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Preface

The present thesis titled “Hardy Wavelet Induced Isomorphism ”consists of three chap-

ters. The first chapter is the introductory chapter about Hardy space, Hardy wavelets and

MRA. The second and third chapters consist of definition and examples of Hardy wavelet

induced isomorphisms and their fixed point sets in case of two-interval Hardy wavelet sets.
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Chapter 1

Introduction

1.1. Preliminaries

Definition 1.1.1:[3] The set of all square integrable function is known as L2-space;

L2(R) =

{
f : R −→ C

∣∣∣∣ ∫
R
|f(x)|2dx < +∞

}

Definition 1.1.2:[3] For f ∈ L2(R) and ξ ∈ R,

f̂(ξ) =

∫
R
f(x)e−ixξdx, x ∈ R

f̂(ξ) is known as the Fourier Transform of f(x).

Definition 1.1.3:[3] For g ∈ L2(R) and x ∈ R, ǧ is defind as,

ǧ(x) =
1

2π

∫
R
g(ξ)eixξdξ,

ǧ(x) is called the inverse Fourier Transform of g(x).

Definition 1.1.4:[3] Hardy Space H2(R) is the collection of all square integrable functions

whose Fourier transform is supported in R+ = (0,∞);

H2(R) = {f ∈ L2(R) : f̂(ξ) = 0 for a.e. ξ ≤ 0}.

H2(R) is a closed subspace of L2(R).
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1.2. Hardy Wavelet and Hardy MRA

Definition 1.2.1:[3] A function ψ ∈ H2(R) is said to be a Hardy wavelet, if the system

of functions {ψj,k = 2j/2ψ(2j · −k) : j, k ∈ Z} forms an orthonormal basis for H2(R).

Theorem 1.2.2:[3] A function ψ ∈ H2(R), with ||ψ||2 = 1, is an orthonormal wavelet for

H2(R) if and only if

∑
j∈Z

|ψ̂(2jξ)|2 = χR+(ξ) for a.e. ξ ∈ R

∞∑
j=0

ψ̂(2jξ)ψ̂(2j(ξ + 2kπ)) = 0 for a.e. ξ ∈ R, k ∈ 2Z + 1

Similar to MRA for wavelets in L2(R) MRA for Hardy wavelets are also defined called

H2-MRA.

Definition 1.2.3:[3] A sequence {Vj : j ∈ Z} of closed subspaces of H2(R) is a multireso-

lution analysis for H2(R) if the following properties are satisfied:

1. Vj ⊂ Vj+1 for all j ∈ Z;

2. f ∈ Vj if and only if f(2(·)) ∈ Vj+1 for all j ∈ Z;

3.
⋂
j∈Z Vj = {0};

4.
⋃
j∈Z Vj = H2(R);

5. There exists a ϕ ∈ V0, such that {ϕ(· − k) : k ∈ Z} is an orthonormal basis for V0.
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The function ϕ is called a scaling function of the given MRA.

Associated with each H2-MRA there is a Hardy wavelet. The construction of Hardy

wavelet from an H2-MRA follows on the same lines as that of an orthonormal wavelet in

L2(R), given in [3].

From the definition of MRA, V0 ⊂ V1. Let V1 = V0 ⊕W0, where W0 is the orthogonal

complement of V0 in V1. Now the elements of W0 can be dilated by 2j to obtain a closed

subspace Wj of Vj+1 such that

Vj+1 = Vj ⊕Wj for each j ∈ Z.

From property (4) of MRA,

H2(R) = ⊕∞j=−∞Wj.

We have to find a ψ ∈ W0 such that {2j/2ψ(2j · −k) : k ∈ Z} is an orthonormal basis for

Wj, for all j ∈ Z. Then {ψj,k : j, k ∈ Z} will form an orthonormal basis for H2(R). Since

ϕ ∈ V0 ⊂ V1, therefore {
√

2ϕ(2 · −k) : k ∈ Z} is an orthonormal basis for V1, and hence

ϕ(ξ) =
∑
k∈Z

ak
√

2ϕ(2ξ − k)

where the coefficients ak are given by ak = 〈ϕ(ξ),
√

2ϕ(2ξ − k)〉.

