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ABSTRACT 

Gyroscope is an angular rate measurement sensor having broad application in the field of 

automotive, military services, aerospace and consumer electronics industries. Silicon micro 

machined MEMS vibratory gyroscopes have better advantages compared to conventional 

gyroscope. Nano beam vibratory gyroscope is one of the simple gyroscope. It has relatively small 

size, light weight, low power consumption, low cost and simple structure.  When a gyroscope is 

made to rotate at its base along with some excitation in one of the bending direction, due to Coriolis 

effect, there will be significant displacement in other bending direction. Dynamic modeling of 

beam gyroscope is very interesting area. In the micro/nano level actuation and sensing are with 

electrostatics principles. This report presents the modeling and analytical simulation task of a nano 

cantilever beam gyroscope. Static and dynamic analysis of a nano/micro cantilever gyroscope with 

a tip mass is studied. Pull-in instability corresponding voltage is estimated from static and 

frequency response. Pull-in stability regions are identified as a function of beam length, tip mass 

value, elastic modulus of the beam. Nonlinearities due to geometry and the external forces 

including electrostatic and van der Waals forces are considered during modelling. Squeeze film 

and slide film damping are considered to account the damping force between the tip mass and 

sense and drive direction. The dynamic solution is obtained by using Galerkin’s reduction scheme. 

The time response and the frequency domain graphs are arrived for different parameters on both 

sense and drive directions. The interactive program developed in the work are helpful to account 

any experiments for additional force at nano level. 
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CHAPTER 1 

INTRODUCTION 

Micromachined angular rate gyroscopes are often finding applications in several systems including 

aviation, consumer electronics and defence sectors. Various MEMS gyroscopes are being recently 

developed and implemented in various applications. Design and analysis, fabrication and 

electronic circuitry are typical issues in development of MEMS/NEMS gyroscope. Vibratory 

MEMS gyroscopes convert the mechanical displacements into equivalent electrical voltage in 

sense direction. Conversion efficiency (sensitivity), operating range, accuracy of measurements 

(resolution) are ultimate parameters for gyroscope designation. Tuning fork type, beam type and 

ring type are few commonly used vibratory gyroscopes.      

Gyroscope first discovered in 1817, by Johann Bohnenberger. Gyroscopes are the angular rate 

sensors which can be used for measuring or maintaining orientation from the principles of angular 

momentum. The device is having a disk or wheel and an inner gimbal and an outer gimbal as 

shown in Fig. 1.1.  

 

Fig. 1.1 Traditional Gyroscope 
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The axle of disk is free to take any of the orientation. The gimbals are used to minimize the external 

torque. Traditional gyroscope having a disk which is rotating along the direction of the engine 

shaft. The axis of rotation of the disk is called spin axis. Rotating disk is surrounded by an inner 

gimbal. Inner gimbal can also rotate about its axis. The axis of inner gimbal is perpendicular to the 

spin axis and inner gimbal is covered by an outer gimbal whose axis is perpendicular to inner 

gimbal axis. The spin axis, inner gimbal axis and outer gimbal axis are mutually perpendicular to 

each other. One of inner or outer gimbal axis represents the input axis and other one as output axis. 

When a small disturbances comes in input axis then the combined effect of spinning and 

disturbance will observed in output axis which is known as gyroscopic effect. The output axis also 

known as precession axis.  

1.1 Micro-Gyroscopes 

One of the important MEMS sensors is a micro-gyroscope. Conventional gyroscopes are heavy, 

costly and bulky. Micro-gyroscopes solve these problems and can be employed in highly sensitive 

applications for measurement of rotation rate. These gyroscopes have various properties such as 

durability, light weight, low energy consumption, small dimension and low cost. Now-a-days 

ample amount of research works are carried out in the field of micro-gyroscope in all over the 

world. Microfabrication technology is used to construct the MEMS gyroscope. Several materials 

are used for manufacturing of micro-gyroscope but out of which silicon is very famous choice for 

fabrication of micro-gyroscopes, because it can be used as a single crystal substrate. The physical 

properties of silicon made it more suitable for micromachining. Micro gyroscopes can also be 

integrated easily with microelectronics. The MEMS gyroscopes are classified based on various 

mechanisms of sensing. Most of these employ vibration principles and use Coriolis force to 
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measure angular displacement. Examples of vibratory gyroscopes include tuning fork gyroscope, 

ring gyroscope and vibratory beam type gyroscope. 

In 1990s the first tuning fork gyroscope made by draper laboratory. The tuning fork gyroscope is 

relatively easy to fabricate and having high precision performance. The tuning fork gyroscope is 

work on Coriolis Effect. The tuning fork gyroscope having two oscillating frames, both the frame 

supported by glass substrate by using four spring type beams and these frames are connected by a 

connection ring. The proof masses along with electrodes are connected to frames with the help of 

two suspension beams. The frames and the proof masses can move above the glass substrate along 

the plane in x and y axis direction. The Ac current supply in the drive direction due to this Lorentz 

force field is generated in x direction, which create vibration in the oscillating frame. When the 

rotation is given about the z-direction then due to Coriolis effect the proof masses move along y 

axis. This vibration in y axis sensed by capacitive sensor. According to connection the tuning fork 

gyroscopes are two type, direct connection mode and indirect connection mode. Indirect 

connection type tuning fork gyroscope is accurate compare to direct type connection tuning fork 

gyroscope. Tuning fork gyroscope is very useful in automobile application. Fig. 1.2 shows the 

tuning fork gyroscope.      

 

Fig. 1.2 Tuning fork gyroscope [21] 
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Vibratory ring type gyroscope is first developed by the researcher of Michigan University. 

Vibratory ring type gyroscope consist of a semi-circular support spring, vibrating ring, control, 

sense and drive electrode. The vibratory ring gyroscopes are fabricated by using high aspect ratio 

combined poly and single crystal MEMS technology. Vibrating ring is symmetric in nature, so 

eight spring placed in 450 apart from each other is used to support and balancing purposes. Each 

spring has two electrode one for driving and one for sensing purpose. The electrostatic force 

provide vibration in an in-plane elliptically shaped primary flexural mode with constant amplitude. 

When the ring is rotate about its normal axis then the primary vibration transferred to secondary 

mode and it is sensed by sense electrode. Fig. 1.3 represents the vibratory ring type gyroscope.         

 

Fig. 1.3 Vibratory ring type gyroscope [22] 

Vibratory beam type gyroscope is a type of MEMS device, which is having a cantilever beam fixed 

at one end and a small tip mass attached to its other end. The beam is rotate about the x-axis, called 

spin axis and having two bending direction. The beam is actuated in z-direction by using 

electrostatic actuation technique with the help of drive electrode. Due to this actuation and base 

rotation the secondary vibration generated in the y-direction and a sense electrode is used to sense 

the deflection due to secondary vibration. The control algorithm is generated to study the 

gyroscopic effect and this gyroscope used as a sensor for the various application. In all above type, 
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the architecture should generate and maintain a constant linear or angular momentum coupled to 

the sense mode.   

1.2 Literature Review  

Due to their advantages, such as simplicity and easy to fabricate from micro fabrication techniques, 

several recent works focused on beam-type gyroscopes  

First beam gyroscope was demonstrated in early 1983 by Shupe and Connor [1] using electrostatic 

force as excitation with a frequency close to cantilever frequency and piezoelectric element was 

used for sensing induced vibration. 

Tanaka et al [2] fabricated a vibratory micro-gyroscope by using silicon. They used silicon surface 

micromachining process for fabrication. Electrostatic actuation is used for drive the gyroscope and 

capacitive sensing adopted for sensing purpose. 

Maenaka et al. [3] investigate the behaviour of the micro-gyroscope by considering beam as a 

vibrating mass.    

Katz and Highsmith [4] studied about the optimal size of the vibratory beam type gyroscope 

because the thermal noise is depend upon the beam length. They concluded that for longer beam 

the thermal noise is lower. These work very helpful for the application of gyroscope in aviation 

because noise play important role for the development of aviation vehicles. 

Yang and Fang [5] performed the vibration study of elastic beam having piezoelectric surface 

bonded films and rotating about one of its axis. They also considered the effect of centripetal force 

and Coriolis forces. They proposed a beam model can be used for gyroscope. 

Kausinis and Barauskas [6] represented the 3 dimension finite element analysis model of a 

piezoelectric angular rate sensor for estimating the dynamic properties. For achieving the desired 
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values of natural frequencies they adjust the geometric parameter and obtained the sensitivity 

functions. 

Yu et al. [7] constructed thin and short cantilevers having high resonance frequency and low force 

constant. 

