
Finding Dependency, Test Sequences

and Test Cases

for Simulink/Stateflow Models

Ravikant Sharma

Roll. 213CS3177 Master of Technology in Software Testing

under the supervision of of

Prof. Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769008, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80148529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Finding Dependency, Test Sequences
and Test Cases

for Simulink/Stateflow Models

Dissertation submitted in

May 31st 2015

to the department of

Computer Science and Engineering

of

National Institute of Technology Rourkela

in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Ravikant Sharma

(Roll. 213CS3177)

under the supervision of

Prof. Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

Computer Science and Engineering

National Institute of Technology Rourkela
Rourkela-769 008, India. www.nitrkl.ac.in

June 1, 2015

Certificate

This is to certify that the work in the thesis entitled Finding Dependency, Test

Sequences and Test Cases for Simulink/Stateflow Models by Ravikant Sharma,

having roll number 213CS3177, is a record of an original research work carried out

by him under my supervision and guidance in partial fulfillment of the requirements

for the award of the degree of Master of Technology in Computer Science and

Engineering Department. Neither this thesis nor any part of it has been submitted

for any degree or academic award elsewhere.

Dr. Durga Prasad Mohapatra

Associate Professor

Department of CSE

NIT, Rourkela

Acknowledgment
First of all, I would like to express my profound feeling of admiration, my token of

gratitude and appreciation towards my supervisor Prof. Durga Prasad Mohapatra,

who has been the controlling and guiding force behind this work. I need to express

gratitude towards him for acquainting me to the field of Software testing and Slicing

and giving me the chance to work under him. His unified confidence in this point

and capacity to draw out the best of explanatory and viable aptitudes in individuals

has been significant in extreme periods. Without his important guidance and help

it would not have been workable for me to finish this thesis work. I am significantly

obligated to him for his consistent support and precious guidance in every part of

my scholarly life. I think of it as my favorable luck to have got a chance to work

with such a wonderful person.

I thank our H.O.D. Prof. Santanu Kumar Rath for their steady backing in my

thesis work. He has been incredible wellsprings of motivation to me and I say thanks

to him in the name of all that is pure.

I would also like to thanks my all lab mates specially Rohan Koshy for helping

and providing me suggestions. I would also like to thanks my all friends, classmate

and PHD scholars for their supports, encouragements and helps whether direct or

indirect during my thesis work.

Last but not the least I dedicated my thesis work to my parents and siblings for

their constant supports and motivations regularly during my hard times.

I wish to thank all the faculty members and secretarial staff of the CSE

Department for their thoughtful collaboration and helps.

Ravikant Sharma

Abstract

The Simulink/Stateflow (SL/SF) acquiring from Mathworks is fitting the de facto

standard in industry for model based development especially for embedded control

systems. Many industrial tools are available in the market for test case generation

from SL/SF designs; though, we have observed that these tools do not accomplish

satisfactory coverage in cases when designs involve non-linear blocks and Stateflow

blocks transpire deeper inside the Simulink blocks. For this purpose, we have

proposed a methodology that generates the test sequences and test cases from the

Simulink/Stateflow model. In our approach, first, we have developed a SL/SF model

using MATLAB tool which generates mdl(model description language) file. Next, we

convert that mdl file into xml file and then the xml file and mdl file path are passed as

an inputs to our proposed methodology to generate Simulink/Stateflow dependency

graph(SSDG); Now using the SSDG, we generate test sequences by applying depth

first search approach(DFS). Next, for each test sequence, we generate a set of test

cases and finally we prioritize those test cases using information flow(IF)value.

Now a days, Simulink/Stateflow models become the de-facto standard in the

modelling of control system based development of real-time system, especially for

an embedded system. These are extensively used in many domains, including

automotive and avionics. It allows modelling the systems, simulating and analyzing

dynamic systems. The resultant Simulink/Stateflow models consist of large

numbers of blocks and states likes more than ten thousand blocks. Hence, to certify

the quality of such control system models, automated static analyses and slicing

methods are necessary to deal with this complexity. Hence, these approaches help

in debugging the model, understanding the behaviour of models,identifying faults,if

occurs. In this thesis, we present an approach for computing intradependencies

between blocks by the concept of slicing approach and we represent the result using

dependence graphs. With the help of slicing approach, the complexity of a system

model can be compact to a specified point of interest(Slicing Criterion) concern by

removing unrelated blocks in model system.

Keywords: SL/SF Model, Dependency Graph, Test Sequences, Test Cases,

SSDG, Model based testing, Slices, Forward Slicing, Backward slicing

Contents

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures vii

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 2

1.3 Objectives of our thesis: . 3

1.4 Organization of the thesis . 3

2 Basic Concepts and Definitions 5

2.1 Fundamentals of Software Testing . 5

2.2 Different levels of testing . 6

2.2.1 Unit Testing . 6

2.2.2 Integration Testing . 7

2.2.3 System testing . 8

2.2.4 Regression Testing . 8

2.2.5 Acceptance Testing . 9

2.3 Test Case and Test Sequenece . 9

2.4 Model Based Testing . 10

2.5 Simulink/Stateflow Introduction . 10

2.5.1 Simulink . 10

2.5.2 Stateflow . 12

v

2.6 MDL . 13

2.7 XML . 14

2.8 Dependency Graph . 14

3 Literature Review 15

4 Generation of Test Cases and Test Sequence for SL/SF Models 17

4.1 Proposed Approach . 17

4.2 Implementation and Results for a case study 19

4.2.1 Case study: Automatic Washing Machine 19

5 Computing Dependency using Slicing Approach 31

5.1 Introduction . 31

5.1.1 Simulink/Stateflow model . 31

5.1.2 Dependencies in SL/SF model 32

5.1.3 Slicing . 34

5.2 Proposed Methodology for computing dependency using slicing

approach . 35

5.2.1 Overall steps of our methodology 36

5.2.2 Algorithm for Forward and Backward Slicing 37

5.3 IMPLEMENTATION AND RESULT 41

6 CONCLUSION AND FUTURE WORK 47

Dissemination 49

Bibliography 50

vi

List of Figures

2.1 Sample Simulink Diagram . 13

4.1 Block diagram of our proposed approach for generating test cases for

SL/SF model . 18

4.2 Simulink Model for Automatic washing machine 21

4.3 State Chart for Automatic washing machine 22

4.4 XML File of Automatic washing machine 24

4.5 Dotty File of Automatic washing machine 24

4.6 Dependency Graph of Automatic washing machine 25

5.1 Block diagram of our proposed model for computing slicing shown

using dependency graph . 35

5.2 Sample Simulink Model . 41

5.3 Dependency Graph showing forward slices 43

5.4 Dependency Graph Showing the backward slices 44

vii

Chapter 1

Introduction

In this section we discuss introduction of our work, motivations about our works,

objective of our works and thesis organisation of our works.

1.1 Introduction

Every software product goes through a different life state during the development

i.e. System undergoes the changes during life cycles,these changes occur

due to various reasons such as improvement and modification in the existing

functionalities,detecting fault and defects in the model system. Every time whenever

the changes occur in the software model, the changed software model is to be tested

and verified so that the modified code as well as design does not negatively affect

the behavior of unmodified code and design.Due to changes,the software becomes

complex during testing, so the use of proper design models for software tasks has

become important. Models of a system represents the needed behavior of the system

or to represent an approach for testing and we can test this model through model

based testing. Therefore, we need a formal verification of the models for detecting

defects and faults.Quality assurance is an important issue for software development.

