Regression Testing

of
Object-Oriented Software

based on Program Slicing

Subhrakanta Panda

L

Qorored)

ROURKELA

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela, Odisha 769 008, India

Regression Testing

of
Object-Oriented Software

based on Program Slicing

Thesis submitted in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy
mn
Computer Science and Engineering

by

Subhrakanta Panda

under the guidance of

Dr. Durga Prasad Mohapatra

Ragrrgees”

ROURKELA

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela, Odisha 769 008, India

April 2016

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela - 769 008, India. www.nitrkl.ac.in

ROURKELA

Dr. Durga Prasad Mohapatra

Associate Professor

April 22, 2016

Supervisor’s Certificate

This is to certify that the thesis entitled Regression Testing of Object-Oriented
Software based on Program Slicing, submitted by Subhrakanta Panda,
Redg. No. 511CS109, a Institute Research Scholar, in the Department of Com-
puter Science and Engineering, National Institute of Technology, Rourkela, India,
for the award of the degree of Doctor of Philosophy, is a record of an original
research work carried out by him under my supervision and guidance. The thesis
fulfills all requirements as per the regulations of this Institute and in my opinion
has reached the standard needed for award. Neither this thesis nor any part of it

has been submitted for any degree or academic award elsewhere.

Durga Prasad Mohapatra

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela - 769 008, India. www.nitrkl.ac.in

ROURKELA

April 22, 2016
Certificate of Examination

Roll Number: 511CS109
Name: Subhrakanta Panda
Title of Dissertation: Regression Testing of Object-Oriented Software based on

Program Slicing

We the below signed, after checking the dissertation mentioned above and the of-
ficial record book(s) of the student, hereby state our approval of the dissertation
submitted in partial fulfillment of the requirements of the degree of Doctor of Phi-
losophy in Computer Science and Engineering at National Institute of Technology
Rourkela. We are satisfied with the volume, quality, correctness, and originality of
the work.

Prof. D. P. Mohapatra,

Supervisor
Prof. S. K. Jena, Prof. P. M. Khilar,
Member, DSC Member, DSC
Prof. A. K. Sahoo, Prof. S. Bhattacharya,
Member, DSC External Examiner
Prof. S. K. Rath, Prof. S. K. Rath,

Chairperson, DSC Head of the Department

The idea is never to live for ever,

But, to create something that will.

All that I am, or hope to be, I owe to my beloved Mother.
This thesis is for you Maa.

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela - 769 008, India. www.nitrkl.ac.in

ROURKELA

Declaration of Originality

I, Subhrakanta Panda, Redg. No. 511CS109 hereby declare that this disser-
tation entitled Regression Testing of Object-Oriented Software based on
Program Slicing, represents my original work carried out as a doctoral student
of National Institute of Technology, Rourkela, and to the best of my knowledge, it
contains no material previously published or written by another person, nor any
material presented for the award of any other degree or diploma of NIT Rourkela
or any other institution. Any contribution made to this research by others, with
whom I have worked at NIT Rourkela or elsewhere, is explicitly acknowledged in
the dissertation. Work of other authors cited in this dissertation have been duly
acknowledged under the section Bibliography. 1 have also submitted my original
research records to the scrutiny committee for evaluation of my dissertation.

I am fully aware that in case of any non-compliance detected in future, the
Senate of NIT Rourkela may withdraw the degree awarded to me on the basis of

the present dissertation.

April 22, 2016 Subhrakanta Panda
NIT Rourkela

Acknowledgements

Thank you Almighty for these people who carved the person in me.

First, I would like to thank my supervisor Dr. Durga Prasad Mohapatra for giving
me the guidance, encouragement, counsel throughout my research and painstakingly
reading my reports. Without his invaluable advice and assistance it would not have
been possible for me to complete this thesis.

I take this opportunity to extend my sincere thanks to Prof. S. K. Rath, Head,
CSE, Prof. S. K. Jena, Prof. P. M. Khilar, and Prof. A. K. Sahoo for serving on
my Doctoral Scrutiny Committee and for providing valuable feedback and insightful
comments. [am grateful to Prof. Jens Grabowski, GA University, Goettingen,
Germany, for having given me an opportunity to work with him and his team. Their
critical comments has helped me in exploring the subtle aspects of my research work.

I gratefully acknowledge the support provided by the National Institute of Tech-
nology (NIT), Rourkela. I owe a sense of gratitude to Director, NIT Rourkela for
his encouraging speeches that motivates many researchers like me. I am grateful to
Prof. B. Majhi and to all the faculty members and staff of the CSE Department for
their many helpful comments, encouragement, and sympathetic cooperation.

I wish to thank D. Munjal, a graduated student, for helping me with the pro-
gramming and debugging. I also thank all my research colleagues and friends, espe-
cially Jagannath, Mukesh, Lov, Swatee, and Suman Devi, for their encouragement
and moral support. I thank Sangharatna Godboley for standing by me in every
ups and downs of this journey. I express my indebtedness to Mitali and Mamata
Madam without their financial help I could not have even enrolled in Ph.D. I thank
Pragyan for having made that difference in my life.

I am grateful to the blessings of my grand parents. I love you Bapa and Maa
for this life. You rightly taught to do the best, and let God take care of the rest. 1
thank my brother, Soumyakanta, for bestowing blind faith on my capabilities even
when I had doubts on my worth. I am indebted to the moral support of my Nua
Bou, Nani, and Aru Bhaina along with Lali and Kanha. I thank my little angel
Shagun, for her playful oil massages with tiny hands have emboldened my body and
spirit to face the challenges of life. I thank Anand for having taken care of me and

my family. I thank all those who have ever bestowed upon me their best wishes.

April 22, 2016 Subhrakanta Panda
NIT Rourkela

Abstract

As software undergoes evolution through a series of changes, it is necessary
to validate these changes through regression testing. Regression testing becomes
convenient if we can identify the program parts that are likely to be affected by the
changes made to the programs as part of maintenance activity. We propose a change
impact analysis mechanism as an application of slicing. A new slicing method is
proposed to decompose a Java program into affected packages, classes, methods and
statements identified with respect to the modification made in the program. The
decomposition is based on the hierarchical characteristic of Java programs. We have
proposed a suitable intermediate representation for Java programs that shows all the
possible dependences among the program parts. This intermediate representation
is used to perform the necessary change impact analysis using our proposed slicing
technique and identify the program parts that are possibly affected by the change
made to the program. The packages, classes, methods, and statements thus affected
are identified by traversing the intermediate graph, first in the forward direction and

then in the backward direction.

Based on the change impact analysis results, we propose a regression test selec-
tion approach to select a subset of the existing test suite. The proposed approach
maps the decomposed slice (comprising of the affected program parts) with the cov-
erage information of the existing test suite to select the appropriate test cases for
regression testing. All the selected test cases in the new test suite are better suited
for regression testing of the modified program as they execute the affected program

parts and thus have a high probability of revealing the associated faults.

The regression test case selection approach promises to reduce the size of re-
gression test suite. However, sometimes the selected test suite can still appear
enormous, and strict timing constraints can hinder execution of all the test cases
in the reduced test suite. Hence, it is essential to minimize the test suite. In a
scenario of constrained time and budget, it is difficult for the testers to know how
many minimum test cases to choose and still ensure acceptable software quality.
So, we introduce novel approaches to minimize the test suite as an integer linear
programming problem with optimal results. Existing research on software metrics
have proven cohesion metrics as good indicator of fault-proneness. But, none of
these proposed metrics are based on change impact analysis. We propose a change-
based cohesion measure to compute the cohesiveness of the affected program parts.

These cohesion values form the minimization criteria for minimizing the test suite.

We formulate an integer linear programming model based on the cohesion values to
optimize the test suite and get optimal results.

Software testers always face the dilemma of enhancing the possibility of fault
detection. Regression test case prioritization promises to detect the faults early in
the retesting process. Thus, finding an optimal order of execution of the selected
regression test cases will maximize the error detection rates at less time and cost.
We propose a novel approach to identify a prioritized order of test cases in a given
regression selected test suite that has a high chance of fault exposing capability.
It is very likely that some test cases execute some program parts that are more
prone to errors and have a greater possibility of detecting more errors early during
the testing process. We identify the fault-proneness of the affected program parts
by finding their coupling values. We propose to compute a new coupling metric
for the affected program parts, named affected change coupling, based on which
the test cases are prioritized. Our analysis shows that the test cases executing the
affected program parts with high affected change coupling have a higher potential
of revealing faults early than other test cases in the test suite.

Testing becomes convenient if we identify the changes that require rigorous
retesting instead of laying equal focus to retest all the changes. Thus, next we
propose an approach to save the effort and cost of retesting by identifying and
quantifying the impact of crosscutting changes on other parts of the program. We
propose some metrics in this regard that are useful to the testers to take early

decision on what to test more and what to test less.

Keywords: Testing, Regression testing, Test case selection, Test suite minimiza-

tion, Test case prioritization, Change impact, Program slicing, Intermediate graphs.

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

2.2

2.3
2.4

Regression Testing o Lo
Program Slicingo o
Motivations of our Research Work
Objectives of our Research Work
Contributions of the Thesis

1.6 Organization of the Thesis
2 Background
2.1 Software Testing

2.1.1 Test, Test Case, and Test suite
2.1.2 Execution-Based Software Testing
2.1.3 Regression Testing,
2.1.4 Test Adequacy Criteria
Program Slicing L oo
2.2.1 Types of Program Slices
2.2.2 Program Representation
Precision and Correctness of a Slice.
Applications of Program Slicing
2.4.1 Testing
2.4.2 Debugging
2.4.3 Software Maintenance
2.4.4 Change Impact Analysis
2.4.5 Software Quality Assurance
2.4.6 Functional Cohesion
2.4.7 Functional Coupling
2.4.8 Other Applications of Program Slicing

© 0 B~ W = -

11

ii CONTENTS
2.5 Summary ... Lo e 42
3 Review of Related Work 43
3.1 Program Slicing L 43
3.1.1 Slicing of Object-Oriented Programs 45
3.1.2 Slicing of Java Programs 47
3.2 Regression Testing L oL 49
3.2.1 Test Case Selection, 50
3.2.2 Test Suite Minimization 51
3.2.3 Test Case Prioritization 52
3.3 Change Impact Analysis (CIA) 54
3.4 Summary e 56
4 Regression Test Case Selection using Slicing 57
4.1 Background 59
4.2 Hierarchical Regression Test Selection 61
4.2.1 Proposed Intermediate Graph Representation:EOOSDG . . . 62
4.2.2 Removal of Redundant Edges 69
4.2.3 Proposed Hierarchical Decomposition (HD) Slicing Algorithm 71

4.2.4 Proposed Hierarchical Regression Test Case Selection (HRTS)
Algorithm 74
4.2.5 Working of the Algorithms 74
4.2.6 Complexity Analysis of HRTS Algorithm 78
4.3 Implementation 79
4.3.1 The sample programso 79
4.3.2 Experimental settings 0oL 81
4.3.3 Architectural Model of Regression Test Case Selection 82
4.3.4 Result Analysis Lo 83
4.3.5 Threats to Validity 86
4.4 Comparison with Related Work 87
4.5 Summary e 91
5 Regression Test Suite Minimization 93
5.1 Motivating scenario.o 93
5.2 Proposed Approach for Test Suite Minimization 95
5.2.1 Minimization framework L0 96

5.2.2 Regression Test Case Selection 96

CONTENTS iii
5.2.3 Affected Slice Graph (ASG) Construction using HD Slicing . 97
5.2.4 Computation of Affected Component Cohesion (ACCo) 98
5.2.5 Modeling test suite minimization as binary ILP problem . . . 106

5.3 Experimental study oo oL 108
5.3.1 RQI: Effectiveness oL 111
5.3.2 RQ2: Usefulness 112
5.3.3 Threats to validity 113

5.4 Comparison with related work 114

5.5 Summary e e 115

Regression Test Case Prioritization 117

6.1 Motivation 118

6.2 Coupling in Object-Oriented Programs 121
6.2.1 Affected Component Coupling (ACC) 124
6.2.2 Theoretical Validation 126
6.2.3 Framework Criteria 128

6.3 Our Proposed Approach for Regression Test Case Prioritization . . . 130
6.3.1 Construction of ASG 131
6.3.2 Computation of ACC 132
6.3.3 Clustering and Assigning Weights 133
6.3.4 Computation of Test Case Weights and Prioritization of Test

Caseso 135

6.4 Case Study 136

6.5 Correctness of the Algorithms 140

6.6 Complexity Analysis of the Algorithms 141

6.7 Implementation L 142
6.7.1 Experimental Program Structure 143
6.7.2 Mutation Analysis 0oL 144
6.73 Results 147
6.7.4 Threats to Validity, 149

6.8 Comparison with Related Work 150

6.9 Summary 156

Identifying and Quantifying the Effect of Changes 157

7.1 Background 158
7.1.1 Change Identification 158
7.1.2 Change impact analysis (CIA), 160

iv CONTENTS
7.2 Proposed Metrics for Describing Program Changes 161
7.2.1 Structural program modelo 162

7.2.2 Proposed Change Cluster Graph (CCG) 163

7.2.3 Definition of the proposed metrics 165

7.2.4 Metrics Computation 167

7.3 Experimental Studies. L 170
7.3.1 The sample programs 170

7.3.2 Observations 171

7.4 Comparison with related work 176
7.4.1 'Threats to validity 179

7.5 Summary e e e 179

8 Conclusions 181
8.1 Contributions 181
8.1.1 Regression Test Case Selection 181

8.1.2 Regression Test Suite Minimization. 182

8.1.3 Regression Test Case Prioritization 183

8.1.4 Identifying and Quantifying the Effect of Changes 184

8.1.5 TImplementation L. 185

8.2 Future Worko 185
BIBLIOGRAPHY 187
Dissemination 207
Biodata 208
Index 209

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

4.1
4.2
4.3
4.4
4.5

4.6

4.7

4.8
4.9

Outline of the thesis 11
A hierarchy of software testing. 16
A software testing process model. 17
Forward slice of a sample program. 24
Backward slice of a sample program. 25
Static slice of a sample program., 26
Dynamic slice of a sample program. 27
The CFG of the example program given in Figure 2.6a. 30
The PDG of the example program given in Figure 2.6a. 32
An example program consisting of a main program and two procedures. 34
The SDG of the example program given in Figure 2.9. 35
(a) An example program, and (b) its CHS 37
An example program 37
Model for Hierarchical Slicing. 59
An example Java program L. 61
EOOSDG of the example program in Figure 4.2. 63

Reduced EOOSDG (rEOOSDG) of the example program in Figure 4.2. 66
Time based comparison between EOOSDG and rEOOSDG for iden-
tifying the affected nodes with respect to some modification (slicing
criterion). 69
Architectural model of the hierarchical regression test selection method 82
Summary of hierarchical test case selection for node 23 of rEOOSDG
in Figure 4.4. Lo 84
Hierarchical test case selection for different input nodes 84
Time based comparison between EOOSDG and rEOOSDG of differ-
ent programs to detect their affected parts 85

vi

LIST OF FIGURES

4.10 A comparison of the percentage of test cases selected for regression

5.1
5.2

5.3

5.4

5.5

5.6

0.7

5.8

6.1
6.2
6.3
6.4
6.5
6.6

6.7

6.8

7.1

7.2
7.3

7.4

7.5

testing. L 86

Framework to minimize change-impact-based selected test-suite. . . 95

Affected Slice Graph (ASG) of the example Java program given in

Figure 4.2.o 97
ACCo computation of nodes of ASG in Figure 5.2. 102
ILP encoding of the test data given in Table 5.1. 108
% of fault detected by ST and MT. 108

Test suite minimization results for all the ten changes made to the
00 2 2 0 110
Fault detection results of the minimized test suite for all the ten
changes made to the program. 111

Timing results of the minimized test suite for all the ten changes

made to the program. 112
APFD measure for the test case orderings in Table 6.1. 119
Activities of Test Case Prioritization. 131
The calculated ACC values of different nodes of the ASG in Figure

5.2 and their weights. o oL 133
K-Means Clustering of the ACC values of the nodes of ASG. 134
Mutation analysis of programs. 146

Average percentage of affected nodes covered by the prioritized test

cases using the approach of Panigrahi and Mall. 146
Average percentage of fault prone affected nodes covered by the pri-

oritized test cases using our approach. L. 147
Comparison of APFD values for different programs. 147

Change Ripple Graph (CRG) of the example Java program given in
Figure 4.2. 159
Comparison between CIA approaches. 161
Change Cluster Graph (CCG) of the example Java program given in
Figure 4.2. oL 164
Change impact analysis of the two changes made to the program
given in Figure 4.2.o 169
Box-plot of the time taken to compute the slices of the sample pro-

GralS. .« vt e e e e e e e e e e e e e e e e 171

LIST OF FIGURES vii

7.6
7.7

7.8
7.9
7.10

Change ripple analysis of programs. 172
Box-plot of the percentage of fault mutants present in affected parts

of the programs. L 172
Average percentage of affected nodes versus affected test cases. . . . 173
Crosscutting change analysis. 173
Box-plot of the percentage of faults detected in the sample programs. 174

List of Tables

4.1
4.2
4.3
4.4
4.5

5.1
5.2

5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2

Test case coverage distribution for the example program in Figure 4.2. 73

Summary of test case selection for the example program in Figure 4.2 74

Summary of change types in Java programs. 79
Result obtained for regression testing of different programs. 80
Comparison of Hierarchical Slicing versus HD slicing. 85
Test related data for the example program given in Figure 4.2. . .. 94
Comparison of our proposed change-based cohesion metric with dif-

ferent existing approaches. 109
Test-suite minimization result of different programs. 110
A sample test case distribution and the faults detected by them. . . 118
Comparison with mechanisms that measure coupling. 124
Test case coverage of fault prone affected nodes. 131
Impact types of ACC values. 133
Distribution of test case weights on the basis of fault prone impact. . 136
Result obtained for regression testing of different programs. 144
Overview of Mutation Operators 145
The list of the sample programs used in the study. 170
Degree of scattering and focus of the sample programs. 174

List of Algorithms

1 Algorithm RER 70
2 HDslice(G, n) 72
3 HRTS . . . e e 75
4 findACCo(Gg, n) oo 100
5 Forward Traversal 135
6 Backward Traversal 135
7 findWACC(ASG, n) 137
8 H-PTCACC(T, WACC) 138

Chapter 1

Introduction

The change in the user requirements and growing expectations of the customers
have forced the software to evolve at regular intervals of time. As the complexity
of software increases, the cost and effort to maintain such complex software also in-
crease. After making the required changes to the software, regression testing should
be carried out in order to assure the validity of the modified part and to ensure that
the changes do not affect other parts of the program. Therefore, regression testing
has become an integral part of the software maintenance process. It is indispens-
able to make changes to an already tested program. Thus, the role of regression
testing has become apparent in retesting the program. The retesting is based on
the modifications done without compromising with the time and cost of retesting,

while maintaining same testing coverage.

1.1 Regression Testing

In the software development life cycle, regression testing is considered to be an
important part. Regression testing is defined as the selective retesting of a system
or component to verify that modifications have not caused unintended effects and
that the system or component still complies with its specified requirements [41]. A
system is said to regress if 1) a new component is added, or 2) a modification done to
the existing component affects other parts of the program. Therefore, it is essential
to retest not only the changed code but also to retest the possible affected code due
to the change. Regression testing is an expensive activity and typically accounts
for half of the total cost of software maintenance [127]. It is essential to cut-down
the cost of retesting the software by following a selective approach to identify and

retest only those parts of the program that are affected by the change. Gupta et

2 Introduction

al. [81] have identified two important problems in selective regression testing: (1)
identifying those existing tests that must be rerun since they may exhibit different
behavior in the changed program and (2) identifying those program components
that must be retested to satisfy some coverage criterion. Thus, the two problems of

[81] can be elaborated as a process comprising of the following steps:
i selecting a set of test cases T to be executed on a program P,

ii selecting 7" C T and retesting P’ with T” to establish the correctness of P’

with respect to T”, where P’ is the modified version of program P,

iii creating T”, a set of new test cases for P’, if required, and retesting P’ with

T”, so that we still get the same correctness of P’ with respect to T,

iv creating 7" from T', T', T” and by adding some new test cases, if required,

to test the correctness of P’.

All the above mentioned steps cover the following important problems associated
with regression testing: regression test selection problem, coverage identification
problem, test suit execution problem and test suit maintenance problem. There
are four approaches by which the problem of regression testing of a software can be
solved [41]. These are: (i) Retest all approach, (ii) Test suite reduction [57, 210], (i)
Regression test selection [90, 188], and (iv) Test case prioritization [104, 108, 175].

i. Retest all approach: In this approach, all the test cases available in the test
suite are executed to test the changed version of the program. Test suite T’

effectively covers the modified program P’.

ii. Test suite reduction: Even though all the test cases of a given test suite T
can be executed to test a modified program, but the execution cost will be
very high. Test case reduction/minimization approach [57, 210] focuses on
those test cases that need to be eliminated permanently to reduce the cost
of retesting because of the following reasons: i) the test case has become
obsolete due to the changes done to the program, ii) there may also be some
redundant test cases present in the test suite with respect to the code or

exercised functionality.

iii. Regression test selection: This approach focuses on reducing the time required
to retest a modified program by selecting a subset of the given test suite.

Therefore, regression test selection techniques [81, 90, 188] attempt to identify

1.2 Program Slicing 3

only those test cases that can exercise the modified parts of the program and

the parts that are affected by the modification to reduce the cost of testing.

iv. Test case prioritization: Test case prioritization focuses on reordering the
sequence of execution of test cases [66, 69, 104, 108, 175, 184]. The sequencing
of the test cases in a given test suite is done based on some established criteria.
The test case having the higher priority is executed earlier than the test case

with lower priority. There are two types of prioritization [41]:

i. General test case prioritization: For a given program P and a test suite
T, the test cases are prioritized such that the prioritization is useful to a
succession of program modifications done to P, without the knowledge

of the modification.

ii. Version specific test case prioritization: In this approach, the test cases
are prioritized whenever program P is modified to P/, with the knowledge

of the changes made in P.

1.2 Program Slicing

Program slicing has been proved as an effective and efficient technique for program
analysis. The main applications of program slicing includes program debugging,
change impact analysis, program comprehension, fault detection, testing, and main-
tenance in object-oriented software [54, 70, 79, 81, 89, 100, 104, 128, 149, 150, 186,
188, 203, 217]. Change impact analysis and regression testing are integral parts of
software maintenance. A program slice at a statement s consists of a set of relevant
statements of a program those directly or indirectly affect s. A slice at s can refer to
the ripple effect of the change at s. Therefore, program slicing is the most favorable
technique to study the effect of change. Thus, program slicing finds an application
in ensuring the high integrity of the software after changes are made. The computed
slice at the point of change reduces the effort of the tester allowing him to focus
attention on the ripple effect of one change at a time. The precise and accurate
computation of the slices to discover the affected program parts for examination,
restores the confidence of the tester that a relevant section of the code has not been
missed. This enables the inspection of the ripple effect in large sample of programs.
According to the existing literature, the result of change impact analysis makes the
technique of program slicing a suitable option for regression testing [81, 104, 188].

In traditional procedure-oriented programs, the approach for regression testing was

4 Introduction

based on the data flows and control flows within a procedure or among a group of
procedures that were computed by graph reachability algorithms [100, 101, 161].
This was mainly achieved by slicing the program dependence graphs (PDG) using
the above graph reachability algorithms to obtain the desired program slices. How-
ever, while applying the same techniques to object-oriented programs, it is observed
that these techniques fail because of the presence of many other dependences orig-
inating from the object-oriented features. Although object-oriented features have
improved program understandability and readability but at the same time these
features have also complicated the maintenance activities. Besides the control and
data dependences, the other dependences that may arise due to the class and ob-
ject concepts are inheritance dependence, message dependence, data dependence,
type dependence, reference dependence, concurrence dependence, etc. So, there is
a pressing need to handle these dependences while performing regression testing of

object-oriented software.

1.3 DMotivations of our Research Work

The existing slicing techniques based on system dependence graphs [119, 123, 154,
216] have considered C++ programs that are partially object-oriented in nature. In
case of object-oriented programs, the programming complexity shifts from method
interaction to object relations and communication among objects. The different
dependences present in an object-oriented program need to be considered to find
the erroneous parts for better program comprehension as they affect the behavior
of other components of the program. In this context, it is essential to make a
thorough analysis of the dependences between different programming constructs
and to detect the critical parts of the programs. To identify these dependences
among the program parts, it is essential to model the program with a suitable
graphical representation. That’s why we are motivated to consider Java programs
for our work that is considered as a true object-oriented programming language.
But the existing slicing techniques cannot be applied to Java programs because
of the presence of many new features that increase the dependences among the
components of a Java program [44, 85, 116, 130, 198, 215]. The presence of the
features like packages, super, dynamic method dispatch, interface, exception han-
dling, multi-threading, etc, in Java add to the list of dependences and thus make the
maintenance even more difficult. Their effects on the maintenance of the programs

need to be considered separately.

1.3 Motivations of our Research Work 5

Apart from this, there are many methods that depend on the type of data they
are operating upon. For each type of data, there is a different function. It is essential
for the intermediate graphical representation to exhibit all such dependences for an
accurate comprehension of the program. Therefore, use of existing slicing techniques
to slice the current system dependence graph (SDG) of Java programs, does not
seem suitable for regression testing. So, there is a need to have a suitable graphical
representation of the Java programs, and a new slicing algorithm that can correctly

reflect the ripple effect of the changes.

It is essential to validate the modifications and ensure that no other parts of the
program have been affected by the change. Incremental regression testing [2, 207]
is a probable solution to validate the changes. Some simple observations related
to incremental regression testing are as follows: (1) If a statement is not executed
under a test case, it cannot affect the program output for that test case. (2) Not all
statements in the program are executed under all test cases. (3) Even if a statement
is executed under a test case, it does not necessarily affect the program output for
that test case. (4) Every statement does not necessarily affect every part of the
program output. We can apply the above assumptions to Java programs at different
levels such as packages, classes, methods and statements for an efficient selective
regression testing. Instead of exhausting all the test cases to validate every change
made to the programs, it is wise to select a subset of the test cases that actually
cover the affected program parts. Therefore, an efficient approach for change-based
test case selection is highly necessary for the testers to build the same confidence

as it would have been in case of retest all approach.

For large programs, even the selected test suite can be quite large for the testers
to execute with all the test cases. The adverse impact of this retest-all approach even
with selected test suite may result in project deadline misses and may incur huge
cost while retesting the system for every change. This requires further minimization
of the test suite. Therefore, test suite minimization techniques [91, 134, 146] aim
to reduce the redundant and obsolete test cases from the regression test suite such
that the coverage achieved after reduction is still the same as the initial test suite.
Previous work on test suite minimization [28, 57, 105, 131, 208] aimed at developing
heuristics for defining the minimization problem. According to the survey in [210],
no single heuristic is better than the other, because the heuristic that selects one
test case may become redundant for the another. Thus, finding a heuristic that
is more relevant to the change in the program is more essential to save the cost

of regression testing. Cohesion of the affected components can be computed as an

6 Introduction

effective indicator of change(fault)-proneness [8, 9, 55, 213], thus making it a suit-
able heuristic for minimizing the test suite. Therefore, minimization problem with
respect to regression testing should aim to find the essential test cases concerning

the change.
The empirical studies in [61, 67, 175, 176, 210] suggest that the order of test

cases execution plays a vital role in detecting faults early in the testing process.
An early feedback on the presence of faults can enable the testers to locate the
bugs early. It gives an indication to the testers about the test cases that should
be exercised first in case the testing has to be prematurely halted. Thus, test
case prioritization [66, 69, 104, 108, 113, 148, 162, 163, 175, 177, 184, 214] finds
a schedule for the test cases so that if executed in that sequence, it maximizes
its effectiveness in meeting some performance goals. Performance goals are the
criteria set by the testers based on their expertise and intuition. For example some
performance goals can be to mazimize code coverage, branch coverage, MCDC' [78],
frequency of features coverage, etc. One of the popular performance goals is rate of
fault detection. However, fault detection ability of the test cases cannot be known
apriori. Therefore, testers rely on surrogates to overcome the difficulty of knowing
the test case that has higher ability to detect faults [67]. The assumption is that
early maximization of the surrogate property will enhance the likelihood of fault
detection. In many empirical studies [10, 15, 29, 35, 36, 47, 65, 117, 150], coupling
measures are proven to have strong correlation with fault-proneness. But none of
the empirical studies on prioritizing approaches [34, 58, 61, 67, 74, 79, 151, 176, 184,

210, 213] reports the use of the coupling measures to prioritize the test cases.

Though testing is a process carried out to discover as many faults as possible to
confirm the quality of the software, but testers are sometimes conditioned to fail.
The testers may not have the liberty of exhaustive retesting of every change made
to the program in a looming scenario of time and cost (due to project deadline,
customer impatience, market pressure, etc.). Therefore, the tester needs to test
less without sacrificing the quality [98]. Under such circumstances the tester needs
to decide, is it always possible and necessary to validate every change through an
equal amount of retesting? The answer to this question is quite intuitive based
on Pareto principle that suggests, not all changes will require the same amount of
retesting. Thus, the tester has to make a decision about what to test and what not
to test, what to test more and what to test less, and also in what order to test. The
questions about what to test and what not to test, and in what order to test are

answered through regression test case selection and prioritization. But, the answer

1.3 Motivations of our Research Work 7

to what to test more and what to test less can come only through some mechanism
that can quantify the effect of change. This require metrics to be proposed and
defined with respect to the changes that are made to the program. To the best
of our knowledge, no such metrics has been defined or proposed in the existing
literature [1, 17, 76, 77, 96, 121, 126, 168, 169, 178, 180, 192] on change impact
analysis.

Thus, the motivations behind our research work on program slicing-based change

impact analysis and its application to regression testing are summarized below:

e The features of a Java program add more complexity by inducing many more
dependences among its program parts [198]. Thus, the existing graph based
regression test case selection techniques are not suitable for Java programs.
So there is a pressing need to develop suitable techniques for regression testing

of Java programs.

e Many of the regression testing techniques are unsafe, imprecise, and compu-
tationally expensive [27, 172]. Very few techniques considering Java programs
focus on safe regression test case selection [90, 188]. A safe technique selects
those test cases that have high probability of revealing faults. Therefore, it is
essential to develop a safe regression test case selection technique concerning

Java programs.

e The empirical studies [8, 10, 16, 34, 55, 56, 79, 99, 117, 150, 151, 213] prove
the correlation of cohesion measure [7, 14, 40, 46, 82, 118, 149, 218, 219] with
the fault proneness of the components, making it a suitable candidate for test
suite minimization heuristic. So, a new minimization approach based on the
changes and its impact using the cohesiveness of the affected components is

desirable to give a concrete solution.

e The existing coupling measures [15, 36] proposed for object-oriented programs
are not concerned with the change and its impact. Therefore, a change-based
coupling measure, if used for prioritizing the test cases, can promise better
likelihood of fault detection.

e It is necessary to test less without sacrificing the quality [98]. But, unfortu-
nately no metrics have been suggested that can quantify the effect of a change
to help the tester decide what to test more and what to test less. The presence
of dependence communities [83] among the changes made to a program can

help the testers to save on regression testing time.

8 Introduction

1.4 Objectives of our Research Work

Our focus is to reduce the execution of the existing tests so as to achieve comparable
rate of fault detection and be confident about the quality of the software. Our ob-
jective is to save regression testing time by reducing the cost and time of retesting of
the modified as well as affected parts of the program through change-based selection
of regression test cases, minimization of these selected test cases, and prioritization
of the minimized test cases. We also aim to propose a mechanism that enables a
tester to decide the relevant changes in a program that require immediate attention
and thus save regression testing time. To realize this broad objective, we identify

the following goals based on the motivations outlined in the previous section.

e To develop an efficient algorithm that selects the affected test cases based on
the slices of the affected program parts. To address this major objective, we

form the following sub-objectives:

— To construct a suitable intermediate graph to represent the Java pro-

grams under test.

— To develop an efficient slicing algorithm that works on the proposed
intermediate graph and correctly identifies the program parts those are

affected by the ripple effect of the changes made to the program.

e To develop a heuristic based on the cohesion values of the affected program
parts for minimizing the selected change-based test suite. For this we plan to

develop:

— An efficient algorithm for correctly computing the proposed change-based

cohesion measure of the affected program parts.

e To develop an approach based on the coupling values of the affected program
parts for prioritizing the test cases within the selected /minimized test suite.

This requires us:

— To develop an efficient algorithm for correctly computing the proposed

change-based coupling measure of the affected program parts.

e To identify and quantify the impact of change for enabling the tester to save
time during regression testing of the modified programs. This requires us to

set the following sub-objectives:

1.5 Contributions of the Thesis 9

— To construct a change cluster graph using the concept of dependence
communities for representing the dependences among various changes

that are made to a program.

— To propose and define the change impact metrics that can quantify the

scattering and tangling of the changes.

1.5 Contributions of the Thesis

Based on our objectives mentioned in the previous section, our research work makes

the following contributions:

e We propose a novel regression test case selection approach by decomposing
an object-oriented (OO) program into packages, classes, methods and state-
ments that are affected by some modification made to the program. This
decomposition is based on slicing of an OO program and is named hierar-
chical decomposition (HD) slicing. We select a subset of the regression test
suite to retest the modified program by mapping the decomposed program
parts with the coverage of the existing test suite. The HD slicing works on a
suitable intermediate graph proposed for representing an OO program. This
intermediate graph correctly represents all the possible dependences among
the different parts of an OO program. The advantage of HD slicing approach
is that it is context sensitive and correctly selects a precise number of affected

nodes in less time as compared to the approach in [130, 188].

e Software testers always face the dilemma of whether to retest the software
with all the test cases or select a few of them based on their fault detection
ability. Regression test case selection promises to detect the faults with few
test cases. However, sometimes the selected test suite can still appear enor-
mous for regression testing in strict timing constraints. Hence, it is essential to
further minimize the test suite. In constrained time and budget, it is difficult
for the testers to know how many minimum test cases to choose and still en-
sure acceptable software quality. We introduce a novel approach to minimize
the test suite as an integer linear programming (ILP) problem with optimal
results. The minimization method uses the proposed affected component cohe-
sion (ACCo) values of the program parts affected by the change made to the
program. The hypothesis is that the program parts with low cohesion values

are more prone to errors. This assumption is validated with respect to the

10 Introduction

mutation fault detection ability of the test cases. The experimental results
show that the minimized test suite can efficiently reveal the errors and ensure

acceptable software quality.

e Test case prioritization focuses on finding a suitable order of execution of the
test cases in a test suite to meet some performance goals like detecting faults
early. It is likely that some test cases execute the program parts that are more
prone to errors and will detect more errors if executed early during the testing
process. Finding an optimal order of execution for the selected regression
test cases saves time and cost of retesting. We present a static approach for
prioritizing the test cases based on the proposed affected component coupling
(ACC) of the program parts. We determine the fault-proneness of the affected
program parts by computing their respective ACC values. We assign higher
priority to those test cases that cover the program parts with higher ACC
values. Our analysis with mutation faults shows that the test cases executing
the fault-prone program parts have a higher chance to reveal faults earlier

than other test cases in the test suite.

e As crosscutting concerns degrade the software quality, similarly, the crosscut-
ting changes can cause regression testing difficult. Software undergoes evolu-
tion through a series of changes. As a result, it becomes necessary to validate
these changes through regression testing. But, is it always possible to validate
every change through an equal amount of retesting? The intuition says, not
all changes will require the same amount of retesting. The job of the testers
become convenient if they can find out those changes that should undergo
more rigorous retesting instead of laying equal focus on all the changes. We
make a novel contribution to quantify the impact of crosscutting changes to
save the effort and cost of retesting. We propose some metrics to quantify
the severity of the changes that act as indicators for the amount of regres-
sion testing required to validate the change. The results of our experimental
study show that our proposed metrics are better able to quantify the changes.
These metrics are useful indicators of the fault-proneness and can be used by

the testers to make essential estimation of the testing effort.

The relationships among the contributions are shown in Figure 1.1. The details of

each contribution is discussed in Section 1.5.

1.6 Organization of the Thesis 11

-
o — T —
— ~

— ~
Introduction, Basic Concepts &
Related Work
(Chapter1, 2 & 3)

S~ —
— _—
—_— -

Regression Testing based on Program Slicing

Regression Test case Selection
based on Affected Program Parts
(Chapter 4)

l

Regression Test suite
Minimization based on Changed-
based Cohesion NMMeasure
(Chapters)

l

Regression Test suite
Prioritization based on Changed-
based Coupling Measure
(Chapterg)

!

Identifying and Quantifying the
Crosscutting Changes for
Regression Testing
(Chapter7)

Conclusion
(Chapter8)
-

Figure 1.1: Outline of the thesis

1.6 Organization of the Thesis

The rest of the thesis is organized into chapters as follows:

e Chapter 2 talks about the basic concepts and techniques used in the reification

of the proposed objectives in the rest of the thesis.

e Chapter 3 provides a brief review of the existing work that are closely related
and relevant to our contributions. We start with a discussion on the evolution
of program slicing techniques over the years. This is followed by some earlier
contributions related to regression testing especially on test case selection,
minimization, and prioritization. Finally, we provide some of the relevant
work on change impact analysis and highlight their limitations that motivated

us to quantify the effect of changes.

12

Introduction

Chapter 4 presents our contribution in developing a novel regression test case

selection approach for object-oriented software.

Chapter 5 proposes an approach to compute the cohesion measure of the
affected program parts and use the results to minimize the change-based se-
lected test suite. This takes the work done in Chapter 4 to one step ahead in

regression testing.

Chapter 6 proposes an approach to compute the coupling measure of the
affected program parts and uses the result to prioritize the test cases of the

test suite minimized in Chapter 5.

Chapter 7 presents an approach to quantify the effect of the changes made to
the program. We propose some metrics in this regard that help in identifying

the changes that require more attention of the tester.

Chapter 8 concludes the thesis with a summary of our contributions. We also

briefly provide some insights into the possible extensions to our work.

Chapter 2
Background

This chapter provides a general idea of the underlying theories on which the rest of
the thesis is based upon. For the sake of conciseness and to avoid trivial discussions,
we do not provide a detailed and minute description of these underlying theories.
We provide a short introduction on the underlying theories to highlight only on
those non-trivial concepts and definitions that contribute to the understanding of
this thesis.

This chapter is organized as follows: we give a brief description of the artifacts
associated with software testing in Section 2.1. Regression testing is an indispens-
able part of the software testing process. We define the problem of regression testing
and discuss various approaches to address this problem in Section 2.1.3. These ap-
proaches to regression testing forms our contributory work. We provide a brief
introduction to the techniques of program slicing in Section 2.2. The contributions
of this thesis are based on an intermediate representation. So, a brief account of
the evolution of some of these intermediate representations is given in Section 2.2.2.
Since its inception, program slicing has been used in various applications. We dis-
cuss some of these usages that relate to our contributions in Section 2.4. Finally,

we summarize our discussion on the basic concepts in Section 2.5.

2.1 Software Testing

When a program is developed as an implementation of any algorithm or logic, the
developers are always doubtful about its performance and correctness. The devel-
opers must have the confidence that the software achieves certain level of quality.
Software testing can be appropriately used to ensure the quality of the software

to a certain level. A quality software should be correct. A software can only be

14 Background

correct, iff it computes results for the entire domain of input, and all the results it
computes are specified. Thus, software requires exhaustive testing to validate the
input domain. A software testing approach can only suggest the presence of faults
and cannot highlight their absence if it is not exhaustive. According to Karner et

al. [107], exhaustive testing of software is not possible for the following reasons:

e the input domain is too large, for example to test the greatest among two
numbers, the input domain can be any number n that belongs to the Integer
set, I.

e there are too many possible input paths to test, so the difficulties alluded to
by this assertion are exacerbated by the fact that certain execution paths in

a program could be infeasible [158, 191].

e design and specifications can change during software development and are
thus difficult to test, this is because software testing is an algorithmically
unsolvable problem and specification errors cause major design errors [41].
According to Manna and Waldinger [144], it is not possible to surely know

the correctness of the specifications.

Hamlet et al. [84] have formally stated the goals of a software testing methodology
and Morell et al. [155] have highlighted its limitations. Young and Taylor [212]
observed that there was always a trade-off between exhaustive testing and compu-
tational cost because the presence of defects was always undecidable. Therefore, no
testing technique can be completely accurate and generic to all the programs. Even
though the testing process is challenged with many limitations, but the consistent
application of a testing technique in an intelligent manner can ensure an acceptable
level of software quality. Therefore, testing is an important phase in software devel-
opment life cycle. This phase incurs 60% of the total cost of the software. Therefore,
it becomes highly essential to devise proper testing techniques in order to design
the test cases so that the software can be tested properly. Testing strategies are
based on verification and validation. The static techniques available for testing map
to the verification process without executing the code, whereas the dynamic testing
techniques map to the validation process by executing the code.

Figure 2.1 shows the hierarchical decomposition of the testing strategies along
with their association with different test adequacy criteria. The decomposition
shown in Figure 2.1 follows the definitions given in [41, 220]. This thesis follows

the execution-based testing strategy. The execution-based testing techniques are

2.1 Software Testing 15

decomposed into either program-based, specification-based, or combined as shown in
Figure 2.1. The chosen adequacy criterion C' determines the types of test cases
that belong to the test suite, T. A program-based testing approach creates T
by analyzing the source code of a program, P, based upon its structure and at-
tributes. A specification-based testing technique creates the desired test suite from
the functional and/or non-functional requirements for P. Whereas, combined testing
uses both program-based and specification-based testing approaches to generate 7.
Based on the kind of testing strategy that is followed to create T, the test cases are

categorized into three types:

e Black box, test cases that are created without knowledge of P’s source code
and are based only the functional specifications. Thus, these test cases are only
based on the input and output behavior and do not depend upon the internal
structure of P. The important types of black box testing are equivalence class

partitioning and boundary value analysis.

e White box, test cases that are created considering the entire source code of P
and are based on some heuristics. It is an important approach for unit testing.
The different types of white box testing are fault-based testing, coverage based
testing, data flow based testing, etc.

e Grey box, test cases that are created only by considering the design models
of the program P. The different types of grey box testing are state-model-
based testing, use case-based testing, class diagram-based testing, and se-

quence diagram-based testing.

Figure 2.1 also shows the association of these testing strategies with the corre-
sponding test adequacy criteria. A structurally-based criterion requires 71" to sat-
isfy exercising of certain control structures and variables within P, such as state-
ment coverage, branch coverage, condition coverage, path coverage, etc. Therefore,
structurally-based test adequacy criterion requires program-based testing. Fault-
based test adequacy criterion ensures that the types of faults that are commonly
introduced into P by the programmers are revealed by T'. Finally, error-based test-
ing approaches rely upon the fact that T does not deviate from the specifications in
any way. Therefore, error-based adequacy criteria motivate for specification-based

testing approaches.

16 Background

Software
Testing

\ Static

Dynamic _
(Execution-based (non-Execution-based
Testing) Testing)

/ \ \ Inspections
Program-based Combined Specification-based
Testing Testing Testing
AY A T A

Adhoc Checklist Scenario-based

3
I

Decomposes into
-~

Structurally- Fault-based Error-based

- o Re uires
based Criterion Criterion Criterion q

Figure 2.1: A hierarchy of software testing.

2.1.1 Test, Test Case, and Test suite

In the context of software testing, test and test cases are often used interchangeably.
A test case consists of an initial state, inputs, and expected outputs. The state refers
to pre-conditions, if any, i.e. circumstances that hold prior to the test execution.
Each test case is also identified by a unique identification number. The process
of testing is to check whether the inputs yield the expected outputs or not. The
test case is said to fail if the actual output differs from the expected output. If
the test case fails, then it requires debugging to reach the cause of this failure. An
efficient test case has a very high probability of revealing the defect. Therefore, it
is essential to design test cases based on the identified weak areas of the program.
A set of these test cases designated to test an application is called test suite . A
test suite may be segregated into set of successful and unsuccessful test cases. Any
information related to the test cases within a test suite are maintained for future

reference.

2.1.2 Execution-Based Software Testing

Figure 2.2 shows the process of execution-based software testing. In this figure, the
rectangles denote the testing activities and the parallelograms denote the outcome
of these activities. The testing process starts with a system under test, P, and a test

adequacy criterion, C', as input. The testing process is iterative and stops iterating

2.1 Software Testing 17

Program Under Test Test Adequacy Criterion
(F) (c)

—>{ Test Case Specification ‘—I
- Test Adequacy
/ Test Case Descriptions / / Measurements /
/Regression Testing Results/ / \ /
Y

Test Case Generation Test Adequacy Evaluation

Regression Testing 4‘/ Executable Test Cases /
| l

Test Execution

|
[oo H

Figure 2.2: A software testing process model.

when the test cases in test suite 7' satisfies the adequacy criterion C' and assures
some level of confidence in the quality of P [220]. However, the testing process
can also stop in case of deadline misses or budget overrun. The testing process
can also halt if the tester gets an intuition of achieving some acceptable level of
quality. Even if the testing process stops or meets with C, it does not guarantee
that all the defects have been revealed by the test cases. Therefore, testers set many
adequacy criteria (different coverage criteria, software metrics, etc.) to build the
confidence on quality. The test adequacy criteria depend on the chosen program
representation and definition of some quality parameters that T should satisfy. In
Section 2.1.4, we discuss the test adequacy criteria considered in this thesis and some
test adequacy metrics that exist in the literature and practiced frequently. The test
specification stage evaluates P in the context of chosen C' in order to construct an
adequate T. Once the test case descriptions for P have been generated, the test

case generation phase begins. A lot of different techniques and tools have been

18 Background

proposed to manually or automatically generate the test cases. The generation of
test cases is beyond the purview of this thesis because of the availability of JUnit
test cases available in Software-artifact Infrastructure Repository (SIR) [59] for the
experimental programs. After the generation of the test cases, the execution of the
test cases starts. Once again, the execution of the tests within T can be performed
in a manual or automated fashion. The results from the execution of the test cases
are analyzed using JaButi framework [196] to determine the quality of individual
test cases in terms of coverage. Thus, iterative testing of P continues throughout
its initial development. However, it is also important to continue testing after
P undergoes changes in maintenance phase. Regression testing is an important
software maintenance activity carried out to ensure that the changes made does
not adversely affect the correctness of P. All of the previously mentioned stages
iteratively continue for the regression testing process based on the existing test cases
(new test cases may be added) and the adequacy measurements defined for these
tests [2, 41, 107, 127, 173].

2.1.3 Regression Testing

Regression testing is considered as a part of the validation activity and seems to
pose a big problem in testing the software. It becomes a big challenge to manage
the retesting process with respect to the time and cost, especially when the test
suite becomes too large. A software system undergoes changes in the form of bug
fixes or addition/deletion of functionality. During the process of maintenance the
software needs to be regression tested to validate that these changes introduced
no defects. Figure 2.2 shows that the regression testing process has to go through
all the testing stages for every change made to the program. Thus, regression
testing ensures that the evolution of an application does not inadvertently lowers
the software quality. Indeed, the importance of regression testing is well understood.
However, many software development teams may not afford thorough regression
testing because they often expense one-half the cost of software maintenance [127].
The execution of the test suite often makes regression testing an expensive activity.
According to Rothermel et al. [176], complete regression testing of a software of
20,000 lines of code require around seven weeks of continuous execution. This
necessitates development of many techniques to enhance the efficiency of regression
testing (selection, minimization, and prioritization). Thus, the problem of regression

testing is formally defined as follows:

2.1 Software Testing 19

Definition 2.1 (Regression testing). Given a program P, its modified version P’,
and a test suite T that is used to test P, regression testing finds a way to exercise

T to restore confidence on the correctness of P'.

Selective Regression Testing

Many researchers have devised methods as an attempt to reduce the cost and time
of regression testing. Regression test selection approaches aim to reduce the cost
of regression testing by selecting some relevant subset of the existing test suite. An
obvious approach to select the test cases is to use the source code of a program to
determine the tests that are appropriate with respect to the changes [172]. There-
fore, selective retest techniques [27] attempt to identify those test cases that can
exercise the modified parts of the program and the parts that are affected by the
modification to reduce the cost of testing. The features of selective retest technique

are as follows:

a. The resources required to retest a modified version of the program are mini-

mized.
b. This is achieved by minimizing the number of test cases to be exercised.

c. The test suite grows uncontrollably due to the continuous modifications done

to the programs for which selective retesting is required.

d. The relationship between the test cases and the program parts that are covered

by the test cases can be analyzed better.
Thus, regression test case selection is formally defined as follows:

Definition 2.2. Given the program P, its modified version P', and a test suite T,
find a subset T" of the test suite T = {t1,ta,...,tn} comprising of n test cases, i.e.
T CT such thatVt; € T, t € T & P'(t) # P(t),1 <i < n, i.e. t; ezecutes
all the code affected with respect to the modifications.

Test Suite Minimization

Test suite minimization techniques aim to identify a reduced test suite that can
still assure software quality. The size of the reduced test suite should therefore be
much smaller than the original test suite. The minimization problem described in
Definition 2.3 follows the definition given in [210]. This definition is considered as

the minimal hitting set problem. This is so because it is assumed that a single test

20 Background

case satisfies each test requirement r;. However, in reality, it could be different.
For example, a functional test requirement may require more than one test case to
satisfy. Therefore, the functional granularity of the test cases need to be defined
in order to apply the given formulation of the problem. Owing to the fact that
the test suite minimization problem is NP-complete by nature, many researchers
have encouraged the application of different heuristics [28, 105, 131, 164, 174, 208,
210] while formulating the minimization problem. The test suite minimization as

formally defined by Harman et al. [210] is given below:

Definition 2.3. Given a test suite T, a set of test requirements {ri,r2,...,ry,} that
must be satisfied to provide the desired adequate testing of the program, and subsets
{Th,Ts,...,T,} CT, each of them associated with each of the r; such that any one
of the test cases tj € T; can be used to achieve requirement ;. Find a representative
set, T" C T that satisfies all r;.

When every test requirement in {ry,79,...,r,} is satisfied by 7"’ then the testing

criterion is said to be satisfied.

