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ABSTRACT

Impedance-based structural health-monitoring techniques are developed by utilizing a number
of smart material technologies and represent a new non-destructive evaluation (NDE) method.
The basic concept of this approach is monitoring the variations in mechanical impedance of
the structure resulted by the presence of damage. Since it is very difficult to measure the
structural mechanical-impedance, the new impedance methods utilize the electromechanical
coupling properties of piezoelectric materials.

The impedance-based structural health monitoring is done by using piezoelectric
patches which are bonded to the host structure that act as both sensors and actuators on the
system. When a PZT comes under a change in environment, it produces an electric charge.
Conversely when an electric field is applied the PZT undergoes a mechanical strain. A
sinusoidal voltage is used for the excitation of the PZT patch. As the patch is surface bonded
to the host structure, the structure deforms along with it and gives a local dynamic response to
the vibration. That response is then transmitted back from the PZT patch as an electrical
response. The electrical response is then analysed where damage is shown as a phase shift or
magnitude change in the impedance.

In this project finite element simulation of the interaction between a PZT patch and a
structure utilizing the electromechanical impedance (EMI) technique is studied. Simulation of
the host structure with a piezoelectric patch at a high frequency range (up to 1000 kHz) using
ANSYS version 13, was successfully performed. Advantages over the traditional FEA based
impedance model and the impedance based analytical models include higher accuracy, direct
acquisition of electrical admittance/impedance. This study proves that the FEM could emerge

as an excellent alternative to structural health monitoring by visual inspection method.
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CHAPTER 1
INTRODUCTION




1.1 Introduction

Structural health monitoring is the continuous measurement of the loading environment and
the critical responses of a system. SHM is typically used to evaluate performance, symptoms
of operational incidents, and anomalies due to damage as well as health during and after an
extreme event. Health monitoring has received considerable attention in civil engineering in
the recent times. Although health monitoring is a new concept in the manufacturing,
automotive and aerospace industries, there are a number of challenges for effective applications
on civil infrastructure systems. Health monitoring offers great promise for civil infrastructure
implementations. Although it is still mainly a research area in civil infrastructure application,
it would be possible to develop successful real-life health monitoring systems if all components
of a complete health monitoring design are recognized and integrated.

The main requirement of a successful health monitoring design is the recognition and
integration of several components. The first component is the identification of health and
performance metric which is a fundamental knowledge needed and it should govern the
technology involved.

Development, evaluation and utilization of the new techniques are important but they
must be considered along with our “health” and “performance” expectations of the structure.
Yao and Natke [18] defined the term damage as a deficiency or deterioration in the strength of
the structure, caused by external loading or environmental conditions or human errors. So far
visual inspection has been the most common tool to identify the external signs of damage in
buildings, bridges and industrial structures. These inspections are made by trained personnel.
Once gross assessment of the damage location is made, localized techniques such as acoustic,
ultrasonic, radiography, eddy currents, thermal, or magnetic field can be used for a more
refined assessment of the damage location and severity. If necessary, test samples may be
extracted from the structure and examined in the laboratory. One essential requirement of this
approach is the accessibility of the location to be inspected. In many cases critical parts of the
structure may not be accessible or may need removal of finishes. This procedure of health
monitoring can therefore be very tedious and expensive. Also, the reliability of the visual
inspection is dependent, to a large extent, on the experience of the inspector. Over the last two
decades number of studies have been reported which strive to replace the visual inspection by
some automated method, which can enable more reliable and quicker assessment of the health
of the structure. Smart structures is found to be the alternative to the visual inspection methods
from last two decades, because of their inherent ‘smartness’, the smart materials exhibit high
sensitivity to any changes in the environment.

1.2 Need for structural health monitoring

Appropriate maintenance prolongs the life span of a structure and can be used to prevent
catastrophic failure. Higher operational loads, greater complexity of design and longer life time
periods imposed to civil structures, make it increasingly important to monitor the health of
these structures. Economy of a country depends on the transportation infrastructures like
bridges, rails, roads etc., any structural failure of buildings, bridges and roads causes severe
damage to the life and economy of the nation. Every government is spending many crore of
rupees every year for the rehabilitation and maintenance of large civil engineering structures.
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Failure of civil infrastructure to perform may affect the gross domestic production of the
country.

1.3 Methods of health monitoring

There are basically two methods of health monitoring. These are

1. Visual inspection

2. Automated health monitoring

In visual inspection method inspections are made by trained personnel. Once gross
assessment of the damage location is made, localized techniques such as acoustic, ultrasonic,
radiography, eddy currents, thermal, or magnetic field can be used for a more refined
assessment of the damage location and severity. If necessary, test samples may be extracted
from the structure and examined in the laboratory.

In automated health monitoring the detection of damage is done by using various smart
materials which have the characteristics that enables them to react to any changes in their
loading environment in a predetermined manner. It means that one of their properties can be
altered by an external condition, such as temperature, pressure or electricity. This change in
property is reversible and hence can be repeated many times.

