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                                              ABSTRACT  

 
One of the past control procedures is the PID control which is used many industries. 

It can be comprehended on the grounds that it is tuneable effectively and the control structure 

is basic. In the meantime a few tasteful results have been demonstrated utilizing PID control 

as a part of control system, in mechanical control despite everything it has an has a widespread 

variety of presentations. 

 

 As per a study it has been found that each control area requires PID type for process control 

systems directed which was studied in 1989. For a long time PID control has been an energetic 

study subject. 

 

Since numerous process plants have comparable dynamics which is PID controlled and it has 

been found from less plant data it is possible to set acceptable controller.  

 

In this few controller design techniques is been presented for PID-type, and resulting details 

for the tuning algorithms is discussed. The PID control are all described fully, and some 

differences of the classic PID structure are presented.  

 

The perceived experimental Ziegler–Nichols tuning formula and for the PID controller design 

algorithms approaches have been made for finding the corresponding FOPDT model. Some 

other simple PID setting formulae such as the Cohen–Coon formula, Chien–Hrones–Reswick 

formula, Zhuang–Atherton optimum PID controller, Wang–Juang–Chan formula and is 

presented. Some of the design techniques on PID control is presented, such as Smith predictor 

design and IMC control design. At long last, a few thoughts on the structure of the controller 

determinations for process control system are given. 
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1. INTRODUCTION 

1.1 Introduction to Control: 
 

Control designing manages Dynamic structures, for example, cars, flying machine, ships and 

trains, for example, refining sections and principally in steel moving plants, electrical systems, 

for example, power system, generators, and motors and numerically controlled machines and 

robots. 

 

There are some variables which are dependent, called outputs, which is to be controlled, which 

must be made to act in a recommended manner. Case in point it might be important to appoint 

the pressure and temperature in a process at different points, or the power system’s voltage and 

frequency, to given desired unchangeable value. 

 

Some variables which are not dependent, called inputs, for example, valve position or voltage 

connected to the engine terminals, to direct and control the conduct of the system.  

 

There are disturbances influencing which are affecting the system are not known. These could 

be, for instance load variances in power systems, disturbances influences, for example, wind 

blows following up on a vehicle, on exposing and cooling plant outside climate conditions is 

acting, or the load torque fluctuating on a lift engine, as travellers enter and way out.  

 

The parameters contained in these comparisons and the mathematical statements depicting the 

plant elements, are not no doubt understood at all or, best case scenario known generally. 

System parameter changes as the set point changes. 

The input and output of a plant to be controlled is given as.                                 

                                                           Unknown Disturbances 

 

 

 

 

                      Control inputs                                                     outputs which is to be controlled 

 

 

                                                                            Measurement      

                                                       

                               Fig 1.1 Input and output of a plant which is to be controlled 

 

 

In Fig. 1.1 the outputs or inputs demonstrated can really be speaking to a signal of vectors. 

Control which is practiced by input, which really implies that the useful input to the plant which 

is controlled is driven by available estimations which is produced by a device. We can see the 

control system shown in Fig. 1.2. 

                                                            

 

 

 

 

 

 

Plant 
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                                                                               Disturbances 

                                                     

 

                                                                                                                        Controller outputs 

 

 

 

 

 

                                                                                             Measurements 

 

Reference 

Input 

  

                                                              Fig. 1.2. Control system with feedback. 

 

The main purpose of designing the control system so as to meet some criteria so that the output 

can be  

 

1. Set to a fixed value which is called as reference value;  

 

2. Even though there is some unknown disturbances, reference value should be maintained;  

 

The first one is said to be tracking, the second one is said to be disturbance rejection,. If both 

the condition are met then the control system design can be a robust servomechanism. 

 

1.2 Closed loop SISO system: 

 

The single-input single-output (SISO) system is the essential control loop and can be 

simplified as in Fig.1.3 Here the disturbances present in the system are ignored. 
Reference 

Input         +           error                                                                                              output 

                           

  ( )r t                -    ( )e t                                              ( )u t                                             ( )c t  

 

 

 

              

                                           Fig.1.3 A closed loop SISO system                             

 

 

Normally, a controller is essential to process the error signal such that the general system fulfils 

certain standards. Some of these criteria are:  

 

1. Reduction in effect of disturbance signal. 

2. Reduction in steady-state errors. 

3. Sensitivity to parameter changes.  

 

The controllers have various structures so with a specific goal to accomplish favoured 

execution level various design techniques are there for planning the controller. Anyway, 

Plant 

Controller 

Controller Process 
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Proportional-Integral-derivative (PID) sort controller is the most famous among them. Actually 

in the modern control application 95% controllers are of   Proportional-Integral-Derivative 

[16]. As output of the Proportional-Integral-Derivative controller u (t) can be stated in terms of 

e (t), as:  

0

( ) 1
( ) [ ( ) ( ) ]

t

p d

i

de t
u t K e t e d

dt
  


                                                                                       (1) 

Transfer function of the controller is:  

1
( ) (1 )p d

i

C s K s
s




                                                                                                             (2) 

The terms of the controller are defined as: 

pK  = proportional gain, d  = Derivative time, and i  = Integral time. 

In the subsequent segment we might try to learn the significance of the individual proportional, 

integral, derivative. For simplicity we consider first-order transfer function in the absence of 

time delay: 

( )
1

K
P s

s



                                                                                                                           (3) 

 

1.3 Proportional control: 
 
In the closed loop system only P control is considered: 

 

              +                                                                                            

                           

  ( )R s                -    ( )E s                                                                  ( )C s  

 

 

 

                                   Fig.1.4. Controller with only P 

 

 

Transfer function is: 

'

( ) 11

( ) 1 1 1
1

1

p

p p

p p p

KK

KK KKC s s
KKR s KK s KK s

s


 



  
   




                                                                  (4) 

Where 
'

1 pKK


 


 

For a step input ( )
A

R s
s

  

'
( )

1 (1 )

p

p

KK A
R s

KK s s


 
 

Or, 
'

( ) (1 )
1

s
p

p

AKK
c t e

KK






 


                                                                                                  (5) 

The system response is shown in Fig. 1.5.  
 

pK  
1

K

s
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                                         Fig.1.5.Response with a proportional controller 

 

It is apparent from eqn. (5) and Fig. 1.5.  

