2

Figure 2 Block Diagram of CS system .. 19

Figure 3 RTL of UART Module .. 21

Figure 4 RTL of the Submodules of the UART Module ... 21

Figure 5 Block Diagram of Implementation Stage .. 22

Figure 6 RTL of the CS_RECO Module ... 23

Figure 7 RTL of the MUL RAM Array Module.. 24

Figure 8 RTL of the Adder Tree Module... 25

Figure 9 RTL of Max Module ... 25

Figure 10 RTL of the FISQ Module .. 26

Figure 11 Comparison of the values obtained from the algorithm with the actual values 28

Figure 12 Error % between the original value and approximate values 29

Figure 13 Comparison of the values from FISQ Module after application of Newton's

Iteration Method and Original Values ... 29

Figure 14 Error % between Original values and FISQ value after application of Newton's

Iteration Method .. 30

Figure 15 CS Reconstruction with Number of Measurements, m=16. 31

Figure 16 CS Reconstruction with Number of Measurements, m=32. 32

Figure 17 CS Reconstruction with Number of Measurements, m=64. 32

Figure 18 CS Reconstruction with Number of Measurements, m=128. 33

Figure 19 MSE of Reconstructed signal with variation in number of measurements 33

Figure 20 CS Reconstruction with Sparsity, s=16. .. 34

Figure 21 CS Reconstruction with Sparsity, s=32. .. 35

Figure 22 CS Reconstruction with Sparsity, s=64. .. 35

Figure 23 CS Reconstruction with Sparsity, s=128. .. 36

file:///E:/710ec2045_thesis.docx%23_Toc421086015
file:///E:/710ec2045_thesis.docx%23_Toc421086016

CHAPTER 1

INTRODUCTION

2

1. Introduction

 Traditional sampling follows the celebrated Shannon’s Sampling Theorem which

states that the sampling rate must be at least twice the highest frequency content present in

the signal for a faithful reconstruction of the signal. This approach works well for signal with

low frequency and signals that are not sparse. When a signal with higher frequency content is

encountered, the sampling produces a large amount of data, whose handling and storage

becomes expensive and inefficient since higher frequency content requires higher sampling

rate which in turn is expensive.

Another biggest drawback of the conventional sampling approach is that the

compression stage follows the sampling stage. Even if the signal is heavily sparse sampling

has to be done before any compression can occur. This method results in large amount of

redundant data being generated after sampling process which is then discarded during the

compression process. Compressive sensing eliminates this drawback by incorporating sensing

and compression in one stage and thus representing the original signal with less elements than

suggested by its bandwidth.

Signal or

Image

Conventional

Sampling
Compression To

Transmission

or storage

Figure 1 Conventional Sampling Approach

3

1.1. Compressive Sensing

Compressive Sensing or Compressed sampling is a novel method of sampling a signal

below the stated Nyquist rate with the prior knowledge that the signal is sparse in the domain

it is represented, if not then transformed to be represented in the domain in which it is sparse.

The sampled signal is then reconstructed using optimization algorithm to produce an

approximate replica of the original signal. The accuracy of the reproduced signal depends

upon the accuracy requirement, computation time limit and the algorithm employed.

Compressed Sensing is essentially to project a signal linearly to a series of

measurements that consists of fewer elements than original signal. It is a method to obtain a

unique solution from an underdetermined linear system taking advantage of the prior

knowledge that the true solution is sparse. [1]

Compressive sensing incorporates both compression and sensing in one stage thus

eliminating the more time intensive compression stage which is usually present in the

conventional sampling techniques to save data. The sensing and compression occur together

in a single process as opposed to the conventional techniques in which compression process

follows the sampling stage.

Let 𝑥 ∈ ℝ be a one dimensional signal and 𝚿 ∈ ℝ𝑛×𝑛 be an orthonormal transform

matrix, where ℝ is the set of real numbers. This matrix 𝚿 is called representation basis. If

𝑥 = 𝚿𝑧 and there are only 𝑠 ≪ 𝑛 nonzero entries in z, it is said that that 𝑥 is 𝑠-sparse in 𝚿

domain. We sample 𝑥 by 𝚽 ∈ ℝ𝑚×𝑛, where 𝑠 < 𝑚 < 𝑛 to get [1]

𝑦 = 𝚽𝑥 = 𝑨𝑧 ∈ ℝ𝑚

 Where,

 𝑦 = Sensed data

 𝑨 = 𝚽𝚿, also known as the Sensing Matrix

 If 𝚽 obeys the order 𝑠-restricted isometry property (RIP) and has low coherence with

𝚿, then 𝑧 (and in turn 𝑥) can be effectively reconstructed.