1.4 Need for an automated health monitoring system

Even though visual inspection is the most common technique at present, it is very tedious, and
needs experienced people. Over the last two decades, many researchers have tried to find the
alternative solution for visual inspection. One essential requirement of this approach is the
accessibility of the location to be inspected. In many cases critical parts of the structure may
not be accessible or may need removal of finishes. This procedure of health monitoring can
therefore be very tedious and expensive. Also, the reliability of the visual inspection is
dependent, to a large extent, on the experience of the inspector. These facts underlining the
importance of an automated health monitoring system, which can not only prevent an incipient
damage including collapse, but also can make an assessment of structural health, as and when
desired, at a short notice. These automated systems hold the promise for improving the
performance of the structure with an excellent benefit/cost ratio, keeping in view the long term
benefits.

1.5 Techniques of structural health monitoring

There are mainly two types of structural health monitoring system.

1. Wired techniques
2. Wireless techniques




WIRED TECHNIQUES

When sensors are physically in contact with the structure/body on which we are going to
investigate for damage detection, then such kind of technique is referred as wired techniques.
Wired techniques are widely used in present situation and uses smart sensors, fiber optics
sensors, etc. Sensors and sensors characteristics depends on the location, Material, and methods
applying to detect the flaws or faults. Generally Vibration based method, Impedance based
method, Data fusion method, and inverse methods are used in wired techniques. These
techniques are discussed below:

Impedance-Based Structural Health Monitoring Techniques

Electrical impedance is the measure of the opposition that a circuit presents to the passage of a
current when a voltage is applied. With the help of resistance on current flow measured by the
computer system installed with related software gives electric signature through which we can
find out risk zone.

Impedance based structural Health Monitoring can be done by different techniques like
by Analogue and digital formats using PZT patches, Frequency variation approaches. In the
EMI based health-monitoring technique, the detection of damage is done by using a scalar
damage metric, which is defined as the sum of the squared differences of the real impedance
changes at every frequency step. The damage metric simplifies the analysis of impedance
variations and gives a summary of the information obtained from the impedance response
curves.

In SHM using PZT patch, piezoelectric transducer acting in the ‘‘direct’” manner
produces an electrical charge when it comes under mechanical stress. Conversely, the
transducer undergoes a mechanical strain when an electrical field is applied. The method to be
adopted with the EMI based SHM uses both the direct and converse versions of the
piezoelectric effect to get the conductance signature of the structure. When a PZT patch
attached to a host structure is excited by an alternating electric field, the PZT wafer and the
structure undergoes a small deformation. Since high frequency is used for the excitation, the
dynamic response of the structure reflects only a very local area to the sensor. The response of
that local area is then transferred back to the PZT wafer in the form of an electrical response.

The electromechanical modelling that describes the process is presented in Figure 1.1.
The PZT is normally surface bonded to the host structure by an adhesive to ensure good
mechanical interaction.
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Figure 1.1: Electro-Mechanical Impedance System

Data Fusion Technique

Data fusion techniques can combine data from multiple sources and related information from
associated databases to achieve higher accuracy and more specific inferences than by the use
of a single source alone. When structure gets damaged due to natural disaster, at that moment
structural component also get damaged due to the vibration and other effects. Hence to detect
exact and accurate zone of damage, data fusion technique is used.

Vibration Control Technique

Stochastic Subspace-Based Fault Detection Method (SSFD) used in France, Inverse
Technique, Time domain method, Frequency domain method, these techniques are used in
vibration control technique. According to Rytter, there are 4 levels on the damage assessment
scale, where the information about the damage is increased from step to step: Level I: Damage
detection; Level Il: Damage localization; Level Ill: Damage quantification and Level IV:
Prognosis of remaining service life [4]. This concept comprises six modules those included
data sensing, Acquisition, processing, management and finally monitoring.

WIRELESS TECHNIQUE

Spatially distributed autonomous sensors to monitor physical information without physically
in contact with particular object, but by the help of data received from it, can analyse several
important features. Structural health monitoring using wireless technique invents presently and
it requires a High resolution images or data. Wireless sensors can be used to detect the defect
within the buildings, bridges, embankments, and tunnel. Basically in SHM it is applicable to
simulate load carrying capacity, fatigue resistance, Vibration control for the structure and
finally for crack detection. Wireless SHM is important mainly for large structure where wired
techniques spend more time as well as fund, but it performs a whole detection at once hence
time saving as well as fund too. Generally it is most useful on bridge structure. Active and
passive sensors are used to capture data and are evaluated with the help of special computer
system along with software like Arc GIS. In the conventional SHM system, the expensive cost
for purchase and installation of the SHM system components, such as sensors, data loggers,
computers, and connecting cables, is a big obstruction. To guarantee that measurement data are
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reliably collected, SHM systems generally employ coaxial wires for communication between
sensors and the repository. However, the installation of coaxial wires in structures is generally
very expensive and labour-intensive [3].




CHAPTER 2

REVIEW OF LITERATURE




2.1 Literature Review

Daniel [13] applied a promising SHM method on structures which is EMI based health
monitoring. Although impedance-based SHM does not typically use an analytical model for
basic damage identification, a model is necessary for more advanced features of SHM, such
as damage prognosis, and to evaluate system parameters when installing on various
structures. He developed a model based on circuit analysis of the previously proposed low-
cost circuit for impedance-based SHM in combination with spectral elements.

