HARDY WAVELET INDUCED ISOMORPHISM

A THESIS

SUBMITTED TO THE

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA

IN THE PARTIAL FULFILMENT

FOR THE DEGREE OF

MASTER OF SCIENCE IN MATHEMATICS BY

CHIDANANDA PRATIHARY

UNDER THE SUPERVISION OF

Dr. DIVYA SINGH

DEPARTMENT OF MATHEMATICS

NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA

Declaration

I hereby declare that the work which is being presented in the report entitled "Hardy wavelet induced isomorphism" in partial fulfilment of the requirement for the award of the degree of Master of Science, submitted to the Department of Mathematics, National Institute of Technology Rourkela is a review work carried out under the supervision of Dr. Divya Singh. The matter embodied in this report has not been submitted by me for the award of any other degree.
(Chidananda Pratihary)

Roll No. 412MA2078

This is to certify that the above statement made by the candidate is true to the best of my knowledge.

Dr. Divya Singh

Assistant Professor

Department of Mathematics

National Institute of technology Rourkela
May 11, 2015

Preface

The present thesis titled "Hardy Wavelet Induced Isomorphism "consists of three chapters. The first chapter is the introductory chapter about Hardy space, Hardy wavelets and MRA. The second and third chapters consist of definition and examples of Hardy wavelet induced isomorphisms and their fixed point sets in case of two-interval Hardy wavelet sets.

Acknowledgements

It is my pleasure to thank to the people, for whom this thesis is possible. I specially like to thank my guide Dr. Divya Singh, for his keen guidance and encouragement during the course of study and preparation of the nal manuscript of this project. I would also like to thanks our HOD and all the faculty members of Department of Mathematics for their co-operation. I heartily thanks to my friends, who helps me for preparation of this project. I thank the Director, National Institute of Technology Rourkela, for providing the facilities to pursue my postgraduate degree.

I owe a gratitude to God and my family members for their unconditional love and support. They have supported me in every situation. I am grateful for their blessings and inspiration.

Contents

1. Introduction

1.1 Preliminaries
1.2 Hardy Wavelet and Hardy MRA
2. Hardy wavelet induced isomorphism
2.1 Hardy wavelet set
2.2 Hardy wavelet induced isomorphism
3. Fixed point sets of Hardy wavelet induced isomorphism

3.1 Examples of HWII

3.2 Fixed point sets of HWII

References

Chapter 1

Introduction

1.1. Preliminaries

Definition 1.1.1:[3] The set of all square integrable function is known as L^{2}-space;

$$
L^{2}(\mathbb{R})=\left\{f:\left.\mathbb{R} \longrightarrow \mathbb{C}\left|\int_{\mathbb{R}}\right| f(x)\right|^{2} d x<+\infty\right\}
$$

Definition 1.1.2:[3] For $f \in L^{2}(\mathbb{R})$ and $\xi \in \mathbb{R}$,

$$
\hat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-i x \xi} d x, \quad x \in \mathbb{R}
$$

$\hat{f}(\xi)$ is known as the Fourier Transform of $f(x)$.
Definition 1.1.3:[3] For $g \in L^{2}(\mathbb{R})$ and $x \in \mathbb{R}, \check{g}$ is defind as,

$$
\check{g}(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} g(\xi) e^{i x \xi} d \xi
$$

$\check{g}(x)$ is called the inverse Fourier Transform of $g(x)$.
Definition 1.1.4:[3] Hardy Space $H^{2}(\mathbb{R})$ is the collection of all square integrable functions whose Fourier transform is supported in $\mathbb{R}^{+}=(0, \infty)$;

$$
H^{2}(\mathbb{R})=\left\{f \in L^{2}(\mathbb{R}): \hat{f}(\xi)=0 \text { for a.e. } \xi \leq 0\right\}
$$

$H^{2}(\mathbb{R})$ is a closed subspace of $L^{2}(\mathbb{R})$.

1.2. Hardy Wavelet and Hardy MRA

Definition 1.2.1:[3] A function $\psi \in H^{2}(\mathbb{R})$ is said to be a Hardy wavelet, if the system of functions $\left\{\psi_{j, k}=2^{j / 2} \psi\left(2^{j} \cdot-k\right): j, k \in \mathbb{Z}\right\}$ forms an orthonormal basis for $H^{2}(\mathbb{R})$.

