
ANALYSIS OF JAVA PROGRAMS

USING BYTECODE BASED FRAMEWORKS

Ranjan Kumar

Roll. 213CS3185 Master of Technology in Software Testing

under the supervision of of

Prof. Durga Prasad Mohapatra

Department of C.S.E

NIT Rourkela

Rourkela – 769008, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80148453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ANALYSIS OF JAVA PROGRAMS
USING BYTECODE BASED FRAMEWORKS

Dissertation submitted in

MAY 2015

to the department of

Computer Science and Engineering

of

NIT Rourkela

in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Ranjan Kumar

(Roll. 213CS3185)

under the supervision of

Prof. Durga Prasad Mohapatra

Department of C.S.E

NIT Rourkela

Rourkela – 769008, India

Computer Science and Engineering

National Institute of Technology Rourkela
Rourkela-769 008, India. www.nitrkl.ac.in

May 26, 2015

Certificate

This is to certify that the work in the thesis entitled ANALYSIS OF JAVA

PROGRAMS USING BYTECODE BASED FRAMEWORKS by Ranjan Kumar,

having roll number 213CS3185, is a record of an original research work carried out

by him under my supervision and guidance in partial fulfillment of the requirements

for the award of the degree of Master of Technology in Computer Science and

Engineering Department. Neither this thesis nor any part of it has been submitted

for any degree or academic award elsewhere.

Dr. Durga Prasad Mohapatra

Associate Professor

Department of CSE

NIT, Rourkela

Acknowledgment
First of all, I would like to express my profound feeling of respect and appreciation

towards my supervisor Prof.Durga Prasad Mohapatra, who has played a pivotal role

in successful completion of my thesis work. I want to express gratitude toward him

for acquainting me with the field of Program Slicing and giving me the chance to

work under him. His unified confidence in this area and capacity to draw out the

best of systematic and practical abilities in individuals has been pivotal in intense

periods. Without his pivotal guidance and help it would not have been possible

for me to finish this thesis. I am significantly obliged to him for his consistent

consolation and important guidance in every part of my academic life. I think of it

as my favorable luck to have got a chance to work with such a radiant person.

I thank our H.O.D. Prof. S.K Rath for their constant support in my thesis work.

They have been extraordinary wellsprings of motivation to me and I say thanks to

them from the bottom of my heart.

I would also like to thank PhD researchers Subhrakanta Panda, Jagannath Singh

and my friends Raj, Ravi and Rohan to give me their regular suggestions and

supportive gestures during the entire work.

At last but not the least I am in the debt to my family to support me regularly

during my harsh times.

I wish to thank all faculty members and secretarial staff of the CSE Department

for their sympathetic cooperation.

Ranjan Kumar

Abstract

Java SDG(System dependence Graph) API and JOANA (Java Object-sensitive

Analysis) are two bytecode based analysis frameworks available for analyzing object

oriented java programs for different applications. In the present era, the continuous

evolution of the customer expectations and requirements has resulted in the increase

of size of the software. This arises the problems in maintaining software. Both the

frameworks i.e Java SDG API and Joana consist of different variety of analysis

techniques which are based on dependence graph generation and computation of

slices of an input program. In our work, we make a comparative analysis study on

the effectiveness and efficiency of both these above mentioned analysis frameworks in

generating the corresponding intermediate dependence graph and computing slices.

The dependence graph we have generated is SDG and we have used backward slicing

approach in order to compute slices. The two-phase graph reachability algorithm is

used in our work in case of Java SDG API in order to perform slicing. The two web

start applications are used in order to generate and view SDG in case of Joana which

are IFC console and Joana graph viewer. The analysis is based on the bytecode of

the program under consideration. The experimental analysis shows that Joana can

be extended for more diverse applications.

