

 DESIGN OF AUDIO PLAYER AND

RECORDER USING STM32F4

DISCOVERY BOARD

A Thesis report submitted in partial fulfilment of the requirements for the

 award of the degree in

Master of Technology (Dual Degree)

In

 “VLSI Design and Embedded Systems”

Vimal Kumar

(Roll No. 710EC2120)

May, 2015

Department Of Electronics & Communication Engineering

National Institute Of Technology, Rourkela

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80148496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DESIGN OF AUDIO PLAYER AND

RECORDER USING STM32F4

DISCOVERY BOARD

A Thesis report submitted in partial fulfilment of the requirements

 for the award of the degree in

 Master of Technology (Dual Degree)

 In

 “VLSI Design and Embedded Systems”

By

Vimal Kumar

(Roll No. : 710EC2120)

May, 2015

Under the guidance of

Prof. A.K Swain

Department of Electronics and Communication Engineering

National Institute of Technology

Rourkela-769008

 DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING

 NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA

 ODISHA, INDIA -769008

CERTIFICATE

This is to certify that the thesis entitled “Design of Audio Player and Recorder on STM32F4

Discovery Board ”, submitted by Vimal Kumar (Roll No. 710EC2120) in partial fulfilment

of the requirements for the award of Master of Technology (Dual Degree) in “VLSI Design

and Embedded Systems” during session 2014-2015 at National Institute of Technology,

Rourkela.

The candidate has fulfilled all the prescribed requirements. The Thesis is an authentic work,

based on candidates’ own work.

To my knowledge, this thesis is up to the standard required for the award of a Bachelor of

Technology in Electronics and Instrumentation Engineering & Master of Technology in VLSI

Design and Embedded Systems (Dual Degree) degree.

Place: Rourkela Prof. A.K Swain

 Assistant Professor

Department of Electronics and Communication Engineering

National Institute of Technology

Rourkela -769008

ACKNOWLEDGEMENTS

I wish to express my heartfelt gratitude to my supervisor Prof. A.K Swain, Assistant Professor,

Department of Electronics & Communication Engineering, National Institute of Technology,

Rourkela for his valuable support, guidance, and time throughout my project. I also appreciate

the freedom provided to me by provided by Prof. Ayas Kanta Swain to explore new ideas in

the field of my project.

I am also grateful to Prof. Sunil Kumar Sarangi, Director, National Institute of Technology,

Rourkela for providing me with outstanding facilities in the institute for my research.

I would also like to thank Prof. K. K Mahapatra, Head of Department, Department of

Electronics & Communication Engineering, National Institute of Technology, Rourkela for

providing facilities during this project work.

Finally, I want to thank my parents and the almighty god for their backing, without which this

would not have been conceivable.

Vimal Kumar

 Roll No. 710EC2120

TABLE OF CONTENTS

Topics Page Number

ABSTRACT .. 1

LIST OF FIGURES .. 2

LIST OF TABLES .. 3

1 INTRODUCTION .. 5

1.1 Project Overview ... 5

1.2 Organisation Of Thesis ... 6

2 ARM MICROCONTROLLERS AND TOOLCHAINS .. 8

2.1 Reduced Instruction Set Computer (RISC) .. 8

2.1.1 Characteristics: .. 8

2.1.2 RISC vs CISC ... 9

2.1.3 Advantages of RISC over CISC .. 9

2.1.4 Disadvantages of RISC over CISC ... 10

2.2 ARM Processors .. 10

2.2.1 History ... 11

2.2.2 Operating System Support .. 11

2.2.3 ARM Cortex M4... 11

2.2.3 STM32F4 Discovery board ... 12

2.3 Keil uvision MDK pro Tool chain ... 14

3 FILE FORMATS .. 18

3.1 Wave Audio File Format ... 18

3.2.1 Wave file header .. 19

3.2.2 Format Chunk ... 19

3.2.3 Data chunk ... 20

4. COMMUNICATION PROTOCOLS ... 23

4.1 Inter Integrated Circuit (I2C) Protocol .. 23

4.2 Universal Serial Bus (USB) .. 26

4.3.1 USB Communication .. 27

4.3.2 USB Advantages and Disadvantages ... 28

5 FAT 32 FILE SYSTEM ... 30

5.1 FAT 32 File System ... 30

6 AUDIO PLAYBACK AND RECORDING APPLICATION ... 34

6.1 Application Overview ... 34

6.2 Audio Playback Application .. 35

6.3 Audio Record Application .. 37

7 CONCLUSION AND FUTURE WORK .. 40

7.1 Conclusion ... 40

7.2 Future Prospects ... 40

8 REFERENCES ... 42

1 | P a g e

ABSTRACT

With the advancement in semiconductor technology, scope for development of embedded

systems has increased manifolds. New processors with improved computing capabilities and

low power consumption have further accelerated the developments in embedded domain.