Victor [7] reviewed the state of the art in structural health monitoring with piezoelectric
wafer active sensors and highlighted the limitations of the current approaches which are
predominantly experimental. Subsequently, he examined the needs for developing a
predictive modelling methodology that would allow to perform extensive parameter studies
to determine the sensing method’s sensitivity to damage and insensitivity to confounding
factors such as environmental changes, vibrations, and structural manufacturing variability.
The thesis is made such that a predictive methodology should be multi-scale and multi-
domain, thus encompassing the modelling of structure, sensors, electronics, and power
management. He also gave a few examples of preliminary work on such a structural sensing
predictive methodology.

Yang et al. [16] presented this paper for the finite element simulation of the interaction
between a PZT patch and a host structure, including the bonding layer, utilizing the EMI
technique with varying temperature. He performed the simulation of the PZT—structure
interaction at the high frequency range (up to 1000 kHz) using FEM software, ANSYS version
8.1.

Yang et al. [15] implemented Piezo-electric ceramic Lead Zirconate Titanate (PZT) based EMI
technique for SHM to various engineering systems. In this paper he used the structural
mechanical impedance extracted from the PZT electromechanical conductance signature as
the damage indicator. A comparison study on the sensitivity of the electromechanical
admittance and the structural mechanical impedance to the damages in a concrete structure
is conducted. Results show that the structural mechanical impedance is more sensitive to the
damage than the electromechanical admittance thus a better indicator for damage detection.

Yang et al. [17] applied Piezo-electric transducers, working on the EMI technique for health
monitoring in aerospace, civil and mechanical engineering. The piezoelectric transducers are
usually bonded on the surface of the structure and subjected to excitation so as to interrogate
the structure at the desired frequency range. The interrogation resulted in the conductance
signatures which can be used to estimate the structural health or integrity according to the
changes of the signatures.

Duan et al. [5] reviewed the implementation of piezoelectric transducers in health
monitoring. The analysis of plain piezoelectric sensors and actuators and interdigital
transducer and their applications in beam, plate and pipe structures for damage detection
are reviewed in detail.




Zhang et al. [19] studied the EMI technique for health monitoring. In this paper, he presented
an impedance model for predicting the electromechanical impedance of a cracked beam. He
analysed a coupled system of a cracked Timoshenko beam with a pair of PZT patches surface
bonded to the top and bottom of the beam. He introduced the shear lag model to describe
the load transfer between the piezoelectric patches and the cracked beam. He simulated the
beam crack as a massless torsional spring.

Chhabra et al. [2] dealt with the Active Vibration control of structures with piezoelectric
patches bonded on top and bottom surfaces of the beam. The patches are located at the
different positions to determine the better control effect. The study is demonstrated through
simulation in MATLAB.

Peng [14] studied the mechanical properties of steel fiber reinforced concrete crack for SHM.
Since working environment is very harsh, the steel fiber reinforced concrete is prone to crack
and a small crack on beam may result in severe damage. Hence, it is important to examine
the mechanical properties of steel fiber reinforced concrete crack to detect early crack
semiotics. He inspected the mechanical characteristics of steel fiber reinforced concrete crack
by experimental tests on four specimens. He considered the effect of the loading position in
the tests.

Hong et al. [8] modelled a strain-based load identification for beam structures subjected to
multiple loads. In his model, he measured the contribution of each load to the strains by strain
sensors. In this paper, the longitudinal strains measured from multiplexed fiber Bragg grating
(FBG) strain sensors are utilized in the load identification.

Parameswaran et al. [12] studied the response of the mechanical systems from undesirable
vibrations during their operations. Their occurrence is uncontrollable as it depends on various
factors. However, for efficient operation of the system, these vibrations have to be controlled
within the specified limits. Light weight, rapid and multi-mode control of the vibrating
structure is possible by the use of piezoelectric sensors and actuators and feedback control
algorithms. In this paper, direct output feedback based active vibration control has been
implemented on a cantilever beam using Lead Zirconate-Titanate (PZT) sensors and actuators.
Three PZT patches were used, one as the sensor, one as the exciter providing the forced
vibrations and the third acting as the actuator that provides an equal but opposite phase
vibration/force signal to that of sensed so as to damp out the vibrations. The designed
algorithm is implemented on Lab VIEW 2010 on Windows 7 Platform.

Hu et al. [9] studied the application of Piezo-electric lead zirconate titanate (PZT) as a new
smart material for health monitoring. To study the damage detection properties of PZT on
concrete slabs, simply supported RCC slabs with PZT patches surface bonded to the host
structure were chosen as the objective of the research and the electromechanical impedance
technique was adopted for research. Five different kinds of damage were analysed to test the
impedance values at different frequency bands.




2.2 Objective and Scope of Study

The objective of this project is to develop methodologies for finite element analysis of smart
structures. In specific, the project attempts to obtain numerical simulation results for health
monitoring of Reinforced concrete (RC) beam, using finite element analysis. Purpose of
Numerical simulation is to avoid tedious experimental work of subjecting the structure to
numerous fractures in future research, thereby saving time and money in future research.

Although the results of finite element analysis of beam with smart materials are already
available in the literature work and the analysis of these beams have been done by various
methods like finite element analysis, FSDT, ANSYS, and several other analytical and semi
analytical method few studies have been done on the problem of Structural Health
Monitoring(SHM) with PZT and | believe it to be newly considered theory that could be used
as means of comparison and also for use in applications . This would also enhance my
knowledge on the topic.