Contents

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 2

1.3 Organization of the Thesis . 3

2 Fundamental concepts 4

2.1 Program Slice . 4

2.1.1 Static slicing . 4

2.1.2 Dynamic slicing . 4

2.1.3 Forward slicing . 5

2.1.4 Backward slicing . 5

2.2 Dependence Edges . 6

2.2.1 Control dependence edge . 6

2.2.2 Data dependence edge . 6

2.3 Dependence graph . 7

2.3.1 Program dependence graph 7

2.3.2 System dependence graph . 7

v

2.4 Graphviz . 8

2.5 Application of Program Slicing . 8

2.5.1 Differencing the programs . 9

2.5.2 Software Maintenance . 9

2.5.3 Refactoring . 9

2.5.4 Debugging . 10

2.5.5 Functional Cohesion . 10

2.5.6 Testing . 11

2.6 Summary . 11

3 Literature Review 12

4 Generation of SDG and Slice Computation 14

4.1 Block Diagram of our Approach . 14

4.2 Creation of SDG of Java programs 15

4.2.1 Statement dependency Graph 15

4.2.2 Method dependency Graph 15

4.2.3 Class dependency Graph . 16

4.2.4 Construct the JSDG . 16

4.3 Computing slices using Java SDG API 16

4.4 Computing slices using Joana . 19

5 Comparative analysis between Joana and Java SDG API 28

6 Conclusion and Further work 32

Dissemination 33

Bibliography 34

vi

List of Figures

2.1 An example program for Static and Dynamic Slicing. 5

2.2 Backward and forward slicing. 6

2.3 Example of Data dependence and Control dependence. 7

4.1 Block Diagram of our approach. 14

4.2 Functions in SDG API. 17

4.3 A sample source program. 18

4.4 SDG of the sample program shown in Figure 4.3. 19

4.5 Input program with respect to slicing criteria <19, z >. 20

4.6 System Dependence Graph showing the slices w.r.t slicing criterian

<19, z>. 21

4.7 Time required for SDG generation (t1)=187ms. 22

4.8 Time required for slicing (t2)=45ms. 23

4.9 A System Dependence graph of the program shown in Figure 4.3 . . . 24

4.10 Sliced System Dependence Graph. 24

4.11 Time required for SDG generation=187ms. 25

4.12 A Sample Source Program. 25

4.13 A System Dependence graph of the program shown in Figure 4.12. . 26

4.14 Sliced System Dependence Graph (Slice generated by performing

slicing at node 7.) . 26

4.15 Shows time required for SDG generation using Joana for sample

program shown in Figure 4.12. 27

5.1 Bar chart showing the timing analysis of Joana and Java SDG API. . 31

vii

List of Tables

5.1 Comparing Java SDG API and Joana. 28

5.2 A Comparison of slicing time between JOANA and Java SDG API

based on the input programs. 29

5.3 A Comparison of SDG generation time using JOANA and Java SDG

API based on the input programs. 30

viii

Chapter 1

Introduction

In the present era, efficiency of software is a key factor for which everybody is

looking for. So in our work, we review the Java programs via two frameworks i.e

Java SDG API and Joana. A well-known data structure in order to analyse programs

is dependence graph [2]. Testing, merging, understanding, debugging of programs

are few applications of program slicing [5,14]. The dependence relation among

statements should be known apriori for computing correct and precise slices of the

input program. Once the dependences among the program components are known,

the program is then graphically represented. Many such intermediate graphical

representations [1,3,4] have been introduced yet for effective program comprehension

and analysis.

Program Dependence Graph (PDG) [2] is a graphical representation of the

program under consideration. The different edges correspond to the dependency

among statements and vertices correspond to the statements which are present in

the program. SDG (System Dependence Graph) is a set of PDG. In order to handle

complex programs that consists of multiple procedures, PDG is not suitable. So, in

order to deal with this problem PDG is extended to SDG.

In our work, we analyze the effectiveness and efficiency of two frameworks i.e.

Java SDG API [5] and JOANA (Java Object-sensitive Analysis) [3], by generating

the dependence graph of the input program. The generated SDG is then used to

1

Chapter 1 Introduction

compute the slices with respect to some point of curiosity known as slicing criterion.

As both the frameworks under consideration are bytecode based, we compute the

slices taking the bytecode of the program as input.

1.1 Motivation

The type of software which we use in this present era is very large in size and

also complex in nature which makes us difficult to understand, maintain, test and

debug the code. In a program for locating the bugs, we search the entire program

statement by statement which is a tough and more time consuming task. In order

to deal with these issues, Weiser introduced an approach i.e. program slicing

that helps in finding the interdependence statements contained in the program.

The interdependence statements are the statements which shows the dependencies

between the statements of two different procedures. The slicing algorithms proposed

until now by the different researchers deals with Object oriented programming and

some of them deals with Aspect oriented programming [10]. They have taken SDG

for representing intermediate graph in order to compute slices but it is not assured

clearly about the generation of SDG and also not stated that which takes more time

in the process of computing slice.

1.2 Objectives

The major objectives of our work are:

� To construct an intermediate representation of Java programs known as SDG

with the help of two different frameworks i.e. Joana and Java SDG API.

� To compute the slice using the SDG generated by Joana and Java SDG API.

� To perform a comparative analysis between the results obtained for JOANA

and Java SDG API based on the input programs.

2

Chapter 1 Introduction

1.3 Organization of the Thesis

The thesis comprises of the below given chapters:

1. Chapter 1: This chapter comprises of the introduction part in which we discuss

about the two frameworks i.e. Joana and Java SDG API and also discuss the

program slicing concept. This chapter also includes motivation and objective

of our research work.