Consumers are looking for affordable multimedia devices with high performance and durability

making embedded developers to think creatively and use all resources at hand to meet the

desired user specifications. This is one such attempt by designing an Audio Player and

Recorder to play the wave audio files from a USB flash drive and recording the audio in USB

flash drive in the same format. In this application MEMS microphone is used for recording the

audio data.

2 | P a g e

LIST OF FIGURES

Figure No. Figure Title Page No.

Figure 1 STM32F4 Discovery Board.. 12

Figure 2 Hardware block diagram of STM32F4 Discovery board 13

Figure 3 STM32F4 Discovery MCU ... 14

Figure 4 Run time environment of Keil MDK pro ... 15

Figure 5 Source code editor .. 16

Figure 6. WAV File Format Layout ... 18

Figure 7 Schematic connection of two devices to I2C bus ... 23

Figure 8 Start and stop condition in I2C bus .. 25

Figure 9 Data stability condition .. 25

Figure 10: USB Flash Drive .. 26

Figure 11. Logical Connections between USB Host Clients and USB Device Endpoints 27

Figure 12 Master Boot Record [11] .. 30

Figure 13 16 byte Partition entry ... 31

Figure 14 Critical fields of FAT 32 Volume ID ... 31

Figure 15 Schematic of Audio peripherals connection on STM32F4 discovery 34

Figure 16 Audio playback and record architecture.. 35

3 | P a g e

LIST OF TABLES

Table No. Table Title Page No.

Table 1 Difference between RISC and CISC .. 9

Table 2 Wave File Header ... 19

Table 3: Data chunk... 21

Table 4 Condition of I2C bus while read/write operation.. 24

Table 5 Bus condition while writing 2 bytes to slave .. 24

Table 6 Bus condition while reading 2 bytes from slave .. 25

Table 7 Advantages and Disadvantages of USB ... 28

Table 8 Main Variables of Volume ID ... 32

4 | P a g e

 CHAPTER 1

INTRODUCTION

 Motivation

 Organisation of thesis

5 | P a g e

1 INTRODUCTION

1.1 Project Overview

An Audio player has been implemented on the stm32f4 discovery board which will play the

audio data (wave) stored in a USB flash drive. The audio data is read from the external USB

drive of the STM32F407VG microcontroller using the DMA and also can be recorded in the

same format on the usb drive. Playing wave audio files which are the basic high quality audio

format because these are also uncompressed files, the quality of the output is nowhere

compromised. The recording application has been implemented using ST MP45DT02 MEMS

microphone which is present on the discovery board, with a PDM audio software decoding

library. The MEMS microphone produces PDM data which is then converted to PCM data and

stored into the usb flash drive. Thus if one is seeking to play music and record audio with a

single device, the device thus developed may come very handy.

With the improvements in processor technology and development of software design

environments for the same, designing of an embedded system has not remained a very tedious

task as it was a decade ago. Processors such ARM which have very good computing

performances are becoming more popular among embedded developers and are also coming at

low prices.

6 | P a g e

1.2 Organisation of Thesis

Chapter 1: This chapter includes brief introduction and organisation of thesis

Chapter 2: This chapter deals with ARM microcontrollers giving brief idea if RISC

methodology of processor design, development board used and the keil uvision MDK pro

which is a design environment for ARM processors

Chapter 3: This chapter deals with the file formats that needed to worked upon describing in

detail about the WAVE audio format.

Chapter 4: This chapter deals with various communication protocols that have been used for

making components communicate with processor and among each other.

Chapter 5: This chapter deals with the idea of FAT32 file system and SD card interfacing.

Chapter 6: This chapter explores the audio playback and recording applications in detail and

each operation has been carefully explained with the help of flowcharts

Chapter 7: This chapter provides the various references used in this project work.