The crucial observation is that one can design efficient sensing or sampling protocols

that capture the useful information content embedded in a sparse signal and condense it into a

4

small amount of data. These protocols are non-adaptive and simply require correlating the

signal with a small number of fixed waveforms that are incoherent with the sparsifying basis.

The most remarkable fact about these sampling protocols is that they allow a sensor to very

efficiently capture the information in a sparse signal without trying to comprehend that

signal. The full-length signal is reconstructed from the small amount of collected data by

using numerical optimization. In other words, CS is a very simple and efficient signal

acquisition protocol which samples—in a signal independent fashion—at a low rate and later

uses computational power for reconstruction from what appears to be an incomplete set of

measurements. [2]

1.1.1. Sparsity

Sparsity refers to the sparseness of a signal. Sparseness is given by the number of

nonzero components of a signal. A signal with 𝑠 nonzero components is referred as 𝑠-sparse

signal. It can also be said that the signal has a sparsity of 𝑠. Sparsity represents the idea that

the information contained in the signal is far less than suggested by its bandwidth.

Sparsity is an essential requirement for compressive sensing. Even if the signal is not

sparse in its original domain it can be transformed into a suitable domain where it is sparse in

nature. This transformation occurs by projection of original signal onto the new domain

represented by the representation basis. Mathematically speaking it occurs by multiplying the

original signal vector with the representation basis.

1.1.2. Incoherence

Incoherence extends the duality between time and frequency and expresses the idea

that objects having a sparse representation in the basis must be spread out in the domain in

which they are acquired. This implies that the sensing basis and the representation basis must

be incoherent.

Coherence measures the largest correlation between any two elements of the

dictionary Φ and representation basis 𝚿. Coherence is denoted by 𝜇(𝚽, 𝚿).A measure of

coherence is given by [3]:

5

𝜇(𝛟, 𝛙) = √𝑛 · max
1≤𝑘,𝑗≤𝑛

|< 𝛟𝑘, 𝛙𝑗 >|

 Where,

 𝜇(𝚽, 𝚿) is the coherence between Φ and Ψ,

 𝑛 is the original vector dimension

 𝚽 is the dictionary

 𝚿 is the representation basis.

The maximum and minimum bounds for the coherence 𝜇(𝚽, 𝚿) is found to be [1, √𝑛]

[3]. Compressive sensing mainly concerns itself with low coherence pairs, which means high

incoherency. High incoherency between 𝚽 and 𝚿 means that the samples add new

information that is not already represented by the known basis 𝚿.

1.1.3. Representation Basis

Compressive sensing relies on the fact that the signal to be sampled is sparse in

nature. This doesn’t hold true for all sorts of signals. For example signal such as sinc function

is spread out all over the time domain. But the Fourier transform of 𝑠𝑖𝑛𝑐 function is 𝑟𝑒𝑐𝑡

function which is highly sparse considering the fact that the signal’s maximum energy

component is present in the rectangular portion and rest of the portion is zero.

Signals such as image in spatial domain is not sparse in nature, thus not useful for

doing compressive sensing in spatial domain. As stated in the Incoherency section, there

exists a representation for every signal in which it is sparse in nature. Image, in particular are

found to be spare in the wavelet domain.

1.1.4. Dictionary

Dictionary, Φ is the matrix onto which the transformed sparse signal is projected into.

This matrix causes the dimension reduction in sampled data acquired. Dictionary needs to be

largely incoherent with the sparsifying representation basis Ψ.

Fortunately it turns out that random matrices are largely incoherent with any fixed

sparsifying basis Ψ. This has lead CS to strongly rely on random sensing matrices, since they

provide universally incoherent sensing-sparsifying pairs and are well conditioned for

6

reconstruction. However to obtain better results measurement matrix can be optimized to

have lesser coherence.

1.1.5. Sensing Matrix

Sensing matrix or the measurement matrix is the matrix onto which the original data

vector is projected. This matrix denoted by 𝐴 is product of multiplication of dictionary Φ and

representation basis Ψ. The measurement matrix doesn’t depend upon the data to be

measured rather it is dependent on the fact that it should satisfy the incoherence criteria and

the restricted isometric property.

7

1.2. Reconstruction

The reconstruction of the compressed sampled signal involves solution of an

underdetermined system of linear equations. The basic sensing equation is given by

y = 𝐀x

Where,

 𝑦 is the measured values

 𝐴 is the sensing matrix

 𝑥 is the original signal

 Reconstruction requires the solution of equation for 𝑥. Direct solution of the equation

never yields a unique solution even with the prior knowledge of the sparseness of the

solution. The inverse equation is given by [4]

x̂ = {𝐀T𝐀}−1𝐀Ty

The signal reconstruction process is essentially to choose the best estimate of the

original signal from all the possible solutions obtained from the above inverse equation. This

is achieved by the convex optimization algorithm. The success and accuracy of the

reconstructed signal is heavily dependent on the sparsity of original signal, sensing matrix

and the optimization algorithm used.