φ̂(2ξ) = m0(ξ)φ̂(ξ)

for a.e. ξ ∈ R, where m0 is a 2π-periodic function called the low-pass filter associated with

the scaling function ϕ.
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The filter m0(ξ) associated with ϕ satisfies

|m0(ξ)|2 + |m0(ξ + π)|2 = 1

for a.e. ξ ∈ R.

ψ ∈ H2(R) is an orthonormal wavelet associated with the given MRA iff

ψ̂(2ξ) = eiξν(2ξ)m0(ξ + π)ϕ̂(ξ)

a.e. on R, for some 2π-periodic measurable function ν such that

|ν(ξ)| = 1 a.e. on T.

Relation between |ϕ̂| and |ψ̂| [3]

From previous results we obtain

|ϕ̂(2ξ)|2 + |ψ̂(2ξ)|2 = |ϕ̂(ξ)|2|m0(ξ)|2 + |ϕ̂(ξ)|2|m0(ξ + π)|2

= |ϕ̂(ξ)|2(|m0(ξ)|2 + |m0(ξ + π)|2)

= |ϕ̂(ξ)|2

By repeating this result and applying the Fatou’s lemma, we obtain

|ϕ̂(ξ)|2 =
∞∑
j=1

|ψ̂(2jξ)|2 for a.e. ξ ∈ R.

Proposition 1.2.4:[3] If ψ is an H2-wavelet associated with an H2-MRA, then

Dψ(ξ) =
∞∑
j=1

∑
k∈Z

|ψ̂(2j(ξ + 2kπ))|2 = 1 for a.e. ξ ∈ R.
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Proof. From the relation given above it follows that

|ϕ̂(ξ)|2 =
∞∑
j=1

|ψ̂(2jξ)|2 for a.e. ξ ∈ R

⇒
∑
k∈Z

|ϕ̂(ξ + 2kπ)|2 =
∑
k∈Z

∞∑
j=1

|ψ̂(2j(ξ + 2kπ))|2

⇒1 =
∞∑
j=1

∑
k∈Z

|ψ̂(2j(ξ + 2kπ))|2

⇒Dψ(ξ) = 1 for a.e. ξ ∈ R.
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Chapter 2

Hardy wavelet induced isomorphism

2.1. Hardy wavelet Set

Definition 2.1.1:[3] Hardy wavelet set is a measurable subset E of R such that the inverse

Fourier transform of χE is an orthonormal wavelet in H2(R).

In [2] all the one and two interval Hardy wavelet sets were characterized. [2π, 4π] is the

only one interval Hardy wavelet set and the two-interval Hardy wavelet sets are given by

[
2(k + 1)

2j+1 − 1
π,

2k

2j − 1
π

]
∪
[

2j+1k

2j − 1
π,

2j+2(k + 1)

2j+1 − 1
π

]

with j > 0 and 0 < k < 2(2j − 1).

The following result gives a characterization of H2 wavelet sets.

Proposition 2.1.2:[1] Let K ∈ R+ be a measurable set. Then K is a Hardy wavelet set if

and only if the following two conditions hold:

(i) {K + 2kπ : k ∈ Z} is a partition of R.

(ii) {2jK : k ∈ Z} is a partition of R+.

2.2. Hardy wavelet induced isomorphism

Ionascu in his paper [4] defined wavelet induced isomorphisms for wavelet sets in L2(R).

By using the similar idea we defined Hardy wavelet induced isomorphisms (HWII) for
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Hardy wavelet sets. In [4] the set E was taken as [−2π,−π)∪ [π, 2π), but since the dilates

of Hardy wavelet sets partition only the positive real axis therefore for Hardy wavelet sets

we used E = [2π, 4π). The translation map τ is same and the dilation map has domain

R+ instead of R.

The translation map τ : R −→ E is given by τ(x) = x+2πj, where j is a unique integer

satisfying x+ 2πj ∈ E. Similarly the dilation map δ : R+ −→ E is defined by δ(x) = 2kx,

where k is a unique integer satisfying 2kx ∈ E.

Let W be a Hardy wavelet set, then the map hW from E to E is defined by hW =

τ|W ◦ (δ|W )−1. Further, similar to [4], the Hardy wavelet induced isomorphism (HWII) is

h̃W = ξ ◦ hW ◦ ξ−1 : [0, 1) −→ [0, 1), where ξ : E −→ [0, 1) is defined as

ξ(x) =
x

2π
− 1, x ∈ E,

and

ξ−1(x) = 2π(x+ 1), x ∈ [0, 1).

