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ABSTRACT 

Keywords: Fiber element, Distributed Inelasticity, Numerical Integration, MCS, Confinement 

models for concrete 

RC frames undergo inelastic deformations in the event of an extreme earthquake. Nonlinear 

modelling of the concrete sections is very much necessary for the simulation of realistic 

behaviour of RC frames in earthquake loading. Concentrated/lumped plasticity and distributed 

plasticity are the two different approaches for nonlinear modelling of RC elements available in 

literature. The main objective of the present study is to implement a displacement based fiber 

element (stiffness) for nonlinear analysis of RC Sections. The present study focused on the 

element formulation of both stiffness and flexibility based fiber models, direct integration and 

numerical integration and incorporation of popular confinement models for stress-strain 

relationship for concrete. The present study is extended to a probabilistic analysis using the 

implemented model. It is found that fiber elements are appropriate tool for incorporating 

nonlinearity in the RC sections.  
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CHAPTER 1 

 

INTRODUCTION 

 

  

 

1.1 GENERAL 

RC frames behave inelastically under earthquake loading. Simulation of behaviour of RC frame 

in such earthquake loading requires nonlinear modelling and analysis techniques. There two 

different types of approaches for nonlinear modelling of RC elements, namely concentrated or 

lumped plasticity approach and distributed plasticity approach. The motivation of the present 

study is to simulate the nonlinear behaviour of RC sections using a fiber element model. 

1.2 NONLINEAR MODELLING OF RC ELEMENTS 

Material nonlinearity in a frame elements are primarily divided into two categories;  

1.2.1 Distributed plasticity and Lumped plasticity 

In the lumped plasticity model, elements consists of two zero-length nonlinear rotational spring 

elements with an elastic element between them as shown in the Fig. 1.1 The spring element 

accounts for nonlinear behaviour of a structure by having nonlinear moment-rotation 

relationships. The lumped plasticity model is popular since the computational cost of the analysis 

is high, e.g., in the case of nonlinear time-history analysis of a large structure.  

 

Fig 1.1: Zero length spring used in lumped plasticity model 
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The distributed plasticity model is used for more accurate estimation of the structural response. 

The distributed plasticity model is employed for the nonlinear frame element with the fiber 

section discretization. The distributed inelasticity members are modelled with the fiber approach, 

which consists of discretizing into integration sections and into several material fibers as shown 

in Fig. 1.2. The two main formulations are the displacement-based (DB) stiffness method and the 

force-based (FB) flexibility method. The DB formulation uses displacement shape functions, 

while the FB formulation uses internal force shape functions.  

 

Fig 1.2: Fiber section discretization and sections 

1.3  OBJECTIVES OF THE STUDY  

Based on the preceding discussions, the main objectives of the current study has been quoted as 

follows 

i. To implement the displacement based (stiffness) fiber element model for nonlinear 

analysis of RC Columns. 

ii. To study the response of RC sections using various confinement models of concrete. 
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iii. To conduct probabilistic analysis of RC column considering uncertainties in the geometry 

and material properties. 

1.4 METHODOLOGY 

i. Conduct a literature review on various fiber element models to use in RC sections for 

non-linear static analysis. 

ii. Identify a simple and easy to implement fiber element models 

iii. Implement the fiber element model in MATLAB 2012b. 

iv. Perform static non-linear analysis of RC section  

v. Consider uncertainty of various random variables involved  

vi. Conduct a probabilistic analysis to arrive at the uncertainty in the responses such as base 

shear and yield displacement. Analyse the results and arrive at conclusions. 

1.5 SCOPE OF WORK 

i. The present study is limited to only axial loading of RC sections. 

ii. Only distributed plasticity formulations are considered for this study. 

iii. Only material nonlinearity is considered in this study 

1.6 ORGANISATION OF THE THESIS 

Following this introductory chapter, the organisation of further Chapters is done as explained 

below.  

i. A review of literature conducted on Element formulations of fiber element modelling, 

nonlinear solution and iterative strategies constitutive models for steel and concrete, and 

Monte Carlo simulation in Chapter 2. 
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ii. Element formulations of stiffness and flexibility fiber element model for the RC 

sections is explained in Chapter 3. 

iii. Linear and Nonlinear analysis of RC sections using fiber element modelling and 

probabilistic studies such as Monte carlo simulations are explained in Chapter 4  

iv. Finally in Chapter 5, discussion of results, limitations of the work and future scope of 

this study is dealt with. 
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2 
REVIEW OF LITERATURE 
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CHAPTER-2 

 

LITERATURE REVIEW 

 

  

 

2.1 GENERAL 

The literature review is divided into three parts. The first part deals with the distributed 

inelasticity models, numerical integration, solution strategies and iterative techniques for 

nonlinear analysis. The second part of this chapter discusses about the various confinement 

models for the concrete. Third part of the Chapter discuss the studies employing Monte Carlo 

simulation. 