The Simulink/Stateflow (SL/SF) upbringing from Mathworks is fitting the

accepted standard in industry for model based advancement, particularly for

1

Chapter 1 Introduction

installed control frameworks. Numerous mechanical apparatuses are accessible in

the business sector for experiment era from SL/SF plans; however, we have watched

that these instruments don’t fulfill coverage scope in situations when outlines include

non-direct blocks and Stateflow blocks come to pass more profound inside the

Simulink model. For this reason, we have proposed a strategy that creates the test

sequence generation and test cases generation from the Simulink/Stateflow model.

1.2 Motivation

Matlab Simulink/Stateflow(SL/SF) model now becomes an inherent parts of many

applications for embedded system. Matlab SL/SF is used especially for developing

embedded systems for complex and composite systems.

SL/SF Model helps in modelling systems, even if they are more complex contains

large number of blocks.The resulting model must be tested and validated in order to

detect faults and defects in the system.But, such model consists of a large number

of blocks in the systems, due to which testing process becomes difficult to test.

Presently a days Simulink/Stateflow models turns into the true standard in the

displaying of control framework based advancement of ongoing, particularly for an

installed framework. These are widely utilized as a part of numerous areas, including

automotive and avionics. It empowers displaying the frameworks, mimicking

and examining element frameworks. The resultant Simulink/Stateflow models

comprise of huge quantities of blocks and states consists of more than ten thousand

blocks. Consequently, to guarantee the nature of such control frameworks models,

computerized static examinations and slicing approach systems are important to

manage up with these complexity.

2

Chapter 1 Introduction

1.3 Objectives of our thesis:

� To propose an algorithm that can generate dependency graph for

Simulink/Stateflow model.

� To propose an algorithm that can generate test sequences for

Simulink/Stateflow models using the proposed dependency graph.

� To generate the test cases for each and every test sequences for

Simulink/Stateflow models.

� To propose an algorithm that prioritize the test cases.

� To propose an algorithm that generate the forward slicing dependency graph.

� To propose an algorithm that generate the backward slicing dependency graph.

1.4 Organization of the thesis

The rest of the thesis is organized as follows:

� Chapter 2: In this section we present the basic concepts and concept requires

in our work. We discuss about testing, testing technique, simulink/stateflow

models, Model based testing, dependency graph, etc

� Chapter 3: In this chapter we present litrature review related to

simulink/stateflow models testing and slicing.

� Chapter 4: In this chapter we first discuss our proposed methodology of test

case and test sequence generation for simulink/stateflow model, next we show

implematation along with one case study and result.

� Chapter 5: In this section, we first discuss about proposed model of computing

dependency betweens blocks of Sl/SF model using slicing approach, algorithm

3

Chapter 1 Introduction

used and next we discuss about their implementation along with exmaple and

then shows result as dependency graph.

� Chapter 6: At last we concluded our work and discuss few future works possible

on this area.

4

Chapter 2

Basic Concepts and Definitions

2.1 Fundamentals of Software Testing

Software Testing

Software testing is the process of finding bugs or defects in the software by executing

a program. Software Testing can also be viewed as the process of verifying

and validating the software products or application or program that meets the

requirements of the software and design of the software, works as the expectation of

the software.

� White-Box Testing : In this type of testing everything has been shown

that is way it is called as glass box Testing or structural testing. Here tester

is worried about to find the paths from the code and induce the output.It

is based on source code before integration.It applies in every level of testing

expect user level. The basic objective is to map which line of code will produce

which correct output.

� Black-Box Testing: This testing is a technique for programming testing

that inspects the usefulness of an application without peering into its

inside structures or workings. This technique for test can be connected to

basically every level of programming testing: unit, reconciliation, framework

5

Chapter 2 Basic Concepts and Definitions

and acknowledgment.Particular information of the application’s code/inward

structure and programming learning when all is said in done is not needed.

Software testing can be dividing mainly into two parts:

Static testing: Inspection, walkthrough, reviewing, etc are the example static

testing that can be evaluated for finding defects without executing any coding. It

a manual testing. Static testing is done during the process of verification. Static

testing includes the static analysis and reviewing of design and source code for finding

error or defects in the software.

Dynamic testing: Dynamic testing is done during the process of validation.

Dynamic testing is when you are working with the actual system (not some artifact

or model that represents the system), providing an input, receiving an output and

comparing the output to the expected behavior. It is hands-on working with the

system with the intent of finding errors.

2.2 Different levels of testing

In this present reality it is difficult to give 100% effective programming testing. But

by the assistance of a powerful testing it is conceivable to bear the cost of high level

of enlistment of testing. The path in which we are distinguishing the experiments

is known as programming, testing techniques. The essential goal of the experiments

is to discover a great number of bugs and to cover the expansive area. Testing

is done all over of the software development life cycle phase, however, it carries

on a contrastingly in distinctive circumstances. There are diverse levels of testing

exist, for example, Unit validation Testing, Integration Testing, System Testing,

Acceptance Testing, Regression Testing.

2.2.1 Unit Testing

This kind of testing is performed by specialists before the setup is offered over to the

testing gathering to formally execute the software. Unit testing is performed by the

6

Chapter 2 Basic Concepts and Definitions

specific testers on the individual units/mosule of source code doled out reaches. The

testers usage test data that is special in connection to the test data of the quality

affirmation bunch.

The target of unit testing is to detach every piece of the module and exhibit that

individual parts are cure similarly as requirements and handiness.

Limitation of Unit Testing

Testing can’t get every last bug in an application. It is difficult to assess each

execution way in every product application. The same is the situation with unit

testing.

There is a cutoff to the quantity of situations and test information that a designer

can use to check a source code. In the wake of having depleted all the choices, there

is no decision yet to stop unit testing and union the code portion with different

units.

2.2.2 Integration Testing

Integration testing is portrayed as the testing of joined parts of an application to

make sense of whether they work viably. Coordination testing could be conceivable

in two courses: Bottom up integration testing and Top-down integration testing.

1. Bottom-up integration testing

This testing begins with unit testing, trailed by tests of alterably more lifted sum

mixes of units called modules or develops.

2. Top-down integration

In this testing, the most hoisted sum modules are attempted first and sensibly,

lower-level modules are attempted from that point on.

7

Chapter 2 Basic Concepts and Definitions

2.2.3 System testing

System testing tests the framework all in all. At the point when all the parts are

composed, the application general is attempted altogether to see that it meets the

foreordained Quality Standards. This kind of testing is performed by a specific

tester group.

System testing is critical due to the accompanying reasons:

� System testing is the initial phase in the Software Development Life Cycle,

where the application is tried all in all.

� The application is attempted by and large to affirm that it meets the utilitarian

and specific subtle elements.

� The application is tried in a situation that is near to the generation

environment where the application will be conveyed.

� System testing empowers us to test, confirm, and accept both the business

prerequisites and in addition the application structural planning.

2.2.4 Regression Testing

At whatever point an adjustment in a product application is made, it is very

conceivable that different zones inside the application have been influenced by this

change. Regression testing is performed to confirm that an altered bug hasn’t

brought about another usefulness or business principle infringement. The goal of

regression testing is to guarantee that a change, for example, a bug fix ought not

bring about another deficiency being uncovered in the application.

Regression testing is critical on account of the accompanying reasons:

� Minimize the holes in testing when an application with changes made must be

tried.

8

Chapter 2 Basic Concepts and Definitions

� Testing the new changes to confirm that the progressions made did not

influence whatever other territory of the application.

� Mitigates dangers when regression testing is performed on the application.

� Test scope is expanded without bargaining courses of events.

� Increment rate to market the item.

2.2.5 Acceptance Testing

This is apparently the most vital sort of testing, as it is led by the Quality Assurance

Team who will gauge whether the application meets the expected details and fulfills

the customer’s prerequisite. The QA group will have an arrangement of pre-written

situations and experiments that will be utilized to test the application.

