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~ i ~ 
 

ABSTRACT 

India is among leading power producing countries but still we have an unreliable and inefficient 

electrical infrastructure. Photovoltaic power generation can be helpful to meet the requirements 

of electricity demand. In order to increase efficiency of PV system a soft-switching boost 

converter is adopted, which consists of an auxiliary resonant circuit having an auxiliary switch, 

two diodes with a resonant capacitor and a resonant inductor. This model of converter can supply 

60 W to load. Since hard switching generates losses during turn on and turns off but in the 

proposed converter circuit Zero Voltage Switching operation is performed by resonant capacitor 

at turn-off condition and Zero Current Switching operation by resonant inductor at turn-on. The 

chosen converter reduces switching loss as well as voltage and current stress across the devices 

due to this the efficiency of converter increases. As designed converter is operated at high 

frequency, so small size of inductors and capacitors are required, this reduces size of converter. 

Incremental Conductance algorithm is used to achieve maximum power from PV module .The 

proposed converter and inverter circuit are simulated in Psim9.0 with PV and Maximum Power 

Point Tracking and theoretical analysis is verified. 
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CHAPTER-1 

INTRODUCTION 

1.1 Overview 

This work is intended towards developing a soft-switching boost converter which is useful for 

Photovoltaic System. The main aim is to reduce switching losses by using a resonant circuit with 

conventional boost converter. Here MPPT algorithm is used for extraction of maximum power to 

ensure highly efficient operation of PV module. These converters consist of devices like diodes, 

BJTs, MOSFETs and IGBTs, which are used as switching devices. There should be wise 

selection of switching device depending upon power requirement and switching frequency. 

MOSFET is best suited for low power and low voltage applications whereas IGBT is used for 

higher power and higher voltage and current rating compared to MOSFET. IGBT’s are operated 

in lower frequency range (up to 100 kHz) but MOSFET’s are operated at much higher frequency 

range compared to IGBT. The proposed converter is operated under ZCS and ZVS condition 

which ensures improved efficiency, less electromagnetic interference etc. 

1.1.1 Losses in Switching Devices 

The devices used for switching in converters does not behave as ideal in experimental 

conditions, hence they are sources of loss of energy in the system. These losses are of two types 

which are described below: 

Conduction losses: 

The basic devices used normally are IGBT and MOSFET. The conduction losses in case of 

MOSFET are because of its nature of acting as resistor when it is fully turned on. The resistance 

is between drain to source resistance represented as Rds. In case of IGBT the conduction loss 

depends on current passing through device during turn on condition and voltage  Vce,sat offered 

across collector and emitter junctions. 
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Switching losses: 

In practical conditions the voltage or current in the switch do not drops to zeros when it is 

instantly turned on or off. So there is a time duration in which both current and voltages exists, 

so we can say there is overlapping area of voltage and current curve of switching device. 

Therefore this overlapping of curves causes power loss. Moreover as we know that average 

power is proportional to the frequency, so higher switching frequency will cause more loss. One 

more noticeable is the existence of EMI because of sharp and sudden transitions. 

As it is clear from symbol of devices that both IGBT and MOSFET are having anti-parallel 

diodes but MOSFET has higher value of capacitance between drain and source as compared to 

capacitance between collector and emitter of IGBT.  For MOSFET Cds is charged with off stage 

voltage subjected to it and  in case  IGBT current tailing is observed even after turn off 

condition. AS we can observe that main losses for MOSFET are because of charging and 

discharging of the capacitance but for IGBT it is tailing current.  The losses encountered in this 

situation are called hard switching losses. The losses are shown in Fig. 1.1. 

 

Fig. 1.1: Loss of Power during hard switching. 

1.1.2 Soft Switching  

The problems in case of hard switching like switching losses, EMI, current and voltage stresses 

can be reduced by using soft-switching method. The term "soft-switching" is subjected to 

gradual transitions of switch current and voltages. As transitions are gradual so 𝑑𝑖 𝑑𝑡⁄  and 
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𝑑𝑣 𝑑𝑡⁄  rating gets reduced so EMI reduction is observer and decrease is overlapping area 

between current and voltage curves is also seen because soft-switching makes any of the current 

or voltage to be zero when transition takes place. Therefore ideally there is no overlapping area 

between current and voltage curves of the switching device. These switching techniques are of 

two types: ZVS and ZCS. As in case of MOSFET it consists of capacitance Cds which is actually 

combination of internal capacitance with additional external capacitance. MOSFET can be 

turned  on with ZVS when it is sure that voltage across the switch just before the turned on is 

zero and  MOSFET can turn off with ZVS because of Cds which prevents abrupt rise in the 

voltage as the device is turned off [9]. Fig. 1.2 includes ZVS implementation using MOSFET 

and its switching waveforms. 

