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Abstract

Today Search engines are smart enough to search the content as well as it can

effectively rank the fetched page(s) in an useful manner. When an user search for a

content in the search engine, the search engine fetches the web pages from the database

server and shows the results in an organized order according to the importance of the

website/web page .The importance of a page can be calculated with a PageRank value

(i.e. the number of different pages point to it). If we analyze the web a little; we

can observe that it forms a sparse graph with each node representing a web page

and each edge representing one hyper link. More specifically we can consider this

graph to be directed. Hence the web can be represented as a matrix and PageRank

can be formulated as a recursive linear equation and hence PageRank values can be

calculated as an eigenvector to the equation. Spider trap and Dead end problems have

been studied and those can be solved with the reformulation of web matrix with a

random surfing probability also known as dumping factor. Considering these factors

a map-reduce model can be developed and easily implemented in any Hadoop like

environment. Map-Reduce takes the advantages of parallel processing in a cluster

and sparseness of the web matrix also favors the choice of map-reduce programming

model. Topic sensitive PageRank is studied and the map-reduce version for modified

PageRank is designed and hence implemented.
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Chapter 1

Introduction

Search Engines are some interesting interest of study for last decade. Most of the

search engines work by crawling the web pages and then they build a inverted index

by listing all the words or other strings found in which page. When a search query

is fired, the terms are searched in the inverted index and all the web pages which

contains the search term. A TrustRank is calculated based on several factors like the

position of the search terms with in document and number of hits. After fetching the

web pages and calculating the TrustRank, it is matched with the PageRank value to

find the overall rank of a web page and the fetched pages are sorted and displayed

according to their ranks. So a TrustRank tells us how much the web page is relevant

to the search term and PageRank tells us how much the website is important in

the web. For example stackoverflow.com is obviously important in web than some

college’s discussion forum. If we only organize with TrustRank, a highly unimportant

web page, but with best suit to the search term will be populated first and those

site will never lead you to other required information and hence PageRank plays an

important role in case of a search engine.

The size of web is increasing on regular basis and efficient computation and

processing of the such huge web is now a challenge. For last 10 years many efficient

methods has been discussed and this has been a trend topic. With the introduction

to map-reduce programming paradigm, this high scale data processing has been

simplified with parallel processing in clusters at huge data centers. All these concepts

have been studied throughout the thesis.
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1.1 Motivation And Objective Introduction

Apart from pageranking, topic sensitive pageranking calculation is also termed

as important. As the title says, it computes biased PageRank values according to

the topic of the web page. This has been a point of discussion and it has a very

good impact on the results of a search engine and hence this has been studied and

implemented, and compared in this thesis.

1.1 Motivation And Objective

Pageranking is an interesting topic and lots of research are going on lately. The

recursive formula of PageRank can be solved with many mathematical model which

can be used for solving linear equation. But the structure tells us more about

eigenvector. And lots of method has been studied for solving the equation. With

the introduction of map-reduce the PageRank calculations has been simplified with

the use of parallel processing. Topic and Priority PageRank has been a key study

and objective is to find a way to address the Topic Sensitive PageRank. Objective is

to build the map-reduce algorithm for the topic/priority sensitive pageranking. All

through the chapters all studied and simulations are mentioned clearly.

2



Chapter 2

Basic Concept

2.1 Definition Of PageRank

PageRank is a method to assign real values to web pages in the Web (the part of

web that has been crawled). The logic is simple, that the higher the PageRank of

a web page, the more useful and important it is. There are much many algorithm

for assignment of PageRank, and Basic idea is based on a recursive formula and the

variation can easily be implemented and designed from that basic idea [1].

2.2 Structure Of Web

Figure 2.1: A hypothetical web

Consider the Figure 2.1, there are web pages A,B,C,D. and from A you can go to

B,C,D and from B there are edges or links to A and D. This means B is a web page

and there are two hyper links which takes the surfer to A and D. Similarly surfer can

3



2.3 Mathematical Formulation Basic Concept

only go to C from D [2].

2.3 Mathematical Formulation

Considering the Figure 2.1 again, assume our random surfer begins at web page A

and it finds links to pages C, B, and D, so in the next step the surfer will jump to

one of those pages with equal probability of 1/3, and has zero probability of being at

A as it has no self loop. Similarly this random surfer at B can jump to A and D with

half probability and to C and B with 0.