CHAPTER 3

THEORETICAL FORMULATION




3.1 Introduction

Many finite element models on PZT-structure interaction have been proposed in the last three
decades. Lalande [10] provided a review into the finite element approaches for the simulation
of interaction of the PZT patch with the host structure. He broadly classified them into three
different categories, namely direct formulation of elements for specific application, utilization
of a thermoelastic analogy, and the use of commercially available FE analysis (FEA) codes
incorporated with piezoelectric element formulation. Fairweather [6] developed an FEA based
impedance model for the prediction of structural response to induced strain actuation. The
model utilized the FEM to determine the host structure’s impedance.

3.2 One Dimensional Analytical Model for a Freely
Suspended PZT Patch

An analytical model of a freely suspended PZT patch can be obtained by setting the mechanical
impedance of the host structure to zero in the impedance based electromechanical coupling
equations.

For the 1D free PZT patch model, the impedance based electromechanical coupling equation
proposed by Liang et al. [11] can be reduced to (when Z = 0)

_ wl|— — ( (tan kl
e BN ((T) - 1)]

where w = angular frequency of the driving voltage
i = imaginary number

w = width of the PZT patch
| = half-length of the PZT patch
h = thickness of the PZT patch

¥ = complex dielectric permittivity

ds1 = piezoelectric strain coefficient

Y[ = complex Young’s modulus

K = wavenumber.

Rearranging the terms and expressing them in terms of real and imaginary components,

_ l
¥ = {—anf 13,V e+ 00— 1) = S} + i amf o [l + 3,V 0 = e - 1))

where f is the frequency,r + ti = taklel YE = YE + (1 +ni), el = el,(1 — 6i) with dand 7

indicating the electrical loss factor and mechanical loss factor respectively.




3.3 Two Dimensional Analytical Model for a Freely
Suspended PZT Patch

For 2D modelling of a freely suspended PZT based on cross impedance using the equation
proposed by Zhou et al. [20], the PZT could be modelled by setting all four terms related to
the structural mechanical impedance to zero. The equation can thus be reduced to

> WllT 2d3,YF  dj,YE {Sinkl|SinKW}[KCOSKl 0 ]_1l

Y =4iw— — X
I EE 1-v) (1-v) l w 0 K COS KW

where v is the Poisson ratio. Again, rearranging and expressing in complex notation,
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Similarly, setting the effective structural impedance to zero in the 2D effective
impedance modelling equation [1] yields
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Again, rearranging and expressing in complex notation,
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CHAPTER 4

METHODOLOGY




4.1 ANSYS

For modelling and analysis of beam with PZT patch, Ansys 13.0 version is to be used
which is based on Finite Element Method (FEM).

ANSYS Mechanical software is a comprehensive FEA analysis tool for structural analysis,
including linear, nonlinear and dynamic studies. The engineering simulation product provides
a complete set of elements behaviour, material models and equation solvers for a wide range
of mechanical design problems. In addition, ANSYS Mechanical offers thermal analysis and
coupled-physics capabilities involving acoustic, piezoelectric, thermal—structural and thermo-

electric analysis.

.'x .
ANSYS RELEASE 13.0

FEA analysis (finite element) tools from ANSYS provide the ability to simulate every

structural aspect of a product:
Linear static analysis that simply provides stresses or deformations
Modal analysis that determines vibration characteristics

Advanced transient nonlinear phenomena involving dynamic effects and complex behaviours

Harmonic response analysis are used to determine the steady-state response of a linear structure
to loads that vary sinusoidal (harmonically) with time, thus enabling you to verify whether or
not your designs will successfully overcome resonance, fatigue, and other harmful effects of

forced vibration.

Ansys mechanical APDL is used for this purpose. APDL stands for ANSYS Parametric Design
Language, a scripting language that you can use to automate common tasks or even build your

model in terms of parameters (variables).




APDL is the foundation for sophisticated features such as design optimization and adaptive

meshing, it also offers many conveniences that you can use in your day-to-day analysis.

SOLIDS:

SOLID5 has a 3-D magnetic, thermal, electric, piezoelectric, and structural field capability with
limited coupling between the fields. The element has eight nodes with up to six degrees of freedom
at each node. Scalar potential formulations (reduced RSP, difference DSP, or general GSP) are
available for modeling magneto-static fields in a static analysis. When used in structural and

piezoelectric analysis, SOLID5 has large deflection and stress stiffening capabilities.

Figure 4.1: Geometry of Solid5 Element

Solid226:

SOLID226 has the following capabilities:

Structural-Thermal
Piezoresistive
Electroelastic
Piezoelectric
Thermal-Electric
Structural-Thermoelectric
Thermal-Piezoelectric




The element has twenty nodes with up to five degrees of freedom per node. Structural capabilities
include elasticity, plasticity, viscoelasticity, viscoplasticity, creep, large strain, large deflection,
stress stiffening effects, and prestress effects. Thermoelectric capabilities include Seebeck, Peltier,
and Thomson effects, as well as Joule heating. In addition to thermal expansion, structural-thermal
capabilities include the piezocaloric effect in dynamic analyses. The Coriolis Effect is available
for analysis with structural degrees of freedom.
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Figure 4.2: Geometry of Solid226 Element




