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ABSTRACT 

In my research project I review some elementary application of fixed 

point principles to prove existence and uniqueness of results for 

solutions of boundary value problems of ordinary and partial differential 

equations. The approach is based on the 𝐿𝑝space theory of certain linear 

differential operators subjected to certain boundary constraints.  
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INTRODUCTION 

 

In my research project I present a review of an elementary approach to 

existence and uniqueness theory of nonlinear boundary value problems. 

The approach is based on the 𝐿𝑃 theory of linear differential operators 

subject to boundary conditions. The first chapter of the project is 

devoted to nonlinear perturbations of the Laplacian and boundary value 

problems for system of ordinary differential equations. The concept of 

Dirichlet condition has been discussed. Some notation has used. 

In the second chapter the concept of Banach space and Hilbert space has 

been discussed. 

Some theorem based on Banach space and Hilbert space has been 

proved. Riesz Representation Theorem has been proved in this chapter. 

The concept of bounded linear functional has been discussed. 
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CHAPTER 1: Introduction and review of the problem 

1.Semi linear elliptic problems 

Some Definitions: 

Dirichlet Condition: 

If the value of the unknown variable of a Partial differential equation is 

specified on the boundary of the domain then such a boundary condition 

is named as the Dirichlet boundary condition. 

As an example consider, 

                                    𝛻2𝑥 + 𝑥 = 0, 

where 𝛻2 denotes the Laplacian. The Dirichlet condition is given by 

𝑥|𝜕Ω = 𝛼 for every 𝑥 ∈ 𝜕Ω. 

𝑳𝒑 Space: 

For a real number 𝑝 ≥ 1,  𝐿𝑝-norm of x is defined as 

‖𝒙‖𝒑 = (|𝒙𝟏|𝒑 + |𝒙𝟐|𝒑 + … + |𝒙𝒏|𝒑)
𝟏
𝒑 
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Caratheodory conditions- let 𝐺 ⊂ 𝑅𝑛 be an open set 𝐽 = [𝑎, 𝑏] ⊂

𝑅, 𝑎 < 𝑏.we can say that 𝑓: 𝐽 × 𝐺 → 𝑅𝑚satisfies the Caratheodory 

conditions on 𝐽 × 𝐺 written as 𝑓 ∈ 𝐶𝑎𝑟(𝐽 × 𝐺),if 

1) 𝑓(. , 𝑥): 𝐽 → 𝑅𝑚is measurable for every 𝑥 ∈ 𝐺. 

2) (𝑡, . ): 𝐺 → 𝑅𝑚is continuous for almost every 𝑡 ∈ 𝐽. 

3) for each compact set 𝐾 ⊂ 𝐺 the function  

ℎ𝐾(𝑡) = sup {‖𝑓(𝑡, 𝑥)‖: 𝑥 ∈ 𝐾} is Lebesgue integrable on J, where ‖. ‖ 

is the norm in 𝑅𝑚. 

Let Ω be a domain in ℜ𝑛  and  

𝑓: Ω ×  ℜ × ℜ𝑛 → 𝕽 

be a mapping satisfying Caratheodory conditions. 

We consider the Dirichlet problem  

                 Δ𝑢 = 𝑓(𝑥, 𝑢, 𝛻𝑢) ,           𝑥 ∈ Ω 

               𝑢|𝜕Ω=0,                                                                                 (1.1) 

where  𝜕Ω  is the boundary of Ω . 

                                               

The following notations have been used hereafter: 
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1. | ∙ | stands for the absolute value in ℜ and Euclidean norm in 

ℜ𝑛 

2. || ∙ ||𝑝 stands for the norm in 𝐿𝑝(𝛺).  

 

I reviewed a few results pertaining to the problem in (1.1). 

 

Banach contraction principle 

This principle state that if (𝑋, 𝑑) is a complete metric space and 

 𝑇: 𝑋 → 𝑋 is contraction map, i.e., 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦) for all  

𝑥, 𝑦 ∊ 𝑋,  where 𝜆 ∊ (0,1) is a constant. Then T has a unique fixed 

point. 

