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Abstract

Sentiment Analysis is a motivating space of research because of its applications in different

fields. Gathering opinions of individuals about products, social and political events,

and problems through the web is turning out to be progressively prevalent consistently.

People’s opinions are beneficial for the public and for stakeholders when making certain

decisions. Opinion mining is a way to retrieve information through search engines, web

blogs, micro-blogs, Twitter and social networks. User generated content on Twitter gives

an ample source to gathering individuals’ opinion. Due to the gigantic number of tweets as

unstructured text, it is difficult to outline the information physically. Accordingly, proficient

computational strategies are required for mining and condensing the tweets from corpuses

which, requires knowledge of sentiment bearing words. Many computational methods,

models and algorithms are there for identifying sentiment from unstructured text. Most of

them rely on machine-learning techniques, using Bag-of-Words (BoW) representation as

their basis. In this study, we have used lexicon based approach for automatic identification

of sentiment for tweets collected from twitter public domain. We have also applied three

different machine learning algorithm (Naive Bayes (NB), Maximum Entropy (ME) and

Support Vector Machines (SVM)) for sentiment identification of tweets, to examine the

effectiveness of various feature combinations. Our experiments demonstrate that both NB

with Laplace smoothing and SVM are effective in classifying the tweets. The feature used

for NB are unigram and Part-of-Speech (POS), whereas unigram is used for SVM.

Keywords: Bag-of-Words (BoW), Lexicon, Machine Learning Algorithms, Laplace Smoothing,

Part-of-Speech (POS)
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Chapter 1

Introduction

“What people think” has forever been a very essential for many of us throughout the

decision-making method. Before the familiarity of the World Wide Web, our friends were

asked to suggest an automobile mechanic or to explain who they were aiming to vote for in

local elections,or consulted client Reports to determine what product to purchase. However

the net and the web have currently (among alternative things) created it attainable to search

out opinions from the vast pool of individuals that neither belongs to personal contacts nor

to well-known skilled critics i.e. individuals we never knew about. Furthermore, alternately,

more individuals are making their opinions accessible to outsiders by means of the Internet.

From two surveys carried on more than 2000 American adults, each 81% of Internet users

(or 60% Americans) have accomplished research on a product on-line, at least once and

20% (15% Americans) prefer it on a specific day. We can say that for people’s seeking out

or expressing opinions on-line, consuming products and services can not be considered as

the only criterion. Another important variable is the requirement for political information.

Presently people can use the email for election campaign by gathering of information

and exchanged of views about elections on-line. The user relies on on-line advice and

suggestion because the information directly deals with opinion as primary object. But,

according to Horrigan [1] report although experiences of majority of American Internet

users during online product research is positive, reporting of 58% users about missing,

difficult to find, confusing, and/or overwhelming of online information is surprising.

Thus, the need for better information-access systems to help consumers of products and
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1.1 A Note on Terminology: Opinion Mining and Sentiment Analysis

information is of high demand. With the explosion of Web 2.0 platforms such as blogs,

discussion forums, and various other types of social media consumers share their brand

experience, opinions regarding different products or services. Companies are progressively

realizing that opinions of other consumers and reputation of their brand loyalties can be

influenced by such opinions. So they starts responding to the consumer insights by social

media monitoring and modifying their marketing messages, positioning of brand, product

development and other activities accordingly. But industry analyst found that near about

80,000 new blogs and 2 millions new posts created daily. Due to the maximum use of

Internet and gradual change in consumer behavior, the traditional monitoring methods have

been crippled. Therefore, for monitoring purpose, advanced technologies related to product

image is demanded. Subsequently, apart from individuals, a separate audience group for

systems capable of analyzing consumer sentiment automatically, as described in no small

part in online venues, are companies keen to realize, how their products and services are

being perceived. This chapter presents a systematic overview of research trends, advances,

challenges in Opinion Mining and Sentiment Analysis.

1.1 A Note on Terminology: Opinion Mining and

Sentiment Analysis

Sentiment Analysis(SA), conjointly referred to as Opinion Mining is that the field of

study that analyzes people’s opinion, sentiment, attitude, evaluation and emotions towards

a entity. An opinion is the private state of an individual, and as such, it represents

the individual’s ideas, beliefs, assessments, judgments and evaluations about a specific

subject/topic/item. Liu et al.[2] conclude that others’ opinions have a great impact on

and provide guidance for individuals, organizations and social communities during the

decision making process. During this process, human beings require fast, accurate and

concise information so they can make quick and accurate decisions. Individuals usually

ask their companions, relatives, and specialists for information during the decision-making

process and their opinions and views are based on experiences, observations, concepts, and

beliefs which can be either positive or negative about a subject.

2
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Opinion Mining (OM) is a procedure used to extract opinion from text. According

to Pang et al. [3] “OM is a recent discipline at the crossroads of information retrieval,

text mining and computational linguistics which tries to identify the opinion expressed in

natural language texts”. Opinion mining is a field of Knowledge Discovery and Data mining

(KDD) that uses Natural Language Processing(NLP) and statistical machine learning

techniques to separate opinionated text from factual text. Opinion mining tasks involve

opinion identification, opinion classification (positive, negative, and neutral), source &

target identification, and opinion summarization. The main concern in Opinion Mining

task is how to automatically identify opinion components and summarize the opinion about

an entity from a huge volume of unstructured text.

Sentiment Analysis is concerned with automatically extracting sentiment related

information from a text and aims to categorize text as positive or negative on the premise

of the positive or negative sentiment (opinion) expressed in the document/sentence towards

a topic. A document/sentence with positive or negative sentiment is also said to be of

positive or negative polarity respectively[2]. The granularity of polarity can be up to

the level of words. That is textual information can be classified as either objective or

subjective. Objective (non-polar) sentences and words represent facts, while subjective

(polar) sentences and words represent perceptions, perspectives or opinions. It is important

to make distinction between subjectivity detection and Sentiment Analysis as they are two

separate task in natural language processing. Sentiment analysis can be dependently or

independently done from subjectivity detection. Pang and Lee [4] state that to get better

result subjectivity detection performed prior to Sentiment Analysis.

The task of SA is very challenging, not only due to the syntactic and semantic variability

of language, but also because it involves the extraction of indirect or implicit assessments

of objects, by means of emotions or attitudes. That is why automatic identification of

sentiment requires fine grained linguistic analysis techniques and substantial efforts to

extract features for machine learning or rule-based approaches.

3



1.2 Sentiment Analysis Tasks

1.2 Sentiment Analysis Tasks

In this section we present the key tasks of Sentiment Analysis[5]. These tasks are derived

from the definition of sentiment which is a quintuple defined as follows[2]:

Definition(sentiment)

An opinion is a quintuple, ( ei, ai j, si jkl, hk, tl )

where,

• ei is the name of the entity

• ai j is an aspect of ei

• si jkl is the sentiment on aspect ai j of entity ei

• hk is the opinion holder

• tl is the time when the opinion is expressed by hk

The principle segments of a SA issue are the source of the opinion, the target of the

opinion and the evaluation expressions or remarks made by opinion holder. According to

Liu [6] SA problem is defined as “Given a set of evaluative text documents D that contain

opinions (or sentiments) about an object, Sentiment Analysis aims to extract attributes and

components of the object that have been commented on in each document d ∈ D and to

figure out whether the comments are positive, negative or neutral”. Usually, an opinion is

expressed by an individual (opinion holder) who conveys a perspective (positive, negative,

or neutral) about an entity (target object, e.g. person, item, organization, event, service,

etc.). The following subsections describe the key tasks and approaches to each sub-problem

of Opinion Mining.

1.2.1 Subjectivity and Polarity Classification

The core task of Sentiment Analysis is to automatically identify opinionated text in a

document. These mined text are then classified as subjective and objective [7]. Most of the

existing research agrees that objective text constitutes factual info whereas subjective text

4



1.2 Sentiment Analysis Tasks

represents individual views, beliefs, opinions or sentiments. Hence most of the Sentiment

Analysis frameworks utilize the subjective text for opinion hood determination. While

different methodologies have been adopted for this subtask of SA, the most common include

heuristics and discourse structure, coarse and fine-grained analysis, key word and concept

analysis [8]. Determination of opinionated text in a document is divided into two subtask:

subjectivity classification and polarity classification. Subjectivity classification methods

are used to classify classify terms, sentences and documents into opinion and non-opinion,

where as polarity classification techniques are used to classify opinionated terms into

positive, negative and neutral statements. Some of the work on subjectivity classification

use weighting techniques to identify the strength of subjectiveness, i.e. weakly negative

and strongly negative or weakly positive and strongly positive [9].