2. Chapter 2: This chapter shows the fundamental concepts which are useful and

related to our work.

3. Chapter 3: This chapter presents the literature review where we have explained

some existing works on SDG generation and program slicing.

4. Chapter 4: In this chapter, we show how the SDG is generated using the two

frameworks i.e Joana and Java SDG API and also compute the slices from the

generated SDG.

5. Chapter 5: In this chapter, we show a comparative analysis between the above

mentioned two frameworks.

6. Chapter 6: In this chapter, we conclude our research work.

3

Chapter 2

Fundamental concepts

In this chapter, we will discuss some basic concepts of program slicing which will

help to understand details of this chapter. Again we will discuss the concepts of

Dependence graphs and Graphviz.

2.1 Program Slice

A Set of statements that produces an effect on the value of a variable in a given

statement s is a program slice [14]. In this chapter, we will discuss the fundamental

concepts which are related to our work. In this section, we will discuss about different

types of program slicing.

2.1.1 Static slicing

In this type of slicing, the dependency among statements of the program is taken

into consideration for every conceivable input data.

2.1.2 Dynamic slicing

In this type of slicing [11], the dependency among statements of the program is taken

into consideration for a particular input data. It also helps to decrease the size of

4

Chapter 2 Fundamental concepts

imprecise computation of static slice.

Figure 2.1: An example program for Static and Dynamic Slicing.

In static slicing, slice with slicing criterion <7,x>contains line numbers

1,2,3,4,5,6,7. But in dynamic slicing, slice with slicing criterion <7,x>contains line

numbers 1,2,3,4,6,7.

Graph traversal based slicing techniques are:

2.1.3 Forward slicing

The subset of program statements under consideration, that might be influenced

by the variable of interest at the statement taken into consideration is a forward

slice [7].

2.1.4 Backward slicing

The subset of program statements under consideration, that might have influenced

the variable of interest at the statement taken into consideration is a backward

slice [7].

5

Chapter 2 Fundamental concepts

Figure 2.2: Backward and forward slicing.

2.2 Dependence Edges

Dependence edges correspond to the various dependences existing between the

statements of a program. In this thesis, we emphasize on two different kinds of

dependencies as given below:

2.2.1 Control dependence edge

Control dependence edge [10] is an edge that corresponds to the relationship among

the two operations. These two operations has the functionality that one executes

after the other. Also, it specifies the execution order of these operations.

2.2.2 Data dependence edge

An edge that corresponds to the relationship among the two statements where the

computational outcome produced by one statement is used by another statement is

data dependence edge [10]. The given below example shows the data dependence

and control dependence:

From the above example, statement s6 is data dependent on the statement s3

and statemnet s7 is control dependent on statement s5.

6

Chapter 2 Fundamental concepts

Figure 2.3: Example of Data dependence and Control dependence.

2.3 Dependence graph

The different statements of the program and the dependences among them are

modeled graphically to form the intermediate dependence graph. The two widely

used dependence graphs in the existing literature on program slicing are discussed

below:

2.3.1 Program dependence graph

A PDG is a graphical representation of a method in a program. This dependence

graph is a pivotal component in the process of generating SDG. Its edges represent

the control predicates and dependency among statements and nodes represents the

statements that builds the program.

2.3.2 System dependence graph

After looking at a complex program, we can say that a program does not only

consists of one single method, but comprises of several number of methods. For

such type of cases, a PDG is extended to SDG as PDG is not enough to represent

the entire information regarding the program. SDG helps us in producing more

7

Chapter 2 Fundamental concepts

precise slices from programs containing multiple procedures, because it contains the

information about actual procedures calling context. SDG is basically a collection

of PDGs. SDG consists of five new vertices more than PDG: Actual-in vertex,

Formal-in vertex, Actual-out vertex, Formal-out vertex and Call-site vertex. SDG

also comprises of three new kinds of edges which are:

� Parameter-in edge: Parameter-in edges are the edges that are added from

actual-in nodes at a call-site to the corresponding formal-in nodes in the called

procedure.

� Call edge: A call edge is an edge that is added from each call-site to the entry

node of the called procedure.

� Parameter-out edge: Parameter-out edges are the edges that are added from

formal-out nodes of each procedure to corresponding actual-out nodes at each

call-site.

2.4 Graphviz

Graphviz (Graph visualisation software) [17] is a package of open source tools

developed at AT&T labs Research for drawing graphs. Graphviz is an open source

software licensed under the Eclipse Public License. DOT language scripts are used

to read the contents of the graphviz file. It provides libraries for different software

applications to use along with other tools.

2.5 Application of Program Slicing

Program slicing has many applications which we have discussed below. Initially,

program slicing concept is used to develop automated code decomposition tools.