7 | P a g e

CHAPTER 2

ARM MICROCONTROLLERS

 Reduced Instruction Set Computer (RISC)

 ARM Processors

 STM32F4 Discovery Board

8 | P a g e

2 ARM MICROCONTROLLERS AND TOOLCHAINS

2.1 Reduced Instruction Set Computer (RISC)

RISC is a design methodology for developing CPUs based on the belief that a simple

instruction set combined with a processor architecture equipped to execute these instructions

provides enhanced performance with less processor cycle per instruction thus consuming less

circuitry (transistors) [1] .Its most common trait is the use of Load/Store architecture in which

memory is generally used only through particular instruction only instead of using it as a part

of some other instruction. Due to reduced no. of cycles per instruction (CPI) it provides higher

speed. This is done by optimizing every instruction on CPU and Pipelining.

2.1.1 Characteristics:

 Fewer instructions rather than a very large and complex instruction set.

 Fewer addressing modes making it more flexible and user friendly.

 Operations required to be performed takes place within CPU itself.

 Every instruction is executed in same amount of time (cycles) and hence enhances the

speed of the system.

 In this design methodology processors have sufficiently large number of registers and

a considerably more productive instruction pipeline.

 Instructions are of constant length and easy to decode.

9 | P a g e

2.1.2 RISC vs CISC

Following table listing the difference between two processor design methodologies.

 Table 1 Difference between RISC and CISC

 RISC CISC

Stress on Software Stress on Hardware

Fixed instruction size and very few

formats.

Various instruction sizes and formats

Large number of registers Fewer registers

Lesser addressing modes Wide variety of addressing modes

complex compiler Large scale use of microprogramming.

All instructions take only 1 processor

cycle for execution.

Different time of executions for different

instructions.

 easy pipelining Pipelining difficult.

2.1.3 Advantages of RISC over CISC

 Since a streamlined instruction set takes into account a pipelined, superscalar

plan RISC processors frequently attain to 2 to 4 times the execution of CISC

processors utilizing tantamount semiconductor innovation and the same clock

rates.

 Since the instruction set of a RISC processor is so basic, it uses up substantially

less chip space; additional capacities, for example, memory management units

or floating point arithmetic units, can likewise be set on the same chip. Littler

chips permit a semiconductor producer to place more parts on a solitary silicon

wafer, which can bring down the every chip cost significantly.

 Since RISC processors are more straightforward than relating CISC processors,

they can be developed more rapidly, and can exploit other technological

10 | P a g e

advancements faster than their CISC counterparts, prompting more noteworthy

jumps in performance in upcoming eras.

2.1.4 Disadvantages of RISC over CISC

 Performance of a processor developed with RISC methodology is greatly

determined by the quality of code which it has to execute. A poor job on

programmer’s part or compiler can lead to processor spending lot of time

stalling. Since instruction scheduling is a tedious task, most of programmers

choose high level languages such as C or C++, leaving the job of scheduling to

compilers. Thus compiler has to be chosen carefully to generate quality code,

making RISC processors compiler dependent.

 Instruction scheduling makes debugging a tedious task. When IS is taken into

account then machine language equivalent of a line of source can appear as in

between other instructions of source code.

 Code expansion can be a problem with RISC processors as a complex operation

can consume many instruction which can be done by a single instruction with

CISC processors.

 Very fast Memory systems are required with RISC processors which are

capable of feeding instructions to processor at fast rates. Thus RISC systems

are required of having big memory caches generally within the chip. This

incorporation is also called First-Level cache.

2.2 ARM Processors

This is a family of 32-bit microcontrollers developed on RISC (Reduced Instruction set

computing) methodology developed by a company from Great Britain ARM Holdings. Unlike

its CISC (Complex Instruction Set Computing) counterparts it consists of fewer transistors

thus reducing cost, heat dissipation and power consumption, which are desirable for designing

light, battery powered devices such as smart phones , tablets etc. The company designs

instruction sets and architecture but not product itself.

11 | P a g e

2.2.1 History

Development of first ARM processor dates back to 1980s when Acorn RISC Machine

Architecture (ARM) was developed by British Acorn Computers, its first product being

coprocessor modules for a series of computers BBC Micro. It was developed using VLSI

Technology as silicon partners. It included data bus(32 bits), address space(26 bits) and 27

registers (32 bits).Out of all bits of PC(program counter) register, 8 were available for other

purposes, 6 for Status Flags and 2 bits were used for choosing setting mode.