More thoughts will be imparted about the application and more tests can

be performed on it to gauge its exactness and the reasons why the venture was

started. Acceptance tests are not just expected to bring up basic spelling oversights,

corrective mistakes, or interface holes, additionally to call attention to any bugs in

the application that will bring about framework crashes or significant slips in the

application.

By performing acceptance tests on an application, the testing group will reason

how the application will perform underway. There are likewise legitimate and

contractual prerequisites for acceptance of the framework.

2.3 Test Case and Test Sequenece

Test case is a triplet which contains input, state of the system and output. Whereas

test sequence is the flow of execution. Path testing what it gives at the end flow of

execution. In the same way test sequence is also flow of execution in which order

execution flows.

9

Chapter 2 Basic Concepts and Definitions

2.4 Model Based Testing

Model-based testing is a use of model-based outline for designing and alternatively

additionally executing relics to perform software testing or system testing. Models

can be utilized to constitute desired behavior of a System Under Test (SUT), or to

constitute to test systems and a testing situation. Model-based testing is often a

systematic method to get test cases from types of system requirements. It permits

you to assess necessities autonomous of algorithmic design and development.

2.5 Simulink/Stateflow Introduction

Simulink/Stateflow is developed by ”The Math works”. The Developer ”The Math

works” describes it as ”as a platform for multidomain simulation of model based

design for dynamic system”.

Matlab Simulink/Stateflow(SL/SF) model now becomes an inherent parts of

many applications for embedded system. Matlab SL/SF is used especially for

developing embedded systems for complex and composite systems.

SL/SF Model helps in modelling systems, even if they are more complex contains

large number of blocks.The resulting model must be tested and validated in order to

detect faults and defects in the system.But, such model consists of a large number

of blocks in the systems, due to which testing process becomes difficult to test.

2.5.1 Simulink

The Simulink library provides a dynamic graphical interface with a custom set of

block libraries that are useful in design, simulation, implementation, test coverage,

verification and validation of model based testing especially embedded system.

Basically Simulink model can be composed of different sets of predefined blocks in

the simulink library. These simulink Blocks are organized according to the behavior

into a customized blocks inside the simulink library. The important library blocks

10

Chapter 2 Basic Concepts and Definitions

contain the following as:

� Source library: It contains blocks that are used for generating the signals.

Ex : Constant, Sine wave, ground, inport, clock, ramp, signal builder, signal

generator, etc.

� Sink library: It contains blocks that are useful for display result or output

write block. Ex: outport, scope, terminator, display, floating scope, stop

simulation, etc.

� Continuous library: It contains the block that defines continuous state. Ex:

Derivative, integrator, transport delay, variable time delayed.

� Discrete Library: It contains blocks that define discrete states and discrete

time components. Ex: Discrete-time integrator, unit delay, difference, delay,

discrete filter, discrete PID controller, etc.

� Math operation library: Its contains blocks that are useful for representing

mathematical operations. Ex: gain, sum, product, Dot product, etc.

� Discontinuous library: It contains blocks that define dis-continuous states.

Ex: Saturation, Quantizer, rate limiter, wrap to zero, etc

� Logic and bit operation library: It contains library that represents and

perform the logical and bit operations. Ex: logical operator, bitwise operator,

relational operators, bit set, bit clear,etc

� Lookup table library: It contains blocks that model the non-linearity with

lookup tables. Ex: 1-D lookup table, 2-D Lookup Table, cosine, sine, etc

� Signal attributes library: It contains blocks that support signal attributes.

Ex Data Type Conversion, Rate Transition, Signal Conversion, IC

� User Defined function: Its contains blocks that supports user defined

custom functions. Ex Argument Inport, Argument Outport, Fcn, Function

Caller, etc

11

Chapter 2 Basic Concepts and Definitions

2.5.2 Stateflow

Stateflow represents the state behavior of the system. It provides the language

elements that are integrated with simulink required to represents complex state

depend behavior. Both simulink and Stateflow work together. Running any one

either Stateflow or simulink, automatically runs both simultaneously. It provides

the potentiality for designing complex system especially embedded system that

contains controls, states, supervisory, and mode logic. Every state chart diagram is

represented by state blocks and transition in Stateflow library.

A Stateflow model helps to describe the system behavior using the several use

of graphical and non graphical construct. Graphical construct includes states block,

transition, and junction and function elements. Non-Graphical construct includes

events identifier, condition and condition actions, function calls, etc.

States represents the basic object that reflects the modes of the system behavior.

Transition is used to connect them and shows the flow control of the system states.

The state can be either active or inactive. Active state means that the Stateflow is

in that mode.

Events and conditions cause the state to be change from one state to other i.e.

From inactive to active states. There are different types of action that the states of

the Simulink/Stateflow support. These are:

� Entry Action:It defines what action to be take place when states become

active or entered. For example in the figure 1, state first has the entry section

x=10, that means when first state become active or entered it automatically

sets the value of x to 10.

� During Actions: It defines what action is to be take place when state is

already active i.e. these action are to executed whenever a particular state is

already active and some event other than the specified condition stuff or exit

condition of transition occurs. For example in figure 1, state first have the

during section of x=x+1 i.e. this action is executed whenever state first is

12

Chapter 2 Basic Concepts and Definitions

active and some event occurs then it increments the value of x by 1.

� Exit section: It defines what action is to be taken place when states become

active to inactive. For example in gure 1, state Second have the exit action of

x=10 i.e when states becomes inactive from active state it sets the value of x

to 10.

� On Event Actions: It defines what action to be take place when state is

active and particular mentioned event to be occurred.

Figure 2.1: Sample Simulink Diagram

2.6 MDL

Simulink/Stateflow model in Matlab tool is saved or stored in the form of .mdl

file. The mdl file stands for model description language file. The mdl file is stores

the description in the form of structured ASCII format. Stateflow block also store

information into the mdl file.

13

Chapter 2 Basic Concepts and Definitions

2.7 XML

XML stands for Extensible Markup Language. XML is used to describe data. The

XML is the negotiable way to store information formats of electronic data. XML

is a text based format that allows for the structuring of electronic documents and

is not limited to a set of labels. XML is the markup language that is used for

encoding the document in a format that are reliable for human readable. It is easy

to understand.It is a format with the powerful support of the Unicode Standard. The

Unicode Standard includes an encoding method, set of standard character encodings,

set of code charts for viewable reference, etc.

� An intermediate representation of Simulink/stateflow model is an XML file

that captures all implicit and explicit dependencies amongs the blocks and

states within the model.

� XML format is easy to understand and the model information can be easily

understood and retrieved by the use of existing XML parsers algorithm.

� That XML file is further used for converting into the intermediate graph.

2.8 Dependency Graph

The dependency graph having nodes and edges, where nodes represents states of the

model and edges represents transition condition or input to the next state.

The dependency graph is used to captures all the implicit dependencies between

the blocks of the SL/SF model. So that with the help of dependency graph, we can

generates test sequences and test cases for SL/SF model.

14

Chapter 3

Literature Review

Simulink/Stateflow has originally been designed for the modeling and simulation of

dynamic system. Automated test case generation for SL/SF model is necessary for

detecting bugs and errors. Many authors have tried different way of approach related

to generating test data for Simulink model and verification for Simulink/Stateflow

diagram. Many different approaches are there related to our work.

One approach is T-Vec[2] tester that delivers a comprehensive approach for test

generation for Simulink model that offers an exhaustive solution for continuous

model analysis, test execution and automatic test generation. It drills the path

boundaries for generating test vector for path throughout the model hierarchy.