1. By a factor 
1

1 pKK
 the time response is enhanced (i.e. the time constant declines). 

2. There is a steady state offset between reference and the output = 

(1 )
1 1

p

p p

KK A
A

KK KK
 

 
 

3.  By increasing the proportional gain offset can be reduced; however oscillations can 

increment for systems with higher order. From error transfer function, the steady state error  

can be obtained and in terms of Laplace transform, the error function e(t) can be represented 

as: 

              
1 1

( )
1

1
1

p p

A s A
E s

KK s KK s s

s








 

 




                                                                                       (6) 

The steady state error can be evaluated by using final value theorem

0 0

1
lim ( ) lim ( ) lim

1 1
ss

t s s
p p

s A A
e e t sE s

KK s s KK



  


   

  
                                                 (7) 

Proportional band is defined as the band of error which causes a 100% variation in the 

controller output expressed as a percentage of range measurement. 
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1.4 Integral Control: 
For closed loop system, the integral control is demonstrated in Fig. 1.6. 

 

              +                                                                                            

                           

  ( )R s                -    ( )E s                                                                  ( )C s  

 

 

 

                                   Fig.1.6. Integral Control action 

 

Continuing the same as in eqn. (4),  

2

(1 )( )

( )
1

(1 )

i

i i

i

K

s sC s K

KR s K s s

s

 

 

 


 

 




                                                                                         (8) 

We can see from above that closed loop systems order is increased by 1 so, it may cause 

instability as the process dynamic becomes higher order. 

  

For input step ( )
A

R s
s

  

0

(1 )1
( )

(1 )
1

(1 )

lim ( ) 0

i

i

i

ss
s

s sA A
E s

K s s s K s

s

e sE s

 

 

 




 

 




 

                                                                                (9) 

Due to input step the steady state error decreases to zero, it is the significant advantage of this 

integral control. Anyhow, all together, the response of the system is slow, oscillatory and 

unstable. The step response due to integral control is demonstrated in Fig. 1.7. 
 
 

 
                                                                                                                    

                    Fig.1.7. Step response with integral control action 
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1.5 Proportional Plus Integral (P-I) Control: 
With Proportional plus integral controller the closed loop system is demonstrated in Fig. 1.8. 

 

               +                                                                                            

                           

  ( )R s                -    ( )E s                                                                  ( )C s  

 

 

 

 

              Fig .1.8. Proportional plus Integral Control action 

 

As here we have two control actions P and I, P helps in quick response and I helps in reducing 

steady state error to zero. The transfer function of the error of the system can be stated as: 

2

(1 )( ) 1

(1 )( ) (1 )
1

(1 )

i

p i i p i p

i

s sE s

KK sR s s KK s KK

s s

 

  

 


 

   




                                                        (10) 

Additionally, the closed control loop characteristic equation for Proportional-Integral control 

is 
2 (1 )i p i ps KK s KK    = 0,                                                                                               (11) 

Damping constant is obtained as:  

1
( )

2

p i

p

KK

KK







     .                                                                                                               (12) 

Damping constant for simple integral control is 

1
( )
2

i

K





  

At the point when these two are looked at, one can undoubtedly observe that the damping 

constant can be increased by changing the term
pK . So we confirm that the steady state error 

can be zero by utilizing Proportional-Integral control and all together, we see improvement in 

the transient response. The system output response due to Proportional, Integral and 

Proportional-Integral control for same plant is thought about from the representation indicated 

in Fig. 1.9. 

 

        
                         Fig.1.9. Transient response with P, I and P-I  

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Transient response with P, I and P-I 

time

a
m

p
lit

u
d
e

 

 

I

PI

P

A

1
(1 )p

i

K
s



 
1

K

s
 

 



  

P a g e  | 17 

1.6 Proportional plus Derivative (P-D) Control: 
 

Transfer function of P-D controller is given by:   

( ) (1 )p dC s K s                                                                                                                   (13)       

P-D control transfer function ( )
1

K
P s

s



really is not exceptionally helpful, since it can’t 

decrease the steady state error to zero. But the closed loop system stability can be improved for 

higher order system using P-D controller. Let 
2

1
( )P s

Js
  at Fig.8, closed loop transfer function 

with proportional control is 

   
2

2

2

( )

( )
1

p

p

p p

K

KC s Js
KR s Js K

Js

 




                                                                                                 (14)              

Characteristics equation is given as  
2

pJs K  = 0; response is oscillatory, closed loop transfer 

function with P-D is: 

2

2

2

( 1)

( 1)( )

( 1)( ) ( 1)
1

d p

p d

d p d p

s K

K sC s Js
s KR s Js s K

Js




 




 

  


                                                                           (15)              

Characteristics equation is 
2 (1 )p dJs K s   = 0; that will give a closed loop stable response. 

             +                                                                                            

                           

  ( )R s                -    ( )E s                                                                  ( )C s  

 

 

 

                         Fig .1.10. Control action with higher order process 

 

 
 

1.7 Proportional-Integral-Derivative (PID) control: 

 
It is now clear that the required performance can be obtained by a proper combination of P,I 

and D action. PID control transfer function is: 

1
( ) (1 )p d

i

C s K s
s




                                                                                                                                 (16) 

It is a low order control system, however its applicability is widespread, and it can be utilized 

as a part of any kind of Single Input Single Output system. A large number of Multiple Input 

Multiple Output systems are initially subdivided into a few Single Input Single Output loops 

and for each loop PID controllers are intended. Proportional Integral Derivative controllers 

have additionally be discovered that it should be robust, and this is the reason why it finds wide 

suitability for modern procedures. The method of tuning PID parameters would be taken in 

later chapter.  

pK  
2

1

Js
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It is not that necessary that we ought to utilize all the control part. Truth be told, in a large 

portion of the cases, a basic Proportional-Integral control will be adequate. A broad guidance 

for the choice of mode of controller to be used, is prescribed [1]. 

 

Choice of controller mode: 

1. Proportional Controller: It is basic for regulation, easy tuning. Anyhow, steady state 

error is introduced. It is suggested that if the transfer function which is having single 

dominant pole or having a pole at origin. 