Test Case Prioritization

Regression test prioritization techniques [66, 69, 104, 108, 175, 184] attempt to find
an order for executing the test cases so that the likelihood of detecting the defects
is early and maximum in the regression testing process [66, 177]. There are two

types of prioritization [41]:

i. General test case prioritization: For a given program P and a test suite T, the
test cases are prioritized such that the prioritization is useful to a succession of

program modifications done to P, without the knowledge of the modification.

ii. Version specific test case prioritization: In this approach, the test cases are
prioritized whenever program P is modified to P’, with the knowledge of the

changes made in P.

All the existing regression test case prioritization approaches [66, 69, 104, 108, 162,
163, 175, 184] target to find an optimal ordering of the test cases based on the rate
of fault detection or rate of satisfiability of coverage criterion under consideration.
More formally the prioritization problem as defined by Rothermel et al. [175] is as

follows:

2.1 Software Testing 21

Definition 2.4. Given a test suite T, the set of permutations of T denoted as PT,
a function f, from PT to the real numbers. Find T' € PT such that

(VT"(T" € PT) N (T" # T') [f (T") = (T")]) ,

where, PT is the set of all possible orderings of the test cases in T and f is a

function that maps the ordering with an award value.

Rothermel et al. [175] proposed a metric to ensure the efficiency of any of the
existing prioritizing techniques. This metric is called Average Percentage of Fault
Detected (APFD) and is used by many researchers to evaluate the effectiveness
of their proposed techniques. APFD measure is calculated by taking the weighted
average of the number of faults detected during execution of a program with respect
to the percentage of test cases executed.

Let T be a test suite and 7" be a permutation of 7. The APFD for 7" is defined as
follows:
Y F 1

APFD =1 == + —
n * 2n

(2.1)
Here, n is the number of test cases in T, [is the total number of faults, and F; is
the position of the first test case that reveals the fault 4.

The value of APFD can range from 0 to 100 (in percentage). Higher is the APFD
value for any ordering of the test cases in the test suite, higher is the rate at which
software faults are discovered [60, 175].

Throughout our discussion of regression testing in the rest of this thesis, we will
continue to use the notations described in this chapter. Therefore, we will use P’ to
denote a modified version of program P under test. It is important to note that any
attempt to solve regression testing worth mentioning that any attempt to address
the problem of regression testing in a more cost-effective way will essentially be build
upon regression test selection, minimization, and prioritization, in conjunction with

or in isolation from one another.

2.1.4 Test Adequacy Criteria

As mentioned in Section 2.1.2, test adequacy criteria is based on the underlying
representation of program P. Many researchers have suggested different graphical
representations for the programs, some of these representations are discussed in
Section 2.2.2. Harrold and Rothermel [92, 93] have surveyed a number of graph-
based representations along with the tool support used to construct these repre-

sentations. Some more discussion on the suitability of graphical representations for

22 Background

object-oriented programs is given in [100, 119, 161, 198]. It should be noted that
the representation chosen for the program under test will influence the assessment
of the quality of existing test suites and generation of new test cases if required.
These graph based representations for the programs under test can be created us-
ing Soot [194], JavaPDG [181], JOANA !, and Java SDG API ? [120], and many
other tools in [92]. Test adequacy metrics can be viewed in light of intermediate
graph representation of the program and can be defined in terms of program paths,
variable values, branches, conditions, nodes, etc. that require to be exercised. We
can formally state that if every test suite that satisfies C, also satisfies Cy, then
C, subsumes Cy [143]. If C, subsumes C, and vice-versa, then the two adequacy
criteria are equivalent; otherwise C, is said to strictly subsume Cy. The definitions
of the test adequacy criteria considered in this thesis are still applicable when dif-
ferent program representations are chosen. The basis of our criteria is that it is
impossible to reveal a fault in P unless the faulty node from P’s graph is covered
by some test case within T. Therefore, a test adequacy criterion should ensure
the execution of all statements (nodes) in a program. Thus, we define below the

all-nodes (statement) coverage criterion for a test suite 7" that tests a program P.

Definition 2.5. Let the graphical representation of program P be G = (N, E),
where N refers to the nodes corresponding to the program statements, and E refers
to the edges corresponding to the dependences between these statements, then a test
suite T' for graph G satisfies the all-nodes test adequacy criterion iff all t; € T, for

1=1,2,...,k, create a set of covered nodes N, that include alln € N at least once.

Intuitively, the all-nodes criterion is not a strong criterion because even if T
satisfies this criterion, it still may not have covered all the transfer of controls (rep-
resented as dependence edges) within graph G [220]. A while loop in program P
explains this situation. A test suite T can satisfy the coverage criterion by only
executing the iteration only once. However, in the case of all-nodes(statement) cov-
erage, 1" will not execute the edge that denotes the control transfer to the beginning
of while loop. Thus, it is a necessity that all-edges criterion defined in Definition
2.6 should be satisfied. Definition 2.6 states that a test suite must exercise every

edge within the graph.

'The IFC(Information flow control) console and Graph Viewer,

http://pp.ipd.kit.edu/projects/joana/.
2A JSDG (Java System Dependence Graph) API, http://wwwd4.comp.polyu.edu.hk/

cscllo/teaching/SDGAPI/.

2.2 Program Slicing 23

Definition 2.6. A test suite T for graph G = (N, E) satisfies the all-edges test
adequacy criterion if all t; € T, fori=1,2,...,n, create a set of edges that include

all e € E at least once.

Since the inclusion of every edge in a control flow graph implies the inclusion of
every node within the same CFG, it is clear that the branch coverage criterion sub-
sumes the statement coverage criterion [220]. However, it is possible to explore and
define other criteria (such as all-path coverage) that subsumes the all-edge criteria,
which is beyond the scope of this thesis. This thesis uses the above two adequacy

criteria (all-nodes and all-edges) selectively for the experimental programs.

2.2 Program Slicing

Program slicing is a method of separating out the relevant parts of a program with
respect to a particular computation. Thus, slice of a program is a set of statements
of the program that affects the value of a variable at a particular point of interest.
Program slicing was originally introduced by Mark Weiser [201] as a method for
automatically decomposing programs by analyzing their data flow and control flow
dependences starting from a subset of a program’s behavior. Slicing reduces the
program to a minimal form that still produces the same behavior. The input that
the slicing algorithm takes, is usually an intermediate representation of the program
under consideration [217]. Normally, the intermediate representation of the program
under consideration is a graph. The first step in slicing a program involves specifying
a point of interest, called the slicing criterion, which is expressed as (s, v), where
s is the statement number and v is the variable that is being used or defined at
s. Since last couple of decades, the area of program slicing has been enriched by
contributions from several researchers. Since its inception by Mark Weiser [201]
as a debugging aid, many new techniques have evolved to enhance the accuracy,
preciseness, and speed up of the process of slicing and to make program slicing usable
in different applications. The technique of program slicing has evolved to handle
unstructured and multi-procedure programs, structured as well as object-oriented,
aspect-oriented, and feature-oriented programs. Also, these slicing techniques have

found application in diverse problem areas.

2.2.1 Types of Program Slices

In this section, we discuss the different slicing approaches that researchers have used

for different applications.

24 Background

a. Forward Slice: It comprises of all those parts of a program that might be
affected by the slicing criterion because of their dependence on the slicing
criterion. Figure 2.3 shows a sample program in Figure 2.3a along with its

corresponding forward slice shown in Figure 2.3b.

public class SimpleExample
public class SimpleExample

{
{ - o
8 static int add{int a, intb)
8 static int add(int a, intb) {
{
8 return({a+b);
] returnia+h);
¥
; public static void main(final String [] arg)
public static void main(final String[] ¢
{
! =1, 2 int sum=0;
2 i =0; -
it sum=y; 3 while{i=11){
3 while(i<11){ 4 sum=add(sum.i};
4 sum=add(sum.i);
5 i=add(i.1):)
} 6 System out println{*sum="+sum};
6 System.out.println(“sum="+sum);
7 Svstem_out.println(“="+); }
) }
; (b) Forward slice with respect to slicing crite-
(a) A sample program. rion < 2, sum >.

Figure 2.3: Forward slice of a sample program.

b. Backward Slice: Tt comprises of all those parts of a program that might affect
the slicing criterion because of the dependences of the slicing criterion on

those parts. Figure 2.4 shows a sample program in Figure 2.4a along with its

2.2 Program Slicing 25

corresponding backward slice shown in Figure 2.4b.

public class SimpleExample
public class SimpleExample

{
{ 8 static int add(int a, int b}
8 static int add(int a, int b) {
{] return{a+h);
] returnia+h);)
; public static void main(final String [] arg)
public static void main{final String[] {
{ 1 inti=l1;
1 mti=1;
2 nt sum=0; 3 while(i<1 1){
3 while(i<11){
4 sum=add(sum.i); 5 i=add(i.1);
5 i=add(i, 1) }
h
6 System.out prinfln(“sum="+sum); System_out println(<="+);
7 Svstem_out.println(“="+); }
; }
; (b) Backward slice with respect to slicing cri-
(a) A sample program. terion < 7,7 >.

Figure 2.4: Backward slice of a sample program.

c. Static Slice: 1t comprises of those statements of a program that we get by
statically analyzing the code, i.e. by examining some representation of the
code without actually executing the program under consideration. Figure 2.5
shows a sample program in Figure 2.5a along with its corresponding static

slice shown in Figure 2.5b.

26

Background

impart java.util. *;

classsumprod

{

public static void main(String args[])

{
1

10

11

12

13

intsum =0;

intn;

inti=1;

intprod =1;

Scannersc;

sC = new Scanner(System.in);
n=sc.nextint);

whileli <==n)
SUm = sum +i;
prod=prod * i;

izi+1;

System. out. println (* sum is: “+zum);

System. out. println (“ productis: "+prod);

(a) A sample program.

import java.util. *;

class sumprod
i
public static void mam{Strmg args[])
i
2 nt n;
3 mti=1;
4 mt prod=1;
3 Scannersc;
] sc= new ScannerSystem.n);
7 n= scnextInt();
g while{i <<= mn)
i
10 prod=prod * i;
11 i=i+1;
¥
13 Swstem. out. pantln (* productis: “+prod);
}

(b) Static slice with respect to slicing criterion
< 13, prod >.

Figure 2.5: Static slice of a sample program.

d. Dynamic Slice: It comprises of all those parts of the program that we obtain

by actually executing the program with a specific input (included in the slicing

criterion). Thus, a dynamic slice is only correct for a specific input whereas

a static slice is correct for all inputs. Figure 2.6 shows a sample program in

Figure 2.6a along with its corresponding dynamic slice shown in Figure 2.6b.

Over time many researchers have come up with many slicing techniques such as

Quasi-slicing [195] and conditional slicing [39] that combine static and dynamic

2.2 Program Slicing 27

Import java.util. #;
mmportjava.utl *;

class sumorprod
class sumorprod {
{ public static void main(Stning args[])
public static void main{String args[]) {
{ 1 mt sum= 20;
1 int sum= 20; - it
5 L
- mt1; 3 int prod = 10;
3 mt prod = 10; 4 Scannersc;
4 Scanmerse: 5 System. out. println (“enter the input™);
3 System. out. println (* entertheinput =) ¢ sc = new Scarmer(System.in);
] sc =new Scanner|Systemin); = n= scnextInt():
7 n= E,I:.IIEJ{T.IIIT.D_I g i= SE.HEXT.IHT.D_I
g 1= scnextInt(); 0 ifi < = n)
9 iffi <=n) 10 sum = sim + prod;
10 s = sum + prod;
11 elze
11 sum= prod * sum; 13 System. out. println {* sumis: “+sum);
13 System. out. println (* sumis: “sum); }
¥ ¥
¥
(b) Dynamic slice with respect to slicing cri-
(a) A sample program. terion < 13, sum,i = 5&n =9 >.

Figure 2.6: Dynamic slice of a sample program.

slicing. Most of the slicing techniques proposed are syntax preserving, but if the
slicer is allowed to make syntactic changes as long as the relevant semantics are
preserved then this type of slicing is known as amorphous slicing [87]. Some of the
recent applications and developments of program slicing can be found in [13, 136,
164, 199, 203, 209].

There are various aspects to be considered in slicing a program. They are listed

as follows:

28

Background

. Slicing variable: Slicing variable may be based on the variables specified in

the criteria (slicing point of interest) or it may be on all the variables.

. Slicing point: Considering the slicing point, a programmer’s interest may be

in observing the impact before or after a particular statement [195].

. Scope: The scope of the slice may be inter-procedural or intra-procedural

[191]. But, many researchers [119, 123, 130, 152, 154, 182] have extended the

scope to class level for OO programs.

. Slicing direction: The expected slice of the program may be either in forward

direction or backward direction.

. Abstraction level: Abstraction level is either in statement or in procedure

level. But considering the typical features of the OO programs, it needs to
be extended to class or package level, taking into account the dependences

induced by them.

. Type of information: The information that we obtain from the slice can be

either static or dynamic.

. Computational method: Traditionally, the method of computing the slice was

based on solving the data flow equations as a graph reachability problem [201].
But, over the years many researchers have proposed many other techniques
such as marking and unmarking of the nodes [69, 153], marking and unmarking

of the edges [152, 184], graph coloring [19], etc. for computing the slices.

. Output format: The format obtained after slicing may be in either of the

forms: code, dependence graph or execution tree.

2.2.2 Program Representation

Various types of program representation schemes exist which include high level

source code, pseudo-code, a set of machine instructions in a computer’s memory, a

flow chart and others. The purpose of each of these representations depends upon

the exact context of use. Different representations may be required to facilitate

human readability, annotation for verifiability, and transformation for running a

program on platforms such as multiprocessors and distributed computers, etc. In

the context of program slicing, program representations are used to support efficient

automation of slicing.

2.2 Program Slicing 29

For a very simple program, a slice for any given slicing criterion can be de-
termined manually. But for large sized and complex programs, automation of the
slicing process is essential. The current automated slicing techniques require trans-
forming the source code of the program into some mathematical representation
during the slicing process. Various representation schemes have resulted from the
search for ever more complete and efficient slicing techniques.

In the following, we present a few basic concepts associated with intermediate
program representations. A feature shared by most of the slicing algorithms is that
programs are represented by a directed graph that captures the data and control
dependences.

It is important to note that there is no single correct way of constructing these
intermediate graphs, nor there is a freezed set of exact information that must be
available for slicing. Researchers have come up with different techniques and rep-
resentations that best suits the problem at hand. However, each of these new
techniques and representations is built upon its predecessor techniques. Therefore,
a discussion on the existing representation schemes is not trivial, but these are not

necessarily faithful to any single researcher’s style.

Control Flow Graph

The control flow graph (CFQG) is an intermediate representation for programs that
is useful for data flow analysis and for many optimizing code transformations such
as common sub-expression elimination, copy propagation, and loop invariant code
motion [70, 100, 161].

Definition 2.7 (Control Flow Graph). Let the set N represent the set of state-
ments of a program P. The control flow graph of program P is the flow graph G =
(N1, E, Start, Stop) where Ny = N U {Start, Stop}. An edge (m,n) € E indicates

the possible flow of control from the node m to the node n.

Note that the existence of an edge (x,y) in the control flow graph means that
control must transfer from x to y during program execution. Fig. 2.7 represents
the CFG of the example program given in Fig. 2.6a. The CFG of a program P
models the branching structures of the program, and it can be built while parsing
the source code using algorithms that have linear time complexity in the size of the

program [18].

30 Background

Figure 2.7: The CFG of the example program given in Figure 2.6a.

Data Dependence Graph

The CFG of a program represents the flow of control through the program. However,
the concept that is often more useful in program analysis is the flow of data through
a program. Data flow describes the flow of the values of variables from the points

of their definitions to the points where their values are used.

Definition 2.8 (Data Dependence). Let G be the CFG of a program P. A node

n s said to be data dependent on a node m if there exits a wvariable var of the
program P such that the followings hold:

(i) node m defines var,

(i) node n uses var, and

(iii) there exists a directed path from m to n along which there is no intervening

definition of var.

Consider the example program given in Fig. 2.6a and its CFG in Fig. 2.7. Node
9 has data dependence on each of the nodes 7, and 8. Similarly, node 12 has data
dependence on node 1 and node 3.

2.2 Program Slicing 31

The term reaching definition is used to mean that a value defined at a node may
be used at another nodes [81, 101]. That is, node = is a reaching definition for a
node y iff y is data dependent on z. A data dependence from node z to node y
indicates that a value computed at x may be used at y under some path through
the control flow graph. A dependence from x to y is a conservative approximation,

which says that under some conditions a value computed at x may be used at y.

Definition 2.9 (Data Dependence Graph). The data dependence graph of a
program P is the graph G = (N, E), where each node n € N represents a statement
of the program P and (z,y) € E iff x is data dependent on y.

Control Dependence Graph

Ferrante et al. [70] introduced the notion of control dependences to represent the

relations between program entities arising due to control flow.

Definition 2.10 (Control Dependence). Let G be the CFG of a program P.
Let x and y be two nodes in G. Node y is control dependent on a node x if the

followings hold:

(i) there exists a directed path D from x to y,

(ii) y post-dominates every z in D (excluding x and y), and
(iii) y does not post-dominate x.

If and y are two nodes in a flow graph then z dominates y iff every path
from Start to y passes through x. y post-dominates x iff every path from x to Stop
passes through y. Let x and y be nodes in a flow graph G. Node z is said to be
immediate post-dominator of node y iff = is a post-dominator of y, x # y and each
post-dominator z # x of y post-dominates x. The post-dominator tree of a flow
graph G is the tree that consists of the nodes of G, has the root Stop, and has an
edge (x,y) iff z is the immediate post-dominator of y.

Let z and y be two nodes in the CFG G of a program P. If y is control
dependent on z, then x must have multiple successors in GG. Conversely, if has
multiple successors, then at least one of its successors must be control dependent
on it. Consider the example program given in Fig. 2.6a and its CFG in Fig. 2.7.
Each of the nodes 10 and 12 is control dependent on node 9. Note that node 9 has

two successor nodes 10 and 12.

32 Background

Definition 2.11 (Control Dependence Graph). The control dependence graph
of a program P is the graph G = (N, E), where each node n € N represents a
statement of the program P and (z,y) € E iff x is control dependent on y.

Program Dependence Graph

Ferrante et al. [70] presented a new mechanism of program representation called
Program Dependence Graph (PDG). Unlike the flow graphs, an important feature
of PDG is that it explicitly represents both control and data dependences in a single
program representation. A PDG models a program as a graph, where the nodes
refer to the statements, and the edges refer to the inter-statement data or control

dependences.

Definition 2.12 (Program Dependence Graph (PDG)). The program depen-
dence graph G of a program P is the graph G = (N, E), where each node n € N
represents a statement of the program P. The graph contains two kinds of directed
edges: control dependence edges and data dependence edges. A control (data)

dependence edge (m,n) indicates that n is control (data) dependent on m.

_
Control Dependence

,,,,,,,,,,,,, >
Data Dependence

Figure 2.8: The PDG of the example program given in Figure 2.6a.

Note that the PDG of a program P is the union of a pair of graphs: the data
dependence graph and the control dependence graph of P. Consider the program
given in Fig. 2.6a. Its PDG is given in Fig. 2.8. In Fig. 2.8, the nodes of the
graph represent the statements of the example program given in Fig. 2.6a. The
solid edges represent the control dependences and the dotted edges represent the

data dependences. The program dependence graph of a program P can be built

2.2 Program Slicing 33

from its control flow graph in O(n?) time, where n is the number of nodes in the

control flow graph [70].

System Dependence Graph

The PDG of a program combines the control dependences and the data depen-
dences into a common framework. The PDG has been found to be suitable for
intra-procedural slicing. However, it cannot handle procedure calls. Horwitz et
al. [102] enhanced the PDG representation to facilitate inter-procedural slicing.
They introduced the System Dependence Graph (SDG) representation that models
the main program together with all associated procedures. The SDG is an extension

of the PDG, and models the programs with the following properties [102]:

e A complete program consists of a main program and a collection of auxiliary

procedures.

e Procedures end with return statements. A return statement does not include

a list of variables.
e Parameters are passed by value-results.

The SDG is very similar to the PDG. Indeed, a PDG of the main program is a
subgraph of the SDG. In other words, for a program without procedure calls, the
PDG and SDG are identical. The technique for constructing an SDG consists of
first constructing a PDG for every procedure, including the main procedure, and
then adding auxiliary dependence edges which link the various subgraphs together.
This results in a program representation which includes the information necessary
for slicing across procedure boundaries.

An SDG includes several types of nodes to model procedure calls and parameter

passing:
e (Call-site nodes represent the procedure call statements in a program.

e Actual-in and actual-out nodes represent the input and output parameters at

call sites. They are control dependent on the call-site nodes.

e Formal-in and Formal-out nodes represent the input and output parameters
at the called procedures. They are control dependent on the procedure’s entry

node.

34 Background

Control dependence edges and data dependence edges are used to link the individual
PDGs in an SDG. The additional edges used to link the PDGs together are as

follows:

e Call edges link the call-site nodes with the procedure entry nodes.
e Parameter-in edges link the actual-in nodes with the formal-in nodes.

o Parameter-out edges link the formal-out nodes with the actual-out nodes.

mairn |
int s, i;
{
=0, void addfint a, int b) void inclint z)
j=1: | |
while (i < 10) do a=a+h; add(z, 1);
{ relurm; relirm;
addls, i; I |
irue[i):
i
wiite]s) :

Figure 2.9: An example program consisting of a main program and two procedures.

Finally, summary edges are added to represent the transitive dependences that
arise due to procedure calls. A summary edge is added from an actual-in node A to
an actual-out node B, if the value associated with the actual-in node A affects the
value associated with the actual-out node B, due to transitive flow of dependence.
The transitive flow of dependence may be caused by data dependences, control
dependences or both. Fig. 2.10 represents the SDG of the example program given
in Fig. 2.9.

The intermediate program representation is analyzed to compute a static slice.
Horwitz et al. [102] developed system dependence graph (SDG) as an interme-
diate program representation and proposed a two-phase graph reachability algo-
rithm on the SDG to compute inter-procedural slice. The first pass of the inter-
procedural slicing algorithm traverses backward along all the edges of the SDG
except parameter-out edges, and marks those vertices reached. The second pass
traverses backward from all vertices marked during the first pass along all edges
except call and parameter-in edges, and marks the reached vertices. The slice is
union of the vertices marked during pass one and pass two.

Larson and Harrold [124] enhanced the SDG [102] to represent object-oriented

programs. Their SDG successfully represents object-oriented features such as method

2.2 Program Slicing 35

— pontrol dependence edge
data dependence edge
call, parameter=in, pammeter—oul edge

— summary edge

Figure 2.10: The SDG of the example program given in Figure 2.9.

calls, inheritance, and polymorphism. After constructing the SDG for a com-
plete object-oriented program, they have used the two-pass graph reachability al-
gorithm [102] for computing static slices. One limitation of this approach is that
it fails to consider the fact that in different method invocations, the data members
used by the methods might belong to different objects. So, the resulting data de-
pendences become imprecise. A second limitation of the approach is that it does
not handle cases in which an object is used as a parameter or as a data member of

another object.

Object-Oriented Program Dependence Graphs

Krishnaswamy [119] proposed another dependence-based representation called the
object-oriented program dependence graph (OPDG) to represent the object-oriented
programs. The OPDG of an object-oriented program represents control flow, data

dependences and control dependences. The OPDG representation of an object-

36 Background

oriented program is constructed in three layers, namely: Class Hierarchy Sub-
graph (CHS), Control Dependence Subgraph (CDS), and Data Dependence Subgraph
(DDS). The CHS represents inheritance relationship between classes, and the com-
position of methods into a class. A CHS contains a single class header node and a
method header node for each method that is defined in the class.

Inheritance relationships are represented by edges connecting class headers. Ev-
ery method header is connected to the class header by a membership edge. Subclass
representations do not repeat representations of methods that are already defined
in the super classes. Inheritance edges of a CHS connect the class header node of
a derived class to the class header nodes of its super classes. Inherited membership
edges connect the class header node of the derived class to the method header nodes
of the methods that it inherits.

A CDS represents the static control dependence relationships that exists within
and among the different methods of a class. The DDS represents the data de-
pendence relationship among the statements and predicates of the program. The
OPDG of an object-oriented program is the union of three subgraphs: CHS, CDS,
and DDS. Slices can be computed using OPDG as a graph-reachability problem.
He also computed the polymorphic slices of object-oriented programs based on the
OPDG. The OPDG of an object-oriented program is constructed as the classes are
compiled and hence it captures the complete class representations.

The main advantage of OPDG representation over other representations is that
OPDG is generated only once during the entire life of the class. It does not need to
be changed or regenerated as long as the class definition remains unchanged. Fig.

2.11 shows an example program and its CHS.

2.3 Precision and Correctness of a Slice

Let P be a program, and S be a static slice of P with respect to a slicing criterion
C. In the original definition of Weiser [201], the reduced program S is required
to be an executable program and its behavior with respect to the slicing criterion
must be same as the original program P. A slice S of P with respect to a slicing
criterion C' is statement-minimal if no other slice of P with respect to the slicing
criterion has fewer statements than S. Weiser [201] has shown that the problem of
computing statement-minimal slices is undecidable.

Another common definition of a static slice is the following: a slice S of a

program P with respect to a slicing criterion C is a subset of the statements of the

2.3 Precision and Correctness of a Slice 37

Class A Class=header A
! ')
Public:
AlL
void-Af];

Private: (Method Af)) Method Cf)

void Cf 1

r T o Method -]

Class B: Public A

{ Class=<header B

Bl
=Bl):
viold DV ;
b
')
Method B)
' ¥ ™4

[a) Method-B()

- -

Class Membership
Inherited Method
_— .

Inheritance

(k)

Figure 2.11: (a) An example program, and (b) its CHS

program that directly or indirectly affect the slicing criterion [70, 102, 161]. Note,
that such a slice need not be executable. Unless specified otherwise, we shall follow

this definition of a slice throughout the discussion in the thesis.

Let G¢ be the control flow graph (CFG) of a program P. In all the existing
program slicing frameworks, for each statement s in the program P, two sets are
maintained. One set contains the variable names used at s and the other set contains
the variable names defined at s. The inter-statement dependences in the program
P are captured using the CFG G¢ and the variable names in these two sets, for

each statement s.

integer m, i,
read(m);
i=1;
x=4;

Z=m - m;
write(z)

e L2 b -

Figure 2.12: An example program

38 Background

Note that Statement 4 of the example program given in Fig. 2.12 uses variable
m. Though Statement 4 assigns the value zero (m — m) to the variable z, it has
dependence on Statement 1 in the program slicing frameworks since Statement 1 is
a reaching definition of the variable m for Statement 4.

It is therefore reasonable to define the precision of a slice in the existing program
slicing frameworks as follows: A slice is said to be precise if it contains only those
statements that actually affect the slicing criterion.

Note that a precise slice need not be a statement-minimal slice. Consider the
example program given in Fig. 2.12. For any input value of the variable m, the
statement-minimal slice with respect to the slicing criterion < 4,z > should be
empty set as z is always assigned the value 0 = m—m. In the existing program slicing
frameworks, the precise slice for the slicing criterion is certainly {1} as Statement
1 is a reaching definition of the variable m for the Statement 4.

A slice is said to be correct if it contains all the statements that affect the slicing
criterion. A slice is said to be incorrect if it fails to contain some statements that
affect the slicing criterion. Note that the whole program is always a correct slice of
any slicing criterion. A correct slice is imprecise if it contains at least one statement

that does not affect the slicing criterion.

2.4 Applications of Program Slicing

This section describes the use of program slicing techniques in various applications.
In trying to use the basic slicing concepts in diverse domains, several variations
of the notions of program slicing as described in Section 2.2.1 are developed. The
program slicing technique was originally developed to realize automated static code
decomposition tools. The primary objective of those tools was to aid program de-
bugging. From this modest beginning, the use of program slicing techniques has
now ramified into a powerful set of tools for use in such diverse applications as
program understanding, program verification, automated computation of several
software engineering metrics, software maintenance and testing, functional cohe-
sion, dead code elimination, reverse engineering, Parallelization of sequential pro-
grams, software portability, reusable component generation, compiler optimization,
program integration, showing differences between programs, software quality assur-
ance, etc. [73, 81, 88, 106, 190, 202, 217]. A comprehensive study on the applications
of program slicing is made by Binkley and Gallagher [25] and Lucia [54]. In the

following, we briefly discuss some of these applications of program slicing that are

2.4 Applications of Program Slicing 39

relevant to our work.

2.4.1 Testing

Software maintainers often carry out regression testing. Regression testing essen-
tially implies retesting software after modification [24, 143, 188]. Even after the
smallest change to a piece of code, extensive tests may be necessary which might
involve running a large number of test cases to rule out any unwanted behavior
arising due to the change. While decomposition slicing eliminates the need for re-
gression testing on the complement, there may still be a substantial number of tests
to be run on the dependent, independent and changed parts. Slicing can be used
to reduce the number of these tests.

Suppose a program modification only changes the value of the variable = at
program point p. If the forward slice with respect to x and p is disjoint from the
coverage of regression test ¢, then the test ¢ does not have to be rerun. Suppose a
coverage tool reveals that a use of variable z at program point p has not been tested.
What input data is required in order to cover p? The answer lies in the backward
slice of x with respect to p. A lot of work has also been reported in order to test
programs incrementally, to simplify testing, to apply program slicing to regression
testing, to partition testing, and to test path selection [45, 81, 86, 88, 191].

2.4.2 Debugging

Finding bugs in a program is always challenging. The process of finding a bug usu-
ally involves running the program over and over, learning more and narrowing down
the search each time, until the bug is finally located. Program slicing was originally
proposed by observing the operation typically carried out by programmers while
debugging a piece of code. Programmers mentally slice a code while debugging it.
Even after several advancements to the basic slicing techniques, program debugging
remains a main application area of slicing techniques. Debugging can be a difficult
task when one is confronted with a large program, and little clues regarding the
location of a bug. During debugging, a programmer usually has a test case in mind
which causes the program to fail. Program slicing is useful for debugging, because
it potentially allows one to ignore many statements in the process of localizing the
bug [139, 202]. If a program computes an erroneous value for a variable z only
the statements in the slice with respect to z have (possibly) contributed to the

computation of that value; all statements which are not in the slice can safely be

40 Background

ignored.

Several variants of program slicing have been developed to further assist the
programmer during debugging: program dicing [139] identifies statements those are
likely to contain bugs by using information that some variables fail some tests while
others pass all tests. Slices can be combined with each other in different ways:
for example, the intersection of two slices contains all statements that lead to an
error in both test cases; the intersection of slice a with the complement of slice b
excludes from slice a all statements that do not lead to an error in the second test
case. Another variant of program slicing is program chopping [170]. It identifies
statements that lie between two points a and b in the program that are affected by
a change made at a. This can be useful when a change at a causes an incorrect
result at b. Debugging should be focused on the statements between a and b that

transmit the change of a to b.

2.4.3 Software Maintenance

Software maintenance is a costly process because each modification to a program
must take into account many complex dependence relationships in the existing soft-
ware. The main challenges in effective software maintenance, are to understand
various dependences in an existing software and to make changes to the existing
software without introducing new bugs. One of the problems in software mainte-
nance is that of the ripple effect, i.e., whether a code change in a program will affect
the behavior of other codes of the program. To avoid this problem, it is necessary
to know which variables in which statements will be affected by a modified vari-
able, and which variables in which statements will affect a modified variable during
software maintenance. The needs can be satisfied by slicing the program being

maintained [73].

2.4.4 Change Impact Analysis

One of the important activity of the software maintenance phase is regression test-
ing. In regression testing only those parts are tested that are affected by the changes
made to the program. Thus, it is necessary to have some mechanism that identifies
these affected program parts. Software change impact analysis is the mechanism of
finding out the unpredicted and potential effect of the changes and the propagation
of the impact to other parts of the program. Slicing has been one of the options for

change impact analysis [186]. Program slicing identifies those statements in a pro-

2.4 Applications of Program Slicing 41

gram that are affected by some slicing criterion, making it useful for change impact

analysis.

2.4.5 Software Quality Assurance

Software quality assurance auditors have to locate safety critical code and to as-
certain its effect throughout the system. Program slicing can be used to locate all
code that influences the values of variables that might be part of a safety critical
component. But beforehand these critical components have to be determined by

domain experts.

One possible way to assure high quality is to make the system redundant [25,
143]. If two output values are critical, then these output values should be computed
independently. They should not depend on the same internal functions, since the
same error might manifest in both output values in the same way, thereby hiding
the error. One technique to defend against such errors is to use functional diver-
sity, where multiple algorithms are used for the same purpose. Thus the critical
output values depend on different internal functions. Program slicing can be used
to determine the logical independence of the slices computed for the two output

values.

2.4.6 Functional Cohesion

Cohesion measures the relatedness of the code of some component [46]. A highly
cohesive software component is one that has only one function that is indivisible.
Bieman and Ott [22] define data slices to consist of data tokens (instead of state-
ments). Data tokens may be variables of constant definitions and references. Data
slices are computed for each output of a procedure (e.g. output to a file, output
parameter, assignment to a global variable). The tokens that are common to more
than one data slice are the connections between the slices. They are called glue.
The glue binds the slices together. The tokens that are in every data slice of a
function are called super-glue. Strong functional cohesion can be expressed as the
ratio of super-glue tokens to the total number of tokens in the slice, whereas weak
functional cohesion may be seen as the ratio of glue tokens to the total number
of tokens. The adhesiveness of a token is another measure expressing how many
slices are glued together by that token. Many researchers have contributed to use

of program slicing to compute functional cohesion [5, 14, 16, 79, 151, 218].

42 Background

2.4.7 Functional Coupling

Coupling is defined as the degree of interdependence between two modules. In
procedure-oriented programs, two modules are said to be coupled if they interchange
data among them during function calls or if the interaction occurs through some
shared data. In these circumstances, the modules are said to be tightly coupled.
Coupling gives the complexity of a module. Slicing based approach [89, 150] is used
to measure how one module affects another module in a traditional software system.

Henry and Kafura [97] computed coupling based on information flow and Har-
man et al. [89] used program slicing to compute coupling in traditional software
systems. Harman et al. [89] proposed to measure the information flow between two
functional modules through static slicing and then measured coupling through this
information flow. An empirical study of measuring coupling using slicing techniques
is given in [79, 150]. Coupling measures have been extensively used by researchers
in diverse applications such as to predict fault proneness of the modules, maintain-

ability, modularization drivers, impact analysis etc. [10, 33, 37, 58, 156].

2.4.8 Other Applications of Program Slicing

As mentioned earlier, program slicing methods have been used in several other
applications such as compiler optimization, detecting dead code, software portability
analysis, program understanding, program verification, measuring class cohesion,
etc. These applications can be found in [20, 46, 122, 143, 166, 202].

2.5 Summary

In this chapter, we have discussed some definitions and concepts that will be used
later in our thesis. We have discussed various aspects associated with software
testing. We have also discussed program slicing and various intermediate program
representations. We have also briefly dealt in precision and correctness issue of
slices. Finally, we provided an overview of some important applications of program

slicing.

Chapter 3

Review of Related Work

This chapter presents an overview of the basic program slicing and regression testing
techniques and includes a brief history of their development. First, we discuss
the work done by previous researchers on slicing of object-oriented programs in
Section 3.1. We also discuss various slicing techniques available for object-oriented
programs in Section 3.1.1 and for Java programs in Section 3.1.2. We discuss the
work of previous researchers in the field of regression testing in Section 3.2. Some
of the existing related work especially on test case selection is given in Section
3.2.1, test suite minimization in Section 3.2.2, and test case prioritization in Section
3.2.3. Then, we review the work reported on different change impact analysis (CIA)
techniques in Section 3.3. As we could not find any reported work in literature on
change impact quantification of the changes made to the object-oriented programs,
we briefly discuss the techniques available for change impact analysis. Finally, we

provide a brief summary of this chapter in Section 3.4.

3.1 Program Slicing

Many researchers [3, 101, 123, 161, 201] have proposed several methods for slicing
of programs. The original work proposed by Weiser [201] focused on computing
the slices from the control flow graph of the program. Weiser [201] defined slice
with respect to a slicing criterion < S,V >, where S is a program point and V
is the subset of variables at that point. The slices he computed are primarily
executable programs and were obtained by removing zero or more statements from
the original program. In his proposed algorithm he used data flow analysis of the
control flow graph of the program to compute inter-procedural and intra-procedural

slices. Ottestein and Ottenstein [161], for the first time defined slicing as a graph

44 Review of Related Work

reachability problem. In their method, they used a program dependence graph to
compute the static slices of a program. However, the limitation of this approach
is that it works for a single method program. When a program comprises of more
than one method then function calls and inter-method communication cannot be

represented by a PDG.
The concept of System Dependence Graphs (SDG) to represent the inter-procedural

programs was introduced by Horowitz et al. [101]. They came up with the two pass
static backward slicing algorithm to find out the static backward slice of a statement
in a program having multiple procedures. This algorithm is more precise than the
previous one proposed by Ottenstein [161] because it uses the summary information
at the call site nodes to account for the calling context of the procedure. In the first
pass of the two pass graph reachability algorithm, he traversed along the summary
edges to slice across the call vertices that have transitive dependences on actual-in

vertices.

In 2006, Jehad Al Dallal [4] introduced a method for computing intra-procedural
static forward slices by traversing the dependence graphs only once. The algorithm,
named ComputeAllForwardSlices, invokes a function called ComputeAFSlice. An
empty set is assigned to each node in the PDG before applying the algorithm to it.
After the algorithm is applied, the set associated with a node n comprises of those
statements that are included in the slice computed at n. It builds the set associated
with each node in the PDG incrementally as the function ComputeAFSlice iterates

recursively.

Alomari et al. [12] presented an efficient and lightweight forward static slicing
approach. This technique does not compute slices based on the program/system
dependence graph. It instead computes the dependence and control information
on the fly while computing the slice on a variable. The resultant slice comprises
a list of line numbers, dependent variables, aliases, and function calls concerning
all variables of the system. The approach transforms the source code into an XML
representation, and is implemented on a tool called srcSlice. The tool currently
supports only C/C++ programs. This approach is highly scalable and with accuracy
can generate the slices for all variables of the program.

Lisper et al. [136] proposed a light-weight inter-procedural algorithm for back-
ward static slicing. In this approach, the data dependence analysis is done using
the Strongly Live Variables (SLV) analysis to avoid the construction of the Data
Dependence Graph. It allows to slice the program statements éAIJon—the—ﬂyéAi
during the SLV analysis making it potentially faster for computing few slices. The

3.1 Program Slicing 45

use of an abstract interpretation-based value analysis allows slicing of low-level code.
It dynamically calculates the addresses of data as a result the dependences are not
relevant. The computed slice consists of the Control Flow Graph nodes and shows

better accuracy over program dependence graph (PDG) based approaches [119, 161].

3.1.1 Slicing of Object-Oriented Programs

Slicing of object-oriented (O-O) programs throws special challenges than the tradi-
tional procedure-oriented programs. The presence of special features such as classes,
dynamic binding, encapsulation, inheritance, message passing and polymorphism
in O-O programs require special consideration as they introduce new dependences
among the statements. Although these features are strengths of O-O programs but
these may affect the correctness of the slices.

Larsen and Harrold [123] were the first to consider the O-O features in the
intermediate representation of the program and overcome the challenges that they
posse to program slicing. Larsen and Harrold [123] extended the concept of SDG
[101] to incorporate the object-oriented features. In this method, each class is
represented by a Class Dependence Graph (CIDG). A CIDG represents both the
control dependences and data dependences inside a class. A forward slice with
respect to a slicing criterion < s,v > is defined as the set of all statements which
are affected by the variable v at the program point s. This approach faces with one
limitation that the data dependences obtained using the approach for creating the
individual procedure dependence graphs are imprecise. It treats the data members
of the class as the global variable of the member methods. It fails to incorporate the
fact that these data members belong to a different object each time the method is
invoked by that object. Second, CIDG has no provision of representing the objects
as parameters to the methods.

Tonella et al. [193] tried to overcome the limitations of [123]. To address the
first limitation, they allowed a method’s signature to include the data members of
the class as formal parameters. This enabled an object to pass its data members as
actual parameters into the method. This approach becomes unnecessarily expensive
as it requires to represent each method call site with actual parameter vertices for
all data members of the object. But, in actual conditions only a few of them are
referenced by the method. They created an object as a single vertex when the object
is used as a parameter. However, this representation may result in imprecise slices
as it will cause the slice to include all the data members of the object even when

not all of them would affect the slicing criterion.

46 Review of Related Work

Liang et al. [133] came up with an efficient intermediate representation to over-
come the limitations of [193]. This new representation explicitly represents the data
members of the object. The parameter object is represented as a tree. The object
forms the root of the tree, where the data members are shown as the child nodes.
The edges between the object and it’s data members denote the data dependences.
The child node is a subtree, if a data member of the object is another object. A new
form of slicing based on the objects is also introduced called object slicing. This
new slicing approach enables the user to analyze the effect of a particular object
on the slicing criterion, and provides better support for program understanding for
large scale programs. The shortcomings of their method are that: i. This approach
could be expensive as to obtain the object slice, one has to obtain the full slice
of the program. ii. It is also computationally expensive to maintain the context
of method calls especially when an object’s method invokes other methods or is

invoked by other methods.

Krishnaswamy [119] augmented the SDG with some more dependences relevant
to object-oriented programs. But, these dependences do not completely cover a
true object-oriented program such as a Java program. In our proposed intermediate
graph, we have added some new dependences applicable to Java programs, such as
package dependence, type dependence and read/write dependence. This is a suitable

representation for a true object-oriented program like Java.

Chen et al. [42] proposed two types of program slices based on the dependences
of object-oriented features, state and behavior slices. A state slice for an object
comprises of those set of messages and control statements that possibly affect the
state of the object. A set of attributes and methods that are defined in related

classes and concern the behavior of the object, forms the behavior slice.

A good survey of the slicing techniques is available in [154, 182]. Although, the
slicing techniques in [42, 119, 123, 133, 154, 182, 193] represent many features of
object-oriented programs, still there exists some limitations with these approaches.
The first issue is with the scalability of the graphical representation of larger pro-
grams. This is because for a large program the SDG (to represent all the methods
and attributes and other O-O features) will be too large to manage and comprehend.
The second limitation is associated with the granularity of the existing techniques.
These techniques only slice the statements within the methods of a class. Therefore
slicing of statements is not sufficient to analyze and understand classes. So, there

was a necessity to increase the efficiency of the slicing techniques.

3.1 Program Slicing 47

3.1.2 Slicing of Java Programs

Many researchers [11, 44, 85, 116, 130, 200] have proposed different approaches to
compute slices of Java programs. Some of the slicing mechanisms are based on the
dependence graphs like PDG and SDG, while other approaches are based on the
Java byte-code analysis. To overcome the limitations and increase the efficiency of
O-O slicing techniques, Kovacs et al. [116] proposed a static inter-procedural slicing
of Java programs. This approach focuses on representing special Java features for
improving the efficiency of the slicing technique. The proposed slicing approach can
handle static variables, multiple packages, and interfaces. They also enhanced the
SDG of the program by incorporating the polymorphic calls without requiring extra
nodes for the purpose.

Chen et al. [44] proposed a new approach for graphically representing the O-
O Java software. The authors discussed different dependences possible in a Java
program and proposed slicing of classes based on program dependence graph (PDG).
In their method, the program dependence graph consists of a set of independent
PDGs. In slicing of classes, the slicing criterion taken is (s,v,class), where s is
the statement number, v is the variable and class is the name of the class to be
sliced. The slice is computed by traversing backward from s and marking all the
statements and data members used in the class based on the PDG. Based on this
new model of program representation Chen et al. [44] also introduced the concepts
of partial slicing, object slicing, and class slicing.

Allen et al. [11] extended the work of Chen et al. [44] on program slicing by
using SDG. In their work, they proposed slicing of programs in the presence of
exceptions. The focus was mainly to determine the control and data dependences
due to the presence of try, catch and throw blocks in the program. They have not
considered other Java specific features (such as interface, super, polymorphic calls,
and template classes) for slicing. But, in our approach, we have considered the O-O
features like packages, super, method overriding, etc. for the purpose of slicing.

Wang et al. [200] proposed a technique for slicing of Java programs by using
compressed byte-code traces. They represented the byte-code corresponding to
an execution trace of a Java program. Then, through backward traversal of the
execution trace, they determined the control and data dependences on the slicing
criterion. This approach requires the trace table to be constructed for each method.
If a program will have too many methods, then this approach will be disadvanta-
geous to compute the slices. This is because of the increased execution overhead

in maintaining the execution trace tables. This work is also silent regarding the

48 Review of Related Work

execution trace of the methods that are nested, overloaded and/or overridden.

Similarly, Hammer et al. [85] proposed a method for slicing of Java programs in
the presence of objects as parameters. The analysis of the dependences is based upon
an Intermediate Representation (IR) generated from the byte-code of the program.
A good point-to analysis is a prerequisite of this algorithm to compute more precise

slices.

Li et al. [130] proposed a hierarchical slicing technique to slice Java programs.
The slicing algorithm is implemented on a tool, named JATO. Hierarchical slicing
is computed level wise, starting from the package level to statement level. Li et al.
[130] simplified the program representation by introducing a level-wise graphical rep-
resentation of object-oriented programs at different levels of program organization
such as package level, class level, method level and statement level. Four differ-
ent graphs are constructed one at each level, these are Package Level Dependence
Graph (PLDG), Class Level Dependence Graph (CLDG), Method Level Dependence
Graph (MLDG), System Level Dependence Graph (SLDG). This hierarchical slicing
approach requires four different slicing criteria to be set, one at each hierarchical
level. However, the traversal of the graph from package level to statement level

resulted in imprecise slices.

Slicing of Java programs in all of the above work [11, 44, 85, 116, 200] was pro-
posed by taking into consideration a specific feature or type of dependence present
in a Java program. Whereas, the overall impact of the features on the dependences
such as the dependence due to the presence of packages and other specific Java fea-
tures are not considered. Our approach has made a decent effort in analyzing all the
possible dependences in O-O programs and computing a more accurate slice. To be
able to employ slicing for regression testing, we need to identify all those statements
that affect the modified statement and those statements that may get affected by
the modification. But, most of the existing approaches [11, 44, 85, 200] are based
upon either forward traversing or backward traversing. This will only result in the
partial identification of the affected statements due to the modification. But, our
approach is better suited for regression testing due to the following reason: both
forward and backward traversals of our approach are suitable for an efficient change
impact analysis, as they correctly find those program parts that may be affected or

may affect other program parts due to the change.

3.2 Regression Testing 49

3.2 Regression Testing

An informal meaning to the word regress is to return back to an existing previous
state. Regression testing is the process to ensure that a program has not regressed
back to the faulty state after the changes are made to it. Regression testing can
be either progressive or corrective according to Leung and White [127]. Progres-
sive regression testing involves retesting of the major changes that are made to the
specification of a program. Whereas corrective regression testing performs retesting
only on minor modifications that do not affect the overall program structure. To
ensure that the functionality in the new version of the program works correctly
after its modification, Gupta et al. [81] proposed a program slicing based regres-
sion testing technique. This approach relies on solving the data flow equations to
explicitly detect def-use associations that are affected by a program change. The
algorithm first makes a backward traversal and then makes a forward traversal from
the point of change to find the affected def-use associations. This slicing technique
relies neither on the data flow history nor on re-computation of data flow for the
entire program to detect the affected definition-use associations. The changes made
to the program initiate the necessary partial data flow re-computation through slic-
ing. This approach achieves the same testing coverage as achieved by retesting with
all the test cases without maintaining a test suite. Thus, it eliminates the overhead

of maintaining a test suite.

Leung and White [127] classified the initial test cases into different categories
such as reusable, retestable, obsolete, and adding new-structural and new-specification
test cases. Then they suggested to select the test cases from any one of the test
cases or from all the categories. Harrold and Sofa [94] have provided a strategy for
unit and integration regression testing by combining the data flow testing with the
incremental data flow analysis. Harrold et al. [91] gave a methodology to select a
minimal number of test cases that ensure the correctness of all the requirements of
a module. A safe algorithm based on the dependence graph of a module is given
by Rothermel et al. [173]. This approach selects those test cases for regression
testing that results in a different output than the original output. Binkley [23]
gave a semantic differencing based approach to reduce the cost of regression test-
ing. An integer programming problem formulation was proposed by Fischer [71],
which was extended in [95] and solved by using natural optimization in [145] for
optimal retesting. Some researchers [145, 146] have used evolutionary algorithms

like genetic algorithms to solve the problem of regression testing. Some software

50 Review of Related Work

tools for regression testing based on the above mentioned approaches are available
in [43, 205, 206]. According to Rothermel et al. [176], complete regression testing of
a software of 20,000 lines of code require around seven weeks of continuous execu-
tion. This necessitates development of many techniques to enhance the efficiency of
regression testing (selection, minimization, and prioritization). Some existing work

on these regression testing techniques are discussed in the next subsequent sections.

3.2.1 Test Case Selection

Harrold et al. [90] proposed traversal algorithms to identify the dangerous edges
for safe regression test selection. The dangerous edge is defined to be an edge
e such that for each input 7 causing P to cover e, P(i) and P’(i) may behave
differently due to differences between P and P’, where P and P’ are the programs
under consideration and the modified program respectively. The dangerous edge
is identified by traversing the proposed Java Interclass Graph (JIG). This method
compared two nodes of P and P’ in the JIG to identify the execution path of a test
case in P and P’, so that it can be known whether any edge is dangerous or not.
This technique ensures that any test case that does not cover the dangerous entity
will behave in the same way in both P and P’. Thus, it cannot expose new faults
in P’. So, it is safe to select only those test cases for which the dangerous entity is
covered.

Li et al. [130], used hierarchical slicing for regression test case selection of
object-oriented programs. They proposed a model consisting of three levels: syntax
analysis, generation of dependence graphs, and computation of slices. They pro-
posed different dependence graphs such as package level dependence graph (PLDG),
class level dependence graph (CLDG), method level dependence graph (MLDG) and
statement level dependence graph (SLDG) which were based on the slicing criteria.
When any modification is done to a statement, the dependence of that statement
with its method, class and package can be easily detected because of the differ-
ent levels of graphs maintained. Identification of other packages, classes, methods
and statements related to the modified statement can also be easily done. The
overall performance had improved as the irrelevant packages, classes, methods and
statements were discarded from the generated graph. But, the proposed method
required all the different graphs (PLDG, CLDG, MLDG, SLDG) to be generated
for each change done to the program and was not very advantageous in case of
frequent changes. Thus, to avoid the above mentioned problem, the slicing crite-

rion was fixed. Whereas, we have implemented the hierarchical slicing technique

3.2 Regression Testing 51

on the rEOSDGJ which is not constrained to any fixed change. It rather works for
any number of changes done to any statement, without requiring us to maintain
additional graphs. So the space requirement of our proposed approach is much less
than that of Li et al. [130]. If the change made to the example program triggers
some new changes to be made, then our approach is capable of handling it.

