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Abstract: 

The group has recently reported a novel protocol of oxidative dearomatization of napthols using 

phenyl selenium bromide (PhSeBr). The progress through this process towards the natural 

product synthesis especially the Spiroliganone system in the different conditions are the main 

goal for this work .Target was mainly the synthesis of oxa-spirane  core through oxidative de- 

aromatization of the phenolic ring. 

 

 

Introduction: 

Organic synthesis has become the initiation point of interdisciplinary research in Chemistry, 

Biology as well as in medicine from the last few decades .  Synthesis of bioactive molecules has 

been always the point of attraction, as the natural resources are unable to meet the huge demands 

of available medicines. Development of the facile routes to accomplish successful multistep 

organic synthesis, leading to the development of bioactive natural products is one of the most 

challenging fields in chemistry in academia and industry throughout the world. Useful efforts are 

being made to develop pathways to shorten the hectic multistep synthesis. Primarily, our interest 

lies in Oxidative Dearomatization of unprotected systems like phenol, Naphthols, cresols, 

coumarins etc using cheaper   reagents. De-aromatization can lead to the several compounds 

containing chiral carbons and will provide synthetically useful hydrocarbons and allylic 

frameworks.  

 

 

 

 

 

 

 

 

    Figure-1 

 

 

The 3D-framework comprising a bunch of chiral centres can be easily developed from a “Cyclo-

hexa dienene intermediate,” (Figure-1) an envisoned one resulting from Oxidative 

Dearomatization of abundant arenes. 



 Since, the dearomatization offers unique 

strategic opportuniety to circumvent the inherent 

ortho/para selectivity of electron-rich aromatic 

systems, the dearomatization strategy can also be 

used in the synthesis of multi-functionalized 

aromatic compounds that are difficult to prepare 

by electrophilic substitution reactions. 

             

                Figure-2 

The following scheme illustrates some of the common strategies available (Figire-2).  

The Enzymatic, Photochemical,  Birch reduction procedures suffer from very low yields and are 

also not turn out to be generalized methodologies. Transition metal catalysis are very expensive. 

 

 

 

  

 

     Figure-3 

The enzymatic de-aromatization (Figure-2) occurs by the application of monooxygenase 

eukaryotes, dioxygenase prokaryotes or benzoyl Co-A reducatse by the formation of epoxides, 

diols, diene derivatives respectively. Although this is advantageous for the synthesis of 

enantioselective dihydroxylation with the functional group tolerance and aromatic heterocycles 

but it doesnot lead to any C-C bond formation. 

Thermal/photochemical dearomatizations (Figure-2) are done mainly by the Diels-Alder reaction 

or by the photo induced reactions. The advantage is the atom economic character of the C-C 

bond formation reaction together with the limitations of the substate scope and harsh conditions. 

The birch reduction (Figure-2) can lead to the position selectivity but need to the harsh 

conditions. 

But the most popular de-aromatization process is the oxidative de-aromatizationas per the 

literature by the hypervalent iodine reagents (Figure-2). It has catalytic, asymmetric as well as 

mild condition advantage but the main problem of this reaction is that it is only applicable upon 

the phenolic compounds.  



 

The I(+3) oxidants being cheap and easy to prepare is being used for this purpose exhaustively. 

The Organic chemists are giving tireless  efforts throughout years on oxidative use of 

hypervalent Iodine compounds such as Phenyl Iodine diacetate (PIDA), NaIO4, o-iodoxy benzoic 

acid(IBX) etc, many of these are compared with “Biomimetic” protocols. The drawbacks 

associated with the iodine mediated reagents is that phenols on oxidation  results into 

intermediates such as phenoxonium cation, p-and o- quinone and p- and o- quinone 

methide(Figure-3) which are difficult to control, hence resulting into a huge wastage of the 

substrates and ultimately unsatisfactory yields. One needs an external or internal nucleophile to 

stabilize the intermediates to deliver a stable product (Figure-4). 

 

 

 

 

Figure-4 

The main (I+3) oxidants utilised for such oxidative de-aromatization reactions are PhI(OAc)2, 

PhI(TFA)2, F─PhI(TFA)2.  A wide variety of natural products has been utilized using such 

reactions as a key step.  In an organic chemist’s perseverance, the oxidative dearomatisation 

phenols proceed through a rapid equilibrium which involves a cyclohexadienone and is stabilized 

through a nucleophilic attack. However the presence of cyclohexadienyl cation (I-1)(Figure-4) is 

questionable whether is it a concerted step and can be answered with the formation of suitably 

substituted diastereomers.  Obviously the stability of the Intermediate-1 is also not clearly 

understood till now. 