1.2.2 Sentiment Target Identification

Sentiment(opinion) target identification is an extremely important feature of SA task. Here

the target refers to the person, object, feature, event or topic about which the sentiment

is expressed. It is extremely important for the manufacturers, public and the merchants

to do in–depth analysis of every aspect of a product based on customer opinion. In

order to compare reviews it is necessary to automatically determine and extract those

features that are mentioned within the reviews. Hence, feature mining of product is vital

for opinion mining and opinion summarization [10]. Sentiment identification is a very

challenging task. This is because to identify opinion targets in a sentence or document

the system should be able to determine evaluative expressions and also, certain features

that are not explicitly present and need to identify from the term semantic called implicit

features. Existing research on Sentiment target identification reveals that the process of

sentiment target extraction requires various Natural Language Processing(NLP) techniques

such as pre–processing, Part–of–Speech tagging, noise removal, feature selection and

classification.

Several techniques have been proposed for automatic identification of sentiment target.

These techniques can be broadly divided into two major categories: unsupervised and

supervised. Supervised learning strategies are based on manually labeled text. During this
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1.3 Literature Survey

approach, machine-learning techniques are used to train the model on manually labeled

data to classify and predict features within the reviews. Though supervised techniques

offer better results for feature extraction, it needs manual work for the preparation of

the training sets. Consequently, this method is time overwhelming, skill-oriented, and,

sometimes, domain dependent. The most widely used machine-learning techniques for

sentiment identification are Naive Bayes classifier, Support Vector Machine(SVM), Neural

Networks and K-Nearest Neighbor(KNN). Interestingly, unsupervised approaches don’t

need training data and they automatically predict product features based on syntactic

patterns and semantic relatedness.

1.2.3 Sentiment Source Identification

The source of sentiment or sentiment holder is the person or medium who expresses the

sentiment. Sentiment source is extremely important during authentication and classification

of sentiment, because the quality and reliability of a sentiment is greatly dependent on the

source of that opinion. For example an expert sentiment has greater strength in comparison

to an ordinary person and a sentiment is reliable when it is produced from an authentic

source. So the process of Sentiment Analysis task needs to identify the source of the

sentiment. Determining sentiment holder is also a NLP problem that has been the subject

of numerous studies over the years.

1.3 Literature Survey

Sentiment Analysis is an emerging topic of research now-a-days. In past few years,

numerous research has been conducted in this area to develop a system on Opinion Mining

which is more reliable and gives better accuracy. Existing research used both rule based

and statistical machine learning approaches for Opinion Mining and Sentiment Analysis.

In this section, we briefly discussed some of the techniques on Sentiment Analysis and their

applications.

The business potential of Sentiment Analysis has resulted in an exceedingly important

quantity of analysis and Pang [3] provides an overview. Ibrahim et al. [11] presents an in
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1.4 Key Problems Addressed by Sentiment Analysis Research

depth survey about different techniques used for Opinion Mining and Sentiment Analysis.

Pang and Lee use Naive Bayes, Maximum Entropy and Support Vector Machines for SA of

movie reviews considering distinctive features like unigrams, bigrams, combination of both,

including Parts–of–Speech and position information with unigram, adjectives etc. [4][12].

It was seen from their experiment that Feature presence is more important than feature

frequency. It was also observed that for small feature space Naive Bayes performs better

than SVM but when feature space is increased SVM performs better than Naive Bayes

classifier. Turney [13] gives an unsupervised algorithm which uses semantic orientation of

the phrases for classification of reviews. Esuli et al. [14] developed SentiWordNet lexicon

which contains opinion strength for each term . Hamouda A. et al.[15], uses SentiWordnet

Lexicon for classification of reviews. A dictionary Based techniques is proposed by Fei G.,

Bing Liu, Castellaons M. to identify aspects of a review by considering adjectives only.

Our work is to perform sentence-level sentiment identification, where we have classified

tweets using three different machine learning algorithms: Multinomial Naive Bayes,

Maximum Entropy and Support Vector Machine (SVM). To increase the accuracy of the

classifier, we have pre-processed the tweets to remove the non-polar words and consider

only the polar words that give sentiment.

1.4 Key Problems Addressed by Sentiment Analysis

Research

As the Internet and web advancements keep on growing, the scope in the area of information

retrieval also increasing. Presently researchers take interest in the area of Sentiment

Analysis, which is a sub area of knowledge discovery and information retrieval. In spite

of various research efforts, the present SA studies and applications still have limitations

and provides space for development. According to pang et al. [3] classification and

extraction are the two broad categories in the areas of Opinion Mining. Classification

involves detecting whether a piece of text is subjective or objective and if it is subjective,

what will be its polarity. Where as extraction involves information retrieval and to identify

the key attributes of an opinion, for example the opinion holder or the entity it refers to etc.

7



1.4 Key Problems Addressed by Sentiment Analysis Research

Esuli et al. [14] categories the Opinion Mining task into three classes:(1) determining the

degree in which a given text is objective or subjective; (2) if a text is subjective determine

whether it gives positive or negative polarity; (3) For a subjective text determine the strength

of its polarity.

One field of research that relate to Opinion Mining is to develop a computational model

that can detect human emotions like anger, fear, surprise etc. But developing such a model

is very closely linked to the problem of subjective detection, as both relate to the expression

of human emotions. Major challenges that have made SA or OM very difficult, related to

Natural language processing like semantic relatedness, context dependency and ambiguity.

Some of the important challenges in Sentiment Analysis are discussed in this section.

The First is subjectivity detection i.e. to identify the sentiment or opinion containing

sentences. For example consider two sentences in a review of city Singapore.“Singapore’s

economy is heavily dependent on tourism and IT industry. It is an excellent place to live in”.

the first sentence is an objective or factual one and does not convey any sentiment towards

Singapore. So the objective sentence needs to be removed as it doesn’t have any role to

determine the polarity of a sentence. The Second is Word sense disambiguation (WSD) that

is a word considered to be positive in one situation may be considered negative in another

situation. Take the word “low” for instance. If someone said “low price”, that would be

a positive opinion. If someone said “low quality”, that would be a negative opinion. This

difference in meaning indicates that a system trained to collect opinion on one type of

product feature may not perform very well on another. A Third challenge is that people

can be contradictory in their statements. It has been found that in most of the reviews

both positive and negative sentiments are present, which can be feasible by scanning the

sentences one at a time. Where as in social media sites such as twitter or blogs people

are combining different opinions in same sentences which is very difficult to analyze. For

example: “the movie bombed even though the lead actor rocked it” is easy for a human to

understand, but more difficult for a machine to parse. The fourth challenge is to handle the

negation, as presence of negator can change the orientation of the sentence. Fifthly, keeping

the target in focus can be a challenge. Consider the statement “Windows 7 is much better

than Vista!”. For a target Windows 7 above statement gives positive polarity whereas for a

8



1.6 Organization of the Thesis

target Vista it gives negative polarity.

1.5 Summary

In this chapter the research area of Sentiment Analysis are surveyed. We briefly discuss

the subtask of Sentiment Analysis and the approaches that were used till now. The primary

objective of Sentiment Analysis is divided into two categories: first to identify whether a

given text is subjective or objective and second is if it is subjective find its polarity. This

chapter has highlighted the challenges in Sentiment Analysis and the techniques used to

over come it.

1.6 Organization of the Thesis

The thesis is organized as follows.

Chapter 2— Data Collection and Preprocessing will discuss the procedure we have

used to collect data from Twitter public domain and the preprocessing needs to be done

before applying any of the Sentiment Analysis techniques.

Chapter 3— Sentiment analysis using Lexicon Based Approach will discuss the detail

structure of the SentiWordNet lexicon, with the objective to best use of this lexical resource

to build a Sentiment Analysis system for tweets.

Chapter 4— Sentiment analysis using machine learning techniques will describe how

Machine learning algorithm have been applied to Sentiment Analysis.

Chapter 5— Conclusions will describe the analysis and conclusion of our experiment.

9



Chapter 2

Data Collection and Preprocessing

With the swift upgradation of Communication and Information based Technology, immense

complexities have been added to information broadcasting. Specifically, prevalentness

of the social networks like facebook, twitter, myspace in controlling the information

transmission and bussiness intelligence can not be overlooked. Tweets from twitter were

used to continue the research activity. In spite of the small size of the messages (confined

to 140 character long, unlike other social networking sites), it is of high importance, since

a lot more can be discovered from this small space. Moreover, from the photos, videos and

conversations, the whole story can be percepted at a glance, all at a single palce. Another

reason is availability of data. Using Twitter API we can collect millions of tweets to train

our model where as in past research, tests only consisted of thousands of training items.

Collection of data for research purpose is not that simple as it appears, since suitable

and significant presumptions and conclusions are to be made. There are three differently

collected datasets: test data, subjective training data, and objective (neutral) training data.

Before discussing them, Twitter API will be discussed.