Tao et al. [188] applied hierarchical slicing for regression testing of object-
oriented programs. In their approach, they had also proposed to maintain separate
graphs for packages, classes, methods and statements even if they were not affected
by the change. This again required more space requirement. This is because with
the increase in the program complexity, there will be an increase in the number of
packages, classes, methods and statements which are required to be represented as
separate graphs. But, in our approach, we only maintain the graph EOOSDG. This
does not impose any additional space requirement. In some work [66, 104, 175] only
control dependence and data dependence are considered. But, we identified some
more dependences such as package membership dependence, type dependence and
read/write dependence, which represented various object relations so as to consider
more features of Java programs and computed the slices more accurately. Therefore,
appropriate test cases are selected more accurately for regression testing, in our
approach.

Panigrahi and Mall [164] proposed a technique to reduce the size of the test
suite by selecting the test cases using an improved precision slices. The approach
requires the construction of the control flow graph model of an object-oriented
program and detects the infeasible paths. Then, the authors computed the def-
use pairs only for those paths that are feasible. A dependence model was then
created using the computed information that helped ignore the dependences across
infeasible paths and lead to computation of precise slices. The affected nodes were
discovered by performing a forward slice on the dependence model. This approach
selected those test cases that covered these affected nodes. The limitation of this
approach is that it is not always feasible to compute the control flow graphs for large
object-oriented programs in the presence of features like inheritance, polymorphism,

dynamic dispatch, etc.

3.2.2 Test Suite Minimization

The work in [58] motivates the proposed work presented in Chapter 7 of this thesis to
use integer linear programming for test suite minimization. Minimization techniques

focus on selecting the minimum number of test cases that satisfy a given criterion.

52 Review of Related Work

Li et al. [58] have focused on minimizing the in situ test suite based on their level of
energy consumption. It selects those test cases in less than 1 second that consume
95% less energy and maintains the coverage of testing requirements. However, this
time for minimization does not include the time required to pre-compute the test
data (such as energy consumption and coverage information).

Yoo and Harman [210] provided an elaborate, recent study on the available tech-
niques for test suite minimization, selection, and prioritization. Like our proposed
approach, the techniques discussed in [210] are designed for regression testing.

Rothermel et al. [174] and Wong et al. [208] carried out an empirical study
to investigate the limitations of single criterion minimization techniques. They
performed experiments to minimize the test suite on the basis of fault detection ca-
pability. The results concluded that single criterion-based minimization techniques
detected fewer faults as compared to the original test suite considered.

Jeffrey and Gupta [105] addressed the limitations of single-criterion minimiza-
tion techniques by considering multiple sets of testing requirements (e.g. coverage of
different entities). The results in [105] had shown an improvement over the existing
techniques. In our approach, we also considered similar coverage criterion.

Black et al. [28] proposed a two-criteria variant of test suite minimization and
computed optimal result using an integer linear programming solver. The authors
focused on minimization based on definition-use association coverage and the ability
of test cases to reveal errors. The results have shown that the error revealing ability
of the test cases measured with respect to a collection of program faults helped in

revealing other program faults.

3.2.3 Test Case Prioritization

Software maintenance being the most important and expensive activity in the pro-
cess of Software Development Life Cycle (SDLC), many researchers have proposed
several approaches for ordering the test cases of procedural programs [104, 132, 142,
175]. All the existing techniques on prioritization focus on procedural programs.
Some slicing based techniques [104, 175] also exist to prioritize the test cases for
procedural programs.

Rothermel [142, 175] and Elbaum [66] have considered different types of program
coverage criteria such as total statement coverage, additional statement coverage,
total function coverage etc. for prioritizing the test cases. Jeffrey and Gupta [104],
proposed a method for prioritizing the test cases for regression testing based on the

coverage of relevant slice of the output of a test case. They assigned some weights to

3.2 Regression Testing 53

the test cases to determine their priority. They determined the weight by summing
up the number of statements present in the relevant slice and number of statements

exercised by the test case.

Korel et al. [113, 114, 115] prioritized the regression test suite by considering
the state model of the system. Whenever, the source code was modified, the cor-
responding change in its state model was identified. These modified transitions
along with the run-time information were used to prioritize the test cases. Their
initial approach was called selective prioritization, which was strongly connected to
regression test selection (RTS) [115]. Test cases were classified into a high priority
set, T'SH, and a low priority set, T'SL. They defined and compared different defini-
tions of high and low priority test cases, but essentially a test case is assigned high
priority if it is relevant to the modification made to the model. The initial selective
prioritization process consists of the random prioritization of T'SH followed by the
random prioritization of T'SL. Korel et al. [113, 114] developed more sophisticated

heuristics for prioritization based on the dependence analysis of the models.

The use of mutation score for test case prioritization has been analyzed by
Rothermel et al. [176, 177] along with other structural coverage criteria. Hou et al.
[103] considered interface contract mutation for the regression testing of component-

based software and evaluated with the additional prioritization techniques.

However, the available techniques were of little help when they were applied to
regression testing of object-oriented programs. The detail survey conducted by dif-
ferent researchers on available coverage based prioritization techniques [60, 210, 214]
reveals that, these techniques are not suitable for object-oriented programs. This
is because of the presence of different other types of dependences that are inherent
to object-oriented programs, other than data and control dependences. Panigrahi
and Mall proposed a version specific prioritization technique [162] to prioritize the
test cases for an object-oriented program. Their technique prioritizes the selected
regression test cases. The test cases are prioritized based on the coverage of affected
nodes of an intermediate graph model of the program under consideration. The af-
fected nodes are determined based on the dependences arising on account of the
object relations in addition to the data and control dependences. The effectiveness
of their approach is shown in the form of improved APFD measure achieved for the
test cases.

In another work, Panigrahi et al. [163] have improved their earlier work [162] by
achieving a better APFD value. In this technique, the affected nodes are initially
assigned a weight of 1. The weight is decreased by 0.5, whenever the affected

54 Review of Related Work

node is covered by previous execution of the test cases. The limitation in both the
approaches [162, 163] is that they have assumed that all the test cases have equal
cost, and all faults have same severity. They have also assumed that all the affected
nodes have a uniform distribution of faults. As a result, a test case executing more

number of affected nodes will detect more faults and therefore, has a higher priority.

3.3 Change Impact Analysis (CIA)

To the best of our knowledge, no work has been done on quantification of the impact
of crosscutting changes. In the absence of any work that can be directly compared
with our work, we discuss some of the existing work on change impact analysis
that closely relate to our work. A detail survey of the different change impact
analysis techniques is available in [126, 129]. The approach of CIA by Sun et al.
[186] is based on identifying a hierarchical set of changes at different granularity
levels. The impact of the change was computed using hierarchical slicing proposed
in [130]. One of the major limitation of this approach is that the hierarchical slicing
approach used for change impact analysis does not yield in precise slices. Kung et
al. [121] automated the change identification process and assessed the impact of
these changes in object-oriented programs. This approach categorizes the identified
potential changes into different granularity levels such as data, method, class, and
class library changes. Identification of the changes is only one aspect, but this paper
lacks inclusion of metrics to facilitate and quantify the maintenance work.

Rajlich [168] proposed a change propagation model for software maintenance
activity. This propagation model was based on graph rewriting that analyzed the
dependences between the changes. A prototype tool, named Ripples 2, implemented
two basic processes of change propagation through change-and-fix and top-down
propagation. The major limitation of this approach is that the dependence analysis
assumed that there were no incoming inconsistencies after a change was made.
Therefore, the analysis was made only for outgoing dependences.

Briand et al. [33] investigated the impact of the change in a commercial C++
system based on the coupling dimensions of the classes. They found a significant
correlation between the coupling dimensions of the classes with the ripple effects of
the changes. The authors used this coupling dimension to rank the classes according
to their probability of containing the ripple effects. The proposed coupling measure
does not work well for Java programs with their added complex features. Coupling

factor alone does not signify well the level of error scattering and tangling in the

3.3 Change Impact Analysis (CIA) 55

modules.

The change impact analysis by Ryder et al. [178] determined the affected test
drivers. Thus, it identified the test cases that failed or passed due to the set of
changes. This paper does not analyze the dependence among the changes. It lays
equal focus on every change made to a program. A performance analysis of the
proposed approach is not included in the work.

Tonella [192] carried out impact analysis using the concept lattice of decompo-
sition slices. The decomposition slice graph represents the dependences that exist
between the computations performed on different variables. The concept lattice
groups the computations that share the common variables and arranges the groups
into a hierarchy of concepts. The main contribution in [192] is the graphical repre-
sentation, called lattice of decomposition slices, to support software maintenance.
The graph provides the relevant information regarding the computations and a data
structure to conduct impact analysis. The major drawback of this approach is that
it only works at intra-procedural level.

Badri et al. [17] proposed a call graph based predictive change impact analysis.
It generated the different control flow paths in a program that were then used to
identify the components affected by the change. The reported technique supported
the prediction of impact sets and regression testing. This technique also lacked
any provision for quantifying the impact of changes and focused on testing all the
changes with same priority.

Ren et al. [169] identified the causes of failure of Java programs through CIA.
The reported approach used the results from a CIA tool, named Chianti, to build
a compilable intermediate version of the program. This intermediate version of the
program is re-executed with the tests for specific changes to locate the exact reasons
for failure. This paper only focuses on using CIA for debugging. This paper is also
silent about the scalability and overhead of generating the intermediate version of
the program.

The CIA proposed by Sheriff et al. [180] was based on singular value decom-
position. The proposed approach was based on the collection of historical change
records that may not be correct. And if these records are not available then the
approach will fail to locate the effects. Hattori et al. [96] have proposed an ap-
proach to measure the precision and accuracy of the impact analysis techniques.
The authors have defined the concept of false positives and false negatives in the
context of fault analysis. This paper only focuses on precision and recall attributes

of the studied techniques and is silent on the scattering and tangling of the impact

56 Review of Related Work

of the changes.

German et al. [76] proposed a change impact graph (CIG) to visualize the
impacts of changes. The unaffected nodes were removed from the graph. This work
heavily depends on the quality of the graph constructed from the original program.
The more accurate is the graph in representing the dependences among the program
statement, the better will be the change impact analysis. This approach is not yet
extended to work for object-oriented programs. The approach by Gethers et al.
[77] estimated the impact set by analyzing the change request, source code, and
semantic indexing. But, this approach suffers from a limitation that if the change
request is inaccurate and inefficient, it may result in erroneous omission of some
methods during filtration. Some more work on change impact analysis is available
in [1].

3.4 Summary

In this chapter, we briefly reviewed some work on program slicing, slicing of object-
oriented programs, and slicing of Java programs that are relevant to our research.
We discussed the work on regression testing techniques such as test case selection,
test suite minimization, and test case prioritization. In the absence of any literature
on change impact quantification, we discussed the relevant work on change impact
analysis of object-oriented programs. Our literature survey observation shows that
the existing slicing algorithms have exponential or unbounded space complexity and
time complexity with respect to the number of statements in the program. As slicing
algorithms are used in interactive applications such as maintenance and testing, it
is essential to increase its efficiency and search for new avenues of its application.
To meet the goals of this thesis, we attempt to develop in the subsequent chapters
a suitable intermediate representation for Java programs and an efficient slicing

algorithm for the purpose of change impact analysis and efficient regression testing.

Chapter 4

Regression Test Case Selection

using Slicing

The change in the user requirements and growing expectations of the customers
have forced the software to evolve at regular intervals of time. As the complexity
of the software increases, the cost and effort to maintain such complex software
also increases. After making changes to the software, regression testing should
be carried out in order to assure the validity of the modified part and to ensure
that the changes do not affect other parts of the program. Therefore, regression
testing has become an integral part of the software maintenance process [109]. It
is indispensable to make changes and modifications to an already tested program.
Thus, the role of regression testing has become apparent in retesting the program.
Retesting is based on the modifications done without compromising with the time

and cost of retesting, while maintaining the same testing coverage [109, 157].

Program slicing is an effective and efficient technique to debug, test, analyze,
understand and maintain software [54, 73, 182, 203]. However, while applying the
same techniques to OO programs, we fail because of the presence of many other de-
pendences originating from the OO features. Although OO features have improved
program understandability and readability, but have complicated the maintenance
activities [179]. The dependences that arise due to the class and object concepts are
inheritance dependence, message dependence, data dependence, type dependence,

reference dependence, concurrency dependence, etc.
The existing slicing techniques based on system dependence graphs in [119,
123, 154] have considered C++ programs which are partially OO [34] in nature.

That’s why we are motivated to consider Java programs for our work which is a

58 Regression Test Case Selection using Slicing

widely used true OO programming language. The existing slicing techniques cannot
be applied to Java programs because of the presence of many new features. The
presence of the features like packages, super, dynamic method dispatch, interface,
exception handling, multi-threading, etc, in Java add to the list of dependences and
thus make the maintenance even more difficult. Their effects on the maintenance
of the programs need to be considered separately. In Java, all the classes and their
methods are grouped into packages. Suppose a method M1 of class C1 belonging
to a package P1 wants to invoke a method M2 of class C2 that belongs to another
package P2. This can be achieved by importing the package P2 in package P1
and by instantiating the class C2 in C1l. This will create a dependence among
the packages P1 and P2, classes C1 and C2, methods M1 and M2 and among the
statements in both the methods. Apart from this, there are many methods which
are dependent on the type of data they are operating upon. For each type of data,
there is a different method.

Therefore, owing to the presence of such new dependences, separate analysis of
their impact on regression testing is essential. As a result, existing techniques of
slicing based on the System Dependence Graph (SDG) of Java programs, does not
seem to be feasible for regression testing. Incremental regression testing is a probable
solution which is based on the following simple observations: (1) if a statement is
not executed under a test case, it cannot affect the program output for that test
case. (2) not all statements in the program are executed under all test cases. (3)
even if a statement is executed under a test case, it does not necessarily affect the
program output for that test case. (4) every statement does not necessarily affect
every part of the program output. We can apply the above assumptions to Java
programs at different levels such as packages, classes, methods and statements.

Keeping in view the above motivations and to overcome the challenges, we fix

our goal in this chapter as follows:

1. To construct a suitable intermediate graph for representing different depen-
dences in Java programs arising due to the different object-oriented features.

This intermediate graph is formally defined in Section 4.2.1.

2. To remove the redundant dependences, if any, in EOOSDG to improve the
scalability of the intermediate graph and save slice computation time. The

detail process of removing the redundant edges is discussed in Section 4.2.2.

3. To develop and implement a hierarchical graph reachability slicing algorithm

that identifies different program parts affected by the changes made to the

4.1 Background 59

program. This slicing algorithm is discussed in Section 4.2.3.

4. To map the coverage information of the test cases with the affected program
parts to select the test cases that are relevant for regression testing of the
program under consideration. The different coverage information maintained

for the test cases are discussed in Section 4.3.

The rest of the chapter is organized as follows: Section 4.1 gives a background of
hierarchical program slicing and other related issues. In Section 4.2, we discuss our
proposed work on hierarchical regression test selection which is based on the Ex-
tended Object-Oriented System Dependence Graph. In this section, we present our
hierarchical decomposition slicing approach for finding the program parts affected
by the changes made to programs. We give the correctness proof of our proposed
algorithms and compute their space and time complexities. along with a working
example. In Section 4.3, we discuss the implementation of our work. We state the
sample programs that are taken for our experiments and describe our experimental
setting. Further, snapshots of our implementation are taken for a better analysis
of the result. In Section 4.4, we have compared our work with some of the related

work. Section 4.5 summarizes the chapter.

4.1 Background

In this section, we discuss hierarchical slicing, which is required for understanding

our approach on regression test case selection.

Package level Slice —

PLDG e /”

CLDG 5z SLICER — Class Level Slice

IVILDGJ

Slicing Criterion

Program
Database

(

Method Level Slice —

\'Statement Level Slice

Figure 4.1: Model for Hierarchical Slicing.

Slicing Criterion

SLDG

60 Regression Test Case Selection using Slicing

Hierarchical Slicing

Instead of analyzing the data flow and control flow for an OO program as a whole,
it is useful to employ the hierarchical structure of the OO programs (e.g. Java pro-
grams), to detect the impact of the changes made to the program. A Java program
P, is composed of a set of packages, classes, methods and statements, organized in
a hierarchical manner. Therefore, in hierarchical slicing, we first try to slice out
the packages that might have been affected by the change. From the set of affected
packages, we then slice out the affected classes. Then the affected methods and the
statements inside those methods are sliced out for retesting. The above concept
of hierarchical slicing [130] can be explained by considering a slicing criterion (i.e.
the point of modification) < s,v >, where s is the statement containing variable v.
Let S(P) be the set of packages, classes, methods and statements of a program P.
The model for hierarchical slicing is shown in Figure 4.1. The steps of hierarchical

slicing are as follows:

Step-1 First, we detect the package p containing s and v and all other packages,
based on their direct or indirect dependences on p caused due to import state-
ments. All those packages which are not related to the package p are removed.

By following this process, the package level slice obtained is marked as S1(P).

Step-2 Then, we analyze S(P), to find out all those classes that are related to the
class containing s and v. All other irrelevant classes are removed to get the

class level slice. The class level slice is marked as Sa(P).

Step-3 Next, we analyze S(P) and delete all the member methods and variables
that are not related to the method containing s and v. This results in the

method level slice, which is marked as S3(P).

Step-4 Finally, to find out the statement level slice, we analyze S(P) and delete all
the statements and predicates that are not related to statement s containing

variable v. The slice thus obtained is marked as Sy(P).

This step wise extraction of the slices is known as hierarchical slicing. The test
cases needed at each level can be related as T'(Ss(P)) C T'(S3(P)), T(S3(P)) C
T(S2(P)), T(S2(P)) C T(S1(P)). At each level, we obtain more accuracy in min-
imizing the required number of test cases from a higher level to a lower level by
discarding the test cases that are not relevant to the affected program parts. The

concept of hierarchical slicing is available in [130] and used for test case selection

4.2 Hierarchical Regression Test Selection 61

[188] and change impact analysis [186] of OO Programs. We use this concept of
hierarchical slicing for selecting our regression test cases. However, the technique

of computing the hierarchical slice as given in [130] is modified in this work.

Package pkg; package pkg;
46, publicclass Shape{ 35, publicclass Rectangle extends Shape{
47, private Stringcolor; 36, privateintlength;
48, publicShape (Stringcolor) { 37 privateint width;
49, this.color=color; } 38. publicRectangle(String color, int length, int width){
50, publicstringtostring(){ 39, superfcolor);
51. return "shape of color=y""'+ color+ """ 3 40, thislength=length;
52, publicdouble getareal) { 41, this.width=width; }
53 System, err.printin("Shape unknown! 42, publicsStringtoString(){
Cannot compute areal'); 43, return"Rectangle of length="+length+" and width="
54, return; 1} +width+", subclass of "+ supertostring(y

44, publicdouble getareal) |
43, returnlength*width; }}

package pkg 1. package pkg
2. importjavautil¥;
24, publicclass Triangle <T+= extends Shape{ 3. publicclassTestshape]
25, privateT base; 4, publicstaticvaid main(string[1args){
26. private T height; 5. Stringstr;
27. publicTriangle(5Stringcolor, Thase, T 5. inta, b
height) { 7 Scannersin= new Scanner(System.inl
28 super(color); 8. Systerm.aut. printin("Enterthe Calor: ");
29, this.hase=hase; g, str= sin.next(};
30. this.height=height; } 10, System.out. println("Enterthe length and breadth; "3;
31. publicsStringtostring() { 11, a= sin.nextint(};
32 return"Triangle of base="+ base+" and 12, b= sin.nextint();
height="+height+", subclassof " + 13, Shapesl = new Rectangle(str, a, b);
super.tostring(l;) 14, System.aut.printlnis1);
33, publicT getarea() { 15, System.aut.printlnareais "+ 1, getareal)y;
3. return0.5%base*height; 1} 16, System.out. printin("Enterthe Color: ");
17 str=sinnext(}
18 System.out.println("Enterthe length and breadth: ");
19, a=sin.nextint();
20, b= sin.nexint();
21 ShapesZ=new Triangle(str, a, b);
22, System.out.printlnis2);
23 System.out.println("areais "+ s2. getareal)); 1

Figure 4.2: An example Java program

4.2 Hierarchical Regression Test Selection

In this section, we discuss our proposed work on hierarchical regression test selection.
The discussion on the proposed approach comprises of three phases: i) construc-
tion of the intermediate program representation, ii) computation of the slices, iii)
selection of the regression test cases. These three phases are broadly divided into
the following subsections: Section 4.2.1 gives an idea of the different dependences

considered to construct the intermediate representation of the input program. In

62 Regression Test Case Selection using Slicing

Section 4.2.2, we discuss an algorithm to remove the redundant edges present in
the proposed intermediate graph, to improve the scalability of this approach. In
Section 4.2.3, we discuss the proposed algorithm for computing the slice and use
the resultant slice for hierarchically selecting the test cases for regression testing.
Our regression test case selection approach is given in Section 4.2.4. We discuss
the working of the algorithm in Section 4.2.5. Section 4.2.6 shows the complexity
analysis of the proposed algorithm.

Java being the most popular OO language, we are encouraged to consider Java
programs. An example Java program is shown in Figure 4.2. We use this example
program as our running example for explaining the working of our proposed ap-
proaches and for implementing the proposed approaches in the rest of this thesis.
This program defines a class named Shape which is inherited by the classes Rectan-
gle and Triangle. The class TestShape contains the main method and computes the
area of a rectangle and triangle, based on the user inputs given through the console
and displays the result. We propose an intermediate representation suitable for OO
programs called Extended Object-Oriented System Dependence Graph (EOOSDG).
However, an investigation of intermediate graph representations of other OO pro-
gramming languages (such as C#) is equally important and has been left as future

work.

4.2.1 Proposed Intermediate Graph Representation:EOOSDG

An example Java program shown in Figure 4.2 is taken as a case study to discuss
the various dependences identified in the EOOSDG. EOOSDG for the example Java
program in Figure 4.2 is shown in Figure 4.3. In the construction of EOOSDG,
we consider some additional dependences in Java, in addition to the dependences
defined by Krishnaswamy [119] for OO programs. The proposed EOOSDG is a
directed graph G(N, E), where N is the set of nodes that correspond to different
program parts such as statements, methods, parameters, classes, packages etc. F
is the set of edges that represent the dependences present among different program
parts. The semantic of the edge u — v € E represents the dependence of node v on
node u. Some of these dependences (edges) are identified and defined in [119]. We
classify these dependences based on their role in representing some Object-Oriented

features at different hierarchical levels.

Package level dependences

Package level dependence specifies the dependence of a package with its con-

4.2 Hierarchical Regression Test Selection 63

Legend
Inheritance Eage
Control Dependency Edge

—
Membership Edge

_—
Instantiation Edge
......... >
Parameter Passing Edge

——————— >
Type Dependency Edge
- >
Inherited Membership Edge
,,,,,,,,,,,, «

Read/\Write Dependency

—h
Polymorphic Call Edge

f3: base =a1_in
f4: height = b1_in
15: color: = str_in

f6: length = a_in

f7: width = b_in A1_out: sr_out =s1_out
f1_out: c_out = color A2_out: st_out = s2_out
2_out: s2_out =s2_in +¢_out A3_out: at_out =a1_out
3_out: a1_out = area A4_out: ar_out = a2_out

f4-out: s1_out = s1_in + ¢_out
5_out: a2_out = area
f6_out: msg_out = msg_in

Figure 4.3: EOOSDG of the example program in Figure 4.2.

64

Regression Test Case Selection using Slicing

ii.

iii.

iv.

stituent classes and sub-packages through package membership edges.

. Package membership edge: In Java, all the library classes and user defined

classes belong to some package. We have considered the packages as separate
nodes in our proposed intermediate representation EOOSDG. The package
dependence arises when one package imports some other packages into it so
that some or all the classes in the imported package can be made accessible by
instantiating those classes. This creates a dependence between the packages.
Thus, an edge from the header of the importing package to the header of the
imported package depicts this dependence. Some of the package dependence
edges in Figure 4.3 are (1,24), (1,46), (1, 3) etc.

Class level dependences

When a class uses the features of another class, then various types of depen-
dences are formed between different parts of the participating classes. Here,
we discuss some of the edges used to model such dependences that results

from inheritance of classes.

Inheritance/Implementation edge: Inheritance is an important feature of the
object-oriented paradigm. It establishes the association between the base class
and derived class, in the direction of hierarchy. This relationship between the
classes is shown by Inheritance/Implementation edge. When a class imple-
ments an interface then also Inheritance/ Implementation edge connects the
interface entry vertex with the class entry vertex to mark the implementation
of the interface. Some of the Inheritance/Implementation edges in Figure 4.3
are (46,24), (46,35), etc.

Has edge: If a class declares an instance of another class, it establishes a has a
relationship between both the classes. Some has edges in Figure 4.3 are (3, 24)
and (3,35).

Membership edge: Every method and attribute in the object-oriented paradigm
are the members of a class and are accessible through the object of that class
only. Thus, a membership edge connects the method/ attribute header and the
class header of the class in which the method is defined [119]. Similarly, we ex-
tend this definition of membership edge to represent the relationship between
method header and different parts of the method such as formal parameter-in
and parameter-out, statements and function calls. The relationship between

function call node and its actual parameter-in and parameter-out nodes is also

4.2 Hierarchical Regression Test Selection 65

vi.

vii.

viii.

ix.

represented by membership edge. Some of the membership edges in Figure
4.3 are (4,21), (21, A4), (21, Ab), (21, A6), (24,25), (46,48), etc.

. Inherited membership edge: Each method and the data members of a class are

inheritable if they are accessible by the instance of the derived class. Thus, an
inherited method or a data member can be considered as an implied member
of the derived class. The inherited membership edge connects the header of
the derived class with the header of the method or data member. Some of the
inherited membership edges in Figure 4.3 are (50, 24), (50, 35), etc.

Method level dependences

Message passing is an important feature in object-oriented programs realized
through method invocation by the objects. When one method invokes another
method, it passes messages in the form of parameters, giving rise to various

dependences such as:

Call edge: When a method invokes another method, this relationship between
the methods is represented by the call edge. Thus, a call edge connects the

call site statement with the method entry vertex of the callee method.

Parameter passing edge: The parameter passing edge represents the data ex-
change taking place between the actual parameter and formal parameter ver-
tices whenever a method is invoked. Thus, a parameter_in edge connects the
actual parameter of the calling method with the formal parameter of the called
method. Parameter_out edges represent the data flow of the return value be-
tween called and the caller method. Some of the parameter passing edges in
Figure 4.3 are (A4, f2), (A5, f3), (A6, f4), etc.

Instantiation edge: Instantiation means creating the instance of a class by
invoking the constructor of the class which initializes the object. Instantiation
edge connects the instantiation statement with the constructor method entry
vertex. Thus, it marks a special method invocation to initialize the objects.
Some of the instantiation edges in Figure 4.3 are (21,27), (13, 38) etc.

Method overridden edge: Method overriding is an attribute resulting from
inheritance feature. A method in the base class is said to be overridden if it is
redefined in the derived class. An interfaces and abstract classes specify the
methods that are overridden by the implementing classes. This relationship

of the methods with its overridden methods are represented through method

66

Regression Test Case Selection using Slicing

Legend
_—
Inheritance Edge

Control Dependency Edge
—
Membership Edge

—
Instantiation Edge

------- >
Type Dependency Edge

- >
Inherited Membership Edge

____________ ~
Read/\Write Dependency Edge

—h
Polymorphic Call Edge

=

>
&
°>
==

Legend

f1: color = str_in

f3: base =a1_in
f4: height = b1_in
f5: color: = str_in
f6: length = a_in
f7: width = b_in

1_out: c_out = color

f2_out: s2_out =s2_in + c_out
f3_out: a1_out = area

f4-out: s1_out = s1_in + ¢_out
f5_out: a2_out = area

f6_out: msg_out = msg_in

A1_out: sr_out = s1_out
A2_out: st_out = s2_out
A3_out: at_out =a1_out
A4_out: ar_out = a2_out

Figure 4.4: Reduced EOOSDG (rEOOSDG) of the example program in Figure 4.2.

4.2 Hierarchical Regression Test Selection 67

xi.

Xii.

xiii.

overridden edges. Thus, the method overridden edge connects the header of
the method in base class (interface) with the header of the method in the
derived (implementing) class. Some of the method overridden edges in Figure
4.3 are (52, 33), (50,31), etc.

Statement level dependences
Apart from the usual control and data dependences between statements in
a program, we identify and discuss the representation of two other essential

dependences present in object-oriented programs.

Data dependence edge: When data computed at one statement is used at
another statement, an edge is marked to represent the flow of data from the
site of computation to the site of usage. Some of the data dependence edges
in Figure 4.3 are (6,19), (7,19) etc.

Control dependence edge: When the execution of one statement is dependent
on the execution of another statement, then the former is said to be control
dependent on the later. The edge from one vertex to another depicts the
control dependence between the vertices in the representation. As the example
Java program in Figure 4.2 does not have any if ... else statements or loop
statements, so its corresponding EOOSDG in Figure 4.3 does not contain any

control dependence edge.

Type dependence edge: In Java, there are several methods that depend upon
the type of data. If the type of data is changed then the method also changes
accordingly. Therefore, an edge from the data declaration statement to the
statement containing a call to such a method, is essential to depict the type
dependence. We name this edge as type dependence. Some of the type de-
pendence edges in Figure 4.3 are (6,11), (6,12) etc.

Read/Write dependence edge: In an object-oriented language such as Java,
encapsulation refers to the fact that a member method always reads/writes
data from/to the data member of an object that invokes the member method.
We represent such a relationship between member method and data member
by read/write dependence edge. Some of the read/write dependence edges in
Figure 4.3 are (29, 25), (30, 26), (25,34) etc.

Special dependences

There are certain situations that necessitates the representation of some other

68 Regression Test Case Selection using Slicing

dependences among the program parts. For example, some method calls can
only be resolved during execution of the program. In such a scenario, the static
graphical representation should show all the possible methods that respond
to a method call. Thus, such polymorphic dependences may result in context
insensitive program comprehension, if not addressed. These dependences are

as follows:

xiv. Polymorphic call edge: A polymorphic edge connects the call statement with
the methods that are possible to be executed by the call after the binding is
resolved at run-time. Thus, a polymorphic call edge connects the call site with
both the possible executions. In case of dynamic polymorphism, Java inter-
preter dynamically resolves the choice of execution. Some of the polymorphic
call edges in Figure 4.3 are (15,44), (15,52), (23,33), (23,52) etc.

xv. Summary edge: Summary edge is added to represent the transitive dependence
that exist between actual_in and actual_out vertices of the caller method. If
there exists an inter-procedural path from the actual_in vertex to the ac-
tual_out vertex, then as summary edge is added to mark the transitive de-
pendence between both the vertices. The summary edge protects the context
sensitivity of the method call during the backward slicing of the program by
restricting the entry into called method during backward traversal. Some of
the summary edges in Figure 4.3 are (A5, A21_1_out), (A6, A21_2_out), etc.

Interfaces, Abstract Classes and Templates

Java interfaces are defined in the same way as classes, but with the keyword inter-
face. An interface specifies the methods that are overridden by the implementing
classes. A class implements an interface through the keyword implements. A de-
rived class automatically implements the interface that its base class implements.
One interface can also inherit from another interface through extends keyword in
the same way as classes inherit. Thus, representation of interfaces and their depen-
dences with other interfaces and classes in the intermediate graph of a program is
essential. This aspect has been considered in the graphs proposed by Kovacs et al.
[69] and Zhao [184]. EOOSDG treats interfaces and abstract classes as special types
of class definitions, thus has same structural representation. However, unlike inter-
faces, abstract classes contain method implementation. Therefore, abstract methods
are represented with method entry vertex. We add parameter_in and parameter_out

vertices to correctly represent the method signature and return value, respectively.

4.2 Hierarchical Regression Test Selection 69

An interface is represented with an interface entry vertex (same notation as class
entry vertex). However, the abstract methods of the interface are connected with
the interface enrty vertex by abstract membership edges (same notation as member-
ship edges). The parameter_in and parameter_out vertices are connected through
membership edges. The method entry vertex connects with the method entry ver-
tex of the method implementing it by a method overridden edge. Similarly, the
inheritance and implements relationships among interface and/or class vertices are
shown by inheritance/implementation edge. If a class implementing an interface is
inherited by another class, then the derived class also automatically implements the
same interface as that of its base class. Such a relationship is implicit and is not
explicitly represented in EOOSDG.

Templates are represented through generic edges. A generic edge corresponds to
the dependence that arises due to the presence of a generic method in the program.
The data type of the formal parameters in a generic method is known only at run-
time when the actual arguments are passed to the generic method call. A generic
edge depicts the data type information of the passed parameter. Thus, a generic
edge connects the actual parameters of a method call and the formal parameters
of the executed method. In case the return type of the method is of generic type,
then a generic edge connects the formal_out node of the called method with the
actual_out node of the caller method. If the data member of a class is of generic
type then a generic edge connects the node accessing the data member with the
data member itself. Thus, a generic edge is added between two nodes in addition to
the preexisting dependences to mark the flow of generic information. Some of the
generic edges in Figure 4.3 are (f3_out, A3_out), (f3,25), (f4,26), etc.

| 4] dentification of Affected Nodes =™

[Time Comparison in ms |

| Time in Original Graph Time in Reduced Graph Reduction In Time
|U.333954 0.166816 0.167138

[D

Figure 4.5: Time based comparison between EOOSDG and rEOOSDG for identi-

fying the affected nodes with respect to some modification (slicing criterion).

4.2.2 Removal of Redundant Edges

In this section, we discuss an algorithm to remove the redundant edges present in

our proposed intermediate graph EOOSDG. The proposed slicing technique (dis-

70 Regression Test Case Selection using Slicing

cussed in Section 4.2.3) is based on the reachability of nodes to identify the different
affected program parts with respect to some modification made to the program. The
reachability of a node v in a given graph is defined as the set of nodes that can be
reached by traversing (backward/forward) through the edges of v;. Therefore, in a
graph G(N, E), where N is set of nodes and E is the set of edges, if v1, w, vo € N
and (vy,w), (w,v2), (v1,v2) € E, then (v1,v9) is said to be redundant. This is be-
cause a path from v; to vy already exists through w, so another edge (v1,v2) is not
needed. We observed the presence of such redundant edges in the EOOSDG shown
in Figure 4.3. As each type of edge e € F exhibits a different kind of dependence
among the program parts, it is likely that (vi,ve2) is semantically different from
(v1,w) and (w,vy). Since, the edge between a pair of nodes is used only for travers-
ing, so removing a semantically different redundant edge does not affect the graph
reachability slicing process. Algorithm 1, named Redundant Edge Removal (RER)
algorithm, gives the pseudocode to remove the redundant edges (dependences) in
EOOSDG. RER algorithm checks the redundancy of each edge of the input graph.

If the edge is found redundant, then it is removed from the set.

Algorithm 1 Algorithm RER

Input: EOOSDG .

Output: rEOOSDG containing a non-redundant set of edges F..

1: E,. :=E; > Initialize E..
2:Vu—v € E.do

3 G:=FE—{u— v}

4 S = {u}; > S is a temporary set.
5 Ve—y € Gdo

6: If x C S then

7 S:=SuU{y};

8 End If

9: End For

10: If v C S then

11: E:=FE — (u,v);

12: End If

13: End For

14: B, .= E; > Ey is the set of redundant free edges.
15: End

The graph obtained after removing the redundant edges (dependences) is named
rEOOSDG. The rEOOSDG of the graph given in Figure 4.3 is shown in Figure 4.4.
After the removal of redundant edges, the representation of the graph becomes much
simpler, and traversal becomes considerably faster. The time required to identify
the affected nodes (with respect to the point of modification taken as the slicing

criterion) is reduced approximately to 50% in rEOOSDG. This is shown in Figure

4.2 Hierarchical Regression Test Selection 71

4.5. Figure 4.5 shows the reduction in time required to detect the affected nodes
in the original graph (Figure 4.3) and in the reduced graph (Figure 4.4). Removal
of the redundant edges (dependences) also makes the graph based slicing approach
comparatively scalable without any loss of slicing information. This is because, we
obtained the same slice in case of both EOOSDG and rEOOSDG. The computed
slices for both EOOSDG and rEOOSDG are shown as shaded nodes in Figure 4.3
and Figure 4.4, respectively. However, in some applications this redundant edge
removal process may result in loss of information and requires more investigation.

The authors have deferred this investigation as a future work.

Correctness of RER Algorithm

Theorem 4.1. RER algorithm works correctly and removes all the redundant edges

from a given graph.

Proof. Let graph G contains the following set of edges, E = { a — ¢, a — b,
b—c¢,c—e d— e b— d}. If edge a — ¢ can be logically inferred from the
set E—{a — ¢}, ie. G = a — c,where G = E — {a — c}, then edge a — c is
redundant, and hence removed from E. Let set S be initialized to a, i.e. S = {a}.
Now the node a of edge a — ¢ is a subset of S, i.e. a C 5, so b is added to 5, i.e.
S = {a,b}. Repeating this for all the edges in E, we get S = {a,b,c,e,d}. Since,
¢ C S implies S = a — ¢, therefore a — ¢ is redundant and hence removed from
G. The for loop continues till all the edges in E have been checked for redundancy.
Since, the number of edges in a graph is always finite, the execution of for loops
in the algorithm exits after a finite number of iterations. Hence, the algorithm

terminates and we get a graph with non-redundant set of edges. O

4.2.3 Proposed Hierarchical Decomposition (HD) Slicing Algorithm

In this section, we discuss our proposed algorithm named Hierarchical Decomposi-
tion (HD) Slicing, for finding those program parts that are affected by the change.
We represent the input program in the form of EOOSDG as discussed in Section
4.2.1. The node that corresponds to the statement of modification is taken as the
slicing criterion to compute the slices.

In this proposed work, we maintain the following sets of information:

P = {pi,p2,...,pn } is the set of all the packages that are used in the given pro-

gram.

72

Regression Test Case Selection using Slicing

Algorithm 2 HDslice(G, n)

Input: EOOSDG/rEOOSDG G(N, E), total number of nodes n =| N | .
Output: Set of affected program parts.

Step 1 Initialize

1:

7

worklist Q1 = ¢

worklist Q2 = ¢

worklist Q3 = ¢

worklist sp-worklist = ¢

worklist Q = ¢

type1 = {polymorphic call edge, inherited membership edge, parameter_out edge, generic_out edge

}

typea = {parameter_in edge, generic-in edge}

Step 2 Forward Traversal

8:

enque(Q1, current_node) > current_node contains some node of EOOSDG/rEOOSDG that

corresponds to some modification done at statement s in program P taken as slicing criterion.

9: while Q1 # ¢

10: v = deque(Q1)

11: 4f v is not marked

12: mark v

13: enque(Q2,v)

14: for each unmarked w € adj(v)

15: mark w

16: enque(Q1,w)

Step 3 Backward Traversal: Pass 1

17: while Q2 # ¢

18: v = deque(Q2)

19: for each unmarked w € adj(v)

20: if (w,v) ¢ typer

21: mark w

22: types = typez U {(w,v)}

23: enque(sp-worklist, w)

Step 4 Backward Traversal: Pass 2

24: while sp_worklist # ¢

25: v = deque(sp-worklist)

26: if v is not marked

27: mark v

28: for each unmarked w € adj(v)

29: if (w,v) ¢ types

30: mark w

31: enque(Q3,w)

Step 5 Compute Final Slice

320 Q=Q1UQ2UQs

Step 6 Compute Hierarchical Decomposition (HD) Slice

33: Find Pi=PnNQ > where P is the set of packages in the program and Pj is the set of affected
packages.

34: Update Q = Q — P > now () contains classes, methods and statements.

35: Find C1 =CnNQ > where C is the set of classes in the program and C7 is the affected classes.

36: Update Q = Q — C1 > now) contains only the methods and statements.

37: Find M; = M NQ > where M is the set of methods in the program and Mj is the affected methods.

38: Update Q = Q — M > now @ contains only affected statements.

39: Set 51 =Q > where S is the set of affected statements.

40: Exit

4.2 Hierarchical Regression Test Selection

73

Table 4.1: Test case coverage distribution for the example program in Figure 4.2.

TestCases Packages Classes Methods Statements (node nos.)
T1-1T5 nodel : pkg | node24 : Triangle node31 : toString () 32
node27 : Triangle () 25,26, 28,29, 30
node46 : Shape nodeb0 : toString () 51
node48 : Shape () 47,49
node3 : TestShape noded : Main () 5,6,7,16,18,19, 20, 21,22
T6 —T10 | nodel : pkg | node24 : Triangle node33 : getArea () 34
node27 : Triangle () 25,26, 28,29, 30
node46 : Shape node52 : getArea () 53,54
node48 : Shape () 47,49
node3 : TestShape noded : Main () 5,6,7,16,18,19,20,21,23
T11 —T15 | nodel : pkg | node35 : Rectangle noded?2 : toString () 43
node38 : Rectangle () 36,37, 39,40, 41
node46 : Shape node50 : toString () 51
node48 : Shape () 47,49
node3 : TestShape noded : Main () 5,6,7,8,9,10,11,12,13,14
T16 — T20 | nodel : pkg | node35 : Rectangle noded4 : getArea () 45
node38 : Rectangle () 36,37,39,40,41
node46 : Shape node52 : getArea () 53,54
noded8 : Shape () 47,49
node3 : TestShape node4 : Main () 5,6,7,8,9,10,11,12,13,15
C={ci,ca,...,c, } is the set of all the classes defined in the program.
M = { my,ma,...,my } is the set of all the methods defined in the program.
S = {s1,52,...,5, } is the set of all the statements in the program.

The pseudo code of our slicing algorithm is given in Algorithm 2. HD slice

takes the intermediate graph representation (rEOOSDG) of the program under
Though the algorithm can work for both EOOSDG
and rEOOSDG, we have taken rEOOSDG as the input. The reason being that
the time for computing the slice is less in TEOOSDG. This is shown in Figure

consideration as its input.

4.5. The proposed algorithm computes a forward slice with respect to the point of
modification taken as the slicing criterion. The algorithm then traverses backward
in two passes from each node obtained in the forward slice to determine a set of
affected program parts. The slice is then hierarchically decomposed into sets of
packages, classes, methods and statements. This gives the impact of change at
different programming levels.

The notations used in the algorithm are:

i. P - The set of packages extracted from rEOOSDG that are affected by the

modification.

ii.) - The set of classes extracted from rEOOSDG that are affected by the

74 Regression Test Case Selection using Slicing

modification.

iii. M7 - The set of methods extracted from rEOOSDG that are affected by the

modification.

iv. 87 - The set of statements extracted from rEOOSDG that are affected by the

modification.
v. E - The set of edges in rEOOSDG.

vi. N - The set of nodes in rEOOSDG.

vii. typei, types - The set of some specific edges along which backward traversal

is restricted.

4.2.4 Proposed Hierarchical Regression Test Case Selection (HRTS)
Algorithm

In this section, we discuss our proposed algorithm named Hierarchical Regression
Test Selection (HRTS), for generating selective regression test cases. We maintain
the test case coverage distribution for our example program (Figure 4.2) as shown
in Table 4.1. Our proposed HRTS algorithm takes the decomposed slices and the
test case coverage information as input. The algorithm selects those test cases that
affect at package level, class level, method level and statement level. The outcome
of the algorithm is a set of change-based hierarchically selected test cases suitable
for regression testing. Algorithm 3 gives the steps of our proposed hierarchical

regression test case selection approach in pseudocode form.

Table 4.2: Summary of test case selection for the example program in Figure 4.2

Level Selected Test Cases | Number of
Selected Test
Cases
Package T1—-1T20 20
Class T1—-T10 10
Method 76 —T10
Statement T6 —T10

4.2.5 Working of the Algorithms

In this section, we explain the working of our proposed HD slice algorithm and HRT'S

algorithm. We have taken an example Java program shown in Figure 4.2 as our case

4.2 Hierarchical Regression Test Selection 75

Algorithm 3 HRTS

Input: Decomposed Slices {Pi,C1,M1,S51} , Test coverage information.

Output: A set of hierarchically selected change-based test cases.
Step 1: Construct the EOOSDG for the program.
Step 2: Invoke RER(EOOSDG)
Step 3: Invoke HDslice(rEOOSDG)
Step 4: Select the test cases step by step from the package level to the statement level.
i. Let there be n number of test cases in the test suite T, where T' = {t1,t2,...,tn}. The set of packages
covered by each test case t;,i =1, 2, ..., n, is represented by F%,.
1: Determine the set of test cases selected at the package level for retesting the program.
2: T ={}// T is initialized.
3 For each t; €T, do the followings:
4: P/ =PkNPy,
5 If P/ is non-empty, then
6 T' =T U {¢t;}, where T" is the set of selected test cases at package level.
7: End For

ii. Determine the set of test cases selected at the class level

8 1" ={}//T" is initialized.

9: For each t; € T', do the followings:

10: C; = ClN Cy,, where Cy, is the set of classes covered by test case ¢;.

11: If C} is non-empty, then

12: T" =T" U{t;}, where T" C T’ is the set of selected test cases at class level.

13: End For
iii. Determine the set of test cases selected at the method level
117

14: 7" ={} /) T" is initialized.
15: For each t; € T", do the followings:

16: M] = Mt N My,;, where My, is the set of methods covered by test case ¢;.
17: If M, is non-empty, then
18: T" =T" U{t;}, where T""” C T" is the set of selected test cases at method level.

19: End For

iv. Finally, determine the statement level slice and the set of test cases selected at the statement level.
20: 711 ={} // TS is initialized.

21: For each t; € T, do the followings:

22: Sg = StN Sy, where Sy, is the set of statements covered by test case ;.
23: If S} is non-empty, then
24: Tf =175 U {t;}, where T C T is the set of selected test cases at statement level.

25: End For

study. The corresponding rEOOSDG of the program that is given as an input to
Algorithm 2, is shown in Figure 4.4. Suppose, the object s2 at line 23 of the example
program is changed to sI. As a result, the method of class Rectangle at line 44 is
invoked instead of the method of class Triangle at line 33. Thus, the change at Line
23 (corresponding to node 23 of rEOOSDG) results in erroneous output. Computing
the slice of the program with the modification point as the slicing criterion, helps
in detecting the other program parts affected by this change. To compute the slice,
the algorithm first traverses in the forward direction from the point of modification

to determine all those nodes/program parts that may be affected by the change.

76 Regression Test Case Selection using Slicing

The nodes that are added to worklist ()1 in the forward traversal of node23 are
23, 52,33, A3_out, 53,54, f6_out, 34, f3_out. Then, from each of the nodes reached
in the forward traversal, the algorithm traverses in the backward direction to find
all those nodes that might have affected the reached nodes. This backward traversal
is done in two passes. In the first pass, the algorithm traverses backward along all
the edges except polymorphic call edge, inherited membership edge, parameter_out
edge, and generic_out edge. In Pass-2, the algorithm traverses backward from all
the nodes marked in Pass-1 along all the edges except parameter_in edge, generic_in
edge and any edge traversed in pass-1. For example, the nodes added to worklist Q2
for node 23 in Pass-1 are {4, A21_1_out, A21_2_out, 3,1,2,21, A5, A6,19,20,7,6}.
The nodes added to worklist @3 in Pass-2 are {f27_1_out, f27_2_out, 27, 29, 30, 21,
24, {3, f4, 46}. Similarly, the HD slicing algorithm finds the affecting nodes for
other nodes in (1. Thus, the final slice) is given as the union of @1,)2, and Q3
that comprises of all the affected and affecting nodes. The nodes included in the
final slice are shown as shaded nodes in Figure 4.4. The slice is then hierarchically
decomposed into packages, classes, methods and statements.

Then Algorithm 3 takes these decomposed slices along with the test case cov-
erage information as input. The two package nodes that are present in the slice
are nodel and node2. So from Table 4.1, we select the test cases T'1 — T'20 that
cover these two package nodes. In the second level, the class nodes that are sliced
are node3d,nodedb and node24 that correspond to TestShape, Shape and Triangle
classes of the program, respectively. We select those test cases that cover these
sliced classes. Therefore, we select T1 — T'10 out of the 20 test cases selected in the
first level. Similarly, in the third level i.e. the method level, we select 76 — T'10
as these test cases cover the affected methods. We also select 76 — T'10 in the
fourth level (statement level slicing), as all these 5 test cases also cover the sliced
statement nodes. Finally, we get the set of five test cases (76 — T'10) that can be
used to retest the program. This is shown in Table 4.2. In Figure 4.7, we show the

implementation result of hierarchical test case selection for the input node23.

Correctness of our Algorithms

In this section, we present the proof of correctness of our proposed algorithms.

Theorem 4.2. Algorithm 2 always finds the correct slice with respect to a given

slicing criterion (modification point).

Proof. We use mathematical induction to prove the above theorem. Let the nodes

4.2 Hierarchical Regression Test Selection 77

of the input intermediate graph G, correspond to the packages, classes, methods and
statements of an OO program P. Let statement s be the single node in G. Then, HD
slice algorithm correctly computes the slice ¢(s) with respect to some modification
at s, such that ¢(s) = {s}, where s is itself the slicing criterion. Let {s,s1} € G be
the only two nodes. If there exists some dependence (edge) between s and s1, then
¥(s) = {s,s1}. Using this argument, we claim that Algorithm 2 correctly computes
the affected nodes (slice) in the presence of two nodes. Let there be n nodes in
G including s. In Step 2 of the algorithm, we traverse in the forward direction to
detect all those nodes that are dependent on the modified statement s. It is obvious
that in Step 2 of the algorithm, we have a set of nodes which have a direct as well
as transitive dependence on the modified statement. If a node is not affected then
it will not be included in the worklist, Q1. Further, Steps 3 and Step 4 ensures that
we mark all those nodes on which the selected nodes in ()1 depend upon and could
have affected the modification at s. The empty conditions at Lines 9, 17, and 24
ensures the termination of the algorithm after a finite number of iterations. Step 5
computes the resultant slice of affected nodes. Step 6 of the algorithm decomposes
the affected nodes in v (s) into respective sets of packages, classes, methods and
statements. As | 1(s) | is finite, this step terminates in finite time. Hence, HRTS

algorithm correctly computes the slice. O

Theorem 4.3. Algorithm 3 always hierarchically selects the change-based affected

test cases for regression test cases.

