
Development and Hardware Implementation of a
Phasor Measurement Unit using Microcontroller

Thesis submitted to

National Institute of Technology, Rourkela

For award of the degree

of

Master of Technology

by

Debashish Mohapatra

Under the guidance of

Prof. Pravat Kumar Ray

DEPARTMENT OF ELECTRICAL ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA

CERTIFICATE

This is to certify that the thesis entitled DEVELOPMENT AND HARDWARE IM-

PLEMENTATION OF A PHASOR MEASUREMENT UNIT USING MICROCON-

TROLLER, submitted by DEBASHISH MOHAPATRA to National Institute of Tech-

nology, Rourkela, is a record of bona fide research work under my supervision and

we consider it worthy of consideration for award of the degree of Master of Tech-

nology of the Institute.

Prof. Pravat Kumar Ray

(Supervisor)

ACKNOWLEDGEMENTS

I express my sincere gratitude to my supervisor, Dr. Pravat Kumar Ray for his valuable

guidance and suggestions without which this thesis would not be in its present form. I also

thank him for his consistent encouragements throughout the work.

I express my gratitude to Prof. Anup kumar Panda, the Head of the Department of

Electrical Engineering, NIT Rourkela for extending some facilities towards completion of

this thesis. Thanks also to other faculty members in the department.

I express my gratitude to Mr. Rama Prasad Samantaray, Simulation and computing lab,

Department of Electrical Engineering, NIT Rourkela for his help in setting up some facilities

for the real time implementation and verification of the subject matter of this thesis.

I thank Abhilash, Abhishek, Sudipta, Anupam, Pavan and other fellow M.Tech scholars

for their enjoyable and helpful company I had with.

My warmest thanks go to my family for their support, love, encouragement and pa-

tience.

Debashish Mohapatra

Rourkela

to my family

Abstract

As the world continues to move towards a Smarter Grid day by day, it has become the

necessity to incorporate real-time monitoring of the grid wherein the instantaneous snap-

shot of the health of the grid can be made available. No other parameters than the Instan-

taneous Phasors, considered to be the heart-beats of the Electrical Grid, can represent the

complete health status of the grid. This paper discusses how an Open Hardware Platform

(Arduino Due with ARM Cortex M3 Micro-controller) can be used to estimate the phasors

of a three phase system in real-time. The Pulse Per Second(PPS) signal from a GPS module

is used to generate the sampling pulses. These pulses synchronise the sampling process by

the Analog to Digital Converters(ADC), used by the PMU throughout the globe because of

the high accuracy of the atomic clocks in the GPS satellites. The microcontroller uses a 64-

Point DFT algorithm to estimate the phasors. The reference time is obtained from the GPS

module which is the UTC time, with which the phasors are time stamped and displayed

in a real-time Graphical User Interface(GUI) designed using Python(another open source

programming language).

Contents

Abstract i

List of Acronyms v

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Literature Review . 2

1.1.1 GridTRAK PMU . 3

1.1.2 DTU PMU . 4

1.1.3 The openPDC . 4

1.2 Shortcomings of currently developed PMUs . 5

1.3 Current status of work done in the area . 6

1.3.1 National status . 6

1.3.2 International status . 6

1.4 Concluding Remarks and Scope of the Present Work 7

2 Hardware Design and Implementation 9

2.1 Phasor Calculation for 3-phase system . 9

2.2 Signal Acquisition . 11

2.2.1 Three Phase Signal Acquisition and Conditioning 11

2.2.2 Programmable 3-phase signal generator 14

2.3 Method of frequency estimation . 17

2.4 GPS Disciplined Oscillator(GPSDO) . 19

iv CONTENTS

2.5 Sampling and Time Stamping . 20

2.5.1 Sampling of the signals with in built ADC (Analog to Digital Converter) 20

2.5.2 Time Stamping with GPS Universal Coordinated Time(UTC) 21

2.6 Phasor Calculation . 22

2.7 Local Display Terminal . 24

2.8 Power Supply Unit . 25

2.8.1 Step-Down Transformers . 25

2.8.2 Diode Bridge Rectifiers . 25

2.8.3 Smoothing Capacitor . 26

2.8.4 Linear drop-out voltage regulator . 26

3 Experimental Results and Discussion 29

3.1 The Experimental Setup for Testing of the PMU 29

3.2 Method of PMU Data acquisition and Plotting 31

3.3 Analysis of the Phasors reported by the PMU 35

3.4 Discussion . 36

4 Conclusion 39

4.1 Proposed directions for future work . 40

References xi

Appendices xiii

A Arduino Codes for Microcontrollers xv

A.1 Arduino code for the GPS Disciplined Oscillator xv

A.2 Arduino code for the 3 Phase Signal Generator xvi

A.3 Arduino code for temperature controlled regulated power supply xviii

A.4 Arduino code for Phasor estimation using 64-Point DFT xxi

A.5 Arduino code for PMU communication unit . xxviii

A.6 Arduino code for local PMU data display unit xxxiv

B Python Codes for Computer xli

B.1 Python program for real-time plotting and logging of the Phasors xli

B.2 Python program for offline plotting of phasor data xlvi

List of Acronyms

PMU : Phasor Measurement Unit

COF : Change of Frequency

ROCOF : Rate Of Change Of Frequency

GPS : Global Positioning System

GPSDO : GPS Disciplined Oscillator

PPS : Pulse Per Second

ADC : Analog to Digital Converter

SPI : Serial Peripheral Interface

PROGMEM : Program Memory

I2C : Inter Integrated Circuit

UART : Universal Asynchronous Receiver and Transmitter

TFT : Thin Film Transistor

UTFT : Universal TFT

UTC : Universal Coordinated Time

ARM : Advanced RISC Machines

LDO : Linear(Low) Dropout Regulator

USB : Universal Serial Bus

vi CONTENTS

LAN : Local Area Network

GUI : Graphical User Interface

CSV : Comma Separated Values

MSE : Mean Square Error

TVE : Total Vector Error

ISR : Interrupt Service Routine

CPU : Central Processing Unit

DMA : Direct Memory Access

RAM : Random Access Memory

FPGA : Field Programmable Gate Array

List of Figures

2.1 Block diagram of the Proposed PMU . 11

2.2 Schematics for 3 Phase signal acquisition board Part I 12

2.3 Schematics for 3 Phase signal acquisition board Part II 13

2.4 The developed 3 Phase signal acquisition board 13

2.5 Schematics of the programmable 3 phase signal generator Part I 15

2.6 Schematics of the programmable 3 phase signal generator Part II 16

2.7 Hardware of the programmable 3 Phase Signal generator 17

2.8 Schematics for AC to Square wave conversion 18

2.9 Schematics for the GPS Disciplined Oscillator 20

2.10 Flow Chart of the Programmed GPS Disciplined Oscillator 21

2.11 Flow Chart of the Phasor Processor . 23

2.12 Hardware of the Phasor Processor . 24

2.13 Schematics for the Positive Power Supply . 27

2.14 Schematics for the Dual Power Supply . 28

2.15 The designed Power Supply Unit for PMU . 28

3.1 The Developed Laboratory Prototype of the PMU 30

3.2 Pulses from the GPSDO . 30

3.3 Square wave pulses for frequency measurement 31

3.4 Phasors displayed on the PMU LCD . 32

3.5 A screenshot of the reported data from PMU over Serial Terminal 32

viii LIST OF FIGURES

3.6 A screenshot of the reported data from PMU over Ethernet(LAN) 33

3.7 The acquired 3-phase voltage samples by the ADC 33

3.8 A screenshot of the Developed Python GUI for PMU 34

3.9 Reported Phasors by the PMU at a frequency of 49.95 Hz 36

3.10 Reported Phasors by the PMU at a frequency of 49.65 Hz 36

3.11 Reported Phasors by the PMU at a frequency of 50.30 Hz 37

4.1 Revised Architechure of the Proposed PMU . 40

4.2 Proposed framework for testing the PMUs . 41

List of Tables

2.1 Components required to build the Voltage Sensor Module 12

2.2 Components required to build the programmable 3-phase sine wave generator 15

2.3 Components required to build the Phasor Processor 22

2.4 Power requirement of the various module . 26

2.5 Components required to Build the Power Supply Unit 27

3.1 Mean Square Error of the Phasor Magnitudes 37

3.2 IEEE Standard Compliance of the PMU . 38

3.3 Expenditures in building a low-cost prototype PMU 38

C H A P T E R 1

Introduction

The load dispatch centres in a large power system supervise and control over the trans-

mission network and it takes preventive actions to avoid any sort of system failure which

can hamper electricity distribution. With ever increasing size and complexity of the power

system, the ability to detect any faults in the power system is heavily dependent on the real

time information available to the operator. Traditionally, analog and digital information

(status of circuit breaker, power flow and frequency) is measured at the substation level

and transmitted to load dispatch center using supervisory control and data acquisition sys-

tem (SCADA) or energy management system (EMS). The major limitation of SCADA or

EMS is the inability to accurately calculate the phase angle between a pair of substations.

In SCADA or EMS, phase angle is either estimated from available data or is calculated of-

fline. Phasor Measurement Units (PMU) overcome the limitations of SCADA and EMS by

accurately calculating the phase angle between a pair of grid.

Synchronized phasor measurement units were introduced in the mid-1980s as a solution

for the need of more efficient and safer monitoring devices for Electric Power Systems(EPS).

Since then, measuring Electric Power System (EPS) parameters of voltage and current in

relatively distant buses has received great attention from researchers. Such measurements

are performed by phasor measurement units (PMUs), synchronized by Global Positioning

System (GPS) satellites.

The advantage of referring phase angle to a global reference time is helpful in capturing

the wide area snap shot of the power system. Effective utilization of this technology is very

2 Introduction

useful in mitigating blackouts and learning the real time behavior of the power system.

Since the bus voltage angle of a power system is very closely linked with the behavior of a

network, its real time measurement is a powerful tool for operating a network.

A commercial PMU measures the voltage and angle of a particular grid at 25 samples

per second. The phase information is synchronized with Global Positioning Systems (GPS)

satellite and is transmitted to Phasor Data Concentrator (PDC) through a high speed com-

munication network. The time stamped phase information is called synchrophasor. There

are several benefits of PMU such as monitoring of EPS and network protection. The mea-

surement of voltage and current in remote bus allows the operator to make a concrete deci-

sion about the maintenance and security of the system in the face of various uncertainties.

As on 31st May 2012, fourteen PMUs are commissioned in India [23].

1.1 Literature Review

The measurement of voltage phase angles using synchronized clocks for power system

applications dates back to the early 1980s when measurements of voltage phase angles were

carried out between Montreal and SEPT-ILES [3], [4], and parallel efforts by Bonanomi in

1981 [5].

However, the synchrophasor technology available today emerged from the early efforts

by Phadke et al. at Virginia Tech as described in [6], [7]. Phadke demonstrated the first

synchronized PMU in 1988, and in 1991 Macrodyne Inc. launched the first commercial

PMU product [8]. Due to the cost of early PMU devices, PMU technology has historically

been limited to transmission system applications where the business case justified expen-

sive phasor analysis equipment. One of the early applications that is important to mention

is the implementation of the wide-area protection system Syclopes in France in the early

1990s, which was the first functional application of early forms of PMUs [9].

The cost of the the components from which PMUs are assembled (such as GPS receivers,

microprocessors, and storage devices) have been dropped significantly due to the Recent

developments across the electronics sector. As a consequence, PMUs have reached price

points that have made them an attractive tool for the distribution systems and embedded

generation.Many PMUs are sold as dedicated devices which offer event recorder type func-

tionality. Costs for such units vary between US $6000 and US $15000 depending on the

specification. Many equipment vendors have begun to offer PMU functionality as a sup-

plementary feature on other products in their range, such as protection relays [10].

1.1 Literature Review 3

The standard for PMU devices is maintained by the IEEE C37.118 Working Group. IEEE

Std. C37.118 [1] was released in 2005 and subsequently updated in 2011. The latest release

comes in two parts; IEEE C37.118.1-2011 [1] describes how synchrophasors should be es-

timated and gives certification requirements while IEEE C37.118.2-2011 [2] describes data

representation and data transfer. Concerns have been raised regarding the transient per-

formance of PMUs under the 2005 standard [1], [11], [12]. These concerns are addressed in

the 2011 release of the standard. IEEE C37.118.1-2011 states that it defines synchrophasors,

frequency, and rate-of-change-of frequency measurement under all operating conditions

[1].

A significant barrier regarding the use of PMU technology in research is the closed phi-

losophy under which commercial PMU devices are developed and sold. Commercial ven-

dors tightly guard their hardware and software designs, meaning that the measurement

processes and algorithms are not known to researchers. This has led to some research de-

partments developing their own PMU systems. Many designs utilize lowcost hardware,

such as described in [13]. Two university projects are described in this section. Duplication

of such work leads to lost time and resources. The OpenPMU project provides a common

set of resources for PMU development and research collaboration. The successful open-

source Phasor Data Concentrator, openPDC [14], is discussed, and the rational for using an

open-source model is developed.

1.1.1 GridTRAK PMU

The GridTrak PMU was produced at Baltimore University by Stadlin [15]; subsequently,

the design has been published under open-source license. The aim of GridTrak is to produce

an inexpensive PMU that can be widely distributed, among researchers and amateur enthu-

siasts, allowing widespread monitoring of the distribution network. The design works via

a zero crossings technique, making the unit simple and robust; however, the loss of point-

on-wave information reduces GridTraks applications.

The GridTrak hardware converts the ac measurement signal into three square waves

triggered at the crossing of reference voltages. Frequency estimation is determined by the

interval between the crossings while voltage is estimated by imposing a perfect sine wave

on the full set of crossing points and determining the magnitude. The GridTrak incorporates

a GPS module from which it derives time and estimates phase angle. This design is limited

to single phase measurements, and all point-on-wave and harmonic information is lost.

4 Introduction

1.1.2 DTU PMU

The DTU PMU [16] was produced in several stages at the Technical University of Den-

mark. The DTU PMU utilizes two PCs to monitor the ac voltage signal, actively synchro-

nizing the sample rate to 64 or 128 samples per cycle, to fit the waveform [17]. The first PC

runs MS-DOS in a near real-time state, stripping out background programs that might in-

terrupt measurements. These measurements are packeted and exported to the second PC at

intervals of 20 ms. The second PC runs Labview; in this environment waveform parameters

are estimated and the information is archived locally as well as exported in IEEE C37.118

format to a central location.

The PMU was thoroughly tested in house before ten models were installed across the

Danish electricity transmission and distribution grid including wind farms and consumer

supply [18]. Through ambient monitoring, this wide-area monitoring system has success-

fully detected many transient system events as-well-as identifying a 0.8 Hz inter-area oscil-

lation, believed to arise from rotor interaction between generators in Sweden and Eastern

Denmark.

1.1.3 The openPDC

The openPDC was developed in the wake of the Northeast Blackout of 2003 [19]. After

the blackout, there were recommendations of many grid improvements including increased

real time observability. The Super PDC began its development by the Tennessee Valley Au-

thority in 2004 to monitor and archive the PMUs installed by itself. The code was released

in 2010, under an open-source license, and the Grid Protection Alliance took on respon-

sibility of developing the program and entered into a contract with the North American

Electric Reliability Council. The openPDC online community [14] has taken the venture of

recording the history and development of openPDC and associated projects. The openPDC

is utilized by the North American Synchrophasor Initiative.

The openPDC runs as a Windows Service programmed in the Microsoft Visual Basic

Studio (Linux versions are also available). It exists as a modular set of programs that can be

combined in different forms to achieve different results. Modules, or Adapters as they are

called, are activated through Structured Query Language (SQL) commands in the assigned

database (DB) and can be reprogrammed through Visual Basic. The openPDC system pri-

marily operates between real-world telecommunications infrastructure and an archive DB.

The adapters within openPDC can be subdivided into three groups: Input, Action, and

1.2 Shortcomings of currently developed PMUs 5

Output adapters. The input adapters receive the raw telecommunications information (in

any of the major synchrophasor communication standards including C37.118), process it to

extract the relevant data, and then send it for processing or archival in the SQL DB. Action

Adapters can process in real time or post event as well as fulfilling the concentrate/com-

press functions in the DB. Furthermore, Action Adapters can introduce new measurements,

for example by importing Comma Separated Value (CSV) files into an existing archive DB.

Output adapters can be used to forward data in a chosen communication language such

as to emulate a physical PMU. In this way the openPDC can operate a diverse variety of

user-specific configurations.