So we define this transition web matrix to explain what happens to a surfer in

next step. This matrix M has N columns and rows, where N is the page count. The

element mij in jth column and ith row has value

i. mij = 1/z if page j has z edges out, and one of those pages is page i.

ii. mij = 0 Otherwise.

A column vector describes the probability distribution that a random surfer is at a

page counted as j, and an entry at jth position tell us the probability in that column

vector. This idealized column vector is our required PageRank value.

We have this web with N web-pages and one random surfer is initiated at any

random page with equal probability. so our start vector v0 will contain 1/N as its

entries at all the place. From the intuition of page rank we can see that the PageRank

values in the next step will be the sum of incoming PageRank(s). Hence we can achieve

the same with multiplying v with web matrix M. And the PageRank vector will change

accordingly.

v = M.v (2.1)

so we start with the vector v0 and multiply it with M to get v1 and then with M

again to get v2. we continue this process until v doesn’t change. And that final v

vector is our idealized pagerank values. Many methods can be applied to solve this

equation as described in Chapter 3.

4



2.4 Use of PageRank in a Search Engine Basic Concept

A Markov Process is a stochastic process which satisfies Markov Property. A

process satisfies Markov property if the future of the process is predicted based on

the present state of the process only. And whole Markov process is memoryless.

It is known that this distribution of the random surfer is known to approach a

limiting distribution v which satisfies Equation 2.1, if following two conditions are

met:

i. The graph needs to be strongly connected; which means any node can be reached

from any other nodes. all pairs of nodes are reachable from one another.

ii. There should no dead ends: nodes that have no edges out. explained in Section

3.1.1.

The limit is reached when multiplying the distribution by M another time does

not change the distribution. Limiting PageRank vector v is an eigenvector of M.

Eigenvector of a square is matrix is the vector when multiplied with the matrix

gives us the the same vector multiplied with some scalar. That scalar is known as

eigenvalue. In our Equation 2.1, we can clearly see that v is a eigenvector for our

web matrix with eigenvalue 1.

Here the web matrix M is stochastic. so the principal eigenvector i.e. the

eigenvector for largest eigenvalue is ideally our PageRank vector. so for a web matrix

the stochastic property assures the highest PageRank value to be 1. Hence we apply

many methods as described in Chapter 3 to find the principal eigenvector of the

Equation 2.1.

2.4 Use of PageRank in a Search Engine

Each page fetched from the database of a search engine is passed through two

computations: TrustRank and PageRank. TrustRank is calculated based on a lot of

property of a web page, like how a search query matches with the content of a search

engine. Google like search-engine uses 100s of properties to calculate the TrustRank

of any web page.

5



2.5 Topic Sensitive Page Ranking Basic Concept

After the calculation of TrustRank, it is mixed with PageRank to calculate the overall

rank of a web page. Components include the presence of search terms in quality

places, such as headers or the links to the page itself and number of hits to the

web page etc. Based on that ranks, the web pages are sorted and displayed to the user.

Figure 2.2: Basic Design Blocks of A Search Engine

2.5 Topic Sensitive Page Ranking

Several changes and improvements can be done to PageRank. One is that we can give

more priority to certain pages and rank them more because of their topic. Searching

with a search engine with pageranking works great, but sometimes same search query

refers to different interests. Hence introduced topic sensitive pageranking. The best

example is searching python in the web. A search query python can refer to a

programming language or sometimes it can be referred to a class of snake [3]. More

details is discussed in Chapter 4.

6



Chapter 3

Literature Survey

Equation 2.1 is a linear equation and general intuition tells us to use any method that

solves a liner equation. Gaussian Elimination is one of the famous methods to solve

a linear equation, but for billion nodes, Gaussian Elimination requires time cubic in

the number of equations. So if we look at our web graph and its size, this method

is not feasible for this situation. Iterative methods are the only way to solve these

equations. our given web matrix is of size N × N where N is so huge. but we can

see that the matrix is very sparse and we should take the advantage os this property.

Equation 2.1 has many solutions and the stochastic property (column sum value 1)

tells us that we will only get unique solution with iteration and other solutions are

just scalar multiplication of this principal solution.