 

(a)                                         (b) 

Fig. 1.2: (a) ZVS MOSFET implementation at turn off 

                                                (b) Switching waveform of ZVS and hard switching 

ZCS operation can be performed by the switch if an inductor is connected in series with it.  ZCs 

turn off can be achieved as inductor restricts rise in current which makes current through 

MOSFET nearly to zero. MOSFET turn off switch ZCS is achieved when negative voltage 

occurs across the combination (inductor-MOSFET) which causes gradual decay of current to 

zero because of inductor [11]. Fig. 1.3 includes ZCS implementation using MOSFET and its 

switching waveforms. 
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(a)                                                              (b) 

Fig. 1.3:  (a) ZCS MOSFET implementation at turn on 

         (b) Switching waveform of ZCS and hard switching 

Both MOSFET and IGBT can be used to perform ZVS and ZCS but for MOSFET, ZVS is 

preferred over ZCS and for IGBT ZCS is preferred over ZVS for IGBTs.  When MOSFET is 

used for ZVS it can reduce the losses because of discharging of Cds into device but in case of 

ZCS it cannot be done. As for the IGBT its capacitance lower so its main loss is turn off loss due 

to this tail in current is reduced witch ZCS method. 

1.2 Literature Review  

In conventional hard switching converters, the conduction losses are very low. But high 

switching losses makes converters less efficient. So the technique of soft switching is introduced 

to make the switching transitions at either zero voltage condition or zero current condition, so 

that the dominating portion of losses (the ones caused due to switching under high voltages or 

currents) can also be reduced and the efficiency of the converters can be highly improved. 

 A soft switching converter is designed and its utility for PV system converter is verified in [1].  

Detailed analysis on calculation of conduction and switching losses is done for soft switching 

boost converter and selection procedure of resonant element is discussed [2].  A review on 

various topologies of soft switching converters is discussed and compared there efficiency and 

other parameters. The discussion about isolated and non-isolated converters for PV system and 

their suitability according to requirement is done. This detailed analysis of various circuits of 

DC-DC boost converters on the basis of circuit complexity, efficiency is helpful for proper 

selection of method for converter design [3]. Three different topologies buck, boost and buck 
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boost are discussed with their steady state analysis and design of the auxiliary and main circuits 

are reported in [4]. A soft-switching inverter circuit is proposed which is operated with three 

phase induction motor, this useful for reducing the losses in the PV system after the operation of 

DC-DC converter [5].  A soft-switching converter using two switches main and auxiliary in 

which auxiliary switch is operated with some delay from the main switch, the losses due to 

switching for auxiliary switch reduces to zero. In this case higher voltage conversion ratio can be 

obtained whereas controlling is difficult in this case [6]-[9]. Design of digital PID controller for 

soft switching converters using pole placement technique is reported in [10]. Various ZCS 

circuits are reported and their comparative analysis is done in the literature [11]. An analysis of 

transformer less soft switching circuit with higher conversion ratio is proposed and their 

comparison with isolated converters is reported in [12]. A review on soft switching inverter 

circuits is presented in the paper [13] 

Various papers have been referred soft switching methods for converter as well as for 

Photovoltaic cell and MPPT. The comprehensive model for PV cell is proposed, the single diode 

model and double diode  is discussed , the equation related to this PV are derived, and the 

variation of current, voltage and power with change of irradiation and temperature is studied 

[14]-[16]. Incremental conductance MPPT is discussed and compared with other available MPPT 

methods, it observed that better response for Incremental conductance algorithm is observed as 

compared to Perturb and Observe algorithm. On the basis of complexity stability of MPP and 

other parameters selection of algorithms is justified [17]-[22].   

1.3 Motivation    

In our country demand of power is increasing day by day but the production is not increasing in 

that ratio. Electricity crises in summer season is very common but these are most hot days of the 

year and in this duration solar radiation availability is at peak, so solar power generation can be 

used more conveniently in this duration to fulfill the power requirement. The PV generation 

system uses converter circuit, while using conventional hard switching converter circuit 

efficiency of system reduces. This reduction in efficiency is due to switching loss, energy loss in 

stray L and C, device stress, thermal management, reverse recovery characteristics of diode. To 

overcome these losses, design soft switching converter circuit is the best among available 

solutions. 
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1.4 Objectives 

The main objectives of this work are- 

1. Reduction in power losses due to switching of MOSFETS by using soft switching cell. 

2. Reduction in voltage stress and current stress of the switches and diodes.  

3. Reduction in EMI problem caused by high 
𝑑𝑖

𝑑𝑡
 and 

𝑑𝑣

𝑑𝑡
 rating by proper selection of resonant 

elements.  