The cyclohexadienones produces a wide variety of complex 3D organic structures: 

- Tandem [ 4+2] cycloaddition – Danishefsky , JACS 2006, 128,16440 

- Triggering Diels-Alder cycloaddition (IMDA) -Liao, Org.lett. 2007, 9, 4563 

- Michael Addition ( MEM) – Porco, Jr.JACS 2007, 129, 12682 

- Retro Diels-Alder / Diels Alder sequence- Snyder, JACS 2009, 131,1745 

- Claisen Dearomatisation/ Diels- Alder cycloaddition- Theodorakis, PNAS 2004, 101, 

12030(Figure-5) 

 



 

 

 

 

Figure-5 

A couple of natural products (Figure-6)   has been brought under the purview of synthesis  

employing the oxidative dearomatisation as a key step. 

  

 

 

 

 

 

 

 

 

 

 

 

                        Figure-6 

Thus, it acts as a key step for solving molecular intricacy. The oxidative transformations of 

phenols lead to cyclohexadienones, oxidative coupling, ortho-hydroxylation and ring cleavage 

reactions. Specifically, the cyclohexadienone is expected to be a suitable scaffold (Figure-7) for 

different interesting transformations like 1, 2-addition, Diels- Alder Reaction, Cyclopropanation 

followed by ring expansion etc. 

 

 

 



  

 

 

 

 

 

                                                             Figure-7 

 

Specifically, attempts have been accomplishing for the synthesis ofmade initiated for synthesing 

an important natural product namely Spirooliganone A(Figure-8) and so far there is only one 

report of the total synthesis of this natural product by Xie et.al.(16) 

Spiroliganone A(Figure-8) which was found to exhibit potent activities against Coxsackie virus 

B3 and influenza virus A (H3N2). Spiroologanones possess a cyclopropano pyranose ring. 

 

 

 

 

       

                                                                      Figure-8 

                                                    SPIROLIGANONE A 

 As it has been already hypothesized in proposal of retro-synthesis and biosynthesis that these 

structural units could be accessed directly and also atom-economically, simply by site-specific 

de-aromatization of appropriate phenols bearing varieties of functional groups like an olefin side 

chain and the coumarin groups at the corresponding positions. The structural and functional 

diversities conferred by such a fascinating ortho and para-fused spiro-bicycles are unusual and 

highly challenging.  Indeed, there are some reports in literature on various methods for 

dearomatization of phenolic substances, particularly those involving hypervalent iodine reagent -

mediated formation of widely useful ortho- and para-quinone monoketals (i.e., de-aromatized 

rings featuring the formed C-O or C-N bonds). This emerges fully C-C bond formation enabled 



phenol dearomatization with the quaternary stereogenic centers exactly at the spiro-ring 

junctions. 

 As per the best of our knowledge, there appears to be only two studies by Pettus and Feringa and 

co-workers, respectively, both reported in 2011,that have successfully realized selective ortho-

dearomatization of phenols and naphthols with strategic C-C bonds formation for the targeted 

construction of spiro-carbocycles. The substrate scope was limited, and phenols have proven to 

be more challenging motifs than naphthols for the events of oxidative de-aromatization as the 

aromatic stabilization of the ring single ring is disturbed in this case.  

The another retrosynthetic approach for the synthesis of the core of  this molecule can suggest an 

oxidative dearomatization process of coumarins bearing phenolic –OH groups. We have tried 

first to dearomatize the simple phenolic compounds so that if the process becomes successful it 

can be feasible with the coumarin derivatives also with consequent generation of our target 

molecule. 

 

 

Recently our group has developed a new method for it by the help of selenium through phenyl 

selenium bromide and published it continuing with lot of substrates like phenols, thiols, napthols, 

anilines etc. Selenium is efficient and novel and the same oxidative property like hypervalent 

iodine reminds the diagonal relationship between iodine and selenium in the periodic table. 

Hence, we have tried for the dearomatization of the compounds serially through this novel 

method. 

 

Literature survey: 

 

The novel spirooliganone systems have a great antiviral activity, an unprecedented skeleton. 

Illicium oligandrum was used in Chinese folk medicine for the treatment of rheumatoid arthritis 

for the centuries. Very few reports are available on this system in literature. In 2013, Yu and co-

workers reported the isolation of a pair of spiro carbon epimers, spirooliganones A and B 

(Figure-9), from the roots of I. oligandrum. The two compounds comprise of unique pentacyclic 

skeleton containing a rare dioxa-spiro system and a cyclohexadienone moiety together. Their 

structures were established by X-ray diffraction analysis of their p-bromobenzoyl derivatives, 

with the absolute configuration being determined by Mosher’s method, suggesting that they 

differ only in the absolute configuration of the spiro carbon (C17). They exhibit potential 

activities against coxsackie virus (IC50 3.70-33.33 µM) and were the first natural products 

isolated from I. oligandrum that show antiviral activities. The unprecedented structure of 

spirooliganones along with the potent antiviral activity B3 and influenza virus A (H3N2) leads to 

the interest to the organic chemists. 

