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Abstract 

 

The Finite Element Method (FEM) is a numerical technique for finding approximate 

solutions to boundary value problems for partial differential equations. It uses subdivision of 

whole problem domain into simpler parts, called finite elements, and variational methods 

from the calculus of variations to solve the problem by minimizing the associated error 

function. Analogous to the idea that connecting many tiny straight lines can approximate a 

larger circle, FEM encompasses methods for connecting many simple element equations over 

many small subdomains, named finite elements, to approximate a more complex equation 

over a larger domain. 

 

Concrete building slabs (plates), upheld directly by the soil medium, is a common construction 

form. It is utilized as a part of private, business, mechanical, and institutional structures. In 

some of these structures, substantial slab loads occur, for example, in libraries, grain 

stockpiling structures, distribution centres, and so forth. A mat foundation, which is usually 

utilized as a part of the supporting of multi-story building sections, is another illustration of a 

vigorously loaded concrete slab supported directly by the soil medium. In every one of these 

structures, it is vital to compute slab displacements and consequent stresses with a worthy level 

of precision so as to guarantee a sheltered and practical configuration. 

 

This project presents a finite element static analysis for estimating the structural behaviour of 

plates resting on elastic foundations, described by the Winkler’s Model. A Matlab program 

computing the displacement and stresses for slabs on elastic foundation has been presented in 

the appendix. 
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Soil Behaviour 
 
Concrete building slabs (plates), upheld directly by the soil medium, is a common construction 

form. It is utilized as a part of private, business, mechanical, and institutional structures. In 

some of these structures, substantial slab loads occur, for example, in libraries, grain 

stockpiling structures, distribution centres, and so forth. A mat foundation, which is usually 

utilized as a part of the supporting of multi-story building sections, is another illustration of a 

vigorously loaded concrete slab supported directly by the soil medium. In every one of these 

structures, it is vital to compute slab displacements and consequent stresses with a worthy level 

of precision so as to guarantee a sheltered and practical configuration. 
 

Effective uses of the principles of structural engineering are unpredictably connected to the 

capacity of the designer to model the structure and its support conditions to perform an accurate 

analysis and an accordingly "correct" design. Landing at a reasonable model is entangled in 

foundation analysis by the great trouble of demonstrating the soil structure interaction.                                          

 

  
 

Ultimately, all structure loads must be transferred to the soil continuum, and both the soil and 

the structure act together to resist and support the loads. The integral nature of the foundation 

and soils action is further complicated by the complexity of the soil medium itself. Soil is truly 

a non-homogeneous and an anisotropic medium that behaves in a non-linear manner, while 

concrete and steel structures can be adequately modelled and analysed, assuming isotropic and 

linear behaviour. In addition, the structural behaviour are well known so that the stiffness of 

the structure may be readily determined, given member sizing. 

 

On the other hand, soil properties are very difficult to determine because in  addition to the 

previously mentioned characteristics, it is a “soft” material, which makes it very difficult to 

obtain samples for testing that will produce laboratory results paralleling its actual “in 

ground” behaviour. Among other problems, the type of soil affects the ability to obtain 

representative samples (for example, stiff clay is more difficult to sample than soft clay). 

Variations in sampling techniques among laboratories further complicate the problem. Two 

additional complicating factors are that soil material properties are stress dependent and the 

soil continuum will in practice consists of layers of materials with different constitutive 

relations and material properties. Because of these factors, the time properties and 

constitutive relations of the soil continuum are essentially unknown and indeterminable. As 

a result, it is necessary to make a number of simplifying assumptions to analyse the soil-

structure interaction. 

Figure 1: Construction of Raft 

Foundation 
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Objective 

 

 The objective of this research is to develop a workable approach for the analysis of 

slabs (plates) elastic foundation using finite element method. 

 

  To develop a Matlab program that will provide the designer with realistic stress 

values and displacement values for use in the design of the slabs. 

 

 

Scope 

  

The current study is involved only with the use of rectangular and skew slabs because these 

slabs are widely used and are appropriate for practicing engineers due to its simplicity. 

 

 The study uses Winker’s model as its soil-structure interaction model for the analysis. 
 

 In this study, several types of slab loading are considered, including the uniformly 

distributed load, concentrated loads, and combinations of these loading systems. 

 

 The results obtained from the program output are compared with that obtained from 

theoretical and analytical calculations. 
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Chapter 2 
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     Interaction Models 
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Literature Review 

 

Soil Structure Interaction Model 

Concrete building slabs (plates), upheld directly by the soil medium, is an exceptionally regular 

development framework. It is utilized as a part of private, business, mechanical, and 

institutional structures. In some of these structures, substantial slab loads occur, for example, 

in libraries, grain stockpiling structures, distribution centres, and so forth. A mat foundation, 

which is usually utilized as a part of the supporting of multi-story building sections, is another 

illustration of a vigorously loaded concrete slab supported directly by the soil medium. In every 

one of these structures, it is vital to compute slab displacements and consequent stresses with 

a worthy level of precision so as to guarantee a sheltered and practical configuration. 

 

In the past, numerous scientists have taken a shot at this issue, which is referred to as "beams 

and slabs on elastic foundations." In numerous practical design problems of this sort, the soil 

continuum is layered and may be resting over rigid rock or a generally stronger soil. Most of 

the past work started with the well understood Winkler model, which was initially created for 

the examination of railroad tracks. The utilization of the Winkler model includes one 

noteworthy issue and one huge behavioural irregularity. The issue includes the need for 

deciding the modulus of subgrade response, "k," and the behavioural irregularity is that an 

examination of plates conveying a uniformly distributed load will create a rigid body 

displacement. 

 

At last, all structure loads must be transferred to the soil continuum, and the soil and the 

structure act together to oppose and support the loads. The fundamental way of the foundation 

and soil activities is further muddled by the multifaceted nature of soil medium itself. Soil is 

genuinely a non-homogeneous and an anisotropic medium that acts in a nonlinear way, while 

cement and steel structures can be adequately demonstrated and analysed, accepting isotropic 

and linear behaviour. Moreover, the properties of basic building materials are surely 

understood so that the firmness of the structure may be promptly determined, given member 

measuring and structure geometry. 