1.2 Shortcomings of currently developed PMUs

Commercial PMUs are already available in the market, but they often come with a very

high price tag and strict copyright limitations. The schematics of the PMUs are not openly

available as their business policies go against it. The algorithm or methodology of how a

PMU actually operates, how it calculates the phasors of the sampled voltage and current

signal, what sort of algorithm it follows etc. are also guarded by copyright laws. These

PMUs do not allow to be used for educational or academic research purposes.

Therefore an open hardware platform is desired which can be reconfigured to suit the

requirement of the client. Building a low cost hardware platform for the PMUs might have

proven a costly endeavour in the past but recent advances and wide availability of low cost

high performance micro-controller platforms have given rise to many possibilities which

can be exploited to build the desired PMU. There has been a growing attempt to manu-

facture a cost effective open source PMU for research and academic purpose. Quite a few

attempts to build open source PMU have been reported in literature.

An open source PMU has been reported in [24] which is built using LabVIEW environ-

ment. The open PMU adheres to the IEEE standards. Norwegian transmission system op-

erator (Statnett SF) in collaboration with SmarTS lab at KTH Royal Institute of Technology

developed a software development toolkit for synchro phasor application. The developed

openPMU’s hardware design and the firmwares are open-source [25], [26]. Since it uses

LabVIEW and NI DAQ card for signal acquisition, which are property of National Instru-

ments, the PMU itself is not completely open. Hence there is a need to develop both the

hardware and the software of the PMU using Open-source Hardware and Software.

6 Introduction

1.3 Current status of work done in the area

1.3.1 National status

• Tetra Tech, Bangalore is working on typical challenges associated with connecting Re-

newable Energy Sources to the Micro-grid using PMU and finding technical solution

being explored on grid extension, conventional back up power, demand side manage-

ment and in large scale electricity storage

• National Instruments Limited is involved in Micro-grid automation using communi-

cation technologies ,sensors and PMU

• GE (General Electric) Power deals with R & D Systems on Renewable Energy systems

and on integration aspects of PMU in smart grid

• IIT Bombay has developed iPDC, a free Phasor Data Concentrator.

1.3.2 International status

• Queen’s University Belfast, United Kingdom, KTH, Royal Institute of Technology,

Sweden, Letterkenny Institute of Technology, Ireland jointly undertaking a project

to develop an Open PMU Platform.

• Grid Protection Alliance (Open Source Software & Services for Electric Utilities), is

developing OpenPDC (Open Source Phasor Data Concentrator).

• Sharif University of Technology, Tehran is doing his research on control design ap-

proach on three phase grid connected Renewable Energy Resources.

• Queens University Kingston is working on this area of filtering Techniques in three

phase power systems.

• University Park, Notingham, UK is continuing his research on Control Design and

Implementation for High Performance Shunt Active Filters in Aircraft Power Grids.

1.4 Concluding Remarks and Scope of the Present Work 7

1.4 Concluding Remarks and Scope of the Present Work

The review undertaken leads to some open problems that appears not to have been

addressed so far in literature. These are as follows.

• While quite a few attempts of building a OpenPMU have been made in the past, the

idea of using Open Source Hardware to build a PMU has not been considered.

• Most Prototype PMUs described in literature do not consider the important features

of a practical PMU such as use of a GPS synchronised clock, a true signal acquisition

system and a user friendly PMU data presentation system.

• Lack of using generalised Hard-wares, which have a global presence, in the develop-

ment of a PMU, makes it impossible to re-trace the phases of development and any

opportunity to improve the design vanishes along with it.

• Hence there exists a need to build a cost-effective, Microcontroller based Phasor Mea-

surement Unit which can report the Voltage and Current Phasors, satisfying the IEEE

PMU Standards which can not only be used for R & D purposes but also be put to

operation as the proven building block of a Smart Grid.

• This thesis discusses the design and implementation a low cost PMU using open hard-

ware platform (Arduino) and openSource software platform (Python) as per existing

IEEE standard for synchrophasor measurement (C37.118.1-2011). The proposed PMU

estimates voltage phasors using 64 point DFT and the voltage signal is sampled at

3.2 kHz with 12 bit ADC resolution. A low cost microcontroller (ARM CORTEX M3)

is used as the computational unit. Each phasor is time stamped with time sourced

from GPS. The local communication is done using Universal Asynchronous Trans-

mitter and Receiver (UART) which is a type of serial communication. The phasors are

transmitted to remote location via Transmission Control Protocol (TCP) over Ethernet.

The remaining chapters of this thesis attempt to describe in detail the principles, design

procedures, and experimental validation of the developed PMU.

Chapter 2 provides the principles of estimation of the Phasors from sampled data. It also

presents the a detailed description of hardware design and implementation implementation

of a Phasor Measurement Unit. Each module is described separately to keep the re-usability

of the specific work intact.

8 Introduction

Chapter 3 provides experimental results and looks in to the compliance issues. Compar-

ative study of the performance of the PMU under various operating conditions have been

described. Discussions have been made on what are the limitations of the current design,

and new ideas have been proposed on how to improve the design, both in hardware and

software or algorithm.

Chapter 4 concludes the thesis and proposes some future research directions led by the

present work.

The Appendices contain the source codes, both for the microcontrollers for developing

the PMU and for the computer for developing the PDC, to be true to the Openness concept

of this thesis.

C H A P T E R 2

Hardware Design and

Implementation

This section describes the implementation of a Phasor measurement unit using open

source hardware. The block diagram of such a unit is shown in Figure2.1.

2.1 Phasor Calculation for 3-phase system

Consider a balanced 3-phase power system operating at a nominal frequency of f0, then

the voltage waveform can be represented as

x1(t) = Xmcos(2πf0t+ φ1)

x2(t) = Xmcos(2πf0t+ φ2)

x3(t) = Xmcos(2πf0t+ φ3) (2.1)

Here Xm represents the maximum amplitude of the signal and Φ represents the phase

angle. The phase angles are 120 degree or 2π
3 radian apart. The time domain sample of the

10 Hardware Design and Implementation

power system can be represented as

Xn1 = Xmcos(
2πn

N
+ φ1)

Xn2 = Xmcos(
2πn

N
+ φ2)

Xn3 = Xmcos(
2πn

N
+ φ3) (2.2)

Here N is the number of samples, which is an integer multiple of fundamental frequency

f0 and n represents the sample index in the array which ranges from 0 to N − 1.

The generalized expression for N-point can be represented as

X =
1

N

N−1∑
n=0

xn(cos
2πn

N
− jsin2πn

N
) (2.3)

N-point DFT of the signal can be found out using

Xk =

√
2

N

N−1∑
n=0

xn(cos
2πn

N
− jsin2πn

N
) (2.4)

Xnominal =

√
2

N

N−1∑
n=0

xn(cos
2πn

N
− jsin2πn

N
) (2.5)

The real and imaginary part of the above expression can be rewritten as

Xreal =

√
2

N

N−1∑
n=0

xn(cos
2πn

N
) (2.6)

Ximg =

√
2

N

N−1∑
n=0

xn(cos
2πn

N
) (2.7)

The phasor estimate at nominal frequency is represented by this complex quantityXnominal,

whose magnitude |Xnominal| =
√
X2
real +X2

img gives the RMS magnitude of the signal. The

phase angle can be computed using the trigonometric property,φnominal = atan(
Ximg

Xreal
).

2.2 Signal Acquisition 11

Figure 2.1: Block diagram of the Proposed PMU

2.2 Signal Acquisition

For the calculation of a phasor, the data (i.e. the sampled voltage signal) must be ac-

quired. When the PMU is tested in real-world scenarios a means of getting the signals from

the transmission lines is necessary, which is accomplished using a Potential Transformer

(PT) and a Current Transformer (CT) in the substations. This signal is further stepped down

using the Hall Effect voltage sensors as described in the next section.

2.2.1 Three Phase Signal Acquisition and Conditioning

The three phase voltages need to be measured by the microcontroller for estimation of

the Phasors. However, the problem is the Microcontroller’s ADC being able to only take in

the signals in the range of 3.3 volt DC as input. To address this issue a suitable voltage signal

conditioning circuit needed to be designed which can convert the 240 volt Phase voltages

(or 679.21 volt Peak to Peak voltages) where the highest peak is 339.6 and lowest peak is

-339.6 volt. For this purpose, a suitable voltage sensor has been designed using LEM LV-25P

Hall Effect voltage sensor as shown in Figure2.4.

12 Hardware Design and Implementation

Table 2.1: Components required to build the Voltage Sensor Module

Quantity DETAILS
UNIT
PRICE
(in RS)

LINE
TOTAL

3 LEM LV25P Hall Effect Voltage Sensor 2400 7200
3 50K, 10 Watt Burden Resistor 100 300
3 56K, 3 Watt Resistor 5 15

10 Screw Terminals 10 100
3 LM358 Dual Opamp Ics 15 45
3 4Pin IC Base 5 15
1 PCB, Solder, Wires etc. 500 500

Net Total 8175

Figure 2.2: Schematics for 3 Phase signal acquisition board Part I

2.2 Signal Acquisition 13

Figure 2.3: Schematics for 3 Phase signal acquisition board Part II

Figure 2.4: The developed 3 Phase signal acquisition board

14 Hardware Design and Implementation

2.2.2 Programmable 3-phase signal generator

Although three phase signal is available from the three phase supply i.e. 440V Line

to Line or 220 Volt Line to Neutral at 50 Hz , it will not be adequate when building the

Phasor processor, because of its fixed parameters. The analysis of the PMU incorporates

the calculation/estimation the Phasors at nominal frequency, i.e. 50Hz, and off-nominal

frequencies i.e. 49.5 Hz to 50.5 Hz. Hence a programmable 3-phase sine wave generator is

desired, with which the generated sine waves’ amplitude, frequency and phase shifts can

be modified. There are two different methods to achieve the same, which are described as

follows.

Method 1: The pre-calculated values (samples) of three phase signals generated in a

third party program like MATLAB, SciLab or by some other application are stored in the

memory (the area where the program is stored or ProgMEM) of the micro-controller. Then

the phasors are calculated using these pre-sampled values. The benefit of this method is that

there is no need to develop any signal generation, or acquisition hardware, for development

and implementation of the Phasor calculation algorithms. However there is a disadvantage,

which is by neglecting the data acquisition process, the computational time will differ. It

happens so because the ADC conversion time is ignored in this process.

Method 2: A programmable sine wave generator is built, with which the generated sine

waves amplitude, frequency and phase shifts can be altered to get the desired waveforms

for analysis and estimation of phasors and other parameters. A pre-calculated lookup ta-

ble is stored in the flash memory of the micro-controller of the programmable sine wave

generator. The micro-controller fetches a value from the memory and writes it to one of its

ports. A R-2R ladder Digital to Analog Converter converts this digital value into a analog

voltage. Similarly, by subsequent conversions of the values stored in the look up table, a

sine wave is generated. Three such look up tables are used to write data to three ports of the

micro-controller, which makes the three phase signal generator. The circuit schematic of the

programmable sine wave generator is shown in Figure 2.5 and Figure 2.6. The hardware

realization of the programmable sine wave generator is shown in Figure2.7.

The arduino Mega 2560 Microcontroller board was used to generate three sinusoidal

signals. Since the IO lines of this microcontroller board operate at 5 volt DC, a suitable

signal conditioning circuit was designed with the help of an LM358 opamp to increase the

current sourcing capability of the DAC and also to make the voltage level fall between 0

volt to 3.3 volt.

2.2 Signal Acquisition 15

Table 2.2: Components required to build the programmable 3-phase sine wave
generator

Quantity DETAILS
UNIT
PRICE
(in RS)

LINE
TOTAL

1 Arduino Mega 2560 3400 3400
1 Prototyping Shield for Mega2560 400 400
75 10K Resistances 0.4 30
1 Other resistors and Caps 50 50
14 Screw Terminals 10 140
3 Flat Ribbon Cables and connectors 50 150
3 LM358 Dual Opamp Ics 15 45
3 4Pin IC Base 5 15
1 PCB, Solder, Wires etc. 500 500

Net Total 4730

Figure 2.5: Schematics of the programmable 3 phase signal generator Part I

16 Hardware Design and Implementation

Figure 2.6: Schematics of the programmable 3 phase signal generator Part II

2.3 Method of frequency estimation 17

Figure 2.7: Hardware of the programmable 3 Phase Signal generator

2.3 Method of frequency estimation

A PMU must be able to report the frequency of the phases. It should also report the rate

of change of frequency. There are roughly two methods to achieve this task. The first one

being calculating the frequency by some mathematical formula or doing some computation

to find the time derivative of the signal. The second option is modify the input sinusoidal

wave into a square wave whose frequency can be simply calculated by measuring the time

difference between arrival of two consecutive pulses. The later method is adopted in this

PMU design. The circuit to achieve this task of converting sine wave to square wave pulses

is shown in Figure 2.8.

The output of this circuit is designed to be a square wave pulse stream, whose voltage

levels lie between 0 volt to 3.3 volt. These signals are given to three interrupt pins of the

Arduino Due microcontroller, which is acting as the phasor processor. The microcontroller

records the time stamp every time a rising edge is detected on the interrupt pins. These time

18 Hardware Design and Implementation

stamps are stored in three variables dedicated to each phase. Upon receiving the second

rising edge, again a time stamp is taken and the difference between the previous capture

time and the current capture time is calculated. This difference gives the Time period of the

signal. The instantaneous frequency is calculated by taking the inverse of this period.

The advantage of using this method of frequency calculation is no optimization needs

to be done to accurately calculate the frequency, even if there is large deviation from the

nominal frequency, like that of estimating phasors using DFT over the sampled signal.

Figure 2.8: Schematics for AC to Square wave conversion

2.4 GPS Disciplined Oscillator(GPSDO) 19

2.4 GPS Disciplined Oscillator(GPSDO)

Recent developments in the PMU has been made possible only because of easy available

of the synchronizing pulses which are derived from the GPS modules. The GPS satellites

have multiple number of Atomic clocks on board, which gives them the capability of ac-

curately tracking time. Thanks to the low cost GPS modules being available now a days,

anyone with a GPS module with a price tag ranging between INR 2000 to INR 10000, can

access this time source accurate to only a few microseconds.

The GPS module for a PMU serves three purposes such as

• After a successful fix with at least three satellites, the GPS module provides a Pulse

per Second(PPS) signal, which is given to the GPSDO to generate the pulses to trigger

sampling.

• It also provides Universal Coordinated Time (UTC), reference time received from the

satellites to the micro-controller according to which the calculated phasors are time

stamped and can be synchronized irrespective of their origin and the time delay which

may incur between their transmission and reception at the Phasor Data Concentrator

Unit.

• Since a GPS module can also report the Geographical co-ordinates,i.e. latitudes and

longitudes of itself, this data can be transmitted to the PDC where the location of the

PMU is mapped to the map of the grid, and it can show a clear picture of the health

status of the grid in the geographical area.

The operating voltage of GPS module used in this paper is 3.3V DC. The transmitter and

receiver serial pins of the GPS module are connected to the phasor processor from which

the UTC time,the Latitude and the Longitude are derived. The 1 PPS pin on the module is

used by the GPS disciplined oscillator to generate the sampling initialization clocks.

According to IEEE standard for phasor measurement, for a system with 50 Hz frequency

it is desired that upto 50 phasors should be calculated per second. The primary objective

of GPS disciplined oscillator is to take 1 PPS signal (generated from GPS unit) and gener-

ate predefined set of equidistant pulses per second. According to which the sampling is

initiated and the phasors are calculated and time stamped.

Here an Atmel ATmega328 AVR Microcontroller is used to generate the required num-

ber of pulses based on the 1 PPS signal from the GPS module at its pin ClockIn. An Interrupt

Service Routine (ISR) inside the microcontroller sets a flag upon receiving the 1 PPS signal.

20 Hardware Design and Implementation

When this flag is set the microcontroller runs the code which first of all clears the flag and

then generates pulses of 50 µs width, separated by 400 µs interval. This results in generation

of 3200 pulses per second. These pulses are available at the ClockOut pin. The flow chart

of the programmed GPS disciplined oscillator is shown in Figure 2.10.

Figure 2.9: Schematics for the GPS Disciplined Oscillator

2.5 Sampling and Time Stamping

2.5.1 Sampling of the signals with in built ADC (Analog to Digital Converter)

The ARM Cortex M3 Microcontroller has a 12 Bit ADC with 12 available channels. The

time taken by each conversion for three channels is 1.5 µs. The ADC conversion is started

on reception of an interrupt from the GPS Disciplined Oscillator (GPSDO). Once the data

is ready it is stored in a sixty-four element circular buffer. This conversion process and

storing of the ADC value happens inside an Interrupt Service Routine (ISR) so as to allow

2.5 Sampling and Time Stamping 21

Figure 2.10: Flow Chart of the Programmed GPS Disciplined Oscillator

the micro-controller to perform other tasks while not using the ADC.