Poincare inequality 

Let 1 ≤ 𝑝 ≤ ∞ and Ω be a bounded, connected and open subset of the 

‘n’ dimensional Euclidean space ℜ𝑛 with a Lipschitz Boundary (i.e. Ω is 

a Lipschitz domain). 

Then there exist a constant c , depending only on Ω and p , such that for 

every function u in 𝑊1,𝑝(Ω), ‖𝑢 − 𝑢Ω‖𝐿𝑃(Ω) ≤ 𝐶‖𝛻𝑢‖𝐿𝑃(Ω) 

Where 𝑢Ω =
1

|Ω|
 ∫ 𝑢(𝑦)𝑑𝑦 is the average value of u over Ω.  
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|Ω| is the Lebesgue measure of the domain Ω. For a smooth, bounded 

domain  Ω, since the Rayleigh quotient (defined below) for Laplace 

operator in the space 𝑊0
1,2(Ω) is minimized by the eigen function 

corresponding to the minimal eigen value 𝜆1of the laplacian, hence for 

any 𝑢 ∊  𝑊0
1,2(Ω)   

‖𝑢‖
𝐿2
2  ≤ 𝜆1

−1‖𝛻𝑢‖
𝐿2
2 , where 𝐿 is the laplacian operator. 

 

Rayleigh quotient: For a given complex Hermitian matrix M and 

nonzero vector x, the Rayleigh quotient 𝑅(𝑀, 𝑥), defines as  

𝑅(𝑀, 𝑥) =
𝑥∗𝑀𝑥

𝑥∗𝑥
 . 

Theorem1.1: Let 𝑓 satisfy  

|𝑓(𝑥, 𝑢, 𝑣) − 𝑓(𝑥, �̃�, �̃�)| ≤ 𝑎|𝑢 − �̃�| + 𝑏|𝑣 − �̃�| 

∀ 𝑢, �̃� ∈ ℜ,  𝑣, �̃� ∈  ℜ𝑛 , where a and b are non-negative constants such 

that 
𝑎

𝜆1
+

 𝑏

√𝜆1
< 1 and 𝜆1 is the principle Eigen value of −Δ  subject to 

homogeneous Dirichilet boundary conditions on 𝜕𝛺. Then the problem 

in (1.1) admits a unique solution 𝑢 ∈ 𝐻0
1(Ω) ∩ 𝐻2(Ω). 

 Proof: For 𝑣 ∈  𝐿2(𝛺), let us put  

                                          𝐴𝑣 = 𝑓(∙, Δ−1𝑣, 𝛻Δ−1𝑣)...                              (1.2) 
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The operator 𝐴 is a mapping of 𝐿2(𝛺) to itself. We shall now show that 

𝐴 is contracting mapping. 

To see this, let 𝑣1, 𝑣2 ∈  𝐿2(𝛺). Then  

‖𝐴𝑣1 − 𝐴𝑣2‖2 ≤ 𝑎‖Δ−1𝑣1 − Δ−1𝑣2‖2 + b||𝛻Δ−1𝑣1 − 𝛻Δ−1𝑣2||2.                       

                                                                                                             (1.3) 

 

On the other hand it follows from the 𝐿2 theory of  Δ that  

||Δ−1𝑣1 − Δ−1𝑣2||2 ≤  
1

𝜆1
||𝑣1 − 𝑣2||2                                               (1.4) 

and from the Green’s Identity we have  

||𝛻Δ−1𝑣1 − 𝛻Δ−1𝑣2||2
2 ≤ |𝑣1 − 𝑣2 ,  Δ−1𝑣1 − Δ−1𝑣2| ≤

1

𝜆1

‖𝑣1 − 𝑣2‖2
2  

                                                                                                             (1.5) 

Where (∙,∙) is the 𝐿2 − 𝑖𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡.  