Theorem 2.2.1: Let W be a Hardy wavelet set and h̃W be defined as above. Then the

map h̃W has the following properties:

(i) h̃W is a measurable bijection of [0, 1),

(ii) For each x ∈ [0, 1),

h̃W = b2l(x+ 1)c,

where l ∈ Z and bxc denotes the fractional part of the real number x.
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(iii) if h is a map satisfying (i) and (ii) then there exists a wavelet set W such h = h̃W .

Proof: (i) By definition it follows that τ|W , δ|W : W −→ E are measurable bijections.

Hence (δ|W )−1 is also a measurable bijection. We can easily see that ξ and ξ−1 are mea-

surable bijections and therefore h̃W is a measurable bijection of [0, 1).

(ii) Now, τ(t) = ξ−1(b t
2π
c), for every t ∈ R. For if, b t

2π
c = n + d, where n=integral part

and d=fractional part, then ξ−1(b t
2π
c) = 2πb t

2π
c+ 2π = 2π(d) + 2π = 2π(d+ 1). Further,

τ(t) = τ(2nπ + 2dπ)

= (2nπ + 2dπ) + 2mπ, m ∈ Z

= 2πd+ 2π(n+m)

= 2π(d+ n+m) ∈ [2π, 4π)

⇒1 ≤ d+ n+m ≤ 2

⇒n+m = 1

⇒τ(t) = 2π(d+ 1)

Thus, τ(t) = ξ−1(b t
2π
c). Let u = ξ−1(x) = 2π(x + 1) and δ−1(u) = 2lu with l ∈ Z. Then

we have τ(2lu) = ξ−1(b2lu
2π
c) = ξ−1(b2l(x+1)c). We know that hW (x) = τ|W ◦ (δ|W )−1(x) =

τ(2lx). Now
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h̃W (x) = ξ ◦ hW ◦ ξ−1(x)

= ξ ◦ hW (2π(x+ 1))

= ξ(τ(2l(x+ 1)2π))

= ξ(τ(2lu))

= ξξ−1b2l(x+ 1)c

= b2l(x+ 1)c

⇒ h̃W (x) = b2l(x+ 1)c

(iii) Next suppose that h has the properties (i) and (ii), and denote h1 = ξ−1◦h◦ξ : E → E.

h1(x) = ξ−1 ◦ h ◦ ξ(x)

= ξ−1 ◦ h(
x

2π
− 1)

= ξ−1(b2k( x
2π
− 1 + 1)c)

= ξ−1(b2
kx

2π
c)

= 2kx+ 2lπ

= 2k(x)x+ 2l(x)π, k(x), l(x) ∈ Z

The map x → k(x) and x → l(x) are measurable. Let ψ : E → R be defined by

ψ(x) = 2k(x)x, x ∈ E, and W = ψ(E). Then W is measurable. ψ is bijective as it is both

onto and one to one. If we take any point from W then we can find a pre-image in E.

Now let x1 6= x2 be two points in E and ψ(x1) = 2k1x1, ψ(x2) = 2k2x2. We want to
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prove that 2k1x1 6= 2k2x2. On the contrary suppose that 2k1x1 = 2k2x2.

k1 = k2 = k ⇒ 2k(x1 − x2) = 0 ⇒ x1 = x2. Therefore k1 can not be equal to k2.

Further if, k1 > k2, then 2k1x1 = 2k2x2 implies that 2k1−k2x1 = x2. Since x1, x2 ∈ E,

therefore even for k1 − k2 = 1, ⇒ 2k1−k2x1 6= x2 ⇒ ψ(x1) 6= ψ(x2). Hence ψ is one-one.

Since δ|W (W ) = E, therefore (δ|W )−1(E) = W and ψ(E) = W implies that ψ = (δ|W )−1.

Next we define ϕ : W → E by ϕ(y) = y + 2l(ψ−1(y))π.

ϕ ◦ ψ(x) = ϕ(ψ(x))

= ϕ(2k(x)x)

= 2k(x)x+ 2l(2−k(x)2k(x)x)π

= 2k(x)x+ 2l(x)π

= h1(x)

⇒ ϕ ◦ ψ = h1

Now as defined above ϕ(W ) = E. Since τ|W (W ) = E, therefore ϕ(y) = τ|W (y), for

y ∈ W .