4. Simulation of proposed system and verification of theoretical analysis. 

1.5 Thesis Organization 

This thesis is manifested in chapter wise as follows: 

 

Chapter 1  

An overview of selection of soft switching technique over hard switching and renewable energy 

sources over other sources for power generation. Advantages soft switching over hard switching 

converters are listed.  The motivation and objectives for this project are included. 

Chapter 2 

A brief discussion on proposed system, PV cell modeling with proper equivalent circuit and 

equations. PV characteristics and its variation with temperature and irradiation are explained 

with simulation results.  

Chapter 3 

An introduction to MPPT and its importance in solar PV power generation is presented. Mainly 

IC algorithm is presented in detail and simulation output of MPPT is discussed. 

Chapter 4  

A detailed analysis on soft switching boost converter and its need in solar power generation 

system is presented. The converter operation in six modes and corresponding equation are given. 

Simulation result of converter circuit with PV and MPPT is presented in this chapter. 

Chapter 5  

Conclusion of work done and futures aspect of the work is included. 
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CHAPTER 2 

PHOTOVOLTAIC SYSTEM 

2.1 Introduction 

This chapter deals with the Photovoltaic system. A photovoltaic system is basically consist of 

few or large number of solar panels to get electrical energy from solar energy. It is composed of 

various component such as PV modules, mounting, mechanical and electrical connections and 

means of regulating output voltage of the system. 

2.2 Arrangement of Proposed PV System 

The PV system with MPPT is shown in the Fig. 2.1. The output voltage of PV is given to the 

converter, the current and voltage values are given to MPPT block which accordingly changes 

the duty cycle of pulses to extract maximum power. The obtained duty cycle given to PWM 

generator and it generates pulses, which are given to gate terminal of MOSFET switches. 

SOFT-SWITCHING 
CONVERTER

LOADPV

MPPT
PWM 

GENRATOR

Duty 
Cycle

Pulses

 

Fig. 2.1: Block diagram of proposed PV system 
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2.3 Mathematical Representation of PV 

A PV cell can be represented mathematically by single and double diode models which are 

described below: 

2.3.1 Single Diode Model  

The single diode model [14] is shown below in Fig. 2.2 for a PV cell which includes a current 

source  𝐼𝑃𝑉 with a diode and a resistance in parallel and this structure is in series with 

resistance 𝑅𝑠  . 

V

D

Ipv

ID

I

RS

RP

+

-

 

Fig. 2.2: Photovoltaic cell single diode model 

The load current equation is given by 
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III 1exp0

……………………………………………..… (2.1)  

In above equation IPV represents photo current and Io is reverse saturation current which are 

given by equations (2.2) and (2.3). 
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_00
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The equation (2.3) can be modified to (2.4) in terms of coefficients of current and voltages 𝐾𝐼 

and 𝐾𝑉 as follows: 
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   1/exp _

_

0





TVSTCOC

ISTCSC

aVTKV

TKI
I  ………………………………………………...……… (2.4)  

2.3.2 Double Diode Model 

The single diode model neglects the recombination losses in depletion region. In actual practice 

these recombination losses causes a substantial loss, especially low voltages. This modeling is 

not possible using single diode model. To consider losses more precise two-diode model [15] is 

required, which is shown in Fig. 2.3. 

V

D1 D2

Ipv

ID1
ID2

I

RS

RP

+

-

 

Fig. 2.3: Photovoltaic cell two diode model 

The equations modelled for single diode model can be modified to get current expression for 

double diode model. 
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The diode ideal factors 1a  and 2a represents recombination and diffusion components and on the 

basis of Shockley equation the value of 1a is unity whereas value of 2a is flexible.  On the basis 

of simulations it can be found that 2a is 1.2, so we can conclude  











1

21

p

aa  . So equation (2.9) 

can be rewritten as 

 
   1/exp _

_

0201





TVSTCOC

ISTCSC

VTKV

TKI
II  ………………………… …… (2.10)  

2.3.3 Large Array Simulation 

For large power applications a series parallel structure (i.e. Nss × Npp modules), as shown in Fig. 

2.4. The equation for PV can be modified as shown in equation (4.10) for single diode model 

[15]. 

 

Fig. 2.4: Photovoltaic array 
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2.4 Impact of Varying Solar Irradiation 

 

The characteristics of a PV cell are highly sensitive to solar irradiation.  It keeps on fluctuating, 

due to the fact that environmental conditions changing continuously. Solar irradiation affects the 

PV input, the more is the irradiation, and consequently more will be the input to the PV cell. As 

result power value will be increased to the same voltage value. It also affects the open circuit 

voltage; it varies proportionally with the solar irradiation. The reason of this variation is 

movement of the electrons to higher energy level [16]. This movement increases mobility of 

electrons thereby increase in power also. 

