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ABSTRACT 

This project is concerned with the rectification of EEG recording. EEG signal is often gets 

distorted due to the presence of various signals which are known as artifacts. Eye blinking is 

one of the major artifacts causing EEG to distort. Eye blinking distorts the EEG signal by 

varying the electric potential present over the scalp. To remove the artifacts, signal separation 

techniques are widely used in modern days. There are various methods used for removing 

different types of artifacts present in EEG recording and one of the techniques is Blind 

Source Separation which is used for separation of source signal from artifacts. This thesis 

also demonstrates the use of Second Order Blind Identification with Robust 

Orthogonalization (known as SOBI-RO) algorithm to remove the ocular artifacts and 

reconstruct the original EEG signal. Finally, the original signal and estimated signal is 

compared. 

To illustrate the algorithm a raw EEG data has been taken from the database. The data has 

been processed on MATLAB platform using the SOBI-RO algorithm. In the end it was found 

that the ocular artifacts are successfully removed from the raw EEG data. The performance is 

evaluated using signal to distortion ratio. 
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CHAPTER 1: INTRODUCTION 
 

Introduction 
Electroencephalogram (EEG) records the potential generated by the brain. The EEG plays an 

important role for many applications. A current research involving EEG data is the 

development of brain machine interface (BCI) [9], [10]. A brain machine interface [11], [12] 

works as a communication system between brain and machine. EEG is frequently used 

because it is non-invasive and is capable of detecting rapid changes in electrical activity. 

Analysis of these recordings has been a major resource to gain some insight about the onset 

and activity associated with the development of seizure activity. Unfortunately, EEG data is 

commonly contaminated by ocular artefacts which make the analysis of real EEG data very 

difficult. The focus of this thesis is to detect and remove eye blink artifacts in order to 

facilitate analysis of EEG recordings. 

One of BCI application is allowing disable people to communicate with machine such as 

robot and wheelchair [13], [14]. The block diagram of BCI scheme is shown in the fig.1.1. 

 

SOURCE

OCULAR ARTIFACTS

REMOVAL

SIGNAL

PRE-PROCESSING

CLASSIFICATIONDEVICE CONTROL

DATA ACQUISITION

 
 

Fig.1. 1 BCI Block Diagram 

One of the major applications of the separation of noise signal from EEG signal is in 

the field of medical research and in the brain machine interface. The effectiveness of brain 
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machine interface is achieved by increasing the signal strength and decreasing the noise 

strength in the EEG signal and thus minimizing the error. By improving SNR value, we 

control the device in efficient way. In the brain machine interface system, the signal potential 

is generated by the activity of brain while noise is produced by unwanted sources. This 

unwanted source may be line noise, eye blinking, ocular movement, muscle contraction and 

others. One of the major sources of noise is blinking of the eye, which produced spikes of 

higher amplitude during the recording process [15], [16], [17]. The average range of 

amplitude of EEG signal is -50 to 50 microvolt’s but the blinking creates spike of more than 

100 microvolt’s, which creates significant amount of noise.  

1.1 Need of Physiological Measurement 

The field of biomedical measurement has seen drastic changes in 19th and 20th 

centuries. During the world war 2nd, a lot of work had been done on Electrocardiogram and 

Electroencephalogram. In the late of 20th century, various instruments and apparatus have 

been developed to record the bioelectric potentials present in human body. For example, 

Pacemakers, Defibrillators were developed during this span. 

1.2 Human Body: A Physiological Overview 

Human body is a physiological system comprising various subsystems such as, the 

biochemical system, the cardiovascular system, respiratory system and the nervous system. 

These subsystems interact with each other causing it difficult to measure bioelectric 

potentials present in the human body. Problems don’t end here; as these subsystems also 

interact with the environment as a whole producing various artifacts during the measurement. 

The description of various physiological systems is given below. 
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1. Biochemical system: It produces energy for carrying out the activities of human body, 

various abstracts for the growth of body and repair of tissues. This subsystem is more 

like a self-contained chemical factory. 

 

2. Cardiovascular System: It is one of the most complicated and distributed 

physiological system of the body. It contains a four chamber heart, blood carrying 

arteries and veins. The heart acts like a pump which circulates the blood in whole 

body. 

3. Respiratory System: It is the only pneumatic system of the body consisting of an 

elastic bag, known as Lung and a passage, which constitutes pharynx, larynx, trachea 

and bronchi. 

4. Nervous System: It is the most complicated system of the body having a self-adapting 

processor in its center known as Brain. Brain is responsible for decision making, 

solving complex problems, creating art, music and in feeling emotions. Billions of 

communication lines known as neurons act as bridge between brain and human body. 

1.3 Bioelectric Potentials 

The potentials generated by various systems of the body as a result of functions 

performed by them are known as bioelectric potentials. These potentials contains valuable 

information which build the base of the measurement.  