Proof. Let the test suite T contains k number of test cases to test P, where k is a
finite number. Let the coverage information of each test case t; € T,¢ =1,2,...,k
is available, before any modification is done to P at s. Let t; € T, then Algorithm
3 correctly selects tq, if ¢ covers the affected nodes. Using this argument, let
{t1,t2} € T, then Algorithm 3 correctly selects the test case t;,7 = 1,2, that covers
the affected nodes. For ty,ta,...,tx € T, Step 4(i) of the algorithm selects those
test cases that cover the affected packages and discards the rest. Similarly, in the
subsequent steps 4(ii), 4(iii), and 4(iv), the algorithm filters the test cases on the
basis of their coverage of affected classes, methods and statements, respectively. The
number of test cases is finite and with each hierarchical selection the number reduces
further. Further, Step 4(iv) of the algorithm guarantees that the algorithm stops
after the test cases are selected at the statement level coverage. This establishes

the correctness of the algorithm. O

78 Regression Test Case Selection using Slicing

4.2.6 Complexity Analysis of HRTS Algorithm

The Complexity analysis of HRTS algorithm is as follows:
Space Complexity:

Let the program under consideration contains N statements. Each node in
rEOOSDG represents a single statement of the program. However, some extra
nodes are required to represent the actual and formal arguments of the method
invocation and method definition. For such statements in the program, the number
of extra nodes required is equal to the number of actual and formal arguments
present in the program. Let us assume that too many parameters in a method
definition are not allowed. Let the number of parameters present in the program
be k, where k is some bounded small positive number. If each statement of the
program is represented in rEOOSDG by k& number of extra nodes (assuming each
statement has actual and formal arguments), then it can be stated that the space
requirement of rEOOSDG is O (kN?). Since, k is a small bounded positive integer,
we can conclude that the space requirement of rEOOSDG is O (N 2). Apart from
this, some additional space is required by the algorithm in maintaining the packages,
classes, methods, statements and the coverage information for each test case. The

additional space requirement is as follows:

i. We have assumed that the total number of lines of code in our program is N.
Therefore, the number of packages, classes, methods and statements present
in the program will be less than equal to V. So, we can say that the space re-
quired to maintain this additional information about packages, classes, meth-

ods and statements present in the program will be O (N).

ii. Let the number of test cases used to test the original program be m, where
m is a bounded positive integer. Each test case will maintain the coverage
information of packages, classes, methods and statements. Assuming that
each test case covers all the packages, classes, methods and statements in the
program, the total space requirement would be O (mN). As m is a bounded

positive integer, so the space requirement is O (V).

Therefore, the total space requirement for our HRT'S algorithm is O (N 24N+ N)=
O (N?).
Time Complezity:

Let N be the set of vertices and E be set of edges in rEOOSDG. Since, each node
in the graph is visited (using DFS Algorithm) only once, so the time complexity is

4.3 Implementation 79

in the order of (N + E). If the time spent in each recursive call is ignored, then each
vertex u can be processed in O (1 +df (u)) time, where d/;(u) is the out-degree of
node u. So the total time required for our algorithm is given by
TotalTime = N + Y (1+df (u) = N+ > df (u) + N =2N + E~ O (N + E)
ueN ueN

The operations involved in the algorithm for hierarchical decomposition slicing
and selection of test cases are intersection and union which require two sets as
operands. Assuming that each set contains N elements, the worst case run time of
each of the above operations will be O (N 2). Therefore, the worst-case run time of
our algorithm is O (N?).

4.3 Implementation

In this section, we briefly describe the implementation of our approach.

Table 4.3: Summary of change types in Java programs.

Sl. No. | Change Types Sl. No. | Change Types

1 Adding a package 6 Adding a local variable
Deleting a package 7 Deleting a local variable
Changing the identifiers of a 8 Changing the type of the lo-
class cal variable

4 Changing the return type of 9 Changing the operator of a
a method in a class condition

5 Changing the type and num- 10 Changing wrong variable
ber of parameters of method
in a class

4.3.1 The sample programs

We conducted the experiments on fifteen medium-sized programs of different spec-
ifications as shown in Table 4.4. Out of these fifteen programs, ten benchmark pro-
grams (Stack, Sorting, BST, CrC, DLL, Elevator_spl, Email spl, GPL_spl, Jtopas,
Nanoxml) are taken from Software-artifact Infrastructure Repository (SIR) [59] and
other five programs are developed as academic assignments. SIR [59] is a reposi-
tory of programs and tools to support controlled experimentation with testing and
regression testing techniques. These smaller programs are chosen to ascertain the
correctness and accuracy of the approach, keeping in mind that they represent a
variety of Java features and applications, the test cases are available or can be eas-

ily developed, and coverage information can be computed. The modifications that

80 Regression Test Case Selection using Slicing

Table 4.4: Result obtained for regression testing of different programs.

SL.No. Programs Lines of Code | Total # Test Cases | # Selected Test
Cases for regres-
sion testing

1 Example Program 54 20 5

2 Calculator 75 15 7

3 Elevator 90 25 10

4 Stack 114 22

5 Sorting 130 16

6 BST 130 20 12

7 CrC 261 18

8 DLL 277 24

9 Notepad 300 17

10 ATM Application 900 33 12

11 elevator_spl 1046 15 10

12 email_spl 1233 18 11

13 GPL_spl 1713 22 14

14 jtopas 5400 16

15 nanoxml 7646 14

are made to the above mentioned programs include modification to the data types
of member variables, modification of expressions in a method, modification of the
object relation, addition and deletion of a new member variable, etc. A summary
of the different change types considered for the experimental programs are listed in
Table 4.3. The third column of Table 4.4 gives the size of each of the program in
terms of Lines of code (LOC'). The smallest program has 54 LOC, and the largest
program has 7646 LOC. The total LOC for all the fifteen programs is 19369 and the
average LOC per program are 1291. The fifteen EOOSDGs are constructed using
our prototype tool. The smallest EOOSDG has 91 nodes, and the largest has 26451
nodes. The total number of nodes for all the fifteen EOOSDGs is 88511, and the
average number of nodes per EOOSDG is 5901.

The experimental programs were given to five post graduate students to develop
the required test cases. Each of the students developed a set of test cases for each of
the programs using JUnit eclipse plugin !. These test cases were then executed in
JaBUT1 [196] to find their coverage percentage. We considered those test cases that
were having more than ninety percent of code coverage for a particular program for
our regression test selection process. The fourth column of Table 4.4 gives the total
number of test cases initially taken into consideration for each program. The total

number of test cases considered for all the programs is 295 with a mean of 20 test

"http://www.tutorialspoint.com/junit /junit_plug_with_eclipse.htm

4.3 Implementation 81

cases per program.

4.3.2 Experimental settings

All the algorithms related to slicing and hierarchical regression test case selection
are implemented using Java and Eclipse v3.4 IDE 2 on a standard Windows 7 desk-
top. The proposed approaches are completely based on the intermediate graph
EOOSDG of the modified program. The identification of the dependences to con-
struct the intermediate graph, follows a build on build approach, i.e. we use the
existing APIs and tools to build the graph instead of developing the source code
parser from scratch. Source code instrumentation and generation of the intermedi-
ate graph are implemented by using XPath parser on srcML (SouRce Code Markup
Language) representation of the input Java program. Thus, srcML is the XML [48]
(eXtended Markup Language) representation of the input Java program. The input
program is converted to srcML using src2srcml tool. This srcML representation is
then used to extract the dependences between program parts by using the XPath
parser. The details of the program transformation [26] and fact extraction process
can be referred in [12, 50, 51, 137]. Many other APIs and tools (such as Document
Object Model (DOM) and Simple API for XML (SAX)) can be used to extract facts
from the srcML representation.

In this thesis, the fact and dependence extraction are done using XPath. XPath
[125] is a language support used by XSLT (extensible stylesheet language) parser to
address specific part(s) of the entire XML document. The choice of using XPath is
because of its simplicity and easy extraction by directly tracing to the location of
the information. This also works on both visio XML and srcML formats of XML.
The source code is first instrumented and then dependences in the program are iden-
tified and extracted into the program dictionary to construct intermediate graphs.
The modified statement (instrumented number) is taken as input along with the
intermediate graph, to slice the affected nodes. Most of the dependences at package
level, class level and method level, are extracted from the Imagix4D XML data.
Imagix4D 3 is a static analysis tool that gives the graphical representation of most
of these dependences. The statement level dependences such as control dependence,
data dependence, etc. [87] are extracted from the srcML representation of the pro-
gram. This process of graph construction is followed through in the rest of the

thesis.

Zhttps:/ /eclipse.org/
3http://www.imagix.com/products/source-code-analysis.htm]

82 Regression Test Case Selection using Slicing

Changed Program

Y

[
} SDG_Constructar SDG_Transformer
|
|
|

)
|

Y

/ EQOSDG /-7 / rEQOSDG /

T4
Modified

..—){ SLICER F#Se\ect&d Test Cases/
Statement l

Database

Information Table

Test Case Table

Coverage Table

Figure 4.6: Architectural model of the hierarchical regression test selection method

4.3.3 Architectural Model of Regression Test Case Selection

The functional components of the prototype tool developed for implementing the

proposed approach are shown in Figure 4.6. It consists of the following components:
e SDG_Constructor
e SDG_Transformer
e Slicer
e Database

The solid (dashed) arrows show the actual (optional) flow of information between
the functional components of the tool. The rectangular blocks represent the func-
tional components and the parallelogram blocks represent the outputs from the cor-
responding functional components. We developed the prototype tool using Java and
Eclipse. The changed program under test is given as input to the SDG_Constructor
that generates the required intermediate graph named EOOSDG as explained in
Section 4.2.1. The SDG_Constructor is basically a parser that fist instruments the
code before anlayzing the input program for finding the possible dependences. This

SDG _Constructor parser is reified as discussed in the previous section. The details

4.3 Implementation 83

of the internal architecture of the parser are not discussed here for space constraints.
In the first two passes of the parser, the code is instrumented and in another two
passes the EOOSDG is generated based on the dependence analysis information.
To make this intermediate graph (EOOSDG) scalable, SDG_Transformer removes
some of the redundant edges as described in Section 4.2.2 to get a reduced graph
rEOOSDG. The information about the program elements (such as packages, classes,
methods and statements) along with the coverage of the test cases are stored using
MySQL 4 database. The data in the database are organized in three kinds of tables:

Information table, Test Case table and Coverage table:

i. Information Table: The information about the program elements such as pack-

ages, classes, methods and statements are maintained in these tables.

ii. Test Case Table: Information such as test case id, inputs and the expected
output are maintained in these tables. The test cases that executed the orig-

inal program are the desired candidates maintained here in these tables.

iii. Coverage Table: These tables keep the information about the coverage infor-
mation of each test case. The packages, classes, methods and the statements

covered by each test case are maintained in these tables.

Our slicer component is not fully automated to detect the changes in the program
from the intermediate graph (EOOSDG/rEOOSDG). Therefore, it manually takes
the modified statement (instrumented number) as input along with the intermediate
graph EOOSDG and/or rEOOSDG. Taking the point of modification as the slicing
criterion, the slicer computes the slice consisting of the affected parts with respect to
the modification made to the input program. The affected program parts in the slice
are then decomposed into packages, classes, methods and statements by using the
information contained in Information Table of the database. The slicer component
requires additional information contained in Test Case Table and Coverage Table of
the database for selecting the required test cases. The slicer maps these decomposed
program elements with the test case coverage information and selects the required

test cases that are suitable for regression testing.

4.3.4 Result Analysis

Initially, we consider the example program in Figure 4.2 as input to our algorithm.

Figure 4.8 shows the total number of test cases that get selected from Table 4.1, for

“http://www.mysql.com/

84 Regression Test Case Selection using Slicing

i hl
|4 Implementation Result for Node No. 23 E‘Elﬂ

Test Cases
Level Selected Test Cases no. of Selected Test Cases
Package 123456768910111213 14151617 1819 20 20 a
Class 12345678910 10 L
Method B78910 5 |
Statements 678910 5 hd
4| I

Figure 4.7: Summary of hierarchical test case selection for node 23 of rEOOSDG
in Figure 4.4.

each of the corresponding change made at different nodes. The selected test cases
are then used for regression testing. Figure 4.9 shows the time based comparison
between EOOSDG and rEOOSDG of different programs to detect their affected
program parts. The first ten programs given in Table 4.4 are taken for computing
the reduction in time achieved in computing the slices from their corresponding
EOOSDG and rEOOSDG. The slice for rest five programs are computed directly
from their corresponding EOOSDG. Thus, the average reduction in time to detect
the affected program parts of different programs with respect to a given point of
modification is 28.1% approximately. In the fifth column of Table 4.4, we show the

test cases finally selected for regression testing by using our proposed approach.

| £ Hierarchical Test Case Selection l =)= ﬂ_ﬁ]

{ TestCases | Thenodes

Node no. Package Level Class Level Methad Level Statement Level Final Selected Test Cases
23 20 10 5 5 678910 -
26 20 10 10 10 12345678010
53 20 20 10 10 G780101617181920
36 20 10 10 10 1121314151617 181920 -
54 20 20 10 10 6789101617181920
16 20 20 20 10 12345678010

[4]

Figure 4.8: Hierarchical test case selection for different input nodes

In Table 4.5, we validate the efficiency of our proposed HD slicing technique
by comparing our work with an existing approach by Li et al. [130]. Table 4.5
clearly shows that our approach finds the affected program parts in the form of
computed slices in less time. The total time taken by our approach to compute
the slices is 324.9 ms, while the total time taken by Li et al. approach is 343.7
ms. Our approach discovered 1812 total affected nodes for all the fifteen programs,

while Li et al. approach identified 2154 nodes out of which many were not relevant

4.3 Implementation 85

Reduction of Time to find Affected
Nodes of DifferentPrograms

Time in ms
(=]
(=]
1

0.2 m Original Graph

OReduced Graph

4 N T ,bb &3!\
o O LT e D & s
CAE T P S T & v
: \Q‘r‘b e .—_,0 t\OI@

Programs

Figure 4.9: Time based comparison between EOOSDG and rEOOSDG of different

programs to detect their affected parts

Table 4.5: Comparison of Hierarchical Slicing versus HD slicing.

Sl Program Hierarchical Slicing (Li et al. [130]) HD Slicing (Our Approach)
No.
Selected Nodes Time (ms) # Selected Nodes | Time (ms)

1 Expt Prog. 35 16.6 33 15.52
2 Calculator 63 15.9 51 14.6
3 Elevator 61 15.6 54 14.71
4 Stack 86 19.87 72 18.56
5 Sorting 97 19.78 86 18.77
6 BST 78 19.98 74 18.79
7 Crc 123 23.37 94 21.83
8 DLL 142 23.96 83 22.16
9 Notepad 73 25.1 68 23.8
10 ATM 152 24.81 97 24.08
11 Elevator_spl 133 26.2 105 24.9
12 Email_spl 107 27.31 98 25.83
13 GPL_spl 118 26.2 112 25.6
14 Jtopas 283 27.8 241 26.63
15 Nanoxml 603 31.3 544 29.12

to the slicing criterion. This justifies that our approach computes precise slices.
Figure 4.10 shows a comparison of the percentage of test cases selected for regression
testing. By using our proposed approach, there is an average reduction of 56.3%
(approximately) in the number of test cases selected for regression testing. While
Tao et al. [188] approach could achieve only 43.3% reduction in the selection of

the affected test cases. This is mainly due to the selection of some irrelevant nodes

86

Regression Test Case Selection using Slicing

20
80 —
E
g ° -
3 h I
2 60 H I
w
2 s0 1 H
8
W40 H
2
% 30 ||
2 EOur Approach
a8 20 4 H
= OTao et al. Approach
E 10 .
£ , | I
[— - U - = = —
EEE8Ekc2EEREREE
m = > in 5 = J 1 Jg B
a 3 oo [=]) - = a5 =
= 2 = v o j=1 m o [
o w W = ® E @ =
- o =
[=% =
I.I’j [
Programs

Figure 4.10: A comparison of the percentage of test cases selected for regression

testing.

(as shown in Table 4.5) by the slicing algorithm used in [188]. The selected test

cases are also efficient to find the critical errors early during regression testing of

the programs.

4.3.5 Threats to Validity

Like many other novel approaches, this work also suffers from some threats to its

validity as given below:

e Although we used a diverse set of programs for our experiments that are of

moderate size, but these do not represent the larger industrial applications.
Therefore, not all the features and complexities of real-time industrial appli-

cations are considered in this approach.

Our approach is based on the concept of HD slicing performed on an interme-
diate graph representation of the program under consideration. The addition
of extra nodes such as parameter_in, parameter_out, actual_in, actual_out,
and package nodes, to the graph to represent the program parts accurately,
increases the size of the graph. This is a possible threat on the scalability of

the approach.

To overcome this limitation, we propose to identify and remove the redundant
edges present in the intermediate graph representation. This reduces the size

of the graph and results in faster computation of the slices. Even though

4.4 Comparison with Related Work 87

the redundant edge removal process works fine with the graph reachability
algorithm, for some other applications it may be essential to investigate the

semantic effect of the edges. This forms another threat to our approach.

e The next threat to this approach is that it selects the test cases based on
the affected program parts that it covers. However, the fault proneness of
the affected program parts and the criticality of the faults discovered by the

selected test cases need more investigation.

4.4 Comparison with Related Work

In this section, first we discuss the work related to our work and then compare some
of these work with our approach. First, we discuss the available related work on
program slicing. Then, we discuss the existing related work on regression testing.
Many researchers [3, 101, 123, 161, 201] have proposed several techniques for slicing
of programs. The original work proposed by Weiser [201] focused on computing the
slices from the control flow graph of the program. Ottestein and Ottenstein [161]
for the first time defined slicing as a graph reachability problem. In their method,
they used a program dependence graph to compute the static slices of a program.
The concept of System Dependence Graphs (SDG) to represent the inter-procedural
programs was introduced by Horowitz et al. [101]. Later, Larsen and Harrold [123]
extended the concept of SDG to incorporate the OO features. In this method, each
class entry is represented by a Class Dependence Graph (CIDG). A CIDG repre-
sented both the control dependences and data dependences inside a class.
Krishnaswamy [119] identified some more dependences relevant to OO programs
in addition to the control and data dependences. But, these dependences do not
completely cover a true OO program such as a Java program. In our proposed
EOOSDG, we have added some new dependences applicable to Java programs,
such as package dependence, type dependence and read/write dependence. This is a
suitable representation for a true OO program like Java. Harrold et al. [90] proposed
an algorithm to identify the presence of dangerous edges in the intermediate graph
for safe regression test selection. This method compared two nodes in the proposed
Java Interclass Graph (JIG) of a program P and that of the modified version P’
to identify the execution path of a test case in P and P’, so that it can be known
whether any edge is dangerous or not. To make the comparison between the nodes,
they have used the lexicography equivalence of the text labeled on each node. For

example, if a class Y in package pkg extends a class X in the same package, and X

88 Regression Test Case Selection using Slicing

implements interface I in package abc, then the text associated with the node for
class Y will be Java.lang.Object : abe.l : pkg.X : pkg.Y. As the level of inheritance
will be deeper, the text will become more lengthy and comparison will incur more
run-time overhead. In our approach, we do not perform any such comparisons. So,
we save time by avoiding this computational overhead. We select only those test
cases that cover the affected program parts with respect to the modification done

to the program.

Many researchers have proposed different approaches to compute slices of Java
programs. Some of the slicing mechanisms are based on the dependence graphs like
PDG and SDG, while other approaches are based on the Java byte-code analysis.
Chen et al. [44] discussed different dependences possible in a Java program and
proposed slicing of classes based on PDG. In their method, the program dependence
graph consists of a set of independent PDGs. In slicing of classes, the slicing criterion
taken is (s, v, class), where s is the statement number, v is the variable and class
is the name of the class to be sliced. The slice is computed by traversing backward
from s and marking all the statements and data members used in the class based on
the PDG. Allen et al. [11] extended the work of Chen et al. [44] on program slicing
by using SDG. In their work, they proposed slicing of programs in the presence of
exceptions. The focus was mainly to determine the control and data dependence
due to the presence of try, catch and throw blocks in the program. They have not
considered other Java specific features for slicing. But, in our approach, we have
considered the OO features like packages, super, method overriding, etc. for the

purpose of slicing.

Wang et al. [200] proposed slicing of Java programs by using compressed byte-
code traces. They represented the byte-code corresponding to an execution trace
of a Java program. Then, through backward traversal of the execution trace, they
determined the control and data dependences on the slicing criterion. This ap-
proach requires the trace table to be constructed for each method. If a program
will have too many methods, then this approach will be disadvantageous to com-
pute the slices. This is because of the increased execution overhead in maintaining
the execution trace tables. This work is also silent regarding the execution trace
of the methods that are nested, overloaded and/or overridden. Similarly, Hammer
et al. [85] have proposed slicing of a Java program in the presence of objects as
parameters. The analysis of the dependences is based upon an Intermediate Rep-
resentation (IR) generated from the byte-code of the program. A good point-to

analysis is a prerequisite of this algorithm to compute more precise slices.

4.4 Comparison with Related Work 89

Slicing of Java programs in all of the above work [11, 44, 85, 200] was proposed
by taking into consideration a specific feature or type of dependence present in a
Java program. Whereas, the overall impact of the features on the dependences such
as the dependence due to the presence of packages and other specific Java features
are not considered. Our approach has made a decent effort in analyzing all the
possible dependences in OO programs and computing a more accurate slice. To be
able to employ slicing for regression testing, we need to identify all those statements
that affect the modified statement and those statements that may get affected by the
modification. But, most of the existing approaches [11, 44, 85, 200] are based upon
either forward traversing or backward traversing. This will only result in the partial
identification of the affected statements due to the modification. But, our approach
gives a better result for regression testing due to the following reason: both forward
and backward traversals of our approach correctly find all the program parts that

get affected and that may affect other program parts due to the change.

Software maintenance being the most important and expensive activity in the
process of Software Development Life Cycle (SDLC), many researchers have pro-
posed approaches for ordering the test cases of procedural programs. Rother-
mel [142, 175] and Elbaum [66] have considered different types of program coverage
criteria such as total statement coverage, additional statement coverage, total func-
tion coverage etc. Jeffrey and Gupta [104], proposed a method for prioritizing the
test cases for regression testing based on the coverage of relevant slice of the output
of a test case. They assigned weights to the test cases to determine their priority.
They determined the test case weight by summing up the number of statements
present in the relevant slice and number of statements exercised by the test case.
Korel et al. [113] prioritized the regression test suite by considering the state model
of the system. Whenever, the source code was modified, the corresponding change
in its state model was identified. These modified transitions along with the runtime
information were used to prioritize the test cases. However, the available techniques

were of little help when they were applied to regression testing of OO programs.

Li et al. [130] used hierarchical slicing for regression test case selection of OO
programs. Their proposed model consisted of three levels: syntax analysis, gen-
eration of dependence graphs, and computation of slices. They proposed different
dependence graphs such as package level dependence graph (PLDG), class level de-
pendence graph (CLDG), method level dependence graph (MLDG) and statement
level dependence graph (SLDG) that were based on the slicing criteria. When any

modification is done to a statement, the dependence of that statement with its

90 Regression Test Case Selection using Slicing

method, class and package can be easily detected because of the maintenance of
different levels of graphs. Identification of other packages, classes, methods and
statements related to the modified statement can also be easily done. The overall
performance had improved as the irrelevant packages, classes, methods and state-
ments were discarded from the generated graph. But, the proposed method required
all the different graphs (PLDG, CLDG, MLDG, SLDG) to be generated for each
change made to the program and was not very advantageous in case of frequent
changes. Thus, to avoid the above mentioned problem, the slicing criterion was
fixed. Whereas, we have implemented the hierarchical slicing technique on the rE-
OOSDG which is not constrained to any fixed change. It rather works for any
number of changes made to any statement, without requiring us to maintain ad-
ditional graphs. So the space requirement of our approach is much less than that
of Li et al. [130]. If the change made to the example program triggers some new

changes to be made, then our approach is capable to handle it.

Tao et al. [188] applied hierarchical slicing for regression testing of OO programs.
They have constructed separate graphs for packages, classes, methods and state-
ments even if they were not affected by the change. This again required more space
requirement. This is because with the increase in the program complexity, there
will be an increase in the number of packages, classes, methods and statements
which are required to be represented as separate graphs. But, in our approach,
we only maintain the graph rEOOSDG. This does not impose any additional space
requirement of constructing different graphs. Tao et al. [188] have used the same
hierarchical slicing technique as given in [130]. In Table 4.5, we show the relative
advantage of our approach over the hierarchical slicing technique in [130]. There-
fore, it justifies that our regression test case selection approach will compute the
slices efficiently and select the test cases in less time compared to the approach of
[188].

In some work [66, 104, 175], only control dependence and data dependence are
considered for program analysis. But, we identified some more dependences such as
package membership dependence, type dependence and read/write dependence, that
represented various object relations so as to consider more features of OO programs
and computed the slices more accurately. Therefore, in our approach, appropriate

test cases are selected more accurately for the purpose of regression testing.

4.5 Summary 91

4.5 Summary

We proposed an application of slicing to regression test selection based on the
Extended Object-Oriented System dependence Graph (EOOSDG). We considered
some new dependences in addition to control and data dependences, that play a
crucial role in the regression test selection. It would be interesting to assess such
effects. In this approach, we proposed a method to reduce the space requirement of
the intermediate graph by removing the redundant edges from EOOSDG and hence
addressed the scalability issue of the intermediate representation to some extent.
The affected program parts are also detected in less time due to the removal of
redundant edges. The average reduction in the time required for identifying the
affected program parts with respect to some modification made to the programs
is approximately 28.1%. The selected test cases are also found to be very efficient
in detecting the regression errors. The average reduction in the selected test cases
is approximately 56.3%, for all the programs under consideration. However, theses
change-based selected test suite may still be enormous for very large programs. Even
it may not always be possible to exhaust all the test cases within a selected test suite
during shortage of time and budget. Therefore, it is a dire necessity to minimize
even the selected test suite. We address this issue of test suite minimization in the

next chapter.

Chapter 5

Regression Test Suite

Minimization

Test suite minimization techniques aim to identify a reduced test suite that can still
assure software quality. The size of the reduced test suite should therefore be much
smaller than the original test suite.

The rest of the chapter is organized as follows: Section 5.1 presents a motivating
example for our proposes test suite minimization approach. Section 5.2 introduces
the proposed minimization framework and discusses the pre-computations required
for formulating the minimization problem. We present the experimental setup in
section 5.3 and answer some research questions. We also list some of the threats
to the validity of this approach. Then, we compare our proposed work with some

related work in Section 5.4. We summarize the chapter in Section 5.5.

5.1 Motivating scenario

In this section, we introduce the motivation and necessity for test suite minimiza-
tion with an example. Consider a program P and a given set of selected test cases
ST = {t;}. ST for larger and complex programs can be very large for the tester to
handle. Supposing the tester wants to minimize ST to MT, such that MT C ST.
The testing process is always guided by a set of requirements R = ri,7ra,...,7p
expressed in terms of code coverage [157], MC/DC coverage, fault-prone nodes cov-
erage, rate of fault detection, etc. The matter of fact is that the minimized test
suite should satisfy R. In this chapter, we consider rate of fault detection as our

requirement. The computation of rate of fault detection requires prior knowledge

94 Regression Test Suite Minimization

of the number of faults present, which is not possible. Therefore, we assume that
if the test case covers all the affected fault-prone nodes (statements), then it has
a high probability of discovering the faults. We identify the error-proneness by
computing the cohesion values of the nodes. Through empirical studies many re-
searchers [8, 10, 34, 65, 117] have validated that modules having low cohesion and
high coupling values are more prone to errors. Thus, test cases executing such
nodes have a high chance of detecting faults. Therefore, our minimization problem
focuses on maintaining the same coverage, by minimizing the cohesion values of the

affected nodes. Table 5.1 shows the pre-computed data of the selected test cases for

Table 5.1: Test related data for the example program given in Figure 4.2.

Sl Test Statements Covered # State- | Cohesion
No. | Case ments Wt.
1D

1 T6 1,2,3,4,6,7 6 0.65234375
2 7 1,2,21,46, 27,29, 30, 33, 34, 24, 25, 26 12 9.7807664
3 T8 1,2,3,4,6,7,21,46,27,29,30,19,20,25,26 | 15 6.8609747
4 T9 1,2,3,4,6,7,21,46,52,27,33,30,34,24 | 14 6.6401414
5 T10 1,2,3,4,21,23,46,34,33,24 10 8.7971354

the example program given in Figure 4.2. The second column shows the test cases
selected for regression testing. The third column shows the statements that each
selected test case covers. These statements are affected by some change made to
the experimental program. These affected statements are obtained by performing
change impact analysis using program slicing. The fifth column shows the sum of
cohesion values of the statements covered by the selected test cases. The intention
of the testers is to find the smallest number of test cases that covers all the state-
ments and expose maximum number of faults i.e. the sum of the cohesion values
is minimum. If the sum of the cohesion values of the statements covered by a test
case is minimum, it implies that the test case executes all those statements that
have low cohesion values. This can be expressed as a binary integer linear pro-
gramming (ILP) problem. Modeling the minimization problem in ILP has resulted
in obtaining superior results in minimizing the test cases in terms of coverage and
minimization constraints [58]. The problem formulation depends on the fact that
test suite minimization is represented as an ILP problem. The primary advantage of
using ILP is that as long as the problem is solvable, the solution to the minimization
problem is guaranteed. The formulation of the minimization problem depends on

three things. First, representing the minimized test suite, M7, as an array of binary

5.2 Proposed Approach for Test Suite Minimization 95

values, T = {t1,ta,...,t,}. The value 1 for ¢; indicates inclusion of i’* test case
in MT, and vice-versa for 0 value. Second, identifying the objective function that
satisfies the minimization constraints. And finally, to encode linear relationships

among the elements of 7. The minimization criteria is stated as follows:
e Criterion #1: To maintain the statement coverage.

e Criterion #2: To minimize the sum of cohesion values of the statements cov-

ered by the test cases.

Thus, this chapter proposes a test-suite minimization framework that concerns the
minimization of cohesion values for maximizing the fault detection, while maintain-

ing the coverage of the statements.

=
WModify P

Validate P with T Perform Change Impact
Analysis using HD Slicing ﬁ
l Compute Minimization Criteria
(Cohesion)
Construct ST using
Hierarchichal Regression Test l
Selection

Construct MT using
ILP Minimizer

Minimized Test-
Suite, MT

Figure 5.1: Framework to minimize change-impact-based selected test-suite.

k.

Collect Coverage
Information of T

Selected Test-Suite,
ST

Regression Test-

Suite, T

5.2 Proposed Approach for Test Suite Minimization

In this section, we discuss the techniques adopted in reifying the proposed frame-
work for minimization of the selected regression test cases. Based on the above
motivations, we propose a framework to minimize a given test suite of an object-
oriented program using the cohesion values of the affected program parts covered

by the test cases.

96 Regression Test Suite Minimization

5.2.1 Minimization framework

In Figure 5.1, we show the overall framework of our proposed approach. P’ is
the resultant program after the changes are made to the program P, as part of
the maintenance. To validate P, it is executed with all the test cases of T. The
collection of coverage information for the test-suite T with respect to P can include
any data such as various coverage data, cost data, energy data, time of execution
data, etc. The choice of the type of test data collected depends upon the objective of
the tester. The change impact analysis includes constructing a system dependence
graph (SDG) for P’, and performing hierarchical decomposition slicing (HD Slicing)
[156] to identify the affected program parts due to the changes. Then, based on the
coverage information of 7" and change impact analysis, we hierarchically select the
test cases to get the selected test suite (ST). For experimentation, we have taken
a sample Java program shown in Figure 4.2. A total of twenty test cases (T1-T20)
were taken along with their node (statement) coverage information. All those test
cases that covered the affected nodes (with respect to a modification point) are
selected hierarchically. The minimization criteria can be any set of data of concern
to the testers. However, regardless of the factors considered, the minimization
criteria has two aspects. First, to specify a constraint or goal for minimization
(e.g. minimizing time or maximizing the rate of fault detection). And second, to
specify ways of combining these constraints to find an optimal minimal test-suite.
We consider the cohesion values of the covered affected nodes as the minimization
criteria. The ILP minimizer uses the coverage information of T, selected test suite

ST, and the minimization criteria to compute the minimized test suite, MT'.

5.2.2 Regression Test Case Selection

The test case selection process for regression testing of the given program is carried

as given in Section 4.2. The steps of the test case selection process are given below:

e First, construct the system dependence graph (SDG) of the program under

consideration.

e Second, perform a change impact analysis with respect to the changes made

to the program by using the decomposition slicing method given in [156].

e Third, decompose the slice into impacted packages, classes, methods, and

statements.

5.2 Proposed Approach for Test Suite Minimization 97

e And finally, select those test cases hierarchically that cover these impacted
program parts. The selection starts from a coarse granularity of impacted

packages and proceeds to a finer granularity of impacted statements.

Finally, the test suite ST contains five test cases (76 — 17'10) that are selected for
regression testing of our example program given in Figure 4.2 (test cases with their

coverage information are shown in Table 5.1).

Legend (]

Inheritance/lmplementation Edge
Control Dependency Edge

Membership Edge

_
Instantiation Edge
......... >
Parameter Passing Edge

Inherited Membership Edge
777777777777 1<
Method Overridden edge
____________ o
Read/Write Dependency

——
Polymorphic Call Edge

_
Summary Edge

Generic edge

Has edge)

Legend|

1: color = str_in

f2: color = str_in

3: base = a1_in

f4: height = b1_in

5: color: = str_in

f6: length = a_in

7: width = b_in

f1_out: ¢_out = color

f2_out: s2_out = s2_in + c_out
f3_out: a1_out = area

f4-out: s1_out = s1_in + c_out
f5_out: a2_out = area

f6_out: msg_out = msg_in

@

\
\

S

N

N

Ad: str_in = str

A5 a_in=a
A6:b_in=b

A1_out: sr_out = s1_out
A2_out: st_out = s2_out
A3_out: at_out =a1_out
Ad_out: ar_out = a2_out

Sy

Figure 5.2: Affected Slice Graph (ASG) of the example Java program given in
Figure 4.2.

5.2.3 Affected Slice Graph (ASG) Construction using HD Slicing

ASG is the graphical representation of the slice that is computed with respect

to some change made to the program. The steps to hierarchical decomposition

98 Regression Test Suite Minimization

(HD) slicing to compute the slices are discussed in Section 4.2.3. ASG shown
in Figure 5.2 is a directed graph G, = (Ng, E,) that is obtained by performing
hierarchical slicing on the intermediate graph given in Figure 4.3. The set of nodes
N, represents the affected program parts such as packages, classes, methods and
statements. We identify these affected program parts during hierarchical slicing of
the program under consideration. These program parts either affect or get affected
by some modification made to the program. The program parts that are affected
by some modification made at statement 23 of the example Java program in Figure
4.2 are shown as shaded nodes in Figure 4.3. The set of edges F, represents the
relationship that exists between any two affected nodes ni,ny € N, in the ASG.
This set of affected nodes and their dependences are then modeled graphically to
form the Affected Slice Graph (ASG).

5.2.4 Computation of Affected Component Cohesion (ACCo)

The slice obtained as a result of the change impact analysis is represented in the
form of a graph named affected slice graph (ASG). The ASG for the slice obtained
for the example program in Figure 4.2 is shown in Figure 5.2. Each node in ASG
corresponds to the statement affected by the change and each edge corresponds to
the dependence between them. We define our proposed cohesion measure based on
the ASG. We compute the cohesion value of each node of ASG and then update it
for the method, class and package nodes.

Cohesion is defined as the tightness with which different elements of a module
or a modular system are grouped together. The four major approaches that exist

to measure cohesion are as follows:

i. Measuring the cohesion by counting the number of attributes accessed by the

member methods of a class, i.e. attribute-method interaction.

ii. Measuring the cohesion based on the count of number of cohesive method

pairs, i.e. method-method interaction [21].

iii. Measuring the cohesion based on the degree of similarity between each pair of
methods. The degree of similarity is computed by the number of commonly

accessed attributes.

iv. Measuring cohesion based on the degree of connectivity between attributes
and methods of the class, i.e. attribute-attribute, attribute-method, method-

method interactions.

5.2 Proposed Approach for Test Suite Minimization 99

The following discussion summarizes some limitations of the existing approaches
[32, 40, 46, 47, 218, 219] that we propose to overcome in our approach. These are

as follows:

i. The existing techniques do not address the impact of inheritance on the co-

hesion measure.

ii. The hierarchical organization of the object-oriented program and the impact
of different program parts (statements, methods, classes and packages) on the

cohesion measurement have not been studied in the existing techniques.

iii. The degree of inter-relatedness among the different parts of a sliced compo-
nent, i.e. cohesiveness of a sliced component has not been proposed in the

existing literature.

Many work exist [7, 16, 40, 46, 82, 118, 218, 219] that focus on cohesion mea-
surement of packages, classes, methods or statements. However, these studies have
not focused on the hierarchical organization of the program parts and the direct
and indirect impact of their inter-relatedness on the maintainability. Cohesion also
refers to the degree of relatedness of the members in a component that comprises of
packages, classes, methods and statements. All these program parts together for-
mulate the objective of the component as a logical function. Therefore, splitting the
elements of a cohesive component is difficult in an object-oriented paradigm. Thus,
it is essential to consider the degree of relatedness of these packages, classes, meth-
ods and statements to measure cohesion. The stronger is the relatedness between
these program parts, the more maintainable [10, 211] is the system. Therefore, co-
hesion metric is sensitive to the changes made to a program as a part of maintenance
activity and is often used to predict fault-proneness of the components [8].

In this chapter, our hypothesis is that the components having low cohesion
are more prone to errors and require more attention of the testers. We named our
proposed cohesion measure affected component cohesion (ACCo). Algorithm 4 gives
the pseudocode to compute the proposed change-based cohesion metric. Line 3 and
4 of the algorithm computes the predecessor and successor nodes by traversing in
the backward and forward direction respectively, from a given node. Then, we
compute the cohesion measure of these affected nodes at Line 6. In Lines 8-17, we
update the cohesion values of the method, class, and package nodes. We define our

cohesion measure as given below:

100 Regression Test Suite Minimization

Algorithm 4 findACCo(G,, n)

Input: Affected Slice Graph (ASG) G, = (Ng, E,),

N, is set of affected nodes in ASG G,

E, is the set of edges connecting the affected nodes in ASG G,
n=|Ng| .

Output: Affected Component Cohesion (ACCo) of each node

[y

2: Set status, = FALSE

3: inflow = call BTraverse(Gg,n,)

4. outflow = call FTraverse(Gg,n,x)

5. Dep(n) = inflow(n) U outflow(n)

6. ACCo(x) = |Pepl)nNe]

7. End for > To update the cohesion value of all the method, class and

package nodes
8 for u:= My, My, Ms, ..., M,

W here m is the number of method nodes in the graph.

j .
9. ACColu] := (ACCO[UH%T; ACColny))

s forx =V, Vo, Vs, .., V, > set x not visited

n; 8 the statement /parameter node of method

M;, j is the total number of statement/parameter nodes of each M,;.
10: End for

11: for u:=Cq,Co,Chs,...,C, > Where c is the total number of class nodes.
k .
12. ACColu] = (Acco[u}+(2kjﬁ)1 ACColn;])
n; 5 the attribute /method node of class

Cy, k is the total number of attribute/method nodes of each C;.
13: End for

14: for u:= Py, Py, P3,...,B, > Where p is the total number of package nodes.

l .
15 ACColu] := (ACCO[UH%T; ACColn;])

n; s the subpackage/class node of package

l is the total number of subpackage/class nodes of each P;.
16: End for
17: ACCo(S) = %ﬁcw
18: Exit

> ACCo(S) represents the cohesion of slice S

5.2 Proposed Approach for Test Suite Minimization 101

Definition 5.1. Cohesion of a node n is defined as the tightness of n among other
nodes in ASG Go = (Ng, E,). To measure this cohesion, we define a set Dep(n)

that comprises of all those nodes on which n depends. For any node n in ASG,

Inflow(n) = {ni,ne,...,ng | (n1,n2),(n2,n3),...,(ng,n) €
E, N nyyng,...,ng,n € Ny N 1<k<|N,|—1}

The outflow of n in ASG is defined as the set comprising of all those nodes that

depends on n.

Out flow(n) = {n1,n2,...,n | (n,m1), (n1,n2), ..., (n-1,m)

€E,N ni,ng,...,n,n €Ny AN 1<1<|Ny|—1}

Thus, the dependence set Dep(n) of each node is defined as the union of In flow(n)
and Out flow(n).

Dep(n) = Inflow(n) U Outflow(n)
For a node n; where {n; € Ny | (No = ni,na,...,np) A (Ngyn;) € Eq, Eq =
{membership edge, package membership edge, inherited membership edge}},

the cohesion value of node n; is defined as

Dep (n;) N Ny,
ACCO(ni):‘ ‘]\S ’)_1 ’,
ng

where n; € Ny, and Ny, = {Np,,n1,n2,...,n} C No, 1 <k < |Ng| and (Ny,;,n;) €
kg—mem
{mem p

—, "=}, 1 <j <k. Thus, every program part Ny, € N, is defined as the

set of nodes connected by either membership or package membership edge.

Definition 5.2. The updated cohesion of a method node M in ASG G, = (Ng, E,)
is defined as the average of the cohesion values of all its elements (i.e. parameters
and statements) along with its own cohesion. Let a method node M has j number
of elements i.e. ny,na,...,n;. Thus, cohesion of the method node M is given as
_ ACCo (M) + X1, ACCo (n;)

j+1
Definition 5.3. The updated cohesion of a class node C in ASG Gy = (N, E,)

is defined as the average of the cohesion values of all its elements(i.e. attributes,

ACCo (M)

methods, and inherited members) along with its own cohesion. Let a class node C
has k number of elements i.e. ni,no,...,ng. Thus, cohesion of the class node C is

glven as
_ ACCo(C)+ Xk | ACCo (n;)

ACCo(C) o

102 Regression Test Suite Minimization

Definition 5.4. The updated cohesion of a package node P in ASG Go = (Ng, E,)
is defined as the average of the cohesion values of all its elements (i.e. classes and
sub-packages) along with its own cohesion. Let a package node P has I number of

elements i.e. ny,n9,...,n;. Thus, cohesion of the package node P is given as

ACCo (P) + Yt ACCo (n;)
I+1

ACCo(P) =

e

, @ @
REEAE D e

...... \J ¢, é_l —————— e
24

(b) Outflow set for node 24.
(a) Inflow set for node 24.

IS
\:j \:j \:j “@‘
(¢) The set to which node 24 is a member.) The members of node 24.

Figure 5.3: ACCo computation of nodes of ASG in Figure 5.2.

Working of findACCo Algorithm

Algorithm 4 uses the formula given at Line 6 to compute the ACCo value of each

node in the ASG. For example, we show the ACCo calculation for the class Triangle

represented as node 24 in Figure 5.2. Initially, ACCo value of node24 is given by
|Dep (24) N Ny 3

ACCo(24) = ol =1 = S = 1,

5.2 Proposed Approach for Test Suite Minimization 103

where Dep(24) = inflow(24) U out flow(24) and node 24 € Noy, ie. Noyy =
(1,3, 24, 46).

Figure 5.3 shows the sets associated with the computation of ACCo of node
24. The inflow set for node 24 is shown in Figure 5.3a and outflow set is shown in
Figure 5.3b. Figure 5.3c shows the set to which node 24 is a member. The union of
inflow(24) and outflow(24) is intersected with the set shown in Figure 5.3c to find
the degree of relatedness of node 24. Now, to compute the ACCo of any member
node of node 24, the dependence set of that node is intersected with the set shown

in Figure 5.3d to find its degree of relatedness.

Similarly, the ACCo values of all the associated nodes (25, 26, 27, 3, 4, 29, 30,
f27_1_out, 27 2 out, 33, f3_out, 34) of node 24 shown in Figure 5.2 are computed

as follows:
|Dep(25) ﬂN25‘

ACCo(25) = i =2-05
‘ 25 1 4

Dep(26)NN-
ACCo(26) = PHZATl — 2 — 5

| Dep(27)NN:
ACCo(27) = [PHZO0RTL — 4 =1

_ | Dep(s3) mNf3| _3
_ [Den(r4) mNf4| _3_

|Dep(29)NN:
ACCo(29) = @Tﬂ”‘ =305

Dep(30)NN:
ACCo(30) = [PpEOntnl — 3 — 5
ACCo(f271 out) = 12PIZTLoud0N 1 0u] _ 3 _ 5

|Nfa7_1 out|—1 6
’Dep(f27,2,out)ﬁNf277270ut‘ _ 3 _
ACCo(f27 2 out) = N 2721 =5=05
ACCo(33) = W =2 =067
’Dep(fg OUt)meS out| _

ACCo(f3_out) = N a1 £ =0.67

Dep(34)NN:
ACCo(34) = [PgEIORl — 2 — .67

Then, Algorithm 4 updates the ACCo value of some nodes of ASG. The reason
behind this updation is that, for any node that represents a method, the state-
ments contained inside that method also contribute to the ACCo of the method.
Even if a method does not have any statement inside it, still it will have some
ACCo value as some other method may be overriding it. Therefore, we have taken
the average of all the ACCo values of all the statements and the ACCo value
of the method under consideration, to compute the updated ACCo value of the
method. For example, the ACCo values of nodes {24,27,33} are updated. The

104 Regression Test Suite Minimization

average ACCo value of node27 along with the ACCo values of all its member nodes
{f3, f4,29,30, f27_1_out, f27_2_out} are computed and assigned to node27, i.e.

ACCO(Q?) _ ACCO(27)+ACCo(f3)+ACCo(f4)+ACCO(29)+’;4CCO(30)+ACCo(f27,Lout)+AC’Co(f27,2,out)

_ 140.5+0.5+0.540.5+0.5+0.5 _
= 2 =0.571

Similarly, ACCo values of Node33 and Node24 are updated as follows:
_ ACCo(33)+ACCo(f3.out)+ACCo(34) _ 0.67+0.67+0.67 __
ACCo(33) = = 067007+ = 0.67

3
ACCO(24) _ ACCO(24)+ACCO(25)+ACC'50(26)+AC’C’0(27)+ACCO(33) _ 1+0'5+0.5<g0'571+0.67

= 0.6482

Therefore, ACCo value of class Triangle in Figure 4.2 represented as node24 in Fig-
ure 5.2 is 0.6482. Similar procedure is followed to update the ACCo values of all
the nodes representing the classes and packages within ASG.

Theoretical Validation

In this section, we provide the theoretical soundness of the proposed measure, i.e.
this approach satisfies the four basic properties for cohesion measure as suggested
by Briand et al. [31]. Even though these four basic properties are not sufficient
to characterize the proposed cohesion measure in a rigorous manner, but these
properties are necessary to prove the correctness [6] of any cohesion measurement
approach. There exists many more validation frameworks [204] in the literature, but
we validate our approach with Briand’s framework and have left other frameworks
for future study.

The cohesion properties of Briand’s framework are as follows:

Property 1: Non-Negativity and Normalization

This property states that the value of cohesion given by the proposed measure
should be non-negative and normalized, i.e. 0 < ACCo(n) < 1, for any node n in
G-

Proof. For any node n in G4, Dep(n) N N, € N, = 0 < % < 1.
That is if Dep(n) N N, = ¢ = |[Dep(n)NN,| = 0 = ACCo(n) = 0. And if
Dep(n)NN,, = N, —{n} = |Dep (n) N N,| = |N,|—1= ACCo(n) = 1. Therefore,
0 < ACCo(n) <1 will always hold true.

Property 2: Null Value and Maximum Value

This property states that for any node n € Gy, if |Ng| > 1, then E, = ¢ =
ACCo(n) =0, and E, is maximal = ACCo(n) = 1.

Proof. For any node n in G, if E, = ¢ then Dep(n) = ¢ = ACCo(n) = 0. If
Dep(n)NN,, = N, then Dep(n) contains all the nodes in N,,. Hence, ACCo(n) = 1.

5.2 Proposed Approach for Test Suite Minimization 105

Property 3: Monotonicity

This property states that addition of a new relationship (edge) to the ASG must
not decrease the cohesion value of any node, i.e. if Ga2 = (Na2, Eq2) is obtained
by adding an edge < nl,n2 > to Gq1 = (Na1, Eq1), then ACCo; (n) < ACCos (n),
where ACCo1 (n) and ACCos (n) are the cohesion values of node n in G41 and G2,
respectively.

Proof. We use Dep; (n), Deps (n) to represent the dependence set of any node n
in G41 and Gga, respectively.

Case 1: If ny € Depy (n) A ng € Depy (n) A ni,ng € Ny, , then adding < ny,ng >
will not change Deps (n) N N,,. Hence, Dep; (n) N N,, = Depa (n) N N,,. Therefore,
ACCo; (n) = ACCoqy (n).

Case 2: If ny € Depy (n) A ng & Depy (n) A ni,ng € N, , then adding < nq,ng >
will result in |Dep; (n) N Ny,| + 1 = |Depz (n) N N,/| and |N,| = |N,)/|. Hence,
DepurClnl o Depaln0in’l = ACCoy (n) < ACCos (n).

Case 3: If both ny,ne ¢ N, or any one of nj,ny ¢ N,, then adding < ny,ng >
will not change Deps (n) N N,,. Hence, Dep; (n) N N,, = Deps (n) N N,,. Therefore,
ACCoy (n) = ACCos (n).

Therefore, adding an edge does not increase the cohesion of any node in G,.

Property 4: Merging of Unconnected Modules

This property states that when two sets of unconnected nodes N; and N» are merged
to form a single set of nodes N such that N = N; U Ny in G,, then this should
not increase the cohesion value of any node n, i.e. max {ACCoy (n), ACCo2 (n)} >
ACCo(n), where ACCo; (n), ACCoy(n) and ACCo(n) are the cohesion values of
a node n in N1, No and N, respectively.

Proof. Let Ny and Ny be two sets of nodes such that NN Ny = ¢ and n € Ny. For
any node n, ACCo; (n) and ACCos (n) may represent the cohesion values before
and after merging of nodes, respectively. Let Dep;(n), Depa(n) be the dependence
sets before and after merging of N7 and Ny, then Depy(n) = Depa(n) as NN Ny = ¢.