2.2.2 Operating System Support

ARM architecture supports a huge number of embedded and real time operating systems like

Linux, embedded C, freeRTOS etc. Both 32 and 64 bit operating system are supported on ARM

architecture.

2.2.3 ARM Cortex M4

ARM Cortex M4 is a 32-bit microcontroller based on RISC (Reduced Instruction Set

Computer) architecture specifically designed for efficient signal processing applications. It

highlights extended Multiply- Accumulate (MAC) instructions, enhanced SMID arithmetic

instructions and a Floating Point Unit (FPU) [2]. Basically ARM M4 is nothing but M3 with

special Digital Signal Processing (DSP) instructions. The blend of high-proficiency signal

transforming utility with low-power consumption, minimal expenses and wide usability of the

Cortex-M group of processors is intended to fulfil the emerging class of adaptable solutions

particularly focusing on the engine control, car, power optimization, embedded application and

modern robotic markets.

Key features of ARM Cortex M4 can be summarised as follows

 ARMv7E Architecture

 Three stage Pipelining

 Instruction set contains

12 | P a g e

 Thumb Instructions which are a subset of ARM instruction in 16 bit compressed

mode.

 32 bit hardware multiply

 32 bit hardware divide

 DSP support

 1 to 240 interrupts with Non Maskable Interrupts (NMI)

 Sleep modes are also available

2.2.3 STM32F4 Discovery board

STM32F4 Discovery board is a product of ST Microelectronics which has a STM32

microcontroller based on ARM Cortex M4 architecture. It includes an ST-LINK/V2 embedded

debug tool interface, ST MEMS digital accelerometer, ST MEMS digital microphone, audio

DAC with integrated class D speaker driver, LEDs, push buttons and a USB OTG micro AB

connector.

 Figure 1 STM32F4 Discovery Board

It is a low cost easy to use development kit to quickly start development with powerful STM32

microcontrollers. Tool chain used is Keil uvision MDK pro which provides inbuilt libraries

13 | P a g e

and a user friendly design environment for STM32F4. Hardware block diagram of the

discovery board is shown below.

 Figure 2 Hardware block diagram of STM32F4 Discovery board

It has ARM Cortex M4 32 bit MCU which is characterised by 210 DMIPS, up to 1 MB

flash/192+4 KB RAM, USB OTG HS/FS, Ethernet, 3 ADCs and 15 communication interfaces.

14 | P a g e

Following figure describes the overall MCU structure of STM32F4.

 Figure 3 STM32F4 Discovery MCU

2.3 Keil uvision MDK pro Tool chain

Keil MDK pro is a complete software development environment for a variety of ARM based

microcontrollers including Cortex M and Cortex R series. It includes uvision IDE/Debugger,

ARM C/C++ compiler and all the additional middleware components required for ARM based

embedded development [3]. It also includes Keil RTX which is a Real Time Operating System

(RTOS). It also features a complete GUI library for designing Graphical User Interface (GUI)

for embedded systems.

15 | P a g e

Run time environment window shows all software components that are compatible with the

selected device. These pre designed software components helps to design embedded systems

faster. It creates complete design environment for the chosen device.

 Figure 4 Run time environment of Keil MDK pro

16 | P a g e

It has a powerful source code editor which enhances productivity and is a user friendly

environment for compiling source codes.

 Figure 5 Source code editor

17 | P a g e

CHAPTER 3

WAVE FILE FORMAT

18 | P a g e

3 FILE FORMATS

3.1 Wave Audio File Format

The Wave file format is Windows' local file format for storing computerized digital audio

information. It has turned into a standout amongst the most broadly upheld computerized audio

formats on the PC because of the notoriety of Windows and the immense number of projects

composed for the stage. In this file format the arrangement of data is little-endian that is the

least significant byte has to appear first.

Wave files make use of a general Resource Interchange File Format (RIFF) [6] structure which

stores the contents of the file in to different “chunks”. The chunk header tells the application

about the type and the length of data bytes stored in the chunk. This method of organisation

makes a program powerful by allowing it to skip over unrecognisable types of chunk and

continue the processing of known data chunks. Following figure shows the basic wave file

layout.

