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Abstract

Cloud computing services have been on the rise over the past few decades, which

has led to an increase in the number of datacenters worldwide which increasingly con-

sume more and more amount of energy for their operation, leading to high carbon dioxide

emissions and also high operation costs. Cloud computing infrastructures are designed

to support the accessibility and deployment of various service oriented applications by

the users. The resources are the major source of the power consumption in data centers

along with air conditioning and cooling equipment. Moreover the energy consumption in

the cloud is proportional to the resource utilization and data centers are almost the worlds

highest consumers of electricity. It is therefore, the need of the hour to devise efficient

consolidation schemes for the cloud model to minimize energy and increase Return of

Investment(ROI) for the users by decreasing the operating costs. The consolidation prob-

lem is NP-complete in nature, which requires heuristic techniques to get a sub-optimal

solution. The complexity of the problem increases with increase in cloud infrastructure.

We have proposed a new consolidation scheme for the virtual machines(VMs) by improv-

ing the host overload detection phase of the scheme. The resulting scheme is effective in

reducing the energy and the level of Service Level Agreement(SLA) violations both, to a

considerable extent.

For testing the performance of our implementation on cloud we need a simulation en-

vironment that can provide us an environment with system and behavioural modelling of

the actual cloud computing components, and can generate results that can help us in the

analysis so that we can deploy them on actual clouds. CloudSim is one such simulation

toolkit that allows us to test and analyse our allocation and selection algorithms. In this

thesis we have used CloudSim version 3.0.3 to test and analyse our policies and modifi-

cations in the current policies. The advantages of using CloudSim 3.0.3 is that it takes

very less effort and time to implement cloud-based application and we can test the per-

formance of application services in heterogeneous Cloud environments. The observations

are validated by simulating the experiment using the CLoudSim framework and the data

provided by PlanetLab.
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Chapter 1

Introduction

1.1 Overview

NIST defines cloud computing as ”a model for enabling ubiquitous, convenient and on-

demand network access to a shared pool of configurable computing resources (e.g., net-

works, servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction.” (25)

According to NIST, the services offered by the cloud computing model can be classified

as:

Software as a Service (SaaS) - The capability provided to the consumer is to use

the cloud service provider’s applications running on the cloud. The applications can be

accessed from client devices such as a web browser (e.g., web-based email) or a program

interface. The consumer does not manage or control the underlying cloud infrastructure,

including network, servers, operating systems, storage, or even individual application ca-

pabilities, with the possible exception of limited user-specific application configuration

settings.

Platform as a Service (PaaS) - The capability provided to the consumer is to de-

ploy onto the cloud infrastructure, consumer-created or acquired applications created us-

ing programming languages, libraries, services, and tools supported by the cloud service

provider. The consumer does not manage or control the underlying cloud infrastructure,

including network, servers, operating systems, or storage, but can control the deployed

applications and configuration settings for the application-hosting environment.
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1.1. OVERVIEW

Infrastructure as a Service (IaaS) - The capability provided to the consumer is

to provision processing, storage, networks, and other fundamental computing resources

where the consumer is able to deploy and run arbitrary software, including operating sys-

tems and applications. The consumer does not manage or control the underlying cloud

infrastructure but can control operating systems, storage, and deployed applications; and

some networking components like host firewalls.

These services are made available to the cloud service users by creating instances of Vir-

tual Machines (VMs) and then consolidating the resource allocation periodically. After

virtualization, users’ applications can run on the same hardware managed by their own

operating system.

Traditionally, organizations have had to own and deploy the hardware, network resources

and also run them efficiently. Cloud computing has changed this approach drastically.

Now the organizations can outsource their computational requirements to the cloud ser-

vice providers and use the services over the internet, to reduce infrastructure and mainte-

nance costs, instead of dealing with the cost and expensive process of purchasing expen-

sive IT infrastructure and then dealing with periodic upgrades of the same. They can now

pay only for the cloud resources they actually use (10).

A cloud data center consists of a large number of servers and switches for transmitting

data between servers or between servers and clients. The infrastructure energy consumed

in a data center includes the energy used for computational tasks, the energy used for

transmission of data and the energy required for cooling the data center. The cost in-

curred due to this infrastructure energy has been estimated to be much more than the IT

costs (4). The rise in the use of cloud computing has resulted in the setting up of more

and more number of data centers, which has led to a huge increase in the consumption of

energy. According to the Environmental Protection Agency (18), data centers consume

around 110 Billion kilowatt hours of energy per year. This humongous increase in the

infrastructure energy consumption in recent times has resulted in a sharp increase in the

CO2 emissions, which contributes towards global warming (17). Thus it is imperative

that energy consumption in the cloud data centers be reduced, by improving the way in

which the cloud resources are provisioned.
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1.1. OVERVIEW

Some of the ways in which the resource provisioning in the cloud has been improved

is by the use of the virtualization technology (20) and live migration techniques (9).