 



Spirooliganone-B was found to exhibit more potent activities against coxsackie virus B and 

influenza virus A (H3N2) (IC50 3.70_5.05 µM) than spirooliganone- A due to differences in the 

configuration. Spirooliganone-B was obtained as colorless oil having the molecular formula, 

C25H34O, deduced from HRESIMS and 1D NMR. The UV, IR, CD, and NMR spectral data 

resmble likely(Figure-9). 
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 Xie and his group in 2014 have presented the first enantioselective total syntheses of (-)-

spirooliganones A and B. Yu proposed a biogenetic pathway of spirooliganones A and B 

(Figure-9); they were derived by hetero-Diels-Alder reaction between monoterpene(-)-sabinene, 

which could be generated from 5-allylbenzene-1,2,4-triol. Considering the cycloaddition 

confronting the problematic regioselectivity and possible dimerization of it, they envisioned an 

earlystage hetero-Diels-Alder cycloaddition of (-)-sabinene and symmetrical 2-

methylenecyclohexane-1,3-dione 6 could solve this problem and can give  a retrosynthetic 

analysis of spirooliganones. 
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           Figure-10 

 

        Figure-11(a) 
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                                                            Figure-11(b) 

 They have focused on the oxa-spiro cyclohexadienone skeletons that could be constructed from 

diol via tandem oxidative dearomatization/cyclization. The dihydroxy groups at C11 and C12 

could be introduced via an asymmetric dihydroxylation of the prenyl chain. The aromatization of 

the tetracyclic adducts would give the corresponding phenol, from which the prenyl and allylic 

side chains could be assembled via twice O-alkylation and Claisen rearrangement 

sequence(Figure-10(b)). The two stereoisomers , provided via the one-pot Knoevenagel/hetero-

DielsAlder reaction from commercially available 1.3-cyclohexanedione, formalin, and (-)-

sabinene. The synthesis was begun to prepare the tetracyclic intermediate, at Hoffmann 

conditions, 1, 3-cyclohexanedione was added slowly to the formalin and (-)-sabinene solution in 

CH3CN, and the heteroDiels-Alder reaction went in one pot to afford a 1:1.2 mixture of epimeric 

tetracyclic adducts with 79% yield. The poor diastereoselectivity could be attributed to the slight 

steric difference between α and β face of sabinene. The advantage of this is to access both 

diastereomeric  spirooligaones.  After preliminary separation by silica gel chromatography, it 

was successfully isolated as a white solid by recrystallization from ethyl acetate/petroleum ether.  



O

OH

OH

OH

O

O

O

HO

Spiroliganone-B

O

O

O

O

OH

OH

0.02eq. K2OsO2(OH)4

0.1  eq. (DHQD)2PHAL

3.0  eq. K3Fe(CN)6

3.0  eq. K2CO3

2.0  eq. MeSO2NH2

t-BuOH/H2O(1:1)

57%

N230
o
 C

91%

PIDA, HFIP

K2CO3, 0
o
 C

 
                                                                          Figure-11(c ) 

 After trying a lot of unsuccessful reactions, DDQ in dioxane solvent alone gave the trace desired 

product. The yield could not be improved independent on how much the reaction time is and 

changed the amount of DDQ. Suspecting  the sensitivity of  phenol derivatives to oxidizing 

agents, due to the electron-rich nature of resorcinol monoether moiety, they transformed into the 

corresponding β-keto sulfoxide by use of methylbenzenesulfinate, which was easily converted to 

the desired one  in 86% yield eliminating of the sulfoxide group in one pot.  Then the stage was  

set for introduction of the prenyl and allylic side chains of the phenol ring. A general alkylation/ 

Claisen rearrangement sequence was adopted. Treatment of phenolic derivative  with prenyl 

bromide and K2CO3 in refluxing acetone efficiently delivered prenyl ether, which was heated in 

toluene in the presence of a catalytic amount of Eu(fod)3 to afford p-prenylated phenol  in 88% 

yield with high regioselectivity together with the retaintion of the acid-sensitive propane ring. 