2. Integral Control: It is relatively slow and no steady state error is observed. It will be 

operative for quick process, having noise level high. 

3. Proportional-Integral (P-I) Control: Integral action alone results in faster response. 

It is widely used for process industries because they do not have large time constants 

for controlling the variables for example level control, flow control etc. 

4. Proportional-Derivative (P-D) Control: For larger time constants this P-D controller 

is used. It has more rapid response and less offset compared to proportional controller. 

If measurement is noisy one should be careful in using derivative control. 

5. Proportional-Integral-Derivative (P-I-D) Control: It application is widespread 

however it’s tuning is a touch troublesome. It is mostly helpful for controlling moderate 

variables, as pH, temperature, and so forth in process industries. 

 
 

1.8 Motivation & Objective: 
 
The motivation behind this project is to observe different kinds of plant in the real world. 

As in the modern day application we come across several control machines and we think of 

new methods of controlling so, I made a study on different control methods for FOPDT and 

IPDT plant model. 

For FOPDT through Zeigler-Nichols tuning method, the objective was to find the controller 

parameters to decay the first overshoot to 0.25 times the original overshoot after 1 oscillation. 

Chine-Hrones-Reswick tuning method focuses on the main problem consisting of how to 

regulate set-point and how to reject the disturbances.  

Cohen-Coon main approach was to find three dominant poles it should be a pair of complex 

poles and one real pole such that for load disturbance rejection, the amplitude decay ratio 

becomes 1/4th and the integral error is also minimized. The objective behind this Optimal PID 

Controller Design methods is to select the Proportional-Integral-Derivative controller 

parameters which helps in minimizing an integral cost functional. IMC design objective is to 

minimize the tracking error. 

The objective of PDF controller is to result in smooth response to every set-point change and 

gives maximum robustness whenever there is uncertain parameter. 
 

1.9 LITERATURE REVIEW 

 

 The mathematical model of any real time processes can be classified as stable systems, 

unstable systems and systems with dead time. The PID controller is very important in control 

engineering application and is widely used in many industries. 

An excellent account of many practical aspects of PID control is given in PID Controllers: 

Theory, Design and Tuning by Astrom and Hagglund [10]. After the study of PID controller, 

Xu, H., Datta, A., and Bhattcharyya, S. P. [22] explained the study of PID stabilization of linear 
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time invariant plants with time delay with various tuning methods for different types of plants 

like FOPDT, IPDT and FOIPDT. 

There is a vast mathematical literature on the analysis of stability of time-delay systems which 

we have not included. We refer the reader to the excellent and comprehensive recent work 

Stability of Time-Delay Systems by Gu, Kharitonov, and Chen [11] for these results.  

The control of time delay systems is still being a challenge to improve its time domain 

conditions. The survey exposes that the tuning techniques are different for different kind of 

systems, systems like first order plus dead time delay and others.  

 

The set of tuning rules applicable for the first order plus dead time delay systems are not 

applicable for IPDT and FOIPDT systems. This means we have to follow different tuning rules 

for different kind of systems. If there is a parameter variation for any nominal plant, 

conventional controller are unable to maintain the stability of the system. For this kind of 

situation we need to design a robust controller where a single controller in able to control the 

whole plant family. While designing a robust controller we need to keep in mind of its robust 

stability and performance. Since both the robust stability and performance are inversely 

proportional to each other, the optimization between these two becomes an interesting one.  

 

There has been several tuning methods empirically proposed, every tuning approach has its 

own significance, Zeigler-Nichols [20] approach was that after one oscillation, decay the first 

overshoot to 0.25 times of its original value. 

Chine-Hrones-Reswick [19] tuning method focused on how to regulate set-point and how to 

reject the disturbances. Cohen-Coon [18] tuning method approach was to decay the amplitude 

ratio for load disturbance so, the load disturbance is rejected also to minimize the integrator 

error.  

 

Zhuang, M., and Atherton, D. P. [14] also proposed optimal PID controller design method 

because there approach was to minimize the integral cost function by choosing the PID 

controller. The controller parameters are determined by minimizing the integral performance 

criteria such as 2, ,ISE ISTE IST E . Both the set-point and the load disturbance rejection design 

specifications are given in this thesis. The obtained results are take on both for tuning purposes 

and for the evaluation of the performances of an earlier PID controller. 

 

D.E.Rivera, M.Morari and S.Skogestad [17] suggested the IMC design where an internal model 

is preferred which is basically the original plant whose time delay is been approximated by 

pade first-order approximation to minimize the tracking error. 

 

Smith predictor control design invented by O.J.M.Smith in 1957, this is a type of predictive 

controller for pure time delay. 

 

Then other type of plant resulted i.e. integral plus dead time plant who’s tuning can’t be done 

by the above procedures so K.G.Arvanitis, G.Syrkos, I.Z.Stellas and N.A.Sigrimis [8] have 

done some tuning procedures using Pseudo Derivative Feedback controller where integral 

control is in forward path and the proportional and derivative is in feedback, equations are 

formed and the parameters for PI and PID are extracted.The objective of PDF controller is to 

result in smooth response to every set-point change and gives maximum robustness whenever 

there is uncertain parameter. 

  

IPDT [3]-[6] model has many advantages in the field of tuning, this kind of model has the 

ability to represent various systems to be controlled by PID controllers. As IPDT contains only 
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two parameters one is gain and the other is time delay therefore it is easy to identify, L.Wang 

and W.R.Cluett proposed some tuning procedure for IPDT model [21]  

 

For higher order controller its real time implementation becomes difficult in many applications 

such as aerospace, chemical industries, space vehicles etc. For satisfying some of the robust 

principles, lower order controller with minimum tuning parameters are presented.  

  

As the structure of the PID controller is fixed our work is to find stable values of proportional 

gain (
pK ), derivative gain ( dK ) and the integral gain ( iK ) for the first order plus dead time 

delay plant for set point response and load disturbance rejection and for the integral plus dead 

time delay for smooth response for every set-point change. 

Simulation results obtained for different tuning procedures and analysed and also a smith 

predictor approach for the system is proposed.  
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2. PROCESS MODELLING 

 

2.1 PROCESS MODELLING FROM RESPONSE CHARACTERISTICS    

OF PLANT 

 
In control applications used in industries the plant is modelled as a first-order or second-order 

system with time delay and the controller is either of the P, PI or the PID type. 