The most important difference between cloud computing and a traditional method like

grid computing, is the use of large scale virtualized environments and devices. Virtualiza-

tion is advantageous as it partitions the resources of a single server into several execution

environments, isolated from one another. This enables a number of Operating systems to

run on the same hardware (28), thus reducing the hardware cost and increasing the return

on investment(ROI) for the service providers. Each of these partitioned units is known as

a Virtual Machine. Without virtualization, the processing power of a physical server may

not be fully utilized if it runs only a single OS. An important concept in Virtualization is

that of the Hypervisor or the Virtual Machine Monitor(VMM). Hypervisor is a layer of

abstraction between the hardware and the operating system and the applications running

on top of it. The virtualization layer is an interface between the users and the infrastruc-

ture resources.

The Virtualization layer contains the resource managers and other components that are

responsible for energy efficient consolidation and resource allocation. The Virtual Ma-

chines behave like Physical Machines(PM), and they can run simultaneously, yet remain

isolated from each other, all the while sharing the same physical resources. The hypervi-

sor is responsible for the abstraction of these Virtual Machines from the physical resources

and for determining what share of resources each Virtual Machine gets to use. 1.1 shows

the basic architecture of a physical machine along with the hypervisor layer and the VMs

running on it.

Figure 1.1: Virtualization concept in cloud
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1.1. OVERVIEW

Live migration is a technique using which VMs can be transferred between PMs with

nearly a zero downtime. It enables the VMs to utilize minimal number of PMs based on

their present resource requirements. Huang et al. (19) in their experiment to compare

the power consumed in VM consolidation schemes deploying live virtual migration, with

the power consumed in regular VM placement strategies without making use of live mi-

gration, found out that live VM migration does increase some overhead involved in the

consolidation process, but overall, it leads to a significant decrease in the power consump-

tion in the data centers.

Another important concept which is made use of in reducing the energy consumption

is switching the idle servers on/off or putting them to sleep (power saving state). This is

because an idle server may still use up-to 70% of the peak energy consumption (14). It is

therefore, highly inefficient to keep the underutilized servers running in such a state. So,

based on VM selection policies, certain chosen VMs, if possible, may be migrated away

from these under-utilized servers and the server can be put to sleep or switched off.

On the other hand, overloading of servers leads to performance degradation of the applica-

tion workload and hence the occurrence of SLA violations. In the state of over-utilization,

the servers are not able to allot the adequate amount of CPU processing power requested

by the applications. As a result, the cloud service providers have to pay a previously

agreed upon fine, as defined in the Service level agreement (SLA), to the cloud service

users based on the level of SLA violations experienced by the applications. Thus overload

of servers incurs extra cost to the cloud service providers. Live migration is made use of,

to migrate some of the VMs from the overloaded servers.

It is therefore, extremely important for the cloud service providers to find a good bal-

ance between keeping the energy consumption down and reducing the SLA violations as

both contribute significantly towards the cost incurred by the cloud service providers.
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1.2. PROBLEM BACKGROUND

1.2 Problem Background

One of the earliest attempts at energy saving in cloud data centers was attempted by Hor-

vath et al. (24). They made use of the Dynamic voltage and frequency scaling (DVFS)

method. In DVFS, the CPU frequency and voltage of the hosts is reduced proportionally

to the power required due to the application workloads running on them.

The DVFS method was further improved upon by Heo et al. (23) by combining it with

switching the hosts on/off to further reduce energy consumption. Calheiros et al. (11)

combined the DVFS approach and switching on/off of hosts with live migration of the

VMs. They aggressively consolidated the VMs, migrating them after every 5 seconds,

based on the CPU utilization of the hosts. Gupta et al. (16) in their work have suggested

considering network infrastructure for reducing energy consumption. They suggest that

Network interfaces, switches, routers and links be sent to power saving mode to reduce

energy usage. Kusic et al. (24) have defined the virtual machine provisioning problem

as an uncertain sequential optimization problem and they use a technique called Limited