 Figure 6. WAV File Format Layout

19 | P a g e

3.2.1 Wave file header

It follows standard RIFF structure. The very first 8 bytes of the file is a RIFF chunk header which

has an ID of “RIFF” and chunk size which is same as file size minus 8 bytes for header. WAV

files are stored uncompressed, therefore they can get quite large, but they cannot exceed 4

gigabytes due to the fact that the file size header field is a 32-bit unsigned integer.

A WAVE file is often just a RIFF file with a single "WAVE" chunk which consists of two sub-

chunks -- a "fmt" chunk specifying the data format and a "data" chunk containing the actual

sample data.

The following table gives the details of the wave file header.

 Table 2 Wave File Header

BYTE NUMBER SIZE DESCRIPTION VALUES

0-3 4 Chunk ID “RIFF”

(0x52494646)

4-7 4 Chunk Data Size 8 (file size)

8-11 4 RIFF type “WAVE”

(0x57415645)

3.2.2 Format Chunk

Format chunk has detailed information about storing the data waveform and playing it

including the mode of compression, channel number, rate of sampling, number of bits in each

sample and other properties. Following table provides good insight into format chunk.

Channel – An independent waveform in the audio data. The number of channels is important:

one channel is “Mono,” two channels is “Stereo” – there are different waves for the left and

right speakers. 5.1 surround sound has 5 channels, one of which is for the lowest sounds and is

usually sent to a subwoofer. Again, each channel holds audio data that is independent of all the

other channels, although all channels will be the same overall length.

20 | P a g e

Frame – A frame is like a sample, but in multichannel format – it is a snapshot of all the

channels at a specific data point.

Sampling Rate/Sample Rate – The number of samples (or frames) that exist for each second

of data. This field is represented in Hz, or “per second.” For example, CD-quality audio has

44,100 samples per second. A higher sampling rate means higher fidelity audio.

Bit Depth/Bits per Sample – The number of bits available for one sample. Common bit depths

are 8-bit, 16-bit and 32-bit. A sample is almost always represented by a native data type, such

as byte, short, or int. A higher bit depth means each sample can be more precise, resulting in

higher fidelity audio.

3.2.3 Data chunk

It contains the main digital audio data which has to be decoded by utilizing the format and

compression scheme described by the wave format chunk. Following is the detailed structure

of data chunk.

BYTE NUMBER SIZE (Bytes) DESCRIPTION VALUES

0-3 4 Chunk ID "fmt " (0x666D7420)

4-7 4 Chunk Data Size Length Of format

Chunk (always 0x10)

8-9 2 Compression Code Always 0x01

10-11 2 Channel Number 0x01=mono

0x02=stereo

12-15 4 Sample Rate Binary , in Hertz

16-19 4 Bytes Per Second

20-21 2 Bytes per Sample 1=8 bit mono, 2=8 bit

stereo, 3=16 bit

mono, 4= 16 bit

stereo

22-23 2 Bits Per Sample

21 | P a g e

 Table 3: Data chunk

BYTE NUMBER SIZE DESCRIPTION VALUE

0-3 4 Chunk ID “data” (0x64617461)

4-7 4 Chunk Data Size Length of data to

follow

8-end Data Sound Samples

22 | P a g e

CHAPTER 4

COMMUNICATION PROTOCOLS

 Inter Integrated Circuit (I2C) Protocol

 Universal Serial Bus

23 | P a g e

4. COMMUNICATION PROTOCOLS

4.1 Inter Integrated Circuit (I2C) Protocol

Inter Integrated circuits or more popularly known as I2C is a serial communication Protocol

used for connecting peripheral ICs to microprocessors where speed is not a parameter of

consideration. This mode of connecting peripherals was first designed by Philips in 1982

with the objective of connecting a CPU with peripheral chips on a TV set.

I2C being a multi master serial bus can be used to connect many devices. It uses two lines.

These two lines are called Serial Data (SDA) and Serial Clock (SCL) [8]. Several number

of slaves and master devices can be connected to these two lines and easily communicate

among themselves. The following figure illustrates how two devices can be connected to

I2C bus.

 Figure 7 Schematic connection of two devices to I2C bus

I2C protocol is characterised by:

 Slave address of 7-bits where each device connected to the bus is assigned

a unique address.

 8 bit data bytes.

24 | P a g e

 Control bits for identification of start and end of data transfer, determining

the direction of data transfer, and acknowledgement system.