From the model it can be seen that this model (23) is helpful for the design of a Proportional-

Integral-Derivative control due to the accessibility of a straightforward equation. The technique 

used in Sec. 2.1.3 for the conclusion to find L & T of a plant it is easy to use the plot of the step 

response of the plant. Though in current scenario we need not cut the model up to this form to 

find apt Proportional-Integral-Derivative parameters of controllers. In this section, successful 

and regularly utilized calculation is presented. 

 

 

2.1.1 Transfer function method: 

  

Let us take the first-order plus dead time plant model 

( ) .
1

Lske
G s

Ts






 

 First-order and second-order derivatives with respect to s,  
'

2
" ' 2

2

( )
,

( ) 1

( ) ( )
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( ) ( ) ( 1)
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L
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                                                                                                             (17) 

 

Evaluating the values at s=0 yields 
'

"
2 2

(0)
,

(0)

(0)
,

(0)

ar

ar

G
T T L

G

G
T T

G

   

 

                                                                                                                              (18) 

Where arT  = average residence time. 

  From previous equation, .arL T T  and from (0)G  DC gain value can be evaluated. The key 

to the FOPDT model is in this way acquired by utilizing the ( )G s  derivatives in the above 

formula. 

 A large selection of plant can be roughly modelled by FOPDT in real time process control 

system.  

Equation of the first-order plus dead time model:  

 

( )
1

LsK
G s e

Ts




                                                                                                              (19) 

Where  

K=gain; L= time delay; T= time constant;  
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We need to find the controller parameters using some of the tuning formulae. Matlab is used 

to trace the response of plant versus time. Some basic calculation have to be done for finding 

plant model parameter. 

2.1.2 FOPDT (first order plus dead time): 

For example, to find the parameters K, L and T by applying a step response to the plant model 

through an experiment ( 
KL

a
T

 ). 

Finding parameter of FOPDT: 

 
 Process transfer function of a plant is [9]  

10
( )

( 4)( 3)( 2)( 1)
G s

s s s s


   
                                                                                                       (20) 

For step response of system matlab code is used and 0.4167 as the steady-state value of (see in 

Appendix A.1). 

Step response: 

     

                                      Fig.2.1. step response of process plant 

 

1t = the time at gain(c) =0.3 *steady state gain (K)  

2t = the time at gain(c) = 0.6 *steady state gain (K) 

Find T and L 

2 13( )

2

t t
T
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L= 
2 1( )t t  

KL
a

T
  

From step response 

K=0.4167  

1t = 1.31 sec  

2t =2.21 sec  

And  

L=0.855 sec  

T=1.365 sec 

We have FOPDT equation as: 

0.8550.4167
( )

1.365 1

sG s e
s




 

                                          Fig.2.2. step response of Process plant Vs FOPDT 

After the modification of process plant transfer function to a FOPDT transfer function it is clear 

from response that in the FOPDT it shows a clear delay at time of starting. As most of the plant 

are of accumulated with dead time so this is the reason behind the conversion of the process 

plant to FOPDT model. It is exciting to note that despite the fact that a large portion of these 

systems give suitable results, the set of all Proportional-Integral-Derivative controllers for these 

first-order models with time delay has been explained in the next chapter. 
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     3. DESIGN AND TUNING METHODS 

 

3.1 DIFFERENT TUNING PROCEDURE: 

As discussed in the earlier chapter how to model a plant, after modelling we have to control 

the plant by using PID controller and as PID controller has three parameters we have to find 

those parameters with the help of some tuning procedures. For finding controller parameters 

same tuning procedure can’t be used for all types of plant model. For each plant model different 

tuning formula is used. 

3.1.1 Ziegler- Nichols method: 

The Proportional-Integral-Derivative controller is realised as follows: 

( ) i
p d

K
C s K K s

s
    

Where
pK = proportional gain, iK  = integral gain, and dK = derivative gain. 

In this Ziegler-Nichols it is only valid to open loop plants which are stable [20] as it is an open-

loop tuning done by experimentation. In this our prior thing is to find the parameters A and L 

which we can get it through the plants step response as shown in Fig. 1.8. Firstly we should 

determine the point where it shows the maximum slope and draw a tangent, this tangent 

intersects with the vertical axis produces A and intersection with the horizontal axis produces 

L. By now after we find A and L we can find the Proportional-Integral-Derivative parameters 

to control. 

 

 

 

 

                                                                            Maximum slope 

                                

 

 

                                          A 

 

 

                                                      L                     

                                  Fig.3.1. plant step response to get A and L. 

 

Empirically obtained formulas are there to produce Proportional-Integral-Derivative control 

parameters from which we observe that after one oscillation there is a decay in its first 

overshoot of 0.25 times the original value. 
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Tuning formula      

                

Controller type          For step response          For  frequency response 

   
pK    i     d      

pK     i      d  

            P 

            PI 

            PID 

   1/a 

0.9/a 

1.2/a 

 

3L 

2L 

 

 

L/2 

0.5Kc 

0.4Kc 

0.6Kc 

 

0.8Tc 

0.5Tc 

 

 

0.12Tc 

 

Here only using step response; controller parameters are found out. Then using Simulink output 

step response the model plant is taken.  

We have FOPDT equation as: 

0.8550.4167
( )

1.365 1

sG s e
s




 

a = 0.19121 

P = 5.229 

PI = 
1

4.706(1 )
2.56s

  

PID = 
3.6701 2.683

6.2758
1 /

N

s N s
 


 

3.1.2 Chine-Hrones-Reswick tuning: 

This method focus on the main problem consisting of how to regulate set-point and how to 

reject the disturbances. Also regarding speed of response and overshoot an additional comment 

comparable with the Ziegler–Nichols tuning formula, the time constant T is been used clearly 

in this CHR method [19]. 

Closed-loop response which is more heavily damped, guarantees for an ideal plant and the one 

which is having high response speed without overshoot is considered as overshoot of 0% and 

other with good response speed with 20% overshoot is considered as overshoot of 20%. 