Program debugging is the primary objective behind the development of these tools.

8

Chapter 2 Fundamental concepts

The program slicing techniques has many applications in the field of software

development process.

2.5.1 Differencing the programs

Basically, software engineers discover difficulties to differentiate two programs.

So, program slicing technology can be utilized efficiently for differentiating two

programs. It makes a difference to discover all the parts of distinctive programs

having diverse conduct and to create a program that catches the semantic contrasts

between two programs by contrasting the backward slices of the vertices in two

dependence graphs. Here, the backward slice is computed with the help of slicing

criterion.

2.5.2 Software Maintenance

Software maintenance [15] is an expensive procedure due to the fact that every

change to a program source code must consider into numerous unpredictable

dependence relationships in the current programming. The most difficult part in

the software maintenance, is to comprehend different dependencies in the available

software and to make alterations to the currently available software without

presenting new issues, i.e. whether a code change in a program will make any

influence to the conduct of different codes of the program. In order to solve this

issue, it is pivotal to know which variables will be relied on upon which statements.

This issue can be diminished when the software will go through slicing technique

concept.

2.5.3 Refactoring

Basically, refactoring [15] is characterized as the procedure of enhancing the

configuration of currently available software frameworks. In such a situation, there

is a change in source code happens. At the time of changing, every transformation is

9

Chapter 2 Fundamental concepts

relied upon to save the conduct of framework. There is straightforward illustration

of refactoring is removing a procedure from one class to another. Henceforth for the

instance of refactoring, program slicing plays a pivotal part as it discovers the subset

of statements of a program which affect the value of a variable in a given statement

s.

2.5.4 Debugging

Debugging [15] helps in discovering and minimizing the number of defects in

the project. The process of discovering defects in a system is a troublesome

task. The procedure to discover a defect includes running the program many

number of times which is more time consuming task because we have to search

each line. In distributed system, this issue is more troublesome in view of

different dependencies i.e. control dependencies, data dependencies furthermore

communication dependencies that may discover extra defects. Program slicing

was initially proposed for looking at the procedure of debugging done by software

engineers. Software engineers virtually compute slice while debugging codes which

was troublesome and time consuming. That’s why, program slicing methods makes

a difference to discover the subset of explanations as indicated by their dependencies

from which it is simple to discover bugs in an efficient way.

2.5.5 Functional Cohesion

Cohesion [15] has the functionality to measure the degree to which the component

of a module belong to each other. When there is no further chance of division of

module into sub-module then the software is said to be highly cohesive. The cohesion

should be high in order to achieve a good quality software. We need program slicing

concept in order to get the interdependence statements within a program.

10

Chapter 2 Fundamental concepts

2.5.6 Testing

Testing [15] is basically used for finding the errors existing in software or a program.

In order to maintain software, there is a frequent use of regression testing. As we

know that errors occur while testing the software, we use regression testing to re-test

the software after the modifications. After making either a little change to the code

of the software, many tests are required in order to check that no more unwanted

behaviour arises due to that little change. So, new test cases are required along with

the previous test cases. For deducting the number of test cases, we use the slicing

concept.

2.6 Summary

This chapter explains about the program slicing concept and its various types. We

have also discussed about types of dependence edges and dependence graphs. We

have explained about the graphviz software which we have used further in order

to show the generated SDG. There is also an explanation of usefulness of program

slicing by describing its application.

11

Chapter 3

Literature Review

In this chapter, we explain the survey of some existing papers which are correlated

to our work.

Weiser [6] is the one who proposed the first program slicing approach for

procedure oriented programs. According to Weiser, program slicing is a method

of decomposition that helps in extracting the statements from programs, those

are pertinent for a particular computation. Program slicing is a new means of

decomposing the programs automatically. Limited to code previously written, it

may prove helpful during the testing, debugging, and maintenance of the software.

Horwitz et al. [18] introduced a SDG (System dependence graph) as an

intermediate representation for the programs which include multiple procedures.

They proposed two-phase graph reachability algorithms to compute the slices.

Larsen and Harold extended the SDG of Horwitz et al. [18] for representing object

oriented programs. They include many object oriented features such as class, objects,

inheritance, polymorphism etc on System Dependence graph.

Wang et al. [1] introduced a method that proceeds by backward traversal of the

byte code traces produced by an input I in a given program p.

Liang et al. [10] presented the generation of SDG with the help of object-oriented

programs. They presented an approach which is more accurate and efficient to

construct than existing approaches. They represented the SDG in such a way that

12

Literature Review

it supports precise slicing than other approaches. The generated SDG recognizes

data members which belong to different objects. In the case, when objects are

used as parameters their approach represents data members and also represents the

impacts of polymorphism on parameters and callsites. They have also presented a

concept of object slicing which helps the user to examine the impact of an object on

the slicing criterion.