4.2 Procedural Steps for Modelling

MODELLING OF FREELY SUSPENDED PZT PATCH:
The procedural steps required for modelling of freely suspended PZT patch using ANSY'S 13.0

version are as follows:

Ao iy ™ - o

File Select List Plot PlotCirls WorkPlane Parameters Macro MenuCtrls Help

D= u5|sl &2 &

ANSYS Toolbar

EE)E

savE_DB| REsum_DB| aurt| PowrereH

ANSYS Main Menu

B

Preprocessor
Solution

General Postproc
TimeHist Postpro
Topological Opt
ROM Tool
DesignXplorer
Design Opt

Prob Design
Radiation Opt

& Session Editor

& Finish

J J\ Preferences for GUI Filterin

o

[KEVW] Preferences for GUI Filtering

Individual discipline(s] to show in the GUI
W Structural
I~ Thermal
[~ ANSYS Fluid
[~ FLOTRAN CFD

Electromagnetic

I Megnetic-Nodal
I~ Magnetic-Edge
[ High Frequency
W Electric

Mote: If no individual disciplines are selected they will all show.

Discipline options

& h-Method

Cancel

Lol

[el=lelzlelelzlolefelalajalajalae

’)

o okl |

\ Pick a menu item or enter an ANSYS Command (BEGIN) \ mat=1 \type:1 \ real=1

\ csys=0

\secn:ﬂ

1. Preferences > Structural, Electric and High Frequency - Ok

I\ ANSYS Multiphysics Utility Mena

EECEEERL

ANSYS Toolbar

SAVE_DB| RESUM_DB| QUi

ANSYS Main Menu
Preferences
B Preprocessor
2 Element Type
B

E Switch Elem Type
E Add DOF
E Remove DOFs
E Elem Tech Control
Real Constants
Material Props
Sections
Modeling
Meshing
Checking Cirls
Numbering Ctris
Archive Model
& Coupling / Ceqn
FLOTRAN SetUp
Multi-field Set Up
Loads
Physics
Path Operations
Solution
General Postproc
TimeHist Postpro
Topoloaical Oot

‘ Not connected - Connections are available

PR e oo "o

File Select List Plot PlotCtils. \WorkPlane Parameters Macro MenuCfrls Help

N\ Element Types X

Defined Element Types:

| &l =l &

Options._. | Delete ‘

Help

o Eebbkb) |

o

b LElEEEEERERERR

Pick a menu item or enter an ANSYS Command (PREPT7) |type:1

csys=0

2. Preprocessor >Element type > Add > Coupled Field > Scalar Brick 5 >0k
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A ANSYS Multiphysics Uility MEnT
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B Write to File
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13. Choose Nodes from the Plot menu
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16. Select Nodes from the Plot menu
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18. Select Nodes from the Plot menu
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19. Coupling / Cegn > Couple DOFs > Select Volt in the Degree of Freedom Label >0k
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22. Solution >New Analysis ->Choose Harmonic from the Type of analysis list > Ok
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23. Solution > Define Loads > Apply > Electric >Boundary >Voltage ->On Nodes
- Select the node as shown in figure >0k
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25. Solution > Define Loads > Apply ->Electric >Boundary >Voltage ->On Nodes

- Select the node as shown in figure >0k
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| Pick a menu item or enter an ANSYS Command (SOLUTION) | mat=1 | type=1 ‘ real=1 ‘ csys=0 | secn=1

27. Solution >Load Step Opts > Time/Frequency > Freq and Substps > Enter the value
- Choose Stepped > Ok
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MODELLING OF PZT- STRUCTURE INTERACTION:

After the finite element modelling of a freely suspended PZT patch under harmonic excitation
of up to 1000 kHz, the model was extended to simulate the interaction of a PZT with the host
structure. The modelling procedure is similar with that of the freely suspended PZT patch.




CHAPTER 5

RESULTS AND DISCUSSION




A freely suspended PZT patch without the presence of the host structure with dimensions 10
mm x10 mm x 0.3 mm was first modelled in the ANSYS 13 workspace, as depicted
schematically in figure 1. The material properties were assigned to the PZT patch as given in
Table 5.1.

Table 5.1: Material properties of the PZT patch

Parameters Symbols Values

Density p 7600

Compliance 9.7x10%°

9.7x10%°

8.4x101°

4.9x101°

4.4x10%0

4.4x10%0

2.4x10%0

2.2x10%°

2.2x10%0
Electric permittivity 947
947

605

Piezoelectric strain -8.02
coefficients

-8.02

18.31

12.84

12.84

The PZT patch was excited along the z-direction by applying an alternating sinusoidal
voltage of magnitude 1 V. It should be noted that, since the geometrical shapes and loadings
are symmetrical in nature, only one quarter of the patch is modelled. That means the interfacial
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nodes along the x-plane were restrained in the x-direction and those along the y-plane were
restrained in the y-direction.

Ll _]_;' &

1
-.‘I_ e ey

15 Al v 3

e

Figure 5.1: Model of the meshed PZT patch

The solution was obtained for a frequency range of 0-1000khz.The frequency range
was divided into 400 sub steps and reaction charge was obtained for every sub step. The
solution i.e. the reaction charge for the corresponding operating frequency is shown in Table
5.2. Then a graph between reaction charge and operating frequency was plotted. The graph is
shown in Figure 5.2.