Seok and Scarton [8] studied the dynamic characteristics of a beam type angular rate gyroscopic 

sensor. They considered the square cross-section of the vibratory beam and performed the 

sensitivity and bandwidth analysis of these beam. They concluded that by increasing the bandwidth 

of the sensor the sensitivity decreases. 

Esmaeili et al. [9] study the performance and dynamic modelling of a vibratory beam type 

gyroscope by considering general support motion. They considered that the beam vibrate in all 3 

direction and the beam is rotate about longitudinal direction. Equation of motion are derived by 

using Extended Hamilton Principle. They considered the effect of Coriolis accelerations, angular 

accelerations, and beam distributed mass, centripetal accelerations and tip mass on the 

performance of gyroscope.  

Ashokanthan and Cho [10] investigated the dynamic stability of beam type gyroscope under the 

rate fluctuations. For fluctuations in velocity of rotating beam type gyroscope a mathematical 

model is developed. The system is having gyroscopic coupling so due to these gyroscopic coupling 

the variation in natural frequency are characterized. The dynamic stability is investigated due to 

variation in input angular speed. Numerical integration technique is used to validate the results. 

Bhadbhade et al. [11] studied about the vibrating beam type gyroscope which is having a cantilever 

beam fixed at one end and a tip mass is attached to its other end and it is piezo-electrically actuated. 

Extended Hamilton principle used for mathematical modelling of the system. Results shows that 

the performance of gyroscope is depend upon the secondary base rotation of the beam. They also 
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concluded that with increase in beam length, primary excitation amplitude and base rotation rate 

the gyroscopic effect will increase. 

Ghommem et al. [12] developed a model of the micro beam type gyroscope whose principal 

component are a micro cantilever beam which is fixed at one end and an small proof mass is 

attached to its other end. The beam having flexural vibration in two perpendicular axis due to 

bending and these two modes are coupled by a base rotation. They consider one bending direction 

as a sense direction and other as a drive direction. Initially the beam is rotated along the 

longitudinal axis and a pair of DC and AC voltage is applied in the drive direction which is also 

called electrostatic actuation. Due to these actuation and base rotation the deflection occurs in the 

third perpendicular direction. The response of those deflection is measured with the help of sense 

electrode which is assembled in the sense direction. Due to those combined effect the equation of 

motion for two orthogonal bending direction are derived by using extended Hamilton principal. 

These equation of motion are solved analytically and the response of the DC voltage and excitation 

frequency examined. 

Hou et al. [13] studied the effect of axial force on the performance of the vibratory gyroscope. 

They concluded that if material of substrate and structure are having different properties so due to 

mismatching between the thermal coefficients of expansion the thermal stress induced the axial 

force. They obtained the effect of axial force on the resonant frequency analytically. 

Rasekh et al. [14] studied about the performance of vibratory beam gyroscope having high 

operational frequency. In this study electrostatic actuation and capacitive sensing are used for 

driving and sensing respectively. The complete dynamic equation is derived by extended Hamilton 

principal. Performance of gyroscope like dynamic response, rate sensitivity, resolution, band 
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width, dynamic range, gyroscope sensitivity and shock resistance are investigated through the 

simulation results.    

Lajimi et al. [15] studied the static and dynamic behaviour of the micro cantilever beam type 

gyroscope. They investigated the sensitivity of the gyroscope and the parameter which affect the 

response of the gyroscope. 

Lajimi et al. [16] performed the eigenvalue analysis of the vibratory beam type gyroscope and 

result the variation between frequencies and input angular rate. For these analysis they obtained 

the characteristic equation and solved for natural frequency. They found that frequencies vary 

proportionally with the input angular displacements. 

Wang et al. [17] shown the design of micromachined gyroscope with multi degree of freedom and 

double sense mode.  

Moghaddam et al. [18] studied about the parameters which are affecting the fundamental 

frequency and pull-in voltage for the micro cantilever beam type vibratory gyroscope. 

Mojahedi et al. [19] investigated the effect of the intermolecular forces on the pull-in instability 

and the static deflection of the nano/micro vibratory cantilever type gyroscope having a tip mass 

at its other end. They also studied the non-linearity’s due to inertial and geometry terms. They 

consider Van der Waals and Casimir forces along with electrostatic forces. They used Galerkins 

technique and Homotopy perturbation method for solution of non-linear equilibrium equation. The 

effect on pull-in instability due to different parameter are investigated and the response of DC 

voltages across the drive and sense direction is obtained. 

Zand and Moghaddam [20] presented the effect of design parameters on pull-in voltage and 

fundamental frequency of an electrostatically actuated beam micro-gyroscope. 
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1.3 Scope and objective of the Work 

Few works have considered the effects of damping or influence of intermolecular forces but none 

of these considered the combined effect of damping and intermolecular forces on the gyroscopic 

performance. The present work considers a nano-cantilever vibratory beam gyroscope with a tip 

mass actuated electrostatically and sensed. The influence of the intermolecular forces on the static 

and dynamic analysis is also considered. Objective of the presents work as follows: 

i. Mathematical modelling of the beam type gyroscope and derive the general equation of 

motion for the system. 

ii. Static analysis task by eliminating the time coordinate from the equation and considering 

the effect of intermolecular force. 

iii. Modal and vibration analysis of the cantilever beam having tip mass at its end. 

iv. Reduction of 4th order partial differential equation into 2nd order ordinary differential 

equation by using Galerkin’s technique and solve the equations by R-K method. 

v. Dynamic analysis of the beam by considering the effect of inter molecular forces and 

damping forces. 

vi. Construct the lumped parameter model for the system to get dynamic response. 

The thesis is organized in the following format: 

Chapter 2, consist of mathematical modelling of the vibratory beam gyroscope, static uncoupled 

equation, and introduction of intermolecular forces. Galerkin’s method and dynamic coupled 

equation and damping formulae along with FEA modelling and lumped parameter model also 

discussed.  

Chapter 3 and chapter 4 results and discussion and conclusions respectively 

-------o------ 
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CHAPTER 2 

MATHEMATICAL MODELLING 

Beam is the distribute parameter system with two bending displacement. When such a system is 

made to rotate at its base along with some excitation in one of the bending direction, due to Coriolis 

Effect there will be significant displacement in other bending direction. This chapter presents 

dynamic equations of motion of beam gyroscope in lumped parameter spring mass form, 

distributed continuous system form and also numerical finite element form. The solution of these 

equations are shown as static, frequency and dynamic analysis outputs. Approximate and 

numerical techniques are used to solve the differential equations.  

2.1 Type of Actuation Technique used in MEMS gyroscope  

Actuation techniques are very important for design and development of micro gyroscope. There 

are many actuation technique used for analysis point of view of micro and nano gyroscope, but 

electrostatic actuation, magnetic and piezoelectric actuations are the conventional method which 

are generally used for micro gyroscope. Due to high current density and ease of control the 

electrostatic actuation technique is most widely used actuation technique now a days. In this work 

electrostatic technique is used for both driving and sensing purpose.  

In electrostatic technique two conductors are used. Voltage is supplied between these conductors 

so due to potential difference the electric field is generated by the charge particle. The electrostatic 

field applied by the generated electric field. The force expression can be derived by differentiating 

the energy stored per unit length in the capacitor with respect to gap between the conductors. The 

electrostatic force is inversely proportional to the square of the gap between the conductors so this 
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is the main problem of electrostatic actuation but in microscopic scale it is beneficial because the 

micro structures has low aspect ratio and the gap between the conductor also very small. In the 

design of MEMS system this is the most widely used technique compare to other one. It is also 

used in accelerometer, switches, micro resonators and micro mirrors etc. Fig. 2.1 shows the 

electrostatic actuation technique.        

 

Fig 2.1 Electrostatic actuation 

2.2 General equation of motion 

The beam type gyroscope is shown in the fig.2.2. The gyroscope having a cantilever beam which 

is fixed at one end and proof mass is attached to its other end. The beam has uniform cross-

sectional area, length L and the m is the mass per unit length of beam. The beam is having two 

bending direction and the deflection in these direction are v(x, t) and w(x, t) in y and z direction 

respectively. The beam is rotating along the x axis hence these bending deflection are coupled by 

a base rotation. The expression for kinetic energy is written as follows:  

2 2 2 2 2 2 2 2

0 0

1 1
. . [2 ( ) ( )] [2( ) ( )]

2 2

L L

K E J v w m v w dx m vw wv v w dx            

2 2 2 2 2 2 2 2 2

0

1
[ 2 ( )] ( 2 2 )

2 2

L

L L L L L L L L

M
Jv Jw J v w w v dx v w v w w v v w LJ                   

(2.1) 
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Fig. 2.2 Cantilever beam having rotation about longitudinal axis 

Where,  

              
2 2

A A

J y dA z dA                                                                                                             (2.2a) 

             m A , ( , )Lv v L t , ( , )Lw w L t                                                                                 (2.2b) 

Here dot and prime represents derivatives with respect to time, t and x respectively. 