2.2 DISTRIBUTED INELASTICITY MODELS 

The most accurate models for nonlinear analysis of reinforced concrete structures are fiber 

models. There are no predetermined lengths that lumps the inelastic behavior here. Thus 

inelasticity can develop anywhere in the structure. Distributed inelasticity models are modelled 

with fiber approach has got two methods 

1. Displacement based Stiffness method 

2. Force based Flexibility method 

The following study shows the evolution of distributed inelasticity models along with flexibility 

and stiffness methods 

2.2.1 Displacement based Stiffness method 

Otani (1974) first introduced inelasticity spread of a member in one component model using two 

inelastic finite element length along with two additional nonlinear rotational springs. It was the 

first model to ascertain the importance of fixed end rotations for predicting seismic response. 
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Soleimani et al. (1979) considered a model with gradual spread of inelasticity along the member 

It consist of elastic and inelastic zones. The inelastic zones spreads from beam-column interface 

controlled by moment curvature relationship at member end section. Point hinges were also 

considered for fixed end rotations at beam column interface. 

The proposal by Soleimani et al. (1979) was further extended by Filippou and Issa (1988) in a 

completely refined way. The member was subdivided into sub elements each accounting elastic 

behavior, inelastic behavior due to bending and fixed end rotations at beam column interface. 

Flexibility matrix and member end rotations are summed up from each sub element as they are 

all associated in series. The point hinge idealization was used in these models are based on 

bilinear moment rotation relationship with constant post yielding stiffness. This model was 

further improved by Filippou et al (1992) to include another sub element with shear distortions 

in inelastic zones. Constant axial force-bending moment interaction was included in the basic 

curve of the model. 

Takanayagi and schnobrich (1979) have proposed another type of member model dividing 

elements into short sub elements (finite element springs) along the member with nonlinear 

moment rotation relationships. Axial force-bending moment interaction was included by limit 

surface for each spring. This model also encountered problem of unbalanced force in internal 

members which often resulted in numerical instability. 

This model along with (Hellesland and Scordelis, 1981, Mari and Scordelis, 1984) were based on 

classical stiffness method using cubic hermitian polynomials to approximate displacements along 

the member. In these types, it encompasses 6 degree of freedom for the 3D elements. 

In our present study element formulation presented by Lee and Mosalam (2004) is implemented 

which uses displacement interpolation functions from classical stiffness methods. The element 
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stiffness matrix and nodal equivalent forces are obtained by integration of section stiffness and 

force distributions. The element formulation is straight forward and easy to implement. 

2.2.1 Force based Flexibility method 

Menegotto and Pinto (1977) proposed improved representation of internal deformations by 

combined approximation for both section deformation and flexibilities. Mahasuverachai (1982) 

proposed improvement of displacement interpolation functions. He introduced variable 

interpolation functions for piping and tubular structures. 

Kaba and Mahin (1984) adapted this to RCC structures along with section layer discretization. 

Typically these functions were derived from from force interpolation polynomials. A mixed 

approach was used when both deformation and force interpolation functions are used. The model 

has inconsistencies led to numerical problems. State determination were such that equilibrium 

between applied and resisting section forces were not satisfied. The proposal was further 

improved by Zeris et al. (1986) and Kaba and Mahin (1988) improving element state 

determination. 

The formulation of nonlinear flexibility based frame element cast into a unified and general 

theory by Taucer et al. (1991), Spacone et al. (1992) and Spacone (1994) derived from mixed 

finite element works of Zienkiewicks and Taylor (1989). Element state determination inserted 

classical stiffness based finite element which appear rather straightforward. The formulation was 

capable to carry moment curvature relationship or stress strain relationship at the fiber level. It 

requires a few control sections along the member. The force interpolation functions were used as 

they are exact regardless to the damaged state of the member. Element flexibility matrix were 

obtained by integration of flexibility distributions at control sections and an internal iterative 

scheme was proposed to find element resisting force for imposed displacements. 
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2.3 NUMERICAL INTEGRATION 

Stiffness and Flexibility based formulations requires integration along the length of member. 

Conventional direct integrations are computationally not effective. These integrals can be 

evaluated by numerical quadrature. In our present study, we use gauss lobatto integration.  

Location points xi and weights wi for i = 1,...,n. The domain of integration for such a rule is 

conventionally taken as [−1, 1], so the rule can be stated as: 

     (2.1) 

The Gauss-Lobatto rule with ‘n’ Integration points allows the exact integration of polynomials of 

degree up to 2n-3. The locations and the associated weights for this integration rule is shown in 

the Table 2.1. The points, xi is the locations and wi are the weights. 

Table 2.1 Locations and the associated weights for Gauss Lobatto integration rule 

 

Number of points Points,XIP Weights,W

-1.000 0.333

0.000 1.333

1.000 0.333

-1.000 0.167

-0.447 0.833

0.447 0.833

1.000 0.167

-1.000 0.100

-0.655 0.544

0.000 0.711

0.655 0.544

1.000 0.100

3

4

5
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Fig 2.1: Locations and Weights of Gauss Lobatto quadrature rules 

2.4 SOLUTION STRATEGIES FOR NONLINEAR ANALYSIS 

2.4.1 Path Following Techniques 

The objective of this techniques are to draw the equilibrium path of a nonlinear problem in the 

framework of a force-displacement relation. There are many techniques available and a Load 

control and Displacement control method is used in the present study. 