Table 5.2: Reaction charge corresponding to the operating frequency

FREQUENCY

REACTION CHARGE

REAL

IMAGINARY

2500

-2.36E-12

1.08E-36

5000

-2.36E-12

1.08E-36

7500

-2.36E-12

1.08E-36

10000

-2.36E-12

1.08E-36

12500

-2.36E-12

1.08E-36

15000

-2.36E-12

1.08E-36

17500

-2.36E-12

1.08E-36

20000

-2.36E-12

1.08E-36

22500

-2.36E-12

1.08E-36

25000

-2.36E-12

1.08E-36

27500

-2.36E-12

1.08E-36

30000

-2.36E-12

1.08E-36

32500

-2.36E-12

1.08E-36

35000

-2.36E-12

1.08E-36

37500

-2.36E-12

1.08E-36

40000

-2.36E-12

1.08E-36

42500

-2.36E-12

1.08E-36

45000

-2.36E-12

1.08E-36

47500

-2.36E-12

1.08E-36

50000

-2.36E-12

1.08E-36

52500

-2.36E-12

1.08E-36

55000

-2.36E-12

1.08E-36

57500

-2.36E-12

1.08E-36

60000

-2.36E-12

1.08E-36

62500

-2.36E-12

1.08E-36

65000

-2.36E-12

1.08E-36

67500

-2.36E-12

1.08E-36

70000

-2.36E-12

1.08E-36

72500

-2.36E-12

1.08E-36

75000

-2.36E-12

1.08E-36

77500

-2.36E-12

1.08E-36

80000

-2.36E-12

1.08E-36

82500

-2.36E-12

1.08E-36

85000

-2.36E-12

1.08E-36

87500

-2.36E-12

1.08E-36

90000

-2.36E-12

1.08E-36

92500

-2.36E-12

1.08E-36

95000

-2.36E-12

1.08E-36




97500

-2.36E-12

1.08E-36

100000

-2.36E-12

6.04E-36

102500

-2.36E-12

1.08E-36

105000

-2.36E-12

1.08E-36

107500

-2.36E-12

1.08E-36

110000

-2.36E-12

1.08E-36

112500

-2.36E-12

1.08E-36

115000

-2.36E-12

1.08E-36

117500

-2.36E-12

1.09E-36

120000

-2.36E-12

9.40E-36

122500

-2.36E-12

1.09E-36

125000

-2.36E-12

1.08E-36

127500

-2.36E-12

1.08E-36

130000

-2.36E-12

1.08E-36

132500

-2.36E-12

1.08E-36

135000

-2.36E-12

1.08E-36

137500

-2.36E-12

1.08E-36

140000

-2.36E-12

1.08E-36

142500

-2.36E-12

1.08E-36

145000

-2.36E-12

1.08E-36

147500

-2.36E-12

1.08E-36

150000

-2.36E-12

1.08E-36

152500

-2.36E-12

1.08E-36

155000

-2.36E-12

1.09E-36

157500

-2.36E-12

1.11E-36

160000

-2.36E-12

1.16E-36

162500

-2.36E-12

1.14E-36

165000

-2.36E-12

1.11E-36

167500

-2.36E-12

1.09E-36

170000

-2.36E-12

1.09E-36

172500

-2.36E-12

1.09E-36

175000

-2.36E-12

1.08E-36

177500

-2.36E-12

1.08E-36

180000

-2.36E-12

1.09E-36

182500

-2.36E-12

1.09E-36

185000

-2.36E-12

1.09E-36

187500

-2.36E-12

1.10E-36

190000

-2.36E-12

5.94E-36

192500

-2.36E-12

1.12E-36

195000

-2.36E-12

1.09E-36

197500

-2.36E-12

1.09E-36

200000

-2.36E-12

1.09E-36

202500

-2.36E-12

1.10E-36

205000

-2.36E-12

1.24E-36




207500

-2.36E-12

1.16E-36

210000

-2.36E-12

1.10E-36

212500

-2.36E-12

1.09E-36

215000

-2.36E-12

1.09E-36

217500

-2.36E-12

1.09E-36

220000

-2.36E-12

1.09E-36

222500

-2.36E-12

1.09E-36

225000

-2.36E-12

1.10E-36

227500

-2.36E-12

1.21E-36

230000

-2.36E-12

1.33E-36

232500

-2.36E-12

1.11E-36

235000

-2.36E-12

1.11E-36

237500

-2.36E-12

6.32E-36

240000

-2.36E-12

1.11E-36

242500

-2.36E-12

1.33E-36

245000

-2.36E-12

1.10E-36

247500

-2.36E-12

1.11E-36

250000

-2.36E-12

1.15E-36

252500

-2.36E-12

2.40E-36

255000

-2.36E-12

1.26E-36

257500

-2.36E-12

1.12E-36

260000

-2.36E-12

1.10E-36

262500

-2.36E-12

1.10E-36

265000

-2.36E-12

1.09E-36

267500

-2.36E-12

1.09E-36

270000

-2.36E-12

1.09E-36

272500

-2.36E-12

1.10E-36

275000

-2.36E-12

1.13E-36

277500

-2.36E-12

1.12E-36

280000

-2.36E-12

1.24E-36

282500

-2.36E-12

1.10E-36

285000

-2.36E-12

1.10E-36

287500

-2.36E-12

1.10E-36

290000

-2.36E-12

1.11E-36

292500

-2.36E-12

1.92E-36

295000

-2.36E-12

1.13E-36

297500

-2.36E-12

1.11E-36

300000

-2.36E-12

1.11E-36

302500

-2.36E-12

1.12E-36

305000

-2.36E-12

1.18E-36

307500

-2.36E-12

1.17E-36

310000

-2.36E-12

1.39E-36

312500

-2.36E-12

4.03E-36

315000