 

Two additional convoluting elements are that soil material properties are stress dependent, and 

the soil continuum will comprise of layers of materials with diverse constitutive relations and 

material properties. Due to these elements, the properties and constitutive relations of the soil 

continuum are basically obscure and indeterminable. Thus, it is important to make various 

rearranging suppositions to examine the soil structure interaction. 

 

Winkler’s Model 

One exceptionally mainstream system for displaying the soil structure association has its 

inceptions in the work done by Winkler in 1867, where the vertical movement of the soil, w, 

at a point is expected to depend just upon the contact pressure, p, acting by then in the 

idealized elastic foundation and a proportionality constant, k.  

P = k.w 
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The proportionality constant, k, is generally called the modulus of subgrade reaction or the 

coefficient of subgrade response. This model was initially used to investigate the deflections 

of and resultant stresses in railroad tracks. In the interceding years, it has been connected to a 

wide range of soil-structure association issues, and it is known as the Winkler model 

 

Figure 2: Winkler’s Model for Soil-Structure Interaction 

 

Description of the Model 
 

Application of the Winkler model involves the solution of a fourth-order differential 

equation.  

The model consists of linearly elastic springs with a stiffness of "k," placed at discrete 

intervals below the plate, where k is the modulus of subgrade reaction of the soil. The model 

is also frequently referred to as a "one-parameter model" 

 

 

Elastic Continuum Model 

In elastic continuum model demonstrate the continuous behavior of soil is idealized as three 

dimensional continuous elastic solid.  

For this situation the soil surface deflections because of loading will happen under and 

around the loaded region.  

This methodology gives considerably more reasonable results on the stresses and distortions 

inside soil mass than Winkler model.  

Utilization of this technique is constrained to elastic and viscoelastic sorts of foundations. 

 

Figure 3: Elastic Continuum Model 
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Computational Approaches 

One of the essential objectives of the study is to develop not just a reasonable methodology for 

the examination of plates on an elastic foundation, but a useful and effortlessly connected 

strategy as well nearly, the solution of this kind of soil engineering problems, which includes 

equilibrium equations together with constitutive relations, compatibility considerations, and 

complex boundary conditions, would require such an effort, to the point that a simply 

mathematical methodology is quite unreasonable. Another option is to utilize a numerical 

analysis technique that will give surmised solutions as near to the precise solutions as needed 

for practical engineering design problems. 

Analysis of footings on Winkler foundation model using analytical and numerical methods has 

been carried out by several pioneers in this area. Some important contributions are highlighted 

in this section. 

 

Analytical Solutions 

The earliest classical works on the subject were due to Winkler, Hertz, Zimmermann, Reissner, 

Hetenyi, Gorbunov-Posadov, Seely and Smith, Timoshenko and Krieger, Vlasov and Leontov, 

and several others . Vlasov and Leontiev [9]  also gave solutions to a large number of problems 

of beams, plates and shells on elastic foundations, idealizing the soil medium as a two 

parameter model which ignores the horizontal displacements in the medium. Kameswara Rao 

[7]  presented general solutions to beams and plates on elastic foundations using a discrete 

continuum model for soil, which incorporates horizontal displacements also as a modification 

to Vlasov’s model. They presented the solutions using the versatile method of initial 

parameters. Butterfield and Banerjee [1] gave solutions for settlement and contact pressure for 

rigid rectangular rafts. Brown obtained solutions for contact pressure and bending moment in 

rigid, square and rectangular rafts subjected to various combinations of concentrated loads. 

 

Chan and Cheung [3] gave values of contact pressure for rectangular and circular rigid footings 

due to concentric load and eccentric loading. These solutions enable an estimate to be made of 

the bending moment in a rigid footing. 

Fertis G. Demeter [5] solved the problems related to analysis of slab on elastic foundation using 

potential energy approach.  

The governing equation for the slab-structure interaction is 

𝐸𝐼
𝜕4𝑦

𝜕𝑥4
+ 𝑘𝑤 =  𝑝(𝑥) 

Where, 

w =vertical deflection at the interface of the beam foundation system 

EI = flexural rigidity of the beam 

K = ksb = spring constant of the soil idealizing it as Winkler’s single parameter model 

Ks = modulus of subgrade reaction 

Kw = contact pressure/soil reaction 

B = width of the beam 

H = depth of the beam 

p(x) = vertical load applied on the beam. 
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Numerical Methods and Finite Difference Method 

Several solutions have been presented using numerical methods such as the finite difference 

method (FDM), the Runge–Kutta method and iterative methods to take care of the problems 

not solvable by exact methods. Of these the most popular is FDM. Malter gave solutions of 

beams on elastic foundations using FDM. Wang (1964) [10] worked out several examples 

using FDM. Rijhsinghani presented detailed solutions for plates on elastic foundations (PEF) 

using FDM. There are a very large number of books and publications on FDM and its 

applications in soil–structure interaction analysis (Wang, 1964)[10]. Andrea R.D. Silva et al. 

[8] presented detailed solution of plates on tensionless elastic foundation using different 

numerical analysis techniques.  

 

Glyn Jones presented a detailed analysis of beams on Winkler’s elastic foundations 

using finite difference theory. He also gave a number of references on the subject. He 

developed a software package for slabs on elastic foundations. 

 

Finite Element Method 

In mathematics, the finite element method (FEM) is a numerical procedure for finding 

approximate solutions for boundary value problems for partial differential equations. It utilizes 

subdivision of an entire problem space into smaller parts, called finite elements, and variational 

methods from the math of varieties to tackle the issue by minimizing a related mistake capacity. 

Practically equivalent to the thought that joining numerous modest straight lines can surmised 

a bigger circle, FEM includes methods for associating numerous basic element equations over 

numerous little subdomains, named finite elements, to inexact a more intricate mathematical 

statement over a larger domain. 