According to this protocol the IC initiating data transfer acts as bus master while all other ICs

connected to bus act as bus slaves. Firstly the master IC issues a “START” condition which

acts as an “ATTENTON” for all other devices connected to the bus thus making them ready

for receiving data on the bus [10]. After this the master device puts the address of the slave

device it wants to communicate with, on the bus along with specifying whether it is a Read or

Write operation. Slave devices compares this address with their own unique address. If it

matches then the corresponding slave device gives an acknowledgement response. Other

devices whose address does not matches with the address issued by master wait in idle state

until they get stop signal on bus. When master sense this acknowledgement signal it starts

sending or receiving data.

A typical I2C transfer can be explained by the condition of the bus while reading / writing two

bytes of data.

 Table 4 Condition of I2C bus while read/write operation

START Slave

Address

Read/Write ACK DATA ACK DATA ACK STOP

1 bit 7 bits 1 bit 1 bit 8 bits 1 bit 8 bits 1 bit 1 bit

The condition of the bus while writing 2 bytes of data to the slave device is shown below where

shaded part are the data which is put on the bus by the master device.

 Table 5 Bus condition while writing 2 bytes to slave

START Slave

Address

 0 0 DATA 0 DATA 0 STOP

1 bit 7 bits 1 bit 1 bit 8 bits 1 bit 8 bits 1 bit 1 bit

25 | P a g e

The condition of the bus while reading 2 bytes of data from slave is also shown below where

shaded part are the data which is put on the bus by the master device.

 Table 6 Bus condition while reading 2 bytes from slave

START Slave

Address

 1 0 DATA 0 DATA 1 STOP

1 bit 7 bits 1 bit 1 bit 8 bits 1 bit 8 bits 1 bit 1 bit

The conditions of “START” and “STOP” closely depends on the physical structure of bus.

 Figure 8 Start and stop condition in I2C bus

According to the specifications of I2C protocol, data on SDA line can alter only when the clock

line, SCL, is at low level. Also the data is stable on SDA only when SCL is high.

 Figure 9 Data stability condition

26 | P a g e

4.2 Universal Serial Bus (USB)

USB, or the Universal Serial Bus Interface is now well established as an interface for computer

communications.

In many areas it has completely overtaken RS232 and the parallel or Centronics interface for

printers, and it is also widely used for memory sticks, computer mice, keyboards and for many

other functions.

One of the advantages of USB is its flexibility: another is the speed that USB provides.

USB gives quite fast serial data transfer method for data communications, however power can

also be obtained through connectors and this has further enhanced the popularity of USB as

many low power computer accessories. USB find a wide utility from memory to disk drives.

The development USB interface was as a result of the demand for a data transfer interface that

was easy to use and one that supports higher data rates which is a key requirement for the

computer and peripherals industries.

 Figure 10: USB Flash Drive

With USB 1.0 well established, faster data transfer rates were required, and accordingly a new

specification, USB 2 was released. With the importance of USB already established it did not

take long for the new standard to be adopted.

With USB shaping its place in the computer market, other improvements of the standard had

to be researched. With the need for portability in many areas of the electronics industry taking

off, the next predictable move for USB could have been to employ a wireless interface. In

making it possible USB will need to employ a flexible methodology that has proved to a success

for a wired interface. Moreover the wireless USB interface has to be able to send data at rates

higher than the wired USB 2 connections.

27 | P a g e

4.3.1 USB Communication

 USB is a serial bus, in which all the data transfer and receiving is initiated by the USB

Host. The data is transmitted to or from endpoints in an USB Device. The client in the USB

Host stores data in buffers, but does not have endpoints. As shown below different layers of

data transmission can be seen. The interaction across different layers are logical Host-Device

connection between each horizontal layer. Between the logical connections data is transferred

using pipes.

 Figure 11. Logical Connections between USB Host Clients and USB Device Endpoints

28 | P a g e

4.3.2 USB Advantages and Disadvantages

USB has many advantages when compared to other technologies, but it also has a number of

disadvantages which need to be considered when deciding on a technology to be used.

 Table 7 Advantages and Disadvantages of USB

 Advantages Disadvantages

User friendly Data transfer speed is not as fast as other

Communication Protocols

Many applications can find its utility with

data transfer speed in range.

Capabilities and speed is limited.

Connector system is robust

Variety of connector types available

Cost is low

USB has many advantages and this is why it is so widely used. However, its simplicity and

ease of use, mean that it is not always applicable in applications where more sophisticated

interfaces are required for very high speed data transfer.