Silva et al. [7] surveyed the existing work on program slicing-based techniques.

He described each individual technique by elaborating its characteristics and main

applications. He also showed an example of slicing by using each individual

technique. Each one of the slicing techniques is compared in order to get the detailed

information about the relations between them.

Walkinshaw et al. [2] introduced the concept of System Dependence Graph

consisting of muti-procedures. They presented a Java System Dependence Graph

which provides better speed and precision than conventional methods. They

represented object classes and interfaces in order to treat objects and object data

members of any operation individually.

13

Chapter 4

Generation of SDG and Slice

Computation

In chapter 4, we explain the process of SDG generation and slice computation

via two frameworks: Joana and Java SDG API, for analyzing the programs under

consideration.

4.1 Block Diagram of our Approach

Figure 4.1: Block Diagram of our approach.

The above figure shows actually how our tool works. First we create the class

14

Chapter 4 Generation of SDG and Slice Computation

file of the Java program to be sliced. Then we have to give that class file to our tool.

After that it finds all the dependence matrix using Java system dependence package

(JSD package). From that matrix it creates the SDG of that Java program. After

generating SDG, in order to compute slice of the specified Java program we have to

give a slicing criterion and then apply a slicing algorithm.

4.2 Creation of SDG of Java programs

A Java System Dependence Graph is a multi-graph which contains control and

data dependencies between the statements of a Java program. It contains classes,

methods, statements, interfaces to represent SDG of Java program. Each of these

represent graph separately and combine with hierarchical manner to make complete

SDG of Java program. Here, the statements are lower level then method level like

this all are connected in a hierarchical structure within the SDG. Now, we discuss

the different steps to create SDG.

4.2.1 Statement dependency Graph

Statements are the lowest level in SDG of Java program. A statement is basically an

atomic construct which represents a single expression in the program source code.

In order to represent a call to another method (a callsite), there is a requirement of

a special type of representation .

4.2.2 Method dependency Graph

It is used to represent a single method or procedure of a program. The method

entry vertex connects to other members of methods using control dependence edges.

Parameter passing is obtained by using actual and formal vertices. The called

procedure has formal-in and formal-out vertices, which use parameter variables

accordingly. There is a call dependence edge which connects between the call site

15

Chapter 4 Generation of SDG and Slice Computation

and the procedure being called.

4.2.3 Class dependency Graph

It represents the classes of the program. The next layer to method dependency

graph is class dependency graph. It contains class entry vertex to connect the

method entry vertices by using class member edges. Here, dependent classes are

connected by using class dependence edges.

4.2.4 Construct the JSDG

Here, we have taken one class named as JavaSDG to find all the information

regarding different dependence as discussed previously. This class contains different

linked list for storing different nodes and the dependencies between them. There is

a class named as ConvertJsdgToGv which converts Graph using all the information

from stored matrix. Finally, we give a specific path to store the SDG of input

program.

4.3 Computing slices using Java SDG API

SDG API helps in building a program slicing tool. This program slicing tool helps

in reducing the price invested during each cycle of software development and its

maintenance. SDG API also detects similar codes within the source code of a project,

therefore it is also an important issue to prevent the occurrence of similar problems.

Algorithm for slicing (two-pass graph reachability algorithm)

In our work, we employ the two-phase graph reachability algorithm proposed by

Horowitz et al. [17, 9] to compute the slices. The slicing algorithm basically consists

of two passes:

16

Chapter 4 Generation of SDG and Slice Computation

Figure 4.2: Functions in SDG API.

� Pass 1: The algorithm has the functionality of traversing backward along

all the edges except parameter-out edges, and marks all the vertices reached

during the traversal.

� Pass 2: The algorithm performs backward traversal from all the vertices

marked in the first pass. It traverses along all the edges except call and

parameter-in edges, and marks the vertices reached during the traversal.

� The final slice is given by the union of all the vertices marked in Pass 1 and

Pass 2.

Figure 4.2 shows SDG API functionalities which helps in creating SDG [5]. One

of the best way to know about ASM is to write a Java source file which is equivalent

to what you want to generate and after that for seeing the equivalent ASM code

use the ASMifier mode of bytecode plugin for eclipse. In Java SDG API, we utilize

bytecode based ASM framework [8] for analyzing and manipulating the bytecode.

ASM can be used in order to change existing classes or to dynamically create the

classes straightforwardly in binary form. The available frequent transformations and

analysis algorithms in ASM framework permit to effortlessly assemble customized

complex transformations and code analysis tools. A sample program given in Figure

4.3 is used to generate the SDG. The input program with respect to the slicing

criterion <19,z >is shown in Figure 4.5.