The analysis of beams and plates on elastic foundations was also analysed by various authors 

using the finite element method (FEM) as summarized below. 

Carl T. F. Ross [2] utilized finite element method to solve static and dynamic problems of slab 

analysis. 

Cheung and Zienkiewicz [4] obtained the solutions for square rafts of arbitrary 

flexibility. The stiffness of the soil was gotten from Boussinesq's equation and joined with 

plate bending finite elements to form a stiffness matrix for the whole system. Madhujit 

Mukhopadhyay and Hamid Sheikh Abdul [6] solved problems related to beam and slab 

analysis using FEM. The displacements were solved utilizing the FEM technique. The 

strategy is fit for taking care of both isotropic and orthotropic plates on elastic media with 

general loading utilizing either a semi-infinte elastic continuum model or a linear Winkler 

model for the soil medium. Cheung and Zienkiewicz [4] examined plates and beams on a 

elastic continuum utilizing the FEM. The horizontal contact pressures at the interface in the 

middle of structure and foundations were incorporated in the examination. The impacts 

because of separation of contact surfaces and because of uplift were likewise explored. 
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Research Methodology 

 

1. LITERATURE REVIEW 

 

To acquaint with the theoretical part various publication and research articles were investigated 

on the effect of various loadings on a slab which is supported on elastic foundation. In addition 

to this various books and design codes were studied. The motivation of literature review was 

to obtain the vague knowledge on the methods of studies adopted so that it can be used as guide 

lines for the present work. The investigation of past studies help in modelling soil-structure and 

analysis. 

 

 

2. SELECTION OF SOIL- STRUCTURE INTERACTION 

MODEL 

 
Soils are not linearly elastic and perfectly plastic for the entire range of loading. Truth be told, 

actual behaviour of soil is very complicated and it demonstrates a great variety of behaviour 

when subjected to different conditions. 

 

Different constitutive models have been suggested to describe different aspects of soil 

behaviour in detail. The simplest type of idealized soil response is to assume the behaviour of 

supporting soil medium as a linear elastic continuum. The basic elastic model is Winkler’s 

model. 

 

In Winkler model, soil is accepted as an arrangement of indistinguishable yet commonly 

autonomous, nearly divided, discrete, linearly elastic springs. The trademark highlights of this 

representation of soil medium are the discontinuous behaviour of the surface displacement. As 

indicated by the idealizing, deformity of the soil medium because of the applied load is bound 

to the stacked area only. The surface displacement of the soil medium at each point is 

specifically corresponding to the stress connected to it by then and totally autonomous of the 

stresses or displacements at other or even immediately neighbouring point of the soil-structure 

interface. 
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3) SELECTION OF COMPUTATIONAL APPROACH 

 
 

One of the essential objectives of the study is to develop not just a reasonable methodology for 

the examination of plates on an elastic foundation, but a useful and effortlessly connected 

strategy as well nearly, the solution of this kind of soil engineering problems, which includes 

equilibrium equations together with constitutive relations, compatibility considerations, and 

complex boundary conditions, would require such an effort, to the point that a simply 

mathematical methodology is quite unreasonable. Another option is to utilize a numerical 

analysis technique that will give surmised solutions as near to the precise solutions as needed 

for practical engineering design problems. 

             
Both the finite-element method and the method of finite-differences can be utilized. Every 

method will produce and oblige solutions for an arrangement of equations; however the 

utilization of the finite-element method will create a coefficient matrix (K-matrix) that can 

further be utilized to compute out the displacement qualities and the stresses in the slab. 

 

In mathematics, the finite element method (FEM) is a numerical procedure for finding 

approximate solutions for boundary value problems for partial differential equations. It 

utilizes subdivision of an entire problem space into smaller parts, called finite elements, and 

variational methods from the math of varieties to tackle the issue by minimizing a related 

mistake capacity. Practically equivalent to the thought that joining numerous modest straight 

lines can surmised a bigger circle, FEM includes methods for associating numerous basic 

element equations over numerous little subdomains, named finite elements, to inexact a more 

intricate mathematical statement over a larger domain. 
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4) Mathematical Modelling 
 

 

 
Figure 4: A Slab and its foundation 

 
The Slab is initially partitioned into various little elements which are then joined at a 

discrete number of nodal points where continuity and equilibrium conditions are 

secured. From the subsequent mathematical equations, the deformations can be found 

out, the contact pressures and the plate moments can be worked out effortlessly by 

simple matrix operations. 

 
 In the problems of slab on elastic foundation, diverse assumptions have been 

introduced to simplify the mathematical formulation. 

 

 No partition happens when negative responses are available. 

 

 No cooperation exists between neighbouring points of the foundation and this 

responds as a series of disconnected springs. 

 

In Winkler foundation, the contact pressure p is regarded as being directly 

proportional to the deflection w,  

 

                                   𝑃 = 𝐾.𝑤  
                     
                    Where, K is the modulus of subgrade reaction 

 

For a division into a rectangular finite element mesh with sides a and b, equation can 

be written as:   
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                                                         𝑃𝑖 = 𝛼𝑖 . 𝑎. 𝑏. 𝑘𝑖𝑤𝑖 
 
Where, 

Pi is the normal force at node 

αi is a coefficient which takes value of 0.25 at corners,0.5 at sides and 1 at interior 

nodes 

ki is the modulus of subgrade reaction at the node i 

wi is the displacement occurring at node i. 

 
In matrix form, this can be written as: 

 

                                  [𝑃] = 𝑎. 𝑏. 𝑘[𝛼]{𝑤} 
 

Where, 

[α] is purely a diagonal matrix 

 

Complete Stiffness Formulation   

 

{𝑁} = [𝑆]. {𝑈} 

For each force Ni and displacement{Ui}, three components are present. These correspond 

to lateral displacement wi and two rotations θxi and θyi. 