29 | P a g e

CHAPTER 5

FAT 32 FILE SYSTEM

30 | P a g e

5 FAT 32 FILE SYSTEM

5.1 FAT 32 File System

File Allocation Table (FAT) is a file system developed by Microsoft for MS-DOS and was the

primary file system for consumer versions of Microsoft Windows up to and including Windows

Me. FAT file system is relatively easy and is virtually supported by all major operating systems.

This makes it an ideal file system for organization of data in hard disks, floppy disks, and

memory cards.

FAT comes in three variations namely FAT 12, FAT16 and FAT 32. The numbers here

corresponds to the number of bits that are being used in defining a cluster. Here in this project

the SD card is using FAT 32 file system for storing the data [12].

The very first sector of the drive is known as Master Boot Record (MBR) with its first 446

bytes being used for booting the system. Then follows a partition table of length 64 bytes with

last 2 bytes always being 0x55 and 0xAA which are usually used for checking the integrity of

MBR.

 Figure 12 Master Boot Record [11]

Every partition is of 16 bytes length but most of the bytes can be ignored. Fifth byte is known

as “Type Code” which gives information about the type of file system that is supposed to be

contained in each partition. Ninth through twelfth bytes is “LBA begin” which is the address

where that partition begins on the disk.

31 | P a g e

 Figure 13 16 byte Partition entry

Generally only “type code” is looked upon for 0x0B or 0x0C and then “LBA begin” is read to

know the location of FAT 32 File System on the disk.

While reading FAT 32 File System, first sector has to be read known as Volume ID which is

supposed to be read by using “LBA begin” which is to be found from partition table. This

sector gives detailed information about the layout of the FAT 32 File system. But many of these

information are not of interest here. Only four variables are desired and another three for

ensuring their authenticity.

 Figure 14 Critical fields of FAT 32 Volume ID

Following table dig into these seven variables and their significance while using FAT 32 File

System.

32 | P a g e

 Table 8 Main Variables of Volume ID

FIELD MICROSOFT’S

NAME

OFFSET SIZE VALUE

Bytes Per

Sector

BPB_BytsPerSec 0x0B 16 bits Always 512 Bytes

Sectors Per

Cluster

BPB_SecPerClus 0x0D 8 bits 1,2,4,8,16,32,64,128

Number Of

Reserved

Sectors

BPB_RsvdSecCnt 0x0E 16 bits Usually 0x20

Number Of

FATs

BPB_NumFATs 0x10 8 bits Always 2

Sectors Per

FAT

BPB_FATSz32 0x24 32 bits Depends on size of

the disk

Root Directory

First Cluster

BPB_RootClus 0x2C 32 bits Usually

0x00000002

Signature None 0x1FE 16 bits Always 0xAA55

Arrangement of FAT 32 File System is very simple. Volume ID is always the first sector

followed by some empty space known as Reserved Sectors. After this reserved sector there

exists two set of File Allocation Tables (FATs). The remaining file system is data organised in

clusters with a very small unused space after last cluster. Majority of space is being used by

clusters used to store files. Cluster numbering is that first cluster is named cluster 2, where

there is no cluster 0 or cluster 1.

33 | P a g e

CHAPTER 6

AUDIO PLAYBACK AND

RECORDING

 Application Overview

 Audio Playback Application

 Audio Record Application

34 | P a g e

6 AUDIO PLAYBACK AND RECORDING APPLICATION

6.1 Application Overview

Wave audio files can be played using STM32F4 with USB storage device as the file

destination. The application make use of MEMS microphone, audio DAC, headphone and USB

key. [15]

 Figure 15 Schematic of Audio peripherals connection on STM32F4 discovery

USB peripheral has to be configured in host mode. Mass Storage Class (MSC) is used to

send/receive audio data to/from USB. I2S peripheral is configured in master transmitter mode

and used to transmit audio data to the external audio codec (DAC). DMA is used to send from

buffers to I2S peripherals which efficiently reduces the load on CPU [12]. I2C peripheral is

used to control external devices like audio codec and obtain data from that device. User button

is for monitoring the operation (playback or recording).

35 | P a g e

 Figure 16 Audio playback and record architecture

6.2 Audio Playback Application

Procedure for the audio play application on the board

1. Initialize the USB, FatFs File Systems, Audio DAC, MEMS

2. Transfer the WAV file from USB storage to internal SRAM of MCU, block by block

(1024 bytes) using DMA in its first buffer.