Since the ADC in a Arduino Due microcontroller is a 12-bit ADC, it gives a reading of 0

to 4095 for an input voltage range of 0 volt to 3.3 volt. To map these readings with the actual

measured values, it was first necessary to calculate the positive and negative peaks of the

system. Then a continuous stream of ADC values were taken for about 10 complete cycles.

The minimum and maximum of these values were found out. These values were mapped

to the positive and negative voltage peaks of the AC signal being measured.

2.5.2 Time Stamping with GPS Universal Coordinated Time(UTC)

A local clock has been programmed in the microcontroller to keep its time synchronised

with the UTC time reported by the GPS module read over UART. The time with a resolution

of milliseconds is recorded at the time of phasor calculation, whcih is then added to the

phasor information during transmission. This method is known as the Time-Stamping of a

Phasor.

22 Hardware Design and Implementation

2.6 Phasor Calculation

To implement the phasor calculation unit, the Arduino Due micro-controller with ARM

Cortex M3 core has been used as the computational unit. Arduino Due has 32 bit ARM core

micro-controller with 54 digital IO pins, 12 analog inputs, 4 UARTs and a 84MHz clock.

It has 96 KB SRAM, 512 KB FLASH memory and a DMA controller. A 12 bit ADC is in-

built with the micro-controller which can very easily operate at 3200 samples per sec. The

conversion time of ADC is 4 µs.

For a 3-phase system, the voltage samples are stored in the micro-controller’s RAM

as a 64-element buffer which keeps updating every time a new sample comes, whcih is

controlled by the GPSDO. A counter in the microcontroller keeps track of the number of

accumulated samples. when this number reaches 64, i.e. a full cycle of signal is present

in the buffer the phasor calculation task is initiated which is indicated by a flag and the

counter is reset to Zero.

When the flag to calculate the phasor is set, a 64 point DFT algorithm is used to calculate

the three phasors. After calculation of phasor, the flag is reset and the time stamp is added to

the calculated phasor and is transmitted to the display unit. The Phasor magnitudes, angles,

frequencies, rate of change of frequencies, phasor time stamp and geographical coordinates

are transmitted to the communication module.

Table 2.3: Components required to build the Phasor Processor

Quantity DETAILS

UNIT

PRICE

(in RS)

LINE

TOTAL

3 Arduino Due Microcontroller Boards 3700 11100

1 Ublox Neo-6M GPS Module 2800 2800

1 Active GPS Antenna 1000 1000

1 7-inch UTFT LCD with Shield for Due 7000 7000

1 GPSDO with Atmega328 uC 300 300

1 PCB, Solder, Jumper Wires etc. 500 500

Net Total 22700

2.6 Phasor Calculation 23

The communication module handles the PMU’s communication tasks, which is to re-

port the Phasors to the display module for displaying them locally and also transmitting

the phasors over a pre-selected channel to the local PDC. In this design the Phasors are

transmitted over UART through a USB cable to a local PDC which has a python script run-

ning to capture the Phasors and further process them.

The algorithm of the Phasor calculation is shown in Figure 2.11 and the developed hard-

ware is shown in Figure 2.12 .

Figure 2.11: Flow Chart of the Phasor Processor

24 Hardware Design and Implementation

Figure 2.12: Hardware of the Phasor Processor

2.7 Local Display Terminal

Although, the Phasors are reported to the PDC at a rate of 25 or more phasors per sec-

ond, a local terminal is needed to display the information for in-field debugging and ver-

ification by human operators. Since our eyes can not see the change of phasors if it keeps

updating the display at the reporting rate, we need a more slower refresh rate like only one

phasor per second which we can detect. For this purpose a local display terminal is built

which consists of one Arduino Due microcontroller board and a 7 inch TFT LCD screen to

display all the parameters of PMU. The Phasor microprocessor sends the data to be dis-

played by serial communication channel at 921600 baud. The arduino due microcontroller,

2.8 Power Supply Unit 25

which receives the data stream sent by the phasor processor, decodes the data, extracts the

various parameters like the Phase voltages, angles, frequencies and ROCOFs. The micro-

controller, then displays the data on the 7-inch LCD using UTFT library, upon receiving the

same 1 PPS signal from the GPS module. Although, the displaying of the data gets triggered

upon arrival of the 1 PPS signal, it takes about 300 ms to update the display completely.

2.8 Power Supply Unit

A power supply unit was developed to satisfy the various power supply requirements

by the different modules of the PMU. The required voltage supplies of the Hall Effect sen-

sors are +15 Volt and -15 Volt, for the micro-controllers +3.3 Volt and +5 Volt, the LCD is +5

Volt, for the cooling Fan +12 Volt. All these voltage levels are provided by the Power Supply

Unit (PSU) built with step-down transformers, diode bridge rectifiers and Low Drop Out

(LDO) voltage regulators. The power requirement of the various modules is shown in Ta-

ble 2.4.The components required for building the power supply module are listed in Table

2.5.A simple LDO based power supply unit has been designed. Description of the various

sections of the power supply uni is given here.

2.8.1 Step-Down Transformers

Two step-down transformers have been used. One steps down the voltage from 230 Volt

AC to 12 volt AC. This transformer is of 5 Ampere current rating, so as to provide enough

power for all the modules of the PMU.The other steps down the voltage from 230 volt AC

to 15 volt DC, and is of center tapped type, which is necessary to facilitate both positive and

negative voltage for the dual power supply.

2.8.2 Diode Bridge Rectifiers

A full wave rectifier made of two diodes rectify the 12 volt AC of the center tapped

transformer to give 12 volt DC as shown in Figure 2.13. Another full wave rectifier, a diode

bridge rectifier made of four diodes is used with the 15 volt center tapped transformer to

provide a positive and a negative power supply referenced to the center tapping of the

transformer, as shown in Figure 2.14.

26 Hardware Design and Implementation

2.8.3 Smoothing Capacitor

Smoothing capacitors are used throughout the power supply design to filter out the

ripples present in the power supply after rectification. The capacitor charges up at the start

of a positive half cycle which is available at the rectifier output, and discharges from the

middle of the positive half cycle towards the end. The result is a smooth power delivered

to the load even with the inherent pulsating nature of the DC available after the rectifier.

Moreover, when a sufficiently large capacitor is used, it compensates for the sudden draw

of current by some device in the circuit by providing the additional power from the charge

stored in the capacitor rather than directly from the primary source, i.e. the transformer.

2.8.4 Linear drop-out voltage regulator

A voltage regulator eliminates any ripple present in the Voltage supply after the capac-

itor so that a maximum allowable ripple of 1% of the rated voltage is present at the output,

i.e. the output is close to pure DC, suitable for the sensitive microcontrollers. The following

are the LDOs used in this power supply to generate the various voltages required by the

components of the PMU.The developed power supply module is shown in Figure2.15

• CD7805 for +5 volt at a maximum 1 ampere current.

• CD7812 for +12 volt at a maximum 1 ampere current.

• CD7815 for +15 volt at a maximum 1 ampere current.

• CD7915 for -15 volt at a maximum 800 milli ampere current.

• LM317T adjustable voltage regulator for +3.3 volt at a maximum 1.5 ampere current.

Table 2.4: Power requirement of the various module

Name of Module Operating Voltage

LEM LV-25P based voltage sensor module +15V, -15V
Signal conditioning circuit +3.3V
Sine to square wave converter circuit +3.3V
PWM fan speed controller circuit +5V
Cooling Fan (PWM) +12V
Programmable sine wave generator +12V
UTFT LCD Module +12V

2.8 Power Supply Unit 27

Table 2.5: Components required to Build the Power Supply Unit

Quantity DETAILS
UNIT
PRICE
(in RS)

LINE
TOTAL

1 16x2 LCD 180 180
1 12V 2200 RPM PWM Fan 800 800
1 Atmega328 Microcontroller Module 250 250

1
16MHzCrystal, 22pF Caps, Push Button, IC
Base etc.

50 50

1 Capaitors Pack (220uf, 3300uf, 10uf, .1uf, 2.2uf) 200 200
6 Heatsinks 25 150
1 12-0-12V 5A Stepdown Transformer 500 500
1 15-0-15 700mA Transformer 100 100
2 DCOM 6A Power Diodes 8 16
7 LDO ICs (7805,7812,Lm317,7815,7915) 10 70
1 DS18B20 Temperature Sensor 400 400
10 Screw Terminals 10 100
1 PCB, Solder, Wires etc. 500 500

Net Total 3316

Figure 2.13: Schematics for the Positive Power Supply

28 Hardware Design and Implementation

Figure 2.14: Schematics for the Dual Power Supply

Figure 2.15: The designed Power Supply Unit for PMU

C H A P T E R 3

Experimental Results and Discussion

This section describes the experimental setup and the results obtained from the devel-

oped laboratory prototype PMU.

3.1 The Experimental Setup for Testing of the PMU

A 3-Phase sine wave test signal generator is built with Atmel Atmega2560 8-bit AVR

micro-controller. The micro-controller was chosen because of its availability of Input/Out-

put Ports (six completely accessible ports), of which one port (8 pins) is required to generate

one sine wave. In this prototype setup, only three of the ports were used to generate three

sine waves whose magnitude and phases can be changed with programming. The Phasor

micro-controller was connected to these signals, which after calculating the phasors and

time stamping them reported to the local display, as well as to the computer which displays

the data in real time. The Laboratory Setup for evaluating the PMU is shown in Figure 3.1.

After testing the PMU with the synthesized AC signal for various frequencies, the PMU

was connected to actual three-phase four-wire AC supply system available in the Labora-

tory. The voltage signal acquisition board and the voltage to square wave converter circuit

replaced the three phase sine wave generator. Then the MCB was turned on and the Phasors

were monitored in the real-time GUI developed in Python.

30 Experimental Results and Discussion

Figure 3.1: The Developed Laboratory Prototype of the PMU

The developed GPS Disciplined Oscillator(GPSDO) generates the required sampling

pulses i.e. 3200 pulses per second, which are synchronised with the arrival of the 1 PPS

signal from the GPS module. The pulse from the GPS module is shown in Figure 3.2(a) and

the generated sampling pulses by the GPSDO are shown in Figure 3.2(b).

Figure 3.2: Pulses from the GPSDO

3.2 Method of PMU Data acquisition and Plotting 31

To measure the frequency of the three phases a sine wave to square wave converter was

designed. The input and output waveforms are shown in Figure 3.3.

Figure 3.3: Square wave pulses for frequency measurement

3.2 Method of PMU Data acquisition and Plotting

The developed PMU reports the calculated phasors at a rate of 50 phasors per second.

The phasors can be seen on the LCD (PMU local display) as shown in Figure 3.4. This

reporting includes the three-phase signals RMS magnitudes and the phase angles, the fre-

quency and the ROCOF with a time stamp. This data is reported over serial terminal of the

micro-controller, which is interfaced with the computer’s USB Port.

The reported phasors from the PMU are displayed in readable text in a Serial Terminal

software as shown in Figure 3.5. The phasors can also be accessed over a web interface with

a web browser pointing to the IP address of the PMU in the Local Area Network(LAN)

which is shown in Figure 3.6. The PMU is connected to the Network with the help of a Serial

Peripheral Interface(SPI) Ethernet Module. The three-phase voltage signals, as acquired

by another Microcontroller are shown in Figure 3.7. The X-axis represents the sampling

instants and the Y-Axis displays the 10-bit integer value of the signal which is generated by

the Analog to Digital Converter(ADC).

32 Experimental Results and Discussion

Figure 3.4: Phasors displayed on the PMU LCD

Figure 3.5: A screenshot of the reported data from PMU over Serial Terminal

3.2 Method of PMU Data acquisition and Plotting 33

Figure 3.6: A screenshot of the reported data from PMU over Ethernet(LAN)

Figure 3.7: The acquired 3-phase voltage samples by the ADC

34 Experimental Results and Discussion

Figure 3.8: A screenshot of the Developed Python GUI for PMU

To acquire the data from the PMU, a program is developed in Python programming

language. It opens the serial port to which the PMU is transmitting the Phasors, and reads

the data stream. Then it separates the various parameters of the data stream into float

data types and plots them in a Graphical User interface (GUI) created using the PyQtGraph

library for Python. The GUI is shown in Figure 3.8.

The python program also logs the phasor data, which is being received from the PMU

as Comma Separated Values (CSV) in a Text file, which can be further analysed in the future

if needed. However for true reputability of the Phasor data in the future, it will require a

lot of data logging or data storage space. The Text file or CSV file method of data logging

will not be able to satisfy such a requirement. Hence a true database management system

like Oracle or MySQL database systems need to be incorporated into the PDC system with

terabytes of HDD to store the data.

To plot the logged data, another Python script is developed, which reads the Phsor data

from the log file, separates the different phasor parameters and plots them using MatPlotLib

library for Python.

3.3 Analysis of the Phasors reported by the PMU 35

3.3 Analysis of the Phasors reported by the PMU

Three test signals were generated by the designed 3 phase signal generator for frequen-

cies of 49.95Hz, 49.65Hz and 50.30Hz. These signals were given as input to the PMU. The

reported Phasor magnitudes(in RMS Volts) and the angles(in Degree) are shown in Fig-

ure 3.9, Figure 3.10 and Figure 3.11 respectively. The Mean Square Error of the reported

phasor magnitudes for the three signals with different frequencies are given in Table 3.1.

The Phasors were also observed in real-time when the PMU was connected to the 3-

phase ac supply available in the laboratory. Since the supply frequency is never quite con-

stant, i.e. it keeps changing depending on the loads, and the compensating actions by the

generating stations, the rotating rate of the phasors in the polar plot was observed to vary-

ing. However , At some instant of time, when the frequency is exactly 50.00 Hz, it was

noticed that the ploar plot keeps stationary and the plot of phasor angles did not have a

slope any more, rather they were completely horizontal lines. This phenomenon can be ex-

ploited to detect which lines are having the maximum frequency deviation, just by giving a

quick look, into the phasor polar plot.

It was observed that the measurement error increases as the frequency of the signal

deviates from the standard frequency, according to which the sampling window and the

sampling intervals were chosen. To get more accurate measurement it is desired to develop

an algorithm which takes into account the change of frequency while calculating the pha-

sors and adjusts its sampling intervals and the sampling window so that using DFT based

Phasor calculation would yield more accurate results. A FFT based algorithm will most cer-

tainly overcome these drawbacks of the DFT algorithm. However the instantaneous values

of phasors, as reported by the DFT algorithm will be not be truely instantaneous any more.

Moreover the choice of the sampling window type and size need to follow an adaptive al-

gorithm which takes the changes in system parameters, especially frequency into account

for calculating the phasor magnitudes so that it will produce more accurate results then the

currently developed system.

36 Experimental Results and Discussion

3.4 Discussion

From Fig 3.10, Fig 3.9 and Fig 3.11 it can be observed that the more the deviation of the

signal frequency from the nominal value, the more is the deviation of the measured phasor

magnitudes. The calculated Mean Square Error is shown in Table 3.1.

Figure 3.9: Reported Phasors by the PMU at a frequency of 49.95 Hz

Figure 3.10: Reported Phasors by the PMU at a frequency of 49.65 Hz

3.4 Discussion 37

Figure 3.11: Reported Phasors by the PMU at a frequency of 50.30 Hz

The Mean Square Errors shown in Table 3.1 suggest that the magnitudes of error for all

the three test signal frequencies of a balanced three phase system remains in the compliance

boundaries as stated by the IEEE Standard of Synchrophasor Measurement.

Table 3.1: Mean Square Error of the Phasor Magnitudes

Signal Frequency Mean Square Error (in Volts)

(in Hz) Phase1 Phase 2 Phase 3

49.65 0.4736 1.2111 0.5745

49.95 0.1642 0.2708 0.0342

50.30 0.1527 0.8452 0.1964

The calculated phasors are precisely time stamped. By making the data acquisition

(sampling) process handled by a ISR, the CPU is free to do other tasks like calculating the

phasors, transmission/communication of the phasors, synchronising it’s clock with GPS

time etc., which enables increase in the reporting rate to 50 Phasors per second. Moreover,

the communication being directly handled by the CPU can be made DMA enabled, which

has the potential to free up the CPU even more. This extra CPU time can be used to further

calculate more analytical parameters, such as, estimation of harmonics etc.