3.1 Spider Trap And Dead End

3.1.1 Dead End

Some web pages in the web have no out links and hence considered as dead end. If

we allow dead ends, the web matrix, which is responsible for transition of random

surfer is no longer stochastic, cause some columns will sum to 0 rather than summing

up to 1. A matrix whose column sums are at most 1 is called sub-stochastic. If we

compute Mi.v for increasing powers of a sub-stochastic matrix M, then some or all of

the components of the vector go to 0. After running through many iterations we won’t

get any information about the relative importance of pages. Figure 3.1 illustrates

this clearly that we have a dead end at node C. Figure 3.2 states that we have a dead

7



3.1 Spider Trap And Dead End Literature Survey

Figure 3.1: Dead End At Node C

Figure 3.2: Dead End at E and C

end E and C also. If the random surfer comes to node C, then It has to go to E and

stuck there.

Solution

One solution is to detect the dead ends which has no out going edges and recursively

remove the dead ends until there is no dead end left in the graph. The above solution

will build a smaller graph, but it makes sure to remove the dead ends from the

graph. Figure 3.3 gives an illustration of the reduced graph after removing dead end

problems. First remove E, it will leave C as a dead end. now again remove C then

8



3.1 Spider Trap And Dead End Literature Survey

Figure 3.3: The reduced graph with no dead ends

no node will be a dead end and the remaining graph is shown in Figure 3.3. This is

hard to implement for a huge graph of billion nodes, so this solution is not efficient

and a new solution is needed. After addressing the problem of spider trap, a solution

is discussed to solve both the problems combining.

3.1.2 Spider Trap

A spider trap is a set of nodes with no dead ends but no edge out. These web

structures appears intentionally or not, but it is found frequently on the Web, and

they force the PageRank calculation to put all the PageRank within that spider traps

and all the PageRank value will flow to that spider trap and rank of that node will

eventually 1.

Figure 3.4 illustrates this clearly.

Solution

Spider trap problem can be avoided with random tele-portation factor. what happens

in spider trap is a random surfer starts surfing from any node and when it reaches to

any spider trap, it gets stuck into a infinite loop and after infinite time the PageRank

value of that node will eventually 1. so this solution advices us to teleport to any

random node with a probability of β . on each step it will either follow a out edge or

it will randomly jump to any other node in the web.

9



3.2 Algorithms Literature Survey

Figure 3.4: Spider trap at node C

v′ = β.M.v + (1− β).e/n (3.1)

Here β is a chosen constant, and usually the value of β lies in between 0.8 and

0.9, e is a vector of all 1s with the size N, and N is the number of nodes in our

graph. The term β.M.v is for the case where, the random surfer chooses to follow an

out-edge from the present page with probability β. The term (1 - β)e/n is a vector,

each of whose components has value (1 - β).e/n and represents the introduction, with

probability 1 - β, of a new random surfer at some random page.

3.2 Algorithms

3.2.1 Arnoldi Iteration

Arnoldi iteration is one powerful iteration used to solve the liner equation and find the

eigenvector. But it doesn’t take the benefit of previously known eigenvalue. However

it calculates huge Hessenberg matrix and hence much inefficient for PageRank

calculation. This uses the matrix for all it’s computation and unlike Web-Matrix this

Hessenberg matrix is not sparse, so with the increase of number of nodes, we can’t

use the sparseness property to design any map-reduce solution. Based on Arnoldi

10



3.3 Map Reduce Literature Survey

process [4] many methods can be built to calculate the PageRank values. But the

above mentioned limitation forces us to think beyond methods which uses Arnoldi

iteration.

3.2.2 Power Iteration

Arnoldi process has better convergence compared to power iteration, but power

iteration [5] suits well for map-reduce type programming model. So Power Iteration

is studied, and hence its map-reduce model.And it takes the advantage of previously

known eigenvalue [6]. Algorithm 1 tells us in brief about the power iteration. This

Algorithm 1: Power Iteration

Data: Web Matrix M , intial pagerank vector v0 and tolerance eps
Result: stable pagerank vector v0 after convergence

1 v=v0;
2 vold=null;
3 while abs(v-vold) ≤ eps do
4 v1=Mv;
5 vold=v;
6 v = v1;

iteration can easily be converted to a map-reduce model.