Combining the equations (1.4) and (1.5) we obtain  

‖𝐴𝑣1 − 𝐴𝑣2‖2 ≤  
𝑎

𝜆1
‖𝑣1 − 𝑣2‖2 +

𝑏

√𝜆1
‖𝑣1 − 𝑣2‖2                          (1.6) 

This shows that 𝐴 is a contraction mapping and thus has a uniquely fixed 

point. On the other hand if 𝑣 ∈ 𝐿2(Ω) is a fixed point of 𝐴, then 𝑢 =

Δ−1𝑣 is in 𝐻0
1(Ω) 𝑎𝑛𝑑 Δ𝑢 ∈ 𝐿2(Ω) and 𝑢 solves (1.1). 
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Example 

In the given theorem let us take the value of 𝑁 = 1, Ω = (0, T),  𝜆1 =
𝜋2

𝑇2 

and the equation 
𝑎

𝜆1
+

 𝑏

√𝜆1
< 1 will become  

𝑎𝑇2

𝜋2 +
𝑏𝑇

𝜋
< 1. 

The same condition was also obtained by Mawhin [8] and using the 

spaces of continuous functions with weighted norm by Albrecht [2]. 

 

 

2. System of Ordinary Differential Equations 

Consider the nonlinear boundary value problem  

𝑢′′ + 𝐾𝑢′ + 𝑓(𝑥, 𝑢, 𝑢′) = 0      0 < 𝑥 < 𝑇 

𝑢 = 0                                              𝑥 ∈ {0, 𝑇} 

Where 

𝑓: [0, 𝑇] × 𝐻 × 𝐻 → 𝐻  

And 𝐻 is a Banach space with norm | ∙ |  

Nemytskii operator: Given a function f satisfying the Caratheodory 

condition and a function 𝑢: 𝛺 → 𝑅𝑚, define a new function 𝐹(𝑢): 𝛺 → 𝑅 

by 𝐹(𝑢)(𝑥) = 𝑓(𝑥, 𝑢(𝑥)). 

The function F is called a Nemytskii operator. 
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Theorem 1.2: Assume that the mapping f is continuous and satisfies the 

Lipschitz condition  

|𝑓(𝑥, 𝑢, 𝑣) − 𝑓(𝑥, �̃�, �̃�)| ≤ 𝑎|𝑢 − �̃�| + 𝑏|𝑣 − �̃�| 

 ∀𝑢, �̃� ∈ 𝐻 ,  𝑣, �̃� ∈ 𝐻 ,  𝑥 ∈ (0, 𝑇) 

Where  

𝑎𝜙(𝐾) + 𝑏𝜓(𝐾) < 1 

and 𝜓, 𝜙 are given by  

𝜙(𝐾) =
1

|𝐾|(1 − 𝑒−|𝐾|𝑇)
∫ (1 − 𝑒−|𝐾|𝑠)

𝑇

0

(1 − 𝑒−|𝐾|(𝑇−𝑠))𝑑𝑠 

𝜓(𝐾) =
2

|𝐾|

(1−𝑒
−

|𝐾|𝑇
2 )

2

1−𝑒−|𝐾|𝑇 , 

then the above problem has unique solution. 

Proof: We observe that 𝑢 is a solution of above problem iff  

𝑣 = 𝑢′ solves  

𝑣′ + 𝑘𝑣 + 𝑓 (𝑥, ∫ 𝑣, 𝑣
𝑥

0

) = 0         0 < 𝑥 < 𝑇 

                                                          ∫ 𝑣
𝑇

0
= 0                                            (1.7)                                                              
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We proceed to establish the existence of a unique solution of the above 

equations. 