Moreover, use of a faster and yet, economical single board computing platform which

incorporates more CPU Power, RAM and advanced communication features can be used

along with a high speed external ADC to improve the accuracy of the Phasors being re-

38 Experimental Results and Discussion

ported.The compliance with the IEEE Standard for Synchrophasor measurements is given

in Table 3.2.
Table 3.2: IEEE Standard Compliance of the PMU

Compliance Requirement
Balanced 3 Phase System

Nominal

Frequency

Off-Nominal

Frequency

Sampling Rate Yes Yes

Reporting Rate Yes Yes

Magnitude Error Yes Yes

Frequency Yes Yes

Rate of change of Frequency Yes Yes

Time Stamp Yes Yes

Table 3.3: Expenditures in building a low-cost prototype PMU

Name of Module Cost (in INR)

LEM LV-25P based voltage signal acquisition board 8175.00

Sine to square wave converter circuit 500.00

PMU Main Unit 22700.00

Programmable sine wave generator 4730.00

Power Supply 3316.00

Net Total 39421

The expenditures in building a low cost prototype PMU is given in Table 3.3. It is

quite remarkable how using open source platforms for developing a new prototype can

dramatically reduce the cost of a product. A PMU could be built only with approximately

one-tenth of the price tags of the commercial PMUs available in the market.

C H A P T E R 4

Conclusion

The Phasor Measurement Units are going to be the basic building blocks for monitoring

the Smart Grid of the future. With the increase in the number of active PMUS in the Electric

Grids day by day, the Real-Time monitoring of the Health of the Grid is going to be a reality

sooner than expected. Since a lot of manufacturers are going to build their own versions of

PMU, the much needed IEEE Standard C37.118.X.2011 is definitely a welcome guidance to

make the different PMUs compatible with each other and with the PDC.

The goal of developing a low cost PMU was not to compete with other manufacturers

who provide commercial PMUs, but to facilitate the research in the academics and the R&D

organizations which incorporates the data from the PMU to design and simulate the various

projects related to the Electrical Grids. The objective was to simplify the hardware imple-

mentation process of Phasor measurements such that a PMU can be built using the many

economic open hardware computing platforms available now a days. The Arduino Due

(with ARM Cortex M3 Microcontroller) development board was chosen because of its user-

friendly development environment both in terms of hardware and software. It facilitates

the use of the device both by a beginner as well as an expert.

Voltage phasors for the nominal frequency were found to be more accurate than phasors

computed for off-nominal frequencies. This was because of the nature of the DFT and the

sampling window used to calculate the phasors. However the reported error is well within

the IEEE Standard compliance range of 1 % of the actual magnitude.

40 Conclusion

Figure 4.1: Revised Architechure of the Proposed PMU

4.1 Proposed directions for future work

Step 1: Develop a Prototype PMU which is Cost Effective, but satisfies the IEEE Sat-

ndards for Phasor Measurements. A High Speed (250 Mega Samples Per Second), High

Resolution (24 Bit), SPI Analog to digital Converter(ADC) will convert the input signals i.e.

the three phase voltage and current signals and store the digital samples in a circular buffer.

A High Speed FPGA (Spartan LX9 or better) will take/read these samples from the buffer

into its own memory and save it as a 32 bit array. A DSP Processor developed in the FPGA

Hardware will do the DFT/FFT (like Radix 4 or Radix 8 FFT) on these samples and report

the phasor. The FPGA will output the various parameters such as Voltage and Current Pha-

sors, Frequency, change of frequency (COF), Rate of change of frequency (ROCOF) and the

Harmonic Components present in the Signals. The calculated values will be time stamped,

with the time from a GPS Module, along with the Latitudes and longitudes and will be sent

out through a Communication Interface (i.e. a GSM 3G Modem), which is handled by a

High Speed (1 GHz or more) Single Board Computer with a High Performance Multicore

Modern ARM Processor (Dual Core like A20 or Octa-core like A80) which will be a running

a Real Time Operating System. The architecture of such a system is shown in Figure 4.1.

4.1 Proposed directions for future work 41

Figure 4.2: Proposed framework for testing the PMUs

Step 2: Develop a PMU Connection tester to test the PMU Which is installed in Field

and is Remote A software will be developed which will integrate a data acquisition system

to collect the data being transmitted from the PMU, a Graphical User Interface to display

the data in a User Friendly Format. The software will also have a Database to store the PMU

Data for future retrieval for analytical purposes. Then the software will be tested with the

prototype PMU, and any necessary adjustments/developments will be done.

Step 3: Development and Optimal Placement of Multiple Prototype PMUs. Four more

Such Prototypes will be developed, and installed in the locality of the Institute in Remote

locations, in different segments of the Electrical Grid. A block diagram of such a prototype

grid for testing of the low cost PMUs is shown in Figure 4.2.

Step 4: Integration of a Phasor Data Concentrator A Phasor Data Concentrator (PDC)

will be either developed from scratch, or the existing OpenPDC Project will be used with lit-

tle Modifications so as to make it compatible with the Developed Prototypes. The PDC will

collect all the information from the Prototypes and display in the Graphical User Interface

and store in a Database.

42 Conclusion

The work done for developing a low cost PMU has opened up new windows for de-

velopments. At present the hardware meets only one standard i.e. C37.118.1-2011, and a

way needs to be developed to meet the second part of the standard C37.118.2-2011 which

describes how the PMUs must communicate.Also the method of acquiring the time from

GPS and synchronizing the local clock according to it, needs more improvement so that the

time stamps of the phasors can be made more accurate than it is.

The method of using Open Hardware Platforms, not just limited to Arduino Due but

Raspberry Pi, Beaglebone, Intel Galileo etc, for developing some real-time monitoring de-

vices like a PMU, which has not just to be used in the laboratory but can be put to operation,

is definitely a great venture because of the wide availability of such platforms and a huge

community wherein everyone can contribute to the development of something important

for the betterment of the society.

References

[1] IEEE Standard for Synchrophasor Measurements for Power
Systems,IEEE Std. C37.118.1-2011. [Online]. Available:
http://standards.ieee.org/findstds/standard/C37.118.1-2011.html

[2] IEEE Standard for Synchrophasor Data Transfer for Power Systems,IEEE Std. C37.118.2-
2011. [Online]. Available: http://standards.ieee.org/findstds/standard/C37.118.2-
2011.html

[3] G. Missout and P. Girard, Measurement of bus voltage angle between montreal and
SEPT-ILES, IEEE Trans. Power App. Syst., vol. PAS-99, no. 2, pp. 536-539, Mar. 1980.

[4] G. Missout, J. Beland, G. Bedard, and Y. Lafleur, Dynamic measurement of the absolute
voltage angle on long transmission lines, IEEE Trans. Power App. Syst., vol. PAS-100,
no. 11, pp. 4428-4434, Nov. 1981.

[5] P. Bonanomi, Phase angle measurements with synchronized clocksprinciple and
applications, IEEE Trans. Power App. Syst., vol. PAS-100, no. 12, pp. 5036-5043, Dec.
1981.

[6] A. G. Phadke and J. S. Thorp, History and applications of phasor measurements, in
Proc. IEEE PES PSCE, 2006, pp. 331-335.

[7] A. G. Phadke, Synchronized phasor measurementsA historical overview, in Proc.
IEEE/PES Transmiss. Distrib. Conf. Exhib. Asia Pacific, Oct. 6-10, 2002, vol. 1, pp.
476-479.

[8] A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and Their Applica-
tions. New York, NY, USA: Springer-Verlag, 2008.

[9] P. Denys, C. Counan, L. Hossenlopp, and C. Holweck, Measurement of voltage phase
for the French future defence plan against losses of synchronism, IEEE Trans. Power
Del., vol. 7, no. 1, pp. 62-69, Jan. 1992.

[10] B. Kasztenny and M. Adamiak, Implementation and performance of synchrophasor
function within microprocessor based relays, in Proc. 61st Annu. Georgia Tech. Protect.
Relaying Conf., Atlanta, GA, USA, May 2-4, 2007, pp. 1-43.

[11] D. M. Laverty, D. J. Morrow, R. Best, and P. A. Crossley, Performance of phasor
measurement units for wide area real-time control, in Proc. IEEE PES Gen. Meeting, Jul.
2630, 2009, pp. 1-5.

[12] A. J. Roscoe, I. F. Abdulhadi, and G. M. Burt, P-class phasor measurement unit
algorithms using adaptive filtering to enhance accuracy at offnominal frequencies, in
Proc. IEEE Int. Conf. SMFG, Nov. 14-16, 2011, pp. 51-58.

xii REFERENCES

[13] A. Carta, N. Locci, C. Muscas, and S. Sulis, A flexible GPS-based system for syn-
chronized phasor measurement in electric distribution networks, IEEE Trans. Instrum.
Meas., vol. 57, no. 11, pp. 2450-2456, Nov. 2008.

[14] openPDC, Open Source Phasor Data ConcentratorGrid Protection Alliance, Codeplex
Project Page. [Online]. Available: http://openpdc.codeplex.com/

[15] A. J. Stadlin, GridTrak Open Source Synchrophasor PMU Project, Codeplex Project
Page, [Accessed: Feb. 15, 2012]. [Online]. Available: http://gridtrak.codeplex.com/

[16] Garcia-Valle et al., DTU PMU laboratory developmentTesting and validation, in Proc.
IEEE ISGT Europe, Oct. 11-13, 2010, pp. 1-6.

[17] A. H. Nielsen, K. O. Helgesen Pedersen, and O. Samuelsson, An experimental
GPS-based measurement unit, in Proc. Nordic Baltic Workshop Power Syst., Tampere,
Finland, Feb. 4-5, 2002, pp. 1-6.

[18] L. Vanfretti, R. Garcia-Valle, K. Uhlen, E. Johansson, D. Trudnowski,J. W. Pierre, J. H.
Chow, O. Samuelsson, J. stergaard, and K. E. Martin, Estimation of Eastern Denmarks
electromechanical modes from ambient phasor measurement data, in Proc. IEEE PES
Gen. Meeting, Jul. 25-29, 2010, pp. 1-8.

[19] A Report to Congress Pursuant to Section 1839 of the Energy Policy Act of 2005, US
Dept. Energy Fed. Energy Regulat. Commiss., Washington, DC, USA, Feb. 2006.

[20] Peng Zhang; Ka Wing Chan, ”Reliability Evaluation of Phasor Measurement Unit
Using Monte Carlo Dynamic Fault Tree Method”, IEEE Transactions on Smart Grid,
vol.3, no.3, pp.1235-1243, Sept. 2012

[21] Murthy, C.; Mishra, A.; Ghosh, D.; Roy, D.S.; Mohanta, D.K., ”Reliability Analysis of
Phasor Measurement Unit Using Hidden Markov Model”, IEEE Systems Journal, vol.8,
no.4, pp.1293-1301, Dec. 2014

[22] Yang Wang; Wenyuan Li; Peng Zhang; Bing Wang; Jiping Lu, ”Reliability Analysis
of Phasor Measurement Unit Considering Data Uncertainty”, IEEE Transactions on
Power Systems, vol.27, no.3, pp.1503-1510, Aug. 2012

[23] V.K.Agrawal; P.K.Agarwal; Harish Rathour, ”Application of PMU Based In-
formation in Improving the Performance of Indian Electricity Grid”, URL
”http://indiwams.posoco.in/attachments/article/1/12144.pdf”

[24] Laverty, D.M.; Best, R.J.; Brogan, P.; Al Khatib, I.; Vanfretti, L.; Morrow, D.J., ”The
OpenPMU Platform for Open-Source Phasor Measurements”, IEEE Transactions on
Instrumentation and Measurement, vol.62, no.4, pp.701-709, April 2013

[25] Laverty, D.M.; Vanfretti, L.; Al Khatib, I.; Applegreen, V.K.; Best, R.J.; Morrow, D.J.,
”The OpenPMU Project: Challenges and perspectives”, IEEE Power and Energy Society
General Meeting (PES), 2013, vol., no., pp.1,5, 21-25 July 2013

[26] Laverty, D.M.; Vanfretti, L.; Best, R.J.; Morrow, D.J.; Nordstrom, L.; Chenine, M.,
”OpenPMU technology platform for Synchrophasor research applications”, IEEE Power
and Energy Society General Meeting, 2012, vol., no., pp.1,5, 22-26 July 2012

Appendices

Appendix A

Arduino Codes for Microcontrollers

A.1 Arduino code for the GPS Disciplined Oscillator

1 #include <TimerOne.h>

2 // use this library to handle the Timer functionality

3 const int sampling_clock_out_pin = 9;

4 // the sampling pulses will be generated at this pin

5 void setup()

6 {

7 pinMode(2, INPUT);

8 // This is the pin where the 1 PPS pulse from GPS module is

connected

9 attachInterrupt (0, pulsePPS , RISING);//watch out for interrupt (1

PPS) on pin 2

10 // Timer1.initialize (400) ;// for 2500 pulses per sec

11 Timer1.initialize (312.5);//for 3200 pulses per sec

12 Timer1.pwm(sampling_clock_out_pin , 100);//duty cycle of the pulse ,

i.e. about 100uS

13 }

14 void loop()

15 { /* Since the microcontrollers timer operate independently without

invoking the CPU , and the Interrupt handlers

16 takes care of the ISR , there is nothing to do in the loop*/

17 }

18 void pulsePPS () // interrupt routine upon receiving PPS

19 {

20 Timer1.restart ();

21 /*Just restart the timer , to keep it in sync with the GPS module ’s

PPS pulses */

22 }

xvi Arduino Codes for Microcontrollers

A.2 Arduino code for the 3 Phase Signal Generator

1 #include <JeeLib.h>

2 #include <avr/pgmspace.h>

3

4 // Define the sine wave look -up tables which caontains the 8-bit

integers

5 byte sineR256 [] PROGMEM = {

6 128 ,131 ,134 ,137 ,140 ,143 ,146 ,149 ,152 ,155 ,158 ,162 ,165 ,167 ,170 ,173 ,

7 176 ,179 ,182 ,185 ,188 ,190 ,193 ,196 ,198 ,201 ,203 ,206 ,208 ,211 ,213 ,215 ,

8 218 ,220 ,222 ,224 ,226 ,228 ,230 ,232 ,234 ,235 ,237 ,238 ,240 ,241 ,243 ,244 ,

9 245 ,246 ,248 ,249 ,250 ,250 ,251 ,252 ,253 ,253 ,254 ,254 ,254 ,255 ,255 ,255 ,

10 255 ,255 ,255 ,255 ,254 ,254 ,254 ,253 ,253 ,252 ,251 ,250 ,250 ,249 ,248 ,246 ,

11 245 ,244 ,243 ,241 ,240 ,238 ,237 ,235 ,234 ,232 ,230 ,228 ,226 ,224 ,222 ,220 ,

12 218 ,215 ,213 ,211 ,208 ,206 ,203 ,201 ,198 ,196 ,193 ,190 ,188 ,185 ,182 ,179 ,

13 176 ,173 ,170 ,167 ,165 ,162 ,158 ,155 ,152 ,149 ,146 ,143 ,140 ,137 ,134 ,131 ,

14 128 ,124 ,121 ,118 ,115 ,112 ,109 ,106 ,103 ,100 ,97 ,93 ,90 ,88 ,85 ,82 ,79 ,76 ,

15 73,70,67,65,62,59,57,54,52,49,47,44,42,40,37,35,33,31,29,27,25,

16 23,21,20,18,17,15,14,12,11,10,9,7,6,5,5,4,3,2,2,1,1,1,0,0,0,0,0,

17 0,0,1,1,1,2,2,3,4,5,5,6,7,9,10,11,12,14,15,17,18,20,21,23,25,27,

18 29,31,33,35,37,40,42,44,47,49,52,54,57,59,62,65,67,70,73,76,79,

19 82 ,85 ,88 ,90 ,93 ,97 ,100 ,103 ,106 ,109 ,112 ,115 ,118 ,121 ,124};

20

21 byte sineY256 [] PROGMEM = {

22 238,237 ,235 , 234 ,232 ,230 ,228 ,226 ,224 ,222 ,220 ,218 ,215 ,213 ,211 ,

23 208 ,206 ,203 ,201 ,198 ,196 ,193 ,190 ,188 ,185 ,182 ,179 ,176 ,173 ,170 ,

24 167 ,165 ,162 ,158 ,155 ,152 ,149 ,146 ,143 ,140 ,137 ,134 ,131 ,128 ,124 ,

25 121 ,118 ,115 ,112 ,109 ,106 ,103 ,100 ,97 ,93 ,90 ,88 ,85 ,82 ,79 ,76 ,73 ,70 ,

26 67,65,62,59,57,54,52,49,47,44,42,40,37,35,33,31,29,27,25,23,21,

27 20,18,17,15,14,12,11,10,9,7,6,5,5,4,3,2,2,1,1,1,0,0,0,0,0,0,0,

28 1,1,1,2,2,3,4,5,5,6,7,9,10,11,12,14,15,17,18,20,21,23,25,27,29,

29 31,33,35,37,40,42,44,47,49,52,54,57,59,62,65,67,70,73,76,79,82,

30 85 ,88 ,90 ,93 ,97 ,100 ,103 ,106 ,109 ,112 ,115 ,118 ,121 ,124 ,128 ,131 ,134 ,