2.1 Twitter API

In general, two APIs are offered by Twitter: REST and Streaming. REST API further

comprises of two other APIs i.e., REST API and Search API (whose difference is due to

their history of upgradation). Streaming API varies from REST APIs in the sense that its
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2.2 Data Collection

connection is longlived and offers data in almost realtime. In contrast, the REST APIs

support short-lived connections and are ratelimited (one can download a restricted amount

of data per day). The Twitter data like status updates and user info are accessed by the

REST APIs regardless of time. However, availability of data older than a week is not

facilitated by Twitter. Thus, the access of REST is limited to data tSwittered not prior to

more than a week. Consequently, where REST API approves accessing these accumulated

data, Streaming API facilitates access to data as it is being twittered.

For our present research, we relied on the Streaming and Search REST API to collect

the data. Where the Streaming API was used to accumulate the training samples, Search

REST API was engaged for the test data. These two datasets i.e., training and test data were

to be collected in different methods. Why the Streaming API is preferred for collection of

training data is because having a large amount of tweets (size of training data is a large)

demands a non-rate-limited long-lived connection. Correspondingly, the Test data were to

be collected using the Search REST API for specific reasons that will be revealed soon.

There prevails a language parameter both for the streaming and Search REST API,

which can be set to a language code, e.g. ’en’ to collect English data. However, type of

the collected data samples is not only limited to English. In other words, there also exists

tweets in other languages, thus making the overall data noisy. Therefore, we have decided

to collect tweets that contains some specific emoticons without regard to language and keep

the task of seprating data into English and non-English for later purpose. The approach of

accumulating the data is discussed below.

2.2 Data Collection

2.2.1 From Twitter using Third Party API (Twython)

As the objective of the thesis is to identify the sentiment (positive,negative and neutral) of

tweets with respect to a particular product or a movie, so only tweets about that particular

product or a movie should be collected. However, this is not a simple task. There seems

to be no way of obtaining all and only tweets that are posted w.r.t. a particular object.

So for retriving tweets from Twitter we have used a third party API (Twython ). Twython
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2.2 Data Collection

is a pure python wrapper for the Twitter API which supports both normal and streaming

Twitter APIs. To work on this API we have to download the twython-master from https:

//github.com/ryanmcgrath/twython/archive/master.zip and install it.

For implementation, we have collected 6000 tweets from our Twitter account by running

a script that uses twython API . The corpus contains tweets about Apple, Google, Microsoft

and Twitter.

For emotion analysis we have also retrieved tweets from Twitter by using hashtag and

form a large emotion dataset. It has been found from literature survey that basically there

are seven categories of emotions (anger, love, fear, joy, sadness, surprise, thankfulness )

are present. In our work we have harnessed twitter to handle the emotion identification

problem. We have used these seven emotions as key words to collect tweets from twitter.

A snapshot of the tweets retrieved using hashtag are shown in the Figure 2.1. Figure 2.2,

Figure 2.3 and Figure 2.4 represent the volume of tweets retrieved w.r.t time for #anger,

#sad and #surprise respectively.

Figure 2.1: Snapshot of the tweets collected viz. third party API

2.2.2 Tweets About Product and Manually Annotation

In order to apply our machine learning classifier the corpus containing tweets about different

products are manually examined and annotated as positive, negative, neutral and irrelevant.

Here is the procedure, we have followed to manually annotate the tweets.

• A Twitter post that contains factual words about a product was annotated as neutral.

• A Twitter post that contains subordinating conjunctions was annotated the sentiment

of the main clause.
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2.2 Data Collection

Figure 2.2: Snapshot of volume of tweets w.r.t time for # anger

Figure 2.3: Snapshot of volume of tweets w.r.t time for #sad

Figure 2.4: Snapshot of volume of tweets w.r.t time for #surprise

• A Twitter post that contains subtleties was annotated as one of the three sentiment

classes only if it was clearly determinable.
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2.3 Training Data

• A Twitter post that was difficult to give a sentiment, was annotated as neutral.

• A Twitter post that were not in English language or not related to the topic was

annotated as irrelevant.

Out of the 6000 Twitter posts about four different products that have been annotated

following the above procedure, 1906 Twitter posts are irrelevant i.e. not related to topic,

774 posts are negative, 697 posts are positive and 2623 Twitter posts are neutral. The table

below shows the break down of the topic data.

Table 2.1: Break down of topic data

Topic # Positive # Neutral #Negative #Irrelevant Twitter
search term

Google 248 634 91 528 # google

Apple 221 611 407 194 # apple

Twitter 103 677 108 641 # twitter

Microsoft 125 701 168 543 # microsoft

2.3 Training Data

There are two datasets that are used for the training of a classifier: subjective data and

neutral data. Subjective data are data that involve positive and/or negative sentiment while

neutral data is data that does not show sentiment. The following data was collected to be

used to train a classifier.

2.3.1 Subjective Data

Subjective data in this context are data that contain negative and/or positive sentiment or

emoticons. While it is possible to collect enough negative and positive data in one or two

consecutive days by running our script using emoticons, we used our manually annotated

positive and negative tweets as subjectivity dataset(1100 Twitter posts out of 1471 posts)
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2.4 Data Preprocessing

to train the classifier. As can be seen from the Table 2.1 , out of 6000 tweets a total of 774

tweets are negative and 697 are positive. The fact that there are more negative tweets than

positive tweets shows that more people use negative emoticons than positive emoticons . It

is also noteworthy that there are substantial amount of tweets that contain both negative and

positive emoticons. Tweets that contain both negative and positive emoticons are confusing

because they contain both sentiments, so we have annotated these tweets as neutral.

2.3.2 Removing non-English Tweets

The tweets we have retrieved contain both English and non-English tweets. As our objective

is to find the sentiment of tweets that are in English language, we have eliminated the

non-English tweets from the dataset and train the classifier using English tweets. This

was possible by using Google’s language detection web service, which requires a reference

website against which strings are compared to determine their language. The strings in

this case are the tweets. The web service enables one to specify a confidence level that

ranges from 0 to 1. Since Twitter data contains a lot of slang and misspellings, we set the

confidence level at 0 not to get rid of many English tweets.

2.3.3 Neutral Tweets

Neutral tweets in this context are tweets that contain factual words about a product or

contain both positive and negative sentiment. Out of 6000 tweets, a total of 2623 tweets are

annotated as neutral and 1906 tweets are irrelevant. As we have considered three classes

positive, negative and neutral, we converted all the irrelevant class to neutral classes. A

total of 4529 tweets are present in our dataset out of which 2529 neutral tweets are used to

train the classifier.

2.4 Data Preprocessing

Preprocessing of data is essential to remove the incomplete, noisy and inconsistent data.

Preprocessing must be done in order to apply any of the data mining functionality. We have
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employed the following preprocessing task before applying any of the sentiment analysis

approach(lexicon based or machine learning).

• Removing URLs

In general, for analysis of sentiment of the tweets, URLs can not be held responsible.

For example, take a look of the sentence “She has logged into www.ecstasy.com

as she is bored”. Although the sentence is negative, due to presence of the word

‘ecstasy’, it may appear neutral resulting in a false prediction. To overcome this draw

back, we must remove the URLs.

• Filtering

Usually, people use words with repeated letters like ‘coooool’ or ‘happppyyyy’ to

reveal their intensity of expression. Since, these words do not exist in English

language, there arises the need for eliminating the extra letters. So, we adopt to

the rule that a letter can’t repeat more than three times.

• Removing Question words and Stop words

Question words e.g. what, which, how etc. do not contribute to polarity. Hence, such

words can be removed to ensure complexity reduction. We also discarded words like

for, above, about etc. called stop words as they hardly contribute to detection of

polarity.

• Removing specail character

In order to resolve the discrepancies during assignment of polarity, special characters

like [] , {}, () should be avioded. For example “It’s bad:”. Unless the special

characters are removed, they may concatenate and make those words unavailable in

the dictionary. In order to overcome this, we also remove the special character.

• Removal of retweets

Retweeting can be defined as the process of copying the tweet of another user and

posting to another account. Usually, this takes place when a user like another user’s

tweets. Retweets are commonly abbreviated with \ RT. For example, following tweet
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may be considered: RT @Anum3288: Finally made a full paper box \U0001f49c #

ArtLovers # paperbox # creativity # giftbox.

• Removing Hash symbol

A hashtag is a type of label used in social networking sites or microblogging services

which makes it easier for users to find messages with a specific theme or content. For

example, if you search on #LOST (or #Lost or #lost, because it’s not case-sensitive),

we’ll get a list of tweets related to #lost. Generally this symbol is used to indicate

nouns. We stripped hash symbol (#tomorrow → tomorrow) as it is not needed for

polarity detection.

2.5 Summary

This chapter has looked at the data collection and annotation schema that have been used

for sentiment analysis of tweets. It has also highlighted the preprocessing techniques that

we have employed before applying any of the sentiment analysis approach (lexicon based

or machine learning).
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Chapter 3

Sentiment Analysis using Lexicon Based

Approach

To accomplish detection of subjectivity and classification of sentiments, use of key words

are considered to be indicative of positive or negative bias. This approach is governed by the

logic that words can be defined as an ensemble of opinion contents. In literature, multiple

methods based on this approach exist with prominent success: a subjectivity detection

method is proposed by Turney et al. [13], which relies on a list of seed words decided

by the proximity measure to other common terms.