Various bioelectric potentials generated by human body are listed below: 

1. Electrocardiogram: Bioelectric Potentials generated by heart is known as 

Electrocardiogram (ECG). ECG originates at a point near the right atrium known as 

pacemaker or sinoatrial node. P wave is due to atrial depolarization, QRS complex is 

due to atrial repolarization and ventricle depolarization and T wave is due to ventricle 

repolarization. 
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2. Electromyogram: The bioelectric potential generated by the muscles of the 

human body are known as Electromyogram. The EMG response is always obtained 

for a group of muscles rather than an individual muscle. They look like the waveform 

of random noise. 

3. Electroretinogram: Bioelectric potentials generated by the retina due to a visual 

stimulus is known as Electroretinogram. 

4. Electrooculogram: Bioelectric potentials generated due to movement of eye ball 

is known as Electrooculogram. This causes significant amount of disturbance in the 

EEG waveform.. 

5. Electrogastrogram: Bioelectric potential generated by gastro intestinal tract of 

the digestion system is known as Electrogastrogram. 

.  

Fig.1. 2 Typical EEG Waveform 

Electroencephalogram: The bioelectric potentials generated by the brain is known as 

electroencephalogram. EEG has the most complicated waveform as compare to all other 

bioelectric potentials listed above. The typical EEG wave form is shown in figure 1.2. 
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It is evident from the above figure that EEG largely depends on the placement of electrodes. 

It means EEG waveform obtained for two different locations of electrode will be entirely 

different from each other. This is not the case in ECG waveform. Waveform recorded by 

electrodes represents the combined bioelectric potential of a fairly wide region of brain. 

 EEG records the potential generated by the brain which is a non-invasive technique. 

The EEG plays an important role for many applications such as in medical research and 

device control. A current research involving EEG waveform is the development of brain 

machine interface (BCI). A brain-machine interface works as a communication system 

between brain and machine. EEG is frequently used because it is non-invasive and is capable 

of detecting rapid changes in electrical activity. Analysis of these recordings has been a major 

resource to gain some insight about the onset and activity associated with the development of 

seizure activity. Unfortunately, EEG data is commonly contaminated by ocular artifacts 

which make the analysis of real EEG data very difficult. The focus of this thesis is to detect 

and remove eye blink artifacts in order to facilitate analysis of EEG recordings. 

 

1.4 EEG data Acquisition 

EEG data is recorded by placing electrodes on the scalp. It is done using 

internationally accepted 10-20 system. In this electrodes are placed in a cap according to 

standard 10-20 system and each electrode is defined alphabetically. There are four types of 

electrodes which is designated according to their placements like frontal lobe as F, temporal 

lobe as T, occipital lobe as O and parietal lobe as P.  

The human brain is divided into four sections such as right hemisphere, left 

hemisphere, font and back part. The two hemispheres is divided by mid line. This is the most 

general method and internationally accepted method. The name of this system is based on the 

placement of electrodes which is placed on the interval of 10% & 20%. From ten percent 
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above the nasion and inion, other electrodes are placed maintaining an interval of twenty 

percent. A circle is drawn ten percent above the nasion and twenty percent above the circle is 

Fz, twenty percent above the Fz is Cz and further twenty percent Pz is positioned. The other 

electrodes are placed with equal distance to circle drawn and vertical line.   

1.5 Scalp EEG Database of CHB-MIT 

We have obtained this raw data from database of MIT, which is recorded at Children’s 

Hospital Boston namely CHB-MIT Scalp EEG Database. This data is a collection of EEG 

recording of patients suffering from seizure. The patients were monitored for several days. A 

total of 22 patients including 5 males of age group 3-22 and 17 females with age group 1.5-19 

were chosen in order to record the data. The sampling frequency of these signals is 256 Hz 

having resolution of 16 bit. The signals were grouped in file and each file contain 23 EEG 

signal. The international 10-20 system has been taken as a reference for the placement of the 

electrodes. 

1.6 EEG frequency bands 

EEG frequency pattern depends on the mental activity of a subject. It is difficult to 

establish relationship due to wide variations of pattern from person to person and less chance 

of repeatability. The waveform pattern is different in different stages. The waveform in 

awake state and state of sleep are different. In alert stage or awaken stage high frequency 

waveform are generated. But there are certain patterns which show the common 

characteristics of disease like seizure. In the beginning of sleep the amplitude and frequency 

start decreasing but in the sound sleep the amplitude becomes large and low-frequency 

pattern is obtained.  
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      The frequency band of EEG is classified in four ranges namely delta, theta, alpha and 

beta. Generally EEG pattern developed in the alpha band range when the subject is in relaxed 

condition. The amplitude of the EEG wave ranges from -50 to 50 V (peak to peak) which is 

approximately 100 times less than the amplitude of ECG signal. The below figure shows the 

frequency pattern of EEG wave: 