Similarly the expression for the potential energy can be written as follows for the beam gyroscope  

subjected to electrostatic force in sense and drive direction. 

2 2
2 2

0

( ( ))1
. . ( )

2 2( ) 2( )

L

v DC w DC AC

v L w L

AV A V V t
P E EI v w dx

d v d w

  
    

                                        (2.3) 

Where, 

            Av= area of sense electrode  
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            dv=initial gap between tip mass and sense electrode 

           Aw=area of drive electrode 

           dw=initial gap between tip mass and drive electrode 

Hamilton principle can be used for deriving the governing equation of motion for the flexural 

vibration of the system. 

2

1

[ ( . .) ( . .)] 0

t

t

K E P E dt                                                                           (2.4) 

The equation of motion for the two bending direction is as follows after using the Hamilton 

principle. 

2 22 2 0ivEIv mv Jv mw mv mw Jw Jv                                                           (2.5) 

2 2 2 0ivEIw mw Jw mv mw mv Jv Jw                                                            (2.6) 

Boundary conditions are as follows  

At x=0 

0v w  ,    0v w                                                                                                                             (2.7a)                                                                                                                      

At x=L 

2
2 2

2
2 2

2( )

v DC

v

AV
EIv Mv Jv Mw Mv Mw Jw Jv

d v


             


                          (2.7b)                              

2

2 2

2

( )
2 2

2( )

w DC ÁC

w

A V V
EIw Mw Jw Mv Mw Mv Jv Jw

d w

 
             


                (2.7c)                 

0EIv  ,  0EIw                                                                                                                                    (2.7d)                                                                                                                                



14 
 

The general equation of motion are reduced to nondimensional form by using some constant, 

which are defined in this section. By using this constant the general equation of motion converted 

into nondimensional form.  For simplification of the above equation the following terms are 

described  

ˆ ,
x

x
L

      ˆ ,
v

v
v

d
    ˆ ,

w

w
w

d
    ,v

w

d
d

d
    ˆ ,t t                                     (2.8a) 

ˆ ,



     

2
ˆ ,

J
J

mL
    

3

3
,

2

v
v

v

A L

EId


    

3

3
,

2

w
w

w

A L

EId


                                     (2.8b) 

,r

M
M

mL
    

4
,

EI

mL
                                                 (2.8c) 

Then, the equation and boundary conditions convert into nondimensional form as follows: 

2 22 2 0iv J
v cv v J v w v w w Jv

d d d

  
                                     (2.9) 

2 22 2 0ivw cw w J w dv w dv dJv Jw                                      (2.10) 

At x=0 

0v w     and  0v w                                                                                                                        (2.11a)                                                           

At x=1,    0v w                                                                                                                                     (2.11b) 

 

2
2 2

2
2 2

1

DCr r
r r v

VM M J
v M v J v w M v w w Jv

d d d v


  
             


                   (2.11c)                  

 

 

2

2 2

2
2 2

1

DC AC

r r r r w

V V
w M w J w M dv M w M dv J dv Jw

w



                


  (2.11d)        
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2.3 Intermolecular forces 

Casimir force and van der Waal forces considered as intermolecular forces. When the distance 

between the proof mass and electrode is in the order of 100nm to 1000nm, then Casmir forces as 

well as van der Waal forces have major impact on the system and these forces affect the 

performance of the gyroscope. When two plates are parallel and hold apart from each other, then 

Casmir force can be written as:  

         
2

4240 g

hc
c h

F                                                                    (2.12) 

Where, Fc= Casmir forces per unit area, c= speed of light, h= Planck’s constant divided by 2π, hg = 

distance between the plates. Using equation 7 we can rewrite the effect of Casmir force on the proof 

mass in drive and sense direction respectively as follows: 

2

41 240( )

w

w

A hc

c d w
F




                                                         (2.13a) 

2

42 240( )

v

v

A hc

c d v
F




                                                           (2.13b) 

where, F1c and F2c are the Casmir forces in the drive and sense direction respectively, Aw and Av are 

the area of drive and sense electrode, dw and dv are the gap between the proof mass and drive and 

sense electrode respectively. 

In this working range (100nm to 1000nm), the van der Waal’s forces also affect the system and the 

gyroscope performance. For parallel plate the expression for the Van der Waal force is as follows: 

36 g

H
vdW h

F


                                                                (2.14) 

where, Fvdw= Vander Waal force per unit area, H= Hamaker coefficient ranging between 10-19 to 

10-20 J. using equation 10 the expression of Vander Waal force for tip mass can be written as 

follows: 
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31 6 ( )

w

w

HA

vdW d w
F

 
                                                     (2.15a) 

32 6 ( )

v

v

HA

vdW d v
F

 
                                                     (2.15b) 

Where, F1vdW and F2vdW are the Vander Waal forces in the drive and sense direction respectively. 

2.4 Damping formulation 

The damping for the micro devices depends upon several non-linear effects. Viscous damping 

present in the system because of air in the gyroscope cavity. Viscous damping decreases as the 

pressure of air reaches to vacuum. Here the viscous damping effects incorporated by using slide 

film and squeeze film damping model in drive and sense dome direction. 

The effective viscosity SL for the gas can be written as follows for slide film damping:   

/100.7881 2 0.2 n
SL K

n nK K e







 
                                                                     (2.16) 

Where   is the gas viscosity and nK is Knudsen number, Knudsen number is the function of initial 

drive gap, wd , and gas mean free path     

n

w

K
d


                                                                                        (2.17) 

Where,   for air can be obtained from following relation.  

36.777 10P    [Pa m]                                                        (2.18) 

Where P is the air pressure, the slide film damping coefficients can be expressed as follows: 

w
SL SL

w

A
C

d
                                                                                   (2.19) 

Similarly, the effective gas viscosity can be written in form of Knudsen number. 

1.1591 9.638
SQ

nK


 


                                                                            (2.20) 
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Knudsen number expression for sense direction  

n

v

K
d


                                                                                   (2.21) 

The squeeze film damping coefficients can be written as follows: 

2

3
0.42 v

SQ SQ

v

A
C

d
                                                                             (2.22) 

2.5 Static Analysis modelling 

Static pull-in analysis is the first stage to the design of nano gyroscope. Static analysis help to fix 

the working region for the nano device. It provide the information about the maximum force can be 

apply to the system. For static analysis the nondimensional equations (2.9) and (2.10) are used. 

Here angular acceleration and time dependent terms are neglected and the equations are converted 

into static part. The detailed modelling of the static analysis equations are described below.     

2.5.1 Modelling without Intermolecular Force 

In order to obtain static solution, either equation (2.9) or (2.10) may be considered because it is 

assumed that vs = ws . Initially the static analysis equations are written without considering the effect 

of intermolecular forces for drive and sense direction individually are as follows:-   

Let the static deflections along sense direction be vs(x) respectively. By eliminating the time 

derivatives in equation (2.9), the static uncoupled equilibrium equations is obtained in 

dimensionless form for the sense direction as: 

2 22 0iv

s s sv v J v                                                                                       (2.23) 

Subject to boundary condition, 

At x=0, 

(0) 0sv                                                                                                                                                          (2.24a)                                                                                                                                                
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' (0) 0sv                                                                                                                                                          (2.24b)                                                                                                                                                   

At x=1, 

'' (1) 0sv                                                                                                                                                          (2.24c)                                                                                                                                                     

2
''' 2 2 '

2
(1) (1) 2 (1)

(1 (1))

v DC
s r s s

s

V
v M v J v

v


     


                                                                                 (2.24d)                                                                         

The general solution can be expressed as 

1 1 2 2

1 2 3 4( ) a x a x a x a x

sv x c e c e c e c e                                                                                                       (2.25) 

Where,  

2 2 4 2

1,2a J J                                                                                                 (2.26)  

2.5.2 Modelling with Intermolecular Force 

The static analysis by considering the intermolecular forces along with the electrostatic force is 

similar to the static analysis without intermolecular forces, but the only difference in the boundary 

condition. For this analysis the intermolecular forces such as Casmir and wander Waals forces also 

considered in the equation of motion and boundary condition. The boundary condition which 

changes during this analysis are as follows and remaining boundary condition are remain same. 