ASM offers the same functionality as other bytecode frameworks, but its major

goal is to focus on performance parameter and its ease of use. In order to do so, it

17

Chapter 4 Generation of SDG and Slice Computation

Figure 4.3: A sample source program.

should be made as small and as fast as possible. Due to this feature, it can be used

in dynamic systems. ASM is a name in itself as it has no full form.

Figure 4.4 shows the SDG of the sample program given in Figure 4.3. The

generated SDG of the sample program is visualized using graph vizualization tool.

In our work, the class file of the sample program as an input for generating the

corresponding SDG is considered. ASM framework is used here for analyzing

and manipulating the Java bytecode. Figure 4.5 shows the slicing criterion given

to compute the required slice with respect to the variable of interest. We have

considered node number 17 in order to compute the slice required. The node number

17 corresponds to statement number 19 in the sample program shown in Figure 4.3.

The node number in the SDG generated is decided by reading the input program

from top to down and by looking at the SDG generated corresponding to each

statement of the input program. We have generated a sliced SDG after performing

a backward slicing concept on node number 17 which is depicted in Figure 4.6. In

Figure 4.6, the solid lines represent a control dependence edge and the dotted lines

18

Chapter 4 Generation of SDG and Slice Computation

Figure 4.4: SDG of the sample program shown in Figure 4.3.

represent data dependence edge.

4.4 Computing slices using Joana

Joana is full bytecode based analysis framework for Java language. It builds a

system dependence graph (SDG) by taking source code of the program as input.

This graph corresponds to the information flow among the statements present inside

the program. SDG contains nodes that correspond to each statement of the program.

While the edges correspsond to the information flow between these nodes.

The edges of the SDG generated by Joana framework represent both the direct

dependencies through values called data dependencies and also indirect dependencies

known as control dependencies. When the outcome of a statement decides whether

another statement is to be executed or not then there comes the concept of control

dependencies. For example, the condition of an while-statement judge the execution

of the next statement. For creating a SDG using Joana, we need two web start

applications. The two web start applications are IFC console and Graph viewer [3].

19

Chapter 4 Generation of SDG and Slice Computation

Figure 4.5: Input program with respect to slicing criteria <19, z >.

IFC (information flow control) console has a number of applications. One of them

is the generation of system dependence graph. IFC console is a GUI (graphical user

interface) that hides the majority of JOANAs internal characteristics. The SDG

generated by the IFC console is viewed by an application i.e. Graph viewer. Graph

viewer has also the feature of computing slices and chopping on the generated SDG.

Another source program as given in Figure 4.12 is taken to demonstrate the SDG

generated by Joana. The SDG shown in Figure 4.13 contains five more new types

of vertices as compared to PDG:

� Call site Vertex: Call vertices represent a call site vertex in a method.

� Actual-in vertex: This vertex shows the flow of actual parameters to call

temporaries.

� Actual out: This vertex represents the flow of actual parameters from return

temporaries.

20

Chapter 4 Generation of SDG and Slice Computation

Figure 4.6: System Dependence Graph showing the slices w.r.t slicing criterian <19,

z>.

� Formal-in vertex: This vertex is the callee analogs of actual-in vertex.

� Formal-out: This vertex is the callee analogs of actual-out vertex.

Formal-in parameters receives the values from call sites and formal-out

parameters receives the return values. Formal-in vertex is control dependent on

the entry node of the called procedure during par-in edge representation and

formal-out vertex is control dependent on the entry node of the procedure during the

representation of par-out edge. The statements call can be made in two ways either

from the actual parameters to call temporaries or from return temporaries to actual

parameters. This explicit modeling of procedure invocation restricts dependences

between procedures to dependences between actual-in vertices to formal-in vertices

and from formal-out vertices to actual-out vertices. The Figure 4.14 represents a

sliced system dependence graph for the sample program given in Figure 4.12. We

have taken node number 7 as slicing criterion for computing the slice.

The time required for SDG generation is shown in Figure 4.15. Joana takes

21

Chapter 4 Generation of SDG and Slice Computation

Figure 4.7: Time required for SDG generation (t1)=187ms.

166ms in order to generate SDG and also it calculates the space required by SDG

which is 50M for the program shown in Figure 4.12.

22

Chapter 4 Generation of SDG and Slice Computation

Figure 4.8: Time required for slicing (t2)=45ms.

Total time =Time for SDG generation + Time for slicing= t1+t2 =187+45

=232ms.

23

Chapter 4 Generation of SDG and Slice Computation

Figure 4.9: A System Dependence graph of the program shown in Figure 4.3

Figure 4.10: Sliced System Dependence Graph.

24

Chapter 4 Generation of SDG and Slice Computation

Figure 4.11: Time required for SDG generation=187ms.