2.4.1.1  Load Control 

The total load is divided into small load increments. Displacement is calculated for each load 

level. This method gives equilibrium path up to failure point only as shown in the Fig.2.2.This 

method is not suitable at post critical yield regions and usually results in instability. 

2.4.1.2  Displacement control 

Displacement control method gives a good solution for nonlinear problems because it presents a 

great stability at the critical points. 
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Fig 2.2: Load control and Displacement control method (www.theconcreteportal.com) 

 

2.4.1.2.1 STEPS FOR DISPLACEMENT CONTROL METHOD 

Step wise procedure for the displacement control method and a flow chart for the same is also 

shown in Fig. 3.17.  

1. Let (d
0
, λ

0
) be the equilibrium initially at i=0 (d

0
is the initial displacement vector and λ

0
 is 

the load level) 

2. qth component of d
0
 is incremented by δd(q). Alter the initial displacement vector d0 such 

that                   

3. Calculate the residual vector           

Where    is the internal load vector 

  
is the load level parameter 

   is the external load vector 

4. Find the displacement vectors     and    
 . 

        
    

 and    
    

      

5. Calculate the incremental load level and incremental displacement            

http://www.theconcreteportal.com/
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   and      

         

   
    

 

6.  Displacement vector and the load level are updated 

             and              

7. Repeat the steps until a desired accuracy or desired number of iterations are achieved. 
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Give External force   
 

Find displacement vector d
0
 

 Find displacement increment  δd(q). 

 

Calculate the Residual force vector    

Compute corrected displacement     and    
 . 

Compute             

            and             
 

Create vectors containing displacement 

and load 

Print the load-displacement 

configuration 

Stop 

Check for 

convergence  
Norm(r) 

<tolerance 

Fig 2.3: Flow chart for Displacement control method 
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2.5 ITERATIVE TECHNIQUES FOR NON-LINEAR ANALYSIS 

2.5.1 Newton Raphson Method 

Newton Raphson iterations are implemented to achieve equilibrium before going to the next load 

step. The incremental force is applied at the start of a step. Internal forces and external forces 

will not be in equilibrium so we have to use this techniques. Corrections are made to the 

displacement to achieve displacement. This is done by Newton-Raphson method by minimizing 

the residual,  

r= fint – Fext. Correction to the displacement is given by Δ d 
j+1

= [K (d 
j
)]

-1 
* r 

The new displacement d=d+ Δ d  

Convergence is achieved by putting residual, ’r’ to a tolerance say 10
-2

 .Tangent stiffness matrix 

is calculated at each load step. This method requires more computational time. 

 

 

Fig 2.4: Newton Raphson iterative scheme 
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2.6 CONFINEMENT MODELS FOR CONCRETE 

Capacity of RC sections can be significantly increased by confining the concrete with confining 

stirrups. Strength and strain capacity is increased due to the restrain of dilation of the concrete in 

compression. Confining action comes into play when the concrete is in compression and core 

expands against transverse reinforcement. In highly seismic region, the increase in strength and 

ductility is an important aspect for the design of RC structural elements. Confinement 

characteristics of concrete can be shown in stress stain curves. A review of confinement models 

are given below 

 2.6.1 MANDER et al. (1988) MODEL 

This model first investigated different cross section columns to study the impact of transverse 

reinforcement. It was found that the performance over the complete stress-strain range was same 

if the peak strain and stress coordinates might be found (   ,    ′). The Mander et al. (1988) 

model is popular and in this study we account material nonlinearity from this model. 

The peak stress, 

     (2.1) 

Where    ′ is unconfined compressive strength equal to 0.75   ,    is the confinement 

effectiveness coefficient having a typical value of 0.95 for circular sections and 0.75 for 

rectangular sections,    = Volumetric ratio of confining steel,   ℎ= Grade of confining steel, 

Strain corresponding to peak stress, 

        (2.2) 

The ultimate compressive strain, 
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       (2.3) 

Where    = Steel strain at maximum tensile stress, 

The stress at any strain,  

         (2.4)  

    (2.5) 

 

 

Fig 2.5: Mander et al 1988 model 

 

 2.6.2 MODIFIED KENT AND PARK MODEL (1982) 

The strength enhancement factor, K was expressed in terms of volumetric ratio of confining 

reinforcement was introduced to existing Kent and park model (1971). This model of stress 

strain is also taken for the study. 
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For ec  0.002K 

      (2.6) 

For e≤0.002K 

      (2.7) 

     (2.8) 

ρs= ratio of volume of rectangular steel hoops to volume of concrete core measured to the 

outside of the peripheral hoop, h”= width of concrete core measured to the outside of the 

peripheral hoop and sh= center to center spacing of hoop sets. In the above expressions the value 

of is obtained from the following expression: 

        (2.9) 

Where fyh is the yield strength of the hoop reinforcement 

 

Fig 2.6: Modified Kent and Park model (1982) 
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2.6.3 IS 456 (2000) MODEL 

IS 456 (2000) assumes the same ductility and strength for both confined and unconfined concrete 

.The maximum value of strain considered is 0.0035.IS 456 (2000) model underestimates the 

ductility and strength of the RC sections. The stress strain relationship is given by 

    (2.10) 

     (2.11) 

where    is the stress in concrete corresponding to the strain    and     ′ is the strength concrete 

corresponding to the strain 0.002 (   ). 