-2.36E-12

1.63E-36




317500

-2.36E-12

6.64E-36

320000

-2.36E-12

2.61E-36

322500

-2.36E-12

1.47E-36

325000

-2.36E-12

1.18E-36

327500

-2.36E-12

1.14E-36

330000

-2.36E-12

1.12E-36

332500

-2.36E-12

1.12E-36

335000

-2.36E-12

1.13E-36

337500

-2.36E-12

1.17E-36

340000

-2.36E-12

1.53E-36

342500

-2.36E-12

2.13E-36

345000

-2.36E-12

1.19E-36

347500

-2.36E-12

1.13E-36

350000

-2.36E-12

1.12E-36

352500

-2.36E-12

1.12E-36

355000

-2.36E-12

1.14E-36

357500

-2.36E-12

1.19E-36

360000

-2.36E-12

1.85E-36

362500

-2.36E-12

1.90E-36

365000

-2.36E-12

1.19E-36

367500

-2.36E-12

1.13E-36

370000

-2.36E-12

1.12E-36

372500

-2.36E-12

1.11E-36

375000

-2.36E-12

1.11E-36

377500

-2.36E-12

1.11E-36

380000

-2.36E-12

1.11E-36

382500

-2.36E-12

1.11E-36

385000

-2.36E-12

1.11E-36

387500

-2.36E-12

1.12E-36

390000

-2.36E-12

1.12E-36

392500

-2.36E-12

1.14E-36

395000

-2.36E-12

1.18E-36

397500

-2.36E-12

1.48E-36

400000

-2.36E-12

4.77E-36

402500

-2.36E-12

1.28E-36

405000

-2.36E-12

1.24E-36

407500

-2.36E-12

1.62E-36

410000

-2.36E-12

4.07E-36

412500

-2.36E-12

1.28E-36

415000

-2.36E-12

1.20E-36

417500

-2.36E-12

1.22E-36

420000

-2.36E-12

1.41E-36

422500

-2.36E-12

2.08E-35

425000

-2.36E-12

2.31E-36




427500

-2.36E-12

1.07E-35

430000

-2.36E-12

1.53E-36

432500

-2.36E-12

1.25E-36

435000

-2.36E-12

1.19E-36

437500

-2.36E-12

1.19E-36

440000

-2.36E-12

1.27E-36

442500

-2.36E-12

9.74E-36

445000

-2.36E-12

1.33E-36

447500

-2.36E-12

1.21E-36

450000

-2.36E-12

1.26E-36

452500

-2.36E-12

1.81E-36

455000

-2.36E-12

4.29E-36

457500

-2.36E-12

1.35E-36

460000

-2.36E-12

1.27E-36

462500

-2.36E-12

1.59E-36

465000

-2.36E-12

5.25E-36

467500

-2.36E-12

1.31E-36

470000

-2.36E-12

1.19E-36

472500

-2.36E-12

1.20E-36

475000

-2.36E-12

1.16E-36

477500

-2.36E-12

1.16E-36

480000

-2.36E-12

1.22E-36

482500

-2.36E-12

1.19E-36

485000

-2.36E-12

1.21E-36

487500

-2.36E-12

1.27E-36

490000

-2.36E-12

1.46E-36

492500

-2.36E-12

3.13E-36

495000

-2.36E-12

6.14E-36

497500

-2.36E-12

2.63E-36

500000

-2.36E-12

1.10E-35

502500

-2.36E-12

1.83E-36

505000

-2.36E-12

3.01E-36

507500

-2.36E-12

3.88E-36

510000

-2.36E-12

1.44E-36

512500

-2.36E-12

1.26E-36

515000

-2.36E-12

1.21E-36

517500

-2.36E-12

1.20E-36

520000

-2.36E-12

1.20E-36

522500

-2.36E-12

1.22E-36

525000

-2.36E-12

1.29E-36

527500

-2.36E-12

1.58E-36

530000

-2.36E-12

7.06E-36

532500

-2.36E-12

2.94E-36

535000

-2.36E-12

1.43E-36




537500

-2.36E-12

1.26E-36

540000

-2.36E-12

1.22E-36

542500

-2.36E-12

1.22E-36

545000

-2.36E-12

1.26E-36

547500

-2.36E-12

1.43E-36

550000

-2.36E-12

5.54E-36

552500

-2.36E-12

2.06E-36

555000

-2.36E-12

1.41E-36

557500

-2.36E-12

1.50E-36

560000

-2.36E-12

3.19E-36

562500

-2.36E-12

5.77E-36

565000

-2.36E-12

1.62E-36

567500

-2.36E-12

1.76E-36

570000

-2.36E-12

2.44E-36

572500

-2.36E-12

1.30E-36

575000

-2.36E-12

1.27E-36

577500

-2.36E-12

1.20E-36

580000

-2.36E-12

1.20E-36

582500

-2.36E-12

1.20E-36

585000

-2.36E-12

1.21E-36

587500

-2.36E-12

1.22E-36

590000

-2.36E-12

1.26E-36

592500

-2.36E-12

1.32E-36

595000

-2.36E-12

1.51E-36

597500

-2.36E-12

3.21E-36

600000

-2.36E-12

4.36E-36

602500

-2.36E-12

1.89E-35

605000

-2.36E-12

2.21E-36

607500

-2.36E-12

3.95E-36

610000

-2.36E-12

1.51E-35

612500

-2.36E-12

1.30E-35

615000

-2.36E-12

7.87E-36

617500

-2.36E-12

1.99E-36

620000

-2.36E-12

1.59E-36

622500

-2.36E-12

1.50E-36

625000

-2.36E-12

1.55E-36

627500

-2.36E-12

1.86E-36

630000

-2.36E-12

3.64E-36

632500

-2.36E-12

1.42E-34