We first assume that 𝐾 > 0. Let 𝑀 be a subspace of 𝐿1((0, 𝑇); 𝐻) 

consisting of those with ∫ 𝑣
𝑇

0
= 0. Define 𝐴: 𝑀 → 𝑀 by 

𝐴𝑣(𝑥) =
𝐾𝑒−𝐾𝑥

1 − 𝑒−𝐾𝑇
∫ 𝑒−𝐾𝑥

𝑇

0

(∫ 𝑒𝑘𝑠𝑁𝑣(𝑠)
𝑥

0

) 

−𝑒−𝑘𝑥 ∫ 𝑒𝑘𝑠𝑁𝑣(𝑠)
𝑥

0

 

Where 𝑁 is Nemytskii operator 

𝑁𝑉(𝑥) = 𝑓 (𝑥, ∫ 𝑣, 𝑣
𝑥

0

) 

Then 𝑣 is a solution of the (1.7) if and only if 𝑣 is a fixed point of 𝐴. 

For 𝑢, 𝑣 ∈ 𝑁, let 𝑤 = 𝑢 − 𝑣 and 𝑝(𝑥) = |𝑁𝑢(𝑥) − 𝑁𝑣(𝑥)| then 𝑝(𝑥) ≤

𝑎|∫ 𝑤 
𝑥

0
| + +𝑏|𝑤(𝑥)| 

𝐴𝑣(𝑥) =
𝑒−𝐾𝑥

1 − 𝑒−𝐾𝑇
{∫ (1 − 𝑒𝐾𝑠)

𝑥

0

𝑁𝑣(𝑠) + ∫ (1 − 𝑒−𝐾(𝑇−𝑠))𝑁𝑣(𝑠)
𝑇

𝑥

} 

From which follows 

∫ |𝐴𝑢 − 𝐴𝑣|
𝑥

0

≤ 2 ∫
(1 − 𝑒𝐾𝑠)(1 − 𝑒−𝐾(𝑇−𝑠))

𝐾(1 − 𝑒𝐾𝑇)
𝑝(𝑠)

𝑇

0
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On the other hand since ∫ 𝑤
𝑇

0
= 0 it follows that |∫ 𝑤

𝑥

0
| ≤

 
1

2
∫ |𝑤|

𝑇

0
    𝑥 ∈ [0, 𝑇] further the function (1 − 𝑒𝐾𝑠)(1 − 𝑒−𝐾(𝑇−𝑠)) 

attains its maximum at 𝑇/2. Using these facts we obtain that  

||𝐴𝑢 − 𝐴𝑣||1 ≤ (𝑎𝜙(𝐾) + 𝑏𝜓(𝐾))𝑢||𝑒 − 𝑣1|| 

and hence 𝐴 is a contraction mapping on 𝑀 and therefore it has a unique 

fixed point in 𝑀. 
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CHAPTER 2: Elementary Banach and Hilbert space theory 

Banach Space: A normed space 𝑋 is a vector space with norm defined 

on it. A Banach space is a complete normed linear space. (Complete in 

the metric defined by the norm) 

Theorem 2.1(Completeness): If 𝑌 is a Banach space, then 𝐵(𝑋, 𝑌) is a 

Banach space. 

Proof: We consider the Cauchy sequence (𝑇𝑛) in 𝐵(𝑋, 𝑌) and show that 

(𝑇𝑛) converges to an operator 𝑇 ∈ 𝐵(𝑋, 𝑌). 

Since (𝑇𝑛) is Cauchy for every 𝜖 > 0 there is a 𝑁 such that 

‖𝑇𝑛 − 𝑇𝑚‖ < 𝜖 (2.1) 

For all 𝑥 ∈ 𝑋 and 𝑚, 𝑛 > 𝑁 we thus obtain 

‖𝑇𝑛𝑥 − 𝑇𝑚𝑥‖ = ‖(𝑇𝑛 − 𝑇𝑚)𝑥‖ ≤ ‖𝑇𝑛 − 𝑇𝑚‖‖𝑥‖ < 𝜖‖𝑥‖ (2.2) 

 