 

Fig 2.7: IS 456 model (2000) 

 

 

 

 



 20 | P a g e  

 

 

 

2.6.4 NON LINEAR STEEL MODEL 

The bilinear elastic-plastic portion followed by a strain hardening region shown in Lee and 

Mosalam,(2004) calculated by 

   (2.12) 

Where  fs is the steel stress corresponding to the steel strain es,  

fy is the yield stress, fu is the ultimate stress, esh is the strain at the on-set of hardening,  

and esu is the ultimate strain.The fig 2.6 shows the stress strain relationship for the steel 

 

Fig.2.8: Reinforcing steel constitutive model (Lee and Mosalam, 2004) 

 

2.7 MONTE CARLO SIMULATION  

Shinozuka et al. (1972) reported that the importance of variability of the material properties for 

estimating the strength of RC structures. Monte Carlo simulation is an oldest computational 

approach used in several studies of RC sections such as beams and columns. 

Reliability of a RC beams were studied by Knappe et al. (1975). Strength analyses of RC beam-

column members by considering variability of material properties and dimensions were studied 
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by Grant et al.(1978), Mirza and MacGregor (1975), and Frangopol et al. (1975). Probabilistic 

estimation of RC frames were done by Chryssanthopoulos et al. (1975), Dymiotis et al. (1975), 

Ghobarah and Aly (1975), and Singhal and Kiremidjian (1996) recently proposed systematic 

ways of evaluating RC framed structures by considering the uncertainty of ground motions and 

the material variability. Ghobarah and Aly (1998) accounted for uncertainties in member 

dimensions. 
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2.8 SUMMARY 

This Chapter briefly describe previous studies on distributed inelasticity models, numerical 

integration, solution strategies and iterative techniques for nonlinear analysis. The present study 

uses various confinement models and hence a description of confinement models for the concrete 

such as Mander et al. (1988) etc are also discussed in detail. Third part of the Chapter discussed 

the studies employing Monte Carlo simulation. A simple and convenient model for nonlinear 

analysis of RC sections is required for the probabilistic analysis in this study. The classical 

displacement based - stiffness method used by Lee and Mosalam (2004) is found to be simple 

and easy to implement for the present study. 
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3 
ELEMENT FORMULATIONS 
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CHAPTER-3 

 

ELEMENT FORMULATIONS  

 

  

 

3.1   GENERAL 

Present study uses the distributed inelasticity approach based on the fiber element approach for 

nonlinear structural analysis. The fiber element can be used with two main formulations, namely, 

displacement-based (DB) stiffness method, which is the classical finite element formulation, and 

the force-based flexibility (FB) method. The DB formulation uses displacement shape functions, 

while the FB formulation uses internal force shape functions. This Chapter discuss the 

formulations and step wise procedure for the DB and FB method in detail. 

3.2 DISPLACEMENT BASED-STIFFNESS METHOD 

The displacement based-Stiffness method uses displacement interpolation function. It accounts 

for axial and transverse displacements of the elements. Linear Lagrangian shape function and 

cubic hermitian polynomial are the most used shape function for the beam-column elements. The 

element formulation of stiffness based models are comparatively easy when compared to 

flexibility based models. 

The element force and deformation vectors are given by 

p= [p1, p2, p3, ….p6]
T
      (3.1) 

u= [u1, u2, u3,…u6]
T
       (3.2) 

The section force and deformation vector is given by 

q(x)= [ N(x), M(x)]
T      

(3.3) 

Vs(x)= [ ε0(x), ϕ(x) ]T      (3.4) 
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Where N is the axial force, M is the bending moment, ε0 is axial strain and ϕ is the curvature with 

respect to section position ‘x’. Figure 3.2 depicts the element force and deformations  

 

Fig 3.1: Element force and deformations 

The strain increment in the ‘i
th

’ fiber is given by  

dεi= as(y)   dVs(x)      (3.5) 

where as(y)= [1 –yi] and dVs(x)= [ dε0(x), dϕ(x) ]
T
 

where yi is the distance between the coordinate reference axis and  i
th

 fiber 

Section deformation are found from strain deformation relationship that is 

                        n+1    (3.6) 

un+1 = un + ∆u is the element deformation vector at the load step n+ 1, 

B(x) , G(x) ,C(x)  is the strain-deformation transformation matrices 

G(x)= 
 
 
                       (3.7) 

The section stiffness matrix k(x) can be computed as 

    (3.8) 

Where E(x,y) is the tangent stiffness matrix 

The section resisting force can also be determined by 

 

    (3.9) 
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The element stiffness matrix Ke 

  (3.10) 

The element resisting vector re 

     (3.11) 

Where 

T(x) = B(x) + G(x), Transformation matrix 

N (x) is a component of r (x) representing the axial force resultant and L is the element length 

For nonlinear analysis, we use ∆p = ke   ∆u 

3.3 FLEXIBILITY BASED-FORCE METHOD 

The Flexibility based-force method uses force interpolation function. In this formulation, 

element equilibrium is satisfied in strict sense. The implementation is quite challenging as 

existing finite element program generally uses stiffness formulations. The element formulation of 

flexibility based models are comparatively accurate when compared to flexibility based models. 

b(x) is the force interpolation function used for element state determination. 