Theorem 1.2.2:[3] A function $\psi \in H^{2}(\mathbb{R})$, with $\|\psi\|_{2}=1$, is an orthonormal wavelet for $H^{2}(\mathbb{R})$ if and only if

$$
\begin{aligned}
& \sum_{j \in \mathbb{Z}}\left|\hat{\psi}\left(2^{j} \xi\right)\right|^{2}=\chi_{\mathbb{R}^{+}}(\xi) \text { for a.e. } \xi \in \mathbb{R} \\
& \sum_{j=0}^{\infty} \hat{\psi}\left(2^{j} \xi\right) \overline{\hat{\psi}\left(2^{j}(\xi+2 k \pi)\right)}=0 \text { for a.e. } \xi \in \mathbb{R}, k \in 2 \mathbb{Z}+1
\end{aligned}
$$

Similar to MRA for wavelets in $L^{2}(\mathbb{R})$ MRA for Hardy wavelets are also defined called H^{2}-MRA.

Definition 1.2.3:[3] A sequence $\left\{V_{j}: j \in \mathbb{Z}\right\}$ of closed subspaces of $H^{2}(\mathbb{R})$ is a multiresolution analysis for $H^{2}(\mathbb{R})$ if the following properties are satisfied:

1. $V_{j} \subset V_{j+1}$ for all $j \in \mathbb{Z}$;
2. $f \in V_{j}$ if and only if $f(2(\cdot)) \in V_{j+1}$ for all $j \in \mathbb{Z}$;
3. $\bigcap_{j \in \mathbb{Z}} V_{j}=\{0\}$;
4. $\overline{\bigcup_{j \in \mathbb{Z}} V_{j}}=H^{2}(\mathbb{R})$;
5. There exists a $\varphi \in V_{0}$, such that $\{\varphi(\cdot-k): k \in \mathbb{Z}\}$ is an orthonormal basis for V_{0}.

The function φ is called a scaling function of the given MRA.

Associated with each H^{2}-MRA there is a Hardy wavelet. The construction of Hardy wavelet from an H^{2}-MRA follows on the same lines as that of an orthonormal wavelet in $L^{2}(\mathbb{R})$, given in [3].

From the definition of MRA, $V_{0} \subset V_{1}$. Let $V_{1}=V_{0} \oplus W_{0}$, where W_{0} is the orthogonal complement of V_{0} in V_{1}. Now the elements of W_{0} can be dilated by 2^{j} to obtain a closed subspace W_{j} of V_{j+1} such that

$$
V_{j+1}=V_{j} \oplus W_{j} \quad \text { for each } \quad j \in \mathbb{Z}
$$

From property (4) of MRA,

$$
H^{2}(\mathbb{R})=\oplus_{j=-\infty}^{\infty} W_{j}
$$

We have to find a $\psi \in W_{0}$ such that $\left\{2^{j / 2} \psi\left(2^{j} \cdot-k\right): k \in \mathbb{Z}\right\}$ is an orthonormal basis for W_{j}, for all $j \in \mathbb{Z}$. Then $\left\{\psi_{j, k}: j, k \in \mathbb{Z}\right\}$ will form an orthonormal basis for $H^{2}(\mathbb{R})$. Since $\varphi \in V_{0} \subset V_{1}$, therefore $\{\sqrt{2} \varphi(2 \cdot-k): k \in \mathbb{Z}\}$ is an orthonormal basis for V_{1}, and hence

$$
\varphi(\xi)=\sum_{k \in \mathbb{Z}} a_{k} \sqrt{2} \varphi(2 \xi-k)
$$

where the coefficients a_{k} are given by $a_{k}=\langle\varphi(\xi), \sqrt{2} \varphi(2 \xi-k)\rangle$.

$$
\hat{\phi}(2 \xi)=m_{0}(\xi) \hat{\phi}(\xi)
$$

for a.e. $\xi \in \mathbb{R}$, where m_{0} is a 2π-periodic function called the low-pass filter associated with the scaling function φ.