A test was performed by Pang et al. [3] with a manually created positive and negative

words list to classify the sentiments of movie reviews. Likewise, a lexicon of positive,

negative and valence shifter terms was prepared by Kennedy et al. from various sources

to perform document-level sentiment differentiation. Interestingly, for the approaches

based on word lists, training data are not necessary for making predictions, as it depends

exclusively on a pre-defined sentiment lexicon. These methods are suitable for cases, where

no demand of training data persists. Consequently, such methods can be categorized under

unsupervised learning techniques. In this chapter, we have discussed about SentiWordNet

database structure in detail. We have used this lexicon to perform sentence-level sentiment

classification. As outcome, a specification for a perticular features is derived, for which

tweets plain text is considered as the starting point and sentiment information is captured

on terms using SentiWordNet. In our experiment we have found that though using
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3.1 SentiWordNet

SentiWordNet we can identify sentiment of tweets it is better to generate a lexicon from

our training corpus to perform sentiment analysis. So in this chapter we have discussed

how to generate a lexicon from the training corpus itself.

3.1 SentiWordNet

SentiWordNet is a lexical resource designed to assist in sentiment analysis and opinion

mining tasks [14]. SentiWordNet provides a term level opinion polarity which is derived

from the WordNet database of English terms and relations in semi-automatic fashion .

3.1.1 WordNet

WordNet is a lexical database for English language developed at Princeton University to

realize the nature of semantic relations of terms in English language, where retrieving and

exploration of terms is executed according to concepts and their semantic relationships. It

has been widely applied to in various natural language processing task.

Presently WordnNet version 3.0 is available which can be searched via a variety of

software APIs or web interface. It offers an all-inclusive database of over 150000 distinct

terms mapped into more than 117000 varied meanings (WORDNET, 2006). The growth

of WordNet was with expansion of its structure subjected to variety of different languages

(WORDNET, 2009).

Key Term Relationships

In WordNet, similarity of meaning drives the key relation between the terms. Here, sets

of synonyms (synsets) are prepared by assembling the terms together. The general rules

that applies to grouping of terms unitedly to form a synset is regardless of whether a

term utilized inside of a sentence on a particular connection can be supplanted by another

term on the same synset while not altering the sentence’s significance. As a straight

implication of this approach, terms must be classified by syntactical classes. It is because

nouns, adjectives, verbs and adverbs don’t seem to be exchangeable inside of a sentence.

Moreover, Synsets additionally contain a brief enlightening text shaping its terms – or gloss
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3.1 SentiWordNet

– for helping in specifying. This implies, it becomes especially valuable on synsets with

solely one term, or with a little number of relations.

Similarly, antonimity is another useful term relationship present in WordNet, which

indicates fundamentally conflicting terms. In WordNet there’s a difference between direct

and indirect antonyms for exceptional instance of adjectives. For example words like

dry/wet are considered as direct antonyms, words like weightless/heavy are qualified as

indirect antonyms, since they are conceptually opposites. As they belong to synsets,

wherever a direct opposite word exists between the terms (light/heavy) however aren’t

directly correlated.

Another term relations that is frequently present in WordNet is super–subordinate

relation also known as ISA relation or hyperonymy, hyponymy. It interfaces additional

synsets like {furniture, piece of furniture} to progressively particular ones like {bed} and

{bunkbed}. In this way, WordNet expresses that the class furniture incorporates bed, which

thus incorporates bunkbed; then again, ideas like bed and bunkbed make up the class

furniture. Hierarchies of all noun eventually go up the root node { entity}. The relation

Hyponymy is transitive: for example, if perennial is a kind of plant, and if plant is a kind

of organism, then perennial is a kind of organism. WordNet also differentiates among

types (common nouns) and instances (specific persons, geographic entities etc.). Thus

perennial is a type of plant, Narendra Modi is an instance of a prime minister. In these

hierarchies instances are always represented by terminal nodes. Another term relation exists

between synsets such as {car} and {air bag, bumper}, {plant} and {hood}. Parts are inherited

from their superordinate but not inherited “upward” as they may be an attribute only of

specific kinds of things rather than the whole class for example cars and motorvehicles

have air bags, but not all kinds of automobiles have air bags.

In WordNet majority of relations connect words from the same POS. Thus, it comprises

of four sub-nets for nouns, verbs, adjectives and adverbs, along with some cross-POS

pointers. Cross-POS relations incorporate “morphosemantic” links which exist among

semantically similar terms sharing a stem with constant meaning: observe (verb), observant

(adjective) observation, observatory (nouns). The semantic role of the noun in relation

with the verb has been specified in most of the noun-verb pairs for example, { sleeper,
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sleeping car} is the LOCATION for { sleep} and { painter} is the AGENT of { paint} , while

{ painting, picture} is its RESULT.

3.1.2 Building SentiWordNet

Expanding on the calibre of connections of WordNet’s semantic, sentiment scores for

synsets is decided by SentiWordNet utilizing a semi-supervised strategy. By using this

strategy a few synset terms known as {paradigmatic} terms are manually labeled and the

remaining database determined utilizing an automated tactics. The overall procedure is

summarized below[14] :

1. The paradigmatic terms, obtained from the WordNet are manually labeled to positive

and negative labels based on opinion polarity.

2. Iteratively, every level is extended by including terms from WordNet, which are

connected to effectively marked terms by the following relationship:

a. Direct antonym

b. Attribute

c. Hyponymy

d. Similarity

3. For each newly added terms find its direct antonym relation and the terms containing

directly opposite orientation are added to opposite level.

4. Step 2 and 3 are repeated for a fixed number of times N.

After completion of step 1-4, a subset of WordNet synsets can have the label of

positive or negative. Based on their synset glosses, a set of classifiers is trained or

textual definitions of each synset meaning available on WordNet in order to find the

score for all terms. The process of classifying the new entries continues according to

the training data and generates score for each term, as detailed below:

5. A word vector is produced for each labeled synset from steps 1-4 along with a

positive/negative label. The training dataset used to train the classifier is constructed
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as below:

• The prediction e.g. positive/non–positive and negative/non–negative is done by

the pair of trained classifier.

• Synset term that lies in both positive and negative class are assigned to

“objective” class with and negative score as zero–valued.

• This process is repeated for different training set dimensions, which are

achieved by variation of N in preceeding stages:0,2,4 and 6.

• Support Vector Machine and Rocchio algorithm are used for each training set.

6. When new terms are subjected to set of classifiers, a prediction score is generated by

each resulting classifier. These scores are added and normalized to 1.0 for producing

the final score(negative and positive) for each term.

The methodology outlined above for building SentiWordNet demonstrates the reliance of

term scores on two specific parts: the choice of paradigmatic words that will create the

starting arrangement of negative and positive scores which must be selected carefully,

subsequently the rest of the wordNet term score depends on these paradigmatic terms for

selecting a score for each term.

3.2 SentiWordNet Database

As discussed in previous section, SentiWordNet can be defined as a database having scores

for words obtained from the WordNet database version 2.0 [16]. It is constructed employing

a semi–supervised strategy to get polarity scores from a set of seed words that are famed to

hold opinion polarity. Every set of terms having a similar meaning, or synsets, is related to

three numerical scores starting from zero to one, each demonstrating the synset’s objective,

positive and negative score. One vital property of SentiWordNet is that, for any given term

positive and negative scoring is ranked, and it is feasible for a term to have non-zero values

for every negative and positive scores, in accordance with the subsequent principle:

For a synset s we define the following

• Ob j (S )→ objective score for synset s
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• Pos (S )→ Positive score for synset s

• Nes (S )→ negative score for synset s

We apply the following rules :

Ob j (S ) + Pos (S ) + Neg (S ) = 1

In order to imply the objectiveness using following relation, value of positive and negative

scores are always given:

Ob j (S )= 1- (Pos (S ) + Neg (S ))

3.2.1 Database Structure

This lexical resource is supplied as a text file where scores for each term are categorized by

synset and the relevant Part–of–Speech. Table 3.1 depicts the sections for a single entry in

SentiWordNet database reflecting polarity information of a synset.

Table 3.1: Record Structure of SentiWordNet Database

Field Description

POS Part of speech associated with synset. Four possible values can be
considered: a= adjective
n= Noun
v=Verb
r=adverb

Offset Numerical ID that is connected with Part–of–Speech uniquely
distinguishes a synset in the database.

PosScore Positive score for this synset.This can be a numerical worth starting
from zero to one.

NegScore Negative score for this synset. This can be a numerical value starting
from zero to one.

SynsetTerms List of all terms enclosed in this synset.