Element state determination 

Step 1: Compute structural displacements and update 

                   (3.12) 

p=p+Δp         (3.13) 

Step 2: Compute Element deformations and update 

Δq=Lele × Δp         (3.14) 

q=q+Δq        (3.15) 

Lele=Transformation matrix 

Step 3: Compute Element force and update 
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               (3.16) 

Q=Q+ΔQ       (3.17) 

Step 4: Compute section force and update 

ΔDx=b(x)  Q       (3.18) 

Dx=Dx+ΔDx       (3.19) 

Step 5: Compute section force and update 

Δdx=f   ΔD(x)   r(x)     (3.20) 

dx=dx+Δdx       (3.21) 

Step 6: Compute fiber stresses and tangent modulus from constitutive stress –strain curve 

Step 7: Compute new section flexibility matrix 

   (3.22) 

Where f=[k(x)]
-1

 

Step 8: Compute section resisting forces 

    (3.23) 

Step 9: Compute Unbalanced force  

Du=Dx-DR(x)       (3.24) 

Step 10: Compute residual section deformation  

r(x)=f(x)   Du      (3.25) 

Step 11: Compute Flexibility matrix  
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     (3.26) 

Where Flexibility,F=[ K]
-1

 

Step 12: Check for convergence 

Case 1: If Qi=Qj , Ki=Kj then the element converged 

Case 2: If element not converged 

     (3.27) 

and Δq=-s 

Step 12: Compute structure stiffness and resisting forces 

PR=Lele
T
   Qele      (3.28) 

Ks= Lele
T
   Kele   Lele

T 
     (3.29) 

 

3.1 SUMMARY 

This Chapter presents the formulation and step wise procedure for the both the DB and FB 

method. This steps are implemented in the MATLAB 2012b for nonlinear analysis of RC 

sections and probabilistic analysis further. 
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4 
IMPLEMENTATION OF FIBER ELEMENT FOR 

PROBABILISTIC ANALYSIS  
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CHAPTER-4 

 

IMPLEMENTATION OF FIBER ELEMENT FOR PROBABILISTIC 

ANALYSIS 

  

 

4.1 GENERAL 

First part of this Chapter presents a flow chart that explains both the stiffness based method 

(DBM) and flexibility based methods (FBM) using fiber formulation for nonlinear analysis. 

Examples of a RC column section involving material nonlinearity is considered and analyses are 

conducted. Second part of this Chapter illustrate the results of these analyses and its comparison 

with exact results. Constitutive stress strain relations for concrete and steel reinforcement are 

incorporated in fiber formulation to obtain the nonlinear responses. Probabilistic analysis 

incorporating uncertainties in the material and geometric parameters properties of RC section, is 

carried out in the last part of this chapter.  

4.2 METHODOLOGY 

The flow chart of the different phases of the presented such as, comparison of DBM and FBM 

using linear static analysis, convergence study, discussion of numerical and direct integration 

method, nonlinear analysis using different confinement models, and a probabilistic analysis 

using the implemented model in MATLAB 2012b is displayed in Fig.4.1.  
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`

 

Fig. 4.1: Flow chart showing the present study 

4.3 STEPWISE PROCEDURE FOR STIFFNESS AND FLEXIBILITY BASED METHOD The 

formulation of the stiffness and flexibility based fiber element is explained in Chapter 3. To have 

a more clarity in the steps involved in the implementation in MATLAB 2012b, a flow chart is 

provided for stiffness and flexibility based methods respectively in the Figs. 4.2a and Figs. 4.2b. 

Comparison of linear static analysis results of 

example problem using DBM and FBM 

Implement the Displacement based element in 

MATLAB 

Convergence study using a 

Cantilever beam 

Comparison of Numerical and direct 

integration  

Constitutive models and nonlinear response 

Probabilistic Analysis 
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Fig 4.2a: Flow chart of state determination of Stiffness based method 
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Fig 4.2b: Flow chart of state determination of Flexibility based method 

4.4 COMPARISON OF LINEAR ANALYSIS USING DB AND FB FORMULATION 

4.4.1 Elastic Column with Axial Force 

An elastic column having 2m length and a cross section of 100mm x 300mm is chosen. Axial 

compressive load is considered at the free end.  The details of the column, cross section and the 
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constitutive linear relationship of the fiber element is provided in the Fig.4.3. The cross section is 

discretized as fiber element. The details of fiber discretization followed for both DBM and FBM 

are presented in the Table 4.1. Stiffness matrices at the section level and global level are 

computed as per both the DBM and FBM. The displacement is incrementally applied till a target 

displacement and the force and the displacement at the free end is monitored in each step for 

both the type of formulations. A comparison is done for both displacement based method and 

flexibility based method by using fiber element method. The force versus displacement responses 

from both DBM and FBM are illustrated in the Fig. 4.4. It can be seen the linear responses from 

both the approaches are matching. Hence this implemented model can be used for further 

parametric studies. 