The filter $m_{0}(\xi)$ associated with φ satisfies

$$
\left|m_{0}(\xi)\right|^{2}+\left|m_{0}(\xi+\pi)\right|^{2}=1
$$

for a.e. $\xi \in \mathbb{R}$.
$\psi \in H^{2}(\mathbb{R})$ is an orthonormal wavelet associated with the given MRA iff

$$
\hat{\psi}(2 \xi)=e^{i \xi} \nu(2 \xi) \overline{m_{0}(\xi+\pi)} \hat{\varphi}(\xi)
$$

a.e. on \mathbb{R}, for some 2π-periodic measurable function ν such that

$$
|\nu(\xi)|=1 \quad \text { a.e. } \quad \text { on } \quad \mathbb{T}
$$

Relation between $|\hat{\varphi}|$ and $|\hat{\psi}|[3]$

From previous results we obtain

$$
\begin{aligned}
|\hat{\varphi}(2 \xi)|^{2}+|\hat{\psi}(2 \xi)|^{2} & =|\hat{\varphi}(\xi)|^{2}\left|m_{0}(\xi)\right|^{2}+|\hat{\varphi}(\xi)|^{2}\left|m_{0}(\xi+\pi)\right|^{2} \\
& =|\hat{\varphi}(\xi)|^{2}\left(\left|m_{0}(\xi)\right|^{2}+\left|m_{0}(\xi+\pi)\right|^{2}\right) \\
& =|\hat{\varphi}(\xi)|^{2}
\end{aligned}
$$

By repeating this result and applying the Fatou's lemma, we obtain

$$
|\hat{\varphi}(\xi)|^{2}=\sum_{j=1}^{\infty}\left|\hat{\psi}\left(2^{j} \xi\right)\right|^{2} \text { for a.e. } \xi \in \mathbb{R}
$$

Proposition 1.2.4:[3] If ψ is an H^{2}-wavelet associated with an $H^{2}-M R A$, then

$$
D_{\psi}(\xi)=\sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}}\left|\hat{\psi}\left(2^{j}(\xi+2 k \pi)\right)\right|^{2}=1 \text { for a.e. } \xi \in \mathbb{R} .
$$

Proof. From the relation given above it follows that

$$
\begin{aligned}
& |\hat{\varphi}(\xi)|^{2}=\sum_{j=1}^{\infty}\left|\hat{\psi}\left(2^{j} \xi\right)\right|^{2} \text { for a.e. } \xi \in \mathbb{R} \\
\Rightarrow & \sum_{k \in \mathbb{Z}}|\hat{\varphi}(\xi+2 k \pi)|^{2}=\sum_{k \in \mathbb{Z}} \sum_{j=1}^{\infty}\left|\hat{\psi}\left(2^{j}(\xi+2 k \pi)\right)\right|^{2} \\
\Rightarrow & 1=\sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}}\left|\hat{\psi}\left(2^{j}(\xi+2 k \pi)\right)\right|^{2} \\
\Rightarrow & D_{\psi}(\xi)=1 \text { for a.e. } \xi \in \mathbb{R} .
\end{aligned}
$$

Chapter 2

Hardy wavelet induced isomorphism

2.1. Hardy wavelet Set

Definition 2.1.1:[3] Hardy wavelet set is a measurable subset E of \mathbb{R} such that the inverse Fourier transform of χ_{E} is an orthonormal wavelet in $H^{2}(\mathbb{R})$.

In [2] all the one and two interval Hardy wavelet sets were characterized. $[2 \pi, 4 \pi]$ is the only one interval Hardy wavelet set and the two-interval Hardy wavelet sets are given by

$$
\left[\frac{2(k+1)}{2^{j+1}-1} \pi, \frac{2 k}{2^{j}-1} \pi\right] \cup\left[\frac{2^{j+1} k}{2^{j}-1} \pi, \frac{2^{j+2}(k+1)}{2^{j+1}-1} \pi\right]
$$

with $j>0$ and $0<k<2\left(2^{j}-1\right)$.
The following result gives a characterization of H^{2} wavelet sets.