Noting that if Qi represents an external applied load to anode, Qi-Pi is the effective force 

acting on that node and we can write, for an isotropic plate: 

        {𝑄} − {𝑃} = 
D

(15.a.b).[Kp]{w}
  

 

Where D is the rigidity of the plate;   

D=
(Ep.t^3)

12.(1−ν^2) 
 

Eliminating P,           {Q} = 
D

(15.a.b)
( [Kp] + ( 

15.a.b

D
)k.a.b){w} 
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5) Application of the model using Finite Element 

Method 

 
The rectangular elements can be effectively used for plates having rectangular edges. 

Rectangular elements can also be employed for irregular plates in conjunction with the other 

types of elements (e.g. triangular elements). A node of the plate bending element will have 

three degrees of freedom – the transverse deflection and orthogonal rotations. 

  

The rectangular plate bending element along with their dimensions, coordinate system and 

node numbering as shown in the figure below. The positive directions of rotations are 

indicated by right hand screw rule. 

 

The displacement at node 1 are {w1,θx1,θy1} and the corresponding forces are 

{P1,Mx1,My1}. 

 

Therefore, complete displacement vectors for this element are 

 

{𝑋}𝑒
𝑇 = {𝑤1 𝜃𝑥1 𝜃𝑦1 𝑤2 𝜃𝑥2 𝜃𝑦2 𝑤3 𝜃𝑥3 𝜃𝑦3 𝑤4 𝜃𝑥4 𝜃𝑦4}                               (1)    

 

{𝑃}𝑒
𝑇 = {𝑃1 𝑀𝑥1 𝑀𝑦1 𝑃2 𝑀𝑥2 𝑀𝑦2 𝑃3 𝑀𝑥3 𝑀𝑦3 𝑃4 𝑀𝑥4 𝑀𝑦4}                           (2) 

 

 
Figure 6: Rectangular Plate Bending Element 
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Displacement Function  

 

There are three degrees of freedom associated with each node. So for a four-noded rectangle, 

there are in all twelve degrees of freedom. The polynomial expression to be chosen should 

have twelve terms. A suitable functions is given by 

{f} = α1 + α2𝑥 + α3 𝑦 + α4 𝑥2 + α5𝑥𝑦 + α6 𝑦2 + α7 𝑥3 + α8 𝑥2𝑦  

              + α9𝑥𝑦
2 + α10𝑦

3 + α11𝑥
3𝑦 + α12𝑥𝑦

3                            ...(3)   

Or {f}=[1  x  y  𝑥2  𝑥𝑦  𝑦2  𝑥3  𝑥2  𝑦  𝑥𝑦2  𝑦3  𝑥3  𝑦  𝑥𝑦3]

{
 

 
𝛼1
𝛼2.
.
𝛼12}

 

 

 …(4) 

Or, {𝑓} = [𝐶]{𝛼}                                                                            …(5) 

 

The displacement function of eqn. (3) gives the following expression for rotataions. 

𝜃𝑥 = -
𝜕𝑤

𝜕𝑦
 = -(α3+ α5𝑥 + 2α6 𝑦 + α8 𝑥2 + 2α9𝑥𝑦+ 3α10𝑦

2 + α11𝑥
3 + 

                     3α12𝑥𝑦
2)                                                                      …(6) 

And 

𝜃𝑦 = 
𝜕𝑤

𝜕𝑥
 = α2 + 2α4𝑥 + α5𝑥 + 3α7𝑥

2 + 2α8𝑥𝑦 + α9𝑦
2 + 

                   3α11𝑥
2𝑦 + α12𝑦

3                                                          …(7)   

 

Displacement Function Expressed in Terms of Nodal Displacements 

 

The coordinates of nodes 1, 2, 3 and 4 are (0, 0), (0, b), (a, 0) and (a, b) respectively. 

Substituting the values of the nodal coordinates in eqns. (3), (6) and (7) respectively, the 

following equation results. 

{𝑋}𝑒 = [𝐴]{𝛼}                                                                                                …(8) 

Inverting eqn. (8) 

{α} = [𝐴]−1{𝑋}𝑒                                                                              …(9) 

Combining eqns. (5) and (9) yields 
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{f} = w = [C] [𝐴]−1{𝑋}𝑒                                                      

Or 

{f} = w = [N] {𝑋}𝑒                                                                       …(10) 

Where 

[N] = [C] [𝐴]−1                                                                            …(11) 

 

Strain-Nodal Parameter Relationship 

 

The ‘strains’ in plate bending problem are the curvatures. The strain matrix is given by 

{ε} = 

{
 
 

 
 −

𝜕2𝑤

𝜕𝑥2

−
𝜕2𝑤

𝜕𝑦2

2
𝜕2𝑤

𝜕𝑥𝜕𝑦}
 
 

 
 

                                                                                             …(12) 

By directly differentiating w given in eqn. (3) with respect to the quantities indicated in eqn. 

(12), we get 

{ε} = {

−(2𝛼4 + 6𝛼7𝑥 + 2𝛼8𝑦 + 6𝛼11𝑥𝑦)
−(2𝛼6 + 2𝛼9𝑥 + 2𝛼10𝑦 + 6𝛼12𝑥𝑦)

2𝛼5 + 4𝛼8𝑥 + 4𝛼9𝑦 + 6𝛼11𝑥
2 + 6𝛼12𝑥

2
}                                    …(13) 

Or 

{ε} = [Q]{α}                                                                                                …(14) 

Where 

[Q] = [
0 0 0
0 0 0
0 0 0

   
−2 0 0
0 0 −2
0 2 0

   
−6𝑥 −2𝑥 0
0 0 −2𝑥
0 4𝑥 4𝑦

   

0 −6𝑥𝑦 0
−6𝑥𝑦 0 −6𝑥𝑦

0 6𝑥2 6𝑦2
] 

Substituting {α} from eqn. (9) into eqn. (14), gives 

{ε} = [Q][𝐴]−1{𝑋}𝑒 

Or {ε} = [B]{X}                                                                           …(16) 