The original signal is recovered by solving the following Convex Optimization

problem:

�̂� = arg min||𝑥||
1
 subject to y = 𝐀x

 The minimum number of measurements, m required to faithfully reconstruct a

compressed sampled signal is given by [2]

𝑚 ≥ 𝐶. 𝜇(𝚽, 𝚿). 𝑠. log 𝑛

Where,

 𝑚 is the number of measurements

8

 𝐶 is some positive constant

 𝜇(Φ, Ψ) is the coherence measure between Φ and Ψ

 𝑠 is the sparsity of the signal

 𝑛 is the vector length of the original signal

 Optimization algorithm which are used most widely are 𝑙1 optimization algorithm and

Orthogonal Matching Pursuit algorithm.

1.2.1. 𝒍𝟏-optimization Algorithm

𝑙1-optimization or 𝑙1-norm optimization algorithm is an linear programming problem

in the framework of convex optimization. The problem is stated as [2]

min
𝑥

||𝑥||
1

 subject to 𝑨𝑥 = 𝑦

The 1 subscript in ||𝑥||
1
 denotes that it is norm 1 optimization algorithm. Replacing 1

by other whole number, n changes the problem into norm n optimization problem.

It is more complex in nature and time consuming. But the benefit of using this

algorithm resides in the fact that the results from utilizing the said algorithm produces better

result than any other algorithms present. Since it is time consuming, it becomes non useful in

time critical reconstruction applications thus restricting its usage.

1.2.2. OMP

Orthogonal matching pursuit is a greedy iterative algorithm for approximatively

solving the original 𝑙0 pseudo-norm problem OMP constructs an approximation by going

through an iteration process. At each iteration the locally optimum solution is calculated.

OMP works by finding a basis vector in 𝐴 that maximizes the correlation with the residual

(initialized to 𝑦), and then recomputing the residual and coefficients by projecting the

residual on all atoms in the dictionary using existing coefficients. OMP has the added

advantage that the atom (each column vector of the sensing matrix is called atom) picked up

once won’t be picked up in the next iteration. This is achieved by maintaining an atom index

9

which is updated on each iteration. As, a result OMP produces an estimate of the sparse

signal in 𝑚 iterations.

OMP is the mathematical optimization problem of the form: [5]

min𝑥||𝑥||
0
 subject to 𝑦 = 𝑨𝑥

Where,

𝑥 is a 𝑁 × 1 solution vector (signal),

𝑦 is a 𝑀 × 1 vector of observations (measurements),

A is a 𝑀 × 𝑁 sensing matrix (or measurement matrix)

and 𝑀 < 𝑁.

 The biggest advantage of this algorithm is that it is much faster than the 𝑙1

optimization algorithm but the accuracy of the algorithm is less than the optimization

algorithm. Thus the project will utilize the OMP algorithm during the reconstruction phase.

The algorithm also has an added benefit of being easier to implement than the 𝑙1 optimization

algorithm.

CHAPTER 2

COMPRESSIVE SENSING SYSTEM : ALGORITHMS

11

2. Compressive Sensing System : Algorithms

2.1. Sensing

Given a s-sparse signal of dimension N×1, a measurement matrix A of dimension

M×N (M is the no of measurements). The sensed data Y (Samples) is given by

Y = 𝐀 × X

The data Y is a projection of X on sensing matrix A. s, M and N follow the following

inequality

𝑠 < 𝑀 < 𝑁

The measurement matrix does not depend on the data which is to be sensed. For

compressive sensing to work, the data must be sparse and the measurement matrix

incoherent. Signal may not be sparse in their usual form but they in transform domain they

can be represented as sparse. Incoherent matrix can be generated randomly. Alternatively

measurement matrix can be optimised to decrease the coherence further. In this project we

have used Gradient Descent Algorithm to increase incoherence between the representation

basis and measurement matrix. The algorithm is explained below:

Optimisation of Measurement Matrix: To minimize the gradient using Gram

Matrix we have used Gradient Descent Algorithm. Pseudo code for the same is given below

Algorithm 1

Input: Sparse representation basis 𝚿𝒏𝒏, Step size ‘step’, Maximum number of

iterations s, Identity matrix 𝐈𝐧𝐧

Output: Measurement matrix 𝚽

begin

Initialize 𝐃 to a M × N random matrix

for k = 1 to s do

for j = 1 to n do

𝑑𝑗 =
𝑑𝑗

‖𝑑𝑗‖2

end

12

𝐃 = 𝐃 – step × 𝐃(𝐃T𝐃 – 𝐈)

end

𝛟 = 𝐃𝛙−1

end

The algorithm starts with initialisation of matrix D by an M×N random matrix which

is iteratively updated. The columns of this matrix are normalized at each iteration. The value

of step size determines how fast the values are reduced.