 

Fig.1. 3 EEG frequency pattern 
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Table1.1 Frequency Range of EEG signal 

Frequency Range (Hz) EEG Waves 

0.5 – 4   

4 -8   

8 -13   

> 13   

 

 

 

1.7 Artifacts 

The acquired EEG data can get corrupted at various points from recording to 

processing. The main reason for artifacts is external environment around the brain. These 

artifacts must be removed after the recording process.  Various types of artifacts are listed 

below: 

1.7.1 Eye Blink 

The artifact due to eye blinking is one of the significant noise in acquiring of EEG 

data. It can be clearly seen that the low amplitude EEG waveform is corrupted by a high 

amplitude ocular artifact. Because of its high amplitude it can be clearly differentiated from 

other artifacts. Eye artifacts are generally measured while recording electrooculargram 

(EOG), a pair of electrodes is used above and around the eyes. The contaminated signal is 

much difficult to be separated to get the original EEG.   
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1.7.2 Eye Movement 

It is due to the reorientation of the retinocorneal dipole. The diffusion across the scalp 

is stronger due to this artifact than that of the eye blink artefact. This artifact also has a higher 

amplitude than that of normal EEG potential. Eye blinks and eye movement often producing 

the effect simultaneously which makes it more difficult to remove them. 

1.7.3 Line noise 

The power supply used around the EEG machine can deteriorate the acquired data 

while transforming it from scalp electrodes to the EEG recorders. Notch filter is utilized for 

removal of Line noise. But use of notch filter is not recommended in case of lower frequency 

line noise and harmonics. If the frequency spectrum of Line noise matches with the frequency 

spectrum of EEG, interference occurs. If we use notch filter in that range, it can remove 

useful information. It can corrupt data of all the electrodes depending on how much powerful 

AC supply is. The frequency of noise depends on the frequency of power line (50Hz or 

60Hz). 

1.7.4 Muscle Activity 

Muscle activities also create artifacts. Muscles responsible for this belong to neck and 

face. The signals generated by these muscles have various frequencies and these frequencies 

are delocalized across the entire set of electrodes which depends on the distance from the 

source muscles. For reduction of this artifact patient should be in stable state of mind. 

1.7.5 Pulse 

Artifacts due to pulse are generated due to placement of electrodes near the vessels 

which carrying blood for circulation. When vessel contracts or expands, change in voltage 

takes place. Pulse artifacts are of two types: normal pulse artifact and deformed pulse artifact. 

Pulse artifact can be removed by subtracting pulse artifact template from EEG signal.  
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1.7.6 Skin potential 

There are two important artifacts that arise from skin changes. Perspiration artifact 

consists of slow waveform causes slow shift of the electrical baseline by slowly changing the 

electrical contact between the electrode and the skin. The second and less commonly 

recognized artifact produced by the galvanic skin response. It is produced by the swear gland 

and changes in skin conductance.  

1.7.7 Baseline Noise 

Due to poor contact of the electrodes and perspiration of the patient, the impedance of 

the electrode is changed and the baseline is shifted. It causes low frequency artifacts. 

Sometimes it may be due to variations in temperature as well as bias in the amplifier. This is 

undesired and should be removed before signal processing. 

 

1.8 Objective 

The objective of this thesis is to remove artifact from EEG recording. The focus is 

mainly on ocular artifact which is major source of error in EEG recording. The removal is 

done using SOBI-RO Algorithm of Independent Component Analysis technique. 

1.9 Literature Survey 

R. Romo Vazquez et al. [2] proposed a method of blind source separation and denoising [37], 

[38] for removing the EEG artifacts. A new method for artifact rejection and noise 

cancellation which is based on automation has been proposed in this paper. 

 

Arjon Turnip et al. [1] proposed a method for removal of ocular artifact from EEG signal. 

The removal is done using SOBI-RO algorithm [39], [40] on Motor Imagery Experiment. 
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Y. Li et al. [6] proposed sparse representation for brain signal processing. It also includes 

application of sparse representation in component extraction, blind source separation and 

EEG inverse imaging, feature selection and classification. 

 

Vaibhav Gandhi et al. [40] proposed filtering of EEG signal using Quantum Neural Network 

for Brain machine Interface. This paper shows use of RQNN filter model for signal filtering 

and feature extraction. 

 

M. H. Soomro et al. [41] compared different methods of Blind source separation for removal 

of eye blink artifacts from EEG. It compares ICA, CCA and PCA to estimate the source 

signal. 

 

Aapo Hyvarinen et al. [42] proposed Independent component analysis using FastICA 

algorithm and compares it with other existing ICA techniques, which shows the several 

advantage of FastICA over others. 