, Depg(n)ﬁN/
Supposing, N' = N; U Ny. Then, |Dep]i,(TENl‘ > ’ VT

[N1
= ACCoz(n) < ACCoi(n).

Therefore, it proves that merging two independent sets of nodes will not increase

because ‘N/‘ > | N

the cohesion value.

106 Regression Test Suite Minimization

5.2.5 Modeling test suite minimization as binary ILP problem

Our technique for getting efficient minimized test-suite is based on the idea of en-
hancing the fault-detection capability of the test-suite while maintaining the same
coverage of statements as the original test-suite under consideration. We consider
the coverage of the affected nodes instead of the statements as our approach is based
on the intermediate graphical representation of the impacted program parts, ASG.
Here, the constraint is to maintain the original coverage of the affected nodes and
the objective function is to minimize the total ACCo value of the nodes covered by
the test cases. The reason for minimizing the sum of ACCo values is that any test
case for which the sum is minimum denotes that test case executes those nodes that
have a small cohesion value. The hypothesis is that nodes with smaller cohesion
value are more error-prone [8, 10, 167, 211], and the test case that executes more
number of such nodes has the maximum chance of finding errors.

The test-suite minimization problem may be viewed as expressing it as an ILP
problem in terms of the objective function and a set of constraints. Given that these
constraints are identified and the objective function is formulated, ILP guarantees an
optimal solution to a mathematical problem. We refer to Table 5.1 for representing
the test suite minimization problem as an ILP problem. In the formulation of the
problem, we focus to maintain the coverage of all the affected nodes and to minimize
the sum of the cohesion values to maximize the fault detection with minimum test
cases. Below, we define the terminologies required for formulating the proposed
minimization problem:

e The Set IN: N represents the set of all the affected nodes n; with respect to

the change.

e The set S: For each test case t; € ST, there is some s; € S that corresponds
to the set of affected nodes covered by ¢; (refer third column of Table 5.1).

¢ Decision variables: Each test case t; € ST is represented by a decision
variable b. The value of b is equal to 1 if test case ¢; is included in the cover,

and is 0 otherwise.

e Objective function: It is used to minimize the number of test cases needed
to cover all the affected nodes and to minimize the sum of cohesion values of
the nodes covered by the minimized test cases. c; refers to the values shown

in the last column of Table 5.1.

e Constraints: Each constraint refers to each node of ASG, i.e. it ensures that

5.2 Proposed Approach for Test Suite Minimization 107

each affected node is covered by a test case in MT.

e Constraint coefficient matrix: The constraint coefficient matrix, X, is a
matrix with N rows, one for each affected node, and S columns, one for each
test case. Each element x; ; of this matrix is 1 if test case t; covers affected
node n;, and is 0 otherwise.

Considering all these above concerns, the complete test suite minimization prob-

lem is represented in ILP as follows:
S|
Minimize : Z cjb;
j=1

Subject to:

S|
mebj > 1, i = 1,...,|N|, where b; binary value for j = 1,...,]5].
j=1

Thus, the ILP encoding of our motivating example is given in Figure 5.4. Line 1
shows the five binary variables corresponding to the five test cases in Table 5.1.
Line 2 defines the objective function for minimization which is weighted by the
sum of cohesion values (refer fourth column of Table 5.1). Lines 3 - 33 define the
constraints to achieve 100% affected-nodes coverage. Thus, Line 33 clearly shows
that the value of b5 has to be 1 to achieve 100% coverage by the minimized test
suite.

Once the encoding part is complete, any standard solver can be used to solve
the given ILP problem. We solved our stated ILP problem using CPLEX, a soft-
ware package for linear, network, and integer programming. Though CPLEX ia a
commercial platform, it is available for free with restricted features for academic
and research. The minimized test-suite (MT) given by this process for the test data
in Table 5.1 is MT = {T'8,T10}. Figure 5.5 shows the percentage of faults detected
by ST and MT. The rectangles in Figure 5.5 show the percentage of faults de-
tected by the test cases of MT and the diamonds represent the percentage of faults
revealed by ST. The number of rectangles or diamonds in the figure denotes the
number of test cases in the corresponding test suite. It is evident that even after
60% minimization of ST, the percentage of faults detected by MT is comparable
with that of ST. The graph implies that within constrained budget and time, the
testers can still ensure good quality of the software with M T considering 100% fault

detection is never possible in a real scenario.

108 Regression Test Suite Minimization

1. bin: b1, b2, b3, b4, b5;

2. min: 0.65b1 +9.78b2 +6.86b3 + 6.64b4 + 8.79b5;
3. 1 b1 + b2 + b3 + b4 + b5 == 1;

4. 2 b1 + b2 + b3 + b4 + b5 == {;

5 3 bl + b3 + b4 + b5 >= 1;

6. 4: b1 + b3 + b4 + b5 == 1;

7. 6 bl + b3 + b4 >= 1;

31. f3_out: b2 + b4 + b5 == 1;

32, f4: b2 + b3 + bd == 1;

33. f6_out: bs == 1;

Figure 5.4: ILP encoding of the test data given in Table 5.1.

120
100 5‘—5—1-9%
5,025
E 50 B 33759 487
% & 275 & 3,75
- 1 625
z 60 &
E o # 5T
@ BT
o
20
I:I T T T T T 1
o 1 2 3 4 5 6
5l. No. of Test Cases

Figure 5.5: % of fault detected by ST and MT.

5.3 Experimental study

After demonstrating the effectiveness and usefulness of the proposed approach (refer
Figure 5.5) for the example program given in Figure 4.2, we are posed with the

following research questions (RQ):

RQ1: Effectiveness. Does the minimized test suite actually guarantee acceptable

5.3 Experimental study

109

Table 5.2: Comparison of our proposed change-based cohesion metric with different

existing approaches.

Comparison Features | LCOM | TLCOM | RCI | CBMC | DRC | ACCo

Constructor No No Yes Yes Yes No

Excluded
) Destructor No No No Yes Yes Yes

special

Access No No Yes Yes Yes Yes

Methods
Delegation No No No Yes Yes Yes
Property 1 No No Yes Yes Yes Yes
Briand’s | Property 2 Yes Yes Yes Yes Yes Yes
Properties Property 3 No No Yes No Yes Yes
Property 4 Yes Yes Yes Yes Yes Yes
Transitive dependency No Yes No No Yes Yes
Inheritance No No No No No Yes
Interface No No No No No Yes
Polymorphism No No No No No Yes
Templates No No No No No Yes

quality (detection of faults) as compared to original test suite for all the ex-

perimental programs?

RQ2: Usefulness. Is it feasible to generate the minimized test suite within accept-

able time limits?

A change set is maintained that refers to the set of concurrent changes carried out

on the program. The test cases for the input program are generated using Junit

Eclipse plugin !. To find the fault detection capability of the test cases, the program

was seeded with mutants. To generate the mutants for the input program, we used

MuClipse. MuClipse [183] is the Eclipse plugin version of puJava that generates two

types of mutation operators both for traditional mutation and class mutation. We

have considered both types of mutations in our approach. Smith et al. [183] and

Do et al. [60] have carried out an extensive empirical study and justified mutants

as good proxy of real faults.

"http://www.tutorialspoint.com/junit /junit_plug_with_eclipse.htm

110 Regression Test Suite Minimization
Table 5.3: Test-suite minimization result of different programs.
Sl Programs LOC| Avg. Total # Mu- | Selected Test Suite | Minimized Test Suite
No # of | # of | tants
Af- Test
fected Cases
Nodes
% of | % of % of | % of
se- faults mini- faults
lected de- mized de-
test tected test tected
cases cases
1 Expt. Program | 54 33 20 14 25 100 54.8 91.6
2 Calculator 75 51 15 42 46.7 94 57.1 90.8
3 Elevator 90 54 25 27 40 98 57.2 92.1
4 Stack 114 | 72 22 35 40.9 96 57.3 92.6
5 Sorting 130 | 86 16 43 31.3 89 51.5 92.6
6 BST 130 | 74 20 51 60 100 54.5 90
7 CrC 261 | 94 18 46 33.3 93 52.8 91.5
8 DLL 277 | 83 24 47 25 98 52.9 89.4
9 Notepad 300 | 68 17 17 47.1 89 51.8 86.3
10 ATM 900 | 97 33 39 36.4 97 54.2 91.8
11 Elevator_spl 1046 | 105 15 53 66.7 97 54.2 91.3
12 Email _spl 1233 | 98 18 18 61.1 100 50.3 94.8
13 GPL_spl 1713 | 112 22 22 63.6 94 53.5 92.2
14 Jtopas 5400 | 241 16 28 56.3 92 59 88.2
15 Nanoxml 7646 | 544 14 32 50 95 50.4 91.6
£
-
w
g
- M % of Minimized Test Suite C1
'E W % of Minimized Test Suite C2
'-E M % of Minimized Test Suite C3
;‘,‘; W % of Minimized Test Suite C4
W % of Minimized Test Suite C5
£ E g E ® E g g _E E 3|5 = E < m % of M?nimized Test Su?te ce
E" <k a *g =] = EI ﬁl EI 2 é m % of Minimized Test Suite C7
& 3| = v 2 58| ° 2 | m%of Minimized Test Suite C8
._% = % of Minimized Test Suite C9
m % of Minimized Test Suite C10
1 2 3 4 5 -] 7 8 9 10 |11 | 12 | 13 | 14 | 15
Programs
Figure 5.6: Test suite minimization results for all the ten changes made to the

program.

5.3 Experimental study 111

B % of Faults Detected C1

W % of Faults Detected C2

% of Faults Detected C3

B % of Faults Detected C4

2 of Faults Detected

B % of Faults Detected C5

W % of Faults Detected C6

u % of Faults Detected C7

BST
Crc
DLL
ATM

Jtopas

% of Faults Detected C8

Elevator
Stack
Sorting
Motepad
Email_spl
GPL_spl
Manaoxml|

% of Faults Detected CO

Calculator

Expt. Program
Elevator_spl

% of Faults Detected C10

7 8 9 |10 (11 |12 (13 | 14 | 15

=
ra
w
=
wn
@

Programs

Figure 5.7: Fault detection results of the minimized test suite for all the ten changes

made to the program.

5.3.1 RQ1: Effectiveness

To represent the minimization problems, we computed the affected statements with
respect to every change made to the experimental programs and computed their
affected component cohesion values as discussed in Section 5.2.4. We also theoret-
ically validated our ACCo metric in Section 5.2.4. In Table 5.2, we compare our
proposed ACCo metric with some of existing metrics. In Table 5.2, it can be ob-
served that the approaches such as LCOM [47], TLCOM [7] and CBMC [40] fail to
satisfy all the four basic properties of cohesion [31], whereas RCI [32], DRC [218§]
and ACCo satisfies all the properties. Among these three approaches that satisfy
Briand’s properties only DRC and ACCo consider transitive dependency to com-
pute the cohesion. In addition to the transitive dependency among program parts,
our proposed ACCo approach considers the impact of inheritance and other object-
oriented features (such as interface, polymorphism, and templates) on the cohesion
measurement. Thus, ACCo metric gives a better cohesion result than DRC.

A total of ten changes are made to each program and slices are computed for
every change made to the programs. The total number of computed slices for all
the fifteen programs is 150. These slices are used to access the impact of change
and select the regression test cases. Table 5.3 shows the initial percentage of the
selected test cases and the result of seeded fault detection for every experimental

program. Then, we computed and compared the effectiveness of the minimized test

112 Regression Test Suite Minimization

suite with the selected test suite. The percentage of minimized test suite and the
percentage of faults detected by the minimized test suite are shown in Table 5.3.
The proposed minimization approach achieved an overall test suite minimization of
54% approximately for all the fifteen programs. It is evident from Table 5.3 that
the minimized test suite revealed approximately 91% of the faults as compared to
95% by the selected test suite, which is quite acceptable. Figure 5.6 shows the
percentage of test-suite minimization achieved with respect to all the ten changes
made to each program. These changes are summarized in Table 4.3. Figure 5.7
shows the percentage of faults detected by the minimized test suite with respect
to all the ten changes made to the individual programs. Thus, our results confirm
that the proposed test suite minimization approach is effective in minimizing the

selected test-suite and can reveal most of the faults to ensure the quality of the

software.
B8
7
—_ & B Timelsec) C1
g 5
-E- B Timelsec) C2
4
-E 5 B Timelsec)C3
2 B Timelsec) C4
1
a B Timelsec)C5
B Timelsec) Ca

BST

crc

DLL
AT
GPL_spl
Jtopas

w Timelsec) C7

Calculator
Elawvator
Stack
Sorting
Motepad
Ernail_spl
Manaxml

Elevator_spl

w Timelsec) C&

Expt. Program

Time(sec) Co

W Time(sec) C10
7 B |9 10|11 (12 |13 | 14|15

=
[~
w
=9
(%3]
[=2]

Programs

Figure 5.8: Timing results of the minimized test suite for all the ten changes made

to the program.

5.3.2 RQ2: Usefulness

This research question addresses our concern that whether the proposed approach
can generate the minimized test suite in a reasonable amount of time. The usefulness
of the proposed approach is shown in terms of time taken to generate the minimized

test suite. It is observed that the proposed approach can generate the minimized test

5.3 Experimental study 113

suite in less than 1 second for all the changes made to the programs, provided the
selected test suite and their coverage information are available before computation.
The timing results in Figure 5.8 show the time taken to minimize the test suite for
every change made to the programs. This result includes the time to compute the
slices, select the test cases hierarchically, compute the cohesion values with respect
to the change impact analysis, and the time to minimize the selected test suite.
The percentage of minimization achieved is shown in Figure 5.6. However, the
timing results would improve when we fully integrate the different components of
our proposed minimization framework shown in Figure 5.1. Thus, the results show
that the proposed approach is very useful and scale better if the requisite test data

is collected during the initial testing of the software.

5.3.3 Threats to validity

Like many other techniques on minimization, the proposed approach also has some

threats to its validity.

e All the programs considered for experimentation represent various domains
of application. However, real industrial applications can be huge in size and

complexity as compared to the chosen programs.

e Intermediate graph-based slicing techniques can suffer scalability issues. To
overcome this limitation to some extent, we restricted our regression test se-
lection to method level only. Hence, the size of the selected test suite are
much less at finer granularity of test case selection. As a result, this could

have lessen the time of minimization.

e The proposed minimization problem is formulated based on the cohesion mea-
sure given in Section 5.2.4. However, many other researchers have proposed
various cohesion measures. Thus, the ILP problem may yield different results

if the cohesion measure of other researchers are taken into consideration.

e The mutants generated by MuJava sometimes may not represent the real-
faults of industrial applications. Thus, to remain close to the real-faults, we
asked our graduate and post-graduate students to seed the errors. This may
have resulted in some biasness in seeding the errors. Therefore, we considered

only those test cases that gave high coverage of these faults.

e Since minimization problems are NP-complete, we focused on a single cri-

terion for minimizing our test suite. However, considering other criteria for

114 Regression Test Suite Minimization

minimization such as coupling measure of affected components, time for fault
detection, energy utilization of the test cases, etc. may give some interesting
results. Research outputs of such multi-criteria minimization problems are

not addressed in this chapter.

5.4 Comparison with related work

The work in [131] motivates the proposed work presented in this chapter to use
integer linear programming for test suite minimization. Minimization techniques
focus on selecting a minimum number of test cases that satisfy a given criterion.
According to Li et al. [131], the proposed minimization technique selects those test
cases in less than 1 second that consume 95% less energy and maintains the cover-
age of testing requirements. However, the minimization time does not include the
time required to pre-compute the test data (such as energy consumption and cover-
age information). Whereas, the timing results of our experimental studies include
the time required to compute all the testing requirements. Unlike minimizing the
energy consumption, our work focuses on executing minimum test cases to achieve
comparable level of fault detection. Like our proposed approach, the techniques
discussed by Yoo and Harman [210] provided an elaborate, recent study on the
available techniques for test suite minimization, selection, and prioritization, and
are designed for regression testing. However, our approach introduces a new idea
of using cohesion measure of the affected program parts as the limiting criteria to
minimize the test suite for regression testing.

The results of the empirical study to investigate the limitations of single crite-
rion minimization techniques cariied out by Rothermel et al. [174] and Wong et
al. [208] concludes that single criterion-based minimization techniques compara-
tively detected fewer faults as compared to the original test suite considered. The
minimization technique focused on fault detection capability of the test cases. The
experimental results of our proposed work also confirm with the results of [174, 208].
However, our results show that under constrained conditions of time, our minimized
test suite gives acceptable performance in terms of fault detection. Jeffrey and
Gupta [105] considered multiple sets of testing requirements (e.g. coverage of differ-
ent entities) to overcome the limitations of single-criterion minimization techniques.
The results in [105] had shown an improvement over the existing techniques. In our
approach, we also considered similar coverage criterion. But, instead of seeking

complete program coverage, our approach rather focuses on achieving full coverage

5.5 Summary 115

of the program parts affected by the changes made to the programs. A two-criteria
variant of test suite minimization technique by Black et al. [28] computed optimal
result using an integer linear programming solver. The technique considered both
definition-use association coverage and the ability of test cases to reveal errors. The
results show that the error revealing ability of the test cases measured with respect
to a collection of program faults helped in revealing other program faults. As shown
in our results, the proposed minimization approach also focuses on the fault detec-
tion capability of the test cases. The test suites are minimized with respect to the

mutation faults that are accepted as good measures of the real faults [60, 183].

5.5 Summary

In this work, we have introduced a new approach of using cohesion measures of
the affected program parts to minimize the test suite for regression testing. We
formulated the minimization problem in integer linear programming and obtained
an optimal minimized test suite. The results of our studies show that the minimized
test suite is both effective and useful for regression testing. This approach enables
the testers to decide on the magic number of test cases to choose that would ensure
acceptable quality, especially during scenarios of constrained budget and time for
regression testing. Even though test suite minimization approach removes the re-
dundant test cases, but it does not lay any focus on the fault revealing capabilities
of the test cases. It is observed that some test cases reveal faults early during the
testing process than others. Finding an optimal order of execution of the test cases
will enhance the chances of detecting more errors early. So, in the next chapter, we

focus on finding an optimal order of test case execution through prioritization.

Chapter 6

Regression Test Case

Prioritization

In this chapter, we focus on Test Case Prioritization (TCP) of a given test suite
T to address the problem of regression testing. Test case prioritization focuses on
reordering the sequence of execution of test cases [66, 69, 104, 108, 175, 184]. The
sequencing of the test cases in a given test suite is done based on some established
criteria. The test cases having higher priority are executed earlier than the test cases
with lower priority. Many researchers [66, 104, 108, 132, 142, 148, 165] have proposed
different approaches to prioritize the test cases. All these approaches target to find
an optimal ordering of the test cases based on the rate of fault detection or rate
of satisfiability of coverage criterion under consideration. These techniques have
evolved mainly to improve the effectiveness of regression testing and/or to reduce
the cost of test case execution. This prioritization approach can be used with the
selective retest technique to obtain a version specific prioritized test suite [41]. The

required steps are as follows [41]:

i. Select T" from T, a set of test cases to execute on P’ .

ii. Find Tl/g, a permutation of 7", such that Tl/g will have a better rate of fault
detection than T".

iii. Test P" with TIID in order to establish the correctness of P* with respect to TIID.
iv. If necessary, create T", a set of new functional or structural test cases for P”.
v. Test P’ with T" in order to establish the correctness of P’ with respect to T".

vi. Create T, a new test suite for P’, from T', T and T".

118 Regression Test Case Prioritization

Table 6.1: A sample test case distribution and the faults detected by them.

TestCases/Faults TL | T2 | T3 | T4 | T5 | T6

f1 X X X

f2 X X X

f3 X X X

f4 X X

f5 X X

f6 X X

f7 X

f8 X

No. of faults 3 1 3 2 3 5
% of faults detected by two sample test case orderings.

T1,72,7T3,T4,T5,T6 | 375 | 50 | 75.0 | 75.0 | 87.5 | 100

T1,7T3,7T2,76,T5,T4 | 37.5 | 62.5 | 75.0 | 100 | 100 | 100

The rest of the chapter is organized as follows: In Section 6.1, we provide the
motivation of this chapter through an example and set our objectives. Section
6.2 discusses issues related to coupling measure in object-oriented programs. In
this section, we present our proposed coupling measurement approach. We prove
the correctness of the proposed approach by theoretically validating it as per the
established guidelines and properties. In Section 6.3, we discuss our proposed pri-
oritization approach that is based on the estimation of the coupling factor, and the
weight assigned to each node in the Affected Slice Graph (ASG). Section 6.4 dis-
cusses a case study and shows the working of our proposed algorithms. In Section
6.5, we provide the correctness proof of our algorithms. The complexity analysis of
the proposes algorithms is given in Section 6.6. In Section 6.7, we discuss the im-
plementation of this proposed approach and compare our work with some existing
related work by other researchers in Section 6.8. Finally, we summarize the chapter

in Section 6.9.

6.1 Motivation

Test case prioritization problem is best described using the example in Table 6.1.
The "X’ mark in the cells of the table represents that the particular test case in the
column reveals the presence of the corresponding fault in the row. Supposing the
test cases are executed in the order {T'1,72,73,T4,T5,T6}, then we achieve 100%

6.1 Motivation 119

Test case order: T1, T2, T3, T4, T5, T6 Test case order:T1, T3, T2,T6, T5, T4

120 120

100 100

80

80
60 60— 4

a0 —— APFD=62.5 a0 b APED= 68.75

20 —24 20

Percentage of Fault Detected

Percentage of Fault Detected

0

a
0 017 033 as 066 083 1 a 017 033 a5 0.66 083 1

Test-Suite Fraction Test-Suite Fraction

(a) APFD measure for the first test case or- (b) APFD measure for the second test case

dering. ordering.

Figure 6.1: APFD measure for the test case orderings in Table 6.1.

coverage of faults only after the sixth test case is executed. Whereas, if the ordering
of the test case execution is changed to {T1, T3, T2, T6, T5, T4}, then we achieve
100% coverage after the execution of the fourth test case. Therefore, finding the
order of test case execution is essential to detect the faults early during regression
testing. All the existing approaches [66, 69, 104, 108, 162, 163, 175, 184] target to
find an optimal ordering of the test cases based on the rate of fault detection or rate
of satisfiability of coverage criterion under consideration. Rothermel et al. [175]
proposed a metric to ensure the efficiency of any of the existing prioritizing tech-
niques. This metric is called Average Percentage of Fault Detected (APFD) and is
used by many researchers to evaluate the effectiveness of their proposed techniques.
APFD measure is calculated by taking the weighted average of the number of faults
detected during execution of a program with respect to the percentage of test cases
executed. A sample distribution of the test cases and the number of faults detected
by them are shown in Table 6.1.

Let T be a test suite and 7" be a permutation of 7. The APFD for T" is defined as
follows:

n—1
APFD=1- 2zttt 1

nxl

Here, n is the number of test cases in T, [is the total number of faults, and F; is
the position of the first test case that reveals the fault 7.

The value of APFD can range from 0 to 1, but it is shown in percentage. Higher
is the APFD value for any ordering of the test cases in the test suite, higher is the
rate at which software faults are discovered [60, 175]. APFD measures for the two

test case orderings given in Table 6.1 are shown in Figure 6.1a and Figure 6.1b.

The existing techniques [66, 69, 104, 108, 175, 184] were primarily developed

120 Regression Test Case Prioritization

to target procedural programs. Therefore, these techniques are hardly proven to
be efficient when applied to object-oriented programs. In case of object-oriented
programs [38, 49], the programming complexity shifts from method interaction to
object relations and interaction among objects. Very few existing work [162, 163]
focus on the test case prioritization for object-oriented programs. The different
dependences present in an object-oriented program need to be considered in order
to find an efficient order of the test cases. This is because, these dependences be-
tween distinct program parts affect the behavior of other parts in the program in
the context of some modification done to some part of the program. In this con-
text, it is needed to make a thorough analysis of the dependences between different
programming constructs and to detect the critical parts of the programs.

To identify the interactions and dependences among the program constructs, it
is essential to graphically model the program under test through some intermediate
graph representation [119, 152, 198]. From this intermediate graph representation,
named affected slice graph (ASG), the nodes that directly affect or get affected
with respect to some modification done to the program are sliced. The process of
constructing an ASG has been discussed in Section 5.2.3. The critical nodes in ASG
that have a high probability of being erroneous are then determined by estimating
their change-based coupling values. We calculate the change-based coupling of each
node in the ASG to estimate its criticality based on fault proneness. Therefore,
any test case which covers these critical nodes has a higher chance to uncover the
error(s) early in the testing process and hence is given more priority than other test
cases in the test suite.

Based on the above motivations, we propose an approach to prioritize the test
cases present in a given test suite using the affected component coupling (ACC)
value of each node ASG that are covered by the test cases. We fix our research

objectives as follows:

i. To develop a mechanism to compute the ACC value of each node in the
obtained affected slice graph (ASG).

ii. To cluster the ACC values [197] into groups based on their criticality and to
assign a weight [150] against each group such that, a node having a higher
ACC value will get more weight in comparison to a node having lower ACC

value.

iii. To assign a weight to each test case t; in the given regression test suite T’

based on the total weight of all the nodes that are covered by ¢;.

6.2 Coupling in Object-Oriented Programs 121

iv. To obtain the prioritized test suite by sorting all the selected test cases in the

decreasing order of their computed weights.

6.2 Coupling in Object-Oriented Programs

Coupling is a software metric [99, 147] that gives a measure which signifies how
one module depends upon or affects the behavior of another module. It is reported
that a module having high coupling value is more erroneous than other modules
[112]. This is because software defects are more often the result of incomplete or
incorrect comprehension of a program segment. Therefore, locating such a program
segment that posses a challenge to comprehension is essential and is represented
by the coupling measure of the program segment. As a result, a test case that
executes a module with high coupling value will reveal more faults than other test
cases. Many techniques exist to measure the coupling value of the program segments
[15, 30, 89, 99, 128, 150]. Among all the coupling metrics [30, 65, 150, 171], export
coupling metric has the strongest association with fault proneness [65] in an object-
oriented program.

A study on a C++ telecommunication system [29] also establishes the associa-
tion of export coupling with fault proneness.

The two hypotheses presented in support of the above claim are as follows:

i. Classes with high export coupling values are used more frequently than other
classes. This is because, more the number of out going dependences imply
that more classes and methods are using or dependent on it. Therefore, even
if all the classes have the same number of faults in them, more faults are

detected in a class with high export coupling value[65].

ii. The class with high export coupling value acts as a server and other classes
using it are its clients. Therefore, a client of class D makes usage of D’s
behavior. A class with higher export coupling value has more clients and
hence more times the methods are used. Since the number of usages can be
quite large, it is more likely that this class D will have a subtle fault that
migrates to the clients. This migration of fault makes testing difficult [65].

In procedure-oriented programs, two modules are said to be coupled if they inter-
change data among them during function calls or if the interaction occurs through
some shared data. In these circumstances, the modules are said to be tightly cou-

pled. Coupling gives the complexity of a module. Slicing based approaches [89, 150]

122 Regression Test Case Prioritization

can be used to measure how one module affects another module in a traditional soft-
ware system. Henry and Kafura [97] developed an approach to measure coupling
based on information flow. Harman et al. [89] used program slicing to measure cou-
pling in traditional software systems. The different types of coupling [64] that can
exist between any two modules m1 and m2 are data coupling, stamp coupling, con-
trol coupling, common coupling, and content coupling. The details and definitions

of these types of couling can be found in [64].

i. Data coupling: Data coupling exists between m1 and m2, if m1 passes some

elementary data as parameters to communicate with m2.

ii. Stamp coupling: Stamp coupling exists between m1 and m2, if m1 passes some

composite data item as a parameter to communicate with m2.

iii. Control coupling: Control coupling exists between m1l and m2, if the data

from m1l order the execution of instruction in m?2.

iv. Common coupling: Modules m1 and m2 have common coupling if they share

some global data items.

v. Content coupling: Content coupling exists between modules m1 and m2, if

they share code.

However, in an object-oriented programming environment, coupling can exist not
only at the level of methods but also at the class level and package level. Therefore,
coupling represents the degree of interdependence between methods, between classes
and between packages, etc. Many researchers have proposed different slicing based
mechanisms [15, 30, 128] to measure coupling in an object-oriented framework.
There exists three different frameworks to measure coupling factors in an object-
oriented paradigm.

Eder et al. [64] first proposed three different types of relationships among pro-
gram components that contribute to coupling. The three different relationships
are: interaction relationship between the methods, component relationship between
classes and inheritance between classes. These relationships are used to derive differ-
ent dimensions of coupling, which are then classified according to different strengths.
Hitz and Montazeri [99] next proposed methods to measure coupling at object level
and at the class level for an object-oriented program. The object level coupling is
determined by the state of an object. Then, the class level coupling is determined

by the state of the object implementation. They also proposed different strengths

6.2 Coupling in Object-Oriented Programs 123

of the coupling measurement. Briand et al. [30] computed coupling as the measure

of the interactions between the classes of an object-oriented program.

The coupling strength is determined by the type of interaction, frequency of
interaction between the classes and the locus of impact of the interaction. In all the
previous existing frameworks [30, 64, 99], coupling measurement has been consid-
ered as interactions at method and class levels only. Our approach is a combination
of all the three proposed frameworks for object-oriented programs. The comparison
of our mechanism with some previous mechanisms [30, 64, 99] that measure cou-
pling is shown in Table 6.2. From Table 6.2, it can be observed that our approach
incorporates all the features suggested in previous frameworks. Our mechanism

”

does not consider the feature “pointers to methods,” as the concept of pointers is
not explicitly present in Java programs. In our technique, we extend the existing
frameworks by computing coupling at all the hierarchical levels, i.e. at statement

level, method level, class level and package level.

There are many factors such as information hiding, encapsulation, inheritance,
message passing and abstraction mechanisms, that contribute to coupling in object-
oriented programs. High coupling affects program comprehension and analysis. As a
result, it becomes very difficult to maintain software systems. In an object-oriented
program, coupling can exist between any two components due to message pass-
ing, polymorphism and inheritance mechanisms of object-oriented programs. These
components include packages, classes, methods and statements. Two statements sl
and s2 are said to be coupled if s1 has some dependence (control, data or type de-
pendence) on s2. Methods in an object-oriented program belong to the constituent
classes. It implies that a method is either coupled with a method in the same class
or with another method in a different class. Thus, coupling between two methods

ml and m2 in an object-oriented program can exist in the following situations:
i. when m1 invokes m2 by passing some data as parameters.
ii. when m1 depends on the data returned by m2.
iii. when m1 shares some global data with m2.
If the methods of any two classes are coupled, then the corresponding classes are

said to be coupled. Similarly, the container packages of the coupled classes are also

said to be coupled.

124 Regression Test Case Prioritization

Table 6.2: Comparison with mechanisms that measure coupling.

Sl. No. | Properties Eder et | Hitz & | Briand Our ap-
al. [64] Mon- et al. | proach
tazeri [30]
[99]

Methods share data X X

2 Method references at- X X
tribute

3 Method invokes method X X X X
Method receives pointer to X
method

5 Class is type of a class at- | X X X X
tribute

6 class is type of a method’s | X X X X
parameter or return type

7 class is type of a method’s | X X X
local variable

8 class is type of a parameter | X X
of a method invoked from
within another method

9 Class is ancestor of another | X X X
class

10 Template class X

6.2.1 Affected Component Coupling (ACC)

Harman et al. [89] used slicing technology to compute inflow and outflow of a
node, as an application of slicing to coupling. In their approach, the inflow into a
module m is calculated by identifying the definitions of variables that are outside
m but contained in the slice. Similarly, outflow of m is computed by identifying the
program parts outside m, whose slice includes a variable of m. Harman et al. [89]
again observed that presence of a single node n in the slice that is outside the body
of m indicates an information flow either from m to n or vice-versa. We represent
these information flow (inflow & outflow) between any two nodes in the form of
edges in ASG. For any node n in ASG, we compute the inflow to n by counting
the number of nodes traversed in the backward direction from node n. Similarly,
outflow is computed by counting the number of nodes traversed in the forward
direction from node n. Coupling of a node n in ASG G, = (Ng, E,) is defined as
the amount of inflow and outflow of n among other nodes. Below, we define the

terms related to the computation of proposed export coupling factor.

Definition 6.1. Affected component coupling of a given node n is computed as the

normalized ratio of dependence of n, ¥(n), to the total number of affected nodes in

6.2 Coupling in Object-Oriented Programs 125

the ASG, |Ny4| — 1, as the node under consideration is excluded. This coupling is
measured with respect to the change made to the program that was taken as slicing

criterion to generate ASG. This coupling measure is given as,

sccy = el

where ¥(n) = Dep(n). Dep(n) is defined in Definition 5.1.

Definition 6.2. The updated coupling of a method node M in ASG G, = (N, E,)
is defined as the average of the coupling values of all its elements (parameters and
statements) along with its own coupling measure. Let a method node M have j
number of elements i.e. mi,na,...,nj. Thus, coupling of the method node M is

given as

~ACC (M) + Y01, ACC (ny)
B j+1
Definition 6.3. The updated coupling of a class node C in ASG G, = (N, E,)

is defined as the average of the coupling values of all its elements(attributes and

ACC (M)

methods) along with its own coupling measure. Let a class node C' have k number

of elements i.e. ni,na,...,nk. Thus, coupling of the class node C is given as

_ACC(O)+XF ACC (ny)
N kE+1

Definition 6.4. The updated coupling of a package node P in ASG G, = (N, E,)

is defined as the average of the coupling values of all its elements(classes and sub-

ACC (C)

packages) along with its own coupling measure. Let a package node P have | number

of elements i.e. ni,ns,...,n;. Thus, coupling of the package node P is given as

ACC (P) = ACC (P)+ Yt ACC (n)
l+1
Definition 6.5. The coupling of the sliced component £°, where ¢ is the point of
modification taken as the slicing criterion, is thus defined as the average coupling
value of all the nodes (packages, classes, methods and statements) in ASG G, =
(Ng, E,) and is given as
_ailAcc ()

ACC (&) = A , where n; € N,.
a

Definition 6.6. The coupling between multiple changes made to the program is
given as the ratio of the size of common program elements present in the respective

slices £, 1 <1 < m, where m is the number of changes made to the program, to the

126 Regression Test Case Prioritization

sum of the size of each slice. The slice & represents the slice obtained with respect to
the i*" change made to the program. Thus, the coupling between the changes made

to a program P is given as,

Accpsy = N &l

>ty &
6.2.2 Theoretical Validation

This section shows the theoretical soundness of the proposed measure. We show that
this approach satisfies the four basic properties for coupling measure as suggested
by Briand et al. [31]. Even though these four basic properties are not sufficient
to characterize the proposed coupling measure in a rigorous manner but are neces-
sary to prove the correctness of this approach. There exists many more validation
frameworks [189, 204] in the literature, but we validate our approach with Briand’s
framework and have left other frameworks for future study. The properties for val-
idating this approach along with their proof are given below:

Let G, = (Ng, Eq) be the ASG, where N, is the set of affected nodes and E, be the
set of relations (edges) connecting the affected nodes. ACC (n) gives the coupling
value of any node n in Gj.

Property 1: Non-Negativity and Null

This property states that the coupling value of an entity should be null, i.e. ACC (n) =
0, when there exist no relationships for the entity, otherwise, the coupling value is
non-negative and normalized, i.e. 0 < ACC (n) < 1, for any node n in G,.

Proof. For any node n in G, if there exists no relationships (represented as edges),
then ¢(n) =0 = ACC(n) = ||]i,/)£|n_)‘1 =0.

Further, for any node n € G, inflow(n),outflow(n) C N, = 1(n) C N,. If
(n) = Ny — {n}, then |[¢(n)| = [Ny =1 == ACC(n) = 1. Hence, it implies
0 < L < 1. Therefore, 0 < ACC(n) < 1 will always hold true.

Property 2: Monotonicity

This property states that adding a new relationship (edge) to the ASG must not
decrease the coupling value of any node, i.e. if Gga = (Ng2, Eq2) is obtained by
adding an edge < n1,n2 > to G41 = (Na1, Ea1), then ACCs (n) > ACC: (n), where
ACCq (n) and ACCy (n) are the coupling values of node n in G41 and G2, respec-
tively.

Proof. We use 11 (n), and 15 (n) to represent the dependence set of a node n in
Ga1 and G,a, respectively.

Case 1: If nj,ny € ¢ (n), then adding a new edge < nj,ne > will not change

6.2 Coupling in Object-Oriented Programs 127

1 (n). Hence, ¥ (n) = ¢ (n) = ACCoy (n) = ACCos (n).

Case 2: If n; ¢ 91 (n) A ng € 91 (n), then

Case i: if ng € Inflow;(n), then adding < ny,ny > will result in Inflows(n) =
Inflowi(n)U{n;}. Thisimplies [Inflows(n)| = |Inflowi(n)|+1. Since, |Out flows(n)|
= |Out flowi(n)| in this case, so |Inflows(n)| + |Outflows(n)| = |Inflow(n)| +
|Out flowi(n)| +1 = |w2| = |¢1] + 1. Therefore, ACCs(n) > ACC4(1), since
‘Na1| = |Na2|-

Case ii: if n; € Outflow;(n), then adding < n1,ne > will result in Out flows(n) =
Outflowi(n) U {n2}. This implies |Outflows(n)| = |Outflowi(n)| + 1. Since,
[Inflows(n)| = |Inflowi(n)| in this case, so |[Inflowa(n)| + |Outflows(n)| =
|[Inflowi(n)| + |Outflowi(n)] +1 = |¢a| = |[¢1| + 1. Therefore, ACCs(n) >
ACC4 (1), since |Ng1| = | N2l

Therefore, adding an edge does not decrease the coupling of any node in G,.
Property 3: Merging

When two sets of nodes N1 and Ny are merged to form a single set of nodes N s.t.
N = Ny U Ns in G, then this should not increase the coupling value of any node
n € N,i. e. ACC(Ny)+ ACC(N2) > ACC(N), since the two sets of nodes may
have some common relationships.

Proof. Let Ni and N> be two sets of nodes such that Ny N Ny # ¢. For any node
ny € N1, ng € Ny and n € N, let ¥(n1) N ¥(ng) # ¢.

Case 1: One of the possibility is that Inflow(ni) N Inflow(ns)
#¢ N Outflow(ny) N Outflow(ng) # ¢.

This implies that |[Inflow(ni) U Inflow(ng)| = |[Inflow(ni)| + [Inflow(ns)l
— |Inflow(ny) N Inflow(ng)| and |Out flow(ny) U Outflow(ng)| = |Outflow(ny)]
+ |Out flow(n2)| — |Out flow(n1) N Outflow(ng)|.

Therefore, [¢(n)| = |[Inflow(n1) U Inflow(na)| + |Outflow(ny) U Outflow(ns)|
= [Y(n)|] = |[Inflow(ni)|+ |Inflow(ng)| — |Inflow(ni) NInflow(ng)| +
|Out flow(ny)| + |Outflow(ng)| — |Outflow(ni)| N |Outflow(ns)|.

Hence, ¥(n) = |¢(n1)] + |¢(n1)] — k,where k = —(|Inflow(ny)| N|Inflow(ny)|+
|Out flow(ni)| N |Outflow(nz)|), is a constant.

Thus, ACC(n) = iy = BlliGullb - — ACC(n) = ACC(n1)+ACC (ng)—
k' wherek = —ﬁ. Hence, it is proved that ACC(n1) + ACC(n2) > ACC(n).
Case 2: The other possibility is that In flow(ny) N Inflow(nz) # ¢V Out flow(ny) N
Out flow(ng) # ¢.

Case i: Supposing Inflow(ni) N Inflow(nz) # ¢ and Out flow(ni) N Out flow(ng) =
¢. This implies that [Inflow(n1) U Inflow(ng)| = |[Inflow(n1)| +|Inflow(ng)|—

128 Regression Test Case Prioritization

|[Inflow(ni) N Inflow(ng)l

and |Out flow(ny) U Outflow(ng)| = |Outflow(ni)|+ |Outflow(ns)|.
Therefore, [(n)| = [Inflow(n1) U Inflow(na)| + |Outflow(ni) U Outflow(ns)|
= |¢Y(n)| = |Inflow(ni)|+ |[Inflow(n2)| — [Inflow(ni) NInflow(na)| +
|Out flow(n1)| + |Out flow(na)|.

Hence, ¥(n) = |[¥(n1)| + |[¥(n1)| — k, where k = —(|Inflow(ny) N Inflow(ns)]
is a constant.

Thus, ACC(n) = (Pl = WOwWLpmll=k - 40C(n) = ACC(ny)+ACC (n2) -

/

k,
where k' = —#. Hence, it is proved that ACC(n1) + ACC(ng) > ACC(n).
Similarly, it can be proved for Case ii: such that Inflow(ni) N Inflow(n) =
¢ and Out flow(ny1) N Out flow(nz) # ¢. Therefore, it is proved that merging two
dependent sets of nodes will not decrease the coupling value.

Property 4: Disjoint Additivity

When two disjoint sets of nodes Ny and Ny are merged to form a single set of
nodes N such that N = Ny U Ny in G, and N1 N Ny = ¢, then the coupling value
of any node n € N is equal to the coupling in two original set of nodes, i. e.
ACC(Ny) + ACC(Ny) = ACC(N).

Proof. Let N1 and Ny be two sets of nodes s.t. N; N Ny = ¢. For any node
ny € N1, ng € Np and n € N, ¢(n1) N (n2) = ¢, as the sets are disjoint. There-
fore, Inflow(ni) N Inflow(n2) = ¢ and Outflow(n1) N Outflow(nz) = ¢.
W(n) = Inflow(n) U Out flow(n)

= [¢(n)| = [Inflow(ny)| + |Out flow(ny)| + |[Inflow(ns)|+ |Out flow(ns)]

= [P(n)| = [¢(n1)] + [P(n2)]

Y| _ [¥(n Y(n
— ffith = B+ o

Hence, ACC(n) = ACC(n1) + ACC(n2). Therefore, it is proved that after adding

two disjoint sets, the coupling value of a node does not change.

6.2.3 Framework Criteria

This section discusses the six guidelines framed by Briand et al. [30] for any coupling
measuring framework to satisfy and shows how these issues are addressed in case
of our approach. Though these criteria are not sufficient to validate the coupling
measure as compared to the properties, but these are necessary as they strongly

influence the goal of the stated measurement. These criteria are as follows:

i. The type of connection: The type of connection refers to the mechanism that

6.2 Coupling in Object-Oriented Programs 129

ii.

iii.

iv.

constitutes the relationship between two program components. In our ap-
proach, the program components correspond to the nodes of the ASG and the
connection between the nodes corresponds to the different dependence edges
that exist between the nodes. The various dependences considered here are
discussed in Section 4.2.1. Hence, we have a well formed mechanism of iden-
tifying the connections between the program components to measure their

coupling values.

The locus of impact: It refers to the decision of using import coupling or export
coupling. Import coupling is used for the analysis of attributes, methods,
classes, or packages as clients. However, export coupling is used to analyze
the attributes, methods, classes, or packages as servers. In our approach, we
used export coupling as our proposed metric [65]. This is because, it is difficult
to keep track of error propagation when faulty information flow from the server
(attributes, methods, classes, or packages) to the clients. This requires more

testing to be carried out.

Granularity of the measure: Granularity refers to the level of detail at which
information for coupling is gathered. Granularity depends upon two factors:
i) first is the components that are considered to measure the coupling factor,
ii) second is how exactly the connections are counted. The affected program
components (statements, methods, classes and packages) of an object-oriented
program those correspond to the nodes in the ASG, are considered for com-
puting the coupling factor. These affected program components are identified
with respect to some modification made to the program under considera-
tion. The inter dependences between these affected program components are
represented as edges in the intermediate graph ASG. The second factor of
granularity, i.e. counting the connections, is addressed by counting the num-
ber of nodes that are connected by the edges to determine the frequency of

interactions between these affected program components.

Stability of the server: This constitutes stable and unstable classes. Stable
classes being library classes are not subjected to changes, so they do not
trigger any change in the classes using them. Whereas, the unstable classes
are liable to changes and hence can trigger modifications in client classes deep
in the hierarchy. We consider both the stable and unstable classes and/or
packages that can either have a very high or negligibly small impact on the

modifications of the client classes.

130 Regression Test Case Prioritization

v. Direct or indirect coupling: If a method m1 invokes another method m2, then
there exists a direct coupling between ml and m2. If m2 further invokes
another method m3, then there exists an indirect coupling between m1 and
m3. The depth of indirect coupling can be very deep in the hierarchy and can
be a bottleneck for testing. We address both direct and indirect coupling in

our approach through our backward and forward graph traversal mechanism.

vi. Inheritance: Inheritance based coupling can exist under following conditions:
when a class directly inherits another class, a class instantiates the object
of another class and when polymorphism exists. All the above three situa-
tions are represented as dependences in our intermediate graph representation.
When a class directly inherits another class or instantiates the object of an-
other class, it is represented by the inheritance edge and instantiation edge,
respectively. The attributes and methods of the server class that are referred
in the client class are shown through inherited membership edge. In the graph
representation, each method call is associated with every possible method
definition through polymorphic call edges. Hence, our approach considers all

forms of coupling due to inheritance.

6.3 Our Proposed Approach for Regression Test Case

Prioritization

In this section, we first discuss our proposed approach to prioritize a given test suite
based on the test cases selected for regression testing. The activities of our proposed
prioritization process are shown in Figure 6.2. These activities are summarized

below:
Step i. Construct the intermediate representation affected slice graph (ASG).

Step ii. Compute the affected component coupling (ACC) value of each node of the
ASG.

Step iii. Cluster the ACC values and assign weights to the nodes of ASG.

Step iv. Compute the weight of test cases and prioritize the test cases based on

their weights.

6.3 Our Proposed Approach for Regression Test Case Prioritization 131

6.3.1 Construction of ASG

ASG is the graphical representation of the slice that is computed with respect to
some change made to the program. The steps of constructing the ASG are discussed

in Section 5.2.3.

Construct ASG
Compute ACC values of
the nodes of ASG
assign weights

ompute Test Case Weight
and Prioritize

Figure 6.2: Activities of Test Case Prioritization.

Table 6.3: Test case coverage of fault prone affected nodes.

Sl Test Nodes Covered # Test
No. | Case Nodes Case
Weight
T6 1,2,3,4,6, 7 6 17
2 T7 1, 2, 21, 46, 27, 3, | 20 41

f4, 29, 30, f27_1_out,
f27_2_out, 33, 34,
f3_out,A3_out, 24, 25,
26, A5, A6

3 T8 1, 2, 3, 4, 6, 7, 21, | 21 41
46, 27, {3, f4, 29, 30,
f27_1_out, f27_2_out, 19,
20, A5, A6, 25, 26

4 T9 1, 2, 3, 4, 6, 7, 21, | 17 40
46, 52, 27, f4, 33, 30,
F3_out, 34, 24, A6

5 T10 1, 2, 3, 4, 21, 23, | 12 31
A3_out, 46, 34, 33,
F3_out, 24

132 Regression Test Case Prioritization

6.3.2 Computation of ACC

We propose an algorithm named find Weighted Affected Component Coupling (find-
WACC) that is given in Algorithm 7. It takes the ASG and its total number of nodes
as input. It uses the formula given in Equation 6.1 to compute the ACC value of
each node in the ASG. It invokes Algorithm 5 at Line 4 to compute the outflow of a
node and invokes Algorithm 6 at Line 5 to compute the inflow of a node. Algorithm
7 computes the ACC values of each node and then updates these values for some
specific nodes such as package nodes, class nodes, method nodes and method call
nodes. The calculated ACC values of different nodes of the ASG given in Figure
5.2 are shown in Figure 6.3. Algorithm 7 takes the ASG as input and calculates the
ACC of each node as shown in Figure 6.3. We use the concept of information inflow
and outflow in this approach of export coupling measurement. The ASG represents
all form of information flow between any two nodes of a program in the form of
edges. So, we compute the outflow by counting the number of nodes traversed in
the forward direction from node n. We use Algorithm 5 to count the outflow of
a given node. It traverses forward from the input node and counts the number of
nodes that depend on the input node. Algorithm 5 counts the visited node, only if
its status is marked false. Otherwise, the algorithm skips the node and moves to
the next successor node. Similarly, inflow to a node is computed by Algorithm 6. It
traverses backward from the input node and counts the number of nodes on which
the input node depends. Algorithm 6 first checks the status of the visited node. It
counts the visited node, only if its status is marked false. Otherwise, it visits the
next predecessor node. Thus, our proposed affected component coupling (ACC) for
a given node n is computed as the normalized ratio of the sum of inflow and outflow
of n with total nodes in ASG. This is expressed as,

_linflow (n)| + |out flow (n)|
B ‘N a‘ -1

ACC (n) (6.1)

The detail computation of ACC for each node is shown in Section 6.4. The reason
for taking a change-based coupling into consideration is that any node having higher
ACC value is an indicator for that node to be more error-prone [65]. This is because
higher ACC value of a node indicates more dependence of other nodes on this source
of information. As a result, any error that occurs at the origin of information is
likely to be propagated to the dependent nodes. Therefore, higher ACC value of
a node implies the need for thorough testing at the origin of information to save
time and cost of retesting. Our approach of calculating the ACC values, includes

the effect of nested function calls, multi-level inheritance, method overriding and

6.3 Our Proposed Approach for Regression Test Case Prioritization 133

| £ Maodes details: node E@

[l Sr. Mo, Fode Mame ACT Weight
1 1 0.859375 3 =
2 2 0.9296875 3
2 3 0.953125 3
4 4 0.8125 2
a] 0.84275 3
5] T 0.84275 3
7 149 065625 1
a 20 065625 1
=] 21 0.7375 2
10 23 0.921875 3
11 24 0.FH375 1
12 25 0.53125 1
13 26 0.53125 1
14 27 0.¥7EFE573 2
15 28 0.78125 2
16 an 0.78125 2
17 33 0.88541567 3
18 34 0.90625 3
19 46 0.7833233 2
20 52 0.8333233 2
21 53 0.78125 2
22 54 0.78125 2
23 AZ1_1_out 0.75 z
24 A21_2_out 0.75 2
25 A5_out 0.90625 3
26 Xl 0.6875 1
27 Rl 0.6875 1
28 f27_1_out 0.75 2
29 f27_2_out 0.75 2
an T3 0.78125 2
)| 3_out 0.90625 3
3z 4 0.78125 2
EE fE_out 0.8125 2 ~|
4] | »]

Figure 6.3: The calculated ACC values of different nodes of the ASG in Figure 5.2
and their weights.

overloading, message passing, etc. on a node n. Our technique is more precise as
we compute the coupling value of only those nodes that are affected or get affected
by the modification done to the program under test (represented as ASG), instead

of the program as a whole.