 

2.5 Effect of Variation of Temperature 

 

Variation of temperature has a negative impact on PV cell i.e. it affects the power generation 

capacity. With an increase in temperature, open circuital voltage decreases. Because with the 

hike in temperature band gap energy of the semiconducting material increases [14]. Therefore 

required energy to jump the energy barrier increases and hence the efficiency reduces. The 

result section includes two figure showing how the P-V& I-V curve changing with the 

temperature. 

 

2.6  PV ArraySimulation 

The MSX-60 PV module simulation is done in MATLAB simulinkusing the single diode model 

equations. The parameters used for simulating the PV module are as shown in the Table 2.1 

Table 2.1 Parameters of the simulated PV module  

Sl.No. PARAMETER SYMBOL VALUE 

1 Current at maximum power Imp 3.5 A 

2 Voltage at maximum power Vmp 17.1V 

3 Short circuit current Isc 3.8 A 

4 Maximum power Pmax 60 W 

5 Open circuit voltage Voc 21.1 V 

6 Temperature coefficient of V Kv -(80±10)mV/°C 

7 Temperature coefficient of I Ki (0.0065±0.015)%/°C 
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2.7 Simulation Results 

Fig. 2.5 shows I-V curve of PV module at stanadard temperature condition (25 
0
C) and constant 

irradiation (1000 W/m
2
). 

 

Fig. 2.5: Current-Voltage curve for PV module 

Fig. 2.6 shows P-V curve of PV module at stanadard temperature condition (25 
0
C) and constant 

irradiation (1000 W/m
2
). 

 

Fig. 2.6: Power-Voltage curve for PV module 
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Fig. 2.7 shows I-V curve of PV module at stanadard temperature condition (25 
0
C) and varying 

irradiation 1000 W/m
2
, 800 W/m

2
 and 600 W/m

2  
respectively.

 

Fig. 2.7: Current-Voltage curve with variation of irradiation 

Fig. 2.8 shows P-V curve of PV module at stanadard temperature condition (25 
0
C) and varying 

irradiation 1000 W/m
2
, 800 W/m

2
 and 600 W/m

2  
respectively. 

 

Fig. 2.8: Power-Voltage curve with variation of irradiation 

Fig. 2.9 shows I-V curve of PV module at constant irradiation (1000 W/m
2
) and varying 

temperature 25 
0
C. 
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Fig. 2.9: Current-Voltage curve with variation of temperature 

Fig. 2.10 shows P-V curve of PV module at constant irradiation (1000 W/m
2
) and varying 

temperature 25 
0
C

 

Fig. 2.10: Power-Voltage curve with variation of temperature 

2.8 Conclusion 

This chapter illustrates the basic idea on PV. Two different model of PV are discussed. PV 

model is properly described using equivalent circuit diagram along with all the relevant equation. 

The parameters taken during simulation listed in a table. The simulation results of P-V and I-V 

characteristics are included.  

T= 60℃  

T= 45℃  

T= 25℃  

 

 
 

 

T= 60℃  

T= 45℃  

T= 25℃  
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CHAPTER-3 

MPPT CONTROL FOR PV SYSTEM 

3.1. Introduction 

This chapter mainly discuss about the Maximum power point tracking circuit. Types and process 

of tracking are described here. It gives mainly basic idea on Incremental conductance method 

with flow chart.  

3.2 Overview on MPPT 

PV system’s efficiency depends on MPPT. MPPT is the most important in PV system. The 

efficiency of a PV system largely depends on MPPT and main cause of shifting of MPP 

(Maximum Power Point) is change in temperature and irradiation given to the PV [17]. 

Moreover it is clear that PV has nonlinear characteristics so it becomes more necessary to use 

MPPT.  

There are various methods available for the tracing of MPPT some of them are named below: 

1. Perturb and observe method 

2. Incremental conductance algorithm 

3. Fuzzy logic control method 

4. Fractional open circuit voltage 

5. Fractional short circuit current etc. 

Here “Incremental conductance” is selected for proposed PV system as it gives more rapid 

response as compared to P&O method and less oscillation. 

3.3 Incremental Conductance Algorithm 

This algorithm is used to conclude the sign of  
𝑑𝑃

 𝑑𝑉
  ratio and continuous observes the dynamic 

conductance (∆I/ ∆V) and it is compared with the static conductance (I / V) when both becomes 
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equal then MPP is achieved [18]. A set of mathematical equation can be written for more ease of 

understanding as: 

The power is given by    VIP  ………………………………………………….………….. (3.1)  

dV

dI
II

dV

dI
V

dV

dV
I

dV

VId

dV

dP
I 

)(
………………………………………..………. (3.2)  

So equations can be expressed as 

V

I

dV

dI
  Or 0

dV

dP
  At MPP ………………………………………………...………… (3.3) 

V

I

dV

dI
  Or 0

dV

dP
Left of MPP…………………………………...……………......…….. (3.4) 

V

I

dV

dI
  Or 0

dV

dP
Right of MPP…………………………………..……….....……...…… (3.5) 

The  above  three  equations  from  equation (3.3)  to equation (3.5)  describes  the  position  of  

MPP with respect to slope of P-V or I-V  curves. Fig. 3.1 is graphical representation of above 

equations.   