For sense direction 

2
''' 2 2 '

1 2 22
(1) (1) 2 (1) ( )

(1 (1))

v DC
s r s s c vdw

s

V
v M v J v F F

v


       


                                                   (2.27) 

Where, 
1 2,   are constant can define such as follows 

                        

3

1

v

L

EId
                                                                                                         (2.28) 
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2.6 Natural frequency Analysis 

The natural frequency for the system is calculated from the eigen value problem. The dynamic 

equation in drive direction can be written in terms of wd where ˆ ˆˆ ˆ ˆ ˆ( , ) ( ) ( , )s dw x t w x w x t   as follows                                                                                  

 ˆ 0iv

d d dw w Jw                                                                                                        (2.29) 

And boundary conditions are as follows 

at x=0, 

0dw  ,      0dw                                                                                                                                    (2.30a) 

at x=1, 

2

2
ˆ

(1 )

w DC
d r d d

d

V
w M w Jw

w

    


                                                                                                      (2.30b) 

0dw                                                                                                                                                        (2.30c) 

The solution of the equation is assumed as follows: 

ˆˆˆ ˆ( , ) ( ) i t

dw x t x e                                                                                                            (2.31) 

Then the eige value problem is obtained as 

2 2 ˆˆ ˆ ˆ( ) ( ) ( ) 0iv x x J x                                                                                       (2.32) 

(0) 0  ,       (0) 0                                                                                                                              (2.33a) 

(1) 0                                                                                                                                                        (2.33b) 

2
2 2

3

2 (1)
(1) (1) (1)

(1 (1))

v Dc
r

s

V
M J

w


 


       


                                                                           (2.33c) 

Where (1)sw  is the static deflection at the end of the beam and the solution of the above equation 

can be written as follows  

1 1 2 1 3 2 4 2
ˆ( ) sin cos sinh coshx A x A x A x A x                                                              (2.34) 
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Where 

2 2 2

1

1
( 4 )

2
                                                                                                                      (2.35a) 

2 2 2

2

1
( 4 )

2
                                                                                                   (2.35b) 

By substituting ˆ( )x  in boundary conditions equs. (2.33) and eliminating constants A1 to A4 by 

equating coefficients determinant to zero we get the frequency equation in terms of tip mass ratio 

Mr, DC voltage and  . The pull-in voltage is obtained as a point where   becomes zero. 

2.7 Dynamic Analysis modelling 

Dynamic analysis also have equal importance for the design and development of the nano 

gyroscope. Here we consider the damping effect and the time coordinate terms. Dynamic analysis 

provides the detailed information about response of the systems against the dynamic loading 

condition.  

2.7.1 Lumped Parameter Modelling 

The equivalent lumped model is shown in the fig. 2.3, Here the Mp is equivalent mass of the system 

and cy, cz, and Ky, Kz are the equivalent damping coefficients and stiffness in drive and sense 

direction. 

 

Fig. 2.3 Lumped parameter model 
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2
2

2
( ) 2

2( )

v DC
p y y p p p

v

AV
M v c v K M v M w M w

d v


         


                                                (2.36) 

2
2

2

( )
( ) 2

2( )

w DC AC
p z z p p p

w

A V V
M w c w K M w M v M v

d w

 
         


                                  (2.37) 

These oridinary differential equation can be solved by a numerical method. For solving continuous 

system of equations with intermolecular forces and damping forces, we have to use approximate 

method like Galerkin method or numerical finite element method.  

2.7.2 Galerkin’s Decomposition Technique 

For using this method, first the modal analysis of the beam having tip mass at its end are performed 

and the mode shape function expression derived. The 4th order partial differential equation are 

reduced to 2nd order ordinary differential equation by using the Galerkin’s order reduction 

technique. For Galerkin’s technique the mode shape function expression is utilized for order 

reduction.  

For this method first the solution of the equation are assumed in the form of displacement and time 

domain. There are two bending direction for these case then the solution of the equation for both 

the bending direction are as follows: 

  1

1

( , ) ( ) ( )
N

r

r

v x t q t x


                                                                                                                            (2.38a) 

2

1

( , ) ( ) ( )
N

r

r

w x t q t x


                                                                                                                           (2.38b) 

Where the N shows the no. of mode consider for the analysis and ( )r x  is the mode shape 

function. The beam is fixed at one end and a small proof mass is attached to its other end. The 
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mode shape function is derived by considering the Euler-Bernoulli beam theory. The mode shape 

function is used to convert the partial differential equation into ordinary differential equation. The 

higher order differential equation is converted into lower order by using mode shape function. The 

mode shape function for the cantilever beam having tip mass at its end for rth vibration mode can 

be written as follows:    

( ) cos cosh sin sinhr r r r
r r rx A x x x x

L L L L

   
 

  
     

  
                                                       (2.39) 

Here, 

sin sinh (cos cosh )

cos cosh (sin sinh )

r r r r r

r

r r r r r

M

mL
M

mL

    


    

  



  

                                                       (2.40) 

r  Can be calculated from the equation 

1 cos cosh (cos sinh sin cosh ) 0r r r r r r r

M

mL
                                                                (2.41) 

Here two bending direction but due to symmetric beam the mode shape function for each bending 

direction is same and analysis is performed by considering only single mode.  

( )r x  is chosen such that, 

2

0

( ) 1

L

r x dx                                                                                                         (2.42) 

The equation of motion are as follows:  

2
2 2

2
2 2

2( )

iv v DC

v

AV
EIv cx mv Jv mw mv mw Jw Jv

d v


             


                    (2.43) 
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2
2

2

( )
2 2

2( )

iv w DC AC

w

A V V
EIw cw mw Jw mv mw mv Jv Jw

d w

 
            


       (2.44) 

By neglecting some terms then the equations are reduced as follows:  

2
2 2

2
2 2

2( )

iv v DC

v

AV
EIv cv mv Jv mw mv Jv

d v


          


                                                  (2.45) 

2
2

2

( )
2 2

2( )

iv w DC AC

w

A V V
EIw cw mw Jw mv mw Jw

d w

 
         


                                   (2.46) 

The solution of the equation can be rewrite as follows: 

1( , ) ( ) ( )v x t q t x                                                                                          (2.47a) 

2( , ) ( ) ( )w x t q t x                                                                                         (2.47b) 

Derivatives are as follows: 

1( , ) ( ) ( )v x t q t x ,             
2( , ) ( ) ( )w x t q t x  

1( , ) ( ) ( )iv ivv x t q t x ,       2( , ) ( ) ( )iv ivw x t q t x  

1( , ) ( ) ( )v x t q t x ,            
2( , ) ( ) ( )w x t q t x  

1( , ) ( ) ( )v x t q t x   ,        
2( , ) ( ) ( )w x t q t x   

1( , ) ( ) ( )v x t q t x  ,           
2( , ) ( ) ( )w x t q t x  

1( , ) ( ) ( )v x t q t x   ,        
2( , ) ( ) ( )w x t q t x                                                                                   (2.48) 
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2.7.3 Reduced order equation 

The order of the equation are reduced by using Galerkin’s decomposition technique, which is 

described in above section.by using the proper substitution of parameters and adopting step by step 

procedure the order of the equation of motion are reduced as follows The above derivatives are 

substitute in the equation 2.36 and 2.37  

2 2

1 1 1 1 2

2

1
1 1 2

[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] 2 [ ( ) ( )] 2 [ ( ) ( )]

2 ( ) ( )
[ ( ) ( )] [ ( ) ( )] [1 ]

2

iv

v DC

v v

EI q t x c q t x m q t x J q t x m q t x

A V q t x
m q t x J q t x

d d

    

 
 

      

    
 

Here 

4

( ) ( )iv x x
L


 

 
  
 

 so the equation reduced to 

4

2 2

1 1 1 1 2

2

1
1 1 2

[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] 2 [ ( ) ( )] 2 [ ( ) ( )]

2 ( ) ( )
[ ( ) ( )] [ ( ) ( )] [1 ]

2

v DC

v v

EI q t x c q t x m q t x J q t x m q t x
L

A V q t x
m q t x J q t x

d d


    

 
 

 
       

 

    

 

Integrating both side with respect to x and ( )x  is multiplied both the side 

4

2 2 2 2

1 1 1

0 0 0

2 2 2

1 2 1

0 0 0

1

0

( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

( ) ( ) ( )

L L L

L L L

L

v D

EI q t x dx cq t x dx m q t x dx
L

J q t x x dx m q t x dx mq t x dx

A V
Jq t x x dx


  

   


 

      
        

       

     
         

     

 
   

 

  

  


2

21

2

0 0

2 ( )
( ) ( )

2

L L

C

v v

q t
x dx x dx

d d
 

    
     

    
 

 

Since 
2

0

( ) 1

L

x dx   and let take 00
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Or can be rewrite as: 
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Similarly in drive direction the equation reduced as follows: 
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2.7.4 Finite Element Method 

Here a cantilever beam having tip mass is considered and it’s loaded in two perpendicular direction 

by electrostatic forces which is shown in Fig.2.4 

Let beam length is L, width b and thickness h, beam has rectangular cross-section so area A=b. h, 

the beam is made by isotropic and linear elastic material having density ρ, young’s modulus E 

poisons ratio  ʋ, mass mb=L.h.b. ρ and shear modulus G = 
𝐸

 2( +1)
 

For finite element modelling we consider N element each element having length l = 
𝐿

𝑁
 and mass 

b
e

m
m

N
   
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Fig. 2.4 Cantilever beam with loading conditions 

For 3-D case each node having 6 degree of freedom such as 3 translational displacement u, v and 

w along x, y and z axis respectively and 6 rotational degree of freedom α, β and γ with respect to 

x, y and z axis.   