Eqns. (14) and (15) reveal that the displacement function of eqn. (3) satisfies one of the 

requirements of convergence, as it contains constant strain (curvature) terms. 
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Stress (moment) – Strain (curvature) Relationship 

             

The moment – curvature relationship for orthotropic plate has been deduced 

 

{𝜎} = {

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = [

𝐷𝑥 𝐷1 0
𝐷1 𝐷𝑦 0

0 0 𝐷𝑥𝑦

]

{
 
 

 
 −

𝜕2𝑤

𝜕𝑥2

−
𝜕2𝑤

𝜕𝑦2

2
𝜕2𝑤

𝜕𝑥𝜕𝑦}
 
 

 
 

                                         …(17) 

The orthotropic constants are given as 

𝐷𝑥 = 
(𝐸𝐼)𝑥

1−𝜈𝑥𝜈𝑦
 , 𝐷𝑦 = 

(𝐸𝐼)𝑦

1−𝜈𝑥𝜈𝑦
   

𝐷1 = 𝜈𝑦𝐷𝑥  = 𝜈𝑥𝐷𝑦  

For an isotropic plate the constants of eqn. (17) will be 

𝐷𝑥 = 𝐷𝑦 = D = 
𝐸𝑡3

12(1−𝜈2)
 

𝐷1 = νD 

𝐷𝑥𝑦 = 
1−𝜈

2
𝐷 

Eqn. (17) in compact form, becomes 

{𝜎} = [D]{ε}                                                                                                …(18) 

Substituting {ε} from eqn. (16) into (18), gives 

{𝜎} = [D][B]{𝑋}𝑒                                                                         …(19) 

 

 

 

 

 



23 | P a g e  
 

Derivation of the Element Stiffness Matrix 

 

The element stiffness matrix is derived by applying the principle of minimum potential 

energy. The potential energy of the plate element is given by 

 

𝜱 = 
1

2
∫ ∫ (−𝑀𝑥

𝜕2𝑤

𝜕𝑥2
  − 𝑀𝑦

𝜕2𝑤

𝜕𝑦2
 + 2𝑀𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

𝑏

0

𝑎

0
dxdy -∫ ∫ {𝑓}𝑇𝑞 𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0
 

                                                                                                                                         ...(20) 

Where q is any discrete loading inside the element. Based on the notations used so far for the 

rectangular plate-bending element, eqn. (20) can be written as 

𝜱 = 
1

2
∫ ∫ {𝜀}𝑇{𝜎}

𝑏

0

𝑎

0
dxdy - ∫ ∫ {𝑓}𝑇𝑞

𝑏

0

𝑎

0
dxdy                                …(21) 

  

According to the principle of minimum potential energy – 

{
𝜕𝛷

𝜕{𝑋}𝑒
} = {0}                                                                                           … (22)  

Further mathematical analysis gives, 

[𝑘]𝑒{𝑋}𝑒 =  {𝑃}𝑒                                                                                        … (23) 

 

Where, [𝑘]𝑒 = ∫ ∫ [𝐵]𝑇[𝐷][𝐵]
𝑏

0

𝑎

0
dxdy                                           … (24) 

And  

            [𝑃]𝑒 = ∫ ∫ [𝑁]𝑇𝑞
𝑏

0

𝑎

0
dxdy                                                                 … (25)    

       

Here, [𝑘]𝑒 is the element Stiffness Matrix and  [𝑃]𝑒 is the load matrix.        
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Finite Element Static Analysis for Slab on Elastic Foundation 

 
 
 

 

Chapter 4 

 
 
 
 
 
 
 

Results And Discussions 

 
Problem Discussion 1 

 

Problem Discussion 2 

Absolute Mean Error 

Conclusion 
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Problem Statement 1 

Determine the nodal displacements and stresses for the square plate of sides 80.52cm. The 

plate is uniformly loaded with 13.79KN/𝑚2 .  

Properties of the plate are :- 

Modulus of Elasticity = 206845MPa 

Poisson’s Ratio = 0.3  and 

Thickness = 0.635cm 

The plate is assumed to be resting on soil with Modulus of Subgrade Reaction as 7.5MN/𝑚3 

 

 

 

 

Figure 7: Slab showing nodes 

 

  

Figure 6: Plate in the given problem 
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Solution: 

 

Displacements at all the nodes is given in the table 

 

Nodes Vertical 

Displacement w 

(in 10−3cm) 

Orthogonal Rotation 

𝜃𝑥 

Orthogonal Rotation 

𝜃𝑦 

1 4.49 0.33 -0.33 

2 4.56 0.33 00 

3 4.56 0.34 00 

4 4.56 0.33 00 

5 4.49 0.33 0.33 

6 4.56 00 -0.33 

7 4.63 00 00 

8 4.63 00 00 

9 4.63 00 00 

10 4.56 00 0.33 

11 4.56 00 -0.33 

12 4.63 00 00 

13 4.63 00 00 

14 4.63 00 00 

15 4.56 00 0.33 

16 4.56 00 -0.33 

17 4.63 00 00 

18 4.63 00 00 

19 4.63 00 00 

20 4.56 00 0.33 

21 4.49 -0.33 -0.33 

22 4.56 -0.33 00 

23 4.56 -0.34 00 

24 4.56 -0.33 00 

25 4.49 -0.33 0.33 

 

Table 1: Displacements at each node 
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Figure 8: Displacements at each node 

 

 

 Maximum 

Displacement 

 Maximum Stress 

Theoretical 4.9X10−3𝑐𝑚 7825.55KPa 

Present 4.63X10−3𝑐𝑚 7394.35KPa 

 

Table 2: Comparing results from theory  

 

Absolute error: 

𝜀1 = 
4.9𝑋10−3−4.63𝑋10−3

4.9𝑋10−3
X100 

𝜀1 = 5.51% 
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Problem Statement 2 

Determine the nodal displacements and stresses for the skew slab of sides 6.42m and 10.46m 

as shown in the figure. The plate is loaded with 6 concentrated loads of  8.9 KN each at nodes 

7,8,9,17,18 and 19 . 