Proposition 2.1.2:[1] Let $K \in \mathbb{R}^{+}$be a measurable set. Then K is a Hardy wavelet set if and only if the following two conditions hold:
(i) $\{K+2 k \pi: k \in \mathbb{Z}\}$ is a partition of \mathbb{R}.
(ii) $\left\{2^{j} K: k \in \mathbb{Z}\right\}$ is a partition of \mathbb{R}^{+}.

2.2. Hardy wavelet induced isomorphism

Ionascu in his paper [4] defined wavelet induced isomorphisms for wavelet sets in $L^{2}(\mathbb{R})$.
By using the similar idea we defined Hardy wavelet induced isomorphisms (HWII) for

Hardy wavelet sets. In [4] the set E was taken as $[-2 \pi,-\pi) \cup[\pi, 2 \pi)$, but since the dilates of Hardy wavelet sets partition only the positive real axis therefore for Hardy wavelet sets we used $E=[2 \pi, 4 \pi)$. The translation map τ is same and the dilation map has domain \mathbb{R}^{+}instead of \mathbb{R}.

The translation map $\tau: \mathbb{R} \longrightarrow E$ is given by $\tau(x)=x+2 \pi j$, where j is a unique integer satisfying $x+2 \pi j \in E$. Similarly the dilation map $\delta: \mathbb{R}^{+} \longrightarrow E$ is defined by $\delta(x)=2^{k} x$, where k is a unique integer satisfying $2^{k} x \in E$.

Let W be a Hardy wavelet set, then the map h_{W} from E to E is defined by $h_{W}=$ $\tau_{\mid W} \circ\left(\delta_{\mid W}\right)^{-1}$. Further, similar to [4], the Hardy wavelet induced isomorphism (HWII) is $\tilde{h}_{W}=\xi \circ h_{W} \circ \xi^{-1}:[0,1) \longrightarrow[0,1)$, where $\xi: E \longrightarrow[0,1)$ is defined as

$$
\xi(x)=\frac{x}{2 \pi}-1, x \in E
$$

and

$$
\xi^{-1}(x)=2 \pi(x+1), x \in[0,1)
$$

Theorem 2.2.1: Let W be a Hardy wavelet set and \tilde{h}_{W} be defined as above. Then the map \tilde{h}_{W} has the following properties:
(i) \tilde{h}_{W} is a measurable bijection of $[0,1)$,
(ii) For each $x \in[0,1)$,

$$
\tilde{h}_{W}=\left\lfloor 2^{l}(x+1)\right\rfloor,
$$

where $l \in \mathbb{Z}$ and $\lfloor x\rfloor$ denotes the fractional part of the real number x.
(iii) if h is a map satisfying (i) and (ii) then there exists a wavelet set W such $h=\tilde{h}_{W}$.

Proof: (i) By definition it follows that $\tau_{\mid W}, \delta_{\mid W}: W \longrightarrow E$ are measurable bijections. Hence $\left(\delta_{\mid W}\right)^{-1}$ is also a measurable bijection. We can easily see that ξ and ξ^{-1} are measurable bijections and therefore \tilde{h}_{W} is a measurable bijection of $[0,1)$.
(ii) Now, $\tau(t)=\xi^{-1}\left(\left\lfloor\frac{t}{2 \pi}\right\rfloor\right)$, for every $t \in \mathbb{R}$. For if, $\left\lfloor\frac{t}{2 \pi}\right\rfloor=n+d$, where $n=$ integral part and $d=$ fractional part, then $\xi^{-1}\left(\left\lfloor\frac{t}{2 \pi}\right\rfloor\right)=2 \pi\left\lfloor\frac{t}{2 \pi}\right\rfloor+2 \pi=2 \pi(d)+2 \pi=2 \pi(d+1)$. Further,

$$
\begin{aligned}
\tau(t) & =\tau(2 n \pi+2 d \pi) \\
& =(2 n \pi+2 d \pi)+2 m \pi, \quad m \in \mathbb{Z} \\
& =2 \pi d+2 \pi(n+m) \\
& =2 \pi(d+n+m) \in[2 \pi, 4 \pi) \\
\Rightarrow & 1 \leq d+n+m \leq 2 \\
\Rightarrow & n+m=1 \\
\Rightarrow & \tau(t)=2 \pi(d+1)
\end{aligned}
$$