 

1.10 Thesis Outline 

This thesis is divided into four chapters. Chapter 1 gives the basics of physiological 

measurement such as EEG, ECG, EMG and EOG. It gives details about bioelectric potentials 

generated by human brain and their classification. It also deals with different types of 

artifacts in EEG recording. It includes eye-blinking, eye-movement, muscle contraction, line 

noise and base line noise. After the introduction in chapter 1, the remaining portion of thesis 

is organized as follows: 
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Chapter 2 ARTIFACT REMOVAL 

Chapter 2 deals mainly with the removal of ocular artifact using different techniques. The 

Blind Source Separation (BSS) technique is compared with other techniques of ocular artifact 

removal. In this chapter the method of BSS is discussed and calculated the signal to noise 

ratio and mean square error of clean EEG signal. 

 

Chapter 3 Ocular Artifact using ICA 

Chapter 3 deals with the Independent Component Analysis [18], [19] which gives better 

source separation as compared to other techniques. In this chapter particularly SOBI-RO 

algorithm is used for removal of eye blinking artifacts. The motivation of using this method is 

to reject the high amplitude spike and retrieve the original EEG waveform. 

 

Chapter 4 CONCLUSION AND FUTURE WORK 

Chapter 4 gives the conclusion of the thesis and scope of future research. 

 

 

 

 

  

 

 

 

 

 



13 
 

 

 

 

 

 

 

 

CHAPTER 2 

 ARTIFACT REMOVAL   



14 
 

CHAPTER 2: ARTIFACT REMOVAL 
 

Introduction 
There are various methods to remove the eye blink artifacts. Different techniques have been 

proposed to remove the ocular artifacts by many researchers. Some of the common 

techniques are filtering, regression analysis, wavelet transform, principal component analysis 

and blind source separation. In this work, Blind Source Separation is applied for removal of 

ocular artifact.  

2.1 Manual Method 

The simplest way of removing this type of artifact is to prevent them from occurrence. It is 

uncomfortable for the subject to control the blinking or eye movement. It is almost 

impossible for a human being to control eye blinking and even if a person tries to do so, it 

will affect the overall EEG signal and may introduce various artifacts. This is inadequate to 

fix the eye because it doesn’t eliminate eye movement and effectiveness degrades in case of 

children and patient who have disorder related to brain neurons [43], [44]. 

 

2.2 Linear Filtering 

There is one solution when we faced the problem of artifact removal that by analysing the 

frequency characteristics of signal as well as artifact and using the appropriate filter the 

artifact is removed. Since due to spectral overlapping of EOG and EEG, it cannot be simply 

filtered out. Simply rejecting contaminated EEG epoch may cause considerable loss of 

collected information.  The frequency of EEG signal generally ranges in between 0.5 Hz and 
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80 Hz, the normalized frequency spectrum of eye blink waveform is nearly DC up to 75 Hz. 

It clearly indicates that there is huge overlap in the spectrum.   

2.3 Regression Analysis 

This is a new method to remove the EOG signal from the EEG in frequency domain. It is 

based on complex regression analysis [45]. Eye movement activity is transferred to EEG can 

have frequency dependent phase and amplitude characteristics. This method is suitable for 

such transfer because the regression formulae are used in the frequency domain. A general 

procedure for regression analysis is described by Vigeon et al [46] in equations (1) through 

equation (4).  

 𝐸𝐸𝐺𝑟(𝑖) = 𝐸𝐸𝐺𝑜(𝑖) + 𝛾𝐸𝑂𝐺(𝑖), 𝑖 = 1,2,3 … . 𝑁 (1) 

The correlation(R) at zero lag of EOG and EEG recorded is given by 

 

1

( ) ( )
N

r

i

R EEG i EOG i



 

 

(2) 

Combining equations (1) and (2) results in an altered expression for the correlation 

 

2

1 1

( ) ( ) ( )
N N

o

i i

R EEG i EOG i EOG i
 

  
 

 

(3) 

Equations (2) and (3) are equal to each other and thus attenuation factor is given by  

 

𝛾 =
1

( ) ( )
N

r

i

EEG i EOG i




2

1

( )
N

i

EOG i




 

 

(4) 

This is easy to implement but it is based on several assumptions which is not necessarily 

correct. One of assumption is that the EEG and EOG are not correlated to each-other and 

measured EEG comprises of EEG and ocular artifact.  
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2.4 Principal Component Analysis 

This technique [9] transforms a multivariable data of n components into a set of uncorrelated 

component. Thus data set undergo reduction of dimension. It is very clear that transformation 

should have low variance. Here we assume that the components are orthogonal which is not 

true always. There is difficulty in this analysis is that ocular artifact generator could have 

correlation with EEG generator. It cannot remove ocular artifact from EEG when both have 

comparable amplitudes.  