 

Fig. 2.5 Global numbering of the element 
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Fig. 2.6 Local degree of freedom for beam element  

The second moment of inertia for the element about y and z and polar moment of inertia about x 

axis are as follows: 

3

12
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3

12
z

b h
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2 2( )

12
p

b h m
I

N


                                                         (2.51) 

The exact analytical value for the element torsion constant It in not exist so the approximate value 

is taken from the literature survey are as follows: 

30.141tI bh ,    if    h < b    or 
30.141tI b h     if    h > b                       (2.52) 

For simplification 

2

,

12 z
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s z
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p

GA l
                                                         (2.53) 
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Where 
, ,

5
.

6
s y s zA A t h   are the effective shear area for rectangular cross-section. 

The local mass and stiffness are 11

eM  and 11

eK for the Timoshenko beam element which is 

considered for modelling. We have consider 12 local degree of freedom for element and 6 dofs for 

each node. So the elemental mass and stiffness matrix are as follows.   

11 12
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e e
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                                                 (2.54) 

Where 11( )e  and 22( )e  represents the interdependency of the dofs between first and second node and 

12 21( ) ( )e e    shows the interconnection between the nodes. 22

eM  and 22

eK  are equal to 11

eM  and  11

eK  

respectively except the sign of the off 
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       (2.58) 

Above matrices are assembled to form global mass and stiffness of the beam with appropriate 

boundary conditions including tip mass. At the tip node, the displacement varying electrostatic and 

intermolecular forces are applied. The resultant equations are expressed as  

MX CX KX F                                                                         (59)  

Where C is the damping matrix and F is the force vector. 

-----o----- 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Static pull-in analysis 

Pull-in is the very important phenomenon for design and analysis of micro/nano gyroscope. Here 

beam is used, so beam is deforming continuously due to applied voltage and base rotation. In the 

deformation process two forces are acting simultaneously such as deforming forces and restoring 

forces. When deforming forces exceeds to the maximum limit then the complete deformation take 

place and the beam will not regain its original position and the complete system will not work, so 

the pull-in analysis gives a limiting value beyond that limit system will fail. So pull-in analysis 

play very important role to finalize the working region. Generally pull-in will occurs at one third 

of initial gap. 

3.1.1 Analysis without Intermolecular Forces 

First the static pull-in analysis performed without considering the effect of intermolecular forces. 

Table 3.1 represent the data considered for static pull-in analysis. The complete formulation for the 

pull-in analysis is discussed in previous chapter mathematical modelling.  

Table 3.1 Numerical data used for static pull-in Analysis 

S. No Parameter Numerical value 

1. 

2. 

3. 

4. 

5. 

Beam length in m, L 

Density of the beam and tip mass material in kg/m3, ρ 

Young’s modulus in N/m2, E  

Mass per unit length of the beam in kg/m, m 

Tip mass in kg, M 

400×10-6 

2300 

160×109 

1.803×10-8 

7.2128×10-12 
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6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

Width of the beam in m, b 

Thickness of the beam in m, h 

Initial gap between tip mass and sense electrode in m, dv 

Initial gap between tip mass and drive electrode in m, dw 

Area of the sense electrode in m2, Av 

Area of the drive electrode in m2, Aw 

Vacuum electrical permittivity, ε 

Initial base rotation velocity in rad/sec, Ω 

2.8×10-6 

2.8×10-6 

2×10-6 

2×10-6 

392×10-12 

392×10-12 

8.8542×10-12 

20 

 

MATLAB toolbox is used to solve the equation and find the voltage verses displacement response. 

Initially the pull-in curve drawn without considering the intermolecular forces. Following  code is 

used for MATLAB simulation. 

%%%%%%%%plot Vdc verses nondimensional displacement%%%%%%%%  

Rho=2330; % density of the beam and tip mass material in kg/m^3 

O=20; %input rotation of the beam along x axis in rad/sec 

b=2.8e-6; %width of the beam in m 

Ar=392e-12; %area of electrode in m^2 

L=400e-6; %length of beam in m 

E=160e9; % elastic modulus of the beam material in N/m^2 

Ee=8.8542e-12; %electrical permittivity 

dv=2e-6; % gap between tip mass and drive electrode in m 

M=7.2128e-12; % tip mass in kg 

m=1.803e-8; % beam mass per unit length in kg/m 

c=Rho*(b^2)*(1/6); 

d=m*(L^2); 

J=c/d; %polar moment of inertia 

Mr=M/(m*L); %tip mass to beam mass ratio 

I=(b^4)/12; %moment of inertia 

t=sqrt((E*I)/(m*(L^4))); 

Omega=(O/t); 

d1=(-J*(Omega)^2);d2=sqrt(((J^2)*(Omega)^4)+(Omega^2)); 

AV=(Ee*Ar*L^3)/(2*E*I*(dv^3)); 

a1=sqrt(d1+d2);a2=sqrt(d1-d2);  

i=1; 

for Vm=0:0.05:1 

A=[1,1,1,1;a1,-a1,a2,-a2;(a1^2*exp(a1)),(a1^2*exp(-

a1)),(a2^2*exp(a2)),(a2^2*exp(-a2));exp(a1),exp(-a1),exp(a2),exp(-a2)]; 

vm=[0;0;0;Vm]; 

C=inv(A)*vm;c1=C(1);c2=C(2);c3=C(3);c4=C(4); 
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p=(((a1^3)*(exp(a1))*c1)-((a1^3)*(exp(-a1))*c2)+((a2^3)*(exp(a2))*c3)-

((a2^3)*(exp(-a2))*c4)); 

q=(2*J*(Omega^2))*(((a1)*exp(a1)*c1)-((a1)*exp(-a1)*c2)+((a2)*exp(a2)*c3)-

((a2)*exp(-a2)*c4)); 

Vdc(i)=real(sqrt((((1-Vm)^2))*(1/(-AV))*(p+((Mr)*(Omega^2)*Vm)+q))); 

i=i+1; 

end 

Vm1=0:0.05:1; 

   plot(Vdc,Vm1,'-*r','linewidth',2); 

   xlabel('DC Voltage Vdc'); 

   ylabel('Displacement Vm or Wm'); 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

Fig. 3.1 shows the pull-in curve for the vibratory beam gyroscope without considering the effect 

of intermolecular forces and the AC voltage Vac=0 V. Pull-in curve is nothing but the response of 

nondimensional deflection verses applied DC voltage.  

 

Fig. 3.1 Response of DC voltage v/s nondimensional deflection in drive and sense direction 

3.1.2 Analysis with intermolecular forces 

Static pull-in analysis with considering the effect of intermolecular forces is similar to the static 

pull-in analysis without considering the effect of intermolecular forces, but the only difference in 

the mathematical formulation of the system. Here the intermolecular forces such as Casimir force 

and Van der Waal’s forces also consider along with the electrostatic forces. The detail formulation 
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has been discussed in mathematical modelling chapter. Table 3.2 shows the data used for 

numerical simulation task by considering the intermolecular forces.   

Table 3.2 Numerical data used for Analysis with intermolecular forces 

S. No. Parameter Numerical value 

1. 

2. 

3. 

Planck’s constant in m2kg/sec, h 

Speed of light in m/sec, c 

Hamaker coefficient in J, H 

1.0408×10-33 

3×108 

10-19 

 

MATLAB symbolic logic toolbox is used for the simulation task by considering the effect of 

intermolecular forces. Similar pseudo codes, which is discussed in previous section is used for 

analysis. Here the combined effect of intermolecular forces and electrostatic forces considered. 