To outline how sentiment data shows up in SentiWordNet database, Table 3.2 Presents

few sample rows obtained from the raw database file
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Table 3.2: Sample SentiWordNet Data

POS Offset PosScore NegScore SynsetTerms

a(adjective) 00336831 0.25 0.5 sure, certain

n(noun) 13869547 0.25 0.0 hook, hook shot, crotchet

v(Verb) 00155143 0.375 0.0 rise, go up, climb

r(Adverb) 00090897 0.25 0.375 intently

3.3 Considerations on SentiWordNet Data

After examining the structure of SentiWordNet database, in this section we inspect the

fundamental aspects that need to be consider for designing features that can be used for

sentiment classification.

3.3.1 Part of Speech Tagging

Information in SentiWordNet is ordered by POS. Thus as seen on Table 3.2, there are

significant variations within the level of objectivity a synset might convey, based on its

grammatical role. For classifying a source document we need to extract the Part–of–Speech

information, so that scores from SentiWordNet database is accurately applied. To

accomplish this, automatic classification of the words into classes based on POS from the

source documents is accomplished using a POS tagging algorithmic rule.

For a Part–of–Speech tagger, input is a text and output is a document where each word

and punctuation mark is tagged with a label that shows the POS of a given term. For

example, the input sentence:

“take care of my cat offers a refreshingly different slice of asian cinema”

produces the following outcome from a Part–of–Speech tagger:

(‘take’, ‘VB’), (‘care’, ‘NN’), (‘of’, ‘IN’), (‘my’, ‘PRP’), (‘cat’, ‘NN’), (‘offers’, ‘NNS’),

(‘a’, ‘DT’), (‘refreshingly’, ‘RB’), (‘different’, ‘JJ’), (‘slice’, ‘NN’), (‘of’, ‘IN’), (‘asian’,
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‘JJ’), (‘cinema’, ‘NN’)

Every term is related to a appropriate tag demonstrating its characteristics within a

sentence, for example, adjective, verb, noun, and so on. Numerous models exist for POS

tag formats, out of which the most common are related to the Penn Treebank explained

corpus [17] and the varied occurrences of the CLAWS tag sets, obtained from the original

tag set for the brown corpus [18]. To show the above illustration, Table 3.3 focuses key tags

from the Penn Treebank tag set pertinent to SentiWordNet. In our experiment we have used

the following Penn Treebank tags to access the score from SentiWordNet.

Table 3.3: Penn Treebank Tags

Part of Speech Penn Treebank Tags

Verb VB, VBP (Present tense), VBZ (Present tense 3rd person),
VBG (Gerund), VBD (Past tense), VBN (Past participle).

Noun NN, NNS(Plural), NNP (Proper noun), NNPS(Proper noun,
plural).

Adjective JJ, JJS (Superlative), JJR (Comparative).

Adverb RB, RBS (Superlative), RBR (Comparative).

In order to use the POS information to extract score from SentiWordNet database the

output of Part–of–Speech tagger must be parsed. This methodology demands an advance

application, which reads a tagged text produce by POS tagger, effectively match terms and

their Part–of–Speech tag to a SentiWordNet score. In our experiment our program reads a

tagged text and exactly match words and their POS tag to a SentiWordNet score.

3.3.2 Word Sense Disambiguation

Word sense disambiguation is a classical NLP problem where a given term has multiple

meaning. When we assessed scores for a word utilizing SentiWordNet, a problem emerges

in deciding which WordNet synset the term fits in with and which score to consider for

evaluation. Consider the case for the expression “break” as noun, with fourteen synsets in

WordNet, some of its SentiWordNet score is shown in Table 3.4.
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Table 3.4: Example of multiple scores for the same term in SentiWordNet

Synset Sentiwordnet
Score(pos,
obj, neg)

Gloss

happy chance,good luck,break (0.5,0.25,0.25) “he finally got his big break”
interruption,break (0.0, 1, 0.0) “the telephone is an annoying interruption”;

“there was a break in the action when a player
was hurt”

suspension,pause,intermission (0.125,0.875,
0.0)

a time interval during which there is a
temporary cessation of something

fracture (0.0,0.75,0.25) “it was a nasty fracture”; “the break seems to
have been caused by a fall”

shift,geological fault,
faulting, fracture

(0.0,0.1,0.0) “they built it right over a geological fault”;
“he studied the faulting of the earth’s crust”

As there are different choices of meaning for the noun “break” is available, so

determining which synset is best suitable for that particular situation is similar to

the problem of WSD. There are no sophisticated techniques for handling word sense

disambiguation. In our experiment we have used a strategy for handling WSD that is

discussed in next section.

3.4 Proposed Model

In the past section of this chapter, the structure of the SentiWordNet database are explained

in details and issues were created on challenges and limitations of what opinion data need to

be gathered. Keeping those in mind we have proposed a model for making an arrangement

of set of features for sentiment analysis utilizing SentiWordNet. The methodology for a list

of features suggested in this section however begins from the rule that the features acquired

through SentiWordNet catch different facets of tweets sentiment and are best suited to train

any classifier algorithm. In our model we have used some strategy to eliminate two key

problem of sentiment analysis task: handling WSD and negation.
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3.4.1 Handling WSD

Word sense disambiguation is a classical natural language processing problem where a

single term can have multiple meaning and we need to find out the exact meaning for that

particular context. For example consider the sentence “Red Tape holds up the bridge” here

the term “holds up” has two meanings: one is supporting to build the bridge another is delay

in building the bridge. So in different context it has different meanings. Similarly the term

“low price” in some context is positive but in other context it may be negative. So to handle

WSD in our experiment Part–of–Speech tagging is executed for extracting scores from

SentiWordNet. If a term has multiple scores then we have considered the average score of

syn-sets for that particular term. So in our model we followed an easier methodology based

on the following rules:

Average of Max of Pos and Neg Score

• For each synset of a given term find its score from SentiWordNet database.

• If for the same term, there prevails both positive and negative scores — compute the

average of all positive and negative scores.

• Return the average score with maximum value.

score (t) = max
(∑

N Pos (tn)
N

,

∑
N Neg (tn)

N

)
(3.1)

where,

Pos(wn) = positive score of SentiWordNet for N th term t

Neg(wn) = Negative score of SentiWordNet for N th term t

N = Number of synset for the given term

Weighted Average of all Synsets

It has been found that in WordNet, terms in a synset are organized according to their

frequency of utilization in that specific sense. So the score that each sense provides will be
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scaled by the position on the word within the synset and the total number of words within

the synset [19]. This gives rise to the subsequent formula for scoring a term :

score (t) =

∑
N weightn ∗max (Pos (tn) ,Neg (tn))∑

N weightn
(3.2)

where the weight is given by:

weightn = 1 −
position o f term t in N thsynset
Number o f words in N thsynset

(3.3)

It has been found that in WordNet synset the most frequently occurring word is always

present at first position. So weight of a most frequently occurring word is 1 as position of a

term starts from zero.

3.4.2 Handling Negation

Negation is a grammatical category that allows the changing of the truth value of a

propositions. It is often expressed through the use of negative signal or negators. Words

like “isn’t”, “no” “never” and “not” can significantly affect the sentiment orientation of a

term. Consider the following example:

• People like the change.

• People don’t like the change.

Clearly, both the sentence have the term “like” which carries positive sentiment and positive

score in SentiWordNet. However second sentence gives a negative meaning. Therefore a

evaluation methodology that merely adds scores for terms as they seem on text can result

in poor results. Previously, for handling negation a conventional method is used called

reversing hypothesis which is given by the following formula:

S core (n,w) = −S core (w) (3.4)

where,

S core (w) is the sentiment of word or phrase w

S core (n,w) is the sentiment of the expression formed by concatenation of the negator n
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3.4 Proposed Model

and word w.

For example, if S core (honest) = 0.9 then S core (not, honest) = −0.9. For handling

negation in our experiment we have used the NegEX algorithm proposed by Chapman et

al.. This algorithm works by identifying three classes of expressions: There are certain

negation expression which doesn’t alter the orientation of sentiment bearing words called

pseudo-negating terms; and certain expression are there that alter the orientation of previous

and next term in a sentence. When a negation expression is found then the sentiment

orientation of a sentence is inverted for all terms among a selected window, or till a

punctuation is found. Here window size is a numeric parameter that indicates the scope of a

negating term within a sentence. Output of this NegEX algorithm determines what number

of terms are being negated and how often negating expressions are used as a narrative

device. We can use this as a feature to find the sentiment orientation of a sentence.

3.4.3 Automatically Creating Sentiment Lexicon

In our experiment we have found that accuracy result of sentiment classification using

SentiWordNet varies from domain to domain. In some domains it gives better result where

as in some other domain results is poor this because sentiment score of domain related

words are not there in the predefined lexicons. So it is better to generate our own lexicon

from the corpus itself. As we are finding the sentiment of tweets, our corpus contains large

number of emoticons and hash-tag words whose sentiment scores are not in SentiWordNet

lexicon. We have used the pointwise mutual information (PMI) formula given by Turney et

al. [13] for generating domain specific lexicon.