Table 6.4: Impact types of ACC values.

Sl ACC Impact Weight
No. | range
1 0.7 —1.0 | Strong(Critical)Association
0.6 — 0.7 Moderate Association 2
0.0—-0.6 Weak or no Association 1

6.3.3 Clustering and Assigning Weights

Once the ACC values of all the nodes, have been computed, then the values are
clustered [150, 197] based on the category of the ACC value. K-means clustering
technique [197] is used to cluster the coupling values of each node in the ASG.

K-means clustering is a technique of automatically partitioning a set of given data

134 Regression Test Case Prioritization

into k groups. It first randomly selects k initial cluster centres and then iteratively

does the followings:

i. It assigns each data set to the cluster centre from which it is at minimum

distance.

ii. Then, each cluster center is updated to the mean value of its constituent

instances.

iii. The above steps are repeated until there is no further change in the cluster

centre.

The k cluster centres are chosen randomly from the data set. The value of k for
our approach is 3 for dividing the coupling values into three categories as shown in
Table 6.4. These three categories of fault association are: critical fault association,
moderate fault association and weak fault association. The computed ACC value of
any node of ASG can belong to either of these three categories.

Algorithm 7 assigns weight to the nodes of ASG based on the impact type of the
ACC value of each node. If the ACC value of a node x belongs to the category of
critical fault association i.e. 0.7 < ACC(x) < 1.0, then x is assigned with a weight
3. Similarly, if ACC value of a node x belongs to the category of moderate fault
association i.e. 0.4 < ACC(x) < 0.7, then x is assigned with a weight 2. Otherwise,
x belongs to the category of weak fault association and is assigned a weight 1. The
ACC value of each node in ASG and the corresponding weights assigned to them

are shown in Figure 6.3.

1
‘ I | —#— Low Faulty + Faulty - Mo Faulty

095} A : : f ; N
il /’.\ e —— —— Y R

./ : & 0 g centroid3 =0.805573
D8s|- : ; j : 5 o

g 08F \cemmldz H0.77ITE J_‘ : ; / il
E 0wk \//' : : \l—a—o—/ ; |

o - : : 5 : .

2 g7 : . ! ; :
0es - b e 5 L P
06l \: - centroid1 =0.634821: 5 il
055 |

P : i — : : p : :

05 | I i I | L L i I L L

D 3 b 5 12 15 18 21 gy, 27 0 33

Node SI. No.

Figure 6.4: K-Means Clustering of the ACC values of the nodes of ASG.

6.3 Our Proposed Approach for Regression Test Case Prioritization 135

Algorithm 5 Forward Traversal

1: procedure FTRAVERSE(ASG, x)
2: Yu € Succ|z] > Where x is the node under consideration for ACC
calculation and Succlz] is an array of succcessor nodes of x.
if (u= FALSE)
count = count + 1
Set w=TRUE
Call FTraverse(ASG,u)
else break

return count

end procedure

Algorithm 6 Backward Traversal

1: procedure BTRAVERSE(ASG, z)
2: Yu € Pred[z] > Where x is the node under consideration for ACC

calculation and Pred[z] is an array of predecessor nodes of x.

return count

3: if (u= FALSE)

4: count = count + 1

5: Set w=TRUE

6: Call BT raverse(ASG, u)
7 else break

8:

9:

end procedure

6.3.4 Computation of Test Case Weights and Prioritization of Test

Cases

The program under consideration is executed against each selected test case in a
given test suite to find the coverage information as shown in Table 6.3. The weight
of a test case depends upon the weight of the nodes that it covers. All the critical
and moderate nodes (as per the classification given in Table 6.4) with high weights
are shown in bold in the Nodes Covered column. The fourth column on Test Case
Weight, gives the total weight assigned to each test case. To compute the weights
and prioritize the given test suite, we propose an algorithm named Hierarchical Pri-
oritization of Test Cases using Affected Component Coupling (H-PTCACC). This
is given in Algorithm 8. This algorithm takes the test suite (containing selected
test cases for regression testing) along with their coverage information and ACC
values of each node in the ASG as its input. The output of the algorithm is a
prioritized set of test cases. For any test case t; € T, Algorithm 8 first computes
the sum of the weights of all the critical fault prone nodes covered by t; (critical
weight, Wtc). In Table 6.5, the third column gives the critical weights of all test
cases T6 to T10. Similarly, Algorithm 8 computes the sum of the weights of all the

136 Regression Test Case Prioritization

moderate fault prone nodes covered by ¢; (moderate weight, Wtm). This is shown
in the fourth column of Table 6.5 for each of the corresponding test cases. In the
same way, Algorithm 8 computes the sum of the weights of all weak fault prone
nodes (weak weight, Wtw) for each test case that are shown in the fifth column
of Table 6.5. The algorithm then computes the total weight of each test case by
adding its critical weight (Wtc), moderate weight (Wtm) and weak weight (Wtw).
The sixth column of Table 6.5 shows the total weight computed for each of the test
cases. The assigned weight of a test case is the summation of all the weights of the
nodes covered by that test case. Similarly, the weights of T7,78,T9 and T10 are
calculated.

Algorithm 8 assigns priority to the test cases based on their different computed
weights. The test case having a higher total weight is given higher priority in the
test suite. If any of the two test cases have same total weight then their priority
is decided based on their critical weight. The test case with higher critical weight
is given higher priority. Similarly, if the critical weights are also same then the
moderate weights are taken into consideration for prioritization. If the moderate
weight of the test cases are again same then the weak weights are considered for
prioritization. If still the weak weights are same for any two test cases, then both
the test cases are given equal priority. The seventh column in Table 6.5 shows the

final prioritized sequence of the selected test cases.

Table 6.5: Distribution of test case weights on the basis of fault prone impact.

SL Test Weight of | Weight of | Weight of | Total weight of | Priority (ac-

No. | Case Critical Fault | Moderate Weak Fault | Test Case cording to the
Prone Nodes | Fault Prone | Prone Nodes total wt. of
Covered Nodes Covered | Covered Test Case)

1 T6 15 2 0 17 14

2 T7 18 18 5 41 1

3 T8 15 20 6 41 11

4 79 24 14 2 40 117

5 T10 24 6 1 31 v

6.4 Case Study

Consider the example Java program shown in Figure 4.2. This program though a
very small program in size but it represents all the important features of a Java
program and ideally suits to explain the working of this approach. We perform

our decomposition slicing on EOOSDG as described in Section 4.2.4. The slice is

6.4 Case Study 137

Algorithm 7 findWACC(ASG, n)
Input: Affected Slice Graph (ASG), total number of nodes n
Output: Weighted Affected Component Coupling (WACC) of each node

1: forxz:=Vi,Vo,Va,...,V, > Where x is any node in ASG.

2: Setstatus, = FALSE

31 outflow := call FTraverse(ASG,)

4: inflow := call BTraverse(ASG,)

5. ACC[x] := 7(2"0‘1675:81710‘185)

6: End for > To update the coupling value of all the method, class and package nodes.

7: for w:= My, Ms, Ms, ..., Mp, > Where m is the number of method nodes in the graph.

(ACC[u]+Y 7 ACC[n;)) .
8 ACCu] := (].Jﬁml > n; is the statement/parameter node of method
M;, jis the total number of statement/parameter nodes of each M.

9: End for

10: for w:= C1,C2,Cs, ..., C’lS > c is the total number of class nodes.
Accul+SF Accin

11: ACC[u] := ¢ l %C:J;T)l i >

n; 1s the attribute/method node of class Cy, k is the total number of attribute/method nodes of each C;.
12: End for

13: for w:= P, Py, P3,...,Pp > p is the total number of package nodes.
(ACCll+Y ! ACCn)) ,

14: ACC[] := (H-Ll_)l > n; is the subpackage/class node of package P;,
l is the total number of subpackage/class nodes of each P;.

15: End for

S IVal aco(ng)) .

16: ACC(S) = PllNia‘ > ACC(S) represents the cohesion of slice S >
To assign a weight to each node of ASG.

17 for u:=Vi, Vo, Va,...,V, > Where u is any node in ASG.

18: if ACC[u] >= 0.7 and ACC[u] <= 1.0

19: WACC[u] :=3

20: Endif

21: elseif ACClu] >= 0.6 and ACC[u] < 0.7

22: WACCu] :=2

23: Endelseif

24: else

25: WACC[u] :=1

26: End else

27: Exit

computed by assuming that the object at statement 23 of the example program in
Figure 4.2 is changed. Statement 23 is taken as the slicing criterion. The ASG
shown in Figure 5.2 represents all those program parts as nodes that affect or get
affected by the change made at statement 23. Figure 6.3 shows the corresponding
coupling values along with their weights. Now, we discuss the working of our pro-
posed algorithms. We have taken an example Java program shown in Figure 4.2 as
a case study to discuss the working of the proposed algorithms. We construct the
ASG as given in Figure 5.2 by performing HD slicing on the intermediate graph
representation (EOOSDG in Figure 4.3) of this example Java program. The details

138 Regression Test Case Prioritization

Algorithm 8 H-PTCACC(T, WACC)

Input: Test Suite T with coverage information, Weight of each node in ASG
Output: Prioritized Test Suite T’

1: Set T/ = NULL

2: for each test case t € T do

3 Wie(t) = 21:1 Wt (Vei(t)) > Where V;i(t) is the node covered by t whose weight is 3,
Wte(t) is the total weight of j critical fault prone nodes covered by t.

4: Wim(t) = Ele Wt (Vini(t)) > Where Vp,i(t) is the node covered by t whose weight is 2,
Witm(t) is the total weight of k moderate fault prone nodes covered by t.

51 Wiw(t) = 221 Wt (Viwi(t)) > Where Vii(t) is the node covered by t whose weight is 1,
Witw(t) is the total weight of | weak fault prone nodes covered by t.

6: Wi(t) = Wie(t) + Wim(t) + Wiw(t) > Where Wt(t) is the total weight of t.

7: End for > sort on the basis of Wt (t).

8: T = sort (TWt(t))

9: if It t; €T st Wt (t;) = Wt (t),i#j

> sort on the basis of Wtc(t;), Wtc(t;).
10: T = sort (TWtc(ti,tj))

11: if Wte(t;) = Wte(tj),i#j > sort on the basis of Wim (t;), Wtm (t;).
12: T = sort Tth(t,‘,,tj)
13: if Witm (t;) = Wim (t;),i#j > sort on the basis of Wtw (t;), Wiw (t;).
14: T' = sort (T/)

Wtw(t;,t;)
15: Exit

of the ASG generation is discussed earlier in Section 5.2.3. Algorithm 5 and Algo-
rithm 6 generate forward and backward dependence sets and calculate the outflow
and inflow, respectively, for each node of the ASG.

Algorithm 7 uses the formula given in Equation 6.1 to compute the ACC value
of each node in the ASG. For example, we show the ACC calculation for the class
Triangle represented as node 24 in Figure 5.2. Initially, ACC value of node24 is
given by

tflow (24)] + |in flow (24 20 +4
ACC(24) = ’Oufow(“\)[’r_’?fow(I 3"; = 0.75

Similarly, the ACC values of all the associated nodes (25, 26, 27, {3, f4, 29, 30,
f27_1_out, £27_2_out, 33, f3_out, 34) of node 24 as shown in Figure 5.2 are computed

as follows:

ACC(25) = loatllonCREHTIonE] - — 3404 — 05312
ACC(26) _ |outflow(2|?\)f(\l—‘|—_\iinflow(26)\ _ 3_:;_214 — 0.5312
ACC(Q?) _ |outflow(27)L+linflow(27)\ _ 1%457 — 0.5937
ACC(f3) = lewtllonlUREARTlonlI] _ 15412 — 7812
ACC(f4) = lewdlonligEmllonlTL — 15012 — 07812
ACC(29) = loutllowEOEH oI 12415 — (7812

6.4 Case Study 139

ACC(30) = loutllonGQEHRIonEI]L 12415 — 0.7812
ACC(£27 1 out) = |outfzow(f27,1,on\)[milnfzow(fQLL(yut)\ — 1044 _ 75
ACC(£27 2. out) = |outfzow(f27,2,oT§V)LTlilrszow(f27,2,out)\ — 10411 _ 75
ACC(33) = |outflow(33)l+_\inflow(33)\ = 320 _ (8437

ACC(f3.out) — |outflow(f3,01r;\)[l4‘rlilrzflow(f3,out)\ 128 _ (9062
ACC(34) = loutllowEIEARTIowBIL — 2027 — .9062

Then, Algorithm 7 updates the ACC value of each node of ASG. The reason be-
hind this updation is that, for any node that represents a method, the statements
contained inside that method also contribute to the ACC of the method. Even if a
method does not have any statement inside it, still it will have some ACC value as
some other method may be overriding it. Therefore, we have taken the average of all
the ACC values of all the statements and the ACC value of the method under consid-
eration, to compute the updated ACC value of the method. For example, the ACC
values of nodes {24,27,33} are updated. The average ACC value of node27 along
with the ACC values of all its member nodes {3, f4,29, 30, f27_1_out, f27_2_out}

are computed and assigned to node27, i.e.
ACC(27) = ACC(27)+ACC(f3)+ACC(f4)+ACC(29)+ACC(30)+ACC(f27_1_out)+ACC(f27_2_out)
= 7

_ 0.5937+0.781240.7812+0.78124-0.7812+0.7540.75 _
= : = 0.7455

Similarly, ACC values of Node33 and Node24 are updated as follows:
ACC(33) = ACC(33)+ACC(f3-0ut) +ACC(34) _ 0.84375+0.90625+0.90625 _ () 88549

3 3
_ ACC(24)+ACC(25)+ACC(26)+ACC(27)+ACC(33) __ 0.75+0.5312+0.5312+0.7455+0.88542
ACC(24) = - = =

= (0.688664
Therefore, ACC value of class Triangle in Figure 4.2 represented as node24 in Fig-
ure 5.2 is found to be 0.68866. Similar procedure is followed to update the ACC
values of all the nodes representing the classes and packages in the ASG.
Algorithm 8 computes the critical fault prone weight Wtc(t;), moderate fault
prone weight Wtm(t;), weak fault prone weight Wtw(t;) and the total weight Wt (¢;)
for each test case t; € T. For example, the nodes covered by test case T'8 as given in
the second column of Table 6.3 are {1, 2, 3, 4, 6, 7, 21, 46, 27, £3, f4, 29, 30, {27_1_out,
272 out, 19, 20, A5, A6, 25, 26 }. The critical fault prone nodes covered by T'8
are {1,2,3,6,7}. So, critical fault prone weight of 7'8 is calculated as Wtc(T8) =
Wt(1)+Wt(2)+Wt(3)+Wit(6)+Wit(7) = 3+3+3+3+3 = 15. The moderate fault
prone nodes covered by T8 are {4,21,46,27, 3, f4,29,30, f27_1_out, f27_2_out}.
So, moderate fault prone weight of 78 is calculated as Wim(T8) = Wt(4) +
W(21)+WH(46)+WH(2T)+Wt(f3)+Wt(f4)+WH(29)+Wt(30)+Wt(f27_1_out)+
Wit(f27 1 out) = 242+42+42+2+42+2+2+2+2 = 20. Similarly, the weak fault prone

140 Regression Test Case Prioritization

nodes covered by T'8 are {25, 26,29, 30} and the weak fault prone weight of 7'8 is cal-
culated as Wtw(T'8) = Wt(19) + Wt(20) + Wit(A5)+ Wt(A6)+Wt(25)+Wt(26) =
1+1+1+1+1+1=6. Therefore, total weight of the test case T'8 is calculated
as Wt(T'8) = Wte(T8) + Witm(T'8) + Wiw(T8) = 15+ 20 + 6 = 41.

Then, the algorithm sorts the test cases in the decreasing order of their total
weights Wt(t;). If there exist some test cases t;,t; such that Wt(t;) = Wt(t;), then
the algorithm sorts ¢; and ¢; based on their critical fault prone weights Wtc(t;) and
Wtc(t;). If for some test cases Wtce(t;) = Wte(t;), then t; and t; are sorted based
on their moderate fault prone weights Wtm(t;) and Witm(t;). If again, Witm(t;) =
Witm(t;), then test cases are sorted by their weak fault prone weights Wtw(t;) and
Wtw(t;). In a very unlikely case, if the weak fault prone weights are still identical,
i.e. Wtw(t;) = Wtw(t;), then the test cases are given equal priority. The prioritized
order of the test cases T6 — T'10 based on their respective weights is obtained as
{T7,78,79,T10,T6}.

6.5 Correctness of the Algorithms
In this section, we prove the correctness of the proposed algorithms.

Theorem 6.1. find WACC algorithm correctly computes the ACC values and ter-

minates after finite number of steps.

Proof. Let the graph ASG be defined as G, = (N, E,), where N, is the set of nodes
in the graph and FE, is the set of edges connecting the nodes. |N,| cardinality of
the set N, is a finite number. Algorithm 6 invoked at Line 4 counts the number of
nodes reached during backward traversal. To avoid recounting of the same node, the
algorithm updates the count iff the reached node is marked false. Otherwise, it skips
the node if already marked true. Since, the number of nodes to be traversed (all
the predecessor nodes) is finite, the algorithm terminates after all the predecessor
nodes are traversed. Similarly, Algorithm 5 invoked at Line 5 counts the number of
nodes reached during forward traversal and terminates after finite number of nodes
are traversed. Therefore, the for loop at Line 1 of the algorithm computes the ACC
value of each node and terminates after finite number of iterations. Next, Lines 8
- 16 in the algorithm updates the ACC values of all the method nodes, class nodes
and package nodes. Let m, ¢, p be the total number of method nodes, class nodes
and package nodes respectively, in the graph ASG. Therefore m < |Ny|, ¢ < |Ng|
and p < |N,| imply that the for loop in Line 8, Line 11 and Line 14 compute

6.6 Complexity Analysis of the Algorithms 141

correctly the respective updated ACC values and terminate after finite number of
iterations. Lines 17 - 26 assigns a weight to each node in the ASG based on their
ACC values. Since, the number of nodes to be accessed is finite (as discussed
earlier in this section), the for loop at Line 17 terminates after finite number of
iterations. The algorithm finally exits at Line 27. This establishes the correctness
of the algorithm. O

Theorem 6.2. H-PTCACC algorithm correctly prioritizes the test cases and ter-

minates after finite number of steps.

Proof. Let the graph ASG be defined as G, = (N,, E,), where N, is the set of
nodes in the graph and F, is the set of edges connecting the nodes. Let n = ||
be the cardinality of the set N,, where n is a finite number. Let there be m number
of test cases in the test suite T, where m is a finite number. Therefore, the for
loop at Line 2 controls the number of iterations and terminates after m iterations.
Lines 3 - 7 correctly compute the different critical weights for each of the m test
cases depending on their node coverage. Lines 8 - 14 arrange the test cases in the
decreasing order of their associated weights computed earlier. The if conditions
at Line 9, Line 11 and Line 13 ensure the execution of the appropriate ordering
criteria. Since, finite number of test cases are there and finite number of conditions
are used to sort them, so the prioritization process terminates after finite number
of steps. The algorithm finally exits at Line 15. This establishes the correctness of
the algorithm. O

6.6 Complexity Analysis of the Algorithms

The complexity analysis of the proposed algorithms is given as follows:

Space Complexity: Let the computed slice represented as ASG has n nodes. Each
node in the ASG corresponds to each statement of the computed slice along with
the actual and formal arguments present. Hence, the space requirement is given
as O(n). Each node may have dependences on other nodes. These dependences
on other nodes are represented as edges. Since, each node can be dependent on
maximum (n — 1) other nodes, the space requirement for the edges is O(n?). Hence,
the total space requirement is O(n? 4+ n) = O(n?).

Time Complexity: Let n be the set of nodes in the ASG. To compute the inflow
to the input node, each node is traversed only once, so the time complexity is O(n).

If the time spent in each recursive call is ignored, then each node u can be processed

142 Regression Test Case Prioritization

in O(1+ pred[u]), where pred[u] represents the set of predecessor nodes of u. If each
node has every other node in the graph as its predecessor node, then each node
has (n — 1) predecessor nodes. So, the time complexity to process each node is
O(1+ (n—1)) = O(n). Similarly, to compute the outflow from the input node the
time complexity is calculated as O(n). Then, the total time required to compute
the coupling values of all the nodes is calculated as O(N?).

Let m, ¢ and p be the number of method nodes, class nodes and package nodes
respectively, whose ACC values need to be updated. If each method node has
j member nodes, then the time required to update m method nodes is O(m;jn?).
Since m and j are small bounded positive integers, the time complexity is calculated
as O(n?). Similarly, If each class node has & member nodes, and each package
node has [member nodes, then the respective time complexities for ¢ class nodes
and p package nodes are O(ckn?) and O(pin?). Since ¢, k, p and | are small
bounded positive integers, the time complexities are calculated as O(n?) and O(n?)
respectively, for the class and package nodes. As n nodes are there with n ACC
values, so the time required to assign a weight to each of the n nodes depending
on their respective ACC value is O(n). Therefore, the worst-case run-time of the
findWACC algorithm is calculated as O(n? + n? + n? + n? + n) = O(n?).

Let ¢t be the number of test cases to be prioritized in the given test suite T. Suppose
a test case covers at most n number of nodes. Let j, k£ and [be the critical,
moderate and weak fault prone nodes, respectively, covered by a test case, such
that n = j 4+ k + 1. So, the time complexity to compute the weight of each test
case is calculated as O(j + k + 1) = O(n). As a result, the total time complexity
to compute the weight of t test cases in the given test suite T is O(tn). Assuming
t = n, the time complexity to compute the weights is calculated as O(n?). The time
complexity to sort the t = n test cases is calculated as O(n?). Therefore, the worst-
case run-time of the H-PTCACC algorithm is calculated as O(n? 4+ n?) = O(n?).

6.7 Implementation

In this section, we briefly describe the implementation of our work. We computed
the coupling factors of all the nodes and used K-means technique to cluster these
computed coupling values. K-means algorithm is implemented in Matlab 2. The

test cases for the input program are generated using Junit ? Eclipse plugin. To

Zhttp://www.mathworks.in/products/matlab/
Shttp://junit.org/

6.7 Implementation 143

generate the mutants for the input program, we used an Eclipse plugin known as
MuClipse. MuClipse [183] is the Eclipse plugin version of puJava that generates two
types of mutation operators both for traditional mutation and class mutation. We
have considered both types of mutation in our approach.

For implementation, we have taken the sample Java program shown in Figure
4.2. A total of twenty test cases (T1-T20) were taken along with their node coverage
information. All those test cases that covered the affected nodes (with respect to
a modification point) are selected hierarchically. First, the test cases (T1-T20)
covering the affected package nodes are selected. After that, out of these selected
test cases, all those test cases (T1-T10) that executed the affected classes, are
selected. The similar process is then followed to select the test cases executing
the affected methods and statements. Finally, five test cases (T6-T10) are selected
for regression testing of our program under consideration. In this approach, we
propose a technique to prioritize these five selected test cases (T6-T10). Table 6.3
shows the nodes covered by each of the test cases and the weight assigned against it
based on the export coupling factor. Distribution of ACC values of all these nodes
into three different fault prone categories by K-means technique [197] is shown in
Figure 6.4. These coupling values are clustered, and a weight is assigned to each
impact category of fault proneness as shown in Table 6.4. Based on these assigned
weights, Algorithm 8 computes the following four different weights for each test case:
critical node coverage weight, moderate node coverage weight, weak node coverage
weight and total weight. The algorithm then sorts the test cases in the decreasing
order of these computed weights and produces the prioritized sequence of test cases.
From Table 6.5, it may be observed that the prioritized sequence of test cases is
{T7,T8,79,710,76}.

6.7.1 Experimental Program Structure

To show the effectiveness of our approach, we have taken total fifteen programs of
different specifications as shown in Table 6.6. The last column of Table 6.6 shows
the time taken for prioritizing the selected test cases. The prioritization time in-
cludes the time for computing the weights of the test cases and the time taken
to order the test cases in decreasing weight value. Out of these fifteen programs,
ten benchmark programs (Stack, Sorting, BST, CrC, DLL, Elevator_spl, Email spl,
GPL_spl, Jtopas, Nanoxml) are taken from Software-artifact Infrastructure Repos-
itory (SIR) [59] and other five programs are developed as academic assignments.

These smaller programs are chosen to ascertain the correctness and accuracy of the

144

Regression Test Case Prioritization

Table 6.6: Result obtained for regression testing of different programs.

SL Programs Lines of | Total # Mutants | # Selected | Time for pri-
No. Code # Test Test Cases | oritization
Cases for regres- | (sec)
sion testing
1 Expt. Pro- | 54 20 14 5 1.3
gram
2 Calculator 75 15 42 7 1.8
3 Elevator 90 25 27 10 2.59
4 Stack 114 22 35 2.27
5 Sorting 130 16 43 5 1.65
6 BST 130 20 51 12 3.21
7 CrC 261 18 46 1.64
8 DLL 277 24 47 1.78
9 Notepad 300 17 17 2.07
10 ATM 900 33 39 12 3.87
11 Elevator_spl | 1046 15 53 10 2.63
12 Email_spl 1233 18 18 11 2.89
13 GPL_spl 1713 22 22 14 3.7
14 Jtopas 5400 16 28 9 2.36
15 Nanoxml 7646 14 32 7 1.72

approach, keeping in mind that they represent a variety of Java features and ap-
plications, the test cases are available and otherwise easily developed, and coverage

information can be computed.

6.7.2 Mutation Analysis

To generate the mutants for the input program, we used an Eclipse plugin of Mu-
Java known as MuClipse [44]. Fault mutants are considered to be good represen-
tative of real faults. [11, 102, 196]. MuClipse supports both the traditional and
object-oriented operators for mutation analysis. Table 6.7 gives an overview of the
mutation operators considered in the experimental study. A brief description of the
operators is given for every operator in Table 6.7. The first five operators are the
traditional operators. The remaining 23 operators relate to the faults in object-
oriented programs. Out of which JT'D, JSC, JID, JDC are specific to Java features
that are not available in all object-oriented languages. Apart from this, there are
some other operators, such as FOA, EOC, FAM, EMM, that reflect the typical
coding mistakes common during development of an object-oriented software. The
mutant generator generates the mutants for the sliced program (representing the

affected program parts) according to the operators selected by the testers. Very

6.7 Implementation 145

Table 6.7: Overview of Mutation Operators

Traditional Operators

Operator Description
ABS Absolute value insertion
AOR Arithmetic operator replacement
LCR Logical connector replacement
ROR Relational operator replacement
Uol Unary operator insertion

Java Inter-Class Operators

IHD Hiding variable deletion
THI Hiding variable insertion
10D Overriding method deletion
10P Overridden method calling position change
IOR Overridden method rename
ISK super keyword deletion
IPC Explicit call of a parent’s constructor deletion
PNC new method call with child class type

PMD | Instance variable declaration with parent class type
PPD | Parameter variable declaration with child class type

PRV Reference assignment with other compatible type
OMR Overloading method contents change
OMD Overloading method deletion
OAO Argument order change
OAN Argument number change
JTD this keyword deletion
JSC static modifier change
JID Member variable initialization deletion
JDC Java-supported default constructor create
EOA Reference and content assignment replacement
EOC Reference and content comparison replacement
EAM Accessor method change
EMM Modifier method change

large number of mutants are generated. The location of these mutants in the source
code is visualized through mutant viewer. It allows a tester to select appropriate
number of mutants and design test cases to kill the mutants. As the number of
generated mutants are too large, we randomly selected a less number of mutants for
our experimental programs. This process was repeated for 10 times and the rate of
fault detection for the prioritized test suite was computed. The average number of
mutants selected for every program is shown in Table 6.6. The test cases are written
in a specific format such that each test case is in a form of invoking a method in
the class under test. The test method has no parameters and return the result in
the form of a string. The mutant is said to be killed if the obtained output does

not match with the output of the original program. The test cases for the input

146 Regression Test Case Prioritization

program are generated using JUnit Eclipse plugin as the JUnit test cases closely
match the required format. The total number of fault mutants for all the fifteen
programs is 514, and the average number of mutants per program is 34. Figure 6.5
shows the boxplots of the results of our mutation analysis for all the experimen-

tal programs. The average percentage of affected nodes covered by the prioritized

Mutants Killed

Mutant Present . 1T T T

100 80 F

EY

80

70

50

Percentages

50

Percentages

40

30

20

10

o

o I & ISRV 3 Ky S & & &
F & S EF TS SRS S S FFFFST ST TS PR FSS
& & & o RO S A A & o o S A
o8 e < & & E & & < <« & & ¢ <&
& & Pl <F

(a) Box-plot of the % of fault mutants present (b) Box-plot of the % of mutants killed in af-

in affected parts of the programs. fected parts of the programs.

Figure 6.5: Mutation analysis of programs.

test cases using the approach of Panigrahi and Mall and our approach are shown
in Figure 6.6 and Figure 6.7, respectively, for the experimental program given in
Figure 4.2. The comparison of APFD values for fifteen different programs using our

approach and the approach of Panigrahi and Mall [72] is shown in Figure 6.8.

Affected Node Coverage (ANC)

-
ra
[=]

o
[=]
[=]

(=]
[=]

.
[=]

=)
[=]

Percentage of Affected Nodes Covered
[
=) =}

[=]

0.2 04 06 08 1

Test Suite Fraction

Figure 6.6: Average percentage of affected nodes covered by the prioritized test

cases using the approach of Panigrahi and Mall.

6.7 Implementation 147

Fault Prone Affected Node Coverage
(FPANC)

-
ra
[=]

=
(=1
o

[T -]
o o o o

[=]

a 0.2 04 06 08 1

Percentage of Fault Prone Affected
Nodes Covered

Test Suite Fraction

Figure 6.7: Average percentage of fault prone affected nodes covered by the priori-

tized test cases using our approach.

APFD Values

W ANC

W FPANC

Email_spl
GPL_spl

g s
s =
53
g 8

Elevator_spl

Figure 6.8: Comparison of APFD values for different programs.

6.7.3 Results

Figure 6.5a shows the presence of mutants in percentage in the affected parts of the
programs. The presence of mutants in the affected parts of the programs ranges
from a minimum of 12% (DLL program) to a maximum of 94% (Sorting program).
The affected program parts in five programs have more that 90% of the mutants
and four programs have little more than 10% mutants. The result shows that
an average of 47% of mutants are scattered in the affected program parts of the
sample programs. Figure 6.5b shows the percentage of mutants killed in each of the
experimental programs. The percentage of mutants killed by the prioritized test
cases varies from 70% to 95%. The average percentage of mutants killed by the
prioritized test suite is 85%. This show that our prioritized test cases are efficient

in revealing the faults.

148 Regression Test Case Prioritization

The average percentage of affected nodes covered by the prioritized test cases
using the approach of Panigrahi and Mall and our approach are shown in Figure
6.6 and Figure 6.7, respectively, for the experimental program given in Figure 4.2.
From Figure 6.6 and Figure 6.7, it may be observed that the average percentage
of nodes covered (APNC) using the approach of Panigrahi and Mall [72] is 77.2%.
Whereas the APNC value using our approach is 80.6%. Thus, there is an increase
of 3.4% in APNC measure by our approach. Hence, our approach detects faults
better than the approach of Panigrahi and Mall [72] as our approach covers more
number of fault-prone nodes. We evaluated the effectiveness of our approach by
using APFD metric. We named Panigrahi and Mall approach [72] as Affected
Node Coverage (ANC) and our approach as Fault Prone Affected Node Coverage
(FPANC) in Figure 6.8. The comparison of APFD values for these fifteen different
programs obtained using ANC and FPANC approaches is shown in Figure 6.8. The
results show that our FPANC approach achieves approximately 8% increase in the

APFD metric value over ANC approach.

The experimental results show that the performance of our approach varies sig-
nificantly with program attributes, change attributes, test suite characteristics, and
their interaction. To assume that a higher APFD implies a better technique, inde-
pendent of cost factors, is an oversimplification that may lead to inaccurate choices
among prioritization techniques. For a given testing scenario, cost models for prior-
itization can be used to determine the amount of difference in APFD that may yield
desirable practical benefits, by associating APFD differences with measurable at-
tributes such as prioritization time. A prioritization technique would be acceptable
provided the time taken is within acceptable limits, which also reflects the cost of
retesting. Korel et al. [135] have also focused on less time of execution to decrease
the overhead of prioritization process. However, the acceptable time limit greatly
depends upon the testing time available with the tester. An empirical analysis on
the prioritization time is outside the scope of this paper and is kept for our future
work. We have reported the prioritization time of our approach to indicate the time
taken to prioritize the test cases when the pre-computed test coverage information
and the ASG are available with the tester. The last column of Table 6.6 shows the
time taken for prioritizing the selected test cases. The prioritization time varies
from a minimum of 1.3 seconds to a maximum of 3.87 seconds for the experimental
programs. The total time taken to prioritize the test cases of all the programs is
35.48 seconds and the average time for prioritizing the test cases is 2.4 seconds. The

prioritization time includes the time for computing the weights of the test cases and

6.7 Implementation 149

the time taken to order the test cases in decreasing order of their weights.

6.7.4 Threats to Validity

It is obvious for any new proposed work to be associated with some threat to its

validity, and it is likely for this work as well.

e This proposed approach, incorporates the effect of the inheritance feature on
the coupling value of classes. However, coupling between classes in a subclass-
superclass relationship can have a different impact on software maintainability
and fault proneness than the coupling of classes that are not in such a rela-
tionship. Therefore, it is essential to make a distinction between coupling
within an inheritance hierarchy and coupling across inheritance hierarchies.
We believe a detail empirical study on such relationships, and their impact on

the proposed coupling measurement is essential and is kept for future study.

e Even though the programs under consideration give a good understanding of
the proposed approach and are beneficial in validating our approach, but they
may not be good representatives of the real-world programs. Hence, this is
considered to be a threat to the validity of this approach because of the limited

size and complexity of the programs.

e The use of mutation analysis for the fault manipulation of these small pro-
grams may not represent the actual fault occurrence in the complex industrial

programs and hence, considered a threat to our approach.

e Our approach of prioritization of the test cases is based on the rate of fault
detection, which we represent through measure. However, APFD measure
is associated with some limitations [66]. APFD measure does not assign any
value to the test case for detecting a fault that is already discovered. However,
such a fault may be of higher priority and its detection may help the debugging
process. APFD does not consider the variations in the weight (in terms of
cost) of different faults and test cases. APFD measure may not lead us to a
global optimal ordering of the test cases rather constrain us to a local optimal

ordering.

150 Regression Test Case Prioritization

6.8 Comparison with Related Work

In this section, we give a comparative analysis of our work with some other related

works.

Elbaum et al. [68] performed an empirical investigation to find out the test-
ing scenarios where a particular prioritization approach will prove to be efficient.
They analyzed the rate of fault-detection that resulted from several prioritization
techniques such as Total function coverage, Additional function coverage, Total
binary-diff function coverage, Additional binary-diff function coverage. The authors
considered eight C programs for their experimentation. They used the documenta-
tion on the programs, and the parameters and special effects that they determined
to construct a suite of test cases that exercise each parameter, special effect, and
erroneous condition affecting program behavior. Then augmented those test suites
with additional test cases to increase code coverage at the statement level. The
regression fault analysis was done on the faults inserted by the graduate and under-
graduate students with more than two years of coding experience. The experimental
results show that the performance of test case prioritization techniques varies sig-
nificantly with program attributes, change attributes, test suite characteristics, and
their interaction. Our results also confirm to similar findings. However, our ap-
proach concerns Java programs. We have considered the dependencies caused by
the object-oriented features in our proposed intermediate graph. Our approach tar-
gets the fault exposing potential and the coverage of affected nodes which is more

changed based than the approach in [68].
Korel et al. [115] proposed a model based test prioritization approach. The

approach is based on the assumption that execution of the model is inexpensive as
compared to execution of the system; therefore the overhead associated with test pri-
oritization is relatively small. This approach is based on the EFSM system models.
The original EFSM model is compared with the modified EFSM model to identify
the changes. After the changes are identified, the EFSM model is executed with
the test cases to collect different information that are used for prioritization. The
authors propose two types of prioritization: selective test prioritization and model
dependence-based test prioritization. The selective test prioritization approach as-
signs higher priority to the test cases that execute the modified transitions. Model
dependence-based test prioritization mechanism carries out dependency analysis
between the modified transitions and other parts of the model and uses this infor-

mation to assign higher priorities to the test cases. EFSM models consist of two

6.8 Comparison with Related Work 151

types of dependences: control and data dependences. The results show that model
dependence-based test prioritization (considering only two types of dependences)
gives improvement in the effectiveness of test prioritization. The corresponding
system for each model was implemented in C language. In another work, Korel
et al. [114] compared the effectiveness of different prioritization heuristics. The
results show that model based prioritization along with heuristic 5 gave the best
performance. Heuristic 5 states that each modified transition should have the same
opportunity of getting executed by the test cases. Korel et al. [113] proposed an-
other approach of prioritization using the heuristics discussed in [114]. In this new
approach, they considered the changes made in the source code and identified the
elements of the model that are related to these changes to prioritize the test cases.
In our approach, the Java program is represented by our proposed intermediate
graph. The graph is constructed by considering many more dependences that exist
among the program parts in addition to control and data dependences, giving a
clear visualization of the dependences. Then, we identify the effect of modifications
and represent the affected program parts in another graph. Our representation is
more adaptable to the frequent changes of the software and our approach relies on
the execution of these affected program parts. Thus, our prioritization approach is
based on both the coverage of the affected program parts and the fault exposing

potential of the test cases.

Jeffrey et al. [104] proposed a prioritization approach using the relevant slices.
They also aimed for early detection of faults during regression testing process. This
approach considers the execution of the modified statements for prioritizing the
test cases. The assumption is that if any modification results in some faulty output
for a test case, then it must affect some computation in the relevant slice of that
test case. Therefore, the test case having higher number of statements is given
higher priority assuming they have a better potential to expose the faults. However,
intuitively, not all statements depending upon some modification will have the same
level of fault-proneness. It may so happen that a test case executing less number
of statements will detect more faults than another test case that executed more
number of statements. The level of fault-proneness of the statements executed by
the test cases affects the fault exposing potential of that test case. Therefore, in
our approach, we computed the coupling values of the affected program parts to
identify the probable fault-proneness of these programs parts. Our approach assigns
a higher priority to that test case which executes maximum number of high fault-

prone statements. Further, unlike our hierarchical decomposition slicing approach,

152 Regression Test Case Prioritization

relevant slicing depends upon the execution trace of the test cases and is proposed
to work on C programs. Even though execution trace based slicing would result in
slices of smaller sizes but the computational overhead is very high. The efficiency of
our slicing approach is shown in Table 4.5. We have also shown the time requirement

of our prioritization approach in Table 6.6.

The performance goal of the prioritization approach proposed by Kayes [108]
is based on how quickly the dependences among the faults are identified in the re-
gression testing process. An early detection of the fault dependences would enable
faster debugging of the faults. The paper assumes that the knowledge of the fault
presence is extracted from the previous executions of the test cases. A fault depen-
dence graph is constructed using this information. However, one major limitation
of this approach is that regression testing aims at discovering new faults introduced
by the changes made to the software. But, the prioritization approach proposed in
this thesis only enhances the chances of finding the faults which has already been
revealed and present in the fault dependence graph. New faults if any cannot be
discovered. Further, this approach does not take into account the fault-proneness
of the statements. However, our approach relies on the dependence of the affected
program parts represented as affected slice graph (ASG), so that error propaga-
tion because of the change is better visualized and analyzed. We compute the
fault-proneness of the statements by computing their coupling values as coupling
measures are proven to be good indicator of fault-proneness. Thus, our approach

has a higher probability of exposing new faults, if any, in the software.

Mei et al. [148] proposed a static prioritization technique to prioritize the JUnit
test cases. This prioritization technique is independent of the coverage information
of the test cases. It works on the analysis of the static call graphs of JUnit test cases
and the program under test to estimate the ability of each test case to achieve code
coverage. The test cases are scheduled based on these estimates. The experiments
are carried out on 19 versions of four Java programs of considerable size considering
their method and class level JUnit test cases. The heuristic to prioritize the test
cases in this approach is to cover system components (in terms of total components
covered or components newly covered). The coverage of the system components acts
as a proxy for evaluating a test caseAAZs true potential of exposing faults. If any
two test cases carry the same heuristic value then the approach randomly decides
on the test case to be given higher priority. Though this is a scalable approach as it
works at coarse granularity level and incurs less computational cost, it suffers from

many limitations. The prioritization techniques that work at a finer granularity

6.8 Comparison with Related Work 153

level give better performances (in terms of fault exposing potential) as compared to
the techniques that work at coarse granularity level [68]. This approach ignores the
faults caused by many object-oriented features such as inheritance, polymorphism,
and dynamic binding and focuses only on the static call relationships of the methods
in the form of a call graph. Static call relationships are more to procedure-oriented
programs. Interaction and communication between methods in the form of message
passing is highly important in object-oriented programs. A single method is invoked
by different objects and the behavior of the method also differs accordingly. Any
prioritization technique is efficient if it is based on the characteristics of the program
to be tested. Therefore, considering the object-oriented features is essential. Java
supports encapsulation and provides four access levels (private, public, protected,
and default) to access the data members and member methods. Any misinterpre-
tation of these access levels forms a rich source of faults. Java supports a feature
named “superdAl to have access to the base class constructor from the derived
class constructor. This additional dependence between constructors of the derived
class and the bases class needs attention of the testers. Method overriding allows a
method in the derived class to have the same function signature as the method in
its parent. If invocation to such methods is not resolved correctly, then it can cause
some serious faults. Another powerful feature and a potential source of fault is vari-
able hiding. It allows declaration of a variable with the same name and type in the
derived class as it is in the base class and allows both the variables to reside in the
derived class. Problem arises when an incorrect variable is accessed. Inheritance is
a powerful feature but sometimes unintentional misuse of this feature can result in
serious faults. Polymorphism in Java exists both for attributes and methods and
both use dynamic binding. An object of its class type can access an attribute or
method of its subclass type. The subclass object can also access the same attributes
and methods. These attributes and methods behave differently depending upon the
kind of object that is referring it. Such polymorphic dependences if not resolved
can cause faults. Interested readers are requested to refer [110, 111, 159] for more
number of faults introduced by the misuse of the object-oriented features. There-
fore, any prioritization technique with a performance goal of revealing more faults
must consider the object-oriented features as they can induce many kinds of faults
in the system. Our approach considers all the object-oriented features in the form
of intermediate graph. Our approach works at a finer granularity level, therefore

may not be as scalable as [148], but has better fault exposing potential.

Fang et al. [69] have proposed similarity based prioritization technique. The

154 Regression Test Case Prioritization

authors have taken five Java programs from Software artifacts Infrastructure Repos-
itory (SIR) [59] to validate their approach. The prioritization process is based on
the ordered sequence of the program entities. They propose two algorithms farthest-
first Ordered Sequence (FOS) and greed-aided clustering ordered sequence (GOS).
The FOS approach first selects the test case having largest statement coverage. The
next test case that is selected is the one that is farthest in distance from the al-
ready selected test case. It computes two types of distances: a pair wise distance
between the test cases and distance between a candidate test case and the already
selected ones. GOS approach consists of clusters of test cases in which initially
each cluster consists of only one test case. Then the clusters are merged depending
upon the minimum distance between any two clusters. This process of merging
the clusters is repeated until the size of the cluster set is less than some given n.
Then, the algorithm iteratively chooses one test case from each cluster and adds to
the prioritized test suite until all the clusters are empty. The experimental results
in this study show that statement coverage is most efficient and preferred for pri-
oritization. When the size of the test suite is large, then additional measures are
taken to reduce the cost of prioritization. This approach gives equal importance to
all the test cases assuming that all the test cases have equal potential of exposing
the faults. Intuitively, a test case executing less number of statements can expose
more faults provided the covered statements have high proneness to faults. It also
does not consider the object-oriented features and the faults generated by these
features. Unlike Fang et al. [69], we consider the fault inducing capability of the
object-oriented features based on which we detect the affected program parts. We
propose to prioritize a set of change-based selected test cases that are relevant to
validate the change under regression testing. We compute the fault-proneness of
the affected statements and then prioritize the test cases based on the coverage of

these high fault-prone statements (represented as nodes in our proposed graph).

Lou et al. [138] proposed a mutation-based prioritization technique. In this
approach, they compared the two versions of the same software to find the modifi-
cation. Then, they generate the mutants only for the modified code. They selected
only those test cases of the original version that worked on the new version of the
software for prioritization. The test case that killed more mutants was given higher
priority. The authors used a mutation generation tool, named Javalanche. Unlike
our approach, Lou et al. [138] have not considered the object-oriented features and
the faults likely to occur because of these features. It is also silent on the type of

mutation operators (faults) considered for their experimentation. Like Lou et al.

6.8 Comparison with Related Work 155

[138], we generate mutants only for the sliced program (representing the affected
program parts). However, we used MuClipse (an eclipse version of MuJava) to gen-
erate the mutation faults. We use coupling measure of the affected program parts
as a surrogate to imply fault-proneness. Our hypothesis assumes that the test cases
that execute the nodes with high coupling value have a higher chance of detecting
faults early during regression testing. We used mutation analysis only to validate

our hypothesis.

The detail survey conducted on available coverage based prioritization tech-
niques [68, 69, 104, 108, 113, 114, 115, 138, 148] reveals that these techniques have
not considered the object-oriented features. The presence of many faults arising due
to different object-oriented features are inherent to object-oriented programs, and
hence must be considered. Therefore, we find that the approaches contributed by
Panigrahi and Mall [162, 163] relates closely to our approach for an experimental
comparison. Panigrahi and Mall proposed a version specific prioritization technique
[162] to prioritize the test cases of object-oriented programs. Their technique prior-
itizes the selected regression test cases. The test cases are prioritized based on the
coverage of affected nodes of an intermediate graph model of the program under
consideration. The affected nodes are determined due to the dependences arising
on account of the object relations in addition to the data and control dependences.
The effectiveness of their approach is shown in form of improved APFD measure
achieved for the test cases. In another work, Panigrahi et al. [163] have improved
their earlier work [162] by achieving a better APFD value. In this technique, the
affected nodes are initially assigned a weight of 1. The weight is decreased by 0.5,
whenever that node is covered by previous execution of the test cases. In both the
approaches [162, 163], they have assumed that all the test cases have equal cost,
and all faults have same severity. The assumption is also that all the affected nodes
have a uniform distribution of faults. As a result, a test case executing more number
of affected nodes will detect more faults and therefore, has a higher priority. The
average percentage of affected nodes covered by this approach is shown in Figure
6.7. Unlike the approach in [163] that is based on node coverage only, our proposed
approach is based on the fact that some nodes are more fault-prone than other
nodes. We used an intermediate graph that represents only those nodes that are
affected by the modification made to the program to compute the fault-proneness
of the nodes. The coupling factor of each node in the ASG is computed to predict
its level of fault-proneness. The test cases are then prioritized based on the fault-

prone nodes that they execute. Unlike [163], a test case executing more number of

156 Regression Test Case Prioritization

fault-prone nodes has a higher computed weight and gets a higher priority in our

approach.

6.9 Summary

In this chapter, we proposed a coupling metric based technique to improve the
effectiveness of test case prioritization in regression testing. Analysis is done to
show that prioritized test cases are more effective in exposing the faults early in
the regression test cycle. We performed hierarchical decomposition slicing on the
intermediate graph of the input program. The slice obtained is then modeled as a
graph named affected slice graph (ASG). The affected component coupling (ACC)
value of each node of the ASG is calculated as a measure to predict its fault prone-
ness. In this technique, weight is assigned to each node of ASG based on its ACC
value. The weight of a test case in a given test suite is then calculated by adding the
weights of all the nodes covered by it. The test cases are prioritized based on their
coverage of fault prone affected nodes. Thus, the test case with a higher weight is
given higher priority in the test suite. The results show that our FPANC approach
achieves approximately 8% of increase in the APFD metric value over ANC ap-
proach. The regression testing problem lay equal focus in validating the correctness
of the software for every change made to it. Intuitively, not all software changes
require same amount of testing. Therefore, some metrics are required that would
highlight those changes that require more attention of the tester. We address this
issue of identifying and quantifying the effect of the software changes in the next

chapter.

Chapter 7

Identifying and Quantifying the
Effect of Changes

Many times, the testers may not have the liberty of exhaustive retesting of every
change made to the program in a looming scenario of time and cost (due to project
deadline, customer impatience, market pressure, etc.). Many aspects of regression
testing (such test case selection, prioritization, and minimization) can help the tester
to overcome the retest-all approach in demanding situations. The tester can make
a decision regarding what to test and what not to test, and also in what order to
test. But, it is essential for the tester to decide what to retest more, what to retest
less, and when to stop testing [75]. This is because, obviously not all changes would
require the same amount of retesting to ensure that the software is compliant.
Some changes may be more severe than others. Thus, retesting to validate the
changes requires the testers to harness the art of testing less and selective without
sacrificing the quality [98]. Even though it is desirable to selectively run the tests
[27, 90, 188, 210], but this approach may suffer from a potential threat of missing
out the critical defects. Hence, minimizing and then prioritizing the test cases
[57, 67,132, 148, 163, 177, 184] allow some test cases with high potential of revealing
defects to execute early, and discover more faults with fewer tests. But, still the
regression testing process can become very costly if the testing effort is not properly

distributed for handling the different types of changes.

Thus, the goal of this chapter is to propose some metrics that can quantify the
severity of the changes made to a program. These metrics will act as indicators for
the testers to decide what to test more and what to test less without sacrificing the

product quality. We make the following contributions in this chapter:

158 Identifying and Quantifying the Effect of Changes

e Constructing a graphical representation of the dependences that exist between
the various changes to identify the clusters of changes (discussed in Section
7.2.2).

e Proposing metrics that can indicate the severity of the changes (given in Sec-
tion 7.2.3).

e Making an assessment of the usefulness of these metrics (discussed in Section
7.3.2).