The main aim of this project is optimal reconstruction algorithm. Therefore sensing

part is done using MATLAB. Reconstruction algorithm however is implemented using

VHDL which take inputs from MATLAB.

13

2.2. Reconstruction

The algorithm utilized in this project for Compressed Sampling Reconstruction is

given by [4]:

Algorithm 2:

a. Initialize the residual R = y, the index set �̃� = ∅ and the iteration counter 𝑡 = 1

b. Find the index λt which is most correlated to Φ by solving the optimization

problem

λt = arg max
j=1…N

|< 𝐑t−1, 𝚽j >|

c. Update the index set 𝛬𝑡 and column set Φ̃

Λt = Λt−1 ∪ {λt}

�̃� = [�̃� Φ𝜆𝑡
]

d. Calculate the new residual according to

Rt = Rt−1 − (�̃�t �̃�t
′). Rt−1

e. Increment 𝑡 and return to step b if t is less than m

f. Solve the least square problem to find �̂� for the indices in Λ

�̂� = arg min
𝑥

‖�̃�x − y‖

2.2.1. Orthogonal matching Pursuit

Orthogonal matching pursuit (OMP) constructs an approximation by going through an

iteration process. At each iteration the locally optimum solution is calculated. To begin with a

residue is initialized with the vector which is required to be approximates i.e. r = Y. For each

iteration a column vector in A is chosen which most closely resembles a residual vector r.

The column number is stored in an index set and the entire column in a column set. This

column set is solved using least square problem to find an approximated data x. The residue

14

is than updated by subtracting the correlation from it for next iteration. It is repeated K times

to find K non-zero data.

Algorithm 2

Input: Measurement matrix A, sensed data Y

Output: Approximation of sparse signal X ----- x

begin

Initialize: residue r = y; index set i = ø; Column set C = ø;

Iteration counter p = 0

for (p = 0; p <= K; p = p + 1)

begin

i=arg max |< r ,Aj >|

Update column set C = [C] ∪ Aj

Solve least square problem using QR decomposition

𝑟𝑝 = 𝑟𝑝−1 – (𝐶 · 𝐶’)𝑟𝑝−1.

end

end

2.2.2. Least Square Problem

The linear least square problem is given by

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝐱 ∶ ||y – 𝚽x||
2

Since we find K maximum correlated column of the original measurement matrix, A

is therefore a K×N matrix. 𝑥 is the n element solution vector. From the theory of CS we know

that m < n. Thus the no of equations is less than the no of variables and the system is said to

be under-determined. There exists infinite solution for this system. The solution which

minimizes the equation is called the least square solution. Since the minimum value of this

equation is zero, the equation can be rewritten as

15

𝑥 = 𝐴−1𝑦

Thus we need to find inverse of matrix A. We used QR decomposition for the same

which’s algorithm is explained in the next topic. The measurement matrix A can be

factorized as

𝐴 = 𝑄𝑅

Where Q is an orthogonal matrix i.e. 𝑄𝑇𝑄 = 𝐼 and R is a right triangular matrix. The

problem can now be solved as: [4]

𝐴�̂� = 𝑦

{𝐴𝑇𝐴}�̂� = 𝐴𝑇𝑦

Let 𝐶 = {𝐴𝑇𝐴}

𝐶�̂� = 𝐴𝑇𝑦

�̂� = 𝐶−1𝐴𝑇𝑦

�̂� = {𝑄𝑅}−1𝐴𝑇𝑦

�̂� = 𝑅−1𝑄−1𝐴𝑇𝑦

𝑦 = 𝑅−1𝑄𝑇𝐴𝑇𝑥

QR Decomposition Algorithm: We used modified Gram–Schmidt algorithm for QR

decomposition. Pseudo code is given below:

Algorithm 3

Input: Measurement matrix A of dimension 𝑆 × 𝑆

Output: Matrix Q and R

begin

for k = 1:S

16

𝑄𝑘=
𝐴𝑘

||𝐴𝑘||
2

for j = 1:k

𝑅𝑘𝑗 = 𝑄𝑘′ × 𝐴𝑗

𝐴𝑗 = 𝐴𝑗 − 𝑅𝑘𝑗 ∙ 𝐴𝑗

end

end

end

The algorithm starts by storing the elements of input matrix into the Q matrix. In

every iteration we select one column of Q, calculate the diagonal element of R. This element

is the Euclidean norm of column of matrix Q which has been selected. The Q matrix column

is divided by the diagonal element of R. The other elements of the row of R is calculated by

taking product of columns of matrix A and the column of matrix Q. The Q matrix is updated

in the next step and the iteration runs again till we reach the last element of matrix R.