 

Fig 4.3: Homogenous column subjected to axial compression 

Table 4.1: Parameters for number of fiber elements  

No. of fiber in y direction 20 

No. of fiber in z direction 20 
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Fig 4.4: Force Displacement response for Elastic Column using DBM and FBM 

4.5 CONVERGENCE STUDY - DIRECT INTERATION  

The number of fiber elements in a section may influence the responses. In order to estimate the 

optimum number of fiber elements for reasonably accurate results, a convergence study is 

required to be conducted. A cantilever beam with 400 mm length with a cross section of 20mm x 

20mm is chosen a load of 100N is applied at the free end. The linear constitutive relationship is 

considered for all the fiber elements as shown in the Fig. 4.4. The number of fibers (in both 

width and depth directions) and number of integration sections are treated as variables. The 

linear static analysis is conducted to find the displacement at free end for different number of 

fibers. The displacement at free end obtained for each case is tabulated in the Table 4.2. The 

deflection at free versus number of fibers is plotted in the Fig. 4.6. The percentage error versus 

number of fibers is expressed graphically in Fig. 4.7. It can be seen that the number of fibers in 

the cross section increases to 200 x 200 and the number of integration section sections to 400, 

and the deflection tends to converge to 6.40 mm. About 400 number of sections is required to 

have convergence in the case of direct integration method. 
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Fig 4.5: Cantilever beam with point load at the end 

Table 4.2: Convergence study - Direct integration 

Fibers 

Number of 

Integration 

Section 

(Nos.) 

Deflection 

using DBM 

(mm) 

Exact 

deflection 

(mm) 

Error 

(%) 

Execution 

time (s) 

5 x 5 25 6.77 6.40 5.75 16 

10 x 10 50 6.56 6.40 2.50 16 

50 x 50 100 6.50 6.40 1.56 16 

100 x 100 200 6.45 6.40 0.78 17 

200 x 200 400 6.40 6.40 0.05 28 
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Fig 4.6: Deflection comparison for direct integration 

 

Fig 4.7: Percentage error comparison for direct integration 
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4.6 CONVERGENCE STUDY - NUMERICAL INTEGRATION 

In order to estimate the optimum number of fiber elements for the numerical integration using 

Gauss Lobatto, the same cantilever beam problem as that of the previous convergence study is 

considered. The linear constitutive relationship considered is the same as shown in the Fig. 4.5. 

The number of fibers (in both width and depth directions) and number of integration points are 

treated as variables. The linear static analysis is conducted to find the displacement at free end 

for different number of fibers. The displacement at free end obtained for each case is tabulated in 

the Table 4.3. The deflection at free end versus number of fibers is plotted in the Fig. 4.8. The 

percentage error versus number of fibers is expressed graphically in Fig. 4.9. It can be seen that 

the number of fibers in the cross section increases to 50 x 50 and the number of integration 

section sections to 3, and the deflection tends to converge to 6.40 mm. It can be seen that only 

about 5 number of sections (instead of 400 in the case of direct integration) is required to have 

convergence in the case of direct integration method. 

Table 4.3:  Numerical integration: Fiber cross sections-Deflections and errors 

Fibers 

Number of 

Integration 

Section 

(Nos.) 

Deflection 

using DBM 

(mm) 

Exact 

deflection 

(mm) 

Error 

(%) 

Execution 

time (s) 

5 x 5 3 6.66 6.40 4.16 2 

10 x 10 3 6.46 6.40 1.00 2 

50 x 50 3 6.41 6.40 0.04 2 

100 x 100 5 6.40 6.40 0 2 

200 x 200 5 6.40 6.40 0 2 
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Fig4.8: Deflection comparison for Numerical Integration 

 

 

Fig 4.9: Error comparison for Numerical Integration 

4.7 COMPARISON BETWEEN DIRECT AND NUMERICAL INTEGRATION 

On order to have an understanding of the relative advantages of numerical integration over the 

direct integration the computational time and number of integration sections for both the 

methods are compared as shown in bar diagram in Fig. 4.10 and 4.11 respectively. It can be 
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observed that the numerical integration is found to be more efficient due to computational 

efficiency. 

 

Fig 4.10: Number of fiber comparison for both integrations 

 

Fig 4.11: Execution time comparison for both integrations 
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The effect of confinement in the concrete play a major role in the nonlinear response of frames. 
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concrete is confined due to the transverse reinforcements) and unconfined region (region over 

which there is no confinement for the concrete) in the cover concrete.  