Figure 4.12: A Sample Source Program.

25

Chapter 4 Generation of SDG and Slice Computation

Figure 4.13: A System Dependence graph of the program shown in Figure 4.12.

Figure 4.14: Sliced System Dependence Graph (Slice generated by performing slicing

at node 7.)

26

Chapter 4 Generation of SDG and Slice Computation

Figure 4.15: Shows time required for SDG generation using Joana for sample

program shown in Figure 4.12.

27

Chapter 5

Comparative analysis between

Joana and Java SDG API

Table 5.1 shows that both the frameworks support the analysis of Java bytecode

and generation of SDG. The different features that are supported by either of the

frameworks are also shown in Table 5.1. There are many features that each one of the

framework supports. Here, we have considered each one of these features to perform

a comparative study. Figure 5.1 shows a comparative study between Joana and Java

SDG API frameworks by taking eleven different programs into consideration. Also,

we have taken a comparison between Joana and Java SDG API in terms of slice

computation time which is shown in Table 5.2 . This is evident that Java SDG API

Table 5.1: Comparing Java SDG API and Joana.

Framework Joana Java SDG API

SDG Generation Yes Yes

Slicing Yes Yes

Chopping [9] Yes No

Integrity and confidentiality Yes No

28

Comparative analysis between Joana and Java SDG API

is a more prominent framework in terms of nodes and edges as it requires less number

of nodes and edges than Joana framework. Thus, requiring less space to represent

the intermediate SDG. As a result Java SDG API seems to be more scalable for

industrial applications. On the other hand, Joana is more efficient in generating

the required SDG in lesser time. However, the accuracy of the intermediate graph

generated by Java SDG API is essential to be studied and is left for future work.

Table 5.2: A Comparison of slicing time between JOANA and Java SDG API based

on the input programs.

S.No Program LOC Slicing criterion: (L, v) Time required by Java

SDG API for slicing(ms)

Time required by

Joana for slicing(ms)

1 Find largest number 23 <19,z > 45 37

2 Binary Search 38 <25,middle > 73 51

3 Quick Sort 49 <45,i > 129 112

4 Check Palindrome 22 <22,temp > 38 34

5 system clock 19 <21, day > 31 26

6 Type casting 26 <25, j > 36 28

7 Factorial 20 <18, output > 37 31

8 Fibonacci series 22 <20, j> 35 30

9 Floyds triangle 19 <16, k> 34 29

10 Armstrong 24 <24, temp> 40 34

11 Decimal to binary 20 <20, m> 34 30

conversion

The contents of Table 5.2 and 5.3 is represented in the form of bar chart in

Figure 5.1. In Figure 5.1, X axis represents program names and Y axis represents

the time required for SDG generation and slice computation. That bar chart shows

that Joana is more effective in terms of time required for computing slices.

29

Comparative analysis between Joana and Java SDG API

Table 5.3: A Comparison of SDG generation time using JOANA and Java SDG API

based on the input programs.

S.NO. Program Name Joana Java SDG API

Number of

nodes

Number of

edges

Time required for

SDG

generation(ms)

Number of

nodes

Number of

edges

Time required for

SDG

generation(ms)

1. Find largest

number

264 1374 187 19 41 187

2. Binary Search 546 2921 225 29 64 722

3. Quick Sort 443 2391 208 63 119 458

4. Check

Palindrome

843 4521 268 17 31 457

5. Demonstrate

system clock

973 5408 304 13 25 388

6. Demonstrate

type casting

1689 9722 406 16 24 409

7. Factorial using

recursion

378 1934 187 22 31 406

8. Fibonacci series 744 4039 261 19 28 407

9. Floyd’s triangle 927 5002 285 18 28 399

10. Check for

Armstrong

897 4866 284 18 33 442

11. Decimal to

binary

conversion

825 4407 287 16 27 388

30

Comparative analysis between Joana and Java SDG API

Figure 5.1: Bar chart showing the timing analysis of Joana and Java SDG API.

31

Chapter 6

Conclusion and Further work

The existing literature shows that program slicing concept helps in solving different

types of problems. A generalization or combination of earlier slicing technique is

required by every applications. In our work, we have reified the SDG generation

and computed slice by applying backward slicing approach using Java SDG API and

JOANA frameworks. Also, we have performed a comparative analysis between these

two frameworks by taking various parameters into consideration such as number of

nodes, number of edges and the time of computing the slices. The comparative

analysis study shows that Joana provides more features than the Java SDG API

and also it is more efficient with respect to the time required to generate the SDG.

Whereas, in terms of number of nodes and edges, Joana requires more number

of nodes and edges. Hence, the space complexity of Java SDG API is better as

compared to Joana.