Now for any fixed 𝑥 and given 𝜖̃ we may choose 𝜖 = 𝜖𝑥 so that 𝜖𝑥‖𝑥‖ ≤

𝜖̃. Then from (2.2) we have ‖𝑇𝑛𝑥 − 𝑇𝑚𝑥‖ < 𝜖̃ and see that (𝑇𝑛𝑥) is a 

Cauchy sequence in 𝑌. Since 𝑌 is complete (𝑇𝑛𝑥) converges, say, 𝑇𝑛𝑥 →

𝑦. clearly the limit 𝑦 𝑖𝑛 𝑌 depends up on the choice 𝑥 ∈ 𝑋. This defines 

an operator 𝑇: 𝑋 → 𝑌 where 𝑦 = 𝑇𝑥. The operator 𝑇 is linear since 

𝑙𝑖𝑚 𝑇𝑛(𝛼𝑥 + 𝛽𝑦) = lim(𝛼𝑇𝑛𝑥 + 𝛽𝑇𝑛𝑥) = 𝛼 lim 𝑇𝑛𝑥 + 𝛽 lim 𝑇𝑛𝑥 
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We prove that 𝑇 is bounded and 𝑇𝑛 → 𝑇 that is ‖𝑇𝑛 − 𝑇‖ → 0. Since 

(2.2) holds for every 𝑚 >  𝑁 and 𝑇𝑚𝑥 → 𝑇𝑥, we may let 𝑚 → ∞.Using 

the continuity of the norm, we then obtain from (2.2) for every 𝑛 >  𝑁 

and all 𝑥 ∈ 𝑋. 

‖𝑇𝑛𝑥 − 𝑇𝑥‖ = ‖𝑇𝑛𝑥 − lim
𝑚→∞

𝑇𝑚𝑥‖ = lim
𝑚→∞

‖𝑇𝑛𝑥 − 𝑇𝑚𝑥‖ ≤ 𝜖‖𝑥‖              

 

                                                                                                            (2.3) 

                                          

 

This shows that (𝑇𝑛  −  𝑇) with 𝑛 >  𝑁 is a bounded linear operator. 

Since 𝑇𝑛 is bounded, 𝑇 =  𝑇𝑛  −  (𝑇𝑛  −  𝑇) is bounded, that is, 𝑇 ∈

𝐵(𝑋, 𝑌).Furthermore, if in (2.4) we take the supremum over all x of 

norm 1, we obtain 

‖𝑇𝑛 − 𝑇‖ ≤ 𝜖 (𝑛 > 𝑁) 

Hence ‖𝑇𝑛 − 𝑇‖ → 0. 

Theorem 2.2 (Riesz Lemma): Let 𝑌 and 𝑍 be subspaces of a normed 

space 𝑋 (of any dimension), and suppose that 𝑌 is closed and is a proper 

subset of Z. Then for every real number 𝜃 in the interval (0,1) there is a 

𝑧 ∈  𝑍 such that 

‖𝑧‖ = 1                                  ‖𝑧 − 𝑦‖ ≧ 𝜃        ∀ 𝑦 ∈ 𝑌 

Proof: We consider any 𝑣 ∈  𝑍 −  𝑌 and denote its distance from 𝑌 by 

𝑎, that is 𝑎 = inf
y∈Y

||𝑣 − 𝑦||. 
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Clearly 𝑎 > 0a and since 𝑌is closed. We now take any 𝜃 ∈ (0,1). By the 

definition of an infimum there is a 𝑦0 ∈ 𝑌  such that  

𝑎 ≦ ‖𝑣 − 𝑦0‖  ≦  
𝑎

𝜃
 (2.4) 