Set point regulation 

Controller type         Overshoot of 0%            Overshoot of 20% 

   
pK    i     d      

pK     i      d  

            P 

            PI 

            PID 

  0.3/a 

  0.35/a 

  0.6/a 

 

1.2T 

   T 

 

 

  0.5L 

  0.7/a 

  0.6/a 

  0.95/a 

 

   T 

 1.4T 

 

 

  0.47L 
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Disturbance rejection 

Controller type           Overshoot of 0%         Overshoot of 20% 

   
pK    i     d      

pK     i      d  

            P 

            PI 

            PID 

 0.3/a 

 0.6/a 

 0.95/a 

 

  4L 

 2.4L 

 

 

0.42L 

  0.7/a 

  0.7/a 

  1.2/a 

 

2.3L 

2L 

 

 

0.42L 

 

      Table 1. Set point regulation for Chine-Hrones-Reswick: 

Controller type           Overshoot of 0%           Overshoot of 20% 

   
pK    i     d      

pK     i      d  

            P 

            PI 

            PID 

  1.57 

  1.1749 

  3.14 

 

  0.99 

  1.37 

 

 

  0.43 

  3.67 

  3.14 

  4.97 

 

   1.37 

  1.91 

 

 

  0.402 

 

 

Table 2. Disturbance rejection for Chine-Hrones-Reswick: 

Controller type        Overshoot of 0%           Overshoot of 20% 

   
pK    i     d      

pK     i      d  

            P 

            PI 

            PID 

 1.569 

 3.14 

 4.97 

 

  3.42 

  2.052 

 

 

    0.36 

   3.66 

   3.66 

   6.27 

 

   1.96 

    1.71 

 

 

    0.36 

 

3.1.3 Cohen-Coon Tuning algorithm: 

Cohen-Coon method [18] is a dominant pole design method and tries to locate some poles to 

attain definite performance control. The. It is based on first –order plus dead time model: 

( )
1

LsK
G s e

Ts




 

This tuning method approach was to decay the amplitude ratio for load disturbance so, the load 

disturbance is rejected also to minimize the integrator error. This gives good load disturbance 

rejection, Proportional-Integral-Derivative parameters in relation to K, T, and L: 

KL
a

T
 , 

L

L T
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 Controller type        
pK          

i         
d  

P 
  

1

𝑎
( 1 +

0.35τ 

1−τ 
) 

  

PI 0.9

𝑎
( 1 +

0.92τ 

1−τ 
) 

3.3 − 3τ 

1 + 1.2τ 
𝐿 

 

PD 1.24

𝑎
( 1 +

0.13τ 

1−τ 
) 

 0.27 − 0.36τ 

1 − 0.87τ 
𝐿 

PID 1.35

𝑎
( 1 +

0.18τ 

1−τ 
) 

2.5 − 2τ 

1 − 0.39τ 
𝐿 

0.37 − 0.37τ 

1 − 0.81τ 
𝐿 

 

Table 3. Cohen-Coon parameters for P, PI, PD, PID 

Controller type        
pK          i         d  

            P         6.3746   

           PI           7.416          1.245  

           PD        7.019                    

1.687 

          PID        7.865          1.74              

0.2757 

 

 

3.1.4. Wang-Juang-Chan method of tuning: 

Name itself says that this tuning method is suggested by Wang, Juang, and Chan [9]. For 

choosing the Proportional-Integral-Derivative control parameters it is an easy & effective 

method which is built on the optimum Integral-Time-Absolute-Error criterion. The controller 

parameters can give by, if the parameters K, L & T of the plant are known 

 

(0.73 0.53 / )( / 2)

( )
p

T L T L
K

K T L

 



                                                                                             (21) 

2
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L
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2
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L
T

L
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pK = 3.0568, i =1.7925,
d =0.3255 

3.1.5 Optimal PID Controller Design [14]: 

This method tries to find the PID parameters which minimizes the integral cost function.      

2

0

( ) [ ( , )]n

nJ t e t dt 


                                                                                                                                (22) 

Where  = vector having the parameters of the controller and e ( , t) signifies the signal error. 

Another influence is due to Pessen [13], who utilized IAE principle: 

0

( ) ( , )J e t dt 


                                                                                                                                        (23) 

 

To represent time function in Laplace transform we make use of Parseval's Theorem to 

minimize the cost function [12]. To minimize the integral cost function as soon as the 

integration gets started, the Proportional-Integral-Derivative controller parameters are 

adjusted. 

 

 

Set-Point optimum PID tuning: 

For PI controller: 

 11

2 2

( ) ,
( / )

b

p i

a L T
K

k T a b L T
 


                                                                                                        (24) 

For PID controller: 

311
3

2 2

( ) , , ( )
( / )

bb

p i d

a L T L
K a T

k T a b L T T
   


                                                                        (25)                       

  The values for 1 1 2 2, , ,a b a b for set point regulation for all the  controller types their paramters 

depending upon the range of L/T is given in[9]. 

Disturbance rejection PID controller: 

PI controller: 

1 21

2

( ) , ( )
b b

p i

a L T L
K

k T a T
                                                                                                                        (26) 

Proportional-Integral-Derivative controller: 

31 21
3

2

( ) , ( ) , ( )
bb b

p i d

a L T L L
K a T

k T a T T
                                                                                               (27) 

The values for 1 1 2 2, , ,a b a b for disturbance rejection for PI and PID controller paramters 

depending upon the range of L/T is given in[9] 

Controller parameter on the basis of this tuning: 
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Table 4. For set point tracking PI Controller: 

     Criterion               
pK                i                 

d  

       ISE           3.5696         2.3022  

       ISTE           2.629         1.678  

       IS𝑇2E           2.1306         1.498  

 

 

Table 5. For set point tracking PID Controller 

     Criterion               
pK                i                 d  

       ISE           3.826          1.415           0.4406 

       ISTE           3.8044          1.629           0.3116 

       IS𝑇2E           3.546          1.668           0.3404 

 

 

Table 6. For set point tracking with D in feedback path using PID controller: 

     Criterion               
pK                i                 d  

       ISE           4.579         2.2417           0.3382 

       ISTE           3.904         2.0744           0.3117 

       IS𝑇2E           3.498         1.982           0.276 

 