Under the sharpless condition then interestingly the  decreasing of the  amount of K2OsO2(OH)4 

led to low conversion, and increasing it gave more overoxidation byproduct. The stereochemistry 

of the formed diol was assigned according to the Sharpless model and eventually verified by the 

late-stage cyclization of the oxa-spiro B ring in  N,N-Dimethylaniline as  the optimal solvent 

(230°C) in Claisen rearrangement of  to cleanly furnish O-allyl phenol in 91% yield. The last 

challenge they have overcome, cyclization of the oxa-spiro B ring using a tandem oxidative 



dearomatization/cyclization sequence. The treatment of O-allyl phenol with phenyliodine 

diacetate(PIDA) in HFIP as optimal solvent. 

 

Experimentals: 

Strategy: 

 

 
 

Figure-12 

Reagents:- (a)Triethyl phosphonoacetate,NaH,0⁰C ,(b) H2,10% Pd charcoal, (c) Mg, diethyl 

ether, methyl iodide ,  

(d)SL.No Conditions Result 

1 PhSeBr,methanol, triethylamine at rt Starting left 

2 PhSeBr, THF,triethylamine at rt Starting left 

3 PhSeBr, DMSO, Pyridine at rt Starting left 

4 PhSeBr,THF,K2CO3 at rt Starting left 

5 PhSeBr, THF,Cs2CO3 at rt Starting left 

6 PhSeBr, methanol, triethylamine at refluxing temp. Starting left 

7 PhSeBr, THF,triethylamine at refluxing temp. Starting left 

8 PhSeBr, DMSO, Pyridine at refluxing temp. Starting left 

 

 



 

Procedure: 

 

1.  Dry THF was added to oil free 1 eq.NaH in a round bottomed flask and then 1 eq. 

triethyl phosphonoacetate was added to the solution at 0⁰C . To the well stirred solution 

compound i.e. para hydroxyl benzaldehyde (1 gm) was added.  The reaction was 

monitored by TLC for 5 hrs and finally the raction mixture was worked up and purified 

through column chromatography.   

 

2. The reactant was dissolved in methanol and then paladised charcoal was added in 

hydrogen atmosphere and kept for 4 hrs. It leads to the 100 % conversion as per TLC 

monitoring. 

 

 

3. Activated Mg (excess) was taken in two necked RB and diethyl ether was taken in 

allowed for stirring then methyl iodide was slowly added so that the refluxing started. 

The reaction was allowed to stir till a grey color appears which indicates the formation of 

Grignard then compound was added to it. Then the reaction was quenched using 

ammonium chloride, worked up and purified through column chromatography. 

 

4. The reactant alcohol is added first and then subsequent addition of the solvent, base and 

at last the PhSeBr. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Spectral data: 

 Compound: 

 

 
 
1H NMR (CDCl3, 400 MHz):  

 

δ=1.321(t,3H),4.254(q,2H),6.271(d,1H,J=16Hz),6.872(q,2H,J=6Hz),7.378(d,2HJ=12Hz),7.625(d

,1H,J=16Hz) ppm 

 

 

 

 

 

 



 

 

 

 

 

 

 

Compound: 
 

 

 

 

 

 

1H NMR (CDCl3, 400 MHz): 

  =1.236(s,3H),2.601(t,2H),2.875(t,2H),3.486(s,1H),4.135(q,2H,J=7Hz),6.923(dd,4H,J=9Hz)ppm 

 

 
 

 

 

 

 

 



 

 

13C NMR (CDCl3,400 MHz): 

δ=15.58,24.13,30.79,31.12,31.52,31.55,33.35,37.53,37.77,53.26,62.18,78.19,78.51,78.83,116.81

,116.84,130.78,130.80,133.56,133.60,155.76,155.78,175.27,175.62 ppm 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Compound: 

 

 
 

 

 

 
1H NMR (CD3OD, 400 MHz):  

δ=1.250(s,3H),1.326(s,1H),1.708(m,1H),2.587(m,1H),6.693(m,1H,J=2Hz),7.021(m,1H, 

J=3Hz)ppm 

 

 

 
 

 
 

 

 

 

 

 

 



 

 

 

 

 

 

13C NMR (CD3OD, 400 MHz): 

                

δ=33.12,34.71,34.86,51.29,52.31,52.52,52.73,52.95,53.16,53.37,53.58,75.23,117.99,120.02,134.

07,138.86,160.20 ppm 

 

 

 

 

 

 
 
Conclusion and future prospects: 
Trials are underway to develop well functionalised oxa-spiranes employing PhSeBr in different 

experimental conditions. Once the oxa spirane ring system is developed , efforts would be 

highlighted towards the total synthesis of Spiroliganone . 
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