This proves that ψ is onto and h1 is one to one, hence ϕ is one to one. Since h1 is onto,

therefore ϕ is also onto. Thus W is a wavelet set. The map h1 = ϕ◦ψ = τ|W ◦(δ|W )−1 = hW

and h = ξ ◦ h ◦ ξ−1 = h̃W .
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Chapter 3

Fixed point sets of Hardy wavelet induced

isomorphism

3.1. Examples of HWII

Consider the two interval Hardy wavelet sets W given by

W =

[
2(k + 1)

2j+1 − 1
π,

2k

2j − 1
π

)
∪
[

2j+1k

2j − 1
π,

2j+2(k + 1)

2j+1 − 1
π

)

with j > 0 and 0 < k < 2(2j − 1).

Let us take the first case, j = 1, k = 1

W =

[
4

3
π, 2π

]
∪
[
4π,

16

3
π

]

Then τ|W , δ|W : W −→ E are

τ|W (x) =


x+ 2π x ∈ [4

3
π, 2π)

x− 2π x ∈ [4π, 16
3
π)

and

δ|W (x) =


2x x ∈ [4

3
π, 2π)

2−1x x ∈ [4π, 16
3
π)
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(δ|W )−1 : E −→ W

(δ|W )−1(x) =


2x x ∈ [2π, 8

3
π)

2−1x x ∈ [8
3
π, 4π)

Now hW = τ|W ◦ (δ|W )−1 : E −→ E

hW (x) =


2x− 2π x ∈ [2π, 8

3
π)

2−1x+ 2π x ∈ [8
3
π, 4π)

Again h̃W = ξ ◦ hW ◦ ξ−1 : [0, 1) −→ [0, 1). Here

h̃W (x) =


b2(x+ 1)c x ∈ [0, 1

3
)

b2−1(x+ 1)c x ∈ [1
3
, 1)

Similarly we can obtain h̃W for j = 2:

j = 2, k = 1

h̃W (x) =



b2(x+ 1)c x ∈ [0, 1
7
)

b2−2(x+ 1)c x ∈ [1
7
, 1
3
)

b20(x+ 1)c x ∈ [1
3
, 1)
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j = 2, k = 2

h̃W (x) =



b2−1(x+ 1)c x ∈ [0, 1
3
)

b2(x+ 1)c x ∈ [1
3
, 1
2
)

b2(x+ 1)c x ∈ [1
2
, 5
7
)

b2−2(x+ 1)c x ∈ [5
7
, 1)

j = 2, k = 3

h̃W (x) =


b22(x+ 1)c x ∈ [0, 1

7
)

b22(x+ 1)c x ∈ [1
7
, 1)

j = 2, k = 4

h̃W (x) =



b20(x+ 1)c x ∈ [0, 1
3
)

b22(x+ 1)c x ∈ [1
3
, 3
7
)

b2−1(x+ 1)c x ∈ [3
7
, 1)

j = 2, k = 5

h̃W (x) =



b20(x+ 1)c x ∈ [0, 2
3
)

b22(x+ 1)c x ∈ [2
3
, 5
7
)

b2−1(x+ 1)c x ∈ [5
7
, 1)

3.2. Fixed point sets of HWII

Theorem 3.2.1: For the two-interval Hardy wavelet sets, whenever k > 2j − 1, the cor-

responding wavelet induced isomorphism h̃W possess fixed point sets of non-zero measure.
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Proof: For the proof note that if k > 2j − 1, then k
2j−1 > 1, or 2πk

2j−1 > 2π.

Also k < 2(2j − 1) = 2j+1 − 2 implies that 2π(k+1)
2j+1−1 < 2π. Further 2πk

2j−1 < 4π. Thus the

point 2π always lies in the first of the two intervals and

[
2π,

2kπ

2j − 1

)
⊆ [2π, 4π).

Thus both the translation and inverse dilation maps τ , δ−1 are identity maps on the

subinterval [2π, 2k
2j−1π) of the two interval Hardy wavelet set and hence h̃W is also an

identity map on this subinterval. This proves that h̃W has fixed point set of non-zero

measure.
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