Inversion of upper triangular matrix R: This is the second step in solving the least

square problem. The inverse of a triangular matrix requires less calculation compared to full

matrix because of zero entries. The algorithm for the same is given below:

Algorithm 4

Input: Right triangular matrix, R

Output: Right Triangular matrix 𝑉 = 𝑅−1

Begin

for i=1:n

 𝑉𝑖𝑖 = 1/𝑅𝑖𝑖

end

for j = 1:n

begin

for i = 1:j-1

17

begin

for k = 1:j-1 begin

𝑉(𝑖, 𝑗) = 𝑉(𝑖, 𝑗) + 𝑉(𝑖, 𝑘) ∗ 𝑅(𝑘, 𝑗)

end

end

 end

end

 end

end

CHAPTER 3

IMPLEMENTATION

19

3. Implementation

Implementation has been done on MATLAB for the sensing stage and on VHDL for

the reconstruction stage. Target FPGA is Artix 7 100T. The communication protocol used for

communication between the two stages is UART. UART is implemented on the FPGA to

enable the FPGA to communicate with the PC where the UART is implemented as virtual

COM port through the USB.

Data format utilised for the project is of fixed point type. The data format of the

measured values will be unsigned 0.16 (0 integer bits and 15 fraction bits) fixed point format

with range of values from -0.999969482421875 to +0.999969482421875. The data format of

the sensing matrix will be signed 0.15 (0 integer bits and 15 fraction bits) fixed point format

as the measured values but with a restricted range of values from -0.999969482421875 to

+0.999969482421875. The minimum resolution of the data format used will be

0.000030517578125.

3.1. Block Diagram

3.2. Sensing Stage

The sensing stage is implemented in MALAB 2014. The sensing stage implemented is

designed to sample signals with max sparsity of 8 on a 256 length data vector with 64

measurements taken. This requires for a dictionary of dimension 64 × 256. The dictionary is

generated by using the random matrix generator and then it is transformed into a orthogonal

matrix so as to satisfy the necessary requirements of sensing matrix.

The original signal is unsigned or treated as having only positive signed values. The

sensing is done using the measurement matrix and the sampled data is converted to binary

Sensing Stage

(Implemented

on MATLAB)
UART

Reconstruction

Stage (FPGA)

Figure 2 Block Diagram of CS system

20

fixed point representation mentioned above. The sensed data is then sent through the

communication module to the target hardware which in this case is a FPGA.

3.3. Communication Module

Communication between the sensing stage and the reconstruction stage is achieved

through the use of UART. UART on the sensing stage, which happens to be a PC, is

implemented by use of Virtual COM port over physical USB port. The data from the sensing

stage is transmitted though the USB port. The reconstruction stage utilizes a USB – UART

Bridge to convert USB data packets into serial communication data.

The UART module is implemented using the FPGA resources. The UART is

configured with 921600 bps (900 Kbps) Baud Rate, 8 Data bits, no Parity bits, 1 Stop Bits

with Hardware Flow Control. The UART has provision to default to 9600 bps baud rate if the

UART module for some reason doesn’t initialise to 921600 bps. The UART module on

reconstruction stage has 2 wires (TX, RX) to connect to the sensing stage. Presence of USB –

UART Bridge eliminates the need for implementing the whole protocol. UART module in the

FPGA has internal signals (DIN, DOUT) connected to the reconstruction module. The signals

are 24 bit wide.

DIN signal, which is obviously an input to the UART module, has the format as

specified below:

 23 16 15 0

The index represents the index of the estimated signal vector element sent through the

bits 15 to 0. The data is sent MSB first and on top of that MSb first too.

DOUT signal, which the output from the UART module, has the format as specified

below:

State Bank Select Data Bits

 23 22 21 16 15 0

The state represents the role of the data received in the Data Bits. Bank Select data

field selects the bank from 64 banks of memory available for writing.

Index Estimated Signal Data

21

RTL Design of the UART:

Figure 3 RTL of UART Module

Figure 4 RTL of the Submodules of the UART Module

22

3.4. Reconstruction Stage

Reconstruction stage is implemented in the FPGA. The HDL program used for

implementation is VHDL and the toolchain Vivado ISE WebPACK version.