Thus, $\tau(t)=\xi^{-1}\left(\left\lfloor\frac{t}{2 \pi}\right\rfloor\right)$. Let $u=\xi^{-1}(x)=2 \pi(x+1)$ and $\delta^{-1}(u)=2^{l} u$ with $l \in \mathbb{Z}$. Then we have $\tau\left(2^{l} u\right)=\xi^{-1}\left(\left\lfloor\frac{2^{l} u}{2 \pi}\right\rfloor\right)=\xi^{-1}\left(\left\lfloor 2^{l}(x+1)\right\rfloor\right)$. We know that $h_{W}(x)=\tau_{\mid W} \circ\left(\delta_{\mid W}\right)^{-1}(x)=$ $\tau\left(2^{l} x\right)$. Now

$$
\begin{aligned}
\tilde{h}_{W}(x) & =\xi \circ h_{W} \circ \xi^{-1}(x) \\
& =\xi \circ h_{W}(2 \pi(x+1)) \\
& =\xi\left(\tau\left(2^{l}(x+1) 2 \pi\right)\right) \\
& =\xi\left(\tau\left(2^{l} u\right)\right) \\
& =\xi \xi^{-1}\left\lfloor 2^{l}(x+1)\right\rfloor \\
& =\left\lfloor 2^{l}(x+1)\right\rfloor \\
\Rightarrow \tilde{h}_{W}(x) & =\left\lfloor 2^{l}(x+1)\right\rfloor
\end{aligned}
$$

(iii) Next suppose that h has the properties (i) and (ii), and denote $h_{1}=\xi^{-1} \circ h \circ \xi: E \rightarrow E$.

$$
\begin{aligned}
h_{1}(x) & =\xi^{-1} \circ h \circ \xi(x) \\
& =\xi^{-1} \circ h\left(\frac{x}{2 \pi}-1\right) \\
& =\xi^{-1}\left(\left\lfloor 2^{k}\left(\frac{x}{2 \pi}-1+1\right)\right\rfloor\right) \\
& =\xi^{-1}\left(\left\lfloor\frac{2^{k} x}{2 \pi}\right\rfloor\right) \\
& =2^{k} x+2 l \pi \\
& =2^{k(x)} x+2 l(x) \pi, k(x), l(x) \in \mathbb{Z}
\end{aligned}
$$

The map $x \rightarrow k(x)$ and $x \rightarrow l(x)$ are measurable. Let $\psi: E \rightarrow \mathbb{R}$ be defined by $\psi(x)=2^{k(x)} x, x \in E$, and $W=\psi(E)$. Then W is measurable. ψ is bijective as it is both onto and one to one. If we take any point from W then we can find a pre-image in E.

Now let $x_{1} \neq x_{2}$ be two points in E and $\psi\left(x_{1}\right)=2^{k_{1}} x_{1}, \psi\left(x_{2}\right)=2^{k_{2}} x_{2}$. We want to
prove that $2^{k_{1}} x_{1} \neq 2^{k_{2}} x_{2}$. On the contrary suppose that $2^{k_{1}} x_{1}=2^{k_{2}} x_{2}$.

$$
k_{1}=k_{2}=k \Rightarrow 2^{k}\left(x_{1}-x_{2}\right)=0 \Rightarrow x_{1}=x_{2} \text {. Therefore } k_{1} \text { can not be equal to } k_{2} \text {. }
$$

Further if, $k_{1}>k_{2}$, then $2^{k_{1}} x_{1}=2^{k_{2}} x_{2}$ implies that $2^{k_{1}-k_{2}} x_{1}=x_{2}$. Since $x_{1}, x_{2} \in E$, therefore even for $k_{1}-k_{2}=1, \Rightarrow 2^{k_{1}-k_{2}} x_{1} \neq x_{2} \Rightarrow \psi\left(x_{1}\right) \neq \psi\left(x_{2}\right)$. Hence ψ is one-one.