(Note that 
𝑎

𝜃
> 𝑎 since 0 < 𝜃 < 1). Let  

𝑧 = 𝑐(𝑢 − 𝑦0)       𝑤ℎ𝑒𝑟𝑒      𝑐 =
1

||𝑣 − 𝑦0||
 

Then ‖𝑧‖ = 1 ans we show that ||𝑧 − 𝑦0|| ≧ 𝜃 for every 𝑦 ∈ 𝑌. We 

have  

||𝑧 − 𝑦0|| = ‖𝑐(𝑣 − 𝑦0) − 𝑦‖ 

= 𝑐‖𝑣 − 𝑦0 − 𝑐−1𝑦‖ 

= 𝑐||𝑣 − 𝑦1|| 

Where 𝑦1 = 𝑦0 + 𝑐−1𝑦 

The form of 𝑦1shows that 𝑦1 ∈ 𝑌. Hence ‖𝑣 − 𝑦1‖ ≧ 𝑎, by the 

definition of 𝑎. Writing 𝑐 out and using (2.4) we obtain 

‖𝑧 − 𝑦0‖ = 𝑐‖𝑣 − 𝑦1‖ ≧ 𝑐𝑎 =
𝑎

‖𝑣 − 𝑦0‖
≧

𝑎

𝑎 𝜃⁄
= 𝜃 

Since 𝑦 ∈ 𝑌 was arbitrary, this completes the proof. 

Bounded linear functional: A bounded linear functional 𝑓 is a bounded 

linear operator with range in the scalar field of the normed space 𝑋 in 

which the domain 𝐷(𝑓) lies. Thus there exists a real number 𝑐 such that 

for all 𝑥 ∈ 𝐷(𝑓). 
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|𝑓(𝑥)| ≦ 𝑐||𝑥|| 

Furthermore, the norm of 𝑓 is 

‖𝑓‖ = sup
𝑥∈𝐷(𝑓)

𝑥≠0

|𝑓(𝑥)|

||𝑥||
 

Or  

‖𝑓‖ = sup
𝑥∈𝐷(𝑓)

||𝑥||=0

|𝑓(𝑥)| 

Combining the above two |𝑓(𝑥)| ≦ ‖𝑓‖‖𝑥‖ 

Theorem 2.3(Orthogonal): Let 𝑀 be a complete subspace 𝑌 and 𝑥 ∈ 𝑋 

fixed. Then 𝑧 =  𝑥 −  𝑦 is orthogonal to Y. 

Proof: If 𝑧 ⊥  𝑌 were false, there would be a 𝑦1 ∈ 𝑌 such that  

< 𝑧, 𝑦1 >= 𝛽 ≠ 0 

Cleary 𝑦1 ≠ 0 since otherwise < 𝑧, 𝑦1 > = 0. Furthermore for any 

scalar 𝛼  

‖𝑧 − 𝛼𝑦1‖2 =< 𝑧 − 𝛼𝑦1, 𝑧 − 𝛼𝑦1 > 

=< 𝑧, 𝑧 > −�̅� < 𝑧, 𝑦1 > −𝛼[< 𝑦1, 𝑧 > −�̅� < 𝑦1, 𝑦1 >] 

=< 𝑧, 𝑧 > −�̅�𝛽 − 𝛼[�̅� − �̅� < 𝑦1, 𝑦1 >] 

The expression in the brackets [… ] is zero if we choose 

�̅� =
�̅�

< 𝑦1, 𝑦1 >
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By minimizing vector theorem we have ‖𝑧‖ = ‖𝑥 − 𝑦‖ = 𝛿 so that the 

equation yields  

‖𝑧 − 𝛼𝑦1‖ = ‖𝑧‖2 −
�̅�

< 𝑦1, 𝑦1 >
< 𝛿 

But this is impossible because we have  

𝑧 − 𝛼𝑦1 = 𝑥 − 𝑦2 where 𝑦2 =  𝑦 + 𝛼𝑦1 ∈ 𝑌, 

So that ‖𝑧 − 𝛼𝑦1‖ ≧ 𝛿. Hence the assumption does not hold and the 

above theorem is proved. 