I

V

V

I

dV

dI


V

I

dV

dI


V

I

dV

dI


 

Fig. 3.1: I-V curve locating MPPT 
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3.4 Flow Chart 

The flow chart for the MPPT algorithm using IC method is shown below in Fig. 3.2 

 

START

dV=0

dI/dV=-I/V dI=0

dI/dV>-I/V dV>0

MEASURE dV=V(n)-V(n-1
                    dI=I(n)-I(n-1)

Duty ratio 
increases

Duty ratio 
decreases

Duty ratio 
decreases

Duty ratio 
increases

UPDATE V(n-1)=V(n)
             I(n-1)=I(n)

RETURN

NO YES

YES

YES
NO

NO

YES

YESNO

NO

 

 

Fig. 3.2: Flow Chart of IC MPPT 
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3.5 Simulation Results 

MPPT output of the PV system is shown below. Fig. 3.3 shows current of PV at maximum 

power point. Initially current fluctuates and later it goes steady. The obtained vale of current at 

MPP is 3.68 A, which can be observed in Fig. 3.3. 

 

Fig. 3.3: Current curve at MPP 

Fig. 3.4 shows voltage at MPP, initially voltage rises from zero and later goes steady. Here 

voltage at MPP is 17.1 V. 

 

Fig. 3.4: Voltage curve at MPP 
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Fig. 3.5 shows power curve at MPP. Two labels for output tracked power curve of PV and 

maximum rated power curve of PV module. The obtained power at MPP is 59.5 W.  

 

 

Fig. 3.5: Tracking of maximum power of PV 

3.6 Conclusion 

With the end of this chapter, it can be concluded that, MPPT is an important part for the PV 

system. As the curves obtained from PV system are nonlinear. Incremental conductance method 

is successfully demonstrated here with corresponding simulation results, relevant equation and 

flow diagram. 
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CHAPTER-4 

SOFT SWITCHING BOOST CONVERTER  

4.1 Introduction 

This chapter gives an idea on soft switching boost converter. There are many DC-DC converters 

are available. For stepping up the voltage to some certain level, boost converter required. And 

the boost converter using soft switches make the whole system more efficient. How it increases 

the efficiency and details on soft switching technique are discussed. 

4.2 Circuit Description 

The circuit for soft switching converter is shown in Fig. 4.1 which consists of an extra soft-

switching circuit which is not present in case of conventional boost converter. The auxiliary 

network comprises of an auxiliary switch (𝑆2) two diodes named as (𝐷1) and (𝐷2), resonant 

capacitor (𝐶𝑟)  and resonant inductor  (𝐿𝑟)  , whereas main circuit composed of main 

inductor (𝐿𝑚), main switch(𝑆1), output capacitor (𝐶𝑜) and Load (𝑅). Supply is denoted as (𝑉𝑖𝑛) 

which is actually voltage generated by PV and output voltage marked across load as indicated in 

Fig. 4.1 

Vin

L

Lr

S1

Do

CoCr

D1

D2

R

+

VO

-

S2

 

Fig. 4.1: Circuit diagram of soft switching boost converter 
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4.3 Circuit Operation of Soft-Switching Converter 

The circuit for soft switching converter is operated in six modes [1]. The operation of the circuit 

in different modes is described below along with circuit diagrams and respective equations of 

those modes. 

Mode 1 in the interval [t0-t1] 

 In mode 1 converter operates like conventional hard-switching converter and during this mode 

main and auxiliary switches 𝑆1  and 𝑆2  is in OFF condition. Current does not flows through 

resonant circuit but the load gets energy from the main inductor and main inductor current 

decreases linearly which is visible in waveforms shown in Fig. 4.2. Circuit and equations for this 

mode are shown below 

oSL VVtV )( ……………………………………………………………………...………… (4.1)

t
L

VV
tItI So

LL 






 
 )()( 0 ………………………………………………………………..…... (4.2)

)()( tItI LDo  …………………………………………………………………..……….……. (4.3)

0)( tILr ……………………………………………………………………………….…….. (4.4)

oCr VtV )( …………………………………………………..……………………….……...... (4.5) 

Vin

L

Do

Co R

+

VO

-

IL
IDo

 

Fig. 4.2: Equivalent circuit of mode 1 for interval [t0-t1] 

 



 
22 

Mode 2 in the interval [t1-t2] 