Unreachable paths that result in dead code are identified and hyperlinked to the

Simulink model elements involved. It is based on the assumption that if there is no

coincidental correctness, then test cases that limit the boundaries of domains with

arbitrarily high exactitude are adequate to test all the points in the domain. But

one disadvantage is that it does not consider the Stateflow of the Simulink.

Clark et. al [3] proposed a technique called tracing and deducing, that enhanced

the capability of search-based test data generation for Simulink.

Disadvantage of Zhan and Clark approach: They don’t consider a state

problem. The state problem remains a challenge for higher level as well as code

level test data generation. Automatic generation of test data for higher level models

15

Literature Review

more generally is a very challenging (performance, reduces as complexity of model

increases).

Nayak et. al [4] proposed a methodology Meta model for Simulink/Stateflow

called as the Simulink dependency Graph (SDG). The SDG captures all implicit

dependencies between different blocks of the SL/SF model and that represents them

explicitly, thereby making it possible to perform several types of analysis on the SL

/ SF model.

MirkoConard et. al [5] proposed an approach that designs a test suite for code

generation tools. They describe the design of a test suite for code generation tools.

This method provides solutions of different problems of different types of tools

that gives how the correct transformation of a source language/model into a target

language can be proved. The use of the proposed testing system prompts an era of

sets of test suite, which is suitable for testing code generators methodically.

But, the existing code generators can?t guarantee that the automatically

generated code from tool, compiles correctly as mentioned in the design due to

the following reasons:

1. Errors in the Simulink/Stateflow diagram nodes will get carried over.

2. Errors in the automatic code generator for the Simulink/Stateflow diagram caused

for example by finite precision arithmetic or timing constraints.

3. Any human errors in the selection of code generation options, library naming or

inclusion, and others.

At the same time, our methodology beats these restrictions, no compelling reason

to produce code from the models in our methodology on account of that it beat the

MrkoConard’s methodology. We also cover all the blocks and all transitions through

the generated graph so that our proposed approach over came from these limitations.

The Zhan’s methodology likewise not covering all the Blocks because of small signal

generation, however our methodology defeats this impediment moreover.

16

Chapter 4

Generation of Test Cases and Test

Sequence for SL/SF Models

In this section, firstly we discuss our proposed approach of test cases and a test

sequence generation of the Simulink / stateflow model using Simulink/Stateflow

dependency graph (SSDG). Next, we discuss proposed algorithm, then their

implementation with the help of a case study and finally shows the result.

4.1 Proposed Approach

Our proposed work is based on the graph called Simulink/Stateflow dependency

graph (SSDG), in which nodes represent the blocks of the SL/SF model and edges

represents the dependencies between blocks. The overall algorithm of our work is as:

Overall Steps of our approach

Step1: Draw Simulink Model by using MATLAB, Simulink tool and Stateflow

model is added to the Simulink model by using the MATLAB Stateflow design tool.

(It creates.mdl file)

Step 2: Generate XML file for Simulink Model for the above .mdl file.

Step 3: Read the Blocks of model (in Java using.mdl file path as input) and using

17

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

an xml parser (xml file as an input), generate an adjacency matrix that contains a

dependency amongst the blocks of SL/SF model and store on dotty file.

Step 4: Using dotty file generated in Step3, generate an intermediate graph called

Simulink / Stateflow Dependency graph (SSDG) using GraphViz tool.

Step 5: Generate test Sequences using the intermediate graph by applying Depth

first search (DFS)approach in the graph.

Step 6: Next, for each test sequence, generate a test case using intermediate graph

and dotty file.

Step 7: Prioritize test cases using information flow value(IF).

Figure 4.1: Block diagram of our proposed approach for generating test cases for

SL/SF model

Figure 4.1 shows our proposed methodology and step by step procedure for

generating test cases and test sequences using dependency graph. Firstly, we have to

create SL / SF models using Matlab, Simulink library tool, save it to .mdl file. Next

18

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

we have to convert that .mdl file into xml file. Now using our proposed algorithm

dependency Graph Generation that takes .mdl file and xml file as input and generates

SSDG using the GraphViz tool (that takes a dotty file as an input). Next, apply

different testing coverage criteria like state coverage and transition coverage to

generate test sequences by applying depth first search approaches (DFS). Next, for

each test sequences generate set of test cases.Consequently prioritize the generated

test cases by prioritization approach.

The algorithm 1 and algorithm 2 are showing the detailed algorithm for

dependency graph generation and test sequences genetaion for Simulink/Stateflow

model repectively.

4.2 Implementation and Results for a case study

4.2.1 Case study: Automatic Washing Machine

In this section we have taken an example of case study Automatic washing machine

for generating test cases, test sequences from a Simulink / Stateflow model for

washing machine. So let’s discuss our implementation of case study step by step:

Construction of Simulink/Stateflow model:

By Using Mathwork Matlab Tool, Simulink library is present, using this library

we have to develop a model by drag and drop the blocks from the design panel of

Simulink. StateChart design is also available in the design panel.

Figure4.2 represents the Simulink model for washing machine, in which we are

using one signal builder for generating the signal, two constant blocks that represents

one for the setting time duration for water fill, washing and drying as the data

variable. Another constant for setting hot/cold water wash as set-value variable.

One state chart block that further divided into subsystem that can be viewed as

19

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

Algorithm 1 Simulink/Stateflow Dependency Graph Construction

1: start main

2: //First, create an SL / SF models using Matlab SL/SF design Tools and save

it. (It creates .mdl file)

3: Take .mdl file path and xml file as an input and generate model object and

passed it to the function graphGeneration.

4: for all up to all block present in SL/SF model do

5: read each block

6: obtain all the neighbor next block of present block

7: Write the next block in the matrix form and store that into dot file.

8: if any present block contains Simulink/stateflow subsystem then

9: Push that block into the queue.

10: end if

11: end for

12: for all up to all block present in queue i.e queue is not empty do

13: read each block

14: obtain all the neighbour next block of present block

15: Write the next block in the matrix form and store that into dot file.

16: end for

17: Now using GraphViz Tool, take above dot file generated in above step as in

input to tool.

18: Generate Graph using GraphViz tool. This Graph is Called SL/SF depenedency

Graph(SSDG).

19: End main

20

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

Algorithm 2 testSequenceGeneration
1: Start

2: Take Dependency graph root node v as an input.

3: for all node, Set visited to zero(false).

4: if visited(v)== false then

5: set visited to true.

6: end if

7: for Each vertex ’w’, adjacency of ’v’ do

8: if Not visited(w) then

9: Call testSequenceGeneration

10: end if

11: end for

12: End

Figure 4.2: Simulink Model for Automatic washing machine

21

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

different states of the system. This state chart is present inside the Simulink Platte

so this contains both Simulink and Stateflow that why it is called Simulink Stateflow

model. Running either one of them will run both simultaneously. One scope block

at the end is used for displaying the result of the simulation.

Figure 4.3: State Chart for Automatic washing machine

Figure 4.3 represents the statechart flow chart diagram for the state chart in

Figure 4.2. The state chart contains different state present in the system. The

different states of the washing machine model are start-machine, water fill, motor,

hot air and stopped. This statechart contains two variables, dataout variable

used for setting time for different operation in different states and s1 variable for

setting hot/cold water wash. Start-machine state contains the entry section in

which dataout variable is set as a data constant value and s1 variable is set as

set-value where the value 0 represents cold water and the value 1 represents hot

water. When start-machine state has found the condition time [dataout==1] is true

then only control flow enter into water fill state. Water fill state itself contains two

22

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

different states hotwater and coldwater State coldwater contains entry section in

which dataout is initialized to 1, during section increments the value by 1 each time

treated as the increments in minute during these state. But if condition s1==1 is

found to be true then without any operation controls shifted from cold water to hot

water state. State hotwater also contains entry section in which dataout is initialized

to 1, during section increments the value by 1 treated as the increments in minute

during these state.