Since $\delta_{\mid W}(W)=E$, therefore $\left(\delta_{\mid W}\right)^{-1}(E)=W$ and $\psi(E)=W$ implies that $\psi=\left(\delta_{\mid W}\right)^{-1}$.
Next we define $\varphi: W \rightarrow E$ by $\varphi(y)=y+2 l\left(\psi^{-1}(y)\right) \pi$.

$$
\begin{aligned}
\varphi \circ \psi(x) & =\varphi(\psi(x)) \\
& =\varphi\left(2^{k(x)} x\right) \\
& =2^{k(x)} x+2 l\left(2^{-k(x)} 2^{k(x)} x\right) \pi \\
& =2^{k(x)} x+2 l(x) \pi \\
& =h_{1}(x) \\
\Rightarrow \varphi \circ \psi & =h_{1}
\end{aligned}
$$

Now as defined above $\varphi(W)=E$. Since $\tau_{\mid W}(W)=E$, therefore $\varphi(y)=\tau_{\mid W}(y)$, for $y \in W$.

This proves that ψ is onto and h_{1} is one to one, hence φ is one to one. Since h_{1} is onto, therefore φ is also onto. Thus W is a wavelet set. The map $h_{1}=\varphi \circ \psi=\tau_{\mid W} \circ\left(\delta_{\mid W}\right)^{-1}=h_{W}$ and $h=\xi \circ h \circ \xi^{-1}=\tilde{h}_{W}$.

Chapter 3

Fixed point sets of Hardy wavelet induced isomorphism

3.1. Examples of HWII

Consider the two interval Hardy wavelet sets W given by

$$
W=\left[\frac{2(k+1)}{2^{j+1}-1} \pi, \frac{2 k}{2^{j}-1} \pi\right) \cup\left[\frac{2^{j+1} k}{2^{j}-1} \pi, \frac{2^{j+2}(k+1)}{2^{j+1}-1} \pi\right)
$$

with $j>0$ and $0<k<2\left(2^{j}-1\right)$.

Let us take the first case, $j=1, k=1$

$$
W=\left[\frac{4}{3} \pi, 2 \pi\right] \cup\left[4 \pi, \frac{16}{3} \pi\right]
$$

Then $\tau_{\mid W}, \delta_{\mid W}: W \longrightarrow E$ are

$$
\tau_{\mid W}(x)= \begin{cases}x+2 \pi & x \in\left[\frac{4}{3} \pi, 2 \pi\right) \\ x-2 \pi & x \in\left[4 \pi, \frac{16}{3} \pi\right)\end{cases}
$$

and

$$
\delta_{\mid W}(x)= \begin{cases}2 x & x \in\left[\frac{4}{3} \pi, 2 \pi\right) \\ 2^{-1} x & x \in\left[4 \pi, \frac{16}{3} \pi\right)\end{cases}
$$

$$
\left(\delta_{\mid W}\right)^{-1}: E \longrightarrow W
$$

$$
\left(\delta_{\mid W}\right)^{-1}(x)= \begin{cases}2 x & x \in\left[2 \pi, \frac{8}{3} \pi\right) \\ 2^{-1} x & x \in\left[\frac{8}{3} \pi, 4 \pi\right)\end{cases}
$$

Now $h_{W}=\tau_{\mid W} \circ\left(\delta_{\mid W}\right)^{-1}: E \longrightarrow E$

$$
h_{W}(x)= \begin{cases}2 x-2 \pi & x \in\left[2 \pi, \frac{8}{3} \pi\right) \\ 2^{-1} x+2 \pi & x \in\left[\frac{8}{3} \pi, 4 \pi\right)\end{cases}
$$

Again $\tilde{h}_{W}=\xi \circ h_{W} \circ \xi^{-1}:[0,1) \longrightarrow[0,1)$. Here

$$
\tilde{h}_{W}(x)= \begin{cases}\lfloor 2(x+1)\rfloor & x \in\left[0, \frac{1}{3}\right) \\ \left\lfloor 2^{-1}(x+1)\right\rfloor & x \in\left[\frac{1}{3}, 1\right)\end{cases}
$$