 

Table.2. 1 Comparison of EEG Artifact removal methods 

Methods Limitations 

Manual Method Controlling manually creates other artifacts and it is not 

realistic and nearly impossible to control  

Linear Filtering It may be chance of losing critical information which is not 

practical in clinical research.  

Regression Analysis It requires clean EOG channel and then it removes EOG 

from EEG 

Principal Component 

Analysis 

It cannot distinguish ocular artifact from EEG when both 

have almost same amplitudes 

 

2.5 Blind Source Separation 

It implies the separation of a source signal from a group of mixed signal, with the little 

information about the source signal. It is called blind source separation because we don’t use 

any other information besides the mixtures. The observed brain signal is the linear mixture of 

the signal generated by brain [19]. Finding sources is the main concern of blind source 
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separation. In fact, a number of brain sources are always larger than the mixtures that lead to 

a complex problem with infinite solution.  

       To understand this takes an example where number of source signal generates the signal 

and number of recorder records the signal. Then, each recorder records the mixture of 

individual source signal. It is difficult to distinguish them due to various reasons .Some of the 

difficulties are the different locations of source and recorder, varying distances to recorders, 

and so on. It is the function of source separation technique to separate the sources.  

2.5.1 Methodological steps 

R. Romo Vazquez et al [2] have describes below methodology in order to find the estimated 

signal. The function of source separation technique is to separate the sources. The noisy 

signal in this case is given as: 

 Y Hs N   (5) 

 

Where, Y is noisy signals, H is unknown mixing matrix, s is the matrix of sources, and N is 

noise matrix which is added externally. 

The aim is to separate the source signal by analysing the value of B. The estimated source 

signal M is given by 

                                                               M BHs BN   (6) 

 

Here, one of the assumptions is number of sources and number of electrodes are same. But 

this is not the practical situation; this is only for mathematical simplification. In reality 

number of electrodes is less than the sources. In this case, Q QH R  and the perfect 

separation is observed when 

 1B H   (7) 
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2.5.2 Blind Source Separation evaluation 

The blind source separation result is validated by separability index SI. Separable index is 

derived from the matrix G (=BA) which is termed as transfer matrix. It computes the index 

between original and estimated source. The absolute value of G is computed for separable 

index. The rows and column of matrix G ( ig  , jg ) is normalized to 
'

ig  and  
'

jg  respectively: 

 
'g 

max

i

i

g

g
 

 

(8) 

 

 
''g 

max

j

j

g

g

 
 

(9) 

The separable index values 1SI  and 2SI  are calculated as  

 
𝑆𝐼1 =

∑ (∑ (𝐺′(𝑖, 𝑗) − 1)𝑄
𝐽=1 )𝑄

𝑖=1

𝑄(𝑄 − 1)
 

(10) 

 
𝑆𝐼2 =

∑ (∑ (𝐺′(𝑖, 𝑗) − 1)𝑄
𝑖=1 )𝑄

𝑗=1

𝑄(𝑄 − 1)
 

(11) 

   

   

The average of both is separable index SI which is written as  

 
𝑆𝐼 =

𝑆𝐼1 + 𝑆𝐼2

2
 

(12) 

Separable Index value should be zero for perfect separation. Therefore SI gives measure of 

closeness of G to permutation matrix.  
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2.6 Result 

The observed EEG signal is normalized by dividing the data with its length. The normalized 

data is then added with the noise for uniform distribution of noise throughout the signal. 

There are two types of noise, one is uniformly distributed noise and another one is normally 

distributed noise, which is added to the normalized signal. These noisy data is then filtered 

using butter worth filter as preprocessing. Blind source separation technique has been applied 

to this filtered signal. The estimated EEG signal is observed which is known as clean signal, 

shown in figure below. 

 

Fig.2. 1 Raw EEG Signal
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Fig.2. 2 Normalized EEG Signal 

     Fig.2. 3 Noisy Signal 
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Fig.2. 4 Clean EEG Signal 

 

When Blind Source Separation is applied to both contaminated data, it was observed that 

with increase in noise level, the SNR increases and at the same time MSE decreases. As the 

noise level increases, the signal strength is going to increase and the noise strength is going to 

decrease which is listed in the below table. The above result is observed when 5dB noise is 

added to the contaminated EEG signal. Similarly, other experimental results are tabulated in 

the Table 2.2 and Table 2.3. 
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Table.2. 2 SNR and MSE values under uniformly distributed noise 

 

Noise in dB SNR in dB MSE 

5 21.2207 0.0152 

10 23.7335 0.0047 

15 27.2942 0.0016 

20 32.6641 0.0005 

25 36.5484 0.0001 

 

 

Table.2. 3  SNR and MSE values under normally distributed noise 

 