For every term/word t in the set of millions of tweets an association score is generated

based on the following formula:

score (t) = PMI (t, positive) − PMI (t, negative) (3.5)

where PMI is given by the formula:

PMI (t1 ∧ t2) = log
(

p (t1 ∧ t2)
p (t1) ∗ p (t2)

)
(3.6)
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where,

p (t1 ∧ t2) is probability of how often t1 t2 co-occur.

p (t1) is probability of occurance of t1.

p (t2) is probability of occurance of t2.

If score (t) > 0 then word w is classified as positive. If score (t) < 0 then word w is

classified negative. A snapshot of our lexicon generated from the tweets collected using

twitter API is shown in Figure 3.1.

Figure 3.1: Snapshot of the lexicon generated from tweet corpus

We have also created a model which doesn’t require any training data to train the

classifier or any corpus to generate domain specific lexicon. Here we have used NLTK

Part–of–Speech tagger to find the adjective, verbs and Nouns for a given tweet. For each

word in the adjective, verb, noun list we pulled the Google search engine to find number

of hits with an extremely positive word “excellent” and number of hits with an extremely

negative word “poor”. A score is generated for each word by using the following rule:
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3.5 Results and Discussion

score (t) = log
(
hits (t ∧ excellent) ∗ hits (poor)
hits (t ∧ poor) ∗ hits (excellent)

)
(3.7)

Based on the score of each word a weight is given to each sentence/tweets. If the weight

of the sentence is positive then sentence is classified as positive, otherwise classified as

negative.

3.5 Results and Discussion

We have used SentiWordNet lexicon for classification of tweets and compare the results

with movie review data set. We have used NegEX algorithm discussed in previous section

and both Weighted average and Average of Max of Pos and Neg score approach to handle

WSD. In order to conduct our experiment each tweet or movie review is scanned and every

term would get a score in view of SentiWordNet information and Part–of–Speech tagging.

We have used NLTK Part–of–Speech tagger to find POS of movie reviews and tweets and

Penn Treebank tags to access the score from SentiWordNet as discussed in Section 2.3. We

have given a positive weight and negative weight to each tweet or review based on the scores

received from SentiWordNet data base. If positive weight is greater than negative weight

we classify the tweet into positive class otherwise it is classified to negative class. We

applied the above approach to our Polarity dataset and tweets retrieved from twitter public

domain using keyword Microsoft, Google, Twitter, Apple. The results of comparison are

shown in Figure 3.3. A snapshot of our program which extract scores for a single movie

review using SentiWordNet lexicon is shown in Figure 3.2.

When we used the model where Google search engine is pulled to find the score for each

term present in adjective, noun, verb list as discussed in Section 2.4 we got an accuracy of

80.68% for our tweets corpus.
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3.5 Results and Discussion

Figure 3.2: Part of speech collected from a movie review

Figure 3.3: Sentiment score comparison between polarity dataset and tweets

It has been found that this approach not only handle Word sense disambiguation but

also able to handle another challenge in sentiment analysis which is sudden deviation from

positive sentiment to negative sentiment. A snapshot of the result of such a tweet where

there is a sudden change in polarity is shown in Figure 3.4.
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3.6 Conclusion

Table 3.5: Result comparison between SentiWordNet Lexicon based approach and
Proposed approach

Approaches Dataset Accuracy Domain

SentiWordNet
Lexicon

reviews 68.50 % movie reviews

tweets 75.20 % Google,Apple,microsoft,Twitter

Proposed
Approach

reviews NA movie reviews

tweets 80.68 % Google,Apple,microsoft,Twitter

Figure 3.4: Snapshot of the tweet weight of our model

3.6 Conclusion

In this chapter, we have analyzed the structure of SentiWordNet database in more detail,

with the goal of deciding how to best utilize SentiWordNet to construct a model that

represents sentiment information from text documents. This chapter highlighted the

requirement to avail of Natural Language Processing techniques like Part-of–Speech

tagging to complement the model. We have also discussed about the limitation of

SentiWordNet lexicon and how to overcome this by creating domain specific lexicon from

the test corpus. From our experiment, we conclude that creating domain specific lexicon

and using it for sentiment identification gives better result than using SentiWordNet lexicon.
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Chapter 4

Sentiment Analysis using Machine

Learning Techniques

According to Samuel (1959) machine learning is the field of study that gives computers

the ability to learn without being explicitly programmed. Using this definition, machine

learning can be appropriately applied to the problem of text classification, and by way

of inheritance, can duly be related to sentiment analysis. What can be drawn from the

literature review is that machine learning techniques have the potential to contribute an

efficient solution to the problem of sentiment analysis. Both supervised and unsupervised

machine learning approaches have been applied to the challenge of sentiment analysis, and

for some limited domains that exhibit little topical variation, performance has been good.

In this chapter, we have applied three different supervised algorithm (Naive Bayes (NB),

Maximum Entropy (ME) and Support Vector Machines (SVM)) for sentiment identification

of tweets, to study the effectiveness of various feature combination.

4.1 Supervised Methods

A supervised learning algorithm requires training data to train the model, which examines

the training data and generates an inferred function, that can be used for mapping new

samples. An ideal situation will permit for the algorithm to accurately determine the

class labels for unseen examples. This needs the learning algorithm to generalize from
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4.1 Supervised Methods

the training data to unseen situations in a “reasonable” way.

This is where most of the time and effort was spent. Under this section, different

supervised machine learning approaches are used. A three step process was used to conduct

our experiment with different machine learning algorithm and to identify the factors that

affect the results. Following are the steps to be followed before applying any of the machine

learning algorithm.

• Step1 Preprocessing the training data

• Step2 Feature extraction and data representation

• Step3 Training the classifier and testing with different machine learning algorithms

4.1.1 Preprocessing Training Data

• Cleaning training data For begin, the subsequent improvement operations are done

on the training data. We have followed the preprocessing steps defined in section

3.4 of chapter 3. All URLs have been removed from tweets. All special character

and stop words are removed from tweets. The hashtag(#), a symbol used to indicate

nouns, has been removed. The word RT, used for retweets, has been removed. Tweets

that contain both negative and positive emoticons are removed from the dataset to

avoid confusing the machine learning algorithm.

• Removing duplicate tweets It has been observed that, tweets that are retrieved for

training and testing the classifier contain duplicate tweets. This is because the same

tweet is twittered and retweeted. So we need to remove the duplicate tweets. Only

exact duplicate tweets are removed from the training corpus.

4.1.2 Feature Extraction

Before applying any machine learning algorithm one question is how to represent the

data. At the point when input data to a learning algorithm is too vast to be processed

and it is expected to be redundant, then the input data can be transformed into a reduced

set of features. This process is called feature extraction. The features extracted from
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4.1 Supervised Methods

input data are expected to contain the relevant information, so that the desired assignment

can be performed by utilizing this reduced representation rather than the complete initial

information. In order to build a model using machine learning algorithm both the

training and test data must be represented in some way. Most of the machine learning

algorithms used Bag-of-Words (BoW) representation as their feature. In machine learning

feature means some attributes that are thought to capture the pattern of the data are

initially chosen and the whole dataset must be depicted in terms of them before it is

supplied to any machine learning algorithm. Variety of features like unigram, bigram,

part-of-sppech(POS), syntactic and semantic feature are used for sentiment analysis.

In BoW representation a tweet is represented as the bag of its words and phrases,

disregarding grammar and even word order but keeping multiplicity. But in case of

set-of-tweets representation of a Twitter post if a word occurs twice, it will only be

present once regardless of how many times it is found in the Twitter post. In this chapter

bag-of-word and feature representation are used for different purposes at different stages.

• Attribute selection It is the method of extracting features by that the data are going to

be delineated. In machine learning algorithm for representing data instances attribute

selection is considered as the first task to be performed. Once attributes are selected,

the training or testing data will be described using these attributes. So attributes

are the features. For attribute selection we have converted the entire dataset into

uni-grams or bigrams or trigrams or a combination of any of them. Bag-of-uni-grams

is equivalent to BoW. During attribute selection we need to think about which words

to exclude from being selected as attributes. As there are certain words which do not

contribute to polarity detection, we have to remove such attributes. This is done by

using stop words.

• Instance representation Once attributes are chosen, the data must be represented

in terms of these attributes. Now these attributes are called as features. A decision

of whether to utilize uni-gram presence or uni-gram frequency, bi-gram presence or

bi-gram frequency, tri-gram presence or tri-gram frequency, or a mixture of uni-gram

+ bi-gram presence or frequency, and so on must be taken. In spite of the reality

we have utilized the whole information set as a part of selection of attributes, the
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4.2 Machine Learning Algorithm

representation of the information must be done on every each Twitter post.