 

Table 7. For disturbance rejection using PI Controller: 

     Criterion               
pK                i                 d  

       ISE          1.458          1.946  

       ISTE          1.1635          1.581  

       IS𝑇2E          1.1682          1.681  

 

Table 8. For disturbance rejection using PID Controller: 

     Criterion               
pK                i                 d  

       ISE           1.693         0.8607            0.482 

       ISTE           1.693         1.0322            0.389 

       IS𝑇2E           1.757         0.992            0.364 
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3.1.6  Smith Predictor design 

Using the above parameters for 
pK  and iK ; 

The first-order plus dead time with a 1.365 second time constant and 0.855 second time 

delay. The Smith Predictor control structure is 

 

                                                                                            d 

                                                u                               y0                                       y                                                                              

 

              +                                                                                            

                                                                                                                         

  ysp               -    e                                                              yp                                 y1 

 

 

 

 

                                            dp                                                                                         dy 

                                          Fig.3.2. Smith Predictor structure 

 

By using the matlab code (see in Appendix A.2): 

The step response of the first-order plus dead time plant is 

 

                                   Fig. 3.3. Step response of FOPDT plant 
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PI Controller: 

In process control Proportional-Integral (PI) control is a commonly used technique. The PI 

control standard diagram is shown in fig.6.3. 

 

              +                                                u                                            

                           

  ysp               -    e                                                            y 

 

 

 

 

                               Fig.3.4. Basic PI control structure 

C is a compensator with two tuning parameters proportional gain 
pK and an integral time i . 

Here we have taken 
pK and i  values from Chine-Hrones-Reswick PID tuning algorithm for 

0% overshoot. 

With 
pK = 1.17, iK = 1.18 

The feedback loop is closed and it is been simulated to observe the responses to the step change 

in the reference signal ysp and output disturbance signal d by which we can evaluate PI 

controller performance.   

 

                                           Fig.3.5. Step response of ysp and d 
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The closed-loop response has tolerable overshoot but is somewhat slow (it settles in about 12 

seconds). To increase the speed of the response we should start increasing the gain 
pK but 

because of this it can lead to instability. 

 

                                  Fig.3.6. loss of stability when 
pK  increases 

Because of the dead time, PI controller performance is not up to the mark because the actual 

output y is not getting matched with the reference set point ysp . 

The Smith Predictor procedures an internal model pG  to guess the response which is delay-

free yp of the process. Before it matches this prediction yp with the reference set point ysp 

to decide what tunings are needed (control u). By taking in consideration of rejecting their 

disturbances which are external, the Smith predictor also relates the actual output of the process 

with a prediction y1 which takes the dead time into justification. The gap dy=y-y1 is fed 

back via a filter F and contributes the error signal e. 

 

Smith Predictor requirements: 

A model pG  which is the process and an estimate tau of the process dead time satisfactory 

settings for the compensator and filter dynamics (C and F) 

Based on the process model, we use: 

0.8550.4167
( )

1.365 1

sG s e
s
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For F, to capture low frequency disturbances we use a first-order filter with a 20 second time 

constant. 

1

20 1
F

s



 

For C, we re-design the PI controller with the overall plant seen by the PI controller, which 

includes dynamics from P, pG , F and dead time. With the help of the Smith Predictor control 

structure we are able to increase the open-loop bandwidth to achieve faster response and 

increase the phase margin to reduce the overshoot. 
 

 Process 

0.8550.4167

1.365 1

sP e
s




; 

Model predicted 

0.4167

1.365 1
pG

s



 

 
0.855s

pD e  

 

Design PI controller with 0.08 rad/s bandwidth and 90 degrees phase margin 

 

 

Comparison of PI Controller vs. Smith Predictor: 

To equate two designs, first derive the transfer function of the closed-loop from ysp,d to y for 

the Smith Predictor architecture. To facilitate the task of connecting all the blocks involved, 

name all their input and output channels and let connect do the wiring: 

 

                     Fig.3.7.Comparison of step response for smith predictor and PI controller 
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                     Fig.3.8.Comparison of bode plot for smith predictor and PI controller. 
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3.1.7 IMC Design: 

In process control application IMC design has become famous [17]. In this G(s) is FOPDT, in 

IMC it is suitable for open-loop stable control systems. The Internal model control consists of 

a stable internal model controller parameter Q(s) and 
^

( )G s  is the model of the plant. F(s) is 

internal model controller filter selected to make Q(s) F(s) proper by improving the robustness.  

^

( ) ( )
( ) .

1 ( ) ( ) ( )

F s Q s
C s

F s Q s G s





                                                                                                                         (28) 

IMC design main objective was to select Q(s) which helps in minimizing the tracking error r-

y. 

 

 

              +                                                                                                                                      y 

                           

  r                -    e                                                                  u  

 

 

                                                                                                                                       
^

y         + 

                                                                                                                                         

                                                                                                                                        - 

 

                                                        Fig.3.8. IMC configuration. 

The following plant is to be controlled: 

0.8550.4167
( )

1.365 1

sG s e
s




                                                                                             (29) 

By Pade approximation, 

0.855 1 0.4275

1 0.4275

s s
e

s

 



                                                                                                   (30) 

^

( )G s  Which is the internal model whose transfer function is   

^

2

0.1781 0.4167
( )

0.5835 1.7925 1

s
G s

s s

 


 
                                                                                     (31) 

1.365 1
( )

0.4167

s
Q s


                                                                                                                               (32) 

( )F s  
   

( )Q s

 

 

   

( )G s  

 

   
^

( )G s  
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Since Q(s) is improper and to get the suitable we have to negotiate between robustness and 

performance. Zafiriou & Morari [15] have suggested an apt choice to select ,  >0.2T and 

 >0.25L. 

1
( )

1 0.274
F s

s



                                                                                                         (33) 

The equivalent feedback controller becomes 

(1 )(1 )
2( )

( )

L
Ts s

C s
Ks L 

 




                                                                                                 (34) 

From the above equation we get the parameters for a standard PID controller: 

pK =3.8101 

iK = 2.1256 

dK = 1.2403 

 

                                                  Fig.3.9.step response of IMC  
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3.1.8 Integrator plus dead time (IPDT) Model: 

A generally faced plant which is modelled mathematically ( ) dsK
G s e

s

  is denoted as the 

IPDT model. IPDT plant cannot be tuned by the earlier tuning procedures. As there is already 

an integrator so no need of another integrator to remove a steady state error for a step input. 