When either of coldwater and hotwater state found the condition

time[dataout==10] to be true, then controls flows transfer to motor state. Initially

dataout=10 while entering into motor state that are initialized in entry section, but

during this state it decrements the value by 1, upto dataout =1, thats treated as

complete 10 min in this state.

Once it found condition time[dataout==1] to be true in motor state, control

flow transfer to hotair state in which dataout value is initialized to 10, again same

procedure.

Once during hotair state, if it is found the condition time[dataout==1] is to

be true, then control transfers to the stopped state and this state treated as stop

machine. Save the Simulink/Stateow model as .mdl file extension.

Convert to XML

After developing the SL/SF model in Matlab. It generates .mdl file. Next step is to

convert that .mdl file into XML file using a command in Matlab. Figure 4.4 Shows

the converted xml file of washing machine case study.

Generation of Dependency Graph

Next step is to apply our proposed algorithm of dependency graph generation and

using an XML parser, convert the model into intermediate graph generation.

This algorithm takes .mdl file path as an input. After creating model objects for

the SL / SF model and passes .mdl file path to the function graph, Generation and

23

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

Figure 4.4: XML File of Automatic washing machine

Figure 4.5: Dotty File of Automatic washing machine

24

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

Figure 4.6: Dependency Graph of Automatic washing machine

apply xml parser which takes an xml file as an input to xml parser. Next we have

to apply loop up to all block covers in the model and within this loop, we have to

perform these operations: read each block and extract the information of each block,

then obtain all the next neighbor block of the current block, then Write the next

block in the matrix form and store that into dot file. If any present block contains

SL/SF subsystem, then push that block into the queue. After completing of first

loop, we have to check whether the queue is empty or not, if queue is not empty, then

again apply one loop up to block available in the queue or queue becomes empty

and perform the following actions: read each block and extract the information of

each block, then obtain all the next neighbor block of present block, then write the

next block in the matrix form and store that into dot file. Figure 4.5 represents

the dotty file that store blocks dependency which is further used to generate the

dependency graph. GraphViz tool is used to generate dependency graph using

generated dotty file. Figure 4.6 represents the SL/SF dependency graph for a model

25

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

washing machine.

Test Sequence and test case Generation

Next generating the graph, we have performed the DFS approach to generate the

test sequences. These test sequences are used to generate test cases. In order to

test the model efficiently, we have to create the test cases for each and every test

sequence.

State Coverage: The coverage, which covers states in all the possible ways in

the dependency graph is state coverage.

Transition Coverage: The coverage, which cover transition atleast once for

all transition in the dependency graph, is called transition coverage.

The test Sequences for following case study of washing machine are :

Test Sequence 1:

Start→stopped(if signal is not generated).

Test Sequence 2:

Start → start-machine→coldWater→motor→hotAir→stopped

Test Sequence 3:

Start→start-machine→coldWater→hotWater→motor→hotAir→stopped

Next, for each test sequence we have to generate the test cases using the test

sequences and dependency graph. Table 4.1 represents the set of test cases for SL/SF

model.

26

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

Table 4.1: Test Cases of Automatic Washing Machine

Test

ID

Current State Input Condition Expected State

1 Start dataout=data,

s1=set value

Start machine

2 Start machine dataout=data,

s1=set value

Time[dataout==1]

true

coldWater

3 coldWater dataout = dadaout + 1 Time[dataout==10]

false

coldWater

4 coldWater dataout = 1 Time[dataout==1]

true , Time[s1==1]

true

hotWater

5 coldWater dataout = 10 Time[dataout==10]

true

motor

6 hotWater dataout = dadaout + 1 Time[dataout==10]

false

hotWater

7 hotWater dataout = 10 Time[dataout==10]

true

motor

8 motor dataout = dadaout + 1 Time[dataout==1]

false

motor

9 motor dataout = 10 Time[dataout==1]

true

hotAir

10 hotAir dataout = dadaout - 1 Time[dataout==1]

false

hotAir

11 hotAir Time[dataout==10]

true

stopped

27

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

Table 4.2: Information flow value for each state
State Model in Value Model out value IF Vlue

coldWater 3 2 6

motor 2 3 6

hotWater 2 2 4

hotAir 2 2 4

Start machine 1 1 1

Start 1 0 0

Stopped 0 1 0

Prioritization of Test cases

The prioritization of the generated test cases based on information flow (IF) value.

Steps of priortization of test cases:

Step 1: Compute model in value for each node in the dependency graph.

Step 2: Compute model out value for each node in the dependency graph.

Step 3: Calculate Information flow(IF) value for each node in the dependency

graph.

Step 4: Test cases are prioritized based on the higher IF the value of the

transition source state.

To compute for Model in for each state we have to compare each state with all

the transition destination nodes if the state matches than we increases the count and

this counting continues till one iteration of transition destination nodes completed

28

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

and we store the count value of a state. This process continues till we compute for

all states.

To compute Model out for each state we have to compare each state with all

the transition source nodes if the state matches than we increases the count and

this counting continues till one iteration of transition source nodes completed and

we store the count value in Model out of a state. This process continues till we

compute Model out of all states.

For finding the IF value of each state we are computing the product of Model in

and Model out of each state.

IF(A) = Model in(A) x Model out(A)

Where, Model in(A)- Number of states calling state A. Model out(A) - Number of

states called by state A. IF (A) - Information flow value of state A.

State with higher IF value represents that the state having higher complexity, so

the test cases are prioritized based on the higher IF the value of the transition source

state.Table 4.2 represents the information flow value for the example of automatic

washing machine. Table 4.3 shows the prioritized test cases after apply our approach.

29

Chapter 4 Generation of Test Cases and Test Sequence for SL/SF Models

Table 4.3: Prioritized Test Cases of Automatic Washing Machine

1 coldWater dataout = dadaout + 1 Time[dataout==10]

false

coldWater

2 coldWater dataout = 1 Time[dataout==1]

true , Time[s1==1]

true

hotWater

3 coldWater dataout = 10 Time[dataout==10]

true

motor

4 motor dataout = dadaout + 1 Time[dataout==1]

false

motor

5 motor dataout = 10 Time[dataout==1]

true

hotAir

6 hotWater dataout = dadaout + 1 Time[dataout==10]

false

hotWater

7 hotWater dataout = 10 Time[dataout==10]

true

motor

8 hotAir dataout = dadaout - 1 Time[dataout==1]

false

hotAir

9 hotAir Time[dataout==10]

true

stopped

10 Start machine dataout=data,

s1=set value

Time[dataout==1]

true

coldWater

11 Start dataout=data,

s1=set value

Start machine

30

Chapter 5

Computing Dependency using

Slicing Approach

In this section, first we discuss about some basic terminology used in our works,

definitions of some basic terms used in our work, proposed work of computing

dependency using slicing approach, algorithms used in our approach, implementation

with sample examples and their results.

5.1 Introduction

5.1.1 Simulink/Stateflow model

Matlab, Simulink is an extensively used notation in the development of dynamic

system, especially for embedded system industry that allows models to be formed

and exercised. Matlab, Simulink models are very often considered by industry as the

architectural level design of software systems. The simulation amenities permit such

models to be executed and observed. Since a real time control model can consist

of a large number of blocks and states SL/SF model, so the complexity is more for

these models and also debugging is difficult. So by computing the intra dependencies

amongst the blocks in SL/SF using slicing approach can make the debugging easier.