Properties of the plate are :- 

Modulus of Elasticity = 206845MPa 

Poisson’s Ratio = 0.15  and   

Thickness = 23cm 

The plate is assumed to be resting on soil with Modulus of Subgrade Reaction as 7.5MN/𝑚3 

 

 

Figure 9: Loading on Skew Slab on Elastic Foundation 

 

 

Figure 10: Nodes of Skew Slab on Elastic Foundation 
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Solution: 

Displacements at all the nodes is given in the table 

 

Nodes Vetical Displacement 

W(in 10−2cm) 

Orthogonal Rotation 

𝜃𝑥 

Orthogonal Rotation 

𝜃𝑦 

1 2.72 00 -0.03 

2 2.73 00 -0.02 

3 2.74 00 00 

4 2.73 00 0.02 

5 2.72 00 0.03 

6 2.72 00 -0.03 

7 2.73 00 -0.02 

8 2.74 00 00 

9 2.73 00 0.02 

10 2.72 00 0.03 

11 2.72 00 -0.03 

12 2.73 00 -0.02 

13 2.74 00 00 

14 2.73 00 0.02 

15 2.72 00 0.03 

16 2.72 00 -0.03 

17 2.73 00 -0.02 

18 2.74 00 00 

19 2.73 00 0.02 

20 2.72 00 0.03 

21 2.72 00 -0.03 

22 2.73 00 -0.02 

23 2.74 00 00 

24 2.73 00 0.02 

25 2.72 00 0.03 
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Figure 11 

 

 

 Maximum 

Displacement 

 Maximum Stress 

Theoretical 3.15X10−2cm 143.41KPa 

Present 2.74X10−2cm 124.74KPa 

Table 4: Comparing results from theory 

 

Absolute error: 

𝜀2 = 
3.15𝑋10−2−2.74𝑋10−2

3.15𝑋10−2
X100 

𝜀2 = 13% 
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Absolute Mean Error  

 

For problem 1: 

𝜀1 = 
4.9𝑋10−3−4.63𝑋10−3

4.9𝑋10−3
X100 

𝜀1 = 5.51% 

 

For problem 2: 

𝜀2 = 
3.15𝑋10−2−2.74𝑋10−2

3.15𝑋10−2
X100 

𝜀2 = 13% 

 

Absolute Mean Error (AME)  ε = 
𝜀1+𝜀2
2

 

ε = 
5.51+13

2
 

 

(AME) ε = 9.25% 
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Conclusion and Future Scope 

 

The Matlab program written was used to find values of displacement and stresses 

of the slab on elastic foundation. The program has a good performance and a 

reasonable prediction accuracy while using Winkler’s Model. The reliability of 

the program was evaluated by computing absolute mean error between exact and 

predicted values. We were able to obtain an Absolute Mean Error (AME) of 

9.25% which represents a good degree of accuracy. 

 

The results suggest that FEM with the Winkler model can perform good 

predictions with least error and finally finite element method could be an 

important tool for slab analysis on elastic foundation. 

 

Future studies on this project can incorporate using of other soil-structure 

interaction models like elastic continuum model to perform static analysis of slabs 

on elastic foundation using finite element as tool. 
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Appendix 

 
 
 
 
 
 
 

Matlab Programming 
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Matlab Program for a rectangular slab with uniformly 

distributed load 

 

clear all 

meshX=4;   %mesh in X direction  

meshY=4;   %mesh in Y direcion 

prompt = 'Provide no. of nodes per element'; 

nnode = input(prompt); 

prompt = 'Provide Modulus of elasticity'; 

E = input(prompt); 

prompt = 'Provide Poissons Ratio'; 

nu = input(prompt); 

prompt = 'Provide Thickness'; 

t = input(prompt); 

ndofn=3; 

nodes=(meshX+1)*(meshY+1);%total no of nodes      

tdofs=nodes*ndofn; 

K=zeros(tdofs); 

loadMat=zeros(tdofs,1); 

nelem=meshX*meshY;  %total no of elements 

ielem=1;         

prompt = 'Provide Pressure Load'; 

q = input(prompt); 

xycord=zeros(nodes,2);%xy coordinates of all nodes initialized 

cnode=1;  %node count  

ndy1=-1;%node1 eta coordinate 

%xy coordinates of all nodes stored 

for i=1:meshY+1 

    ndx1=-1;%node1 zye coordinate 

    for j=1:meshX+1 



35 | P a g e  
 

        xycord(cnode,1)=ndx1; 

        xycord(cnode,2)=ndy1; 

        cnode=cnode+1; 

        ndx1=ndx1+(2/meshX); 

    end 

    ndy1=ndy1+(2/meshY); 

end 

%assemblage of stiffness matrix and load matrix 

cnt=0; 

for ielemY=1:meshY 

    for ielemX=1:meshX 

        gbdof=[]; 

        node=ielem+cnt; 

        ndcon=[node node+1 node+meshX+2 node+meshX+1]; 

     for inode=1:nnode 

    xx(inode)=xycord(ndcon(inode),1); 

    yy(inode)=xycord(ndcon(inode),2); 

     end 

    s1=xx(1); 

    s2=xx(2); 

    s3=xx(3); 

    s4=xx(4); 

    n1=yy(1); 

    n2=yy(2); 

    n3=yy(3); 

    n4=yy(4); 

     for inode=1:nnode 

         for idofn=1:ndofn 

             gbdof=[gbdof (ndcon(inode)-1)*ndofn+idofn]; 

         end 
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     end 

    %find stiffness matrix and load matrix for typical element 

syms s n 

length=0.805;%length of plate in X dir 

bredth=0.805;% width of plate in Y dir 

a=length/2; 

b=bredth/2; 

w=[1 s n s^2 s*n n^2 s^3 s^2*n s*n^2 n^3 s^3*n s*n^3]; 

dwds=diff(w,s); 

dwdn=diff(w,n); 

A1=[w;dwdn;-dwds]; 