4.9 RC COLUMN WITH AXIAL COMPRESSION  

An RC column having dimensions 350 mm x 350mm with reinforcement detailing as shown in 

Fig. 4.15 is considered. To have the prominent effect of confinement, the transverse 

reinforcement in the column is assumed as high as 16mm dia @ 85 mm c/c. The confined and 

unconfined stress strain curves obtained for the above transverse reinforcement is calculated as 

per the expressions for various confinement models namely Mander et al. (1988), Modified Kent 

and Park model (1982), IS 456(2000) as given in the Chapter 2.  

Nonlinear model of the cross section is developed using the implemented displacement based 

fiber element method. The RC column cross section is discretized to number of fibers, and for 

each fiber, depending on its location whether in core region or cover region, the corresponding 

confined and unconfined constitutive relations are used. The fibers at the locations of main 

reinforcement is modelled using the constitutive relation for the steel. Nonlinear analysis is 

conducted using displacement control method to obtain the force and displacement responses at 

the free end. The force –displacement curves obtained using Mander et al. (1988) is shown in 

Fig. 4.13(a).  Fig. 4.16(b) and (c) shows the uniaxial constitute relations used for fibers at 

confined and unconfined regions respectively. The maximum axial force for this model is 

obtained as about 5000kN. 

To study the effect of not considering confinement in core region, the above RC section is 

remodelled by assuming the unconfined stress strain curve for the core region. The 

corresponding axial force versus displacement is shown in the Fig. 4.14a. The stress strain 

relationship used for the concrete and steel is also shown in Fig. 4.14b and 4.14c.  
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IS 456 (2000) recommend stress strain curve of concrete to be considered for the limit state 

design of RC sections. Axial force versus displacement relationship is obtained as shown in the 

Fig. 4.15a. The stress strain relations for the steel and concrete are shown in Figs. 4.15b and 

4.15c.  

Force displacement relationship for the same RC cross section is obtained using the confinement 

model as per Kent and Park (1982). The force versus displacement responses and the 

corresponding stress strain curves used as shown in Fig. 4.16a, 4.16b and 4.16c respectively. 

A comparison of axial force versus displacement curves for all the four case discussed in this 

section is shown in Fig. 4.17. It can be seen the Mander et al. (1988) predicts higher values for 

strength compared to other models. This is due to high value of confinement factor values. The 

maximum compressive strain by IS 456 (2000) is 0.0035. It can be seen that IS 456(2000) model 

has less ductility when compared to other models due the relative low value of maximum strain. 
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Fig 4.12: RC Column subjected to different stress strain models 

 

width 350 mm 

depth 350 mm 

clear cover 40 mm 

Main steel dia 25 mm 

Stirrup dia 16 mm 

Area of stirrups along X 402 mm2 

core width 270 mm 

Area of stirrups along Y 402 mm2 

spacing 85 mm 

Reinforcement ratio, 
0.02 mm2 

X direction, ρsx 

Reinforcement ratio, 
0.02 mm2 

Y direction, ρsy 

Reinforcement ratio ρs 0.04 mm2 

Characteristic_compressive 

strength,fck 
25 MPa 

f΄co 18.8 MPa 

Yield Strength, fy 415 MPa 

 

Cross section details of Column 
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Fig 4.13: RCC column modelled with confined and unconfined sections using Mander et. al, 

(1988)  

 

Fig 4.14: RCC column, entire section modelled as unconfined concrete as per Mander et al. 

(1988) 
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Fig 4.15: RCC column with concrete stress -strain using IS 456(2000) model 

 

Fig 4.16: Nonlinear Response of RCC column with Modified Kent and Park (1982) model  
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Fig.4.17: Comparison of force versus deformation of RC column with axial loading using 

different confinement models for concrete  

 

4.10 PROBABILISTIC STUDY OF NONLINEAR RESPONSE 

The methodology followed for the probabilistic analysis of RC sections is shown below. The 

present study consider the variables, compressive strength of concrete, yield strength of steel, 

initial tangent modulus of steel and concrete and dimensions of the member as random variables. 

The cross section and member shown in Fig.4.12 is considered for the probability analysis. Each 

random variable is treated as uncorrelated and 1000 samples have taken for the monte carlo 

simulation. The probability distributions of each variable considered are lognormal and the 

statistical details of the variables are given in the Table 4.5. The probability distributions of each 

random input variables that define the computational models is presented in the Figs. 4.20 to 

4.26. 