 

Fig. 3.2 Pull-in curve with intermolecular forces 

Fig. 3.2 represent the response of the applied voltage verses nondimensional voltage by 

considering the effect of the intermolecular forces. Fig. 3.3 shows the comparison between the 

pull-in curve drawn by considering the effect of intermolecular forces and without considering the 
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intermolecular forces and fig. 3.4 represent the enlarged view of the fig. 3.3 which is clearly shows 

the difference of the pull-in curve by considering with and without intermolecular forces.  

 

Fig. 3.3 Comparison Response of the DC voltage v/s nondimensional deflection with and 

without considering the effect of the intermolecular forces   

 

Fig. 3.4 Comparison b/w pull-in curve with and without considering the intermolecular forces 
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3.1.3 Effect of different parameter on pull-in curve 

In previous sections the pull-in curve are drawn for different loading conditions and comparison 

made between them. In this section the effect of different parameter on the pull-in curve observed 

and investigate the corresponding change in pull-in voltage. Here the response of applied DC 

voltage verses nondimensional deflection also recorded due to change in different parameter.   

 3.1.3a Input Angular frequency 

The beam is having two bending direction and the beam is spinning about the longitudinal axis. 

This spinning speed is known as the input angular frequency which is having major impact on the 

performance of the vibratory beam type gyroscope. The similar pseudo code is used for simulation 

which is discussed in previous section. Here the different value of input angular frequency such as 

15 rad/sec, 20 rad/sec and 25 rad/sec are taken for the comparison.  

 

Fig. 3.5 Pull-in curve for different value of input angular frequencies  

Fig.3.5 shows the variation of pull-in curve for different value of input angular frequencies, so 

here one important investigation made that the pull-in voltage value decreased by increase in input 

angular frequency. 
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3.1.3b Length of beam 

In this work the tip mass is having extreme importance and the cantilever beam is used to support 

the tip mass. The length of this beam also affect the pull-in behaviour of the gyroscope. Here the 

length of beam taken as 380, 400 and 420 micron for comparison. Fig. 3.6 represents the pull-in 

behaviour of the gyroscope under different value of the beam length and it is observed that with 

increase the length of the beam the pull-in voltage decreased.    

 

Fig. 3.6 Pull-in curve for different value of beam length 

3.1.3c Width of beam 

Width of the beam also affect the pull-in behaviour of the gyroscope. The different value of 

beam width 2.6, 2.8 and 3 micron for comparison. Fig. 3.7 shows the variation of pull-in curve 

for different value of width of the beam, here that can be observed that the pull-in voltage value 

increases due to increase in width of the beam. 
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Fig. 3.7 Pull-in curve for different value of the width of the beam 

3.1.3d Electrode Area 

The area of the drive and sense electrode also having major impact on the pull-in curve. The 

different value of the area of electrode such as 372,392 and 412 micro m2 are taken for the 

comparison. Fig. 3.8 shows the variation of pull-in curve due to different value of the drive and 

sense electrode. From the fig. 3.8 it is concluded that the pull-in voltage decreases with increase 

in electrode area.     

 

Fig. 3.8 Variation of pull-in curve with different value of electrode area  
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Gap between the tip mass and the electrode also affect the pull-in curve. The different value of the 
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curve for the different gap between the electrode and tip mass. It is observed that the pull-in voltage 

increases by increase in the gap between the electrode and tip mass.    

 

Fig. 3.9 Variation of pull-in curve with different value of gap b/w tip mass and electrode 

3.1.3f Density change 

Density of the material also affect the pull-in curve of the beam type gyroscope. The different 

value of the density such as 2300 kg/m3 and 2330 kg/m3 taken for the comparison. Fig. 3.10 shows 

with increase in density value the pull-in voltage value increases.  

  

Fig. 3.10 Pull-in curve for different value of material density 

Here we can made different conclusion from the above graphs. Table 3.3 represents the effect of 

pull-in voltage for the change in different parameter. The data taken from the above graphs and 

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DC Voltage Vdc

D
is

p
la

ce
m

en
t 

V
m

 o
r 

W
m

Pull-in curve for different value of gap between tip mass and electrode

 

 

dv=1.8 Micro meter

dv=2.0 Micro meter

dv=2.2 Micro meter

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DC Voltage Vdc

D
is

p
la

ce
m

en
t 

V
m

 o
r 

W
m

Pull-in curve for different density value

 

 

Density=2330 kg/m
3

Density=2300 kg/m
3

4.4 4.45 4.5 4.55 4.6
0.2

0.25

0.3

0.35

0.4

0.45

DC Voltage Vdc

D
is

p
la

ce
m

en
t 

V
m

 o
r 

W
m

Pull-in curve for different density value

 

 

Density=2330 kg/m
3

Density=2300 kg/m
3



40 
 

tabulated below. Data shows that the pull-in voltage increases with increase in width of the beam 

and gap b/w the tip mass and electrode, while it decreases with increase in other parameter. 

Table 3.3 Pull-in voltage for change in different parameter 

S. 

No. 

Parameter 

change 

Values Corresponding 

pull-in voltage 

Effect on pull-in 

voltage 

1. Input angular 

velocity 

15 rad/sec 

20 rad/sec 

25 rad/sec 

4.8435 V 

4.6149 V 

4.3023 V 

Voltage decreases by 

increase in input angular 

frequency 

2. Beam Length 380 micron 

400 micron 

420 micron 

5.0401 V 

4.6149 V 

4.2378 V 

Voltage decreases by 

increase in beam length 

3. Width of the 

beam 

2.6 micron 

2.8 micron 

3.0 micron 

3.9046 V 

4.6149 V 

5.3764 V 

Voltage increases by 

increase in the width of 

beam 

4. Area of the 

Electrodes 

372 micro m2 

392 micro m2 

412 micro m2 

4.7373 V 

4.6149 V 

4.5015 V 

Voltage decreases by 

increase in electrode 

area 

5. Gap between tip 

mass and 

electrodes 

1.8 micron 

2.0 micron 

2.2 micron 

3.9402 V 

4.6149 V  

5.3241 V 

Voltage increases by 

increase in gap b/w tip 

mass and electrode 

6. Density of 

material 

2300 kg/m3 

2330 kg/m3 

4.6149 V 

4.6079 V 

Voltage decreases due to 

increase in density 
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3.2 Natural Frequency Analysis 

Fundamental natural frequency vary with the applied DC voltage. In this section response of 

natural frequency verses applied DC voltage recorded due to change in different design parameter. 

Following pseudo code is used to solve the eigen value problem for fundamental natural frequency. 

%%%%%EIGEN VALUE PROBLEM%%%%% 

a=(ep*Av*L^3)/(2*E*I*dv^3); 

JJ=(b^4)*(1/6); 

J=JJ/(m*L^2); 

Mr=M/m*L; 

la1=sqrt((1/2)*((om*sqrt((a^2)*(om^2)+4))+a*(om^2))); 

la2=sqrt((1/2)*((om*sqrt((a^2)*(om^2)+4))-a*(om^2))); 

a11=0;a12=1;a13=0;a14=1;a21=la1;a22=0;a23=la2;a24=0;a31=-

la1^2*sin(la1); 

a32=-la1^2*cos(la1);a33=la2^2*sinh(la2);a34=la2^2*cosh(la2); 

a41=(-la1^3*cos(la1))+(J*om^2*la1*cos(la1))+(Mr*om^2*sin(la1))-

((2*Vdc^2*a*sin(la1))/(w - 1)^3); 

a42=(la1^3*sin(la1))-(J*om^2*la1*sin(la1))+(Mr*om^2*cos(la1))-

((2*Vdc^2*a*cos(la1))/(w - 1)^3); 

a43=(la2^3*cosh(la2))+(J*om^2*la2*cosh(la2))+(Mr*om^2*sinh(la2))

-(2*Vdc^2*a*(sinh(la2))/(w - 1)^3);  

a44=(la2^3*sinh(la2))+(J*om^2*la2*sinh(la2))+(Mr*om^2*cosh(la2))

-(2*Vdc^2*a*(cosh(la2))/(w - 1)^3);  

A=[a11,a12,a13,a14;a21,a22,a23,a24;a31,a32,a33,a34;a41,a42,a43,a

44]; 

p=eval(det(A)) 

i=1; 

for om=0.001:0.001:1.1 

p=eval(det(A)) 

Vdc1=eval(solve(p,Vdc)) 

vdc(i)=abs(Vdc1(1)); 

i=i+1; 

end 

ome=0.001:0.001:1.1; 

plot(vdc,ome) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

 

The response of fundamental natural frequency verses the applied DC voltage recorded for 

different design parameter. Fig. 3.11 represent variation of frequency verses DC voltage for 

different mass ratio such as 0.1, 0.5 and 1.  
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Fig. 3.11 Fundamental natural frequency v/s DC input voltage for different mass ratio 

 

Fig. 3.12 Fundamental natural frequency v/s DC input voltage for different beam length 

 

Fig. 3.13 Variation of the first natural frequency v/s DC voltage for different tip mass value 
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Fig. 3.14 Fundamental natural frequency v/s DC input voltage for different young’s modulus 

Fig. 3.12 represent the variation between frequency and DC voltage for different beam length such 

as 350, 400 and 450 micro meter.Fig.3.13 shows the response for different value of tip mass and 

Fig. 3.14 shows variation for different elastic modulus. 