635000

-2.36E-12

3.49E-36

637500

-2.36E-12

1.99E-36

640000

-2.36E-12

2.27E-36

642500

-2.36E-12

2.91E-35

645000

-2.36E-12

2.83E-36




647500

-2.36E-12

1.57E-36

650000

-2.36E-12

1.36E-36

652500

-2.36E-12

1.30E-36

655000

-2.36E-12

1.27E-36

657500

-2.36E-12

1.26E-36

660000

-2.36E-12

1.28E-36

662500

-2.36E-12

1.34E-36

665000

-2.36E-12

1.55E-36

667500

-2.36E-12

3.28E-36

670000

-2.36E-12

9.40E-36

672500

-2.36E-12

1.75E-36

675000

-2.36E-12

1.38E-36

677500

-2.36E-12

1.30E-36

680000

-2.36E-12

1.27E-36

682500

-2.36E-12

1.27E-36

685000

-2.36E-12

1.29E-36

687500

-2.36E-12

1.32E-36

690000

-2.36E-12

1.39E-36

692500

-2.36E-12

1.55E-36

695000

-2.36E-12

2.04E-36

697500

-2.36E-12

5.34E-36

700000

-2.36E-12

4.43E-35

702500

-2.36E-12

3.06E-36

705000

-2.36E-12

1.83E-36

707500

-2.36E-12

1.60E-36

710000

-2.36E-12

1.61E-36

712500

-2.36E-12

1.89E-36

715000

-2.36E-12

3.78E-36

717500

-2.36E-12

4.45E-35

720000

-2.36E-12

3.15E-36

722500

-2.36E-12

4.22E-36

725000

-2.36E-12

3.68E-35

727500

-2.36E-12

5.34E-36

730000

-2.36E-12

2.64E-36

732500

-2.36E-12

1.81E-36

735000

-2.36E-12

2.10E-36

737500

-2.36E-12

1.19E-35

740000

-2.36E-12

3.48E-36

742500

-2.36E-12

1.89E-36

745000

-2.36E-12

2.02E-36

747500

-2.36E-12

4.16E-36

750000

-2.36E-12

3.86E-35

752500

-2.36E-12

2.75E-36

755000

-2.36E-12

1.78E-36




757500

-2.36E-12

1.68E-36
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Figure 5.2: Plot between Reaction force and corresponding operating frequency

After modelling the PZT patch for a harmonic excitation with frequency up to 1000
kHz, the finite element model was extended to simulate the interaction of the PZT with the
host structure.

A simple aluminium beam with rectangular cross section (dimensions-231 mmx 21 mm
x 2 mm) was used as the test specimen in this study. A PZT patch of dimension 10 mmx10
mmx0.2 mm was also bonded at the middle of the beam. The test specimen was numerically
modelled in the ANSYS 13 workspace as illustrated in Figure 5.3.

The material properties of the aluminium beam are listed in Table 5.3.




Table 5.3: Material properties of the Aluminium beam

Parameters Symbols Values Unit

Density o 2715 Kg/m3

Poisson’s ratio \Y; 0.3 -

Young’s modulus

(Isotropic)

Constant stiffness
multiplier

Figure 5.3: Modelling of one quarter of the aluminium beam

The reaction charge was obtained for the selected frequency range. From the reaction
charge conductance of the structure was calculated with the help of the formula given in the
formulation part. The conductance signature was obtained which is shown in Figure 5.4.
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Figure 5.4: Conductance signature of the PZT-structure interaction using 3mm, 5mm, and
10mm element size

Comparing the conductance signatures of the undamaged structure with those of the
damaged one, the presence of the damage in terms of its location and extent may be predicted.




CHAPTER 6

CONCLUSION




Structural Health Monitoring (SHM) using EMI technique is a very effective way of health
monitoring in comparison to the traditional visual inspection method of health monitoring.

In this study a PZT-structure interaction was modelled using the commercially available finite
element software ANSYS, version 13. The conductance signature was obtained for the
undamaged beam. So when there will be any damage in the beam, the conductance signature
of the beam will be different. By analysing the conductance signature of the damaged beam the
location and extent of the damage can be found out.
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