Basic Implementation Details are:

• Fixed point number representation used.

• Data width – 16 bits

• Fixed point format (0.15Q), 1 bit for sign and rest 15 for fractional bits.

• Data range is -1 to 1.

• Implemented Vector length

𝑥 = 256

𝑦 = 64

�̂� = 8

• Sensing Matrix Dimension, 𝜙 : 64 × 256

3.4.1. Block Diagram

Figure 5 Block Diagram of Implementation Stage

3.4.2. Target Hardware

The target hardware for implementation of the reconstruction stage is Xilinx Artix 7

100T FPGA on the Nexys 4 development board.

Sensing

Matrix

Sampled

Data

Max Correlation

Module

Least Square

Solution
Estimated

Signal

23

3.4.3. Top Module – CS_Reco

The CS_Reco module is implemented through the use of six submodules which are as

below:

 MUL_RAM_Array Module

 Adder Tree Module

 Max Module

 FISQ Module

MUL_RAM_Array Module and Adder Tree Module are shared between the Max

Correlated module and Least Square Solution module to minimize the resource usage. The

Max Correlated Module finds the maximum correlated vector and the Least Square module

solves the Least Square problem by using QR decomposition ,inverting the Right Triangular

matrix and FISQ module.

Figure 6 RTL of the CS_RECO Module

MUL RAM Array Module

 The MUL RAM Array Module implements an array of RAM and a 16 bit register

followed by Multiplier particularly 64 in number for the parallel access to the all the elements

of columns of the sensing matrix, Φ. The RAM is implemented on the Block RAM

24

Resources in the Single Port Configuration and the Multiplier on the DSP48e resources

available on the FPGA.

The RAM has data width of 15 bits and depth of 290 for the first 8 RAMs of the array

and 256 for the rest of the RAMs in the array, to store 1 row of the sensing matrix, C Matrix,

Q Matrix, R Matrix, V Matrix and the Residue register. The output of the Multiplier is recast

into the signed 0.15 fixed point format to conserve resources.

The MUL_RAM_Array module is shared between the Max Correlation Module and

the Least Square Module for storing data, multiplication and parallel subtraction operations.

Figure 7 RTL of the MUL RAM Array Module

Adder Tree Module

 The Adder Tree Module is implemented using 8:1 Adder Trees. The 64 inputs from

the MUL RAM Array are input to the module and module produces the sum in two clock

25

cycles. Single Adder Tree produces output in single clock cycle. For Least Square Solutions,

a single module is implemented for performing the addition work.

Figure 8 RTL of the Adder Tree Module

Max Block

 The Max Module calculates the maximum correlated vector and outputs the max

correlated sum and the index of the max correlated vector. It is essentially an comparator

circuit.

Figure 9 RTL of Max Module

26

FISQ Module

 The FISQ Module implements the Fast Inverse Square Root algorithm along with the

Newton’s Iteration method for increasing accuracy. The C algorithm for implementing the

FISQ algorithm [11] is as below:

float invSqrt(float x)

{

 float xhalf = 0.5f*x;

 union

 {

 float x;

 int i;

 } u;

 u.x = x;

 u.i = 0x5f3759df - (u.i >> 1);

 x = u.x * (1.5f - xhalf * u.x * u.x);

 return x;

}

Synthesized RTL of the FISQ Module is as below:

Figure 10 RTL of the FISQ Module

CHAPTER 4

RESULTS

28

4. Results

4.1. FISQ Error Analysis

FISQ or Fast Inverse Square Root has been implemented using an approximate

algorithm to circumvent the usage of Divider and Square root operations. This algorithm as

described in implementation introduces error into the calculation. Since the inverse square

value is utilized in the Graham Schmidt QRD process, it remains essential to minimize the

error from using the algorithm, which is done by applying the Newton’s Iteration Method.

Figure 11 Comparison of the values obtained from the algorithm with the actual values

As evident from the graph above using only the approximate algorithm gives out

output with notable differences from the original value. Using the FISQ module in this state

will increase the error in the whole system.

29

Figure 12 Error % between the original value and approximate values

Figure 13 Comparison of the values from FISQ Module after application of Newton's

Iteration Method and Original Values

30

Figure 14 Error % between Original values and FISQ value after application of Newton's

Iteration Method

 As evident from the above graph utilization of the Newton’s Iteration Method reduces

the error in approximation by considerable amount. Theoretical calculations suggest that

utilization of another iteration of Newton’s method will exhaust the precision bits of single

precision floating point number. In this project, only one iteration is used to save resource

and reconstruction time.

31

4.2. Simulation Results

Simulation of the whole sensing and reconstruction stages of the Compressed

Sampling problem has been done on the MATLAB.