31

Chapter 5 Computing Dependency using Slicing Approach

5.1.2 Dependencies in SL/SF model

Simulink/Stateflow is an information stream situated graphical documentation

where dataflow is by the structure and control stream must be ascertained.

We plan to discover how to focus information and control conditions for

Simulink/Stateflow models.

Data dependencies in Simulink

Data stream in Simulink is given by the signal lines [14]. So data dependence can

without much of a stretch be gotten from a watching the signal lines.

A block b2 is data dependent subject to block b1 if

i) b1 and b2 are associated by a signal line L, and

ii) L begins with a yield of b1 and finishes in an inputs of b2.

Control flow in Simulink

Fundamentally the control flow in Simulink [14] is displayed utilizing using

subsystem:

i) Conditional subsystems: restrictive subsystems are enabled, activated, triggered,

action and function-call subsystem.

ii) Loop subsystems: loops like while and for in Simulink are acknowledged by atomic

subsystems.

iii) Multiport Switch and switch blocks: switch or multiport blocks can likewise be

utilized to model the control flow in Simulink.

Control dependence in Simulink

In a model m containing the block b1 and b2, block b2 is control depenent on block

b1 if

i)b1 is inside of a conditional execution context.

ii) b1 is the predicate block controlling the execution of b2.

32

Chapter 5 Computing Dependency using Slicing Approach

Data dependence in Stateflow

Data dependence edges are utilized to speak to the dependence of a state of the data

flow connected to a statflow model. This incorporates all the data variables utilized

as a part of the entry, during, and exit section of any state.

The data variable can likewise take up with conditions, condition activities or

transition action in any state transition.

Control Dependence in Stateflow

Control dependence in Stateflow relies on upon the moves between the states i.e

transition between the states. The primary Stateflow execution begins from the

default transition.

A control dependence edge speaks to on interstage dependence because of the

change of the state in the Stateflow model. A control dependence may emerge in

the accompanying three ways:

Case 1) Control dependence emerges when there is no transition mark connected

with the transition between two states.

Case 2) When an active move from a state has a transition mark, then control

dependence emerges between the states and the predicate block.

Case 3) Control dependence emerges when a state has way ”exit action” and its

outgoing transition is connected with condition action and transition action.

This is on account of once the state of a transition is fulfilled, then the condition

transition makes place. Before executing the transition action and bouncing to the

following next state, the way exit action of the current state happens after the

transition execution.

This outcomes in control dependence emerging between the predicate and the

state node with name having the name of the predicate node and state.

33

Chapter 5 Computing Dependency using Slicing Approach

5.1.3 Slicing

Program slicing is a methodology for extracting the statements/blocks explanations

of a program that influence or influences of the ideas of an arrangement of

variables/blocks on particular details of interest in the course of study. Slicing is a

useful method for decomposition and analysis of a model/system.

Slicing criterion

The point in the program and the variable/blocks of interest of point are usually

brought up to as slicing criterion.

Simulink/Stateflow Slicing Criterion

A slicing criterion for Simulink/Stateflow model may be any block within the model

with the exception of the subsystem or any state in the Stateflow model or any

variable inside of the Stateflow.

Slice

The extracted statement/block in the program is called slice.

Simulink/Stateflow slice

A slice of a Simulink/Stateflow model m regarding slicing criterion c is a model m1

that

i) Contains just those blocks and states from the Stateflow that are significant to

the slicing criterion c (forward slice and backward slice).

ii) Contains just those blocks and states from Stateflow to which the slicing model c

is important and that care for the hierarchical structure of the Simulink/Stateflow

model.

34

Chapter 5 Computing Dependency using Slicing Approach

Forward slicing and Backward slicing with respect to Simulink model

Forward slicing: It depends on the direction of edges traversal (Forward edge

traversal). Forward slices contain those blocks that are influenced or acted upon by

the slicing criterion in the further execution of the model.

Backward Slicing: It depends on the direction of edge traversal (Backward

edge traversal). Backward slices extract the blocks/states that influences the model

at the point given by the slicing criterion.

5.2 Proposed Methodology for computing

dependency using slicing approach

This approach uses dependency graph for representing forward and backward slicing

where node presents the blocks of simulink model and edge represents the transition

between the blocks of simulink model.

Figure 5.1: Block diagram of our proposed model for computing slicing shown using

dependency graph

In this approach,shown in Figure 5.1, first develop the simulink model in Matlab

that generates the .mdl file. Next we have to perform forward and backward slicing,

35

Chapter 5 Computing Dependency using Slicing Approach

for performing this we have to pass mdl file path to our proposed algorithm of

forward Slicing and backwardSlicing. Forward/backward slicing can be performed at

a particular point of interest in the model called slicing criteria. Based on the slicing

criteria we have to calculate the forward and backward slices. Forward slices contain

those blocks that are influenced by the slicing criterion in the further execution

of the model. Backward slices extract those blocks that influences the model at

the point given by the slicing criterion. Four perform above slices we need an

adjacency matrix of size NxN, where N represents the number of blocks in the

Simulink models. The adjacency matrix contains the inter-dependencies amongst

blocks of the model. Adjacency matrix is used to traverse forward and backward

for computing dependency. With the help of matrix generated by our proposed

algorithm, we have to generate a graph called dependency graph for both forward

and backward slices shown by different colors.

5.2.1 Overall steps of our methodology

1) First, we develop a Simulink model using Matlab Simulink library. It generates

a mdl file (model description language).

2) Read the blocks of Simulink model and assign a unique block id to each block.

3) Define slicing criterion at a particular point of interest.

4) Apply, our proposed algorithm of computing Forward Slices and Backward Slices

which takes a .mdl file path as an input.

5) Compute interdependencies between the blocks and store in adjacency matrix.

6) Using adjacency matrix compute forward and backward slices.

7) Generate Dependency graph by converting matrix into graph form using the Jung

library in Java.

8) Change the colors of computing slices block in dependency graph and finally

generate the forward dependency slicing graph and backward dependency slicing

graph.

36

Chapter 5 Computing Dependency using Slicing Approach

5.2.2 Algorithm for Forward and Backward Slicing

In this section we discuss the detailed algorithm for calculating dependency between

blocks of simulink models using forward and backward slicing approach.

Algorithm 3 ForwardSlicing
1: start main

2: Read the blocks of Sl/SF model.

3: Assign a block id to each block in the model.

4: Extract the list of edges(transition) between all the blocks

5: Create an adjacency matrix (adj mat) of size M x M, where M is the number of

blocks in SL/SF model and initialize adj mat to 0.

6: Call function AdjanMatrix.

7: Get user input on which block forward slicing is performed(give a slicing

criterion) and store it on IPblock

8: Pass adj mat to jung API library so as to display the graph graphically.

9: Call function getpath (IPblock, adj mat) // it returns Arraylist of nodes or

blocks in the forward path

10: Store all the key values into a hashmap of returning Arraylist of the node from

Getpath function.

11: Change the colors of all the nodes (keyvalues) present in the hashmap.

12: End main

37

Chapter 5 Computing Dependency using Slicing Approach

Algorithm 4 Function:AdjanMatrix (block list, edge list, adj mat)

1: start main

2: for all blobk ’i’ do

3: Get all destination blocks traversable directly from block i.

4: for all destination block ’j’ do

5: Adj mat[i][j]=1;

6: end for

7: end for

8: End main

Algorithm 5 Function: GetPath(IPblock, adj mat)

1: start main

2: for all blobk ’i’ do

3: Using BFS concept to the directed dependency graph starting from IP block.

4: List all nodes in the nodes or blocks present in path into Arraylist.