31 137 ,140 ,143 ,146 ,149 ,152 ,155 ,158 ,162 ,165 ,167 ,170 ,173 ,176 ,179 ,182 ,

32 185 ,188 ,190 ,193 ,196 ,198 ,201 ,203 ,206 ,208 ,211 ,213 ,215 ,218 ,220 ,222 ,

33 224 ,226 ,228 ,230 ,232 ,234 ,235 ,237 ,238 ,240 ,241 ,243 ,244 ,245 ,246 ,248 ,

34 249 ,250 ,250 ,251 ,252 ,253 ,253 ,254 ,254 ,254 ,255 ,255 ,255 ,255 ,255 ,255 ,

35 255 ,254 ,254 ,254 ,253 ,253 ,252 ,251 ,250 ,250 ,249 ,248 ,246 ,245 ,244 ,243 ,

36 241 ,240};

37

38 byte sineB256 [] PROGMEM = {

39 18,17,15,14,12,11,10,9,7,6,5,5,4,3,2,2,1,1,1,0,0,0,0,0,0,0,1,1,

40 1,2,2,3,4,5,5,6,7,9,10,11,12,14,15,17,18,20,21,23,25,27,29,31,

41 33,35,37,40,42,44,47,49,52,54,57,59,62,65,67,70,73,76,79,82,85,

42 88 ,90 ,93 ,97 ,100 ,103 ,106 ,109 ,112 ,115 ,118 ,121 ,124 ,128 ,131 ,134 ,137 ,

43 140 ,143 ,146 ,149 ,152 ,155 ,158 ,162 ,165 ,167 ,170 ,173 ,176 ,179 ,182 ,185 ,

44 188 ,190 ,193 ,196 ,198 ,201 ,203 ,206 ,208 ,211 ,213 ,215 ,218 ,220 ,222 ,224 ,

45 226 ,228 ,230 ,232 ,234 ,235 ,237 ,238 ,240 ,241 ,243 ,244 ,245 ,246 ,248 ,249 ,

46 250 ,250 ,251 ,252 ,253 ,253 ,254 ,254 ,254 ,255 ,255 ,255 ,255 ,255 ,255 ,255 ,

47 254 ,254 ,254 ,253 ,253 ,252 ,251 ,250 ,250 ,249 ,248 ,246 ,245 ,244 ,243 ,241 ,

A.2 Arduino code for the 3 Phase Signal Generator xvii

48 240 ,238 ,237 ,235 ,234 ,232 ,230 ,228 ,226 ,224 ,222 ,220 ,218 ,215 ,213 ,211 ,

49 208 ,206 ,203 ,201 ,198 ,196 ,193 ,190 ,188 ,185 ,182 ,179 ,176 ,173 ,170 ,167 ,

50 165 ,162 ,158 ,155 ,152 ,149 ,146 ,143 ,140 ,137 ,134 ,131 ,128 ,124 ,121 ,118 ,

51 115 ,112 ,109 ,106 ,103 ,100 ,97 ,93 ,90 ,88 ,85 ,82 ,79 ,76 ,73 ,70 ,67 ,65 ,62 ,

52 59 ,57 ,54 ,52 ,49 ,47 ,44 ,42 ,40 ,37 ,35 ,33 ,31 ,29 ,27 ,25 ,23 ,21 ,20};

53

54 void setup () {

55 for(int i=22;i<50;i++)// Define Port A,C and L as Output

56 {

57 pinMode(i,OUTPUT);

58 }

59 }

60

61 void loop () {

62 //the values from the look up tables are written to the ports

63 //one by one

64 for (int i=0;i <256;i++) {

65 PORTA = pgm_read_byte(sineR256 + i);//Red Phase

66 PORTC = pgm_read_byte(sineY256 + i);//Blue Phase

67 PORTL = pgm_read_byte(sineB256 + i);// Yellow Phase

68 delayMicroseconds (76); // necessary delay to match the

69 // desired frequency

70 }

71 }

xviii Arduino Codes for Microcontrollers

A.3 Arduino code for temperature controlled regulated power sup-
ply

1 #include <OneWire.h>

2 #include <LiquidCrystal.h>

3 #include <FreqMeasure.h>

4

5 OneWire ds(3); // on pin 3 (a 4.7K resistor is necessary)

6 LiquidCrystal lcd(A5, A4, A3, A2, A1, A0);

7 int pwm_fan = 6;

8 double sum = 0;

9 int count = 0, rpm = 0;

10

11 void setup(void) {

12 lcd.begin(16, 2);

13 Serial.begin (9600);

14 FreqMeasure.begin ();

15 pinMode(pwm_fan , OUTPUT);

16 }

17

18 void loop(void) {

19 byte i;

20 byte present = 0;

21 byte type_s;

22 byte data [12];

23 byte addr [8];

24 float celsius , fahrenheit;

25

26 if (!ds.search(addr)) {

27 Serial.println("No more addresses.");

28 Serial.println ();

29 ds.reset_search ();

30 delay (250);

31 return;

32 }

33

34 Serial.print("ROM =");

35 for (i = 0; i < 8; i++) {

36 Serial.write(’ ’);

37 Serial.print(addr[i], HEX);

38 }

39

40 if (OneWire ::crc8(addr , 7) != addr [7]) {

41 Serial.println("CRC is not valid!");

42 return;

43 }

44 Serial.println ();

45

46 // the first ROM byte indicates which chip

A.3 Arduino code for temperature controlled regulated power supply xix

47 switch (addr [0]) {

48 case 0x10:

49 Serial.println(" Chip = DS18S20"); // or old DS1820

50 type_s = 1;break;

51 case 0x28:

52 Serial.println(" Chip = DS18B20");

53 type_s = 0;break;

54 case 0x22:

55 Serial.println(" Chip = DS1822");

56 type_s = 0;break;

57 default:

58 Serial.println("Device is not a DS18x20 family device.");

59 return;

60 }

61

62 ds.reset ();

63 ds.select(addr);

64 ds.write (0x44 , 1); // start conversion , with parasite power

on at the end

65 delay (1000); // maybe 750ms is enough , maybe not

66 // we might do a ds.depower () here , but the reset will take care of

it.

67 present = ds.reset();

68 ds.select(addr);

69 ds.write (0xBE); // Read Scratchpad

70 Serial.print(" Data = ");

71 Serial.print(present , HEX);

72 Serial.print(" ");

73 for (i = 0; i < 9; i++) { // we need 9 bytes

74 data[i] = ds.read();

75 Serial.print(data[i], HEX);

76 Serial.print(" ");

77 }

78 Serial.print(" CRC=");

79 Serial.print(OneWire ::crc8(data , 8), HEX);

80 Serial.println ();

81

82 /* Convert the data to actual temperature because the result is a

16 bit signed integer , it should

83 be stored to an "int16_t" type , which is always 16 bits even

when compiled on a 32 bit processor.*/

84 int16_t raw = (data [1] << 8) | data [0];

85 if (type_s) {

86 raw = raw << 3; // 9 bit resolution default

87 if (data [7] == 0x10) {

88 // "count remain" gives full 12 bit resolution

89 raw = (raw & 0xFFF0) + 12 - data [6];

90 }

91 } else {

92 byte cfg = (data [4] & 0x60);

xx Arduino Codes for Microcontrollers

93 // at lower res , the low bits are undefined , so let’s zero them

94 if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution , 93.75 ms

95 else if (cfg == 0x20) raw = raw & ~3; // 10 bit res , 187.5 ms

96 else if (cfg == 0x40) raw = raw & ~1; // 11 bit res , 375 ms

97 // default is 12 bit resolution , 750 ms conversion time

98 }

99 celsius = (float)raw / 16.0;

100 fahrenheit = celsius * 1.8 + 32.0;

101 Serial.print(" Temperature = ");

102 Serial.print(celsius);

103 Serial.print(" Celsius , ");

104 Serial.print(fahrenheit);

105 Serial.println(" Fahrenheit");

106 lcd.setCursor(0, 0);

107 lcd.print("Temp: ");

108 lcd.print(celsius);

109 lcd.print(" *C");

110 if (FreqMeasure.available ()) {

111 // average several reading together

112 sum = sum + FreqMeasure.read();

113 count = count + 1;

114 if (count > 15) {

115 float frequency = FreqMeasure.countToFrequency(sum / count);

116 rpm = frequency * (60 / 2);

117 sum = 0;

118 count = 0;

119 Serial.print("Fan Speed");

120 Serial.print(rpm);

121 Serial.println("RPM");

122 //rpm = 0;

123 }

124 }

125 int fan_speed = map(celsius , 20, 45, 0, 255);

126 if (fan_speed < 0)

127 {

128 fan_speed = 0;

129 }

130 else if (fan_speed > 255)

131 {

132 fan_speed = 255;

133 }

134 else

135 {}

136 analogWrite(pwm_fan , fan_speed);

137 int desired_rpm = map(fan_speed , 0, 255, 800, 2200);

138 lcd.setCursor(0, 1);

139 lcd.print("Speed: ");

140 lcd.print(rpm);

141 lcd.print(" RPM");

142 }

A.4 Arduino code for Phasor estimation using 64-Point DFT xxi

A.4 Arduino code for Phasor estimation using 64-Point DFT

1 #include <Time.h> // Time Library

2 #include <TinyGPS ++.h> // GPS Library

3 #include <math.h> // Math functions library

4

5 static const uint32_t GPSBaud = 38400;

6 boolean Calculate_A_Phasor = false;

7 boolean get_time_on_pps = false;

8 // The TinyGPS ++ object

9 TinyGPSPlus gps;

10

11 // Serial connection to the GPS device

12 #define Serial_GPS Serial3

13 #define SerialTx Serial2

14 //#define SerialTx Serial

15

16 time_t prevDisplay = 0; // Count for when time last displayed

17 int Year;

18 byte Month;

19 byte Day;

20 byte Hour;

21 byte Minute;

22 byte Second;

23

24 // Phasor Estimation Variable Declaration

25 #define WindowSize 64 //i.e. 64 samples per second

26 int N = WindowSize; // Sampling frequency 3200 Hz

27 long double pi = 3.143;

28

29 long double adc_out_1[WindowSize], values_1[WindowSize];

30 long double adc_out_2[WindowSize], values_2[WindowSize];

31 long double adc_out_3[WindowSize], values_3[WindowSize];

32

33 long double Xi_1 , Xr_1 , Phasor_Magnitude_1 , Phasor_Angle_1 ,

Phasor_Angle_Degree_1;

34 long double Xi_2 , Xr_2 , Phasor_Magnitude_2 , Phasor_Angle_2 ,

Phasor_Angle_Degree_2;

35 long double Xi_3 , Xr_3 , Phasor_Magnitude_3 , Phasor_Angle_3 ,

Phasor_Angle_Degree_3;

36

37 unsigned long int calculation_start_millis;

38 unsigned long int calculation_finish_millis;

39

40 unsigned long int pps_time_millis;

41 unsigned long int phasor_stamp_millis;

42

43 // variables for frequency calculation

44 volatile long double P1_start_micros = 0, last_P1_start_micros = 0,

P1_period = 0;

xxii Arduino Codes for Microcontrollers

45 volatile long double P2_start_micros = 0, last_P2_start_micros = 0,

P2_period = 0;

46 volatile long double P3_start_micros = 0, last_P3_start_micros = 0,

P3_period = 0;

47

48 int P1_freq , P2_freq , P3_freq;

49 long double P1_freqf , P2_freqf , P3_freqf;

50 int P1_lf , P2_lf , P3_lf;// last frequencies

51 int P1_rocof , P2_rocof , P3_rocof;// rate of change of frequency df/dt

52 long double P1_rocoff , P2_rocoff , P3_rocoff;

53

54 void setup()

55 { adc_setup ();

56 SerialTx.begin (921600);//for transmitting Phasors

57 Serial_GPS.begin(GPSBaud); // Start GPS Serial Connection

58 smartDelay (1000);

59 delay (2000);

60 analogReadResolution (12);

61 attachInterrupt (22, aquire , RISING);// aquire voltage samples

62 attachInterrupt (23, attach_pps_time , RISING);// get pulse per

second time

63 attachInterrupt (31, capture_P1_start , RISING);// get starting time

of P1 waveform

64 attachInterrupt (33, capture_P2_start , RISING);//

"""""""""""""""""""" P2 waveform

65 attachInterrupt (29, capture_P3_start , RISING);//

"""""""""""""""""""" P3 waveform

66 }

67 // Get start Time of waves for calculation of frequency

68 void capture_P1_start () {

69 P1_start_micros = micros ();

70 P1_period = P1_start_micros - last_P1_start_micros;

71 last_P1_start_micros = P1_start_micros;

72 }

73 void capture_P2_start () {

74 P2_start_micros = micros ();

75 P2_period = P2_start_micros - last_P2_start_micros;

76 last_P2_start_micros = P2_start_micros;

77 }

78 void capture_P3_start () {

79 P3_start_micros = micros ();

80 P3_period = P3_start_micros - last_P3_start_micros;

81 last_P3_start_micros = P3_start_micros;

82 }

83 // Circular buffer , power of two.

84 #define BUFSIZE 0x40 //64 samples buffer

85 #define BUFMASK 0x3F

86 volatile int R [BUFSIZE] ;

87 volatile int Y [BUFSIZE] ;

88 volatile int B [BUFSIZE] ;

A.4 Arduino code for Phasor estimation using 64-Point DFT xxiii

89 volatile int sptr = 0 ;

90 volatile int isr_count = 0 ;

91

92 void aquire () {

93 ADC ->ADC_CR |= 0b10; // start conversion

94 while (!(ADC ->ADC_ISR & 0b11100000)); //wait for conversion to end

95 int Rval = ADC ->ADC_CDR [7];

96 int Yval = ADC ->ADC_CDR [6];

97 int Bval = ADC ->ADC_CDR [5];

98

99 R[sptr] = Rval;

100 Y[sptr] = Yval;

101 B[sptr] = Bval;

102 sptr = (sptr + 1) & BUFMASK;

103 isr_count ++ ;

104 }

105

106 void adc_setup ()

107 {

108 //ADC setup

109 ADC ->ADC_WPMR &= 0xFFFE; // disable write protect

110 ADC ->ADC_CHER = 0b11100000; // Enable AD7 ,AD6 ,AD5 or CH7 ,Ch6 ,Ch5 or

PA16 ,PA24 ,PA23 or A0 ,A1 and A2 |

111 ADC ->ADC_MR &= 0b11111111000000000000011100000000;//Fast i.e. about

4mS for 2500 Conversions on three channels

112 ADC ->ADC_MR |= 0b00000000000100100000000000000000; // software

trigger , hi res , no sleep , not free running

113 ADC ->ADC_IER = 0b11100000; // enable interrupt

114 ADC ->ADC_IMR = 0b11100000; // enable interrupt in mask

115 ADC ->ADC_CR |= 0b10; // start first conversion

116 }

117

118 void loop()

119 {

120 if (get_time_on_pps == true)

121 {

122 pps_time_millis = millis ();

123 GPS_Timezone_Adjust (); // Call Time Adjust Function

124 get_time_on_pps = false;

125 }

126 if (isr_count == 64)

127 {

128 Calculate_A_Phasor = true;

129 isr_count = 0;

130 }

131 if (Calculate_A_Phasor == true)

132 {

133 calc_phasor ();

134 transmit_phasors_on_SerialTx ();

135 Calculate_A_Phasor = false;

xxiv Arduino Codes for Microcontrollers

136 }

137 smartDelay (0);

138 }

139

140 void attach_pps_time ()

141 {

142 get_time_on_pps = true;

143 }

144

145 void GPS_Timezone_Adjust () {

146

147 Year = gps.date.year();

148 Month = gps.date.month ();

149 Day = gps.date.day();

150 Hour = gps.time.hour();

151 Minute = gps.time.minute ();

152 Second = gps.time.second ();

153

154 // Set Time from GPS data string

155 setTime(Hour , Minute , Second , Day , Month , Year);

156 // Calc current Time Zone time by offset value

157

158 if (timeStatus () != timeNotSet) {

159 if (now() != prevDisplay) {

160 prevDisplay = now();

161 }

162 }

163 smartDelay (0);

164 }

165

166 static void smartDelay(unsigned long ms)

167 {

168 unsigned long start = millis ();

169 do

170 {

171 while (Serial_GPS.available ())

172 gps.encode(Serial_GPS.read());

173 } while (millis () - start < ms);