 In this mode two switches 𝑆1 and 𝑆2 are turned on under ZCS due implementation of ZCS by 

main and auxiliary switches losses decreases. Here current through resonant inductor rises in this 

mode which results decrease in load current, when circuit operates at time 2t current passing 

through diode 𝐷𝑜 . Circuit diagram for this mode is shown in Fig. 4.3 and equation are shown 

below 

0)( 1 tILr    , oLr VtV )( ………………………………………………………...………...…. (4.6)

t
L

V
tI

r

o
Lr 








)(  ……………………………………………………………..…………………. (4.7)

t
L

VV
tItI So

LL 






 
 )()( 1 ………………………………………………………..….……….. (4.8)

)()( 22 tItI LrL  ………………………………………..…………………………....……….... (4.9)

0)( 2 tIDo ……………………………………………………………………….......…….... (4.10) 

 

Vin

L

Lr

S1
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Co R

+
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-

S2

IL IDo

ILr

 

Fig. 4.3: Equivalent circuit of mode2 for interval [t1-t2] 
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Mode 3 in the interval [t2-t3] 

 The condition of resonance occurs in this mode and current through diode 𝐷𝑜 becomes zero 

Expression for currents are as follows  

 

min)( ItIL  … ……………………………………………………………………………...…(4.11) 

t
Z

V
ItI r

r

o
Lr sin)( min 








 ……………………………………………………………….....…(4.12) 

 

The charging of 𝐶𝑟 to voltage  𝑉𝑜  and then discharging to zero. The required expression of  

impedance and resonant frequency are discussed in equations  

 

tVtV roCr cos)(  …………………….....………………………..……………………..…....(4.13) 

oCr VtV )( 2        ,     0)( 3 tVCr …………………………..………………………………………………….………….....………(4.14) 

r

r
r

C

L
Z           ,     

rr
r

CL

1
 …………………………………………….………………………………………….…….…….(4.15) 
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Fig. 4.4: Equivalent circuit of mode 3 for interval [t2-t3] 
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Mode 4 in the interval [t3-t4] 

 

This mode operates in ZVS condition as current through resonant inductor is higher than main 

inductor both diodes of auxiliary circuits are in ON state. Path of current flow in circuit 

diagram shown in Fig. 4.5.  Equations for resonant inductor and main inductor current and 

voltages are from equation (4.16) to equation (4.19). 

 

)()()()(
21

tItItItI DDLLr  ………………………………………………………………..(4.16) 

max,43 )()( LrLrLr ItItI  ……………………………………………………………………..(4.17) 

SL VtV )(     ……………………………………………..…………………………………..(4.18) 

t
L

V
ItI S

L 







 min)( ………………...………………………………………………………..(4.19) 
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Fig. 4.5: Equivalent circuit of mode 4 for interval [t3-t4] 

 

Mode 5 in the interval [t4-t5] 

In this mode both switches are in OFF condition due to zero voltage condition of resonant 

capacitor. The  voltages and currents for various elements in this mode are as follows: 

 

tIIItI rLrLr cos)()( maxmax,max  ………………………………………………………......(4.20) 

max,4 )( LrLr ItI  ………………………………………………………………………….….....(4.21) 

0)( 4 tVCr ………………………………………………………………………….…..….…(4.22) 
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max)( ItIL     ………………………………………………………………………….....….. (4.23) 

tIIItI rLrLr cos)()( maxmax,max  …………………………………………………………...(4.24) 

tIIZtV rLrrCr sin)()( maxmax,   …………………………………………….…………….…..(4.25) 
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Fig. 4.6: Equivalent circuit of mode5 for interval [t4-t5] 

 

Mode 6 in the interval [t5-t6] 

 

It can be observed clearly that in the start of this mode the voltage across resonant capacitor 

reaches equal to output voltage, in another consequence output diode is turned on due to zero 

voltage condition.  

 

)()()( tItItI LrLDo  ……………….………………………………………………….….……..(4.26) 

max45(maxmax,5 )cos)()( IttIItI rLrL   ……………..………………………….……………..(4.27) 

oCr VtV )( ……………………………………….………………………………………………..(4.28) 

 

Further decrease in main inductor and resonant inductor currents is observed and transfer of 

complete energy of the inductor to load through diode  𝐷𝑜 takes place. 
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                                   Fig. 4.7: Equivalent circuit of mode6 for interval [t5-t6] 

 

4.4 Theoretical Waveforms 

The Fig. 4.8 shows theoretical waveforms for one switching cycle. The theoretical curves for gate 

pulses, diode current, switch current and voltages, resonant inductor current and resonant capacitor 

voltage [4]. 

t t t ttt t0 1 2 43 5 6
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Fig. 4.8:  Theoretical waveforms of converter 
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4.5 Converter Design   

The specifications for the design of the converter are given in table 4.1. The specifications 

include converter output power rating, input voltage range, output voltage, allowable ripple 

percentage in current and voltage etc. Design of circuit includes two steps power circuit and 

auxiliary circuit respectively. 