Noise in dB SNR in dB MSE 

5 23.7658 0.0671 

10 25.2361 0.0210 

15 26.1404 0.0068 

20 33.5281 0.0022 

25 34.3791 0.0006 
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Summary 

This chapter describes the various methods used for removing different types of artifacts 

present in EEG recording and also justifies the use of Blind Source Separation for removal of 

artifacts from EEG signal. Initially raw EEG data has been taken and two types of noise have 

been added namely Normally Distributed Noise and Uniform Distributed Noise to generate 

two different sets of input. When Blind Source Separation is applied to both contaminated 

data, it was observed that with increase in noise level, the SNR increases and at the same time 

MSE decreases. 
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CHAPTER 3: ARTIFACT REMOVAL USING ICA 
 

Introduction 
Independent component analysis is generally used for feature extraction and source 

separation. It decomposes the mixed signals into independent one. This gives better 

separation based on two main assumptions: one of assumption is that the source signals are 

not dependent on others and second assume that each source signal is having non-Gaussian 

distribution. ICA concept is understood by an example of a cocktail party problem.  

3.1 Cocktail Party Problem 

Suppose there are three source of sound in a room at a time while three number of 

microphone is available in the room at different locations which recorded the signals. The 

signal is mixed with each other and recording is done as a weighted sum of individuals. The 

weight is determined according to the volume of speaker and the distance from the 

microphone. It is the duty of ICA to identify the individual speaker voice.  

In the below figure, there are three source of signal and three recorder and the 

individual recording is the sum of linear mixture of all the sources. In this type of problem 

this ICA technique is applied to recover the individual signal. Here microphone gives three 

recorded time signals 1( )x t , 2 ( )x t and 3( )x t , each having the weighted sum of speech signal 

which is denoted by 1( )s t , 2 ( )s t  and 3( )s t .This is represented by the linear combination as 

 
1 11 1 12 2 13 3. . .x t a s a s a s  

 
(13) 

 
2 21 1 22 2 23 3. . .x t a s a s a s  

 
(14) 
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Where coefficients 11 12 13 21 22, , , ,a a a a a  and 23a  value depends upon the microphone distance 

from source signal. This is known as the cocktail party problem.  

 

 

Fig. 3. 1 Cocktail Party Problem 

 

3.2 Methodology 

The methodology of implementing this algorithm is shown in the flowchart given 

below. All of five blocks are explained below in details starting from data acquisition to 

reconstruction of EEG signal. 
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3.2.1 Data Acquisition: 

The EEG data is taken from the CHB-MIT Scalp EEG Database which is a standard 

data base. This data is taken using international 10-20 system of patient suffering from 

seizure. This database is collected from the Children’s Hospital Boston which includes EEG 

recording of patient suffering from seizure. The patients were monitored for several days. A 

total of 22 patients including 5 males of age group 3-22 and 17 females with age group 1.5-19 

were chosen in order to record the data. 

3.2.2 Noisy Data: 

This EEG signal contains ocular artifact particularly on the frontopolar channels and 

occipital channels. This artifact is a major source of distortion of useful data. In EEG 

waveform, this artifact is recognized as high amplitude peak. The blinking of eyes produce 

noise in the EEG waveform. It can be clearly seen that the low amplitude EEG waveform is 

corrupted by a high amplitude ocular artifact. Because of its high amplitude it can be clearly 

differentiated from other artifacts.  
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Start

End

Data acquisition

EEG signal

containing ocular

artifact

clean brain signal

Preprocessing Ocular

artifact removal by using

ICA algorithm

analyzing and calculating SDR

 

Fig. 3. 2 SOBI-RO Algorithm Flowchart 

 

3.2.3 Preprocessing and Ocular artifact removal using ICA algorithm:  

 This EEG waveform is going to improve the signal to noise ratio using common 

average referencing or filtering. The type of filter used is very much depending on the goal of 

the application. The ICA technique [25], [26] is used to remove the ocular artifact. This 

model is also known as generative model because it is generated by mixing the source signal 

with unknown mixing matrix. Thus we observe the observed vector x and estimate the value 
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of A and s using observed vector.In this project work SOBI-RO algorithm [1] is implemented 

for better artifact removal than others methods. 

3.2.4 Clean Brain Signal and analysis: 

 At last the estimated EEG signal is retrieved using this technique. This method can be 

applied on any EEG signal including seizure. The clean EEG signal free from artifact is 

retrieved from the noisy EEG signal. The performance is evaluated using the Signal to 

Distortion Ratio (SDR) which gives better separation between clean EEG signal and noisy 

signal.  The SOBI-RO algorithm [23], [24] gives a high value of SDR which indicates that 

the estimated signal is almost similar to the actual source signal.  

 

3.3 Mathematical Model 

Suppose there are n linear mixtures 1 2, ,....., nx x x  of n independent components. 

 

1 1 2 2 ......j j j jn nx a s a s a s   
 
For all j

 
(15) 

We can represent the above model in vector-matrix form, which can be written as 

 x As  (16) 

Where A is the mixing matrix with element as 𝑎𝑖𝑗. 