0 

1000 

2000 

3000 

4000 

5000 

6000 

1  2  3  4  5  6  7  8  9  1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  2 0  2 1  

FO
R

C
E 

(K
N

) 

DISPLACEMENT (MM) 

Mander et al. - full section unconfined Mander et al.  Kent and Park (1982)  IS456 (2000)  



 47 | P a g e  

 

For each of the random samples of the above variables, displacement based finite element 

models are developed to conduct nonlinear analysis. The nonlinear response curves from 

probabilitistic analysis, histograms for peak axial strength and its probability distributions are 

found out. The Figs. 4.27, 4.28, 4.29 and 4.30 shows the probability distributions for peak axial 

strength for all the confinement conditions, namely, namely Mander et al. (1988), Modified Kent 

and Park model (1982), IS 456(2000). The mean and C.O.V. for the peak strength for each case 

is shown in the respective Figs. The coefficient of variations of all the input random variables 

and the peak axial strength response is summarized in a graphical form in Fig. 4.32. It can be 

seen that the C.O.V of the peak strength varies between 5.8 to 9.3%, when the C.O.V of input 

random variables is about 0.5 to 15%. 
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Fig 4.18: Flow chart of the probabilistic fiber element approach 
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Table 4.4: Parameters and distributions used for generation of random variables 

Random 

variable 
Parameters 

Probability 

distribution 

function 

Mean 
C.O.V 

(%) 
Reference 

Characteristic 

compressive 

strength 

fck Lognormal 25MPa 15 
Devandiran 

et.al.(2013) 

Yield Strength 

of steel 
fy Lognormal 415MPa 7.6 

Devandiran 

et.al.(2013) 

Column 

Width 

Lognormal 

350mm 0.5 

Assumed Depth 350mm 0.5 

Length 4000mm 0.5 

Initial Tangent 

Modulus of 

Concrete 

Ec 

Lognormal 

25000MPa 12 

Lee and 

Mosalam 

(2004) 

Initial Tangent 

Modulus of 

Steel 

Es 200000MPa 7.6 
Devandiran 

et.al.(2013) 

 

 

 

Fig 4.19: Probability distribution of Compressive strength of concrete. 

(MPa) 
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Fig 4.20 Probability distribution of yield strength of steel 

 

Fig 4 21: Probability distribution of width of beam 

 

Fig 4 22: Probability distribution of depth of beam 

(MPa) 

(mm) 

(mm) 
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Fig 4 23 Probability distribution of length of beam 

 

 

Fig 4 24: Probability distribution of Initial tangent modulus of concrete. 

(mm) 

(mm) 
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Fig 4 25: Probability distribution of initial tangent modulus of concrete. 

 

 

Fig 4.26: Histogram for peak axial strength using IS 456 (2000) model 
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Fig 4.27: Histogram for peak axial strength for Modified Kent and Park (1982)  

 

Fig 4.28: Histogram for peak axial strength for Mander et al. (1988)  
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Fig 4.29: Coefficient of Variation (C.O.V) for all random input and response parameters using 

different confinement models 
 

4.11 SUMMARY 

This Chapter discuss about the comparison of responses of a column under axial force 

implemented using DBM and FBM method. The comparison for the selected problem is fairly 

matching. A convergence study for two integration types namely, direct and numerical, is 

conducted and discussed the advantages of numerical method. The confinement effects in RC 

sections can be modelled conveniently using fiber based element. The axial force responses of 

RC column is studied using various confinement models. A probabilistic analysis to 

incorporating nonlinearity is also carried out to study the uncertainty in the peak axial strength 

response considering the uncertainties in the sensitive input parameters.  
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5 
SUMMARY AND CONCLUSION 
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CHAPTER 5 

 

SUMMARY AND CONCLUSION 

 

  

 

5.1 SUMMARY 

The main objective of the present study was to implement the displacement based (stiffness) 

fiber element for nonlinear analysis of RC Sections. Element formulation of both stiffness and 

flexibility based fiber models were discussed. Global stiffness computation using both direct 

integration and numerical integration is discussed. Popular confinement models for stress-strain 

relationship for concrete were discussed and used as the constitutive relationship for fiber 

element to study the nonlinear response. The uncertainty exist in the constituent material 

properties of concrete needs a probabilistic analysis for realistic estimation of nonlinear 

responses. A probabilistic analysis is carried out further in the implemented model using a 

Monte-Carlo simulation. Major conclusions from the present study is presented in the following 

section.  

 

5.2 CONCLUSIONS 

1. The force displacement responses obtained from both the DBM and FBM are found to be 

same. 

2. Direct integration method used for DBM required about number of sections as high as 

400 compared to that of five in the case of numerical integration.  
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3. Confinement model as per Kent and Park et al. (1988) predicts higher values for strength 

compared to other models. This is due to high value of confinement factor values.  

4. As the maximum compressive strain by recommended by IS 456 (2000) is as low as 

0.0035, the displacement is reduced by 61.5% when compared to other confined models 

(Mander et al.(1988), Modified Kent and Park(1982) )  

5. Probabilistic analysis of the RC column under axial load shows that the C.O.V of the 

peak strength can vary between 5.8 to 9.7%, when the C.O.V of input random variables, 

fck, fy, breadth, width, length, Ec, Es are 15%,7.6%,0.5% , 0.5% , 0.5% ,12%,7.6% 

respectively.. 

5.3 LIMITATIONS AND FUTURE SCOPE OF WORK 

 The RC columns in bending is not considered in the present study. It can be extended to 

RC frame sections in bending. 

 Geometric nonlinearity can be incorporated with material nonlinearity for RC sections. 

 It is learned that FBM is suitable for nonlinear problems of RC sections. The study can be 

extended further to implement this. 
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