Table 4.1 Converter specifications for design 

 

Sl. No. Parameter  Specification Value  

1 Output power  P0ut 60W 

2 Output voltage  V0ut 42V 

3 Input voltage  Vin 15-25V 

4 Switching frequency  Fsw 50kHz 

5 Output voltage ripple  ΔV0 5% 

6 Input current peak ripple  ΔIL 20% 

 

4.5.1 Design of the Power Circuit 

The power circuit consists of the main switch, boost diode, input inductor and the output 

capacitor. Here calculations for input inductor and output capacitor are shown. 

Input inductor L: 

The numerical value of the input inductor 𝐿 must be decided first because its value sets the peak 

input current which the converter switches have to withstand and therefore this current is 

necessary to decide the rating of other power circuit components [3]. The maximum current 

without ripple is 

A
V

P

I
in

ut

34.4
15

92.0

60

min

0

max 


…………………………………………………..……….…... (4.32)
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The maximum peak-peak ripple current is  

AIIII pkLrpp 869.0%2034.4max_  ………………………………..…….….. (4.33)
 

     
 

Therefore the maximum peak input current with ripple is 

A
I

II
rpp

pkrpk 774.4
2

869.0
34.4

2
max_max_ 


 …………………………………….….. (4.34) 

The duty ratio of the converter when the maximum current occurs is 

6428.0
42

15
11

0

min_

max 
V

V
D

in
………………………………..………………….…... (4.35)

  

The input inductor value is calculated as follows 

H
kHzfI

DV
L

swL

in
240

50832.0

6428.015maxmin_










 ……………………………………..…….…... (4.36)

 

    

 

Output capacitor: 

The output capacitor acts as an energy storage element. It stores energy when the input voltage 

and current are near their peak and provides this energy to the output load when the line is low. 

The point of reference for selection of capacitor is the endurable ripple in the output voltage. The 

peak charging current of the capacitor is 

A
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P
II
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ut
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0

_  ………………………………………….………….….. (4.37)

 

     

 

The output capacitor C0 can be determined by  

                                                           

………………………………………………….…………………...…... (4.38) 
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4.5.2 Design of the auxiliary circuit 

ZVS condition of switch: 

Fig. 4.9 shows the ZVS condition in soft-switching converter. To satisfy ZVS condition, current 

through resonant inductor should be greater than main inductor current in interval 4. The 

following equations describe current and voltage of resonant inductor during this interval [1].  
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Fig. 4.9: ZVS condition of switch 
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Resonant inductor: 

In Fig. 4.9, the time interval 2 is the rising time of resonant inductor current given by equation 

(4.47). To get maximum resonant current, the time interval 3, is selected as ¼ of the resonant 

period given by equation (4.48).  For proper selection of resonant inductor, interval 2 and 

interval 3 collectively can be set to 10% of minimum on time period. Sometime it is selected as 

50% of minimum on time [6]. 
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rL …………………………………..……... (4.51) 

HLr 10  

Resonant capacitor: 

The resonant capacitor is connected in parallel to the switch, so voltage of resonant capacitor and 

main switch will be similar at turn-off condition. To satisfy ZVS condition, it can be selected ten 

times of the output capacitance of the switch [1]. Simplified equation for resonant capacitor is 

given by equation (4.4) 
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4.6 Steady State Analysis of Converter 

The output voltage of converter can be obtained by averaging voltage path of diode and inductor 

over a switching period [4]. The output voltage is assumed to a constant voltage source and can 

be derived as follows:  

iTLTDo VVavgVavgV  }{}{ ……………………………………………...……………… (4.53) 

Where diode voltage average can be calculated as 
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Similarly inductor averaged voltage can be derived, above observation shows that design of 

output voltage is more difficult in case of soft switching techniques 
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The output voltage of proposed converter in terms of effD is given by 
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4.7 Specification of converter for Simulation 

Table 4.1 includes specifications of converter which are used for simulating the circuit in 

Psim9.0. 

Table 4.1 Converter specfication for simuation 

Sl. No. Parameter  Specification Value  

1 Output power  P0ut 60W 

2 Output voltage  V0ut 42V 

3 Input voltage Vin 15-25V 

4 Switching frequency  Fsw 50kHz 

5 Resonant inductor  Lr 10 µH 

6 Resonant capacitor  Cr 40nF 

7 Main inductor  L 240µH 

8 Output capacitor  C0 110µF 

 

4.8 Simulation Results 

Output voltage of PV is given as input to converter circuit. Here simulation results of soft-

switching converter are shown below. Fig. 4.10 shows the PWM signal given at gate terminal of 

switches S1 an S2. Fig. 4.11 shows current waveforms of main inductor current.  