3.3 Dynamic Analysis 

Dynamic analysis of the system performed by considering different loading condition. Here time 

verses response of different parameter recorded. 

3.3.1 Lumped parameter model Results 

Lumped parameter modelling is represent in the mathematical modelling chapter here the 

simulation results presented as follows. Fig. 3.15 represents time verses deflection curve in sense 

direction for lumped model of nano vibratory beam gyroscope. Fig. 3.16 shows velocity variation 

with time in sense direction. Similarly Fig. 3.17 and Fig. 3.18 represents deflection and velocity 

variation curve in drive direction. In all Fig. the deflection is decreased with the time due to 

damping effect. 
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Fig. 3.15 Time v/s deflection response in Sense direction 

 

Fig. 3.16 Time v/s velocity response in Sense direction 
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Fig. 3.17 Time v/s deflection response in Drive direction 

 

Fig. 3.18 Time v/s velocity response in Drive direction 
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3.3.2 Mode shape calculation 

Mode shape function for the beam having tip mass is discussed in detail in 2nd chapter 

mathematical modelling. Fig. 3.12 represents the variation of the modal constant verses mass ratio 

for different mode of frequency. The mass ratio is defined as the ratio of tip mass to beam mass. 

The modal constant λ is the root of the frequency equation and it is solved by using Newton 

Raphson’s solution technique. Following pseudo code is used for MATLAB simulation 

%%%%%MAIN FUNCTION%%%%% 

function y=ashish12(x) 

Mr=1.0001; 

y=1+cos(x)*cosh(x)+x*Mr*(cos(x)*sinh(x)-sin(x)*cosh(x)); 

%%%%DIFFERENTIATION OF MAIN FUNCTION%%%% 

function ypr=ashish12pr(x) 

Mr=1.0001; 

ypr=cos(x)*sinh(x) - cosh(x)*sin(x) + Mr*(cos(x)*sinh(x) - cosh(x)*sin(x)) - 

2*Mr*x*sin(x)*sinh(x); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

%%%%newton raphson method for finding the root of the equation%%%% 

%set tolrence 

tol=0.000001; 

%input initial guess 

x=input ('Enter initial guess\n'); 

%find value of function at la 

f=ashish12(x); 

while abs(f)>tol 

    fpr=ashish12pr(x); 

    x=x-f/fpr; 

    f=ashish12(x); 

end 

fprintf('\n\n root found: %.4f\n',x) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Table 3.19 represents the modal analysis results for different mode of frequency. Here the different 

mass ratio taken and model constant for each value calculated and the respective frequencies are 

also calculated. The modal constant is inversely proportional to mass ratio and the undamped 

natural frequency is directly proportional to modal constant, so the mass ratio increases then the 

modal constant decreases and the undamped frequency of the system also decreases.     
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Fig. 3.19 Variation of modal constant v/s mass ratio 

Table 3.4 Frequency for different value of mass ratio 

S. No. Mass ratio 

r

M
M

mL
  

 

Modal constant, λ 

Undamped natural frequency 

2

4

EI

mL
  rad/sec 

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

1. 
0.0 1.8751 4.6941 7.8548 148155 928479.4 2599787 

2. 
0.1 1.7227 4.3995 7.4511 125050.9 815594.4 2339421 

3. 
0.2 1.6164 4.2671 7.3184 110094.4 767243.5 2256835 

4. 
0.3 1.5367 4.1923 7.2537 99505.2 740580.5 2217108 

5. 
0.4 1.4724 4.1444 7.2155 91352.24 723753.9 2193817 

6. 
0.5 1.4200 4.1111 7.1903 84965.82 712170 2178520 

7. 
0.6 1.3757 4.0867 7.1725 79747.13 703741.4 2167748 

8. 
0.7 1.3375 4.0679 7.1593 75379.83 697281.5 2159776 

9. 
0.8 1.3041 4.0531 7.1490 71662.07 692216.9 2153566 

10. 
0.9 1.2745 4.0411 7.1408 68445.87 688124.1 2148628 

11. 
1.0 1.2479 4.0311 7.1341 65618.63 684722.7 2144598 

12. 
1.001 1.2477 4.0310 7.1341 65597.6 684688.7 2144598 

13. 
1.1 1.2239 4.0228 7.1286 63118.9 681905.9 2141293 
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3.3.3 Dynamic response in sense and drive direction 

Dynamic response of the system recorded with the help of Galerkin’s decomposition technique. 

For this the 4th order partial differential equations are convert into 2nd order ordinary differential 

equation and then runge-kutta solver is used to solve the equation in MATLAB toolbox. Following 

pseudo code is used for simulation. 

Table 4.5 Numerical data used for damping calculation 

S. No. Parameter Numerical value 

1. Inside gyro pressure in bar, P  101 

2. Air viscosity in Pa s,   18.6×10-6 

3. Air mean free path in m,   6.71×10-8 

 

%%%%%FUNCTION%%%%%% 

function f=prt(t,x) 

f=zeros(4,1); 

m=1.803e-8;Rho=2300;b=2.8*10^(-

6);J=Rho*(b^2)*(1/6);La=1.2479;M=7.2128e-12; 

E=160e9;b=2.8e-6;I=(b^4)/(12);om=20;ep=8.8542e-12;Av=392e-12;Aw=392e-

12; 

dv=2e-6;dw=2e-

6;wn=65597.6;g=0.01;cc=2*g*wn*M;Vdc=2;Vac=0.1*sin(314.1593*t); 

a00=7.4598e6; 

a1=(m-J*a00); 

b1=E*I*((La)^4)-m*om^2-2*J*om^2*a00+ep*Av*Vdc^2*(dv^-3); 

c1=2*m*om; 

d1=ep*Av*Vdc^2*(dv^-2)*0.5*0.0155; 

a2=(m-J*a00); 

b2=E*I*((La)^4)-m*om^2-2*J*om^2*a00+ep*Aw*(Vdc+Vac)^2*(dw^-3); 

c2=2*m*om; 

d2=ep*Aw*(Vdc+Vac)^2*(dw^-2)*0.5*0.0155; 

f(1)=x(2); 

f(2)=((d1-b1*x(1)+c1*x(4)-cc*x(2))/a1); 

f(3)=x(4); 

f(4)=((d2-b2*x(3)-c2*x(2)-cc*x(4))/a2); 

f=[f(1);f(2);f(3);f(4)]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%SOLUTION%%%%% 

t0=0;tf=10;c=-102.4135;x0=[0,0,0,0]; 

tspan=linspace(t0,tf,1000); 

[t,x]=ode45('prt',tspan,x0); 

plot(t,x(:,3)*c,'-r'); 

%%%%%%%%%%%%%%%%%%%%%% 

 

3.3.3a Dynamic response without damping and inter molecular forces 

Fig. 3.20 and Fig. 3.21 represents the dynamic response in sense direction without damping and 

inter molecular forces. Fig. 3.22 and Fig. 3.23 shows the deflection and velocity response curve in 

drive direction without considering the effect of damping and inter molecular forces. The 

amplitude of deflection and velocity increases due to absence of damping.   

 

Fig. 3.20 Time verses deflection curve in sense direction without damping and inter molecular 

forces by using Galerkin’s technique 
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Fig. 3.21 Time verses velocity curve in sense direction without damping and inter molecular 

forces by using Galerkin’s technique 

 

Fig. 3.22 Time verses deflection curve in drive direction without damping and inter molecular 

forces by using Galerkin’s technique 
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Fig. 3.23 Time verses velocity curve in drive direction without damping and inter molecular 

forces by using Galerkin’s technique 

3.3.3b Dynamic response with damping and without inter molecular forces 

Fig. 3.24 and Fig. 3.25 represents the deflection and velocity curves in sense direction with 

consideration of damping forces and without considering the effect of inter molecular forces. The 

amplitude first increases then decreases in a cycle and these cycle repeated throughout the time 

domain and amplitude reduced due to damping.  