174 }

175

176 // Phasor calculation function

177 void calc_phasor () {

178 //copy buffer to SampleWindow for calculation

179 for (int i = 0; i < 64; i++)

180 {

181 adc_out_1[i] = R[i];

182 adc_out_2[i] = Y[i];

183 adc_out_3[i] = B[i];

184 }

185 calculation_start_millis = millis ();

A.4 Arduino code for Phasor estimation using 64-Point DFT xxv

186 for (int i = 0; i < N; i++)

187 {

188 values_1[i] = map_double(adc_out_1[i], 1433, 2812, -347.25,

347.25);// Phase A

189 values_2[i] = map_double(adc_out_2[i], 1498, 2859, -336.78,

336.78);// Phase B

190 values_3[i] = map_double(adc_out_3[i], 1408, 2851, -344.70,

344.70);// Phase C

191 smartDelay (0);

192 }

193

194 // Calculate 64-Point DFT

195 Xr_1 = 0; Xr_2 = 0; Xr_3 = 0;

196 Xi_1 = 0; Xi_2 = 0; Xi_3 = 0;

197 Phasor_Magnitude_1 = 0; Phasor_Magnitude_2 = 0;

Phasor_Magnitude_3 = 0;

198 Phasor_Angle_1 = 0; Phasor_Angle_2 = 0; Phasor_Angle_3 = 0;

199 for (int n = 0; n < N; n++)

200 {

201 Xr_1 = Xr_1 + values_1[n] * cos ((2 * pi * n) / N);

202 Xi_1 = Xi_1 + values_1[n] * sin ((2 * pi * n) / N);

203

204 Xr_2 = Xr_2 + values_2[n] * cos ((2 * pi * n) / N);

205 Xi_2 = Xi_2 + values_2[n] * sin ((2 * pi * n) / N);

206

207 Xr_3 = Xr_3 + values_3[n] * cos ((2 * pi * n) / N);

208 Xi_3 = Xi_3 + values_3[n] * sin ((2 * pi * n) / N);

209 smartDelay (0);

210 }

211

212 Xr_1 = (sqrt (2) / N) * Xr_1;

213 Xr_2 = (sqrt (2) / N) * Xr_2;

214 Xr_3 = (sqrt (2) / N) * Xr_3;

215

216 Xi_1 = -(sqrt (2) / N) * Xi_1;

217 Xi_2 = -(sqrt (2) / N) * Xi_2;

218 Xi_3 = -(sqrt (2) / N) * Xi_3;

219

220 Phasor_Magnitude_1 = sqrt(Xr_1 * Xr_1 + Xi_1 * Xi_1);

221 Phasor_Magnitude_2 = sqrt(Xr_2 * Xr_2 + Xi_2 * Xi_2);

222 Phasor_Magnitude_3 = sqrt(Xr_3 * Xr_3 + Xi_3 * Xi_3);

223

224 Phasor_Angle_1 = atan2(Xi_1 , Xr_1); // double atan2(double y, double

x)

225 Phasor_Angle_2 = atan2(Xi_2 , Xr_2); //The atan2() function returns

the arc tangent of y/x, in the range [-pi , +pi] radians.

226 Phasor_Angle_3 = atan2(Xi_3 , Xr_3);

227

228 // Calculate Phasor Angle in Degree

229 Phasor_Angle_Degree_1 = (Phasor_Angle_1 * 4068) / 71;

xxvi Arduino Codes for Microcontrollers

230 Phasor_Angle_Degree_2 = (Phasor_Angle_2 * 4068) / 71;

231 Phasor_Angle_Degree_3 = (Phasor_Angle_3 * 4068) / 71;

232 //

233 calculation_finish_millis = millis ();

234 phasor_stamp_millis = calculation_start_millis - pps_time_millis;

235

236 // Calculate frequency

237 //long int P1_period = P1_end_micros - P1_start_micros;

238 P1_freqf = 1000000 / P1_period;

239 P2_freqf = 1000000 / P2_period;

240 P3_freqf = 1000000 / P3_period;

241

242 P1_rocoff = sqrt((P1_freqf - 50.00) * (P1_freqf - 50.00)) * 50;

243 P2_rocoff = sqrt((P2_freqf - 50.00) * (P2_freqf - 50.00)) * 50;

244 P3_rocoff = sqrt((P3_freqf - 50.00) * (P3_freqf - 50.00)) * 50;

245

246 smartDelay (0);

247 }

248

249 float map_double(double x, double in_min , double in_max , double

out_min , double out_max)

250 {

251 return (x - in_min) * (out_max - out_min) / (in_max - in_min) +

out_min;

252 smartDelay (0);

253 }

254 void transmit_phasors_on_SerialTx () {

255 SerialTx.write(’!’);

256 SerialTx.print(int(Phasor_Magnitude_1 * 100));

257 SerialTx.write(’"’);

258 SerialTx.print(int(Phasor_Magnitude_2 * 100));

259 SerialTx.write(’#’);

260 SerialTx.print(int(Phasor_Magnitude_3 * 100));

261 SerialTx.write(’$’);

262

263 // Calculate angle i.e. 2pi’s complement to be sent

264 if (Phasor_Angle_1 < 0)

265 Phasor_Angle_1 = Phasor_Angle_1 + 6.286;

266 if (Phasor_Angle_2 < 0)

267 Phasor_Angle_2 = Phasor_Angle_2 + 6.286;

268 if (Phasor_Angle_3 < 0)

269 Phasor_Angle_3 = Phasor_Angle_3 + 6.286;

270

271 SerialTx.print(int(Phasor_Angle_1 * 1000));

272 SerialTx.write(’%’);

273 SerialTx.print(int(Phasor_Angle_2 * 1000));

274 SerialTx.write(’&’);

275 SerialTx.print(int(Phasor_Angle_3 * 1000));

276 SerialTx.write(’(’);

277

A.4 Arduino code for Phasor estimation using 64-Point DFT xxvii

278 SerialTx.print(day());

279 SerialTx.write(’)’);

280 SerialTx.print(month ());

281 SerialTx.write(’*’);

282 SerialTx.print(year());

283

284 SerialTx.write(’+’);

285 SerialTx.print(hour());

286 SerialTx.write(’,’);

287 SerialTx.print(minute ());

288 SerialTx.write(’-’);

289 SerialTx.print(second ());

290 SerialTx.write(’.’);

291 SerialTx.print(phasor_stamp_millis);

292 SerialTx.write(’/’);

293

294 float Latitude = (gps.location.lat());

295 float Longitude = (gps.location.lng());

296 SerialTx.print(int(Latitude * 1000));

297 SerialTx.write(’:’);

298 SerialTx.print(int(Longitude * 1000));

299 SerialTx.write(’;’);

300

301 // Transmit Frequencies

302 SerialTx.print(int(P1_freqf * 100));

303 SerialTx.write(’@’);

304 SerialTx.print(int(P2_freqf * 100));

305 SerialTx.write(’^’);

306 SerialTx.print(int(P3_freqf * 100));

307 SerialTx.write(’?’);

308

309 // Transmit ROCOF

310 SerialTx.print(int(P1_rocoff * 100));

311 SerialTx.write(’[’);

312 SerialTx.print(int(P2_rocoff * 100));

313 SerialTx.write(’]’);

314 SerialTx.print(int(P3_rocoff * 100));

315 SerialTx.write(’|’);

316

317 }

xxviii Arduino Codes for Microcontrollers

A.5 Arduino code for PMU communication unit

1 #define IDLE 0

2 #define RECEIVING1 1

3 #define RECEIVING2 2

4 #define RECEIVING3 3

5 #define RECEIVING4 4

6 #define RECEIVING5 5

7 #define RECEIVING6 6

8 #define RECEIVING7 7

9 #define RECEIVING8 8

10 #define RECEIVING9 9

11 #define RECEIVING10 10

12 #define RECEIVING11 11

13 #define RECEIVING12 12

14 #define RECEIVING13 13

15 #define RECEIVING14 14

16 #define RECEIVING15 15

17 #define RECEIVING16 16

18 #define RECEIVING17 17

19 #define RECEIVING18 18

20 #define RECEIVING19 19

21 #define RECEIVING20 20

22 #define RECEIVING21 21

23

24 int Year , Month , Day;

25 int Hour , Minute , Second , MilliSecond;

26

27 float Phasor_Magnitude_1 , Phasor_Magnitude_2 , Phasor_Magnitude_3;

28

29 float Phasor_Angle_1 , Phasor_Angle_Degree_1;

30 float Phasor_Angle_2 , Phasor_Angle_Degree_2;

31 float Phasor_Angle_3 , Phasor_Angle_Degree_3;

32

33 float Latitude;

34 float Longitude;

35

36 float P1_freq , P2_freq , P3_freq;

37 float P1_rocof , P2_rocof , P3_rocof;

38

39 byte status = IDLE;

40 #define SerialRx Serial2

41 #define SerialLCD Serial3

42 void setup() {

43 SerialLCD.begin (921600);

44 SerialRx.begin (921600);

45 Serial.begin (460800);

46 // Serial.println (" Ready");

47 }

48 int count = 0;

A.5 Arduino code for PMU communication unit xxix

49 void loop() {

50

51 if (SerialRx.available ()) {

52 int c = SerialRx.read();

53 if (status == RECEIVING1 && c >= ’0’ && c <= ’9’) {

54 Phasor_Magnitude_1 = Phasor_Magnitude_1 * 10 + (c - ’0’);

55 } else if (status == RECEIVING2 && c >= ’0’ && c <= ’9’) {

56 Phasor_Magnitude_2 = Phasor_Magnitude_2 * 10 + (c - ’0’);

57 } else if (status == RECEIVING3 && c >= ’0’ && c <= ’9’) {

58 Phasor_Magnitude_3 = Phasor_Magnitude_3 * 10 + (c - ’0’);

59 } else if (status == RECEIVING4 && c >= ’0’ && c <= ’9’) {

60 Phasor_Angle_1 = Phasor_Angle_1 * 10 + (c - ’0’);

61 } else if (status == RECEIVING5 && c >= ’0’ && c <= ’9’) {

62 Phasor_Angle_2 = Phasor_Angle_2 * 10 + (c - ’0’);

63 } else if (status == RECEIVING6 && c >= ’0’ && c <= ’9’) {

64 Phasor_Angle_3 = Phasor_Angle_3 * 10 + (c - ’0’);

65 } else if (status == RECEIVING7 && c >= ’0’ && c <= ’9’) {

66 Day = Day * 10 + (c - ’0’);

67 } else if (status == RECEIVING8 && c >= ’0’ && c <= ’9’) {

68 Month = Month * 10 + (c - ’0’);

69 } else if (status == RECEIVING9 && c >= ’0’ && c <= ’9’) {

70 Year = Year * 10 + (c - ’0’);

71 } else if (status == RECEIVING10 && c >= ’0’ && c <= ’9’) {

72 Hour = Hour * 10 + (c - ’0’);

73 } else if (status == RECEIVING11 && c >= ’0’ && c <= ’9’) {

74 Minute = Minute * 10 + (c - ’0’);

75 } else if (status == RECEIVING12 && c >= ’0’ && c <= ’9’) {

76 Second = Second * 10 + (c - ’0’);

77 } else if (status == RECEIVING13 && c >= ’0’ && c <= ’9’) {

78 MilliSecond = MilliSecond * 10 + (c - ’0’);

79 } else if (status == RECEIVING14 && c >= ’0’ && c <= ’9’) {

80 Latitude = Latitude * 10 + (c - ’0’);

81 } else if (status == RECEIVING15 && c >= ’0’ && c <= ’9’) {

82 Longitude = Longitude * 10 + (c - ’0’);

83 } else if (status == RECEIVING16 && c >= ’0’ && c <= ’9’) {

84 P1_freq = P1_freq * 10 + (c - ’0’);

85 } else if (status == RECEIVING17 && c >= ’0’ && c <= ’9’) {

86 P2_freq = P2_freq * 10 + (c - ’0’);

87 } else if (status == RECEIVING18 && c >= ’0’ && c <= ’9’) {

88 P3_freq = P3_freq * 10 + (c - ’0’);

89 } else if (status == RECEIVING19 && c >= ’0’ && c <= ’9’) {

90 P1_rocof = P1_rocof * 10 + (c - ’0’);

91 } else if (status == RECEIVING20 && c >= ’0’ && c <= ’9’) {

92 P2_rocof = P2_rocof * 10 + (c - ’0’);

93 } else if (status == RECEIVING21 && c >= ’0’ && c <= ’9’) {

94 P3_rocof = P3_rocof * 10 + (c - ’0’);

95 }

96

97 else if (status == RECEIVING1 && c == ’"’) {

98 status = RECEIVING2;

xxx Arduino Codes for Microcontrollers

99 } else if (status == RECEIVING2 && c == ’#’) {

100 status = RECEIVING3;

101 } else if (status == RECEIVING3 && c == ’$’) {

102 status = RECEIVING4;

103 } else if (status == RECEIVING4 && c == ’%’) {

104 status = RECEIVING5;

105 } else if (status == RECEIVING5 && c == ’&’) {

106 status = RECEIVING6;

107 } else if (status == RECEIVING6 && c == ’(’) {

108 status = RECEIVING7;

109 } else if (status == RECEIVING7 && c == ’)’) {

110 status = RECEIVING8;

111 } else if (status == RECEIVING8 && c == ’*’) {

112 status = RECEIVING9;

113 } else if (status == RECEIVING9 && c == ’+’) {

114 status = RECEIVING10;

115 } else if (status == RECEIVING10 && c == ’,’) {

116 status = RECEIVING11;

117 } else if (status == RECEIVING11 && c == ’-’) {

118 status = RECEIVING12;

119 } else if (status == RECEIVING12 && c == ’.’) {

120 status = RECEIVING13;

121 } else if (status == RECEIVING13 && c == ’/’) {

122 status = RECEIVING14;

123 } else if (status == RECEIVING14 && c == ’:’) {

124 status = RECEIVING15;

125 } else if (status == RECEIVING15 && c == ’;’) {

126 status = RECEIVING16;

127 } else if (status == RECEIVING16 && c == ’@’) {

128 status = RECEIVING17;

129 } else if (status == RECEIVING17 && c == ’^’) {

130 status = RECEIVING18;

131 } else if (status == RECEIVING18 && c == ’?’) {

132 status = RECEIVING19;

133 } else if (status == RECEIVING19 && c == ’[’) {

134 status = RECEIVING20;

135 } else if (status == RECEIVING20 && c == ’]’) {

136 status = RECEIVING21;

137 } else if (c == ’|’) {

138 status = IDLE;

139

140 // Remote value Received completely , Now display it

141

142 // Calculate Phasor Angles into Float

143 Phasor_Angle_1 = Phasor_Angle_1 / 1000;

144 Phasor_Angle_2 = Phasor_Angle_2 / 1000;

145 Phasor_Angle_3 = Phasor_Angle_3 / 1000;

146

147 // Calculate Phasor Angle using reverse 2pi’s complement

148 if (Phasor_Angle_1 > 3.143)

A.5 Arduino code for PMU communication unit xxxi

149 Phasor_Angle_1 = Phasor_Angle_1 - 6.286;

150 if (Phasor_Angle_2 > 3.143)

151 Phasor_Angle_2 = Phasor_Angle_2 - 6.286;

152 if (Phasor_Angle_3 > 3.143)

153 Phasor_Angle_3 = Phasor_Angle_3 - 6.286;

154

155 // Calculate Angles in Degrees

156 Phasor_Angle_Degree_1 = (Phasor_Angle_1 * 4068) / 71;

157 Phasor_Angle_Degree_2 = (Phasor_Angle_2 * 4068) / 71;

158 Phasor_Angle_Degree_3 = (Phasor_Angle_3 * 4068) / 71;

159

160 Display_Phasors_on_Serial_Terminal ();

161 transmit_phasors_LCD ();

162

163 } else if (c == ’!’) {

164 status = RECEIVING1;

165 // Reset the variables to Zero

166 Year = 0;

167 Month = 0;

168 Day = 0;

169 Hour = 0;

170 Minute = 0;

171 Second = 0;

172 MilliSecond = 0;

173 Phasor_Angle_1 = 0;

174 Phasor_Angle_2 = 0;

175 Phasor_Angle_3 = 0;

176 Phasor_Magnitude_1 = 0;

177 Phasor_Magnitude_2 = 0;

178 Phasor_Magnitude_3 = 0;

179 Phasor_Angle_Degree_1 = 0;

180 Phasor_Angle_Degree_2 = 0;

181 Phasor_Angle_Degree_3 = 0;

182 Latitude = 0;

183 Longitude = 0;

184 P1_freq = 0;

185 P2_freq = 0;

186 P3_freq = 0;

187 P1_rocof = 0;

188 P2_rocof = 0;

189 P3_rocof = 0;

190 }

191 }

192 }

193 // Transmit the phasors to local PDC , where it can be plotted in real

-time

194 void Display_Phasors_on_Serial_Terminal () {

195 // Serial.print(millis ());