4.1.3 Training and Testing the Classifier

For training and testing the classifier we need to find the feature vector. This is because

feature vector is the most important concept in implementing a classifier. A good feature

vector directly determines how successful the classifier will be. A feature vector is just

a vector that contains information describing an object’s important characteristics. In

our case feature vectors contains features such as unigram presence, bigram presence or

combination of both etc. The entire feature vector will be a combination of feature words

of each data instances(Twitter post). We have trained the classifier using these feature

vector. For training the classifier we have used three different machine learning algorithm

that are described in next section.

For testing a tweet, we need to find out the feature words and we get one more pattern

of feature vector, based on the model learned the classifiers predict the tweet sentiment.

4.2 Machine Learning Algorithm

Our aim in this thesis is to find out the effective feature for sentiment classification of

tweets being positive sentiment or negative sentiment. We have experimented with three

standard classifier: Multinomial Naive Bayes classifier with Laplace smoothing, Maximum

Entropy classifier and Support Vector Machine classifier. The philosophies behind these

three algorithms are quite different, but each has been shown to be effective in previous

classification studies.

We used the standard bag-of-feature frame work for implementing these machine

learning algorithms. Let {w1, ...,wm} be the m words that can appear in a tweet/sentence;

examples include the word silent or the bigram low quality. Let ni (d) be the number

of times wi occurs in tweet t. Then, each tweet t is represented by the tweet vector

t := (n1(t), n2(t), ..., nm(t))
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4.2.1 Naive Bayes

The Naive Bayes classifier is a simple probabilistic classifier which is based on Bayes

theorem. Naive Bayes performs well in many complex real-world problems and it is one of

the basic text classification techniques with various applications in email Spam detection,

personal email sorting, document categorization etc. Naive Bayes classifier is very efficient

as it is less computationally intensive (in both CPU and memory) and it requires a small

amount of training data. One approach to classify tweets is to assign to a given tweet t the

class c∗ = argmaxcP(c | t). We derive the Naive Bayes (NB) classifier by first observing

that by Bayes rule,

p(c | t) =
p(c)p(t | c)

p(t)
(4.1)

where p(t) plays no role in selecting c∗. For estimating the term p(t | c), Naive Bayes

breaks down tweet by assuming the wi’s are conditionally independent given t’s class. The

most likely class according to the Naive Bayes classifier is the class among all classes which

maximizes the product of two probabilities prior and likelihood, the word in a tweet given

the class i.e. how often that word is expressed in a positive tweets or in a negative tweets

CNB = arg max
c j∈C

p(c j) Π
i∈positions

p(wi | c j) (4.2)

Research on Sentiment Analysis tells that word occurrence may matter more than word

frequency. As tweets are 140 character length occurrence of a word tell us a lot, but the

fact that if it occurs more than once may not tell us much more. So we need to clip all

the word count in each tweet at one and remove duplicate words in each tweet to retain

a single instance of the word. So for our work we have used another variant of Naive

Bayes classifier i.e. binarized (Boolean feature) Multinomial Naive Bayes classifier which

assumes the features to be occurrence of count. The reasoning behind this is often that the

occurrence of the word matters over the word frequency and so weight it multiple times

doesn’t improve the accuracy of the model.
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4.2 Machine Learning Algorithm

Laplace Smoothing.

Here we used Laplace smoothing assuming that even if we have not seen a given word in

the whole corpus, there is still a chance that our sample of tweets happened to not include

that word.

p̂(w | c) =
count(w, c) + 1
count(c) + | V |

(4.3)

4.2.2 Maximum Entropy

The maximum entropy classifier is a probabilistic classifier which belongs to the class of

exponential models which has proven effective in a number of natural language processing

applications. Nigam et al. [20] show that it sometimes, but not always, outperform Naive

Bayes at standard text classification. It does not assume that the features are conditionally

independent of each other. Here our target is to use the contextual information of the

tweets (unigram, bigram, and other characteristics) within the text in order to categorize

it to a given class (positive or negative). Maximum entropy estimates of takes the following

exponential form [12]:

PME =
1

Z(t)
exp

∑
i

λi,cFi,c(t, c)

 (4.4)

where Z(t) is the size of the training dataset used as a normalization function . Fi,c is a

indicator function for feature fi and class c, defined as follows,

Fi,c =

 1, ni > 0 and c′ = c

0, otherwise

This binary valued indicator function returns 1 only when the category of a specific tweet

is ci and also the tweet contains the word wk.

Maximum entropy classifier takes more time to train comparing to Naive Bayes

classifier primarily due to the optimization problem that needs to be solved in order to

estimate the parameter of the model. For estimating the λ parameters we use ten iteration

of IIS(improved iterative scaling) algorithm (this was a sufficient number of iterations for

convergence of training-data accuracy), together with a Gaussian prior to counteract over
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fitting.

4.2.3 Support Vector Machine

This algorithm works in a completely different way from the above algorithm. Support

Vector Machines (SVMs) are widely used for various text categorization in past, usually

outperforming Naive Bayes classifier. In all form of Baye’s algorithm missing values are

ignored but support vector machine replaces them globally. In case of two-class problem

with d dimension, the basic idea is to search out a hyperplane, represented by vector −→w ,

that not just differentiates the tweet vectors in one category from those in alternative, yet for

which the separation, or margin, is as large as attainable[12]. Let positive and negative be

the correct class of tweet t j and c j ∈ {1,−1} refers to the class labels positive and negative,

then searching a hyperplane corresponds to a constrained optimization problem; where the

solution is described as,
−→w =

∑
α jc j
−→t j , α j ≥ 0 (4.5)

where the α j’s are derived by solving a dual optimization problem. The tweet vectors t j are

called support vectors for which α j is greater than zero, as these tweet vectors contribute

to the hyperplane. Classification of tweets includes primarily deciding that facet of −→w’s

hyperplane they fall on.

4.3 Experimental Set-up

The core component of our system is shown in Figure 4.1. We proceed to discuss this in

detail.

For implementation we have used our data set which contains 6000 hand classified

tweets. The corpus contains tweets about apple, goggle, Microsoft and twitter. Tweets are

classified into four classes positive, negative, neutral and irrelevant. Irrelevant tweets are

those tweets that are not in English language or not related to the topic. In our experiment

we have considered three classes positive, negative and neutral. So we converted all

irrelevant class to neutral class. The polarity data set is a set of film review documents

available for research in Sentiment Analysis and opinion mining. It was first introduced as
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Figure 4.1: Block diagram of proposed experiment

a research data set along with Bo Pang and Lillian Lees initial results on machine learning

methods for sentiment classification. The most recent available data set is version 2.0.

It comprises 1000 positive labeled and 1000 negative labeled film reviews extracted from

the Internet Movie Database Archive. In our experiment we have done a comparative study

between the polarity data set used by Pang and Lee and our dataset. We have also generated

a model that can efficiently identify the emotion of a tweets.

We have selected Multinomial Naive Bayes (MNB), Maximum entropy (MaxEnt or

ME) and Support Vector Machine (SVM) to use, since they are very efficient for handling

millions of tweets. We have used python regular expression for data pre-processing. We

have employed python Natural Language Toolkit (NLTK 3.0) to get unigram, bigram,

adjective and Part of speech (POS) features of tweets. We have used linear SVM for our

experiment.

4.3.1 Evaluation Metrics

The overall performance of individual classifier is measured by:

accuracy =
#o f correctly labeled tweets

#o f all the tweets in the test dataset
(4.6)
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Precision

It is a measure of accuracy provided that a specific class has been predicted. It is defined

by:

Precision =
T P

T P + FP
(4.7)

Recall

It is a measure of the ability of a prediction model to select instances of a certain class from

a data set. It is also called sensitivity, and corresponds to the true positive rate. It is defined

by the formula:

Recall =
T P

T P + FN
(4.8)

where, T P =Number of true positive predictions for the considered class.

FP = Number of false positive predictions for the considered class.

FP = Number of false negative predictions for the considered class.