As for the future work, we are planning to utilize the Java SDG API framework

for providing integrity and confidentiality to the information within the program and

also perform chopping using Joana for program testing and security analysis. We

also focus to take some industrial benchmark programs to carry out our analysis.

32

Dissemination

1. Ranjan Kumar, Subhrakanta Panda and Durga Prasad Mohapatra, Analysis of Java

Programs using Joana and Java SDG API, 4th international conference on Advances in

computing, communication and Informatics (ICACCI-2015). 10-13 August, Kochi, Kerala,

India.(Communicated)

Bibliography

[1] T.Wang, A.Roychoudhary, “Slicing on Java Bytecode trace”, ACM Trans. Program.syst. 30,

2, Article 10, March 2010.

[2] N. Walkinshaw, M. Roper and M. Wood,“The Java System Dependence Graph”, in the

Proceedings of the third IEEE international workshop on sourcecode analysis and manipulation,

pp. 55-64, September 2003.

[3] The IFC(Information flow control) console and Graph Viewer,

http://pp.ipd.kit.edu/projects/joana/.

[4] F. Umemori, K. Konda, R. Yokomori and K. Inoue, “Design and implementation of

bytecode-based java slicing system”, in Proceedings of the third IEEE International Workshop

on Source Code Analysis and Manipulation, pp. 108-117, 2003.

[5] A JSDG(Java System Dependence Graph) API, http://www4.comp.polyu.edu.hk/ cscllo/teaching/SDGAPI/.

[6] M. Weiser, “Program Slicing”, IEEE Transaction on Software Engineering, pp. 352-357, 1984.

[7] J. Silva, “A vocabulary of program slicing-based techniques”, ACM computing surveys(CSUR),

44(3), June 2012.

[8] E. Kuleshov, “Using the ASM framework to implement common java bytecode transformation

patterns”, Aspect-Oriented Software Development, 2007.

[9] J. Krinke, “Barrier slicing and chopping”,in Proceedings of third IEEE International Workshop

on Source Code Analysis and Manipulation, pp. 81-87, September 2003.

[10] D. Liang and M. J. Harrold, “Slicing objects using system dependence graphs”, in Proceedings

of international conference on Software Maintenance, pp. 358-367, November 1998.

[11] H. Agrawal and J. Horgan, “Dynamic Program Slicing”, SIGPLAN Notices, vol. 25, no. 6,

pp. 246-256, 1990.

34

Bibliography

[12] Z. Ujhelyi, A. Horvth and D. Varr, “Dynamic backward slicing of model

transformations”,IEEE Fifth International Conference on Software Testing, Verification

and Validation (ICST), pp. 1-10, April 2012.

[13] L. Chen, and B. Xu, “Slicing Java generic programs using generic system dependence graph”,

Wuhan University Journal of Natural Sciences, 14(4), pp. 304-308, 2009.

[14] B. Xu, J. Qian, X. Zhang, Z. Wu and L. Chen, “A brief survey of program slicing”, ACM

SIGSOFT Software Engineering Notes, vol. 30, no. 2, 2005.

[15] De Lucia, Andrea, “Program slicing: Methods and applications”, In 2013 IEEE 13th

International Working Conference on Source Code Analysis and Manipulation (SCAM), pp.

0144-0144. IEEE Computer Society, 2001.

[16] J.Zhao, “Slicing concurrent Java programs”, In Proceedings of Seventh International

Workshop on Program Comprehension, pp. 126-133, 1999.

[17] J. Ellson, E. Gansner, L. Koutsofios, S. C. North and G. Woodhull, “Graphvizopen source

graph drawing tools”, In Graph Drawing, pp. 483-484. Springer Berlin Heidelberg, 2002.

[18] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using dependence graphs”, ACM

Transactions on Programming Languages and Systems (TOPLAS), vol.12, no. 1, pp.26-60, 1990.

35

	Certificate
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Organization of the Thesis

	Fundamental concepts
	Program Slice
	Static slicing
	Dynamic slicing
	Forward slicing
	Backward slicing

	Dependence Edges
	Control dependence edge
	Data dependence edge

	Dependence graph
	Program dependence graph
	System dependence graph

	Graphviz
	Application of Program Slicing
	Differencing the programs
	Software Maintenance
	Refactoring
	Debugging
	Functional Cohesion
	Testing

	Summary

	Literature Review
	Generation of SDG and Slice Computation
	Block Diagram of our Approach
	Creation of SDG of Java programs
	Statement dependency Graph
	Method dependency Graph
	Class dependency Graph
	Construct the JSDG

	Computing slices using Java SDG API
	Computing slices using Joana

	Comparative analysis between Joana and Java SDG API
	Conclusion and Further work
	Dissemination
	Bibliography