3.3 Map Reduce

Processing huge data set is a challenge, a standalone system cannot handle the

computing requirement for that kind of computation. Memory and computing

limitations in a single system drives us to use parallel system. But writing a simple

program in old parallel system is a very tedious task. So Google came up with a

very simplified programming model called map-reduce and that can be effectively

used for batch processing of a huge dataset. Map-reduce is based on the concept

of scaling out rather than scaling up. Adding more new system to a system is much

cheaper than scaling up the performance of a system. This programming model works

completely on a clustered or distributed environment [7]. User has to write a map

and a reduce code and this code is executed in every single system in mapper phase

11



3.3 Map Reduce Literature Survey

and reducer phase in the distributed file system [8]. Map-reduce model is built on the

concept of distributed file system. The whole dataset is not kept in a single centralized

system, rather it is distributed in all the working system. And built on the concept of

moving code to the data, rather moving data to code. This effectively decreases the

requirement of movement of data inside the cluster. Output of map data is written

to the local disk and the reducer take data directly from the mapper. The dataset is

represented as (Key,Value) [9] pair both in mapper and reducer.

Why Map-Reduce?

i. Scalability

ii. Cheap

iii. Fault Tolerance

3.3.1 Programming Model

map (in-key, in-value) -> list(out-key, intermediate-value)

Processes input key/value pair

Produces set of intermediate pairs

reduce (out-key, list(intermediate-value)) -> list(out-value)

Combines all intermediate values for a particular key

Produces a set of merged output values (usually just one)

Figure 3.5 tells us in detail about the working of algorithm.

3.3.2 Map Reduce Model For Page Ranking Algorithm

12



3.3 Map Reduce Literature Survey

Algorithm 2: Mapper

Require: key[url,pagerank],value[outlink-list]
url: key of the input i.e. one url
outlink-list: All the urls that can be visited from the current key url
pagerank: pagerank value of the key in current iteration

1: for outlink in outlink-list do
2: emit( key: outlink, value: pagerank/size(outlink-list) )
3: end for
4: emit( key: url, value: outlink-list )

Algorithm 3: Reducer

Require: key[url],value[list-pr-or-urls]
url: key of the input i.e. one url
list− pr − or − urls: PageRank value(s) of the key in current iteration or
adjacency list in string format

1: outlink-list = []
2: pagerank = 0
3: for pr-or-urls in list-pr-or-urls do
4: if islist(pr-or-urls) then
5: output-list=pr-or-urls
6: else
7: pagerank += double(pr-or-urls)
8: end if
9: end for

10: pagerank = 1 - β + ( β * pagerank )
11: emit( key: [url,pagerank], value: outlink-list )

13



3.3 Map Reduce Literature Survey

Figure 3.5: Map-Reduce Programming Model

14



Chapter 4

Proposed Work

4.1 Topic Sensitive PageRank / Priority Sensitive

PageRank

Searching with a search engine with pageranking works great, but sometimes

same search query refers to different interests. Hence introduced topic sensitive

pageranking. The best example is searching python in the web. A search query

python can refer to a programming language or sometimes it can be referred to a

class of snake. Ideal solution is to have a PageRank vector for each user. Each user’s

interest can be measured by the search engine by mining the search history of the

user. But there are billions of users and billions of web pages, so storing a PageRank

vector for each user, which count is increasing dynamically is not feasible. So we need

to do something simpler. The topic sensitive PageRank approach has the similar style

but it works in a different way. Instead of storing all the PageRank vector for each

user, pagerank vector for each topic is stored which decreases the amount of memory

required significantly. While we surely lose little accuracy, we get the benefit by saving

a lot amount of memory in this process of pageranking. Users are classified according

their interest and for each search term and respective topic sensitive PageRank vector

is fetched and used. From the intuition of the above concept we will teleport to only

that topic sensitive node with a probability of 1- β and the equation will be modified

as Equation 4.1.

15



4.2 Mathematical Model And Algorithm Proposed Work

4.2 Mathematical Model And Algorithm

A simple mathematical model can be built using the intuition that each time the

surfer will jump to any topic sensitive node or nodes that are marked as priority.

v′ = βMv + (1− β)eS/|S| (4.1)

given PageRank equation can simply modified as Equation 4.1. M, v, β are the

previously defined factors. eS is a vector with same length as v, defined for a specific

Topic. S is the set of pages which are identified under the required topic. eS contains

1 for those pages which are in set S and 0 otherwise.