A=[subs(A1,{s,n},{s1,n1});subs(A1,{s,n},{s2,n2});subs(A1,{s,n},{s3,n3});subs(A1,{s,n},{s

4,n4})]; 

D=((E*t^3)/(12*(1-nu^2)))*[1 nu 0;nu 1 0;0 0 (1-nu)*0.5]; 

N=w*inv(A); 

dNds=diff(N,s); 

dNds2=diff(N,s,2); 

dNdn2=diff(N,n,2); 

dNdsn=diff(dNds,n); 

B=-[(1/a^2)*dNds2;(1/b^2)*dNdn2;(2/(a*b))*dNdsn]; 

j=a*b; 

k=j*int(int((transpose(B)*D)*B,s,s1,s2),n,n1,n4); 

f=j*(int(int((transpose(N).*q),s,s1,s2),n,n1,n4)); 

    K(gbdof,gbdof)=K(gbdof,gbdof)+k; 

    loadMat(gbdof)=loadMat(gbdof)+f; 

    ielem=ielem+1; 

    end 

    cnt=cnt+1; 

end 

%equivalent stiffness matrix 

al=zeros(5,5); 
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alp=zeros(75,75); 

xx=meshX+1; 

yy=meshY+1; 

for i=1:xx 

    for j=1:yy 

        al(i,j)=1; 

    end 

end 

for i=1:xx 

    al(i,1)=0.5; 

    al(i,meshY+1)=0.5; 

end 

for i=1:yy 

    al(1,i)=0.5; 

    al(meshX+1,i)=0.5; 

end 

al(1,1)=0.25; 

al(meshX+1,1)=0.25; 

al(1,meshY+1)=0.25; 

al(meshX+1,meshY+1)=0.25; 

kk=1; 

for j=1:meshY+1 

   for i=1:meshX+1 

     alp(kk*3,kk*3)=al(i,j);    

     alp(kk*3-1,kk*3-1)=al(i,j); 

     alp(kk*3-2,kk*3-2)=al(i,j); 

   kk=kk+1; 

   end 

end 

DD=(E*t^3)/(12*(1-nu^2)); 
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prompt = 'Provide mod'; 

mod = input(prompt); 

dg=(DD/(15*a*b)); 

qq=dg*K + a*b*mod*alp; 

f=inv(qq); 

disp=f*loadMat 

%Calculating Stresses 

z=((meshX+1)*(meshY+1)+1)/2; 

X=zeros(tdofs,1); 

ss=zeros(3,1); 

for i=1:4 

     

        if (i==1) 

        a=z; 

        elseif i==2 

            a=z+1; 

        elseif 1==3 

            a=z+n+1; 

        elseif i==4 

            a=z+n+2; 

        end 

            for j=1:4 

                X(j*3-2,1) = disp(a*3-2,1); 

                X(j*3-1,1) = disp(a*3-1,1); 

                X(j*3,1)   = disp(a*3,1); 

            end 

        end 

        ss = D*B*X; 

        s1 = ss(1); 

        for i=1:4 
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        if i==1 

        a=z-n-1; 

        elseif i==2 

            a=z-n; 

        elseif 1==3 

            a=z+1; 

        elseif i==4 

            a=z; 

        end  

            for j=1:4 

                X(j*3-2,1) = disp(a*3-2,1); 

                X(j*3-1,1) = disp(a*3-1,1); 

                X(j*3,1)   = disp(a*3,1); 

            end 

        end 

        ss = D*B*X; 

        s2 = ss(1); 

        for i=1:4 

     

        if i==1 

        a=z-n-2; 

        elseif i==2 

            a=z-n-1; 

        elseif 1==3 

            a=z; 

        elseif i==4 

            a=z-1; 

        end  

            for j=1:4 
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                X(j*3-2,1) = disp(a*3-2,1); 

                X(j*3-1,1) = disp(a*3-1,1); 

                X(j*3,1)   = disp(a*3,1); 

            end 

        end 

        ss = D*B*X; 

        s3 = ss(1); 

        for i=1:4 

     

        if i==1 

        a=z-1; 

        elseif i==2 

            a=z; 

        elseif i==3 

            a=z+n; 

        elseif i==4 

            a=z+n+1; 

        end  

            for j=1:4 

                X(j*3-2,1) = disp(a*3-2,1); 

                X(j*3-1,1) = disp(a*3-1,1); 

                X(j*3,1)   = disp(a*3,1); 

            end 

        end 

        ss = D*B*X; 

        s4 = ss(1); 

        stress = (s1+s2+s3+s4)/4 
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Matlab Program for a rectangular skew slab with concentrated 

load 

 

clear all 

meshX=4;   %mesh in X dir   

meshY=4;   %mesh in Y dir 

prompt = 'Provide no. of nodes per element'; 

nnode = input(prompt); 

prompt = 'Provide Modulus of elasticity'; 

E = input(prompt); 

prompt = 'Provide Poissons Ratio'; 

nu = input(prompt); 

prompt = 'Provide Thickness'; 

t = input(prompt); 

ndofn=3; 

nodes=(meshX+1)*(meshY+1);%total no of nodes      

tdofs=nodes*ndofn; 