This model can also be rewritten as 

 

1

n

i i

i

x a s



 

 

(17) 

The above model is known as ICA model [25], [26], [27], [28]. This model is also known as 

generative model because it is generated by mixing the source signal with unknown mixing 

matrix. Thus we observe the observed vector x and estimate the value of A and s using 

observed vector. In starting we assume several assumptions to make the analysis simple. 
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One of the assumption is components is  are statistically independent to each other. Another 

assumption is that components have nongaussian distribution. We also assume that the 

mixing matrix is square in nature.  

After estimating the mixing matrix A, we easily calculate the inverse matrix of A, and 

using observed vector we get the components as 

 s Wx  (18) 

 

Where W is inverse of estimated matrix A. 

3.4 ICA decomposition 

The ICA decomposition [39], [8] can be easily understood by brain scalp model. In the EEG 

signal matrix representation, row represents EEG recording at different electrodes point while 

column represents EEG recording at different time slots. Here multichannel scalp data is 

multiplied with the W, commonly known as unmixing matrix. Again, this unmixing matrix 

along with scalp weight is mixed to get activation matrix which decomposes the mixed signal 

to independent components by multiplying with inverse of W. 

3.5 Limitations of ICA 

This ICA method is valid under certain conditions: 

 The Source should be statistically independent. 

 The distribution should not be Gaussian [29], [30]. 

 The number of electrodes must be at least equal to the number of sources. 

 The independent sources should be combined linearly to give the mixture. 

 The recording should be free from any type of delay or noise. 

 The number of available mixture must be at least equal to number of independent 

components. 
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3.6 Removing Ocular Artifact of EEG signal using SOBI-RO 

The contaminated EEG signal keeps both original source signal and noise signal which is 

artifacts. Ocular artifact which is on specific channels can be removed by this ICA technique. 

This is a second order statistics method [31], [32]. Independent component analysis works on 

the principle that signal is independent of each-other and thus source signal can be separated 

from the mixture signal [1], [33], [34], [35]. 

3.6.1 Methods 

Arjon Turnip et al [1] have describes below methodology in order to find the estimated 

signal. The observed EEG signal is a mixture of source signal and weight matrix which is 

given as: 

 ( ) ( )x k Hs k  (19) 

Where ( )x k is observed EEG signal. 

Then calculated the autocovariances [20] of observed signal as: 

 

𝐶xx = (
1

𝑁
) ∑ 𝑥̃(𝑘)𝑥̃𝑇(𝑘 − 𝑝𝑖)

𝑁

𝑘=1

= Q𝐶𝑥𝑥𝑄𝑇 (20) 

Where ( )x k  is robust orthogonalization [21] of x (k) which is calculated as ( ) ( )x k Qx k . 

Then, diagonal matrix is observed after performing joint approximation techniques of 

diagonalization as: 

 𝐶𝑥𝑥 =  Q𝐶𝑥𝑥𝑄𝑇 =  U𝐷𝑖𝑈
𝑇 (21) 

At the final stage the estimated source signal [22] is expressed as: 

 ( ) ( )Te k U Qx k  
(22) 

 

The performance is evaluated using signal to distortion ratio which is calculated as 
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𝑆𝐷𝑅 = 10𝑙𝑜𝑔10 (

∑ s(𝑘)2
𝑘

∑ (𝑠(𝑘) − e(𝑘))
2

𝑘

) 

 

(23) 

The EEG data which is obtained from standard database is the observed data vector, 

represented as x (k). This observed data is obtained from mixing the weight matrix with 

source signal. Here, H is weight matrix and s (k) is the original source signal. The weight 

value depends on various factors such as the distance from the source signal, strength of the 

signal, location of electrodes etc. Thus we can say that the EEG signal is a mixture of source 

signal with an unknown weight matrix. 

 

The main artifact of the EEG waveform is ocular artifact. This causes major error in 

the analysis of EEG waveform. The ocular artifacts are identified by their high amplitude in 

comparison to normal EEG signal. The ocular artifact signals are mainly encountered at the 

frontopolar channel with occipital channel, as the electrodes for these channels are placed 

near eye. To counter this problem auto covariance technique has been used. In this technique 

the variance of the signal is calculated. Due to high amplitude, the time instant at which the 

ocular artifact occurs, the covariance is more compare to normal covariance.  

 

The auto covariance matrix is now subjected to QR factorization using Gram-

Schmidt, which includes three steps. 

 

1. Orthogonal basis via Gram-Schmidt 

2. Orthonormal (divide by length) 

3. QR factorization 

Our goal is to convert the original basis ( 1,...., nx x ) for v to an orthogonal basis ( 1,....., ny y ). 
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To achieve this a recursive idea is used as 

                  jy   Part of jx  that is perpendicular to 1 1{ ,...., }jy y   

                                          1 1y x , 

                                          2

1

1 2
2 2 2 1

1 1

.