Theorem 3.4 (Riesz Representation Theorem): let 𝐻1, 𝐻2 be Hilbert 

spaces and  

ℎ: 𝐻1 × 𝐻2 → 𝐾 

a bounded sesquilinear form. Then ℎ has a representation 

ℎ(𝑥, 𝑦) =< 𝑆𝑥, 𝑦 > 

where 𝑆: 𝐻1 → 𝐻2 is a bonded linear operator. 𝑆 is uniquely determined 

by ℎ and has norm ‖𝑆‖ = ‖ℎ‖ 

Proof: We consider ℎ(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅. This is linear in 𝑦 because of the bar. To 

make Reisz Theorem applicable we keep 𝑥 fixed. Then that theorem 

yields a representation in which 𝑦 is variable, say, 

 ℎ(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ =< 𝑦, 𝑧 > 
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Hence 

ℎ(𝑥, 𝑦) =< 𝑧, 𝑦 > 

Let 𝑧 ∈ 𝐻2 is unique but, of course, depends on our fixed 𝑥 ∈ 𝐻1. It 

follows that with the variable 𝑥 defines an operator 

𝑆: 𝐻1 → 𝐻2 given by 𝑧 = 𝑆𝑥 

Substituting 𝑧 = 𝑆𝑥 in the above we get one result of the theorem. 

S is linear. In fact, its domain is the vector space 𝐻1 and the 

sesquilinearity we obtain 

< 𝑆(𝛼𝑥1 + 𝛽𝑥2), 𝑦 > = ℎ(𝛼𝑥1 + 𝛽𝑥2, 𝑦) 

= 𝛼ℎ(𝑥1, 𝑦) + 𝛽ℎ(𝑥2, 𝑦) 

= 𝛼 < 𝑆𝑥1 , 𝑦 > +𝛽 < 𝑆𝑥2, 𝑦 > 

=< 𝛼𝑆𝑥1 + 𝛽𝑆𝑥2, 𝑦 > 

For all 𝑦 in 𝐻1 𝑆(𝛼𝑥1 + 𝛽𝑥2) = 𝛼𝑆𝑥1 + 𝛽𝑆𝑥2 

𝑆 is bonded. Indeed leaving the trivial case 𝑆 = 0 we have 

‖ℎ‖ sup
𝑥≠0
𝑦≠0

|< 𝑆𝑥, 𝑦 >|

‖𝑥‖‖𝑦‖
≧ sup

𝑥≠0
𝑆𝑥≠0

|< 𝑆𝑥, 𝑆𝑥 >|

‖𝑥‖‖𝑆𝑥‖
= sup

𝑥≠0

‖𝑆𝑥‖

‖𝑥‖
= ‖𝑆‖ 

The above proves ‖ℎ‖ > ‖𝑆‖ 

By Cauchy Schwarz application we get 
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‖ℎ‖ = sup
𝑥≠0
𝑦≠0

‖< 𝑆𝑥, 𝑦 >‖

‖𝑥‖‖𝑦‖
≦ sup

𝑥≠0

‖𝑆𝑥‖‖𝑦‖

‖𝑥‖‖𝑦‖
= ‖𝑆‖ 

 

𝑆 is unique. In fact, assuming that there is a linear operator 𝑇: 𝐻1 → 𝐻2 

such that for all 𝑥 ∈ 𝐻1 and 𝑦 ∈ 𝐻2 we have  

ℎ(𝑥, 𝑦) =< 𝑆𝑥, 𝑦 ≥< 𝑇𝑥, 𝑦 >, 

We see that 𝑆𝑥 = 𝑇𝑥 by the lemma of equality for all 𝑥 ∈ 𝐻1. Hence 

𝑆 = 𝑇 by definition. Combining all the above cases the theorem is 

proved. 
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CONCLUSION  

A review of an existence and uniqueness result was made in this thesis for a class 

of elliptic partial differential equations. In the whole process a special class of 

Banach Space, namely the Sobolev space was studied. The thesis also showed an 

application of the basic results in analysis such as the Banach’s contraction 

principle and the  Poincare inequality. 
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