4.2.1. Simulation Results with Number of Measurements Varied

Simulation is carried out on a 4096 length random signal with sampled vector length

of 256 for sparsity of 8. Signal was generated at random using sparse random generator and

low amplitude Gaussian noise was added to the signal to simulate real world scenario where

the low amplitude values below certain threshold are considered zero so as to consider the

signal sparse.

Simulation waveforms as attached below:

Figure 15 CS Reconstruction with Number of Measurements, m=16. MSE of reconstructed

signal is 0.00290763897881587

32

Figure 16 CS Reconstruction with Number of Measurements, m=32. MSE of reconstructed

signal is 9.49620736657815e-05

Figure 17 CS Reconstruction with Number of Measurements, m=64. MSE of reconstructed

signal is 5.31479595498806e-05

33

Figure 18 CS Reconstruction with Number of Measurements, m=128. MSE of reconstructed

signal is 3.95939928824365e-05

Figure 19 MSE of Reconstructed signal with variation in number of measurements

34

As, seen from the graph, it is clear that the larger the number of measurements, larger

is the probability of reconstruction with less error. We see that the reconstructed signal MSE

or Mean Square Error decreases with increase of number of measurements for number of

measurements low, but remains almost constant in higher number of measurements area. This

shows that, we can reconstruct the success with high probability for number of measurements

greater than or equal to 3 times the sparsity for this type of dictionary.

4.2.2. Simulation Results with Sparsity varied

Another parameter that can be varied is the sparsity level of the signal. For this

purpose we use the same dictionary but with number of measurements fixed at 128. The

sparsity is varied from 16 to128. It is found that lower the sparsity, higher the chance of

recovery of signal.

Figure 20 CS Reconstruction with Sparsity, s=16. MSE of reconstructed signal is

4.80328602702109e-05

35

Figure 21 CS Reconstruction with Sparsity, s=32. MSE of reconstructed signal is

5.34504725853364e-05

Figure 22 CS Reconstruction with Sparsity, s=64. MSE of reconstructed signal is

5.25423356642963e-05.

36

Figure 23 CS Reconstruction with Sparsity, s=128. MSE of reconstructed signal is

0.0210434520458666.

4.3. Hardware Implementation Results

The whole reconstruction stage design was implemented on the target hardware Artix

7 100T FPGA. System clock of the FPGA ran at 100MHz and was used throughout the

design. Implementation result show that the whole reconstruction for a vector of length 256

and sparsity 8 with number of measurements 64 takes about 25 𝜇s, ignoring the overhead for

UART communication whereas the MATLAB simulation of the code took about 0.31 s.

CHAPTER 5

CONCLUSION

38

5. Conclusion

This work implements the CS reconstruction algorithm on FPGA. The signals sampled

here are 1D signals which are sparse in their natural domain. We found that the minimum

bound for number of measurements for faithful recovery of the compressed sampled signal to

be more than or equal to the 4 times the sparsity of the signal sampled. This is in

conformance with the theory as stated before. We also found that the lesser the sparsity, less

number of measurements required. We also found that the randomly generated dictionary

used here works as an excellent sensing matrix for sampling purposes. As expected the

reconstruction time on the hardware beat the time to reconstruct on the software environment.

For future work, the reconstructed time can be reduced by running the individual

modules at different clock frequency, such that the overall system runs at a higher speed than

the currently use single clock throughout the system. The sensing stage can be implemented

on the hardware. The communication used here is UART which can be replace by much

faster networking protocol such as the Wi-Fi and Ethernet, etc. The work can further be

extended to compress sample images, audio signals and video signals.

39

References

[1] Yong Fang. "2D sparse signal recovery via 2D orthogonal matching pursuit ", Science

China Information Sciences, 04/2012

[2] http://dsp.rice.edu/cs

[3] Emmanuel J. Candes, Michael B. Watkin, “An Introduction To Compressed Sampling”

IEEE Signal Processing Magazine, vol.25, no. 2, pp. 21-30, Mar 2008

[4] J. Stanislaus and T. Mohsenin, “Low-complexity FPGA implementation of compressive

sensing reconstruction,” SPIE Conference on Defense, Security, and Sensing, April 2012.

[5] Chen, Junjie, Qilian Liang, John Paden, and Prasad Gogineni. "Compressive sensing

analysis of Synthetic Aperture Radar raw data", 2012 IEEE International Conference on

Communications (ICC), 2012.

[6] http://www.cs.ubc.ca/labs/scl/spot

[7] A. Septimus and R. Steinberg, “Compressive sampling hardware reconstruction,” in

Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on,

2010, pp. 3316–3319.