 

Fig. 4.10: PWM signal for switch S1, S2 
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Fig. 4.11: Main inductor current 

Fig. 4.12 shows voltage and current waveforms of switchesiS1 and S2  representing soft switching 

operation of switches. 

 

 Fig. 4.12: Current and voltage across switch S1, S2 

Fig. 4.13 showsiswitchesiS1 and S2 are turned on with ZCS. Here switch voltage changes 20V to 

zero whereas current is slowly rising due to linearly charged resonant inductor.  
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Fig. 4.13: ZCS for switches S1, S2 at turn on 

Fig 4.14 shows switches S1 and S2 are turned on with ZCS. Here switch current changes 6A to 

zero whereas voltage is slowly rising due to linearly charged resonant capacitor. 

 

Fig. 4.14: ZVS operation for switches S1, S2 at turn off 

Fig. 4.15 shows curve of resonant inductor current and resonant capacitor voltage, these elements 

make circuit to operate in resonance in mode 3 of operation. Fig. 4.16 shows the diode current 

and voltage waveforms simultaneously.  
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        Fig. 4.15: Resonant inductor current and resonant capacitor voltage 

 

Fig. 4.16: Output diode voltage and current 

Fig. 4.17 shows the output voltage waveform of soft switching converter which is obtained 

approximately 42 V when 21 V from PV given as input with duty ration of 0.5 and 50 kHz of 

switching frequency. The efficiency of converter at full load is 95.9 %. Fig. 4.18 shows the 

output power of the converter at full load. The power at full load is 57.43 W. 
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Fig. 4.17: Output voltage of converter 

 

Fig. 4.18: Output power of converter 

4.9 Tabulation for losses and efficiency in hard and soft switching 

There are two types of losses which occur in soft-switching converter which are switching and 

conduction losses for calculation of these losses following formulas are used: 

For calculation of switching losses in main and auxiliary switch 








 


2
00

offon

swsw

TT
FIVP  

For calculation of conduction losses in main and auxiliary switch 

onrmsscondsw RIP 
2

__ 8.1  
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For calculation of conduction losses in diode 

avgDFcondD IVP __   

Total loses can be determined after summing the calculated losses 

Dcondswlosses PPPP   

Later efficiency can be calculated using rated output power value and losses 

100
0

0 













lossesPP

P
  

Table 4.2 Comparision of hard and soft-switching 

 

Sl. No. 

 

Load ( % ) 

 

Type of 

Switching 

 

Power Losses

)(WPlosses  

 

Output Power

)(WPo  

 

Efficiency

100(%)
0

0 













lossesPP

P


 

1 20 Hard 1.33 12 %90  

Soft 0.806 12 %7.93  

2 40 Hard 2.37 24 %91  

Soft 1.289 24 %9.94  

3 60 Hard 3.29 36 %61.91  

Soft 1.735 36 %4.95  

4 80 Hard 4.327 48 %73.91  

Soft 2.156 48 %7.95  

5 100 Hard 5.359 60 %8.91  

Soft 2.565 60 %9.95  
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4.10 Tabulation for current and voltages stresses  

The switching stresses in various element is calculated and tabulated in  

Table 4.3 Current and voltage stresses of various elements 

Sl. No. Specification Calculated Values 

 

1 

 

baseI  

 

AI 34.4max   

 

2 

 

baseV  

 

VVo 42  

 

3 

 

Voltage stresses of S1, S2, D1, 
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4 
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4.11 Conclusion 

In chapter soft switching boost converter is discussed. Operation modes with block diagram of 

the proposed system are illustrated. Theoretical waveform presenting the operational intervals is 

described. Simulation results of circuit with PV and MPPT is presented. Efficiency calculation is 

done for converter circuit and tabulated, which shows higher efficiency for soft switching 

converter. 
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CHAPTER-5 

CONCLUSION 

 

5.1iConclusion 

In this project simulation and design of soft switching converter is done. Efficiency of hard 

switching and soft switching converters are compared at varying load conditions, in which 

efficiency for designed soft switching converter is found to be much higher. Switching curves for 

converter circuit. Switching curves for soft-switching circuit are gradual which decreases 𝑑𝑖 𝑑𝑡⁄  

and 𝑑𝑣 𝑑𝑡⁄  rating and hence reduction in EMI achieved. 

 

5.2 Scope for Future Work 

In further work, proposed converter can be used as interleaved boost converter by connecting 

two such converters in parallel, this connection may result more increase in efficiency. A PID 

controller can be designed for the converter circuit for more stabilized output and its robustness 

can be verified. To get isolation without using transformers, coupled inductor topology can be 

constructed using designed circuit. The designed circuit can be used in stand-alone and grid 

connected PV system. The circuit can be used for power factor correction by slight modification. 
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