196 Serial.print(Day);

197 Serial.print(" ");

xxxii Arduino Codes for Microcontrollers

198 Serial.print(Month);

199 Serial.print(" ");

200 Serial.print(Year);

201 Serial.print(" ");

202 Serial.print(Hour);

203 Serial.print(" ");

204 Serial.print(Minute);

205 Serial.print(" ");

206 Serial.print(Second);

207 Serial.print(" ");

208 Serial.print(MilliSecond);

209 Serial.print(" ");

210 Serial.print(float(Phasor_Magnitude_1 / 100));

211 Serial.print(" ");

212 Serial.print(Phasor_Angle_Degree_1);

213 Serial.print(" ");

214 Serial.print(float(Phasor_Magnitude_2 / 100));

215 Serial.print(" ");

216 Serial.print(Phasor_Angle_Degree_2);

217 Serial.print(" ");

218 Serial.print(float(Phasor_Magnitude_3 / 100));

219 Serial.print(" ");

220 Serial.print(Phasor_Angle_Degree_3);

221 Serial.print(" ");

222 Serial.print(P1_freq / 100);

223 Serial.print(" ");

224 Serial.print(P2_freq / 100);

225 Serial.print(" ");

226 Serial.print(P3_freq / 100);

227 Serial.print(" ");

228 Serial.print(P1_rocof / 100);

229 Serial.print(" ");

230 Serial.print(P2_rocof / 100);

231 Serial.print(" ");

232 Serial.print(P3_rocof / 100);

233 Serial.print("\n");

234 }

235

236 // Transmit the Phasor parameters to LCD Module

237 void transmit_phasors_LCD () {

238 SerialLCD.write(’!’);

239 SerialLCD.print(int(Phasor_Magnitude_1));

240 SerialLCD.write(’"’);

241 SerialLCD.print(int(Phasor_Magnitude_2));

242 SerialLCD.write(’#’);

243 SerialLCD.print(int(Phasor_Magnitude_3));

244 SerialLCD.write(’$’);

245

246 // Calculate angle i.e. 2pi’s complement to be sent

247 if (Phasor_Angle_1 < 0)

A.5 Arduino code for PMU communication unit xxxiii

248 Phasor_Angle_1 = Phasor_Angle_1 + 6.286;

249 if (Phasor_Angle_2 < 0)

250 Phasor_Angle_2 = Phasor_Angle_2 + 6.286;

251 if (Phasor_Angle_3 < 0)

252 Phasor_Angle_3 = Phasor_Angle_3 + 6.286;

253 SerialLCD.print(int(Phasor_Angle_1 * 100));

254 SerialLCD.write(’%’);

255 SerialLCD.print(int(Phasor_Angle_2 * 100));

256 SerialLCD.write(’&’);

257 SerialLCD.print(int(Phasor_Angle_3 * 100));

258 SerialLCD.write(’(’);

259

260 SerialLCD.print(Day);

261 SerialLCD.write(’)’);

262 SerialLCD.print(Month);

263 SerialLCD.write(’*’);

264 SerialLCD.print(Year);

265

266 SerialLCD.write(’+’);

267 SerialLCD.print(Hour);

268 SerialLCD.write(’,’);

269 SerialLCD.print(Minute);

270 SerialLCD.write(’-’);

271 SerialLCD.print(Second);

272 SerialLCD.write(’.’);

273 SerialLCD.print(MilliSecond);

274 SerialLCD.write(’/’);

275

276 SerialLCD.print(int(Latitude));

277 SerialLCD.write(’:’);

278 SerialLCD.print(int(Longitude));

279 SerialLCD.write(’;’);

280

281 // Transmit Frequencies

282 SerialLCD.print(P1_freq);

283 SerialLCD.write(’@’);

284 SerialLCD.print(P2_freq);

285 SerialLCD.write(’^’);

286 SerialLCD.print(P3_freq);

287 SerialLCD.write(’?’);

288

289 // Transmit ROCOF

290 SerialLCD.print(P1_rocof);

291 SerialLCD.write(’[’);

292 SerialLCD.print(P2_rocof);

293 SerialLCD.write(’]’);

294 SerialLCD.print(P3_rocof);

295 SerialLCD.write(’|’);

296 }

xxxiv Arduino Codes for Microcontrollers

A.6 Arduino code for local PMU data display unit

1 #include <UTFT.h>

2 extern uint8_t Grotesk32x64 [];// Declare which fonts we will be using

3 extern uint8_t Ubuntubold [];

4 extern uint8_t Ubuntu [];

5 extern uint8_t franklingothic_normal [];

6 extern uint8_t Inconsola [];

7 extern uint8_t BigFont [];// Declare which fonts we will be using

8

9 UTFT PMU_LCD(CTE70 , 25, 26, 27, 28);

10 bool display_now_on_lcd = false;

11

12 #define IDLE 0

13 #define RECEIVING1 1

14 #define RECEIVING2 2

15 #define RECEIVING3 3

16 #define RECEIVING4 4

17 #define RECEIVING5 5

18 #define RECEIVING6 6

19 #define RECEIVING7 7

20 #define RECEIVING8 8

21 #define RECEIVING9 9

22 #define RECEIVING10 10

23 #define RECEIVING11 11

24 #define RECEIVING12 12

25 #define RECEIVING13 13

26 #define RECEIVING14 14

27 #define RECEIVING15 15

28 #define RECEIVING16 16

29 #define RECEIVING17 17

30 #define RECEIVING18 18

31 #define RECEIVING19 19

32 #define RECEIVING20 20

33 #define RECEIVING21 21

34

35 int Year , Month , Day;

36 int Hour , Minute , Second , MilliSecond;

37

38 float Phasor_Magnitude_1;

39 float Phasor_Magnitude_2;

40 float Phasor_Magnitude_3;

41

42 float Phasor_Angle_1 , Phasor_Angle_Degree_1;

43 float Phasor_Angle_2 , Phasor_Angle_Degree_2;

44 float Phasor_Angle_3 , Phasor_Angle_Degree_3;

45

46 float Latitude;

47 float Longitude;

48

A.6 Arduino code for local PMU data display unit xxxv

49 float P1_freq , P2_freq , P3_freq;

50 float P1_rocof , P2_rocof , P3_rocof;

51

52 byte status = IDLE;

53

54 void setup() {

55 // Setup the LCD

56 PMU_LCD.InitLCD ();

57

58 init_LCD ();

59 Serial3.begin (921600);

60 attachInterrupt (8, display_on_lcd , RISING);

61

62 }

63 int count = 0;

64 void loop() {

65 // put your main code here , to run repeatedly:

66 if (Serial3.available ()) {

67 int c = Serial3.read();

68 if (status == RECEIVING1 && c >= ’0’ && c <= ’9’) {

69 Phasor_Magnitude_1 = Phasor_Magnitude_1 * 10 + (c - ’0’);

70 } else if (status == RECEIVING2 && c >= ’0’ && c <= ’9’) {

71 Phasor_Magnitude_2 = Phasor_Magnitude_2 * 10 + (c - ’0’);

72 } else if (status == RECEIVING3 && c >= ’0’ && c <= ’9’) {

73 Phasor_Magnitude_3 = Phasor_Magnitude_3 * 10 + (c - ’0’);

74 } else if (status == RECEIVING4 && c >= ’0’ && c <= ’9’) {

75 Phasor_Angle_1 = Phasor_Angle_1 * 10 + (c - ’0’);

76 } else if (status == RECEIVING5 && c >= ’0’ && c <= ’9’) {

77 Phasor_Angle_2 = Phasor_Angle_2 * 10 + (c - ’0’);

78 } else if (status == RECEIVING6 && c >= ’0’ && c <= ’9’) {

79 Phasor_Angle_3 = Phasor_Angle_3 * 10 + (c - ’0’);

80 } else if (status == RECEIVING7 && c >= ’0’ && c <= ’9’) {

81 Day = Day * 10 + (c - ’0’);

82 } else if (status == RECEIVING8 && c >= ’0’ && c <= ’9’) {

83 Month = Month * 10 + (c - ’0’);

84 } else if (status == RECEIVING9 && c >= ’0’ && c <= ’9’) {

85 Year = Year * 10 + (c - ’0’);

86 } else if (status == RECEIVING10 && c >= ’0’ && c <= ’9’) {

87 Hour = Hour * 10 + (c - ’0’);

88 } else if (status == RECEIVING11 && c >= ’0’ && c <= ’9’) {

89 Minute = Minute * 10 + (c - ’0’);

90 } else if (status == RECEIVING12 && c >= ’0’ && c <= ’9’) {

91 Second = Second * 10 + (c - ’0’);

92 } else if (status == RECEIVING13 && c >= ’0’ && c <= ’9’) {

93 MilliSecond = MilliSecond * 10 + (c - ’0’);

94 } else if (status == RECEIVING14 && c >= ’0’ && c <= ’9’) {

95 Latitude = Latitude * 10 + (c - ’0’);

96 } else if (status == RECEIVING15 && c >= ’0’ && c <= ’9’) {

97 Longitude = Longitude * 10 + (c - ’0’);

98 } else if (status == RECEIVING16 && c >= ’0’ && c <= ’9’) {

xxxvi Arduino Codes for Microcontrollers

99 P1_freq = P1_freq * 10 + (c - ’0’);

100 } else if (status == RECEIVING17 && c >= ’0’ && c <= ’9’) {

101 P2_freq = P2_freq * 10 + (c - ’0’);

102 } else if (status == RECEIVING18 && c >= ’0’ && c <= ’9’) {

103 P3_freq = P3_freq * 10 + (c - ’0’);

104 } else if (status == RECEIVING19 && c >= ’0’ && c <= ’9’) {

105 P1_rocof = P1_rocof * 10 + (c - ’0’);

106 } else if (status == RECEIVING20 && c >= ’0’ && c <= ’9’) {

107 P2_rocof = P2_rocof * 10 + (c - ’0’);

108 } else if (status == RECEIVING21 && c >= ’0’ && c <= ’9’) {

109 P3_rocof = P3_rocof * 10 + (c - ’0’);

110 }

111 else if (status == RECEIVING1 && c == ’"’) {

112 status = RECEIVING2;

113 } else if (status == RECEIVING2 && c == ’#’) {

114 status = RECEIVING3;

115 } else if (status == RECEIVING3 && c == ’$’) {

116 status = RECEIVING4;

117 } else if (status == RECEIVING4 && c == ’%’) {

118 status = RECEIVING5;

119 } else if (status == RECEIVING5 && c == ’&’) {

120 status = RECEIVING6;

121 } else if (status == RECEIVING6 && c == ’(’) {

122 status = RECEIVING7;

123 } else if (status == RECEIVING7 && c == ’)’) {

124 status = RECEIVING8;

125 } else if (status == RECEIVING8 && c == ’*’) {

126 status = RECEIVING9;

127 } else if (status == RECEIVING9 && c == ’+’) {

128 status = RECEIVING10;

129 } else if (status == RECEIVING10 && c == ’,’) {

130 status = RECEIVING11;

131 } else if (status == RECEIVING11 && c == ’-’) {

132 status = RECEIVING12;

133 } else if (status == RECEIVING12 && c == ’.’) {

134 status = RECEIVING13;

135 } else if (status == RECEIVING13 && c == ’/’) {

136 status = RECEIVING14;

137 } else if (status == RECEIVING14 && c == ’:’) {

138 status = RECEIVING15;

139 } else if (status == RECEIVING15 && c == ’;’) {

140 status = RECEIVING16;

141 } else if (status == RECEIVING16 && c == ’@’) {

142 status = RECEIVING17;

143 } else if (status == RECEIVING17 && c == ’^’) {

144 status = RECEIVING18;

145 } else if (status == RECEIVING18 && c == ’?’) {

146 status = RECEIVING19;

147 } else if (status == RECEIVING19 && c == ’[’) {

148 status = RECEIVING20;

A.6 Arduino code for local PMU data display unit xxxvii

149 } else if (status == RECEIVING20 && c == ’]’) {

150 status = RECEIVING21;

151 } else if (c == ’|’) {

152 status = IDLE;

153

154 // Remote value Received completely , Now display it

155

156 // Calculate Phasor Angles into Float

157 Phasor_Angle_1 = Phasor_Angle_1 / 100;

158 Phasor_Angle_2 = Phasor_Angle_2 / 100;

159 Phasor_Angle_3 = Phasor_Angle_3 / 100;

160

161 // Calculate Phasor Angle using reverse 2pi’s complement

162 if (Phasor_Angle_1 > 3.143)

163 Phasor_Angle_1 = Phasor_Angle_1 - 6.286;

164 if (Phasor_Angle_2 > 3.143)

165 Phasor_Angle_2 = Phasor_Angle_2 - 6.286;

166 if (Phasor_Angle_3 > 3.143)

167 Phasor_Angle_3 = Phasor_Angle_3 - 6.286;

168

169 // Calculate Angles in Degrees

170 Phasor_Angle_Degree_1 = (Phasor_Angle_1 * 4068) / 71;

171 Phasor_Angle_Degree_2 = (Phasor_Angle_2 * 4068) / 71;

172 Phasor_Angle_Degree_3 = (Phasor_Angle_3 * 4068) / 71;

173

174 // Interrupt Driven LCD Display

175 if (display_now_on_lcd == true) {

176 Display_on_LCD ();

177 display_now_on_lcd = false;

178 }

179

180 } else if (c == ’!’) {

181 status = RECEIVING1;

182

183 // Reset the variables to Zero

184 Year = 0;

185 Month = 0;

186 Day = 0;

187 Hour = 0;

188 Minute = 0;

189 Second = 0;

190 MilliSecond = 0;

191 Phasor_Angle_1 = 0;

192 Phasor_Angle_2 = 0;

193 Phasor_Angle_3 = 0;

194 Phasor_Magnitude_1 = 0;

195 Phasor_Magnitude_2 = 0;

196 Phasor_Magnitude_3 = 0;

197 Phasor_Angle_Degree_1 = 0;

198 Phasor_Angle_Degree_2 = 0;

xxxviii Arduino Codes for Microcontrollers

199 Phasor_Angle_Degree_3 = 0;

200 Latitude = 0;

201 Longitude = 0;

202 P1_freq = 0;

203 P2_freq = 0;

204 P3_freq = 0;

205 P1_rocof = 0;

206 P2_rocof = 0;

207 P3_rocof = 0;

208 }

209 }

210 }

211

212 void init_LCD () {

213 //LCD Size 800:480

214 //0,0 799,0

215 //0,479 799 ,479

216 PMU_LCD.setFont(BigFont);

217 PMU_LCD.clrScr ();

218 PMU_LCD.setColor(0, 255, 0);

219 PMU_LCD.print("* Phasor Measurement Unit Local Display *", CENTER ,

1);

220 PMU_LCD.setColor (255, 153, 51);

221 PMU_LCD.print("!!! Developed by Debashish Mohapatra !!!", CENTER ,

462);

222

223 // Print out Phase 1 phase 2 and Phase 3

224 String Header1 = String("Phasor ") + String(" Phase1 ") + String("

Phase2") + String(" Phase3");