5: Return Arraylist.

6: end for

7: End main

38

Chapter 5 Computing Dependency using Slicing Approach

Algorithm 6 BackwardSlicing
1: start main

2: Read the blocks of Sl/SF model.

3: Assign a block id to each block in the model.

4: Extract the list of edges(transition) between all the blocks

5: Create an adjacency matrix (adj mat) of size M x M, where M is the number of

blocks in SL/SF model and initialize adj mat to 0.

6: Call function AdjanMatrix.

7: Get user input on which block forward slicing is performed(give a slicing

criterion) and store it on IPblock

8: Pass adj mat to jung API library so as to display the graph graphically.

9: Calculate all the source node present in the graph.

10: Calculate all the path from different source nodes to the user input node. Call

findPath function.

11: Store all the different node present in the multiple path into the Arraylist.

12: Store all the Arraylist value (nodes) into the hashmap keyvalue.

13: Change the color of all the node which has key value of the hashmap.

14: End main

Algorithm 7 Function:AdjanMatrix (block list, edge list, adj mat)

1: start main

2: for all blobk ’i’ do

3: Get all destination blocks traversable directly from block i.

4: for all destination block ’j’ do

5: Adj mat[i][j]=1;

6: end for

7: end for

8: End main

39

Chapter 5 Computing Dependency using Slicing Approach

Algorithm 8 Function: FindBackwardPath (Source node list, user input node,

adj mat)

1: start main

2: for all adjacent node i of source node do

3: if Check node i is not visited then

4: Set visited[node i] to true.

5: Add node to path info stored into Arraylist path.

6: call findPath(node i, user input node, adj mat) //recurcive call

7: else

8: if user input node = =node i then

9: Print path info stored in Arraylist path

10: Clear path info

11: end if

12: end if

13: end for

14: End main

40

Chapter 5 Computing Dependency using Slicing Approach

5.3 IMPLEMENTATION AND RESULT

Figure 5.2: Sample Simulink Model

Apply our proposed algorithm for finding forward slicing and backward slicing

dependency graph. Firstly, after applying mdl file path of model, the next step is to

read all the blocks and assign a unique block id to each block present in the Simulink

model.

The number of blocks along with a unique block for the Figure 5.2 of the sample

Simulink model is as follows:

Number of blocks along with block id:

1 .rm4/g [Gain, 1:1]

2 .rm4/Switch [Switch, 3:1]

3 .rm4/Product [Product, 2:1]

4 .rm4/Abs [Abs, 1:1]

5 .rm4/Unit Delay [UnitDelay, 1:1]

41

Chapter 5 Computing Dependency using Slicing Approach

6 .rm4/tg [Inport, 0:1]

7 .rm4/Product1 [Product, 2:1]

8 .rm4/Constant [Constant, 0:1]

9 .rm4/Sum [Sum, 2:1]

10 .rm4/u [Inport, 0:1]

11 .rm4/la [Inport, 0:1]

12 .rm4/Sum1 [Sum, 2:1]

13 .rm4/Sum2 [Sum, 2:1]

14 .rm4/y [Outport, 1:0]

Next step is to generate the dependency graph which captures the implicit

dependency between the blocks in Simulink models.

The size of adjacency matrix is an N x N, where N is the total number of block

present in a Simulink model. The adjacency matrix for the model in Figure 5.2 is

as follows:

Adjacency matrix

00000000000010

00001000000001

00000000000100

10000000000000

00100000000000

00010000000000

00000000000100

00000000100000

00000010000000

01000010000010

00100000100000

01000000000000

01000000000000

42

Chapter 5 Computing Dependency using Slicing Approach

00000000000000

Figure 5.3: Dependency Graph showing forward slices

Next step is to ask for the user to define slicing criterion on which block we have

to perform slicing:

Enter the block number where you want to find slice:

5

Forward slices

5.rm4/Unit Delay [UnitDelay, 1:1]

3. rm4/Product [Product, 2:1]

12. rm4/Sum1 [Sum, 2:1]

2. rm4/Switch [Switch, 3:1]

14. rm4/y [Outport, 1:0]

Next step is to generate the forward dependency graph using the junk library for

representing graph and using an adjacency matrix. The forward dependency graph

43

Chapter 5 Computing Dependency using Slicing Approach

Figure 5.4: Dependency Graph Showing the backward slices

of the sample Simulink model is shown in Figure 5.3.

The next step is to find backward slicing. For finding backward slicing we need all

the backward path from slicing criterion block. For this, firstly we need to calculate

all the source node available in model or graph. Next step is to generate all the path

from different source node to slicing criterion block using an adjacency matrix.

The different source node in the model sample Simulink model in Figure 5.2 are:

Source 6, Source 8, Source 10, Source 11.

The different path from different source node to slicing criterion node is as follows:

Source 6

4→ 1→13→2→5

Source 8

9→7→12→ 2→5

Source 10

2→5

7→12→2→5

44

Chapter 5 Computing Dependency using Slicing Approach

13→2 →5

Source 11

3→12→2→5

9→7→12→2→5

Next step is to collect all the node uniquely which is present in these different

paths from source node to slicing criterion node and store it on hashmap key values

are as:

Hashmap key value(Backward slices)

1 .rm4/g [Gain, 1:1]

2 .rm4/Switch [Switch, 3:1]

3 .rm4/Product [Product, 2:1]

4 .rm4/Abs [Abs, 1:1]

5 .rm4/Unit Delay [UnitDelay, 1:1]

6 .rm4/tg [Inport, 0:1]

7 .rm4/Product1 [Product, 2:1]

8 .rm4/Constant [Constant, 0:1]

9 .rm4/Sum [Sum, 2:1]

10 .rm4/u [Inport, 0:1]

11 .rm4/la [Inport, 0:1]

12 .rm4/Sum1 [Sum, 2:1]

13 .rm4/Sum2 [Sum, 2:1]

Next step converts the color of the key value node present in the hashmap that

will represent the backward slicing in which colored node shows the affected node in

backward w.r. t slicing criterion node.

Figure 5.4 represents the backward slicing dependency graph.

The main advantages of our approaches are: 1) A dependency analysis between

the blocks of Simulink models for control and data dependence.

For dependence analysis, we demonstrate that a Simulink model control

dependence can be derived from conditional execution contexts (CEC).

45

Chapter 5 Computing Dependency using Slicing Approach

CECs are an implicit demonstration of the model which

1) Cannot be accessed (neither from the model file nor by MATLAB commands)

and it Can be propagated to other blocks and different levels through the hierarchy.

2) It helps in realizing the model, helps in debugging the models and also assists in

testing and sustenance of the model/system.

The computed slices must be precise and accurate to convey out the above

actions.

The generated slices will be helpful in many applications like testing, software

debugging, re-factoring of software, understanding, analysis of software ystem,

maintenance, etc.

46

Chapter 6

CONCLUSION AND FUTURE

WORK

MATLAB Simulink-Stateflow is a tool which is used for modeling dynamic systems,

real time embedded system, Since simulink model may have several levels of

hierarchy that can be viewed as different label of abstraction with several types

of implicit dependencies between elements/blocks of the model that makes the

model system more complex and difficult to perform any analysis on it and hence

difficult to find bug and defects, so generation of test cases a bit difficult and

complex. So we proposed a methodology to generate test cases and test sequences

from Simulink-Stateflow models. Firstly we have developed the model in the

MATLAB Simulink library environment by using Simulink/Stateflow designing tool.

By simulation we verify the model. After verification by using our approach we

generated a dependency graph. From that dependency graph we performed the

DFS traversal operations and generated the test sequences. The test sequences are

used to generate test cases.