The rest of the chapter is organized as follows: Section 7.1 introduces the technique
used for change impact analysis. We justify the use of this technique by showing its
advantages over another existing approach. We describe the program changes and
define the change metrics in Section 7.2. In this section, we discuss the structure of
our program model, describe the cluster of changes, define metrics for these changes,
and demonstrate the calculation of these metrics. The details of our experimental
studies are presented in Section 7.3. Here, we describe the characteristics of the
program samples taken for our experimentation, and analyze the results to justify
our hypothesis. In Section 7.4, we discuss and compare our work with some related
work. We also highlight some of the limitations of our approach in this section. We

summarize the chapter in Section 7.5.

7.1 Background

In this section, we briefly discuss the basic ideas of the techniques used to realize

the proposed approach.

7.1.1 Change Identification

Before we can estimate the severity of the changes, it is essential to identify the
changes. Then only, we can perform a change impact analysis. To determine and
track the series of changes made by several stakeholders is a major problem. This
problem becomes more evident when changes made by one group are regression
tested by another group. In this thesis, we assume, the group that makes the
changes is the same group that carries the regression testing. Every change made
to the program is maintained globally as a change set. After the changes are made
and identified (recorded), it is essential to analyze their ripple effect on other parts

of the program. A clear understanding of the ripple effects not only saves cost

159

7.1 Background

Legend

—

Inherttance/Implementation Edge

-5

Inhevi(‘e&‘lie‘rﬁl‘;e‘i‘smp Edge
]

Rnd.lwme Dependency

et

Mdh&&e}rﬂdm edge

2 in+c_out

msg_in

con

Pavameié; Passing Edge

oeees

Data Dependency Edge

Plcmé Membe;s‘hi?p Edge
s out
$2_out
al_out
a2_out

13_out:a1_out =area

s1in+c_out

in

s(v:in
s

ey
alin

Type Dependency Edge

Summary Edge

Control Dependency Edge
0_out

st

A2_out:st_out

A3_out:at_out

Ad_out: ar_out

féout:s1_out

16_out: msy

15_out: a2_out

Polymorphic Call Edge

—

Instantiation Edge

—
Membership Edge

f2_out:s2_out

A _out:sr_out

1 color
12:color
13: base
14 height

15:color

m

1ven

Change Ripple Graph (CRG) of the example Java program g

Figure 7.1

Figure 4.2.

160 Identifying and Quantifying the Effect of Changes

but also helps in effective regression testing. The testers can focus only on the
affected program parts instead of testing the whole program. Manually finding
these affected program parts even with an available change set is a notoriously
hard problem. Thus, we the slicing technique discussed in Section 4.2.3 to find
these affected program parts. These affected program parts are then analyzed to
determine the amount of code that the change crosscuts across the program. The
crosscutting aspect enables us to quantify the scattering of change across the affected
program parts (statements, methods, classes, and packages) that often tangles with
other changes. Many research work are available on prioritization and minimization
of test cases based on the results of change impact analysis, but no guidance is
available on how to distribute the regression testing effort to validate these changes,

and ensure quality.

7.1.2 Change impact analysis (CIA)

As mentioned in the previous section, we assume that the same group of people
those who make the changes also carry out the regression testing. This group records
these changes in a change set C, to refer later for the necessary impact analysis.
A list of ten different types of changes considered in our experimentation is shown
in Table 4.3. We use an existing program slicing technique, named hierarchical
decomposition (HD) slicing discussed in Section 4.2.3, to make the required analysis.
An earlier work on hierarchical slicing [130] based CIA [186] inspires the HD slicing
approach used in this thesis for CTA. The reason for opting HD slicing approach is
because of its relative advantages over the hierarchical slicing technique as shown
in Table 4.5. HD slicing works on an intermediate graphical representation of the
dependences that exist between various program parts of the input program. This
intermediate graph is same as the extended object-oriented system dependence graph
(EOOSDG) discussed in Section 4.2.1. EOOSDG is renamed as change ripple graph
(CRG) in this chapter as it shows the ripple impact of different changes made
to the corresponding program. An example Java program taken as our running
example is shown in Figure 4.2. The CRG for the example program given in Figure
4.2 is shown in Figure 7.1. The nodes of the graph correspond to the statements
of the program and edges correspond to the dependences [119, 198]. The blue
nodes and yellow nodes mark the ripple effect of the changes made at node 23 and
node 15, respectively. The cyan nodes are the common nodes that are affected by
both the changes. The point of modification (node 15 and node 23 in Figure 7.1),

¢ € C, are considered as the slicing criterion to find the effect of change. The slicing

7.2 Proposed Metrics for Describing Program Changes 161

algorithm discussed in Section 4.2.3 traverses through the edges (dependences) from
the slicing criterion in three phases to compute the slice. Thus, the slice denotes the
ripple effect of the change. The computed slice is then hierarchically decomposed
into affected packages,classes, methods, and statements. The boxplot in Figure 7.2
shows the comparison between our approach and the approach in [186] in terms
of nodes discovered (7.2a) and time taken (7.2b) to compute the affected program
parts in the CRG (Figure 7.1) of the example program (Figure 4.2). In both the
comparisons, HD slicing has clear advantages over [186]. The steps to identify the
affected program parts using HD slicing are given in Section 5.2.3.

The CIA results in a slice that is represented in the form of a graph, named
affected slice graph (ASG), as shown in Figure 5.2. Each node in the ASG corre-
sponds to the statement affected by the change, and each edge corresponds to the
dependence between them. Thus, ASG consists of a set of CRG nodes V' and a set
of edges F of the form e; j, where V e; ; € E, v; € HDslice(v;).

1200 40

35
1000
30 T

o S — —

1

800

600

Time {ms)

15

400 10
5
200
0
0 Hierarchical Slicing HD Slicing
Hierarchical Slicing HD Slicing

Affected Nodes

CIA Approach

CIA Approach

(a) Node comparison. (b) Time comparison.

Figure 7.2: Comparison between CIA approaches.

7.2 Proposed Metrics for Describing Program Changes

The proposed metrics are based on the hypothesis that the changes made to a
program can be treated as concerns of the program. The term concern is loosely
defined to represent any consideration of the stakeholders of a software project that
can impact the implementation of the program [63, 141]. Thus, a change made to
the program can rightly be defined as a concern of the tester (developer) that can
affect the correctness of the program. Thus, our hypothesis needs to be proved

before the metrics can be defined.

162 Identifying and Quantifying the Effect of Changes

Hypothesis 1: A change made to the program can be defined as a potential concern
of that program.

Justification:

A change can be identified and defined as a concern provided it satisfies the iden-
tification guidelines laid down for concerns. Below, we show how a change satisfies
these guidelines to qualify as a concern. Since, we state the guidelines in the con-
text of program changes, these are termed as Change Impact Guidelines (CIG)
[52, 53, 62] and are given below:

CIG 1. Objective and definitive membership criteria
The first guideline states that any concern should have an objective, i.e. there
should be no ambiguity in the identification of the concern. Something that
is a concern to one stakeholder should remain valid for another. As discussed
in Section 7.1.1, we have stated that the group that makes the changes is the
same group to carry out the regression testing, and also record the details
of the changes in a list. Therefore, there is absolutely no ambiguity for any
stakeholder in identifying the changes. The definitive membership criteria
answer if some ‘X’ is a concern that requires some necessary analysis. In the
context of a change made to the program, the answer is obviously affirmative.
Otherwise, there would not have been any necessity of CIA and regression
testing. Since, CIA and regression testing are indispensable in the domain of

maintenance, so the changes are defined as concerns.

CIG 2. Finite Domain
The finite domain criteria state that the number of concerns should be limited.
As stated in Section 7.1.1, we have C, as a set of changes for 1 < ¢ < m. Thus,
the cardinality of the change set is, |C.] = m. Since, m is a small positive

integer, the number of changes made to the program is finite.

Therefore, any change made to the program can be termed as a potential concern

of the program.

7.2.1 Structural program model

Here, we describe the various program elements that can get affected by the changes
made to the program. The program that undergoes changes is formally represented
as a graph CRG = (V,, E,), where V, is the set of vertices corresponding to program

statements, and FE, is the set of directed edges e = (v1,v3) corresponding to the

7.2 Proposed Metrics for Describing Program Changes 163

dependences between the program parts. Interested readers can refer [187] for detail
definitions on various dependences considered in CRG. A vertex in CRG is of any

of the following types:

e Package vertex (Pk), that is connected to sub-packages and classes con-

nected by package membership edge.

e Class vertex (Cl) is connected to its data (field) member and member

method vertices by membership edges.
e Field vertex (F), represents a data member of a class.

e Method vertex (Mt), represents a member method of a class connected to

its statement vertices (St) that belong to the method by membership edges.

The HD slice at some change point ¢ is defined on CRG as follows:

|HDslicef () |

H Dslice(c) = HDslices(c) U { U H Dslicey(vy)}, v, € HDsliceg(c)
k=1

HDsliceg(c) = {c,v1,v2,...,v% | (¢,v1), (v1,v2), ..., (v,v5) € E', E' C Eq, Egp

imem poly par—out generic—out

¢E 1<I<k},Ey={=",=,"—=", —)

H Dslicey(vy,) = {v1,v2,...,0; | (v1,02),...,(vj,v;) € E",E" C Ey, Egy/

par—in generic—in

¢ E" v, € HDsliceg(c)}, Esp' ={ — .7 — , anye € E'}

7.2.2 Proposed Change Cluster Graph (CCG)

The dependences between the changes made to a program can be represented in a

graphical form, which is defined as follows:

Definition 7.1. A change cluster graph (CCG) consists of a set of vertices Vo
(that corresponds to the change points) and a set of edges Ec of the form e;;,
where Ve; j € Ec,v; € HDsliceg(v;) = v; € HDslicey(vj).

The CCG for the example program given in Figure 4.2 is shown in Figure 7.3.
We partition the CCG shown in Figure 7.3 into clusters based on the concept of

164 Identifying and Quantifying the Effect of Changes

Figure 7.3: Change Cluster Graph (CCG) of the example Java program given in
Figure 4.2.

dependence community [83]. A change cluster CC' is a set of nodes (changes) in
CCG defined as

CC ={v;; | Vi,j v € HDslice(v;),i # j,1 <1,j < |CCG|}.

The result shows the presence of four clusters in the CCG shown in Figure 7.3. Each
node is labeled with a number (corresponding to the node in CRG where the change
is made). These four clusters are: CC1{6,23, 30,34}, CC2{12,15,45}, CC5{36,40},
and CCy{47}. Each cluster is marked with a separate color and labeled accordingly.

The properties of the clusters are presented below:

e Clusters cannot overlap, i.e. CC; N CCy = ¢. Therefore, any node that can
be a member of any two clusters is randomly assigned to any one of them.
For example, node 6 satisfies the condition to either belong to cluster CC; or

C(Cy, we assigned it to cluster C'Cj.

e A cluster can comprise of a single node to all the nodes of the CCG, i.e.
1 <|CCl < |eeql.

A rank is given to the clusters in the decreasing order of their cardinality. The
cluster having highest cardinality is given the highest rank. If any two clusters have
the same cardinality, then both are given the same rank. The rank indicates the
complexity of the changes in the form of their interdependence. If a change clusters

with many other changes, then it is tough to validate that change. Since, cluster

7.2 Proposed Metrics for Describing Program Changes 165

CCYy contains only one change, so it gives a sense that the change made at node 47
is easy to handle. CCG provides an initial assessment of the complexity and risk of
the changes made. Based on the ranking of these change clusters, the testers can
measure the metrics described next to find the severity of the changes that belong
to these clusters of high rank.

7.2.3 Definition of the proposed metrics

Let C be a set of changes organized into C¢, defined as
Co={(Ci,C;) | C;,C; € C,C; # Cj,i # j,1 <i,j <n},
and I be a set of program parts organized into Cj, defined as
Cr={1;) | L;,I; € I,I; #I;,i # j,1 < i,j < m}.

Every program part I; refers to a node in CRG that has an outgoing membership

or package membership edge.
Ii(ve) = {vi | (vk,v) € {9 P95 1 < i <},

where n is a positive integer. Thus, every program part I; € Cy is defined as the
set of nodes connected by either membership or package membership edge.

Let f:Co — Crand g : C; — C¢ be two mapping functions defined as follows:
VC € Cc, f(C)={I € Cr: f(C) =1},
VIeCrg(I)={CeCc:g()=C}.

Definition 7.2. (Scattering). A change is said to be scattered, if its effect ripples

from the point of origin across multiple program parts, i.e. |f(C)| > 1.

Definition 7.3. (Tangling). A program part is said to be tangled, if it has the
impact of multiple changes, i.e. |g(I)| > 1.

Definition 7.4. (Crosscutting). Let C1,Co € Cc, Cy # Co, implies C1 crosscuts
Co, if |[f(C)) >1and 31 € f(C1): Cy € g(I). Thus, we can have the following

lemma on crosscutting changes defined in terms of the computed slices.

Lemma 1. Let Cy, and Ca be the points of change, and C1 # Cs. Then C} crosscuts
Cy iff |HDslice(Ch)| > 1, and H Dslice(C1) N H Dslice(C2) # ¢.

166 Identifying and Quantifying the Effect of Changes

Definition 7.5. Concentration (CONC) measures the number of nodes affected by
the change that are contained within a component, I. Thus, CONC is defined as

follows:

|H Dslice(C;) N I] '
N in' = ,) 1 g S ’ 1 S S ’
CONC(C;, 1) |H Dslice(C;)| = e

where n refers to the number of changes and m refers to the number of program
parts.

Now, to find the concentration that change C; has in other components, we define
Degree of Change Scattering (DOCS) as follows:

 HIZJ(CONC(CrL) —)
7] -1

DOCS(C;) = 1

where I is the set of nodes and |I]| > 1.

Thus, DOC'S is a measure of the range of impact of a change over all program
components. DOCS is represented in the context of change that was originally
proposed as a concern metric (Degree of Scattering (DOS)) by Eaddy et al. [62, 63].
DOCS satisfies the following properties:

e DOC'S value varies between 0 (completely localized) and 1 (uniformly affects

all program parts).

e DOCS is directly proportional to the number of components affected by the

change.
e DOCS is inversely proportional to concentration.

DOCS also gives an indication on the modularity of the program. An impor-
tant characteristic of a component is that its implementation should be localized.
Therefore, the components across which the impact of change has scattered are less
modular. Thus, DOC'S = 0 implies high modularity.

Definition 7.6. Impact (IMP) measures the number of nodes contained within a
component I those are affected by the change C;. Thus, IMP is defined as:
_ |HDslice(Cy) N 1|

IMP(I,Cy) = T L1<i<n, 1<j<m,
J

where n refers to the number of changes and m refers to the number of program

parts.

7.2 Proposed Metrics for Describing Program Changes 167

Now, to find the impact that other changes have on component I;, we define Degree
of Change Focus (DOCF) as follows:

i1 (IMP(1;,C) — &)

C
DOCF(I,) = o1 =]

where C' is the set of changes and |C| > 1.

DOCF is a measure that shows the extent to which the changes are tangled.
The characteristics of DOCE are:

e DOCF value ranges between 0 (completely unfocused, i.e. uniformly affected

by all changes) and 1 (completely focused).

e DOCYF is inversely proportional to the number of changes affecting a compo-

nent.

e DOCYF is directly proportional to the impact, i.e. the more uniform is the

impact of change; the lower is the focus, thus higher is the tangles.

Thus, it is desirable that a change in the program should have low degree of scat-
tering and high degree of focus. Therefore, any change having high scattering and
low degree of focus requires more effective retesting. However, the granularity of
measurement should be pre-defined, i.e. whether the metrics are computed for

statements, methods, classes, or packages, should be stated clearly.

7.2.4 Metrics Computation

In this section, we discuss the method to compute the metrics proposed in the
previous section (Section 7.2.3). The CRG in Figure 7.1 shows the ripple im-
pacts of the two changes made to the program in Figure 4.2. These changes are
made at Line 238 (node 23) and Line 15 (node 15), named C1 and C2, respec-
tively. We demonstrate the computational steps concerning these two changes, thus
C = {C1,C5} and |C| = 2. By the definition of I given in the previous section
and in the context of the CRG in Figure 7.1, we have I1(1) = {1,3,46,24,35},
I,(3) = {3,4}, I5(46) = {46,47,48,50,52}, 14(24) = {24,25,26,27,31,33}, ...,
I>3(13, A1, A2, A3, A13_1_out, A13_2_out). The numbers in the curly braces refer to
the nodes of CRG in Figure 7.1. Thus, I = {I1,Is,..., 23} and cardinality of I is
23, i.e. |I| = 23. By Definition 7.5, the concentration of change Cy in Iy is given

168 Identifying and Quantifying the Effect of Changes

as:

|HDslice(C1) N I4] 5
N 1) = = — =0.1562
CONC(C, 1) |H Dslice(Ch)| 32 015625

Similarly, the concentration of change C] in Iy is

_ |HDslice(Co) 14| 0
CONC(Co, 1) = |HDslice(Ch)| 32 0-

It can be seen in Figure 7.1 that Cy does not affect Is (node 24), therefore the
intersection result is ¢. In this way, the concentration of C1 and Cs in the rest of
the program parts are computed. DOC'S is computed for every change as per the
formula in Definition 7.5. Thus, the normalized variance of the concentration of C

in all the program parts gives us DOCS(C1). Thus,

DOCS(Cy) =1 =1

MIEZE(CONC(OnL L) =)* 23552 (CONC(Cy,) -

1

23

)2

7] —1 23— 1
— (.845836293

Coincidentally, DOCS(Cy) = DOCS(Cs) = 0.845836293. Therefore, average DOCS
is ADOCS = 0.845836293, which is a high value and signifies that both these
changes are highly scattered. Recall from Figure 7.3 that C; and Cy belong to dif-
ferent clusters, but ADOC'S value shows that these are highly scattered even though
they have no interdependence. Now, the next objective is to check whether the af-
fected program parts of C; have impact of other changes as well. If H Dslice(Cy) N
H Dslice(Cy) # ¢, then it implies that there are some program parts that have the
impact of both C and Cs. We compute the amount of impact that the changes can
have on a affected program part by using the impact formula given in Definition

7.6. Thus, impact of C; on Iy is given by

HDslice(Cy) N1y 5
IMP(I4,Cy) = [HDs w‘el(’ DNA_ § = 0833333333
4

Similarly, the impact of C on I4 is given by

IMP(I4,Co) = ‘HDSlw’eI(fZ) N4l _ % =0
4

Now, to assess the overall impact of all the concerned changes on the affected

program part, we compute DOCF' using the formula given in Definition 7.6. Thus,

Y H Dslice(C1)| = 33, since node 2 refers to a library package in the program given in 4.2, it

has been excluded from computation.

7.2 Proposed Metrics for Describing Program Changes 169

DOCF (1) is expressed as follows:

DOCF(I}) =

2 ((IMP(I4,C;) —

1

1)’ _ (0833333333 — 1)2 + (0 — 1)?

ICl -1

2-1

=0.361111111

Similarly, DOCEF of all other program parts are computed. Thus, the average of
DOCF values is ADOCF = 0.432241009, which is a low value that signifies that

the impact of the changes are tangled in some of the program parts. We consider

the average value as low or high based on the median value. If average < median,
then it implies that the value is low, otherwise it is high. Thus, from the ADOCS
and ADOCF values, we conclude that the two changes, C; and Cy, are highly

scattered and tangled. Therefore, the testers have to spend more time to validate

these changes. Figure 7.4 shows the concentration and impact of 'y and Cs in

various program parts of the example program given in Figure 4.2. Both Figure

7.4a and 7.4b show the degree of scattering and tangling of these two changes.

a5

04

03

Concentration
o
.
G

0z

01

o

DOCONC for C2

I B CONC for C1

!

13 15 17 19 111 113 115 17 19 121 123

Program parts

100%

G0%
B0%
70%
60%
50%
40%
30%
20%
10%

0%

Impact in %

L

I7 19

111 113 115 117 119 121 123

Program parts

(a) Concentration of C; and Cy in differ- (b) Impact of Cy and Cs in different pro-

ent program parts.

gram parts.

Figure 7.4: Change impact analysis of the two changes made to the program given

in Figure 4.2.

170 Identifying and Quantifying the Effect of Changes

7.3 Experimental Studies

In this section, we present the characteristics of the program samples that are
considered for our study. We elaborate on the experimental results for our change
metrics. We also analyze the results to check whether our hypotheses hold good or

not. We follow the same experimental settings as described in Section 4.3.2.

Table 7.1: The list of the sample programs used in the study.

SI. Programs LOC| No. of CRG Nodes | Avg. Total # Mu-
No| ASG # of | tants
Nodes Test
Cases

1 Expt. Program | 54 91 33 20 14

2 Calculator 75 499 51 15 42

3 Elevator 90 532 54 25 27

4 Stack 114 325 72 22 35

5 Sorting 130 542 86 16 43

6 BST 130 2754 74 20 51

7 CrC 261 1897 94 18 46

8 DLL 277 1838 83 24 47

9 Notepad 300 2234 68 17 17

10 ATM 900 3461 727 33 39

11 Elevator_spl 1046 5362 864 15 53

12 Email_spl 1233 5548 562 18 18

13 GPL_spl 1713 12904 803 22 22

14 Jtopas 5400 24073 7462 16 28

15 Nanoxml 7646 26451 1132 14 32

7.3.1 The sample programs

We conducted the experiments on fifteen medium-sized programs of different spec-
ifications as shown in Table 7.1. Out of these fifteen programs, ten benchmark pro-
grams (Stack, Sorting, BST, CrC, DLL, Elevator_spl, Email_spl, GPL_spl, Jtopas,
Nanoxml) are taken from Software-artifact Infrastructure Repository (SIR) [59]
and other five programs are developed as academic assignments. These smaller
programs are chosen to ascertain the correctness and accuracy of the approach,
keeping in mind that they represent a variety of Java features and applications, the
test cases are available or can be easily developed, and coverage information can be
computed.

The smallest program has 54 LOC, and the largest program has 7646 LOC. The
total LOC for all the fifteen programs is 19369 and the average LOC per program

7.3 Experimental Studies 171

are 1291. The fifteen CRGs are constructed using our prototype tool. The smallest
CRG has 91 nodes, and the largest has 26451 nodes. The total number of nodes for
all the fifteen CRGs is 88511, and the average number of nodes per CRG is 5901.
The smallest ASG has 17 nodes, and the largest has 533 nodes. The total number
of ASGs computed at each point of change is 150. The total number of affected
nodes in all the fifteen programs due to all the 150 changes is 22800, and the average
number of nodes per each change is 152. The total number of fault mutants for all
the fifteen programs is 514, and the average number of mutants per program is 34.
Similarly, the total number of test cases considered for all the programs is 295 with

a mean of 20 test cases per program.

35
. i $
25

20

15

10

Slice Computation Time(sec)

Expt. Program
Calculator
Elevator
Stack

Sorting

BST

crc

DLL

Motepad
ATM
Elevator'_spl
Emailt_spl
GPLY_spl
Itopas
Manoxml

Figure 7.5: Box-plot of the time taken to compute the slices of the sample programs.

7.3.2 Observations

In this section, we analyze the experimental results to assess the usefulness of the
proposed metrics, i.e. whether the proposed metrics can give the required informa-
tion to the testers in a reasonable amount of time. It is observed that the proposed
metrics can be computed in less than 1 second (with a very few exceptions) for the
changes made to the programs, provided the corresponding slices at the point of
changes are pre-computed. The boxplot in Figure 7.2b shows the time taken to
compute the slices. The box-plot shows that our approach is better and can calcu-
late the slices more accurately in less time as compared to an existing CIA approach
[186]. Figure 7.5 displays the boxplot of the time taken to calculate the slices of
all the sample programs. The lowest time taken is 15.52 sec and the highest time

172 Identifying and Quantifying the Effect of Changes

% of CRG Affected by various changes

Average % of CRG Affected

(a) Percentage of nodes affected by the dif-

ferent changes made to the example program (b) Average percentage of affected CRG nodes

given in Figure 4.2. for all programs.

Figure 7.6: Change ripple analysis of programs.

Fault Mutant Analysis

100
90 T s T
w1 T [

60
=

50

Percentages

40

I T e e e

10

a

Q‘o% Sl
& [N
o ©

Figure 7.7: Box-plot of the percentage of fault mutants present in affected parts of

the programs.

taken is 33.02 sec. The total time to calculate the 150 slices for all the ten changes
in fifteen sample programs is 3268.39 sec. The average duration to calculate the
proposed metrics (DOC'S, and DOCF) is 0.68 sec.

We are also interested in analyzing the effect that the changes have on other
program parts, fault-proneness of the affected parts, and the fault revealing capa-

bility of the affected test cases. Therefore, we compute the percentage of CRG

7.3 Experimental Studies

173

140
120
H 1)
82 &8O
: AL \J
E 60
g [
40 I
20 Al
= Radl
o 1Tt
E = = = un'—EJ-U - = = w =
g%%ﬁg%uagéiﬁﬁgﬁ
¥3I3 W g = S =58 2
- o = w o o @ o 0 ®
o § W = " E WO =
= ¥ >
=% =z
=]
Programs

B % of Affected Tests
@ % of Affected Nodes

Figure 7.8: Average

percentage of affected nodes versus affected test cases.

04

0.z

02

01

ADOCF

08 -

06 -

Calculatar
levators_spl
Emall\spl

Expt. Program

(a) ADOCS for all the sample pro-

grams.

(b) ADOCEF for all the sample pro-

% of Mutants

Emailt_spl

Calcplator

Elgvator_spl

Expt. Program

grams.
% of Test Cases
90
B0 +—]
70 g g SISNN SO
Els s R Y 2=B258 8E 2
NI ERA FITL DS
50 i o = §Es = £
w0 —% £
30
20
10
o
(d) Percentage of executed test

(¢) Percentage of mutants.

cases.

Figure 7.9: Crosscutting change analysis.

nodes that are affected by these changes to make a correct assessment of the ripple

impact of the changes. The change ripple analysis result is shown in Figure 7.6.
The percentage of CRG (in Figure 7.1) affected by the different changes made to

174 Identifying and Quantifying the Effect of Changes

Table 7.2: Degree of scattering and focus of the sample programs.

ADOCS ADOCF
Sl.No. Program - -
High | Low | High | Low
1 Expt. Program v v
2 Calculator v v
3 Elevator v v
4 Stack v v
5 Sorting v v
6 BST v v
7 CrC v v
8 DLL v v
9 Notepad v v
10 ATM v v
11 Elevator_spl v v
12 Email _spl v v
13 GPL_spl v v
14 Jtopas v v
15 Nanoxml v v
105
w85
) f] i;l
]
t o T 7
: T T FT—+ 11
€ &8s
BO
75
FSSFEEET PSR R P&
S G PR S - P =+
€ <F s ¥ S T
Q?Q-L- Q}zq L&

Figure 7.10: Box-plot of the percentage of faults detected in the sample programs.

our running example program is shown in Figure 7.6a. Each sector in Figure 7.6a
displays the change and its corresponding percentage of nodes that it affects. The
average percentage of the affected nodes is 36.2% for all the ten changes made to the
example program given in Figure 4.2. The average percentage of nodes affected by
the changes in each sample program is shown in Figure 7.6b. The results indicate
that 25.75% of the nodes are affected by all the changes made to the sample pro-
grams. We seeded the programs with fault mutants [140, 160] using MuJava [140]
to study the fault-proneness of the program parts affected by the changes made to

7.3 Experimental Studies 175

these programs. A fault mutant is associated with a change C' if the location of the
mutant belongs to HDslice(C'). The last column in Table 7.1 shows the number
of mutants considered for each program. The boxplot in Figure 7.7 displays the
result of the fault analysis for all the sample programs. The presence of mutants
in the corresponding changes varies from a minimum of 12% (DLL program) to
a maximum of 94% (Sorting program). The changes in five programs have more
that 90% of the mutants and four programs have little more than 10% mutants.
The result shows that an average of 47% of mutants are scattered in the affected

program parts of the sample programs.

The average percentage of the affected program parts and the average percentage
of test cases that are affected by the changes are shown in Figure 7.8. A test case is
said to be affected if it executes the affected nodes. Next, we computed the ADOCS
and ADOCF for the programs to justify our hypothesis that the metrics proposed
in this chapter are useful indicators of the presence of faults. These metrics are also
helpful in the initial assessment of the testing effort that is required to detect these
faults. We show the results of crosscutting change analysis in Figure 7.9 to see if our
hypothesis holds good. The sub-figures in Figure 7.9 display the result in columns
distributed around the median axis to differentiate the low and high values. Figure
7.9a displays the average degree of change scattering and Figure 7.9b displays the
average level of change focus for the sample programs. The inference of these two

results is summarized in Table 7.2.

The check marks against a program denote whether that program has high/low
ADOCS and ADOCF values. The sample programs with low ADOCS and high
ADOCEF values are Calculator, BST, DLL, Elevator_spl, GPL_spl, and Nanoxml.
Our assumption is that these programs with low ADOCS and high ADOCF values
require less testing effort to discover the faults. Whereas, if the characteristics
are otherwise, i.e. the programs have high ADOCS and low ADOCF, then the
testing effort is more to reveal the faults because of high scattering and tangling.
The programs with high ADOCS and low ADOCEF are Expt. program, sorting,
CrC, ATM, Email_spl, and Jtopas. However, there were some programs with some
different characteristics such as FElevator, Stack (exhibited high ADOCS and high
ADOCF), and Notepad (with low ADOCS and low ADOCEF). We show the results
of our mutant fault analysis in Figure 7.9¢ to prove that ADOCS and ADOCF
values are good representatives of the fault proneness. Figure 7.9c shows a high
mutants count for the programs with high ADOCS, low ADOCF and low count
for programs with low ADOCS, high ADOCF values. Even programs with high

176 Identifying and Quantifying the Effect of Changes

ADOCS, and high ADOCEF values had a higher count of the mutants. Thus, it can
be concluded that ADOCS and ADOCF values are good representatives of mutant
presence.

We counted the number of test cases selected for efficient regression testing of
the same set of programs and the same set of changes to check whether ADOCS
and ADOCF values are useful indicators of the required testing effort. The results
in Figure 7.9d show that programs with high ADOCS, low ADOCF values require
comparatively more test cases than the programs with low ADOCS, high ADOCF
and low ADOCS, low ADOCF values. Even programs with high ADOCS and high
ADOCF values also have a higher count of test cases. Before, we can arrive at any
conclusion regarding the required testing effort, we need to check whether these
test cases could reveal an acceptable number of faults. The boxplot in Figure 7.10
shows the percentage of mutation faults detected by the selected test cases. The
results show that the test cases revealed 100% faults that are associated with some
changes made to the sample programs. The minimum fault detection rate is 85%
(for the ATM program). The results show that the average rate of fault detection
is 94.3% for all the faults associated with the concerned changes in all the sample
programs. Thus, we can conclude that ADOCS and ADOCEF values are also good
indicators of the testing effort that can help the testers to make correct regression
testing decisions. Therefore, the results justify all our hypotheses about the metrics

proposed in this chapter.

7.4 Comparison with related work

To the best of our knowledge, no work has been done for the quantification of the
impact of crosscutting changes. In the absence of any work that can be directly
compared with our work, we discuss some of the existing work on change impact
analysis that closely relate to our work. The work that most closely relates to our
work is proposed by Sun et al. [186]. The approach of CIA in [186] is based on
identifying a hierarchical set of changes at different granularity levels. The impact
of the change was computed using hierarchical slicing proposed in [130]. In our
work, we used HD slicing for CIA that is different and has relative advantages (such
as precise and correct selection of affected nodes, computational cost effectiveness,
and a simple approach) over [130] (refer Figure 7.2). Unlike in [126], we aim to
focus on the implication of CIA by quantifying the impact of changes that enables

the testers to make better testing decisions.

7.4 Comparison with related work 177

The approach by Kung et al. [121] automatically categorizes the identified
potential changes into different granularity levels such as data, method, class, and
class library changes. Automation of the change identification is kept for our future
work and is not addressed here. However, our impact analysis assesses the effect of
the change at different hierarchical levels of package, class, method, and statements.
Therefore, our proposed metrics consider the affected program parts at various levels

of hierarchy and give the result for the program as a whole.

Rajlich [168] proposed a change propagation model targeting the software main-
tenance activity. This propagation model is based on graph rewriting that analyzes
the dependences between the changes. A prototype tool, named Ripples 2, im-
plements two basic processes of change propagation through change-and-fix and
top-down propagation. The dependence analysis assumes that there are no incom-
ing inconsistencies after a change is made. Therefore, the analysis is made only
for outgoing dependences. Whereas our approach overcomes this limitation. We
address both incoming and outgoing inconsistencies of a change in HD slicing that

implements both forward and backward traversals for impact analysis.

Briand et al. [33] found a significant correlation between the coupling dimensions
of the classes with the ripple effects of the changes in a commercial C+4 system.
The authors used this coupling dimension to rank the classes according to their
probability of containing the ripple effects. In our work, the sample programs are
based on Java. We have shown that changes can be treated as potential concerns
of the testers and thus the concern metrics can be used in the context of change to
quantify its effect on different program parts of the program. However, we believe
an investigation on the correlation between coupling and cohesion dimensions with
our proposed DOCS and DOCF measures will shed some more interesting insights
to our objective. We defer this correlation analysis as our future work.

The change impact analysis by Ryder et al. [178] identifies the test cases that fail
or pass due to the set of changes. In our work, we identify these set of changes and
the affected tests to validate the predictiveness of our proposed metrics to reduce
regression testing effort.

Tonella [192] carried out impact analysis using concept lattice of decomposition
slices. The decomposition slice graph represents the dependences that exist between
the computations performed on different variables. The concept lattice groups the
computations that share the common variables and arranges the groups into a hi-
erarchy of concepts. The main contribution in [192] is the graphical representation,

called lattice of decomposition slices, to support software maintenance. The graph

178 Identifying and Quantifying the Effect of Changes

provides the relevant information regarding the computations and a data structure
to conduct impact analysis. The major drawback of this approach is that it only
works at intra-procedural level. Whereas our graph-based approach is proposed to

work for the whole program.

Badri et al. [17] proposed a call graph based predictive change impact analysis.
It generates the different control flow paths in a program that are then used to iden-
tify the components affected by the change. The reported technique supports the
prediction of impact sets and regression testing. Whereas, we identify the affected
program parts by performing slicing on the CRG at the point of changes. Our ap-
proach focuses on using these computed slices to calculate our metrics and predict
the test effort required to confirm the quality of the program after the changes are
made. The CRG used in our approach represents many other dependences (such as
type dependence, read/write dependence, generic dependence, etc. [187]) among the

program parts in addition to the control and data dependences.

Ren et al. [169] identified the causes of failure of Java programs through CIA.
The reported approach used the results from a CIA tool, name Chianti, to build a
compilable intermediate version of the program. This intermediate version of the
program is re-executed with the tests for specific changes to locate the exact reasons
for failure. Unlike [169], our proposed work on CIA is implemented on our prototype
tool that works on the intermediate graphical representation of the program. We
focus on using the CIA results to indicate the regression testing efforts. We plan to

use CIA for debugging in near future.

The CIA proposed by Sheriff et al. [180] is based on singular value decomposi-
tion. The proposed approach is based on the collection of historical change records
that may not be correct. And if these records are not available then the approach
will fail to locate the effects. Our approach depends only on the current changes
that are registered. These changes are correct as they are recorded by the group
that makes these changes. Hattori et al. [96] have proposed to measure the precision
and accuracy of the impact analysis techniques. Whereas our approach measures

the scattering and tangling of the impact of changes.

German et al. [76] proposed a change impact graph (CIG) to visualize the
impacts of change. The unaffected nodes are removed from the graph. We followed
a similar graphical approach to show the effect of change as the marked nodes. The
nodes unaffected by the changes are then pruned to get the affected slice graph.
However, the CRG in our approach represents more dependences that exist between

the program parts for an elaborate analysis propagation of error due to the changes.

7.5 Summary 179

The approach by Gethers et al. [77] estimates the impact set by analyzing the
change request, source code, and semantic indexing. But, this approach suffers
from a limitation that if the change request is inaccurate and inefficient, it may
result in erroneous omission of some methods during filtration. Unlike [77], our
approach is based on the computed slices that are context-sensitive and accurate.
Also, our approach works not only at method levels but also for the program as a

whole. Some more work on change impact analysis is available in [1].

7.4.1 Threats to validity

In this section, we highlight some of the limitations of our approach.

e Although we used a diverse set of programs for our experiments, more empir-
ical studies with industrial applications are needed for a conclusive validation

of this approach.

e We assumed that the changes are made by the same group of people those who
conduct regression test for these changes. This may not always be possible
in industries. Therefore, automation of the change identification is highly
desirable that is not addressed in this thesis. Also, the domain of changes can
be much larger than considered in Table 4.3. We plan to automate the change

identification process in future.

e Graph-based approaches always suffer from scalability issues unless the gran-
ularity of the approach is compromised. We are still exploring the possibilities

to address the scalability issue without sacrificing the granularity.

e The literature survey shows the use of metrics such as coupling and cohesion
for change impact analysis [33, 209]. We believe a study on these metrics and
the role that they may play in change impact analysis and prediction would
add more insights to the proposed work. We plan to study the comparison
and correlation of the object-oriented metrics with the change impacts in our

future work.

7.5 Summary

There are three main contributions of this Chapter. First, we presented a depen-
dence cluster based approach to identify and represent the dependences that exist

between the changes. This dependence was represented in the form of a graph

180 Identifying and Quantifying the Effect of Changes

named change cluster graph (CCG). Each cluster required only one change to be
retested especially when the testing time and budget have loomed. As in most of
the cases, other dependent changes in that cluster are also validated and need not
be retested separately. This shows that the program need not be retested for every
change. This reduces the testing time. Second, we proposed metrics to quantify
the effect of these changes in terms of degree of change scattering and degree of
change focus. Third, we conducted experimental studies to prove the usefulness of
the proposed metrics. The results show that the proposed metrics turn out to be
useful indicators of fault presence and testing effort. Thus, in demanding situations,
the testers can use the proposed approach to opt what to test more and what to

test less and still ensure acceptable software quality.

Chapter 8

Conclusions

The primary aim of our work was to develop some efficient regression testing ap-
proaches for object-oriented software using program slicing techniques. In this chap-
ter, we summarize our important contributions and provide some insights for future

work.

8.1 Contributions

In this section, we summarize the important contributions of our work. There are
four important contributions, Regression Test Case Selection, Regression Test Suite
Minimization, Regression Test Case Prioritization, and Identifying and Quantifying
the Effect of Changes.

8.1.1 Regression Test Case Selection

We proposed a novel regression test case selection approach by decomposing an
object-oriented (OO) program into packages, classes, methods and statements that
are affected by some changes made to the program. This decomposition was based
on the proposed hierarchical slicing of OO programs. By mapping these decompo-
sition to the existing test suite, we selected a new reduced change-based regression
test suite to retest the modified program. We first developed a suitable inter-
mediate representation for representing Java programs. This intermediate graph
incorporated Java features like inheritance, interface, super, polymorphism, generic
classes, etc. This intermediate representation is named FExtended Object-Oriented
System Dependence Graph (EOOSDG). This intermediate graph represents all the

possible dependences among the various parts of a Java program. We have con-

182 Conclusions

structed EOOSDG statically only once before the execution of the program had
started. Then, we applied our proposed program slicing technique on EOOSDG.
We improved the scalability of the intermediate graph to a considerable extent by
identifying and removing the redundant edges from the graph without affecting the
computation of the slices and its application to the test case selection. This graph
reduction approach helped in detecting the affected program parts in less time. The
average reduction in time achieved for all the ten programs under experimentation is
approximately 28.1%. The test cases that cover these affected parts of the program
were then selected for regression testing. We have shown that the space complexity
of our algorithm is O(n?), where n is the number of statements in the program. The
time complexity of our algorithm is also O(n?). We have shown that our algorithm
is computationally more efficient than the existing algorithms [130, 188]. Further,
we have proved that our algorithm computes correct slices for any slicing criterion
and correctly selects the test cases. The average reduction in the number of test
cases selected for regression testing of the experimental programs is approximately
56.3%.

8.1.2 Regression Test Suite Minimization

We have proposed a novel graph based cohesion metric to measure the maintain-
ability of different program parts in an object-oriented program and predict their
fault proneness. We computed the cohesion of the sliced component as a measure to
predict its correctness and preciseness. The new cohesion metric is named affected
component cohesion (ACCo). ACCo metric is based on the hierarchical decomposi-
tion slice of an object-oriented program that comprises of all the affected program
parts. These extracted affected program parts are represented as nodes in the pro-
posed affected slice graph (ASG). The critical and sub-critical nodes that require
thorough testing is determined by estimating their cohesion measure. In addition,
the proposed approach of cohesion measurement is theoretically validated against
the existing guidelines of cohesion measurement. The implementation of the new
cohesion measurement approach gave results that were more precise and comparable
with other existing approaches [40, 46, 218, 219].

Sometimes the change-based selected test suite can still appear enormous, and
strict timing constraints can hinder regression testing. Hence, it is essential to
minimize the test suite. We have introduced a new approach of using the pro-
posed cohesion measure of the affected program parts to minimize the test suite

for regression testing. We formulated the minimization problem in integer linear

8.1 Contributions 183

programming and obtained an optimal minimized test suite. The results of our
experimental studies have shown that the minimized test suite is both effective and
useful for regression testing in revealing the errors. The proposed minimization ap-
proach achieved an overall test suite minimization of 54% approximately for all the
experimental programs. Also, the minimized test suite revealed approximately 91%
of the faults as compared to 95% by the changed-based selected test suite, which
was quite acceptable. This approach will enable the testers to decide on the magic
number of test cases to choose that would still ensure acceptable quality, especially

during scenarios of constrained budget and time for regression testing.

8.1.3 Regression Test Case Prioritization

We have proposed a novel graph based coupling metric to measure the error-
proneness of different program parts in an object-oriented program. We computed
the coupling of the sliced component as a measure to predict its correctness and
preciseness. The new coupling metric is named affected component coupling (ACC).
ACC metric is based on the hierarchical decomposition slice of an object-oriented
program that comprises of all the affected program parts. These extracted affected
program parts are represented as nodes in the proposed affected slice graph (ASG).
The critical and sub-critical nodes that require thorough testing is determined by
estimating their coupling measure. In addition, the proposed approach of coupling
measurement is theoretically validated against the existing guidelines of coupling
measurement. The implementation of the new coupling measurement approach
gave results that were more precise and comparable with other existing approaches
[30, 64, 99, 128].

We have introduced a static approach of prioritizing the test cases by computing
the ACC of the affected parts of object-oriented programs. We determined the fault
proneness of the nodes of ASG by computing their respective ACC values. In this
technique, we assigned weights to each node of ASG based on its ACC value. The
weight of a test case in a given test suite was then calculated by adding the weights
of all the nodes covered by it. The test cases have been prioritized based on their
coverage of fault prone affected nodes. Thus, the test case that had a higher weight
was given a higher priority in the test suite. Our analysis with error seeding have
shown that the test cases which executed the fault prone program parts had a higher
chance to reveal faults earlier than other test cases in the test suite. The results
have shown that our fault-prone affected node coverage (FPANC) approach achieved
approximately 8% of increase in the average percentage of fault detected (APFD)

184 Conclusions

metric value over affected node coverage (ANC) approach. The result obtained
from seven case studies justifies that our approach is feasible and gives acceptable

performance in comparison to some existing techniques [162, 163].

8.1.4 Identifying and Quantifying the Effect of Changes

Testing becomes convenient if we identify the changes that require rigorous retesting
instead of focusing on all the changes. We have proposed an approach to save the
effort and cost of retesting by identifying and quantifying the effect of crosscutting
changes on other parts of the program. The change impact analysis has been made
using an existing program slicing technique. We identified change clusters and
proposed metrics to quantify their severity. There are three main contributions of
this work. First, we presented a dependence cluster based approach to identify and
represent the dependences that exist between the changes. This dependence was
represented in the form of a graph named Change Cluster Graph (CCG). A tester
can retest any one change from each cluster especially when budget and time do not
allow validating all the changes made to a program. In most of the cases, it is found
that the other dependent changes in that cluster are also tested while testing anyone
of them. The results have shown that the program need not be retested for every
change. This had considerably reduced the time requirement for testing. Second,
we have proposed metrics to quantify the effect of these changes. We defined terms
like degree of change scattering (DOCS) and degree of change focus (DOCF) to
quantify the effect of change. Third, we conducted experimental studies to prove
the usefulness of the proposed metrics.

We have applied this approach to identify and quantify ten different kinds of
changes made to fifteen experimental programs. The results have shown that our
proposed metrics were better able to quantify these changes. These metrics have
been useful indicators of the fault-proneness. The presence of mutants in the cor-
responding changes varied from a minimum of 12% to a maximum of 94%. The
changes in five experimental programs had more than 90% of the mutants and four
programs had little more than 10% mutants. An average of 47% of mutants were
scattered in the affected program parts of all the sample programs. The results
have shown that the test cases revealed 100% faults that were associated with some
changes made to the sample programs. The minimum fault detection rate was 85%
and the average rate was 94.3% for all the faults associated with the concerned
changes in all the sample programs. We have compared with some of the existing

approaches [33, 121, 168, 186] to confirm the effectiveness of the proposed approach.

8.2 Future Work 185

Thus, we can conclude that our proposed metrics are also good indicators of the
testing effort that can help the testers to make correct regression testing decisions.
Therefore, the results have justified all our hypotheses about the metrics proposed

in this chapter.

8.1.5 Implementation

We have implemented our proposed algorithms to experimentally verify their cor-
rectness using free and open source tools and techniques. We have tested each
algorithm on some diverse input programs with several executions and slicing crite-
ria. We have observed that the results computed for the proposed approaches are
correct for all input experimental programs. This experimentally validated the cor-
rectness of our proposed algorithms. Also, the performance studies discussed in the
previous sections on each contributions bring out the superiority of the performance

of our algorithms compared to important related algorithms.

8.2 Future Work

In this section, we provide a brief insight to the following possible extensions to our

work.

The slicers can be used to develop efficient debuggers and test drivers for large

scale object-oriented programs. We plan to explore this possibility.

e An investigation into the suitability of the proposed EOOSDG to represent
dependences in other object-oriented programs (such as C#) will be studied

in future.

e It would be interesting to experimentally verify the suitability of generating
the intermediate graph on the fly and analyze the pros and cons of this ap-

proach.

e We aim to explore the application of other variants of slicing in regression test
selection for more complex OO programs. The algorithms can be extended to
compute conditioned slices with respect to a given condition and use them to

solve regression testing problems in safety critical applications.

e We also aim to extend the proposed approaches and use slicing techniques for

regression testing of both aspect-oriented and featured-oriented programs.

186

Conclusions

e We want to make an empirical study of our proposed cohesion metric along

with all the existing cohesion metrics to validate its usefulness as a change-
proneness indicator. The cohesion metrics can also be applied to detect the

crosscutting concerns in the source codes.

We plan to develop a multi-criteria integer linear programming model to op-
timize the test suite by considering many other facets of testing requirements
such as coverage of low cohesive and high coupled nodes, fault-prone nodes,
rate of faults detection, etc. We will investigate the effectiveness and usefulness
of multi-criteria models on test suite minimization based on object-oriented

metrics and their energy efficiency.

We will incorporate different other coupling measures and metrics to predict
the fault proneness of modules and prioritize the test cases based on their

coverage weights.

We want to use cohesion and coupling measures for a better fault prediction
analysis and prioritization. We will extend this approach for test case prior-
itization of more complex object-oriented (OO) programs such as concurrent

and distributed OO programs.

Our other future activities include automation of the change identification
process and investigation of the correlation between coupling and cohesion
with our proposed metrics. The literature survey shows the use of metrics
such as coupling and cohesion for change impact analysis [33, 209]. We believe
a study on these metrics and the role that they may play in change impact

analysis and prediction would add more insights to the proposed work.

One more possible future work is on investigating the application of model

checking, i.e. PAT systems [80, 185] for testing of object-oriented programs.

Bibliography

[

ABI-ANTOUN, M., WANG, Y., KHALAJ, E.; GIANG, A., AND RAJLICH, V. Impact
Analysis Based on a Global Hierarchical Object Graph. In Proceedings of 22nd In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER)
(2015), IEEE, pp. 221-230.

AcGrawAL, H., HORGAN, J. R., KRAUSER, E. W., LONDON, S., ET AL. Incremen-
tal Regression Testing. In Proceerdings of the International Conference on Software
Maintenance (ICSM) (1993), vol. 93, pp. 348-357.

AGrAwAL, H., AND HOROGAN, J. Dynamic Program Slicing. In Proceeding of
ACM SIGPLAN’90 Conference on Programming Language Design and Implementa-
tion, SIGPLAN Notices, Analysis and Verification (1990), pp. 246—256.

AL DALLAL, J. An Efficient Algorithm for Computing All Program Forward Static
Slices. Transaction on Engineering, Computing and Technology 16 (2006), 108-111.

AL DAaLrAL, J. Efficient Program Slicing Algorithms for Measuring Functional Co-
hesion and Parallelism. International Journal of Information Technology 4, 2 (2007),
93-100.

AL DALLAL, J. Mathematical Validation of Object-Oriented Class Cohesion Metrics.
International Journal of Computers 4, 2 (2010), 45-52.

AL DALLAL, J. Transitive-Based Object-Oriented Lack-of-Cohesion Metric. Procedia
Computer Science 8 (2011), 1581-1587.

AL DALvLAL, J. Fault Prediction and the Discriminative Powers of Connectivity-
Based Object-Oriented Class Cohesion Metrics. Information and Software Technology
54, 4 (2012), 396-416.

AL DALLAL, J. The Impact of Accounting for Special Methods in the Measurement
of Object-Oriented Class Cohesion on Refactoring and Fault Prediction Activities.
Journal of Systems and Software 85, 5 (2012), 1042-1057.

AL DArLAaL, J. Object-Oriented Class Maintainability Prediction using Internal
Quality Attributes. Information and Software Technology 55, 11 (2013), 2028-2048.

188

BIBLIOGRAPHY

[11]

[12]

[13]

[19]

[20]

ALLEN, M., AND HoOrwITZ, S. Slicing Java Programs that Throw and Catch Ex-
ceptions. In Proceedings of ACM SIGPLAN workshop on Partial evaluation and
semantics-based program manipulation (PEPM’03) (June 2003), ACM, pp. 44-54.