[8] K. Hayashi,M. Nagahar, T. Tanaka, “A User’s Guide To Compressed Sensing For

Communications Systems”, Ieee Trans. Commun., Vol.E96-B,No.3 March 2013

[9] Joel A. Tropp, Member, Ieee, And Anna C. Gilbert “Signal Recovery From Random

Measurements Via Orthogonal Matching Pursuit.” Ieee Transactions On Information

Theory, Vol. 53, No. 12, December 2007.

[10] Vahid Abolghasemi, Saideh Ferdowsi, Bahador Makkiabadi, And Saeid Sanei, “On

Optimization Of The Measurement Matrix For Compressive Sensing.” 18th European

Signal Processing Conference (Eusipco-2010).

[11] “Fast inverse square root,” Aug. 3 2011. [Online]. Available:

http://en.wikipedia.org/wiki/Fast inverse square root

[12] Rushton, Andrew. VHDL for logic synthesis. John Wiley & Sons, 2011.

[13] Woods, Roger, et al. FPGA Based Implementation of Signal Processing Systems. John

Wiley & Sons, Ltd, 2008. By Roger Woods

40

[14] Bhasker, Jayaram, and Jayaram Bhasker. A Vhdl primer. Prentice Hall PTR, 1999.

[15] J.-L. Starck, F. Murtagh, and J. Fadili, Sparse Image and Signal Processing. Cambridge

University, 2010.

[16] M. Andrecut,"Fast GPU implementation of sparse signal recovery from random

projections," 2008. [Online]. Available: http://www. arxiv. org/PS

cache/arxiv/pdf/0809/0809. 1833v1. pdf

[17] O. Maslennikow, P. Ratuszniak, and A. Sergyienko,"Implementation of Cholesky LLT-

Decomposition Algorithm in FPGA-Based Rational Fraction Parallel Processor," Mixed

Design of Integrated Circuits and Systems, 2007. MIXDES '07. 14th International

Conference on, pp. 287-292, 2007.

[18] E. Candès,"Compressive sampling," in Proceedings of the International Congress of the

Mathematicians, 2006, pp. 1433-1452.

[19] M. Karkooti, J. Cavallaro, and C. Dick,"FPGA Implementation of Matrix Inversion

Using QRD-RLS Algorithm," Signals, Systems and Computers, 2005. Conference

Record of the Thirty-Ninth Asilomar Conference on, pp. 1625-1629, 2006.

[20] Y. Chen and X. Zhang,"High-speed architecture for image reconstruction based on

compressive sensing," Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE

International Conference on, pp. 1574-1577, 2010.

[21] Candès, E. J., Romberg, J., Tao, T., Robust uncertainty principles: exact signal

reconstruction from highly incomplete frequency information. IEEE Trans. Inform.

Theory 52 (2006), 489–509.

[22] Boyd, S.,Vandenberghe, L.,Convex Optimization. Cambridge University Press,

Cambridge 2004.

[23] D. L. Donoho, “Compressed sensing,” IEEE Trans. on Information Theory, vol. 52, pp.

1289 – 1306, Apr. 2006.

[24] D. L. Donoho, Y. Tsaig, and Jean-Luc Starck, “Sparse solution of underdetermined

linear equations by stagewise orthogonal matching pursuit,” Technical Report, Mar.

2006.

41

[25] T. Do, T. D. Tran, and L. Gan, “Fast compressive sampling with structurally random

matrices,” Proceedings of Acoustics, Speech and Signal Processing, 2008. ICASSP

2008.

[26] Y. Pati, R. Rezaifar, and P. Krishnaprasad, “Orthogonal matching pursuit: Recursive

function approximation with applications to wavelet decomposition,” presented at the

27th Asilomar Conf. Signals, Systems and Comput., Nov. 1993.

[27] E. Candès, “The restricted isometry property and its implications for compressed

sensing,” Compte Rendus de l’Academie des Sciences. Paris, France, 2008, vol. 346, pp.

589–592, ser. I

[28] D. Needell and R. Vershynin, “Uniform uncertainty principle and signal recovery via

regularized orthogonal matching pursuit,” Found. Comput. Math., vol. 9, no. 3, pp. 317–

334, 2009.

[29] D. Needell and R. Vershynin, “Signal recovery from incomplete and inaccurate

measurements via regularized orthogonal matching pursuit,” IEEE J. Sel. Topics Signal

Process., vol. 4, no. 2, pp. 310–316, Apr. 2010.

[30] Bechler, Paweł, and Przemysław Wojtaszczyk. "Error estimates for orthogonal matching

pursuit and random dictionaries." Constructive Approximation 33.2 (2011): 273-288.