4.2.1 Map-Reduce Model For TSPR

Algorithm 4: Mapper

Require: key[url],value[topic,pagerank,outlink-list]
url: key of the input i.e. one url
outlink-list: All the urls that can be visited from the current key url
pagerank: pagerank value of the key in current iteration topic: topic of the
current page

1: for outlink in outlink-list do
2: emit( key: outlink, value: [pagerank/size(outlink-list), topic=null] )
3: end for
4: emit( key: url, value: [outlink-list,topic] )

16



4.2 Mathematical Model And Algorithm Proposed Work

Algorithm 5: Reducer

Require: key[url],value[list-pr-or-urls,topic]
url: key of the input i.e. one url
list− pr − or − urls: pagerank value(s) of the key in current iteration or
adjacency list in string format topic topic of the url

1: outlink-list = []
2: pagerank = 0
3: for pr-or-urls in list-pr-or-urls do
4: if islist(pr-or-urls) then
5: output-list=pr-or-urls
6: topic=topic
7: else
8: pagerank += double(pr-or-urls)
9: end if

10: end for
11: if topic==global-topic then
12: pagerank = (1 - β)/|S| + ( β * pagerank )
13: else
14: pagerank = β * pagerank
15: end if
16: emit( key: [url], value: [topic,pagerank,outlink-list] )

17



Chapter 5

Web Crawling

Web crawling is a important part for implementing pageranking algorithms. By

crawling the web we can build the web graph.

i. Get a set of N seed pages.

ii. Select a Page and start crawling

iii. Crawl page P. Now parse page P using XPath or similar technologies.

iv. Extract all the links from page P.

v. Resolve relative path to absolute path.

vi. select one link and goto (iii)

5.1 Parsing With Xpath

XPath [10] are used to parse XML like file(s). HTML is similar to a XML file and we

can use the same tools to parse HTML files.

5.2 Data Processing

URL-seen test

Web crawler will encounter multiple links to the same document. To avoid

downloading and processing same document multiple times, a URL-seen test [11]

is generally performed on each extracted link and based on the test it is decided

18



5.2 Data Processing Web Crawling

Figure 5.1: Basic Design Of Web Crawler

whether to add the link to frontier or not. Generally MD5 or SHA1 hashing is used

for that.

Resolving Relative URLs

Every crawled page has a base URL.A base URL is the consistent part of your web

address. Fetch the base URL of the selected page and now join the base URL with

the relative URL to find the absolute path. realtive URL path is the path of the

web page inside the web server or the file path of the respective web page inside the

server directory. after finding the web server a web path is located within the web

server and the required web page or web server is called. So during scraping we need

to find the absolute path from the relative URL. And then only the page is added to

the queue.

Post Processing URLs

Every URL has many parts.

i. scheme
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5.2 Data Processing Web Crawling

ii. netloc

iii. path

iv. query

v. fragment

When we want to implement pageranking algorithm most of the part of the fetched

URLs are useless and hence we need to process the URLs to get the meaningful part

of URLs only. using any url-parser we can parse the URL and get required URL

easily.

i. scheme is generally the protocol used to address the web site or network. e.g.

https, ftp, http etc.

ii. netloc is the network location or the web site address of the website. For example

it is the server’s base address of web sites.

e.g www.google.com, www.yahoo.co.in

iii. path is the path of the web page inside the web server or the file path of the

respective web page inside. after finding the web server a web path is located

with in the web server and the required webpage or web server is called.

iv. query is the part of the url usually the terms used to send data to a web-page

using GET request. those are usually expressed with ? and & separated string.

v. fragment is used to address to a web page. it is used to address one object with

in a webpage. when it is needed to address the whole page only one # followed

by space is used.

path, query and fragment are useless in this case. assume 2 pages are there in

www.example.com i.e. www.example.com/a.php and www.example.com/b.php. Now

we perform 2 seach queries in these web pages and passed with a GET query and

move to a fragment of webpage. so assume 2 queries like

i. www.example.com\a.php?q=query1#m
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5.2 Data Processing Web Crawling

ii. www.example.com\b.php?q=query2#q

Now assume two queries to the web site www.example.com. Tough these two refers to

two different web-pages, but these makes these add same interest to the same web-site.

so keeping the search query and fragment doesn’t make any sense to our PageRank

algorithm. so post process it to remove the unwanted part of the URLs.

we will get same www.example.com for both crawled web page. so PageRank will be

accumulated for www.example.com only. This makes more sense to our pageranking

algorithm.

Input Formatting For Map Reduce

Each data scraped from the web has a format source-link,dest-link stored in a raw

file. Now we have to change into a required format for our pageranking algorithm.

In order to change the format of such huge dataset we again one more map-reduce

algorithms. This Mapper and reducer takes the parsed URLs and format it for the

requirement input type of map reduce.