ALoMARI, H. W., CoLLARD, M. L., MALETIC, J. I., ALHINDAWI, N., AND MEQ-
DADI, O. srcSlice: Very Efficient and Scalable Forward Static Slicing. Journal of
Software: Evolution and Process 26, 11 (2014), 931-961.

ALPUENTE, M., BALLIS, D., FRECHINA, F., AND ROMERO, D. Using Conditional
Trace Slicing for Improving Maude Programs. Science of Computer Programming 80
(2014), 385-415.

ARAL, A., AND OvAaTMAN, T. Utilization of Method Graphs to Measure Cohesion
in Object-Oriented Software. In Proceedings of 37th Annual Computer Software and
Applications Conference Workshops (COMPSACW) (2013), IEEE, pp. 505-510.

ArisHoLM, E., BRIaAND, L. C.; AND FOYEN, A. Dynamic Coupling Measurement for
Object-Oriented Software. IEEE Transactions on Software Engineering 30, 8 (2004),
491-506.

BADRI, L., AND BADRI, M. A Proposal of a New Class Cohesion Criterion: An
Empirical Study. Journal of Object Technology 3, 4 (2004), 145-159.

BADRI, L., BADRI, M., AND ST-YVES, D. Supporting Predictive Change Impact
Analysis: A Control Call Graph Based Technique. In Proceedings of 12th Asia-Pacific
Software Engineering Conference (APSEC’05) (2005), IEEE, pp. 9-17.

BaLL, T. The Use of Control Flow and Control Dependence in Software Tools. PhD

thesis, Computer Science Department, University of Wisconsin-Madison, 1993.

BARPANDA, S. S., AND MOHAPATRA, D. P. Dynamic Slicing of Distributed Object-
Oriented Programs. IET software 5, 5 (2011), 425-433.

BECK, J., AND EICHMAN, D. Program and Interface Slicing for Reverse Engineering.
In Proceedings of the IEEE/ACM Fifteenth International Conference on Software
Enginerring (ICSE) (1993), pp. 509-518.

BieMmAN, J. M., AND KANG, B.-K. Cohesion and reuse in an object-oriented system.
In ACM SIGSOFT Software Engineering Notes (1995), vol. 20, ACM, pp. 259-262.

BiEMAN, J. M., AND OTT, L. M. Measuring Functional Cohesion. IEEE Transac-
tions on Software Engineering 20, 8 (August 1994), 644-657.

BINKLEY, D. Semantics Guided Regression Test Cost Reduction. IEEE Transactions
on Software Engineering 23, 8 (1997), 498-516.

BIBLIOGRAPHY 189

[24]

[25]

[26]

[27]

[28]

[29]

[31]

[34]

BINKLEY, D. The Application of Program Slicing to Regression Testing. Information
and Software Technology 40, 11 (1998), 583-594.

BINKLEY, D. W., AND GALLAGHER, K. B. Program Slicing. Advances in Computers
43 (1996), 1-50.

BissyanDE, T. F., REVEILLERE, L., LAwWALL, J. L., BROMBERG, Y.-D., AND
MULLER, G. Implementing an Embedded Compiler using Program Transformation
Rules. Software: Practice and Experience 45, 2 (2015), 177-196.

Biswas, S., MALL, R., SATPATHY, M., AND SUKUMARAN, S. Regression Test
Selection Techniques: A Survey. Informatica (03505596) 35, 3 (2011).

Brack, J., MELACHRINOUDIS, E., AND KAELI, D. Bi-Criteria Models for All-Uses
Test Suite Reduction. In Proceedings of the 26th International Conference on Software
Engineering (2004), IEEE Computer Society, pp. 106-115.

BRIAND, L., DEVANBU, P., AND MELO, W. An Investigation into Coupling Measures
for C++. In Proceedings of the 19th International Conference on Software Engineering
(ICSE) (1997), ACM, pp. 412-421.

BrianD, L. C., DALy, J. W., aAnD WusT, J. K. A Unified Framework for Coupling
Measurement in Object-Oriented Systems. IFEFE Transactions on Software Engineer-
ing 25,1 (1999), 91-121.

BrianDp, L. C.;, MORASCA, S., AND BasiLl, V. R. Property-Based Software En-
gineering Measurement. IEFEE Transactions on Software Engineering 22, 1 (1996),
68-86.

BrianD, L. C., MORASCA, S., AND BAsiLI, V. R. Defining and validating measures
for object-based high-level design. IEEE Transactions on Software Engineering 25, 5
(1999), 722-743.

BrianD, L. C., WUEST, J., AND Lounis, H. Using Coupling Measurement for Im-
pact Analysis in Object-Oriented Systems. In Proceedings of International Conference
on Software Maintenance (ICSM’99) (1999), IEEE, pp. 475-482.

BrianDp, L. C., WUsT, J., DALy, J. W., AND VICTOR PORTER, D. Exploring
the Relationships between Design Measures and Software Quality in Object-Oriented
Systems. Journal of systems and software 51, 3 (2000), 245-273.

BrianDp, L. C., WUsT, J., IKONOMOVSKI, S. V., AND Lounis, H. Investigating
Quality Factors in Object-Oriented Designs: An Industrial Case Study. In Proceedings
of the 21st International Conference on Software Engineering (ICSE) (1999), ACM,
pp- 345-354.

190

BIBLIOGRAPHY

[36]

[37]

[38]

[44]

[45]

[46]

[47]

[48]

Brianp, L. C., WusT, J., aAND Lounis, H. Using Coupling Measurement for
Impact Analysis in Object-Oriented Systems. In Proceedings of IEEE International
Conference on Software Maintenance (ICSM’99) (1999), IEEE, pp. 475-482.

BRrIiTO E ABREU, F., AND GOULAO, M. Coupling and Cohesion as Modularization
Drivers: Are we being over-persuaded? In Fifth Furopean Conference on Software
Maintenance and Reengineering. (2001), IEEE, pp. 47-57.

BRYANT, B. R.; AND VAIDYANATHAN, V. Object-Oriented Software Specification
in Programming Language Design and Implementation. In Proceedings of 22nd An-
nual International Computer Software and Applications Conference (COMPSAC’98)
(1998), IEEE, pp. 387-392.

CANFORA, G., CIMITILE, A., AND LuciA, A. D. Conditioned Program Slicing.
Information and Software Technology 40 (1998), 595-607.

CHAE, H. S., KwoN, Y. R., AND BAE, D.-H. A Cohesion measure for Object-
Oriented Classes. Software-Practice and Ezperience 30, 12 (2000), 1405-1432.

CHAUHAN, N. Software Testing Principles and Practices. Oxford University Press,
New Delhi, India, 2010, ch. 8, pp. 255-273.

CHEN, J.-L.; WANG, F.-J., AND CHEN, Y.-L. Slicing Object-Oriented Programs.
In Proceedings of Asia Pacific Software Engineering Conference and International
Computer Science Conference (APSEC’97 / ICSC’97) (1997), IEEE, pp. 395-404.

CHEN, Y.-F., ROSENBLUM, D. S., AND VO, K.-P. Testtube: A system for selective
regression testing. In Proceedings of the 16th International Conference on Software
engineering (ICSE) (1994), IEEE Computer Society Press, pp. 211-220.

CHEN, Z., AND XU, B. Slicing Object-Oriented Java Programs. ACM SIGPLAN
Notices 36, 4 (April 2001), 33-40.

CHEN, Z., XU, B., AND YANG, H. Test Coverage Analysis based on Program Slicing.
In Proceedings of IRI (2003), pp. 559-565.

CHEN, Z., ZHOU, Y., XU, B., ZHAO, J., AND YANG, H. A Novel Approach to Mea-
suring Class Cohesion based on Dependence Analysis. In Proceedings of International
Conference in Software Maintenance (ICSM) (2002), IEEE, pp. 377-384.

CHIDAMBER, S. R., AND KEMERER, C. F. A Metrics Suite for Object-Oriented
Design. IEEE Transactions on Software Engineering 20, 6 (1994), 476-493.

CIANCARINI, P., Tor1O, A. D., MARCHETTI, C., SCHIRINZI, M., AND VITALI, F.
Bridging the gap between tracking and detecting changes in XML. Software: Practice
and Ezperience (2014).

BIBLIOGRAPHY 191

[49]

[51]

[52]

[54]

[55]

[56]

[59]

Crark, T., EvANs, A., AND FRANCE, R. Object-Oriented Theories for Model
Driven Architecture. In Advances in Object-Oriented Information Systems (2002),
Springer, pp. 235-244.

CoLLARD, M. L., DECKER, M. J., AND MALETIC, J. I. Lightweight Transforma-
tion and Fact Extraction with the srcML Toolkit. In Proceedings of 11th IEEE In-
ternational Working Conference on Source Code Analysis and Manipulation (SCAM)
(2011), IEEE, pp. 173-184.

CoLLArD, M. L., Kaapi, H. H., AND MALETIC, J. I. An XML-Based Lightweight
C++ Fact Extractor. In Proceedings of 11th International Workshop on Program
Comprehension (2003), IEEE, pp. 134-143.

CONEJERO, J. M., FIGUEIREDOB, E., GARCIAC, A., HERNAANDEZA, J., AND JU-
RADOA, E. On the Relationship of Concern Metrics and Requirements Maintainabil-
ity. Information and Software Technology 54, 2 (2012), 212-238.

CONEJERO, J. M., HERNANDEZ, J., JURADO, E., AND BERG, K. Croscutting, what
is and what is not? A Formal definition based on a Crosscutting Pattern. Technical
Report TR28/07, University of Extremadura, Spain, 2007.

D Lucia, A. Program Slicing: Methods and Applications. In Proceedings of First
IEEE International Workshop on Source Code Analysis and Manipulation (2001),
IEEE, pp. 142-149.

DA SiLvA, B. C., SANT’ANNA, C., AND CHAVEZ, C. Concern-Based Cohesion
as Change Proneness Indicator: An Initial Empirical Study. In Proceedings of the
2nd International Workshop on Emerging Trends in Software Metrics (2011), ACM,
pp. H2-58.

DA Sitva, B. C.; SANT’ANNA, C. N., AND CHAVEZ, C. v. F. An Empirical Study
on How Developers Reason about Module Cohesion. In Proceedings of the 13th In-
ternational Conference on Modularity (2014), ACM, pp. 121-132.

DaANDAN, G., TTANTIAN, W., XTAOHONG, S., AND PEIJUN, M. A Test-Suite Reduc-
tion Approach to Improving Fault-Localization Effectiveness. Computer Languages,
Systems & Structures (2013), 1-14.

DE AG SARAIVA, J., DE FRANCA, M. S., SOARES, S. C., FERNANDO FiLHO, J.,
AND DE SouzA, R. M. Classifying Metrics for assessing Object-Oriented Software
Maintainability: A family of metrics’ catalogs. Journal of Systems and Software 103,
1 (2015), 85-101.

Do, H., ELBAUM, S. G., AND ROTHERMEL, G. Supporting Controlled Experimenta-
tion with Testing Techniques: An Infrastructure and its Potential Impact. Empirical
Software Engineering: An International Journal 10, 4 (2005), 405-435.

192

BIBLIOGRAPHY

[60]

[61]

[62]

[70]

Do, H., AND ROTHERMEL, G. On the Use of Mutation Faults in Empirical As-
sessments of Test Case Prioritization Techniques. IEFE Transactions on Software
Engineering 32, 9 (2006), 733-752.

Do, H., ROTHERMEL, G., AND KINNEER, A. Empirical Studies of Test Case Pri-

oritization in a Junit Testing Environment. In Proceedings of 15th International
Symposium on Software Reliability Engineering (ISSRE) (2004), IEEE, pp. 113-124.

Eappy, M., AHO, A., AND MURPHY, G. C. Identifying, Assigning, and Quan-
tifying Crosscutting Concerns. In Proceedings of the First International Workshop
on Assessment of Contemporary Modularization Technigques (2007), IEEE Computer
Society, pp. 2-7.

EApDY, M., ZIMMERMANN, T., SHERWOOD, K. D.; GARG, V., Murprny, G. C.,
NacappPAN, N., AND AHO, A. V. Do Crosscutting Concerns Cause Defects? IEEE
Transactions on Software Engineering 34, 4 (2008), 497-515.

EDER, J., KAPPEL, G., AND SCHREFL, M. Coupling and Cohesion in Object-
Oriented Systems. Technical report, University of Klagenfurt, Austria, 1994. Citeseer.

EL Emam, K., MELO, W., AND MACHADO, J. C. The Prediction of Faulty Classes
using Object-Oriented Design Metrics. Journal of Systems and Software 56, 1 (2001),
63-75.

ELBAUM, S., MALISHEVSKY, A., AND ROTHERMEL, G. Test Case Prioritization: A
family of Emprical Studies. IEEE Transactions on Software Engineering 28, 2 (2002),
159-182.

ELBAUM, S., MALISHEVSKY, A. G., AND , G. Test Case Prioritization:A Family of
Empirical Studies. IEEE Transactions on Software Engineering 28, 2 (2002), 159-182.

ELBAUM, S., ROTHERMEL, G., KANDURI, S., AND MALISHEVSKY, A. G. Selecting
a Cost-Effective Test Case Prioritization Technique. Software Quality Journal 12, 3
(2004), 185-210.

Fana, C., CHEN, Z., Wu, K., AND ZHAO, Z. Similarity-Based Test Case Prioriti-
zation using Ordered Sequences of Program Entities. Software Quality Journal 22, 2
(2014), 335-361.

FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. The Program Dependence
Graph and its Use in Optimization. ACM Transactions on Programming Languages
and System 9, 3 (1987), 319-349.

FiscHER, K., RaJi, F., AND CHRUSCICKI, A. A Methodology for Retesting Modi-
fied Software. In Proceedings of the National Telecommunications Conference B-6-3
(1981), pp. 1-6.

BIBLIOGRAPHY 193

[72]

[73]

[74]

[82]

[83]

Foraacs, 1., AND BERTOLINO, A. Feasible Test Path Selection by Principal Slicing.
In Proceeding of 6th European Software Engineering Conference (1997).

GALLAGHER, K. B., AND LYLE, J. R. Using Program Slicing in Software Mainte-
nance. IEEE Transactions on Software Engineering 17, 8 (1991), 751-761.

GAoO, K., KHOSHGOFTAAR, T. M., WANG, H., AND SELIYA, N. Choosing Software
Metrics for Defect Prediction: An Investigation on Feature Selection Techniques.
Software: Practice and Ezxperience 41, 5 (2011), 579-606.

GARG, M., Lar, R., aAND Huang, S. J. When to Stop Testing: A Study from the
Perspective of Software Reliability Models. IET software 5, 3 (2011), 263-273.

GERMAN, D. M., HAssaN, A. E.; AND ROBLES, G. Change Impact Graphs: De-
termining the Impact of Prior Code Changes. Information and Software Technology
51, 10 (2009), 1394-1408.

GETHERS, M., DiT, B., KAcDI, H., AND POSHYVANYK, D. Integrated Impact Anal-
ysis for Managing Software Changes. In 34th International Conference on Software
Engineering (ICSE) (2012), IEEE, pp. 430-440.

GODBOLEY, S., PANDA, S., AND MOHAPATRA, D. P. SMCDT: A Framework for
Automated MC/DC Test Case Generation using Distributed Concolic Testing. In
Distributed Computing and Internet Technology, Lecture Notes in Computer Science,
Springer (2015), vol. 8956, pp. 199-202.

GREEN, P., LANE, P. C., RAINER, A., AND SCHOLZ, S. An Introduction to Slice-
Based Cohesion and Coupling Metrics. Technical Report SE-09-488, University of
Hertfordshire, 2009.

Gui, L., Sun, J., Liu, Y., S1, Y. J., Dong, J. S., AND WANG, X. Y. Combin-
ing Model Checking and Testing with an Application to Reliability Prediction and
Distribution. In Proceedings of the International Symposium on Software Testing and
Analysis (2013), ACM, pp. 101-111.

GuprTA, R., HARROLD, M. J., AND SOFFA, M. L. Program Slicing-Based Regression
Testing Techniques. Software Testability, Verifiability and Reliability 6, 2 (1996), 83—
111.

GUPTA, V., AND CHHABRA, J. K. Package Level Cohesion Measurement in Object-
Oriented Software. Journal of the Brazilian Computer Society 18, 3 (2012), 251-266.

HaMmiLToN, J., AND DANiIcIC, S. Dependence Communities in Source Code. In
Proceedings of 28th IEEE International Conference on Software Maintenance (ICSM)
(2012), IEEE, pp. 579-582.

194

BIBLIOGRAPHY

[84]

[93]

[94]

[95]

HaMmLET, D. Foundations of Software Testing: Dependability Theory. ACM SIG-
SOFT Software Engineering Notes 19, 5 (1994), 128-139.

HaMMER, C.; AND SNELTING, G. An Improved Slicer for Java. In Workshop on
Program Analysis for Software Tools and Engineering (PASTE’04) (2004), ACM, 5th
ACM SIGPLAN-SIGSOFT, pp. 17-22.

HARMAN, M. Conditioned Slicing Supports Partition Testing. Journal of Software
Testing, Verification and Reliability 12 (2002), 23-28.

HarMAN, M., BINKLEY, D., AND DANICIC, S. Amorphous Program Slicing. The
Journal of Systems and Software 68 (2003), 45—64.

HARMAN, M., AND DANIcIC, S. Using Program Slicing to Simplify Testing. Software
Testing, Verification and Reliability 5, 3 (1995), 143-162.

HarMAN, M., OKULAWON, M., SIVAGURUNATHAN, B.; AND Danicic, S. Slice-
Based Measurement of Function Coupling. In Proceedings of IEEE/ACM ICSE work-
shop on Process Modelling and Emprical Studies of Software Evolution (PMESSE’97)
(1997), IEEE Press, pp. 26-32.

HARROLD, M. J., AND ET AL. Regression Test Selection for Java Software. In
Proceeding of the ACM Conference on OO Programming, Systems, Languages, and
Applications (OOPSLA’01) (2001), pp. 312-326.

HarrOLD, M. J., GUpPTA, R., AND SOFFA, M. L.. A Methodology for Controlling
the Size of a Test Suite. ACM Transactions on Software Engineering and Methodology
(TOSEM) 2, 3 (1993), 270-285.

HarRrOLD, M. J., LARSEN, L., LLoyD, J., NEDVED, D., PAGE, M., ROTHERMEL,
G., SINGH, M., AND SMITH, M. Aristotle: A System for Development of Program
Analysis Based Tools. In Proceedings of the 38rd annual on Southeast regional con-
ference (1995), ACM, pp. 110-119.

HARROLD, M. J.; AND ROTHERMEL, G. A Coherent Family of Analyzable Graphical
Representations for Object-Oriented Software. Department of Computer and Informa-
tion Science, The Ohio State University, Technical Report OSU-CISRC-11/96-TR60
(1996).

HARROLD, M. J.; AND SOUFFA, M. An Incremental Approach to Unit Testing
during Maintenance. In Proceedings of the International Conference on Software
Maintenance (1988), IEEE, pp. 362-367.

HARTMANN, J., AND ROBSON, D. Revalidation during the Software Maintenance
Phase. In Proceedings of International Conference on Software Maintenance (ICSM)
(1989), IEEE, pp. 70-80.

BIBLIOGRAPHY 195

[96]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

HATTORI, L., GUERRERO, D., FIGUEIREDO, J., BRUNET, J., AND DAMASIO, J. On
the Precision and Accuracy of Impact Analysis Techniques. In Seventh IEEE/ACIS
International Conference on Computer and Information Science (ICIS) (2008), IEEE,
pp. 513-518.

HENRY, S., AND KAFURA, D. Software Structure Metrics Based on Information
Flow. IEEE Transactions on Software Engineering, 5 (1981), 510-518.

HEeRrzIG, K., GREILER, M., CZERWONKA, J., AND MURPHY, B. The Art of Testing
Less without Sacrificing Quality. In Proceedings of the 37th International Conference
on Software Engineering-Volume 1 (2015), IEEE Press, pp. 483-493.

Hitz, M., AND MONTAZERI, B. Measuring Coupling and Cohesion in Object-
Oriented Systems. In Proceedings of the International Symposium on Applied Corpo-
rate Computing (1995), vol. 50, pp. 75-76.

HorowiTz, S., AND REPS, T. The use of Program Dependence Graphs in Soft-
ware Engineering. In Fourteenth International Conference on Software Engineering,
Melbourne (1992), pp. 392—411.

Horowitz, S., REPS, T., AND BINKLEY, D. Interprocedural Slicing using Depen-
dence Graphs. ACM SIGPLAN Notices 23, 7 (1988), 35-46.

Horowitz, S., REPS, T., AND BINKLEY, D. Interprocedural Slicing using Depen-
dence Graphs. ACM Transactions on Programming Languages and Systems 12, 1
(1990), 26-60.

Hou, S.-S., ZHuang, L., Xig, T., M1, H., aAND SuN, J.-S. Applying Interface-
Contract Mutation in Regression Testing of Component-Based Software. In Proceed-
ings of International Conference on Software Maintenance (ICSM) (2007), IEEE,
pp. 174-183.

JEFFREY, D., AND GuUPTA, N. Test Case Prioritization using Relevant Slices. In
Proceedings of 30th Annual International Computer Software and Applications Con-
ference (2006), pp. 411-420.

JEFFREY, D.; AND GuprTA, N. Improving Fault Detection Capability by Selectively
Retaining Test Cases during Test Suite Reduction. IEEE Transactions on Software
Engineering 33, 2 (2007), 108-123.

KAMKAR, M. An Overview and Comparative Classification of Program Slicing Tech-
niques. Journal of Systems and Software 31, 3 (1995), 197-214.

KANER, C., FALK, J., AND NGUYEN, H. Q. Testing Computer Software Second
Edition. Dreamtech Press, 2000.

196

BIBLIOGRAPHY

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

18]

[119]

Kaves, M. I. Test Case Prioritization for Regression Testing Based on Fault De-
pendency. In Proceedings of 3rd International Conference on Electronics Computer
Technology (ICECT) (2011), vol. 5, IEEE, pp. 48-52.

KHan, K., Lo, B., SKRAMSTAD, T., AND SKRAMSTAD, T. Tasks and Methods
for Software Maintenance: A Process-Oriented Framework. Australasian Journal of
Information Systems 9, 1 (2007).

KM, S., CLARK, J., AND MCDERMID, J. Assessing Test Set Adequacy for Object-
Oriented Programs using Class Mutation. In 28 JAIIO: Symposium on Software
Technology (1999).

KiMm, S., CLARK, J. A., AND MCDERMID, J. A. Class Mutation: Mutation Testing
for Object-Oriented Programs. In Proc. Net. ObjectDays (2000), Citeseer, pp. 9-12.

Kremora, T. A Cognitive Model for Complexity Metrics. In 4th International
ECOOP Workshop on Quantitative Approaches in Object-Oriented Software Engi-
neering (2000), pp. 12-16.

KoreL, B., KOUTSOGIANNAKIS, G., AND TAHAT, L. Application of System Models
in Regression Test Suite Prioritization. In Proceedings of the IEEE International
Conference on Software Maintenance (2008), pp. 247-256.

KoOREL, B., KOUTSOGIANNAKIS, G., AND TAHAT, L. H. Model-Based Test Prioriti-
zation Heuristic Methods and their Evaluation. In Proceedings of the 3rd international
workshop on Advances in model-based testing (2007), ACM, pp. 34-43.

KoreL, B., TauAT, L. H., AND HARMAN, M. Test Prioritization using System
Models. In Proceedings of the 21st IEEFE International Conference on Software Main-
tenance, (ICSM’05) (2005), IEEE, pp. 559-568.

KovAcs, G., MAGYAR, F., AND GYIMOTHY, T. Static slicing of java programs. In
University (1996), Citeseer.

KozLov, D., KOSKINEN, J., AND SAKKINEN, M. Fault-Proneness of Open Source
Software: Exploring its Relations to Internal Software Quality and Maintenance Pro-

cess. Open Software Engineering Journal 7 (2013), 1-23.

KRINKE, J. Statement-Level Cohesion Metrics and their Visualization. In Proceedings
of Seventh International Working Conference Source Code Analysis and Manipulation
(SCAM) (2007), IEEE, pp. 37—48.

KRISHNASWAMY, A. Program Slicing: An Application of Object-Oriented Program
Dependence Graphs. Technical Report TR94-108, Department of Computer Science,
Clemson University, 1994.

BIBLIOGRAPHY 197

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

KUMAR, R., PANDA, S., AND MOHAPATRA, D. P. Analysis of Java Programs using

Joana and Java SDG API. In International Conference on Advances in Computing,
Communications and Informatics (ICACCI) (2015), IEEE, pp. 2402-2408.

Kung, D., Gao, J., Hsia, P., WEN, F., TovyosHIMA, Y., AND CHEN, C. Change
Impact Identification in Object-Oriented Software Maintenance. In Proceedings of the
International Conference on Software Maintenance (1994), IEEE, pp. 202-211.

LANUBILE, F.; AND VISAGGIO, G. Extracting reusable functions by flow graph-based
program slicing. IEEE Transactions on Software Engineering 23 (1997), 246-259.

LARSEN, L., AND HARROLD, M. J. Slicing Object-Oriented Software. In Proceedings
of the 18th IEEE International Conference on Software Engineering (1996), pp. 495—
505.

LARSEN, L., AND HARROLD, M. J. Slicing Object-Oriented Software. In Proceedings
of the 18th International Conference on Software Engineering (1996), IEEE, pp. 495—
505.

LATHA, T. J., AND SUGANTHI, L. An Empirical Study on creating Software Product
Value in India - An Analytic Hierarchy Process Approach. International Journal of
Business Information Systems 18, 1 (2015), 26-43.

LEHNERT, S. A Taxonomy for Software Change Impact Analysis. In Proceedings
of the 12th International Workshop on Principles of Software FEvolution and the 7th
annual ERCIM Workshop on Software Evolution (2011), ACM, pp. 41-50.

LEUNG, H., AND WHITE, L. Insights into Regression Testing Selection. In Proceed-
ings of the Conference on Software Maintenance (1989), pp. 60-69.

L1, B. A Hierarchical Slice-Based Framework for Object-Oriented Coupling Measure-
ment. Citeseer, 2001.

L1, B., Sun, X., LEUNG, H., AND ZHANG, S. A Survey of Code-Based Change Im-
pact Analysis Techniques. Software Testing, Verification and Reliability 23, 8 (2013),
613-646.

L1, B. X., Fan, X. C., PANG, J., AND ZHAO, J. J. Model for Slicing Java Programs
Hierarchically. Journal of Computer Science and Technology 19, 6 (2004), 848-858.

L1, D., JiN, Y., SAHIN, C., CLAUSE, J., AND HALFOND, W. G. Integrated Energy-
Directed Test Suite Optimization. In Proceedings of International Symposium on
Software Testing and Analysis (2014), ACM, pp. 339-350.

L1, Z., HARMAN, M., AND HIERONS, R. M. Search Algorithms for Regression
Test Case Prioritization. Software Engineering, IEEE Transactions on 33, 4 (2007),
225-237.

198

BIBLIOGRAPHY

[133]

[134]

[135]

[136]

[137]

138

[139)]

[140]

[141]

[142]

[143]

[144]

Liang, D., AND LARSON, L. Slicing Objects using System Dependence Graphs. In
Proceedings of International Conference on Software Maintenance (ICSM) (November
1998), pp. 358-367.

LiN, I.-W., HuaNG, C.-Y., AND LIN, C.-T. Test Suite Reduction Analysis with
Enhanced Tie-Breaking Techniques. In Proceedings of 4th IEEFE International Confer-
ence on Management of Innovation and Technology (ICMIT) (2008), IEEE, pp. 1228—
1233.

LipPERT, M., AND LOPES, V. C. A Study on Exception Detection and Handling us-
ing Aspect-Oriented Programming. In In Proceedings of the International Conference
on Software Engineering (ICSE) (2000), ACM Press, p. 4184A5427.

LisPeR, B., MasuDp, A. N., AND KHANFAR, H. Static Backward Demand-Driven
Slicing. In Proceedings of the Workshop on Partial Fvaluation and Program Manipu-
lation (2015), ACM, pp. 115-126.

Lossing, N., GuiLLou, P., AMINI, M., AND IRIGOIN, F. From Data to Effects De-
pendence Graphs: Source-to-Source Transformations for C. In the 18th International
Workshop on Compilers for Parallel Computing (CPC’15).

Lou, Y., Hao, D., AND ZHANG, L. Mutation-Based Test-Case Prioritization in
Software Evolution. In proceedings of 26th International Symposium on Software
Reliability Engineering (ISSRE) (2015), IEEE, pp. 46-57.

LyrLe, J. R., AND WEISER, M. D. Automatic Program Bug Location by Program
Slicing. In Proceedings of the second International Conference on Computers and
Applications, Peking, China (1987), pp. 877-882.

Ma, Y.-S., OFFUTT, J., AND KwON, Y. R. MuJava: An Automated Class Mutation
System. Software Testing, Verification and Reliability 15, 2 (2005), 97-133.

MAJUMDAR, D., KANJILAL, A., AND BHATTACHARYA, S. Separation of Scattered
Concerns: A Graph Based Approach for Aspect Mining. ACM SIGSOFT Software
Engineering Notes 36, 2 (2011), 1-11.

MALISHEVSKY, A., RUTHRUFF, J., ROTHERMEL, G., AND ErLBAUM, S. Cost-
cognizant Test Case Prioritization. Technical Report TRUNL-CSE-2006-0004, 2006.

MaLL, R. Fundamentals of Software Engineering, 3rd ed. PHI Learning Pvt. Ltd.,
2010, pp. 159-160.

MANNA, Z., AND R, W. The Logic of Complete Programming. IEEE Transactions
on Software Engineering 4, 1 (1978), 199-229.

BIBLIOGRAPHY 199

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

MANSOUR, N., AND ErL-Fakia, K. Natural Optimization Algorithms for Optimal
Regression Testing. In Proceedings of Twenty-First Annual International Computer
Software and Applications Conference (COMPSAC’97) (1997), IEEE, pp. 511-514.

MANSOUR, N., AND Er-FakiH, K. Simulated Annealing and Genetic Algorithms for
Optimal Regression Testing. Journal of Software Maintenance 11, 1 (1999), 19-34.

MARINESCU, R. Measurement and Quality in Object-Oriented Design. In Proceed-
ings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)
(2005), IEEE, pp. 701-704.

Mei1, H., HAao, D., ZHANG, L., ZHANG, L., ZHOU, J., AND ROTHERMEL, G. A
Static Approach to Prioritizing Junit Test Cases. IEEE Transactions on Software
Engineering 38, 6 (2012), 1258-1275.

MEYERS, T. M., AND BINKLEY, D. Slice-Based Cohesion Metrics and Software

Intervention. In Proceedings of 11th Working Conference on Reverse Engineering
(2004), IEEE, pp. 256-265.

MEeYERS, T. M., AND BINKLEY, D. An Empirical Study of Slice-Based Cohesion

and Coupling Metrics. ACM Transactions on Software Engineering and Methodology
(TOSEM) 17, 1 (2007), 2.

MEYERS, T. M., AND BINKLEY, D. An Empirical Study of Slice-Based Cohesion
and Coupling Metrics. ACM Transactions on Software Engineering and Methodology
(TOSEM) 17,1 (2007), 2.

MoHAPATRA, D. P., MALL, R., AND KUMAR, R. An Edge Marking Technique
for Dynamic Slicing of Object-Oriented Programs. In 28th International Computer
Software and Applications Conference (COMPSAC 2004), Design and Assessment of
Trustworthy Software-Based Systems (2004), IEEE Computer Society, pp. 60-65.

MoOHAPATRA, D. P., MALL, R., AND KUMAR, R. Computing Dynamic Slices of
Concurrent Object-Oriented Programs. Information and software technology 47, 12
(2005), 805-817.

MOHAPATRA, D. P., MALL, R., AND KUMAR, R. An Overview of Slicing Techniques
for Object-Oriented Programs. Informatica (Slovenia) 30, 2 (2006), 253-277.

MoREgLL, L. J. A Theory of Fault-Based Testing. IEEE Transactions on Software
Engineering 16, 8 (1990), 844-857.

MuraGIA, A., TonNELLI, R., MARCHESI, M., CoNncAs, G., COUNSELL, S., AND
SWIFT, S. System Performance Analyses through Object-Oriented Fault and Cou-
pling Prisms. In Proceedings of the 5th ACM/SPEC international conference on Per-
formance engineering (2014), ACM, pp. 233-238.

200

BIBLIOGRAPHY

[157]

158

[159]

[160]

[161]

162]

[163]

[164]

[165]

[166]

[167]

168

NAJUMUDHEEN, E.; MALL, R., AND SAMANTA, D. A Dependence Graph-Based
Representation for Test Coverage Analysis of Object-Oriented Programs. ACM SIG-
SOFT Software Engineering Notes 34, 2 (2009), 1-8.

Nco, M. N.,; aAND TaNn, H. B. K. Heuristics-Based Infeasible Path Detection for
Dynamic Test Data Generation. Information and Software Technology 50, 7 (2008),
641-655.

OFFrUTT, J., ALEXANDER, R., WU, Y., X1A0, Q., AND HUTCHINSON, C. A Fault
Model for Subtype Inheritance and Polymorphism. In Proceedings of 12th Interna-
tional Symposium on Software Reliability Engineering, ISSRE. (2001), IEEE, pp. 84—
93.

OFruTT, J., MA, Y.-S., AND KWON, Y.-R. The Class-Level Mutants of MuJava.
In Proceedings of the international workshop on Automation of software test (2006),
ACM, pp. 78-84.

OTTENSTEIN, J. K., AND OTTENSTEIN, M. L. The Program Depenedence Graph in
a Software Development Environment. ACM SIGPLAN Notices 19,5 (1984), 177-184.

PanigraHI, C. R., AND MALL, R. An Approach to Prioritize the Regression Test
Cases of Object-Oriented Programs. CSI Transactions on ICT 1, 2 (2013), 159-173.

PaNicraHI, C. R., AND MALL, R. A Heuristic-Based Regression Test Case Prioriti-
zation Approach for Object-Oriented Programs. Innovations in Systems and Software
Engineering 10, 3 (2014), 155-163.

PaNicraHI, C. R., AND MALL, R. Regression test size reduction using improved

precision slices. Innovations in Systems and Software Engineering (2015), 1-7.

Park, H., Ryu, H., AND BaIk, J. Historical Value-Based Approach for Cost-
Cognizant Test Case Prioritization to Improve the Effectiveness of Regression Testing.
In Proceedings of Second International Conference on Secure System Integration and
Reliability Improvement (SSIRI’08) (2008), IEEE, pp. 39-46.

Q1, X., AND XU, B. Dependence Analysis of Concurrent Programs Based on Rech-
ability Graph and it’s Applications. In Proceedings of International Conference on
Computational Science (2004), pp. 405-408.

QUSEF, A., BAavoTA, G., OLIVETO, R., DE Lucia, A., AND BINKLEY, D. Recover-
ing Test-to-Code Traceability using Slicing and Textual Analysis. Journal of Systems
and Software 88, 1 (2014), 147-168.

RajuicH, V. A Model for Change Propagation Based on Graph Rewriting. In
Proceedings of the International Conference on Software Maintenance (1997), IEEE,
pp. 84-91.

BIBLIOGRAPHY 201

[169)]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

REN, X., CHESLEY, O. C., AND RYDER, B. G. Identifying Failure Causes in
Java Programs: An Application of Change Impact Analysis. IFEFE Transactions on
Software Engineering 32, 9 (2006), 718-732.

REeps, T., AND ROsAY, G. Precise Interprocedural Chopping. In Proceedings of
Third ACM Symposium on the Foundations of Software Engineering (October 1995),
pp. 41-52.

RiLLING, J., AND KLEMOLA, T. Identifying Comprehension Bottlenecks Using Pro-
gram Slicing and Cognitive Complexity Metrics. In 11th IEEFE International Workshop
on Program Comprehension (2003), IEEE, pp. 115-124.

ROTHERMEL, G., AND HARROLD, M. J. Analyzing Regression Test Selection Tech-
niques. IFEE Transactions on Software Engineering 22, 8 (1996), 529-551.

ROTHERMEL, G., AND HARROLD, M. J. A Safe, Efficient Regression Test Selection
Technique. ACM Transactions on Software Engineering and Methodology (TOSEM)
6, 2 (1997), 173-210.

ROTHERMEL, G., HARROLD, M. J., OSTRIN, J., AND HONG, C. An Empirical Study
of the Effects of Minimization on the Fault Detection Capabilities of Test Suites. In
Proceedings of the International Conference on Software Maintenance(ICSM) (1998),
IEEE, pp. 34-43.

ROTHERMEL, G., UNTCH, R., CHU, C., AND HARROLD, M. Prioritizing Test Cases
for Regression Testing. IEEE Transactions on Software Engineering 27, 10 (2001),
924-948.

ROTHERMEL, G., UNTCH, R. H., CHU, C., AND HARROLD, M. J. Test Case Priori-
tization: An Empirical Study. In Software Maintenance, 1999.(ICSM’99) Proceedings.
IEEE International Conference on (1999), IEEE, pp. 179-188.

ROTHERMEL, G., UNTCH, R. H., CHU, C., AND HARROLD, M. J. Prioritizing Test
Cases for Regression Testing. Software Engineering, IEEE Transactions on 27, 10
(2001), 929-948.

RYDER, B. G., AND Tip, F. Change Impact Analysis for Object-Oriented Programs.
In Proceedings of the ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering (2001), ACM, pp. 46-53.

SENGUPTA, S., AND BHATTACHARYA, S. Functional Specifications of Object-
Oriented Systems: A Model Driven Framework. In #1st Annual International Com-
puter Software and Applications Conference (COMPSAC) (2007), vol. 1, IEEE,
pp. 667-672.

202

BIBLIOGRAPHY

[180]

[181]

[182]

[183]

[184]

[185]

[186]

187

[188)]

[189]

[190]

[191]

[192]

SHERRIFF, M., AND WILLIAMS, L. Empirical Software Change Impact Analysis using
Singular Value Decomposition. In 1st International Conference on Software Testing,
Verification, and Validation (2008), IEEE, pp. 268-277.

SHU, G., SuN, B., HENDERSON, T., PODGURSKI, A., ET AL. JavaPDG: A New
Platform for Program Dependence Analysis. In IEEE Sixth International Conference
on Software Testing, Verification and Validation (ICST) (2013), IEEE, pp. 408-415.

Siwva, J. A Vocabulary of Program Slicing-Based Techniques. ACM Computing
Surveys (CSUR) 44, 3 (2012), 1-41.

SmiTH, B. H., AND WILLIAMS, L. An Empirical Evaluation of the MuJava Muta-
tion Operators. In Testing: Academic and Industrial Conference Practice and Re-
search Techniques-MUTATION, 2007. TAICPART-MUTATION 2007 (2007), IEEE,
pp. 193-202.

SRIKANTH, H., BANERJEE, S., WILLIAMS, L., AND OSBORNE, J. Towards the
Prioritization of System Test Cases. Software Testing, Verification and Reliability 24,
4 (2014), 320-337.

SuN, J., Liu, Y., DoNgG, J. S., AND PANG, J. PAT: Towards Flexible Verification
under Fairness. In Computer Aided Verification (2009), Springer, pp. 709-714.

SuN, X., L1, B., ZHANG, S., AND TA0, C. HSM-Based Change Impact Analysis of
Object-Oriented Java Programs. Chinese of Journal Electronics 20, 2 (2011), 247-251.

TAHIR, A., AND MACDONELL, S. G. A Systematic Mapping Study on Dynamic
Metrics and Software Quality. In 28th IEEE International Conference on Software
Maintenance (ICSM) (2012), IEEE, pp. 326-335.

Tao, C., L1, B., Sun, X., AND ZHANG, C. An Approach to Regression Test Selection
Based on Hierarchical Slicing Technique. In 8/th Annual IEEE Computer Software
and Applications Conference Workshops (2010), pp. 347-352.

TiaN, J., AND ZELKOWITZ, M. V. A Formal Program Complexity Model and its
Application. Journal of Systems and Software 17, 3 (1992), 253-266.

Trip, F. A Survey of Program Slicing Techniques. Journal of programming languages
3, 3 (1995), 121-189.

Trip, F. Infeasible Paths in Object-Oriented Programs. Science of Computer Pro-
gramming 97 (2015), 91-97.

ToNELLA, P. Using a Concept Lattice of Decomposition Slices for Program Under-
standing and Impact Analysis. IEEE Transactions on Software Engineering 29, 6
(2003), 495-509.

BIBLIOGRAPHY 203

193]

[194]

[195]

[196]

[197]

198

[199]

200]

[201]

202]

203)]

204]

ToNELLA, P., ANTONIOL, G., FIUTEM, R., AND MERLO, E. Flow insensitive C++
pointers and polymorphism analysis and its application to slicing. In Proceedings of
19th International Conference on Software Engineering (May 1997), pp. 433-443.

VALLEE-RAI R., Co, P., GAGNON, E., HENDREN, L., LAM, P., AND SUNDARE-
SAN, V. SOOT-A Java Bytecode Optimization Framework. In Proceedings of the
Conference of the Centre for Advanced Studies on Collaborative Research (1999),
IBM Press, pp. 125-135.

VENKATESH, G. A. The Semantic Approach to Program Slicing. ACM SIGPLAN
Notices 26, 6 (1991), 107-119.

VINCENZI, A., WONG, W., DELAMARO, M., AND MALDONADO, J. JaBUTi:A
Coverage Analysis Tool for Java Programs. XVII SBES-Simpdésio Brasileiro de En-
genharia de Software (2003), 79-84.

WAGSTAFF, K., CARDIE, C., ROGERS, S., AND SCHRODL, S. Constrained K-means
Clustering with Background Knowledge. In International Conference on Machine
Learning (ICML) (2001), pp. 577-584.

WALKINSHAW, N., ROPER, M., AND WooD, M. The Java System Dependence
Graph. In Proceedings of the Third IEEE International Workshop on Source Code
Analysis and Manipulation (2003), IEEE, pp. 55-64.

Wang, D., DoNnG, M., AND ZHAN, W. An Input Data Related Behavior Extracting
and Measuring Model. International Journal of Applied Mathematics and Information
Sciences 7, 2 (2013), 683-689.

Wanga, T., AND ROYCHOUDHURY, A. Using Compressed Bytecode Traces for Slicing
Java Programs. In 26th International Conference on Software Engineering (ICSE’04)
(2004), ACM, pp. 512-521.

WEISER, M. Program Slicing. In Proceedings of the 5th International Conference on
Software (1981), San Diego, California, USA, pp. 439-449.

WEISER, M. Programmers use Slices when Debugging. Communications of the ACM
25,7 (1982), 446-452.

WEN, W. Software Fault Localization based on Program Slicing Spectrum. In In
the Proceedings of the 2012 International Conference on Software Engineering (2012),
ACM, pp. 1511-1514.

WEYUKER, E. J. Evaluating Software Complexity Measures. Software Engineering,
IEEE Transactions on 14, 9 (1988), 1357-1365.

204

BIBLIOGRAPHY

[205]

206]

207]

208]

209

[210]

[211]

212]

[213]

[214]

[215]

WHITE, L. J., NARAYANSWAMY, V., FRIEDMAN, T., KIRSCHENBAUM, M., PI-
WOWARSKI, P., AND OHA, M. Test Manager: A Regression Testing Tool. In Software
Maintenance, 1993. CSM-93, Proceedings., Conference on (1993), IEEE, pp. 338-347.

WiBOwO, B., AND SAJEEV, A. S. M. A Tool for Regression Testing. In TASTED
Conf. on Software Engineering (2004), pp. 315-320.

WonNG, W. E., HOrRGAN, J. R., LONDON, S., AND AGRAWAL, H. A Study of Effec-
tive Regression Testing in Practice. In Proceedings of Fighth International Symposium
on Software Reliability Engineering (1997), IEEE, pp. 264-274.

Wonag, W. E., HORGAN, J. R., LONDON, S., AND MATHUR, A. P. Effect of Test
Set Minimization on Fault Detection Effectiveness. In 17th International Conference
on Software Engineering (ICSE). (1995), IEEE, pp. 41-41.

YANG, Y., ZHou, Y., Lu, H., CHEN, L., CHEN, Z., XU, B., LEUNG, H., AND
ZHANG, Z. Are Slice-Based Cohesion Metrics Actually Useful in Effort-Aware Post-
Release Fault-Proneness Prediction? An Empirical Study. IEEE Transactions on
Software Engineering 41, 4 (2015), 331-357.

Yoo, S., AND HARMAN, M. Regression Testing Minimization, Selection and Pri-
oritization: A Survey. Software Testing, Verification and Reliability 22, 2 (2012),
67-120.

YosHIDA, N., KiNosHITA, M., AND IibA, H. A Cohesion Metric Approach to
Dividing Source Code into Functional Segments to Improve Maintainability. In Soft-
ware Maintenance and Reengineering (CSMR), 16th European Conference on (2012),
IEEE, pp. 365-370.

YOUNG, M., AND TAYLOR, R. N. Rethinking the Taxonomy of Fault Detection Tech-

niques. In Proceedings of the 11th International Conference on Software Engineering
(ICSE) (1989), ACM, pp. 53-62.

Yu, P., SystA, T., AND MULLER, H. Predicting Fault-Proneness using OO Met-
rics. An Industrial Case Study. In Software Maintenance and Reengineering, 2002.
Proceedings. Sixth European Conference on (2002), IEEE, pp. 99-107.

ZHANG, L., HAao, D., ZHANG, L., ROTHERMEL, G., AND MEI, H. Bridging the Gap
between the Total and Additional Test-Case Prioritization Strategies. In Proceedings
of International Conference on Software Engineering (ICSE) (2013), IEEE, pp. 192
201.

ZHAO, J. Applying Program Dependence Analysis to Java Software. In Proceedings
of Workshop on Software Engineering and Database Systems, International Computer
Symposium (1998), Citeseer, pp. 162-169.

BIBLIOGRAPHY 205

[216] ZHAO, J. Dynamic Slicing of Object-Oriented Programs. Technical Report SE-98-119,

Information Processing Society of Japan, 1998.

[217] ZuAO, J., CHENG, J., AND UsHuIIMA, K. A Dependence Based Representation for
Concurrent Object-Oriented Software Maintenance. In Proceedings of 2nd Euromicro

Conference on Software Maintenance and Reengineering (1998), pp. 60—66.

[218] Zuou, Y., WEN, L., Wang, J., CHEN, Y., Lu, H., aND XU, B. DRC: A De-
pendence Relationships Based Cohesion Measure for Classes. In Proceedings of Tenth
Asia-Pacific Software Engineering Conference (APSEC) (2003), IEEE, pp. 215-223.

[219] Zuou, Y., Xu, B., ZHAO, J., AND YANG, H. ICBMC: An Improved Cohesion
Measure for Classes. In Proceedings. International Conference Software Maintenance
(2002), IEEE, pp. 44-53.

[220] Zuu, H., HAaLL, P. A., AND MAY, J. H. Software Unit Test Coverage and Adequacy.
ACM Computing Surveys (CSUR) 29, 4 (1997), 366-427.

BIBLIOGRAPHY 207

Dissemination of Work

1. S. Panda, D. Munjal, D. P. Mohapatra, A Slice-Based Change Impact Analysis
for Regression Test Case Prioritization of Object-Oriented Programs, Journal

of Advances in Software Engineering, Hindawi Publishers, 2015 (Accepted).

2. S. Panda, D. P. Mohapatra, ACCo: A Nowvel Approach to Measure Cohesion
using Hierarchical Slicing of Java Programs, Journal of Innovations in Systems
and Software Engineering, Springer, Vol. 11, No. 4, pp: 243-260, 2015.

3. S. Panda, D. P. Mohapatra, Hierarchical Regression Test Selection using Slic-
ing, International Journal of Computational Science and Engineering, Inder-
science Publishers, 2015 (in Press).

4. S. Panda, D. P. Mohapatra, A Framework to measure Coupling using Static
Change Impact Analysis, International Journal of Business Information Sys-

tems, Inderscience Publishers, 2015 (in Press).

5. S. Panda, D. P. Mohapatra, Application of Hierarchical Slicing to Regres-
sion Test Selection of Java Programs, In Journal of Model-based Software
Engineering: Some Perspectives, Infosys Labs Briefings, 6th India Software
Engineering Conference Workshop, Vol. 11, No. 2, pp: 3-19, 2013.

208 BIBLIOGRAPHY

Biodata

Subhrakanta Panda

Department of Computer Science and Engineering,

National Institute of Technology Rourkela,

Rourkela — 769 008, Odisha, India.

Mob: +91 94385 48432

Email: 511cs109@nitrkl.ac.in, subhrakantall@gmail.com

Permanent Address

Plot No. 934, Jyotivihar, Bidanasi, Cuttack 753 014, Odisha, India.

Qualification

e PhD (CSE) (Continuing)
National Institute of Technology Rourkela

e M.Tech. (CSE)
DRIEMS under BPUT, Rourkela, completed with 9.01 CGPA.

e B.Tech (CSE)
Kalinga Institute of Technology and Science (KITS), KIIT, Bhubaneswar,
completed with 67% of marks

Publications

e Journals:
Published/Accepted: 4

Communicated: 2

e Conferences: 9

Area of Interest

Programming Slicing, Change Impact Analysis, Software Testing, Regression
Testing, Software Metrics, Aspect Mining, Semantic Analysis, Graph Theory
Applications, Big Data Analytics.

Hobbies

Reading Books, Playing Chess, Solving Sudoku Puzzles.

Index

ACC, 126

ACCo, 101

all-edges criterion, 22
all-nodes criterion, 22
APFD, 121

ASG, 99

Backward Slice, 24
Black Box Testing, 15

CCG, 157

CFG, 29, 31

Change Impact Analysis, 154
CIG, 156

Clustering, 136

Cohesion, 100

Coupling, 123

CRG, 154

Crosscutting, 159

DOCF, 161
DOCS, 160
Dynamic Slice, 26

EOOSDG, 64
Forward Slice, 24
Grey Box, 15

HD Slicing, 73
Hierarchical Slicing, 62

Integer Linear Programming, 107

OPDG, 35

PDG, 32
Program Slicing, 23

Regression Testing, 18

Scattering, 159
SDG, 33

Selective Regression Testing, 19

slicing criterion, 62
Software Changes, 152
Software Testing, 13
Static Slice, 25

Tangling, 159

Test Case, 16

Test Case Prioritization, 20
Test Case Weight, 137

Test Suite, 16

Test Suite Minimization, 19

White Box Testing, 15