225 PMU_LCD.setColor (255, 0, 255);

226 PMU_LCD.setFont(Inconsola);

227 PMU_LCD.print(Header1 , LEFT , 30);

228 PMU_LCD.setColor (255, 0, 255);

229

230 PMU_LCD.print("Magni:", LEFT , 80);

231 PMU_LCD.print("Angle:", LEFT , 145);

232 PMU_LCD.print("Frequ:", LEFT , 220);

233 PMU_LCD.print("ROCOF:", LEFT , 295);

234

235 PMU_LCD.setColor(0, 255, 0);

236 PMU_LCD.setFont(BigFont);

237 PMU_LCD.print(" (VOLT)", LEFT , 115);

238 PMU_LCD.print("(DEGREE)", LEFT , 180);

239 PMU_LCD.print(" (HZ)", LEFT , 255);

240 PMU_LCD.print("(HZ/SEC)", LEFT , 330);

241 }

242

243 void Display_on_LCD () {

244 // Print Phase1 Parameters

245 PMU_LCD.setFont(Inconsola);

A.6 Arduino code for local PMU data display unit xxxix

246 PMU_LCD.setColor (255, 0, 0);// Red

247 PMU_LCD.printNumF(Phasor_Magnitude_1 / 100, 2, 185, 85, 46, 5,48);

248 PMU_LCD.print(" ", 185, 150);

249 PMU_LCD.printNumF(Phasor_Angle_Degree_1 , 2, 185, 150, 46, 6, 48);

250 PMU_LCD.printNumF(P1_freq / 10000 , 2, 185, 225, 46, 4,48);

251 PMU_LCD.printNumF(P1_rocof / 10000 , 2, 185, 300, 46, 4,48);

252

253 PMU_LCD.setColor (255, 255, 0);// Yellow

254 PMU_LCD.printNumF(Phasor_Magnitude_2 / 100, 2, 380, 85, 46, 5,48);

255 PMU_LCD.print(" ", 380, 150);

256 PMU_LCD.printNumF(Phasor_Angle_Degree_2 , 2, 380, 150, 46, 6, 48);

257 PMU_LCD.printNumF(P2_freq / 10000 , 2, 380, 225, 46, 4,48);

258 PMU_LCD.printNumF(P2_rocof / 10000 , 2, 380, 300, 46, 4,48);

259

260 PMU_LCD.setColor (127, 250, 250);// White -Blue

261 PMU_LCD.printNumF(Phasor_Magnitude_3 / 100, 2, 600, 85, 46, 5,48);

262 PMU_LCD.print(" ", 600, 150);

263 PMU_LCD.printNumF(Phasor_Angle_Degree_3 , 2, 600, 150, 46, 6, 48);

264 PMU_LCD.printNumF(P3_freq / 10000 , 2, 600, 225, 46, 4,48);

265 PMU_LCD.printNumF(P3_rocof / 10000 , 2, 600, 300, 46, 4,48);

266

267 // Print GPS Information

268 String Time = String(" UTC Time: ") + String(Hour) + ":" +

String(Minute) + ":" + String(Second) + " ";

269 String Date = String(" Date: ") + String(Day) + "/" +

String(Month) + "/" + String(Year);

270 String Location = String(" Latitude: ") + String(Latitude / 1000) +

String(" Longitude: ") + String(Longitude / 1000);

271

272 PMU_LCD.setFont(Ubuntu);

273 PMU_LCD.setColor (255, 255, 255);

274 PMU_LCD.print(Time , LEFT , 360);

275 PMU_LCD.print(Date , LEFT , 395);

276 PMU_LCD .print(Location , LEFT , 430);

277 }

278 void display_on_lcd () { //ISR

279 display_now_on_lcd = true;

280 }

Appendix B

Python Codes for Computer

B.1 Python program for real-time plotting and logging of the Pha-
sors

1 from pyqtgraph.Qt import QtGui , QtCore

2 import pyqtgraph as pg

3 ##import time

4 import numpy as np

5

6 import serial

7 ser = serial.Serial(’com8’, 460800 , timeout =1)

8 # Connect to serial port at COM8 , at 460800 bauds

9

10

11 pg.setConfigOptions(antialias=True)

12 # Enable antialiasing for prettier plots

13

14 app = QtGui.QApplication ([])

15 win = pg.GraphicsWindow ()

16

17 win.setWindowTitle(’Realtime PMU Data Monitoring ’)

18 # Set the window title

19

20 #Define first graph to show the phasor magnitudes

21 p1 = win.addPlot(title="Phasor Magnitudes",colspan =2)

22 p1.setRange(yRange =[215, 250], xRange =[0, 1000])

23 p1.setLabel(’left’, "Phasor RMS Magnitude", units=’Volts’)

24 p1.setLabel(’bottom ’, "Time (x20 milli Seconds)")

25 p1.showGrid(x=1, y=1, alpha =.5)

xlii Python Codes for Computer

26 p1.addLegend(offset =[-10,-10])

27

28 win.nextRow ()

29 #Define second graph to show the phasor angles

30 p2 = win.addPlot(title="Phasor Angles")

31 p2.setRange(yRange =[-200, 200], xRange =[0, 1000])

32 p2.setLabel(’left’, "Phasor angles", units=’Degree ’)

33 p2.setLabel(’bottom ’, "Time (x20 milli Seconds)")

34 p2.showGrid(x=1, y=1, alpha =.5)

35 p2.addLegend(offset =[-40,-10])

36

37 #Define third graph to show the phasor polar plot

38 v = win.addViewBox ()

39 v.setAspectLocked ()

40 v.setFixedWidth (500)

41 p3 = pg.PlotItem ()

42 p3.setRange(xRange =[-250 ,250], yRange =[-250, 250])

43 curvePen = pg.mkPen(color =(255, 255, 255), style=QtCore.Qt.DotLine)

44 c1 = p3.plot(x=218*np.cos(np.linspace(0, 2*np.pi , 360)), y=218*np.sin

(np.linspace(0, 2*np.pi, 360)),pen=curvePen ,name="218V" ,)

45 c2 = p3.plot(x=50*np.cos(np.linspace(0, 2*np.pi , 360)), y=50*np.sin(

np.linspace(0, 2*np.pi , 360)),pen=curvePen ,name="50V")

46 c4 = p3.plot(x=150*np.cos(np.linspace(0, 2*np.pi , 360)), y=150*np.sin

(np.linspace(0, 2*np.pi, 360)),pen=curvePen ,name="150V")

47 c6 = p3.plot(x=250*np.cos(np.linspace(0, 2*np.pi , 360)), y=250*np.sin

(np.linspace(0, 2*np.pi, 360)),pen=curvePen ,name="250V")

48 c7 = p3.plot(x=np.linspace (-177, 177, 500), y=np.linspace (-177, 177,

500),pen=curvePen)

49 c8 = p3.plot(x=np.linspace (-177, 177, 500), y=np.linspace (177, -177,

500),pen=curvePen)

50 c9 = p3.plot(x=np.linspace (-250, 250, 500), y=np.linspace(0, 0, 500),

pen=curvePen)

51 c10 = p3.plot(x=np.linspace(0, 0, 500), y=np.linspace (-250, 250, 500)

,pen=curvePen)

52 p3.addLegend(offset =[-1,-1])

53

54 g = pg.GraphItem ()

55 v.addItem(g)

56 v.addItem(c1)

57 v.addItem(c2)

58 v.addItem(c4)

59 v.addItem(c6)

60 v.addItem(c7)

61 v.addItem(c8)

62 v.addItem(c9)

63 v.addItem(c10)

64

65 #plot the curves in the graph areas

66 curve1 = p1.plot(pen =(255, 0, 0),name="Phase 1(RMS Magnitude)")

67 curve2 = p1.plot(pen =(255, 255, 0),name="Phase 2(RMS Magnitude)")

B.1 Python program for real-time plotting and logging of the Phasors xliii

68 curve3 = p1.plot(pen=(0, 0, 255),name="Phase 3(RMS Magnitude)")

69

70 curve4 = p2.plot(pen =(255, 0, 0),name="Phase 1")

71 curve5 = p2.plot(pen =(255, 255, 0),name="Phase 2")

72 curve6 = p2.plot(pen=(0, 0, 255),name="Phase 3")

73

74 # Read the serial data string coming in from the PMU

75 line1 = ser.readline ()

76 # split the string and extract the phasor parameters

77 data1 = [float(val1) for val1 in line1.split ()]

78

79 previous_minute = int(data1 [4])

80

81 # define the log files , where the phasors will be stored

82 path_txt = ’pmu_data.txt’

83 path_txt_plot = ’pmu_data_plot.txt’

84 path_excel = ’pmu_data.csv’

85

86 now_min = "%s-%s-%s_%s-%s" %(int(data1 [0]), int(data1 [1]), int(data1

[2]), int(data1 [3]), int(data1 [4]))

87 path_txt_n = ’%s_%s’ % (now_min , path_txt)

88 path_txt_plot_n = ’%s_%s’ % (now_min , path_txt_plot)

89 path_excel_n = ’%s_%s’ % (now_min , path_excel)

90

91 logfileExcel = open(path_excel_n , ’a’)

92 logfileText = open(path_txt_n , ’a’)

93 logfileTextPlot = open(path_txt_plot_n , ’a’)

94

95 # define the read function to read the data stream and append the

96 # parameters to sepatrate arrays

97 def readfun ():

98 global data , current_minute , previous_minute , FORMAT , logfileText ,

logfileTextPlot , logfileExcel , path_txt , path_excel ,

path_txt_plot

99 line = ser.readline ()

100 data = [float(val) for val in line.split()]

101

102 current_minute = int(data [4])

103 if current_minute == (previous_minute +1):

104 now_m = "%s-%s-%s_%s-%s" %(int(data [0]), int(data [1]), int(data

[2]), int(data [3]), int(data [4]))

105 new_path_txt = ’%s_%s’ % (now_m , path_txt)

106 new_path_txt_plot = ’%s_%s’ % (now_m , path_txt_plot)

107 new_path_excel = ’%s_%s’ % (now_m , path_excel)

108

109 logfileExcel.flush()

110 logfileText.flush ()

111 logfileTextPlot.flush ()

112 logfileExcel.close()

113 logfileText.close ()

xliv Python Codes for Computer

114 logfileTextPlot.close ()

115 logfileExcel = open(new_path_excel , ’a’)

116 logfileText = open(new_path_txt , ’a’)

117 logfileTextPlot = open(new_path_txt_plot , ’a’)

118 previous_minute = current_minute

119

120 a = "%s-%s-%s, %s:%s:%s:%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s

, %s, %s, %s" % (int(data [0]), int(data [1]), int(data [2]), int(

data [3]), int(data [4]), int(data [5]), int(data [6]), data[7],

data[8], data[9], data [10], data [11], data [12], data [13], data

[14], data [15], data [16], data [17], data [18],"\n")

121 logfileExcel.write(a)

122 logfileText.write(a)

123

124 bs = int(data [5])

125 bms = int(data [6])

126 bmS = (bs *1000)+bms

127 b = "%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s %s" % (bmS

, data[7], data[8], data[9], data [10], data [11], data [12], data

[13], data [14], data [15], data [16], data [17], data [18], "\n")

128 logfileTextPlot.write(b)

129 return data[6],data[7],data[8],data[9],data [10], data [11], data [12]

130

131 readData = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0]

132

133 y2=np.zeros (1000, dtype=float)

134 y3=np.zeros (1000, dtype=float)

135 y4=np.zeros (1000, dtype=float)

136 y5=np.zeros (1000, dtype=float)

137 y6=np.zeros (1000, dtype=float)

138 y7=np.zeros (1000, dtype=float)

139

140 indx = 0

141 # define the update function to update the plots with the parameter

arrays

142 def update ():

143 global curve1 , curve2 , curve3 , indx , y2 , y3 , y4 , y5 , y6 , y7 #y1

144

145 readData= readfun () #function that reads data from the sensor it

returns a list of 6 elements as the y-coordinates for the

updating plots

146

147 y2[indx]= readData [1]

148 y3[indx]= readData [2]

149 y4[indx]= readData [3]

150 y5[indx]= readData [4]

151 y6[indx]= readData [5]

152 y7[indx]= readData [6]

153

B.1 Python program for real-time plotting and logging of the Phasors xlv

154 Rx=y2[indx]*np.cos(np.deg2rad(y3[indx]))

155 Ry=y2[indx]*np.sin(np.deg2rad(y3[indx]))

156 Yx=y4[indx]*np.cos(np.deg2rad(y5[indx]))

157 Yy=y4[indx]*np.sin(np.deg2rad(y5[indx]))

158 Bx=y6[indx]*np.cos(np.deg2rad(y7[indx]))

159 By=y6[indx]*np.sin(np.deg2rad(y7[indx]))

160

161 pos = np.array ([[0 ,0] ,[Rx ,Ry],[Yx ,Yy],[Bx ,By]])

162 adj = np.array ([[0 ,1] ,[0 ,2] ,[0 ,3]])

163 symbols = [’o’,’t’,’t’,’t’]

164 lines = np.array ([(255 ,0 ,0 ,255 ,3) ,(255 ,255,0 ,255,3) ,(0,0,255,255,3)

], dtype =[(’red’,np.ubyte),

165 (’green ’,np.ubyte) ,(’blue’,np.ubyte) ,(’alpha ’,np.ubyte) ,(’

width’,float)])

166 g.setData(pos=pos , adj=adj ,pen=lines ,size=1,symbol=symbols)

167

168 if indx ==999:

169 y2=np.zeros (1000, dtype=float)

170 y3=np.zeros (1000, dtype=float)

171 y4=np.zeros (1000, dtype=float)

172 y5=np.zeros (1000, dtype=float)

173 y6=np.zeros (1000, dtype=float)

174 y7=np.zeros (1000, dtype=float)

175 indx = 0

176 else:

177 indx +=1

178

179 curve1.setData(y2)# update magnitudes

180 curve2.setData(y4)

181 curve3.setData(y6)

182 curve4.setData(y3)# update angles

183 curve5.setData(y5)

184 curve6.setData(y7)

185 app.processEvents ()

186

187 timer = QtCore.QTimer ()

188 timer.timeout.connect(update)

189 timer.start ()

190

191 if __name__ == ’__main__ ’:

192 import sys

193 if (sys.flags.interactive != 1) or not hasattr(QtCore , ’PYQT_’):

194 QtGui.QApplication.instance ().exec_ ()

xlvi Python Codes for Computer

B.2 Python program for offline plotting of phasor data

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 with open("pmu_data_49_95_Hz.txt") as f:

5 data = f.read()

6

7 data = data.split(’\n’)

8 x8 = [row.split(’,’)[0] for row in data]

9 x7 = [row.split(’,’)[1] for row in data]

10 x1 = [row.split(’,’)[2] for row in data]

11 x2 = [row.split(’,’)[3] for row in data]

12 x3 = [row.split(’,’)[4] for row in data]

13 x4 = [row.split(’,’)[5] for row in data]

14 x5 = [row.split(’,’)[6] for row in data]

15 x6 = [row.split(’,’)[7] for row in data]

16

17 fig = plt.figure ()

18

19 ax1 = fig.add_subplot (211)

20

21 ax1.set_title("Plot of Reported Phasors by PMU")

22 ax1.set_xlabel(’Time in Milli Seconds ’)

23 ax1.set_ylabel(’Amplitude in Volts (RMS)’)

24

25 ax1.plot(x7 ,x1 ,’-’,c=’r’,linewidth =2.0, label=’Ph1 Magnitude ’)

26 ax1.plot(x7 ,x3 ,’--’,c=’r’,linewidth =2.0, label=’Ph2 Magnitude ’)

27 ax1.plot(x7 ,x5 ,’-.’,c=’r’,linewidth =2.0, label=’Ph3 Magnitude ’)

28

29

30 leg = ax1.legend ()

31

32 ax2 = fig.add_subplot (212)

33 ax2.set_xlabel(’Time in Milli Seconds ’)

34 ax2.set_ylabel(’Phasor Angles in Degree ’)

35

36 ax2.plot(x7 ,x2 ,’-’,c=’r’,linewidth =2.0, label=’Ph1 Angle’)

37 ax2.plot(x7 ,x4 ,’--’,c=’y’,linewidth =2.0, label=’Ph2 Angle’)

38 ax2.plot(x7 ,x6 ,’-.’,c=’b’,linewidth =2.0, label=’Ph3 Angle’)

39

40 leg = ax2.legend ()

41

42 plt.show()

	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Literature Review
	GridTRAK PMU
	DTU PMU
	The openPDC

	Shortcomings of currently developed PMUs
	Current status of work done in the area
	 National status
	International status

	Concluding Remarks and Scope of the Present Work

	Hardware Design and Implementation
	Phasor Calculation for 3-phase system
	Signal Acquisition
	Three Phase Signal Acquisition and Conditioning
	Programmable 3-phase signal generator

	Method of frequency estimation
	GPS Disciplined Oscillator(GPSDO)
	 Sampling and Time Stamping
	Sampling of the signals with in built ADC (Analog to Digital Converter)
	Time Stamping with GPS Universal Coordinated Time(UTC)

	Phasor Calculation
	Local Display Terminal
	Power Supply Unit
	Step-Down Transformers
	Diode Bridge Rectifiers
	Smoothing Capacitor
	Linear drop-out voltage regulator

	Experimental Results and Discussion
	The Experimental Setup for Testing of the PMU
	Method of PMU Data acquisition and Plotting
	Analysis of the Phasors reported by the PMU
	Discussion

	Conclusion
	Proposed directions for future work

	References
	Appendices
	Arduino Codes for Microcontrollers
	Arduino code for the GPS Disciplined Oscillator
	Arduino code for the 3 Phase Signal Generator
	Arduino code for temperature controlled regulated power supply
	Arduino code for Phasor estimation using 64-Point DFT
	Arduino code for PMU communication unit
	Arduino code for local PMU data display unit

	Python Codes for Computer
	Python program for real-time plotting and logging of the Phasors
	Python program for offline plotting of phasor data