Similarly we can obtain \tilde{h}_{W} for $j=2$:
$j=2, k=1$

$$
\tilde{h}_{W}(x)= \begin{cases}\lfloor 2(x+1)\rfloor & x \in\left[0, \frac{1}{7}\right) \\ \left\lfloor 2^{-2}(x+1)\right\rfloor & x \in\left[\frac{1}{7}, \frac{1}{3}\right) \\ \left\lfloor 2^{0}(x+1)\right\rfloor & x \in\left[\frac{1}{3}, 1\right)\end{cases}
$$

$$
\begin{aligned}
& j=2, k=2 \\
& \tilde{h}_{W}(x)= \begin{cases}\left\lfloor 2^{-1}(x+1)\right\rfloor & x \in\left[0, \frac{1}{3}\right) \\
\lfloor 2(x+1)\rfloor & x \in\left[\frac{1}{3}, \frac{1}{2}\right) \\
\lfloor 2(x+1)\rfloor & x \in\left[\frac{1}{2}, \frac{5}{7}\right) \\
\left\lfloor 2^{-2}(x+1)\right\rfloor & x \in\left[\frac{5}{7}, 1\right)\end{cases} \\
& j=2, k=3 \\
& \tilde{h}_{W}(x)= \begin{cases}\left\lfloor 2^{2}(x+1)\right\rfloor & x \in\left[0, \frac{1}{7}\right) \\
\left\lfloor 2^{2}(x+1)\right\rfloor & x \in\left[\frac{1}{7}, 1\right)\end{cases} \\
& j=2, k=4 \\
& \tilde{h}_{W}(x)= \begin{cases}\left\lfloor 2^{0}(x+1)\right\rfloor & x \in\left[0, \frac{1}{3}\right) \\
\left\lfloor 2^{2}(x+1)\right\rfloor & x \in\left[\frac{1}{3}, \frac{3}{7}\right) \\
\left\lfloor 2^{-1}(x+1)\right\rfloor & x \in\left[\frac{3}{7}, 1\right)\end{cases} \\
& j=2, k=5 \\
& \tilde{h}_{W}(x)= \begin{cases}\left\lfloor 2^{0}(x+1)\right\rfloor & x \in\left[0, \frac{2}{3}\right) \\
\left\lfloor 2^{2}(x+1)\right\rfloor & x \in\left[\frac{2}{3}, \frac{5}{7}\right) \\
\left\lfloor 2^{-1}(x+1)\right\rfloor & x \in\left[\frac{5}{7}, 1\right)\end{cases}
\end{aligned}
$$

3.2. Fixed point sets of HWII

Theorem 3.2.1: For the two-interval Hardy wavelet sets, whenever $k>2^{j}-1$, the corresponding wavelet induced isomorphism \tilde{h}_{W} possess fixed point sets of non-zero measure.

Proof: For the proof note that if $k>2^{j}-1$, then $\frac{k}{2^{j}-1}>1$, or $\frac{2 \pi k}{2^{j}-1}>2 \pi$.
Also $k<2\left(2^{j}-1\right)=2^{j+1}-2$ implies that $\frac{2 \pi(k+1)}{2^{j+1}-1}<2 \pi$. Further $\frac{2 \pi k}{2^{j}-1}<4 \pi$. Thus the point 2π always lies in the first of the two intervals and

$$
\left[2 \pi, \frac{2 k \pi}{2^{j}-1}\right) \subseteq[2 \pi, 4 \pi)
$$

Thus both the translation and inverse dilation maps τ, δ^{-1} are identity maps on the subinterval $\left[2 \pi, \frac{2 k}{2^{j}-1} \pi\right)$ of the two interval Hardy wavelet set and hence \tilde{h}_{W} is also an identity map on this subinterval. This proves that \tilde{h}_{W} has fixed point set of non-zero measure.

For $\mathrm{j}=2, \mathrm{k}=2$

References

[1] N. Arcozzi, B. Behera and S. Madan, Large classes of minimally supported frequency wavelets of $L^{2}(\mathbb{R})$ and $H^{2}(\mathbb{R})$, J. Geom. Anal., 13(4) (2003), 557-579.
[2] Young-Hwa Ha, Hyeonbae Kang, Jungseob Lee, Jun Keun Seo, Unimodular for L^{2} and the Hardy space H^{2}, Michigan Math j. Publication, 1992, pp. 345-360.
[3] Eugenio Hernandez, Guido Weiss, A First Course on wavelets, CRC press, 1996.
[4] Eugen J. Ionascu, A new construction of wavelets sets, Real Anal. Exchange, Volume 28, Number 2,2002, pp. 593-610.