F1 score

F1 score =
2 × Precision × Recall

Precision + Recall
(4.9)

4.4 Results and Discussion

4.4.1 For Twitter Dataset

Table 4.1: Accuracy of tweets using different features

Features # of Features Frequency or
Presence

Naive Bayes Maximum
Entropy

Support
Vector

Machine

reviews tweets reviews tweets reviews tweets

(1) unigram 5989 presence 81.0 % 81.5% 80.4% 78.36% 82.9% 82.5%

(2) bigram 19148 presence 77.3% 78.60% 77.4% 78.0% 77.1% 77.8%

(3) unigram + bigram 25,748 presence 80.6% 80.92% 80.8% 79.78% 82.7% 81.6%

(4) Unigram+POS 19061 presence 81.5 % 82.0% 81.2% 80.3% 81.9% 81.99%

(5) Adjectives 1197 presence 77.0% 69.48% 77.7% 76.4% 75.1% 76.4%
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Table 4.2: F1 score of MNB classifier

Class label Precision(%) Recall(%) F1 score(%)

Positive 65.25% 20.51% 31.21%

Negative 77.41% 16.05% 27.20%

Neutral 80.48% 61.82% 69.93%

We explore a variety of features that are potent for Sentiment Analysis. We have used

N-gram features like unigrams (n=1), bigrams (n=2) that are widely used in different of text

classification, including Sentiment Analysis. In our study we experimented with unigrams

and bigrams with boolean features. Each n-gram feature is associated with a boolean value,

which is set true if and only if the n-gram is present in the tweet [12]. Table 4.1 represents

the different features we have used and the accuracy results of individual classifier. Here we

have performed a comparison between the movie review data set used by Pang Lee et al.

and our dataset. From Table-1, it has been observed that when we used NB classifier with

Laplace smoothing, the classification accuracies resulting from using unigram as features

gives better result in case of tweets than movie reviews, but when we used MaxEnt classifier

the accuracy result of Movie reviews are more than the tweets.

We additionally considered usage of bigrams to capture negation words for handling

negation and phrases for dealing with Word Sense Disambiguation (WSD). Line(2) of

results table demonstrates that using bigram as feature does not improve performance of

the classifier as that of unigram presence. In our experiment we observed that, although

bigram presence does not improve the classification accuracy it is as equally useful a feature

as unigram; in reality bigrams are found to be effective features for handling word sense

disambiguation. We also experimented considering bigram as single feature but the results

were not as good, but combination of unigram and bigram features (Line(3) of results table)

produces results competitive with those obtained by using unigram.

POS features are verified effective in Sentiment Analysis . Since adjectives are good

indicators of sentiment, they are usually considered as effective feature for Sentiment

Analysis. Our experiment shows (Line(5) of results table) that considering only adjectives

produces results competitive with those obtained by using unigram and bigram. Line(4) of
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results table shows that all the three classifier produces better result considering unigram

and POS as feature. Line(1) of results table shows that SVM with unigram as feature

produces best result out of all the features we have considered. Table 4.2 represents

the detailed results of MNB classifier with F1 score. Figure 4.2 represents the Receiver

Operating Characteristic (ROC) curve of MNB classifier for tweets that are manually

annotated.

Figure 4.2: ROC curve of MNB classifier for tweets

From our experiment we found that F1 score of positive class and negative class are

not good as compared to neutral class. This is because in our data set most of the tweets

are manually annotated to neutral and irrelevant class. So in order to apply any of the

machine learning techniques we need a training data set that is not biased and also do not

need manually annotation. To do this we have collected tweets with emotion hashtags as

described in Chapter 2 and apply the MNB classifier on it to find out whether hashtags are

useful for emotion identification or not.
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4.4.2 Emotion Dataset

People do tend to use hashtags to express their sentiment or emotions. So these hashtagged

words are good level of sentiments and emotions. We have used these hashtag to add more

data to our machine learning algorithm. We have used MNB classifier to our emotion

dataset and the result is shown in Table 4.5. A snapshot of the confusion matrix of our

emotion dataset for unigram features is shown in Figure 4.3 and F1 score of each class for

unigram feature is shown in Table 4.6. ROC curve of our classifier is shown in Figure 4.4.

Figure 4.3: Snapshot of emotion dataset

Table 4.3: Accuracy of emotion dataset using different features

Features # of features MNB classifier
Unigram 4635 95.0%
Bigram 17628 71.23%

Unigram+Bigram 35356 95.3%
POS 12443 92.9%

Adjective 1503 84.5%

From our experiment it has been found that preparing a dataset by automatically

collecting tweets using hashtags shows its advantage as compared to the data set which
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Table 4.4: F1 score of MNB classifier for unigram feature

Class label Precision(%) Recall(%) F1 score(%)

anger 99.48% 97.98% 98.72%

fear 94.95% 96.72% 95.82%

joy 92.19% 96.42% 94.25%

love 95.90% 95.90% 95.9%

sad 86.89% 98.35% 92.26%

surprise 99.5% 97.59% 98.53%

Figure 4.4: ROC curve of MNB classifier for emotion data set

is formed by manually annotation. This is because writers are correct regarding their own

emotions, while the traditional means of annotating information needs annotators to infer

the writers’ emotions from text, which can not be accurate.
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4.4.3 SMS Dataset

We have collected some SMS (short message services) and tasted our model with these

SMS. The reason behind testing our model with SMS are they are more unstructured than

tweets. We have applied Multinomial Naive Bayes classifier and Support Vector machine

to our SMS data and the results are shown in Table 4.3. We have used different features

and we found that unigram features are more potent for Sentiment Analysis of unstructured

text. The detailed result of unigram feature for MNB classifier and ROC curve is shown in

Table 4.4 and Figure 4.5.

Table 4.5: Accuracy of SMS datset using different features

Features # of features MNB classifier SVM classifier

Unigram 2696 67% 48.7%

Bigram 21041 63% 45.8%

Unigram+Bigram 42008 60.2% 47.3%

POS 21014 65% 46.7%

Adjective 1503 44% 34.5%

Table 4.6: F1 score of MNB classifier for unigram feature

Class label Precision(%) Recall(%) F1 score(%)

Positive 66.66% 70.22% 68.39%

Negative 72.53% 78.21% 75.26%

Neutral 62.5% 20.83% 31.24%

Proposed Approach

We proposed an approach to find out sentiment of more unstructured data like SMS. We

followed the following rules:

• A small sentiment of positive and negative orienataion is first collected manually

which forms the seed.
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Figure 4.5: ROC curve of MNB classifier for SMS data set

• Repeat

1. for each word in positive and negative list search in the WordNet for their

synonyms and antonyms.

2. add the newly found words to the seed list

Until no more new words can be found

• Use these newly founded positive and negative list as features to train the classifier.

• Find the term level sentiment for all the word in a given SMS, then basically the

message level sentiment is simply the majority word of all the word.

In our approach we have used MNB classifier for sentiment identification of SMS. We have

found that by identifying term level sentiment of all the word in a message gives better

result than MNB with unigram as feature. A snapshot of our program is shown in Figure

4.6.
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Figure 4.6: Result of short messages

4.5 Conclusion

We have applied machine learning algorithm to different dataset. We found that for sentence

level classification accuracies using unigram presence and POS as feature turned out to be

most effective as compared to other alternative features we employed. But these features

are not giving better results for SMS. As SMS are more unstructured than tweets in our

experiment we found that it is better to develop a system that can find the term level

sentiment for all the word in a given SMS, then basically the message level sentiment is

simply the majority word of all the word. Finally we have developed a model which can

able to find the emotion of a tweets and we found that hashtagged words are good in finding

emotions of a tweets.
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Chapter 5

Conclusions

This thesis is a research work in the area of sentiment analysis that evaluates the

application of lexical resources and machine learning algorithm for sentiment classification

of unstructured data such as tweets and SMS. As subjective information are publicly

available on Internet in digital format, the field of Sentiment Analysis requires an automated

method to identify subjective content in a text and has applications in a variety of fields like

on-line advertising and market research. Many times these sentiment information serves as

a key attribute for taking productive decision and therefore used as an important criteria in

the field of knowledge management.

During this research, we explored the challenges in Sentiment Analysis and different

techniques used in this field to develop a reliable Sentiment Analysis system. Because of

the complexity and nuances of social media data it is very difficult to identify the sentiment

of such data. As part of this research we performed our experiment on tweets retrieved from

twitter public domain to find the effective features for Sentiment Analysis. We have applied

both lexicon based and Machine learning algorithm for SA. In our experiment we have

used SentiWordNet lexicon with the objective to best use of this lexical resource to build a

Sentiment Analysis system for tweets. We got an accuracy of 75.20% for our dataset using

SentiWordNet lexicon and found that the result varies from domain to domain. Therefore it

is better to generate a lexicon from the test corpus and use it for classification, this is because

though existing lexicon contains large number of words with their sentiment score but they

lack certain words that are found in a particular domain. In comparison to SentiWordNet
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lexicon, our model where Google search engine is pulled to find the score for each term

using point wise mutual information gives better result for our dataset and also able to

handle one of the challenge in Sentiment Analysis i.e. sudden deviation from positive

polarity to negative polarity.

We have applied machine learning algorithm to different dataset. We found that for

sentence level classification accuracies using unigram presence and POS as feature turned

out to be most effective as compared to other alternative features we employed. But these

features are not giving better results for SMS. As SMS are more unstructured than tweets

in our experiment we found that it is better to develop a system that can find the term level

sentiment for all the word in a given SMS, then basically the message level sentiment is

simply the majority word of all the word. Finally we have developed a model which can

able to find the emotion of a tweets and we found that hashtagged words are good in finding

emotions of a tweets.
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