.

x

y

y x
y x P x y

y y
    , 

          3 3

1 2

1 3 2 3
3 3 2 1 2

1 1 2 2

. .

. .

x x

y y

y x y x
y x P P x y y

y y y y
      , 

                                           

1

1

k

j

k
x

k k y

j

y x P




 
 

 

(24) 

The orthonormal basis is obtained by dividing the orthogonal basis with their length as given 

below: 
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1 2 3

1 2 3

, ,
yy y

z z z
y y y

  

 
 

(25) 

The orthonormal vectors constitute to give Q matrix and the R matrix is calculated using the 

formula given below: 

 
TR Q A  

(26) 

Where, A is original matrix 

           Q is an orthogonal matrix and       

            R is an upper triangular matrix. 

The average amplitude of EEG waveform is -50 to 50 microvolts but due to ocular artifact or 

stimulus, amplitude becomes higher than normal which is shown in below figure 3.3.   
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Fig. 3. 3 Raw EEG signal 

 

 

Fig. 3. 4 Auto covariance Signal 
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The auto-covariance waveform of contaminated EEG is shown in figure 3.4, which clearly 

indicates that the average variance is same except that where spike occurs. There are fixed 

pattern of ocular artifact at frontopolar and occipital channel. 

Now, joint approximation Diagonalization (JAD) is applied to orthogonalized mixing 

matrix using UD factorization. The auto-covariance matrix which contains error value can be 

factorized using Cholesky factorization as given in Eq-21. Where, U and D are referred to as 

the U-D factors of 𝐶𝑥𝑥. The value of U and D are unique provided Cxx is positive definite 

and factorization is done using the Cholesky algorithm. 

At last the estimate of source signal is retrieved by the given formula as: 

 ( ) ( )Te k U Qx k  
(27) 

Finally the signal to distortion ratio value is calculated to determine the effectiveness of the 

performed separation. 

 

 

 

 

3.6.2 Result 

The observed contaminated EEG signal shown in figure 3.5 is processed through the auto-

covariance with different time delays. In this method, the main focus is to remove the ocular 

artefact. In SOBI-RO first of all auto covariance is calculated for contaminated EEG signal 

and the portions having higher variance are rejected. The clear EEG signal waveform is 

shown in the figure 3.6. The clear EEG waveform shows that the average amplitude of signal 

is in between -50 to 50 microvolt which indicates that the artifact is removed successfully 

 



36 
 

 

Fig. 3. 5 Raw EEG Waveform 

 

After that Factorization along with Diagonalization is performed, orthogonal mixing 

matrix is calculated, to retrieve the estimated signal. To show the effectiveness of SOBI-RO, 

signal to distortion ratio (SDR) is calculated and it was observed that ocular artifact is 

removed. This result shows that SOBI-RO has better separation accuracy among all other 

methods. 
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Fig. 3. 6 Clean EEG Signal 
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Summary 

This chapter emphasizes on the ocular artifact and its removal to get clean EEG data. 

Out of various algorithms present in ICA techniques, SOBI-RO is used here because of its 

outstanding ability to remove noise from the contaminated EEG data. In SOBI-RO first of all 

auto covariance is calculated for contaminated EEG signal and the portions having higher 

variance are rejected. After that Factorization along with Diagonalization is performed to 

retrieve estimated signal. To show the effectiveness of SOBI-RO, signal to distortion ratio 

(SDR) is calculated and it was observed that ocular artifact is removed. This result shows that 

SOBI-RO has better separation accuracy among all other methods. 
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CHAPTER 4: Conclusions and Future Works 
 

Conclusions 
In this thesis, ICA technique is used to remove the ocular artifact from the EEG 

signal. The SOBI-RO algorithm is used because it is the most efficient algorithm for artifact 

removal. The data which is collected from CHB-MIT Scalp EEG Database is used for artifact 

removal. The clean EEG signal free from artifact is retrieved from the noisy EEG signal. The 

performance is evaluated using the Signal to Distortion Ratio (SDR) which gives better 

separation between clean EEG signal and noisy signal.  The SOBI-RO algorithm gives a high 

value of SDR which indicates that the estimated signal is almost similar to the actual source 

signal.  

 

Future Works 

 The accurate EEG signal finds scope in various advanced areas of bio-medical like 

clinical research and brain-machine interface. To get the accurate EEG signal SOBI-

RO is one of the finest methods. So if SOBI-RO is used in medical science, the cure 

of patient can be done effectively. 

 Its use in device control like brain computer interface can change the life of patients 

suffering from severe neurological disorder like seizure. 

 SOBI-RO method can be improved further by applying various other Linear 

Algebraic techniques of matrix operation. 
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