 

Fig. 3.24 Time verses Deflection curve in sense direction with damping and without inter 

molecular forces by using Galerkin’s technique 
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Fig. 3.25 Time verses Velocity curve in sense direction with damping and without inter 

molecular forces by using Galerkin’s technique 

Fig. 3.26 and Fig. 3.27 shows the deflection and velocity response curves in drive direction with 

damping effect and without inter molecular forces. It is clear from the Fig. that amplitudes have 

reduced due to damping. 

 

Fig. 3.26 Time verses Deflection curve in drive direction with damping and without inter 

molecular forces by using Galerkin’s technique 

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

Time in sec

V
el

o
ci

ty
 i

n
 s

en
se

 d
ir

ec
ti

o
n

, 
m

/s
ec

Dynamic response in sense direction with damping

0 1 2 3 4 5 6 7 8 9 10
-8

-6

-4

-2

0

2

4
x 10

-6

Time in sec

D
ef

le
ct

io
n 

in
 d

ri
ve

 d
ir

ec
tio

n,
 m

Dynamic respose in drive direction with damping



53 
 

 

Fig. 3.27 Time verses Velocity curve in drive direction with damping and without inter 

molecular forces by using Galerkin’s technique 

3.3.3c Dynamic response with intermolecular forces and without damping 

Fig. 3.28 and Fig. 3.29 represents the dynamic response in sense direction with inter molecular 

forces and without consideration of damping effect. The amplitude of vibration first increase and 

then decreases in a cycle and it increases throughout the time domain because of absence in 

damping. 

 
Fig. 3.28 Time verses Deflection curve in sense direction with inter molecular and without 

damping forces by using Galerkin’s technique 
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Fig. 3.29 Time verses velocity curve in sense direction with inter molecular and without 

damping forces by using Galerkin’s technique 

 

Fig. 3.30 and Fig. 3.31 shows the variation of deflection and velocity response by considering the 

effects of inter molecular forces and without damping effects. The amplitudes of vibration 

increasing because of absence of damping. 

 

Fig. 3.30 Time verses Deflection curve in drive direction with inter molecular and without 

damping forces by using Galerkin’s technique  
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Fig. 3.31 Time verses velocity curve in drive direction with inter molecular and without damping 

forces by using Galerkin’s technique 

3.3.3d Dynamic response with damping and intermolecular forces 

The effect of damping and inter molecular forces considered in the dynamic equation and the 

results for combined effect obtained. Fig. 3.32 and Fig. 3.33 represents the deflection and velocity 

response in sense direction with combined effect of damping and inter molecular forces. Similarly, 

Fig. 3.34 and Fig. 3.35 shows the deflection and velocity response in drive direction with the 

combined effect of damping and inter molecular forces. The results shows that without damping 

forces the amplitude of vibration increasing continuously in case of both with and without inter 

molecular forces, but when we consider the damping for both the cases then the amplitude of 

vibration first increases and after some cycle it remain constant throughout the time domain. There 

is significant variation observed by considering the effects of inter molecular forces. The amplitude 

of vibration differ for both the cases.      
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Fig. 3.32 Time verses deflection curve in sense direction with inter molecular and damping 

forces by using Galerkin’s technique 

 

Fig. 3.33 Time verses velocity curve in sense direction with inter molecular and damping forces 

by using Galerkin’s technique 
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Fig. 3.34 Time verses deflection curve in drive direction with inter molecular and damping 

forces by using Galerkin’s technique 

 

 

Fig. 3.35 Time verses velocity curve in drive direction with inter molecular and damping forces 

by using Galerkin’s technique 

------o------ 
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CHAPTER 4 

CONCLUSION 

4.1 Summary 

This work presented the design issues of nano-beam gyroscope, and its static and dynamic analysis 

results. The governing equations of motion were obtained by Hamilton’s principle and validated 

from literature. The rotation of the beam was considered to be about longitudinal (x) axis, and the 

beam has square cross-section which is uniform throughout the length of the beam. A tip mass is 

attached to its end. Electrostatic sensing and actuation principles are used. The static pull-in 

voltage was derived at different parameter such as different rotation, different beam lengths and 

widths of the beam, different electrode areas, gap between the electrode and tip mass and different 

values of density. Inter molecular forces considered are van der waal and Casimir forces which are 

highly nonlinear function of displacements and the static pull-in curve drawn and the comparison 

made between the static pull-in behaviours of with and without inter molecular forces. Following 

inferences can be written: 

1. Pull-in voltage decreases with increase of input angular rotation. 

2. Pull-in voltage value decreases by increase in length of the beam. 

3. By increasing the width of beam the pull-in voltage also increase. 

4. When the area of the drive and sense electrode increases then pull-in voltage decreases. 

5. Pull-in voltage increases by incrementing the gap between the tip mass and electrode. 

6. With the increasing of density of the material the pull-in voltage also increases. 

The natural frequency analysis also performed. The variation of the fundamental natural frequency 

verses applied DC voltage curves are drawn for different tip mass ratio. The dynamic analysis also 

carried out. The time verses deflection and velocity curves plotted for lumped parameter model of 



59 
 

the nano vibratory beam gyroscope for drive and sense direction. The 4th order partial differential 

equation is reduced to 2nd order ordinary differential equation with the help of Galerkin’s 

decomposition technique and the 2nd order differential equation in time variable is solved by 

Runge-Kutta method. The tip displacements histories were obtained by considering damping and 

inter molecular forces. It was found that there is a marked differences, if these forces are not 

considered. An attempts was made to obtain the micro cantilever sample for conducting further 

experiments.   

4.2 Future scope 

The silicon nano cantilever beam may be fabricated and the electrostatic forces can be generated 

by certain mechanisms. The set up can be tested using laser Doppler vibrometer for the dynamic 

response. Further, the results of the analysis require validation with FE method proposed in this 

work. Also, optimized dimensions of beam may be arrived by maximizing the sensitivity of the 

gyroscope. The range and resolution of this gyroscope needs to be specified by considering an 

electronic circuitry. 
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APPENDIX 

RUNGE-KUTTA SOLUTION FOR TIME INTEGRATION 

Consider set of n-simultaneous ordinary diff. eqs in canonical form: 

1
1 1 2( , , ,........ )n

dy
f t y y y

dt
  

2
2 1 2( , , ,........ )n

dy
f t y y y

dt
  

1 2( , , ,........ )n
n n

dy
f t y y y

dt
  

By expanding using 4th order R-K formulas we get, 

5

1, 1 2 3 4

1
( 2 3 4 ) ( ); 1,2,3,.....

6
i j i j j j jy y k k k k O h j n         

1 1 2( , , ,...... )j j i i i ink hf t y y y  

111 12
2 1 2( , , ,...... )

2 2 2 2

n
j j i i i in

kk kh
k hf t y y y      

221 22
3 1 2( , , ,...... )

2 2 2 2

n
j j i i i in

kk kh
k hf t y y y      

31 32 3
4 1 2( , , ,...... )

2 2 2

n
j j i i i in

k k k
k hf t h y y y      

This method is programmable using nested loops. 

In MATLAB, the values of k, y can be put into vectors to easily evaluate in matrix form. 

Following pseudo code is adopted in this work: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x01=0;x02=0; 
r=0.5;pe=1000; 
h=2*pi/r/pe; 
tma=700; 
i=1; 
for t0=0:h:tma 
X1(i)=x01;X2(i)=x02; 
k1=h*g1(x01,x02,t0); l1=h*g2(x01,x02,t0); 
k2=h*g1(x01+0.5*k1,x02+0.5*l1,t0+h/2); 
l2=h*g2(x01+0.5*k1,x02+0.5*l1,t0+h/2); 
k3=h*g1(x01+0.5*k2,x02+0.5*l2,t0+h/2); 
l3=h*g2(x01+0.5*k2,x02+0.5*l2,t0+h/2); 



64 
 

k4=h*g1(x01+k3,x02+l3,t0+h); l4=h*g2(x01+k3,x02+l3,t0+h); 
x1n=x01+(k1+2*k2+2*k3+k4)/6; x2n=x02+(l1+2*l2+2*l3+l4)/6; 
x01=x1n; 
x02=x2n; 
i=i+1; 
end 
% Generation of x1(nt) and x2(nt) 
T=[0:h:tma]; 
for j=2*pe:pe:length(T) 
n=(j-pe)/pe; 
X3(n)=X1(n*pe); 
X4(n)=X2(n*pe); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 

 