Our approach covers much important coverage like state coverage and transition

coverage. This is more accurate than the methods which are generating test cases

using code generation.

47

CONCLUSION AND FUTURE WORK

We have also prioritized the generated test cases based on information flow value.

It gives better understanding the test cases with higher involvement of the states

within the model.

Our approach of a computing dependency graph using the static slicing approach

is machinery on block levels and based on the dependency graph which makes easier

to understand and analyze the model. With slicing, the complexity of a model can

be compact to a specified point of concern by removing unrelated model elements.

Using our approach of a computing the intra dependencies amongst the blocks in

SL/SF using slicing approach can make the debugging easier.. The prioritization

complexity of SL/SF model does not rely upon the number of discreate states, but

depends on the number of simulation steps and number of continous variables.

We have generated test sequences for SL/SF model, moreover we plan to generate

test cases for every embedded real time control system. We will also plan to optimize

the test cases using genetic algorithm.In future visualization of Simulink/Stateflow

model is also possible. In future it will be better to be proposed dynamic slicing

approach on SL/SF model which will reduce the complexity of implementation of real

time embedded system, also it will helps in analysis of design and implementation

of real time embedded system.

48

Dissemination

1. Ravikant Sharma and Durga Prasad Mohapatra, Prioritize Test Cases Generation

for Simulink/Stateflow Models using Dependency Graph, International Conference

on Research Trends and Research Issues in Computer Science and Engineering

(ICRTRICSE-2015),Sponsored by CSI and IEI, Andhra University College of Engineering,

Visakahapatnam, Andhra Pradesh, India, May 2-3, 2015.

Bibliography

[1] The MathWorks, Mathworks MATLAB Simulink. ”http://www.mathworks.com/products/simulink”.

[2] T-vec,”Website. http://www.t-vec.com/ ”

[3] Y. Zhan and Clark, ”A search-based framework for automatic test-set generation for

Matlabsimulink models,” Software Eng. SE-10, PhD thesis, December 2005. University of York.

[4] Suraj Nayak. ”A Metamodel for Simulink/Stateflow models and its applications”, M. Tech.

Thesis, IIT Kharagpur, Computer Science Department (2013).

[5] I. Sturmer and M. Conrad, ”Test suite design for code generation tools,” in Automated Software

Engineering, 2003. Proceedings 18th IEEE International Conference on, pp. 286-290, IEEE, 2003.

[6] N. Vamshi Vijay, ”Regression test selection based on analysis of Simulink/Stateflow models”,

M.Tech. Thesis, IIT Kharagpur, Computer Science Department (2012).

[7] A. Windisch, ”A Search based testing of Simulink models containing stateflow diagrams,”IEEE

Trans., vol. Software Engineering Companion Volume, pp. 395-398, 2009. Daimler Center for

Automotive IT Innovations DCAITI, Tech. Univ. Berlin, Berlin, Germany.

[8] R. Systems, ”Reactis simulator / tester.” Website. http:www.reactive-systems.com.

[9] A. A. Gadkari, S. Mohalik, K. Shashidhar, A. Yeolekar, J. Suresh, and S. Ramesh, ”Automatic

generation of test-cases using model checking for SL/SF models,” in 4thMoDeVVa workshop

Model Driven Engineering, Verification and Validation, p.33, 2007.

[10] Bates, Samuel, and Horwitz, Susan. ”Incremental program testing using program dependence

graphs”, In Proceedings of the 20th ACM SIGPLAN SIGACT symposium on Principles of

programming languages, (1993), pp. 384-396.

[11] Adepu Sridhar, ”Generating Test Sequences and Slices for Simulink/Stateflow Models”,M.

Tech thesis,Computer science and engineering department, NIT Rourkela, 2013.

50

Bibliography

[12] M. Li and R. Kumar, ”Model-based automatic test generation for simulink/stateflow using

extended finite automaton,” in Automation Science and Engineering (CASE),2012 IEEE

International Conference on, pp. 857-862, IEEE, 2012.

[13] Ray, Rajarshi, ”Automated translation of matlab Simulink/Stateflow models to an

intermediate format in hyvisual,”MSC degree, thesis, Chennai Mathematical Institute,

Computer Science Department (2007).

[14] Reicherdt, Robert, and Sabine Glesner. ”Slicing MATLAB simulink models”, Software

Engineering (ICSE), (2012) 34th International Conference on, pp. 551-561. IEEE, (2012).

[15] Aditya Agrawal, Gyula Simon, Gabor Karsai,” Semantic Translation of Simulink/Stateow

Models to Hybrid Automata Using Graph Transformations”, Electronic Notes in Theoretical

Computer Science 109: 43-56 (2004)

[16] G. N. Binkley, David and M. Harman, ” An empirical study of static program slice size,”

ACM Transactions on Software Engineering and Methodology, vol. 16, Apr. 2007.

[17] B. Korel, I. Singh, L. Tahat, and B. Vaysburg, ”Slicing of state-based models,” in Software

Maintenance, 2003. ICSM 2003,Proceedings. International Conference on,pp. 34-43,IEEE, 2003.

[18] S. Van Langenhove and A. Hoogewijs,”System verification through logic tool support for

verifying sliced hierarchical statecharts,” pp. 142-155, 2007,Springer Berlin Heidelberg.

[19] D. W. Ji, Wang and Q. Zhi-Chang,”Slicing hierarchical automata for model checking Uml

Statecharts,” (London, UK), pp. 435-446, in Proceedings of the 4th International Conference on

Formal Engineering Methods: Formal Methods and Software Engineering, 2002.

[20] K. J. Ottenstein and L. M. Ottenstein, ”The program dependence graph in a software

development environment,” pp. 177-184, in Proceedings of the ACM SIGSOFT/SIGPLAN

Software Engineering Symposium on Practical Software Development Environments, 1984.

[21] T. R. Horwitz, Susan and D. Binkley, ”Interprocedural slicing using dependence graphs,”

ACM Transactions on Programming Languages and Systems, vol. 12, pp. 26-60, 1990.

[22] Dalal, Siddhartha R., Ashish Jain, Nachimuthu Karunanithi, J. M. Leaton,Christopher M.

Lott, Gardner C. Patton, and Horowitz, Bruce M. ”Model based testing in practice.” In

Proceedings of the 21st international conference on Software engineering, pp. 285-294. ACM,

(1999).

[23] Bringmann, Eckard, and Kramer Andreas, ”Model-based testing of automo tive systems,”

In Software Testing, Verification, and Validation, 2008 1st International Conference on, pp.

485-493. IEEE, (2008).

51

	Certificate
	Acknowledgement
	Abstract
	List of Figures
	Introduction
	Introduction
	Motivation
	Objectives of our thesis:
	Organization of the thesis

	Basic Concepts and Definitions
	Fundamentals of Software Testing
	Different levels of testing
	Unit Testing
	Integration Testing
	System testing
	Regression Testing
	Acceptance Testing

	Test Case and Test Sequenece
	Model Based Testing
	Simulink/Stateflow Introduction
	Simulink
	Stateflow

	MDL
	XML
	Dependency Graph

	Literature Review
	Generation of Test Cases and Test Sequence for SL/SF Models
	Proposed Approach
	Implementation and Results for a case study
	Case study: Automatic Washing Machine

	Computing Dependency using Slicing Approach
	Introduction
	Simulink/Stateflow model
	Dependencies in SL/SF model
	Slicing

	Proposed Methodology for computing dependency using slicing approach
	Overall steps of our methodology
	Algorithm for Forward and Backward Slicing

	IMPLEMENTATION AND RESULT

	CONCLUSION AND FUTURE WORK
	Dissemination
	Bibliography