As input format is an important issue in pageranking algorithm, the above comma

separated values need to be parsed and the sparse web graph need to expressed in

required format. the web graph is so huge that crawled data can’t be processed only

with main memory, hence it leads us to think about the map-reduce design pattern.

The proposed algorithm is designed as Algorithm 6 and Algorithm 7

Algorithm 6: Mapper

Require: key[comma-sep-urls],value[blank]
comma− sep− urls: src,dest

1: src,dest=comma− sep− urls.split(’,’)
2: emit(src,dest)
3: emit(dest,blank)
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5.2 Data Processing Web Crawling

Algorithm 7: Reducer

Require: key[url],value[dest-urls]
dest− urls: all the urls that are pointed by the current key url

1: pagerank=1.0
2: adj=”
3: for url in dest-urls do
4: adj.append(url+’,’)
5: end for
6: emit(url,[pagerank,adj])
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Chapter 6

Simulation and Results

6.1 Experimental Setup

i. Python 2.7.9

ii. JDK 7

iii. Hadoop 2.5.1

iv. Yarn

v. Ubuntu ( Hadoop in pseudo distributed mode )

vi. scrapy ( open source project for crawling )

vii. virtual machine

6.2 Dataset Collection

A spider is designed with SCRAPY in python and it’s run against different URLs

to fetch data and post processed. As mentioned above in Chapter 5, all the

concepts are implemented with SCRAPY open source project. Required web sites

www.nitrkl.ac.in,www.cet.edu.in,www.iiit-bh.ac.in and similar sites are crawled to

collect the web graph.
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6.3 Testing Simulation and Results

Table 6.1: Scraped Information

www.nitrkl.ac.in 20965
www.iiit-bh.ac.in 16961
www.cet.edu.in 4193
...

Table 6.2: After Post Processing

www.nitrkl.ac.in 1474
www.iiit-bh.ac.in 2046
www.cet.edu.in 227
...

6.3 Testing

Sample Data

From the input and output tables, pr1 is the PageRank value calculated with iterative

algorithm in a single machine and pr2 is the PageRank calculated in map-reduce

iteration. they are found to be same. similar small test cases are taken and PageRank

values are compared.

With the crawled data with around 1 lakh nodes iterative version will throw

segmentation fault, but at the same time map reduce will produce result in a pseudo

distributed ubuntu system. with all these testing map reduce version of the topic

sensitive pageranking algorithm is proved to be correct and hence with the feature of

map-reduce it can be easily scaled out.

Table 6.3: Input of TSPR

page pr adj topic
0 0.25 1,2,3 1
1 0.25 0,3 1
2 0.25 0 2
3 0.25 1,2 2
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6.4 Comparison Simulation and Results

Table 6.4: Output of TSPR

page pr1 pr2
0 0.332 0.334
1 0.261 0.261
2 0.186 0.184
3 0.218 0.217

Figure 6.1: Space Comparison Iterative vs Map-Reduced

6.4 Comparison

Space Comparison

i. If we closely observe the iterative version of the power iteration we see that a

N ×N web matrix is required to perform the operations in the web matrix. So

for a web with N nodes we need to store N ×N size matrix.

ii. We store the web graph in adjacency list. So on an average a web page has

100 out-links only. that is how this representation helps us save memory. With

increasing number of nodes we need to store billion of nodes, so a standalone

system can’t handle, but map reduce model gives us the benefit to run the

same code in a cluster just with some configuration changes and data can be

distributed to multiple systems.
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6.4 Comparison Simulation and Results

Time Comparison

Figure 6.2: Time Comparison Iterative vs Map-Reduced

i. If we closely observe the iterative version of the power iteration we see that a

N × N web matrix is required to perform the operations in the web matrix.

so a vector of size N is multiplied with N × N web matrix. That takes N*N

multiplications.

ii. As mentioned above we store the web graph in adjacency list. So on an average

a web-page has 100 out-links only. TSPR-Mapper takes O(N), TSPR-Reducer

takes O(N) and inside shuffle and sorting takes some time. Overall time graph

is plotted as in Figure 6.2.
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Chapter 7

Conclusion and Future Work

Based on the intuition of topic and priority sensitive pageranking a smaller change

to the initial pagerank is studied. Effective calculation of pagerank is performed with

mapreduce in pseudo distributed mode in ubuntu system. The MapReduce topic

sensitive pageranking is proposed and hence implemented for the scraped data. the

equation can be further modified for better accuracy and performance.
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