 

The following IPDT model is experimentally obtained transfer function of a temperature 

process rig, by controlling the temperature at a particular junction using PID setting in the 

controller we obtained an input and output data in excel file. Using the input-output data with 

the help of matlab system identification we obtained this transfer function.  
 

20.370.00017
( ) sG s e

s

                                                                                                                          (35) 

To control integrating plus dead-time model we should use Pseudo-Derivative Feedback (PDF) 

structure. The methods used for tuning this PDF structure is simple and results in smooth 

response to every set-point change and gives maximum robustness whenever there is uncertain 

parameter. 

 IPDT [3]-[6] model has many advantages in the field of tuning, this kind of model has the 

ability to represent various systems to be controlled by PID controllers. As IPDT contains only 

two parameters one is gain and the other is time delay therefore it is easy to identify.  

If the systems having large time constants over critical range of frequency that is near ultimate 

frequency, IPDT model can be approximated. As we are going on saying that IPDT model is 

simple but there is less number of tuning approaches compared to FOPDT model. The Ziegler-

Nichols methods leads to oscillation and becomes unstable even there is a small perturbations 

in the parameters of the model. 

  

IPDT model tuning based on the coefficients matching of the powers of ‘s’ in numerator and 

denominator is discussed in [7], to avoid overshoot. 
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                                                     PDF control structure 

                                            Fig.3.10. PDF control structure 

In this our aims should be focussed on two forms of PDF structure, in the first only the 

proportional control is in the feedback and it denoted as “PD-0F” and the second forms consists 

of proportional and derivative control in feedback and it is denoted as “PD-1F”. 
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One by one each tuning method is discussed and parameters are found. 

As shown in the figure the controller is “PD-0F” when 
,D iK =0, for i=1,… ,n-1 and  

,0DK ≡
pK ≠0 and the controller is “PD-1F” when 

,0DK ≡
pK ≠0, 

,1DK =Kd≠0 and 
,D iK =0, for 

i=2… n-1. 

For the above we should analyse for both the controller for the above shown IPDT model. 

PD-0F Controller Settings for IPDT models [8]: 

The PD-0F controller parameters can be chosen as 

 

   

1
2 2 2
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2 2 2 2
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(8 )

p
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K dK

K d K

   

     





   
 

    
 

                                                                                      (36) 

Where α is an adjustable parameter, in order to obtain preferred damping ratio (see [8], for 

details). 

Alternative PD-0F Controller for IPDT models: 

The PD-0F controller parameters  
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                                                                                                                         (37) 

pK = 161.0024, IK = 0.077137 

Where  2 2        

PD-1F Controller Settings for IPDT models: 

The PD-1F controller parameters  
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                                                                                                                 (38) 

Where γ is an adjustable parameter, in order to obtain preferred damping ratio (see [8], for 

details). 

pK = 169.195, IK = 0.0426, dK = 426.834 
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                                   Fig.3.11. step response of PDF controller 

Using Pseudo Derivative Feedback controller for IPDT plant model we got to know that PD-

1F which is equivalent to PID has a good rise time compared to PI and minimum overshoot 

and settles faster than PI controller. 
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                        4.    Simulation of FOPDT 

 

Simulation is done using Simulink. Using above mentioned tuning formula  and we have 

compared the  P controllers of all the above tuning rules and made analysis, after that similarly 

for PI and PID  .The solution to the proportional control case is developed first because it serves 

as a stepping stone for tackling the more complicated cases of stabilization using a PI or a PID 

controller. The proportional control stabilization problem for first-order systems with time 

delay can be solved using other techniques such as the Nyquist criterion and its variations. The 

approach presented here, however, allows a clear understanding of the relationship between 

the time delay exhibition by a system and its stabilization using a constant gain controller. 

The objective of finding parameters through different tuning methods and analysing which 

method control performance in good and stable. 

SIMULATION using P control [similar to Appendix (A.3)]: 

 

                                        Fig.4.1.step response using P controller 

As we observe from Fig.4.1 using P controller Cohen coon is faster compared to other tuning 

rules but it also tends to large overshoot and in Chine-Hrones-Reswick 0% overshoot, 

comparatively has minimum overshoot but it is slow in reponse. As it is a P controller it 

introduces steady state error it is difficult for all the above tuning rules the Ziegler-Nichols, the 

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4
step response using P controller

time

a
m

p
li
tu

d
e

 

 
Z-N

CHR 0%

CHR 20%

Cohen coon



  

P a g e  | 41 

Cohen-coon,the Chine-Hrones-Reswick 0% overshoot and 20% overshoot to get good control 

performance. 

 

SIMULATION using PI controller [similar to Appendix (A.3)]: 

 

 

                                 Fig.4.2.step response using PI controller 

While using a PI controller to control the first-order plus dead time plant we observe that there 

is a quick response due to P control and the steady state error is zero due to I control, Ziegler-

Nichols takes around 15 sec, Chine-Hrones-Reswick 20% overshoot and Cohen-coon has 

almost equal settling time of 11 sec, Chine-Hrones-Reswick 0% overshoot takes 13 sec to 

settle. Ziegler-Nichols responds faster than other tuning methods mentioned above. 

While doing the simulation it is important to select the controllers depending upon the type of 

tuning of the PI controller to achieve desired controller performance while maintaining closed 

loop stability.  
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SIMULATION using PID controller [see Appendix (A.3)]: 

 

 

                                              Fig.4.3.step response using PID controller 

By using PID controller we are able to minimize the overshoot, quick settling time and rise 

time. In the above plot we analyse that Wang-Juang-Chan has a good response compared to 

others as there is no overshoot and also settles by 9 sec. Chine-Hrones-Reswick 0% overshoot 

tuning has a quick response compared to above mentioned tunings.     

 

 

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
step response using PID controller

time

a
m

p
li
tu

d
e

 

 

Z-N

CHR 0%

CHR 20%

COHEN

WANG



  

P a g e  | 43 

5.5 Optimal PID Controller Design: 

Tuning methods based on the minimization of ISE guarantee small error and very fast response. 