K=zeros(tdofs); 

loadMat=zeros(tdofs,1); 

nelem=meshX*meshY;  %total no of elements 

ielem=1;         

prompt = 'Provide Pressure Load'; 

q = input(prompt); 

xycord=zeros(nodes,2);%xy coordinates of all nodes initialized 

cnode=1;  %node count  

ndy1=-1;%node1 eta coordinate 

%xy coordinates of all nodes stored 

for i=1:meshY+1 

    ndx1=-1;%node1 zye coordinate 

    for j=1:meshX+1 
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        xycord(cnode,1)=ndx1; 

        xycord(cnode,2)=ndy1; 

        cnode=cnode+1; 

        ndx1=ndx1+(2/meshX); 

    end 

    ndy1=ndy1+(2/meshY); 

end 

%assemblage of stiffness matrix and load matrix 

cnt=0; 

for ielemY=1:meshY 

    for ielemX=1:meshX 

        gbdof=[]; 

        node=ielem+cnt; 

        ndcon=[node node+1 node+meshX+2 node+meshX+1]; 

     for inode=1:nnode 

    xx(inode)=xycord(ndcon(inode),1); 

    yy(inode)=xycord(ndcon(inode),2); 

     end 

    s1=xx(1); 

    s2=xx(2); 

    s3=xx(3); 

    s4=xx(4); 

    n1=yy(1); 

    n2=yy(2); 

    n3=yy(3); 

    n4=yy(4); 

     for inode=1:nnode 

         for idofn=1:ndofn 

             gbdof=[gbdof (ndcon(inode)-1)*ndofn+idofn]; 

         end 
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     end 

    %find stiffness matrix and load matrix for typical element 

syms s n 

length=10;%length of plate in X dir 

bredth=10;% width of plate in Y dir 

a=length/2; 

b=bredth/2; 

w=[1 s n s^2 s*n n^2 s^3 s^2*n s*n^2 n^3 s^3*n s*n^3]; 

dwds=diff(w,s); 

dwdn=diff(w,n); 

A1=[w;dwdn;-dwds]; 

A=[subs(A1,{s,n},{s1,n1});subs(A1,{s,n},{s2,n2});subs(A1,{s,n},{s3,n3});subs(A1,{s,n},{s

4,n4})]; 

D=((E*t^3)/(12*(1-nu^2)))*[1 nu 0;nu 1 0;0 0 (1-nu)*0.5]; 

N=w*inv(A); 

dNds=diff(N,s); 

dNds2=diff(N,s,2); 

dNdn2=diff(N,n,2); 

dNdsn=diff(dNds,n); 

B=-[(1/a^2)*dNds2;(1/b^2)*dNdn2;(2/(a*b))*dNdsn]; 

j=a*b; 

y=71.565;%thetha 

double dd=0 

dd=1/(tan(y)); 

double ee=0; 

ee=1/(sin(y)); 

H=[1,0,0;dd^2,ee^2,dd*ee;2*dd,0,ee]; 

k=j*int(int((transpose(B)*(transpose(H))*D)*H*B,s,s1,s2),n,n1,n4); 

f=j*(int(int((transpose(N).*q),s,s1,s2),n,n1,n4)); 

    K(gbdof,gbdof)=K(gbdof,gbdof)+k; 

    loadMat(gbdof)=loadMat(gbdof)+f; 
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    ielem=ielem+1; 

    end 

    cnt=cnt+1; 

end 

%equivalent stiffness matrix 

al=zeros(5,5); 

alp=zeros(75,75); 

xx=meshX+1; 

yy=meshY+1; 

for i=1:xx 

    for j=1:yy 

        al(i,j)=1; 

    end 

end 

for i=1:xx 

    al(i,1)=0.5; 

    al(i,meshY+1)=0.5; 

end 

for i=1:yy 

    al(1,i)=0.5; 

    al(meshX+1,i)=0.5; 

end 

al(1,1)=0.25; 

al(meshX+1,1)=0.25; 

al(1,meshY+1)=0.25; 

al(meshX+1,meshY+1)=0.25; 

kk=1; 

for j=1:meshY+1 

   for i=1:meshX+1 

     alp(kk*3,kk*3)=al(i,j);    
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     alp(kk*3-1,kk*3-1)=al(i,j); 

     alp(kk*3-2,kk*3-2)=al(i,j); 

   kk=kk+1; 

   end 

end 

D=(E*t^3)/(12*(1-nu^2)); 

prompt = 'Provide mod'; 

mod = input(prompt); 

dg=(D/(15*a*b)); 

qq=dg*K + a*b*mod*alp; 

f=inv(qq); 

disp=f*loadMat 

%Calculating Stresses 

z=((meshX+1)*(meshY+1)+1)/2; 

X=zeros(tdofs,1); 

ss=zeros(3,1); 

for i=1:4 

        if (i==1) 

        a=z; 

        elseif i==2 

            a=z+1; 

        elseif 1==3 

            a=z+n+1; 

        elseif i==4 

            a=z+n+2; 

        end 

            for j=1:4 

                X(j*3-2,1) = disp(a*3-2,1); 

                X(j*3-1,1) = disp(a*3-1,1); 

                X(j*3,1)   = disp(a*3,1); 
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            end 

        end 

        ss = D*B*X; 

        s1 = ss(1); 

        for i=1:4 

        if i==1 

        a=z-n-1; 

        elseif i==2 

            a=z-n; 

        elseif 1==3 

            a=z+1; 

        elseif i==4 

            a=z; 

        end  

            for j=1:4 

                X(j*3-2,1) = disp(a*3-2,1); 

                X(j*3-1,1) = disp(a*3-1,1); 

                X(j*3,1)   = disp(a*3,1); 

            end 

        end 

        ss = D*B*X; 

        s2 = ss(1); 

        for i=1:4 

        if i==1 

        a=z-n-2; 

        elseif i==2 

            a=z-n-1; 

        elseif 1==3 

            a=z; 

        elseif i==4 
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            a=z-1; 

        end  

            for j=1:4 

                X(j*3-2,1) = disp(a*3-2,1); 

                X(j*3-1,1) = disp(a*3-1,1); 

                X(j*3,1)   = disp(a*3,1); 

            end 

        end 

        ss = D*B*X; 

        s3 = ss(1); 

        for i=1:4 

        if i==1 

        a=z-1; 

        elseif i==2 

            a=z; 

        elseif i==3 

            a=z+n; 

        elseif i==4 

            a=z+n+1; 

        end  

            for j=1:4 

                X(j*3-2,1) = disp(a*3-2,1); 

                X(j*3-1,1) = disp(a*3-1,1); 

                X(j*3,1)   = disp(a*3,1); 

            end 

        end 

        ss = D*B*X; 

        s4 = ss(1); 

        stress = (s1+s2+s3+s4)/4 
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