3. DMA sends its data to I2S Peripheral which transfers it to external audio codec (DAC).

4. In the meantime data is stored from USB to DMA in its second buffer.

5. These two buffers are swapped indefinitely till the end of audio file.

36 | P a g e

Following flowchart describes the audio playback application.

 Yes

 No

 No

Yes

MEMS accelerometer is used as pause/resume support. When the playback is running first click

on the board stops it playing and second click resumes the playing of wave file.

Initialize audio DAC and

MEMS

Start playing wave

Accelerometer

first click

Audio DAC paused

Accelerometer

second click Playing the wave

End of Wave player

37 | P a g e

6.3 Audio Record Application

Procedure for the audio recording:

1. Audio Record initialisation: Configure I2S as 1024 KHz as an input clock for MEMS

microphone

2. Timer configuration to initialize recording time

3. Store the microphone in buffer as signal

4. Filter the stored data to obtain a PCM signal at 16 KHz sampling frequency

5. Store the filtered signal in the USB mass media.

 Following flowchart describes the record application [15]

Initialisation of audio recording;

configure I2S at 1024 KHz as an input

clock for microphone

Configuration of timer to initialize for total record time

Store the microphone output data in

buffer as signal

Filtering the stored data in buffers to

obtain PCM at 16 KHz Sampling

Frequency

Store the audio signal in USB flash

drive

End of recording

38 | P a g e

I2S peripheral has been configured in master mode in order to generate the correct clock cycle

(1.024 MHz). The 1.024 MHz clock can be calculated from the output audio streaming (16

KHz) and the decimation factor (64) chosen for this application (16000 Hz x 64 = 1.024

MHz)[15].

39 | P a g e

CHAPTER 7

CONCLUSION AND FUTURE

PROSPECTS

40 | P a g e

7 CONCLUSION AND FUTURE WORK

7.1 Conclusion

An audio player and recorder has been thus implemented for playing the wave audio file stored

in a USB Flash Drive and recording audio in the same format on the USB flash drive. For

playing the audio file from USB Key firstly, wav data is transferred from the USB flash drive

to internal SRAM of the microcontroller block by block in the first DMA buffer. Once this

buffer is filled:

 DMA sends this data to I2S peripheral which transfers this to external audio codec DAC

to decode the audio data.

 The data from USB is stored in the second buffer.

Then these buffers are swapped indefinitely till the end of the audio file.

7.2 Future Prospects

The implemented audio player is only able to play wav audio files not any other file formats

from the USB Flash drive. It can be made to play some audio formats like mp3. If someone

wants to interface the USB with the microcontroller they can use it as their reference. A graphic

LCD can be connected to the board and a GUI interface can be made. It will show the content

of the USB drive on the screen and will make the application more user friendly in terms of

accessing the content of the USB Flash Drive.

41 | P a g e

CHAPTER 8

REFERENCES

42 | P a g e

8 REFERENCES

[1] Sivarama P Dandamudi, Guide to RISC Processors for programmers and engineers,

Spinger International Series in Engineering and Computer Science,2005

[2] Joseph Yiu , Definitive guide to ARM cortex M3 and ARM cortex M4 Processors,

Newnes Publishers,2013

[3] www.keil.com/product/brochures/uv4.pdf

[4] topherlee.com/software/pcm-tut-waveformat.htm

[5] www.itk.ilstu.edu/faculty/javila/datatypes/soundwave.htm

[6] http://soundfile.sapp.org/doc/WaveFormat/

[7] http://en.wikipedia.org/wiki/WAV

[8] Miroslav Popovic, Communication Protocol Engineering, CRC Press,2009

[9] www.byteparadigm.com/application/introduction-to-i2c-and-spi-protocols

[10] Richard Lai, Ajin jirachiefpattana, Communication Protocol Specification and

Verification, Spinger US, 1998

[11] http://educypedia.karadimov.info/electronics/I2C.htm

 [12] elm-chan.org/fsw/ff/00index_e.html

[13] www.pjrc.com/tech/8051/ide/fat32.html

[14] http://www.inversereality.org/files/dmaprogramming.pdf

[15] www.st.com/stwebu/static/active/en/resource/technical/document/active/technical.pdf