However, the closed-loop step response is very oscillatory, and the tuning can lead to excessive 

controller output swings that cause process disturbances in other control loops. 

For Set point tracking: 

PI controller 

 

                                      Fig.4.4.step response using PI controller 

 

In the above plot it’s been analysed that IST2E has settling time of 7 sec but it is slow in 

response and in ISE rise time is 1.5 sec almost equal to ISTE but lesser overshoot so its settling 

time is about 11 sec and on the other ISTE has a large overshoot so it take more time for the 

quarter amplitude decay we can do this in matlab simulation [similar to Appendix (A.4)]..  
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                                            Fig.4.5.step response using PID controller 

 

Furthermore Comparatively PID is showing better control performance than PI. Here also 

IST2E settles down quickly and also has a minimum overshoot compared to ISE and ISTE but 

its response is slow. IST2E settles in about 7 sec. and ISE settles in 12 sec. and ISTE settles in 

10 sec. ISE has a faster response compared to others as one can see from the above plot by 

simulation [see Appendix (A.4)]. 
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                                              Fig.4.6.step response using PID controller 

As we can say that in feedback path if we have derivative in the PID controller it may be easy 

& fast related to the typical Proportional-Integral-Derivative controller but we don’t get a good 

result in its performance. Therefore if you are thinking of designing it do use a dedicated 

algorithm for good control performance.  

Here IST2E shows a better response compared to ISE and ISTE as it has minimum overshoot 

so it settles quickly. 
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5.  CONCLUSION: 

Project study on PID controller design for various plant model provide a brief idea of plant 

modelling, type of plant model and controllers (P, PI, PD and PID) tuning method used for the 

of the model plant.  

 

Discussed Plant modelling which will help in modelling of many industrial plant. And tuning 

method used for that plant will help to find out of controllers parameters. Response will suggest 

which tuning method is better for the plant. And also it will play great roll in selecting of 

controller. 

 

For tuning of controllers of FOPDT Ziegler-Nichols tuning formula, Chine-Hrones-Reswick 

PID tuning algorithm, Cohen-Coon Tuning algorithm, Wang-Juang-Chan tuning formula and 

optimal PID controller design are used and what we observed is that for P controller tuning 

Cohen coon performs better compared to other tuning and for PI controller tuning Zeigler 

Nichols tuning is best suited for controlling than others and for PID controller tuning  CHR 0% 

overshoot resulting in quick response and better settling time for the experimentally obtained 

IPDT model Pseudo Derivative Feedback controller is used and for this PID controller is 

having a good control behaviour compared to PI. 

. 
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Appendix 

Matlab Source code   

A.1  for finding step response of the process plant. 
clc;  

close all;  

clear all;  

s=tf('s');  

Gp=10/(s+4)/(s+3)/(s+2)/(s+1);  

step(Gp);  

k=dcgain(Gp); 

A.2 Smith Predictor deisgn. 

s = tf('s'); 

P = exp(-0.855*s) * 0.4167/(1.365*s+1); 

P.InputName = 'u'; P.OutputName = 'y'; 

P 

  

P = 

  

  From input "u" to output "y": 

                    0.4167 

  exp(-0.855*s) * ----------- 

                  1.365 s + 1 

  

Continuous-time transfer function. 

  

 step(P), grid on 

 

Cpi = pid(1.1749,1.1815); 

Cpi 

  

Cpi = 

  

             1  

  Kp + Ki * --- 

             s  

  

  with Kp = 1.17, Ki = 1.18 

  

Continuous-time PI controller in parallel form. 
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Tpi = feedback([P*Cpi,1],1,1,1);  % closed-loop model 

[ysp;d]>y 

Tpi.InputName = {'ysp' 'd'}; 

  

step(Tpi), grid on 

 

 

Kp3 = [1.176;1.180;1.185];      % try three increasing values 

of Kp 

Ti3 = repmat(Cpi.Ti,3,1);   % Ti remains the same 

C3 = pidstd(Kp3,Ti3);       % corresponding three PI 

controllers 

T3 = feedback(P*C3,1); 

T3.InputName = 'ysp'; 

  

step(T3) 

title('Loss of stability when increasing Kp') 

 

 

F = 1/(20*s+1); 

F.InputName = 'dy'; F.OutputName = 'dp'; 

 

 

% Process 

P = exp(-0.855*s) * 0.4167/(1.365*s+1); 

P.InputName = 'u'; P.OutputName = 'y0'; 

  

% Prediction model 

Gp = 0.4167/(1.365*s+1); 

Gp.InputName = 'u'; Gp.OutputName = 'yp'; 

  

Dp = exp(-0.855*s); 

Dp.InputName = 'yp'; Dp.OutputName = 'y1'; 

  

% Overall plant 

S1 = sumblk('ym = yp + dp'); 

S2 = sumblk('dy = y0 - y1'); 

Plant = connect(P,Gp,Dp,F,S1,S2,'u','ym'); 

  

% Design PI controller with 0.08 rad/s bandwidth and 90 

degrees phase margin 

Options = pidtuneOptions('PhaseMargin',90); 

C = pid(1.1749,1.1815); 

C.InputName = 'e'; C.OutputName = 'u'; 

C 

  

C = 

           1 

Kp + Ki * --- 

           s  
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  with Kp = 1.17, Ki = 1.18 

  

Continuous-time PI controller in parallel form. 

 

 

 

% Assemble closed-loop model from [y_sp,d] to y 

Sum1 = sumblk('e = ysp - yp - dp'); 

Sum2 = sumblk('y = y0 + d'); 

Sum3 = sumblk('dy = y - y1'); 

T = connect(P,Gp,Dp,C,F,Sum1,Sum2,Sum3,{'ysp','d'},'y'); 
 

Use STEP to compare the Smith Predictor (blue) with the PI controller (red): 
 

step(T,'b',Tpi,'r--') 

grid on 

legend('Smith Predictor','PI Controller') 

 

 

bode(T(1,1),'b',Tpi(1,1),'r--',{1e-3,1}) 

grid on 

legend('Smith Predictor','PI Controller') 

 

A.3 
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A.4 
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