Lookahead Control (LLC) for the optimization of the same. Their objective is to reduce

power usage and the level of SLA violations. In their work, they predict the future state

of the system using Kalman filter and then provision the Virtual Machines, based on these

predictions. Srikantaiah et al. (30) have suggested consolidation using multi-dimensional

bin packing to obtain optimal energy consumption. Nathuji et al. (26) divided the data

center resource management into local and global levels. The global level decides whether

VM optimization needs to be done, based on the information received from all the local

managers and the local manager in each of the hosts is responsible for provisioning the

resources locally in the host. For optimizing the VM placements, Verma et al. (31) mi-

grate the VMs, using live migration, periodically to minimize the power consumption and

enhance resource utilization of the hosts. They have used a power-aware First Fit De-

creasing heuristic for VM placements. But they do not consider SLA violations in their

work. Jung et al. (21) (22) in their work of dynamic consolidation of virtual machines

employed the technique of live migration and strictly adhering to the SLA. Kumar et al.

(23) in their work proposed consolidating the Virtual Machines based on the stability of

the current placement scenario. They estimate the current allocation’s stability and then

decide if further consolidation is needed or not.
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1.3. RESEARCH STATEMENT AND RESEARCH QUESTIONS

Beloglazov et al. (7) proposed self-adapting heuristics which make use of a statistical

analysis of the historical data of the resource usage by the virtual machines in the hosts.

They have proposed the use of various measures of statistical dispersion for dynamically

changing the overload threshold limit. For detecting underload of hosts, they first choose

the host with the least CPU utilization and check if all VMs running on it can be migrated

or not to other hosts. If it can be done, that host is switched to a power saving state and the

VMs are migrated to other hosts. This process is carried on iteratively for all other hosts.

For choosing which VMs to migrate they have used three algorithms namely: Minimum

number of migrations (MNM), highest potential growth (HPG) and random choice (RC).

For placing the VMs a modified power aware version of the Best Fit Decreasing heuristic

is used. Their proposed algorithms succeed in reducing energy to a great extent while also

maintaining a high level of adherence to the SLA.

1.3 Research Statement and Research Questions

The problem consists of devising an efficient VM consolidation scheme that can not only

reduce the energy consumption in the data centers but also adhere to the SLA to a great

extent. The problem deals with rigorous online monitoring of utilization levels of servers

to check for over-utilization and under-utilization, VM selection and VM placement. The

consolidation scheme can be divided into 5 phases: Initial VM placement, Host Under-

load detection, Host Overload detection, VM Selection and VM placement. While there

exist many algorithms for each of the five phases which give good results, the performance

of the algorithms can always be enhanced even further to reduce the energy consumption

and also lower the level of SLA violations.

The main research questions are:

1. How to formulate the energy and QoS model for an IaaS environment with unknown

workloads.

2. When to consider a Host as Overloaded and Underloaded, so that VMs can be mi-

grated away from the host.

3. How to efficiently solve the VM placement problem.

4. How to design the scheme to reduce energy as well as SLA violations.

5. How to efficiently choose the VMs for migration.
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1.4 Goal of the Research

The goal of this research is to propose an improved VM consolidation scheme which

reduces the combined performance metric involving the energy consumption in the data

center and the level of SLA violations.

1.5 Research Objectives

To address the goal of the research, following objectives have been identified:

1. To propose efficient algorithms for each/some of the three phases defined above.

2. To improve the performance of the VM consolidation scheme by maintaining a good

balance between energy consumption and SLA violations.

3. To perform extensive evaluation of the proposed scheme, and compare and contrast it

against the prevalent, most popular consolidation scheme.

1.6 Research Methodology

1. The Dynamic VM consolidation process as a whole can be improved by enhancing

each/some of the five phases (7) involved in it. In these earlier stages of the research

work, we have tried to improve the Overload detection scheme of the VM consolidation

process, by theoretically analyzing and experimenting with the performance of various

measures of statistical dispersion, both robust and non-robust, and applying it to the VM

consolidation scheme.

2. We have evaluated and compared the proposed scheme with the most effective scheme,

put forward by Beloglazov et al. (7), using extensive simulation through the CloudSim

2.0 toolkit (11) (open source).

The simulation and performance evaluation of the consolidation schemes has been done

using CloudSim 3.0.3. A simulation tool is chosen instead of real cloud infrastructure

because it is very difficult, time consuming, resource and cost intensive to use real cloud

infrastructure just for evaluation of the consolidation schemes; real cloud infrastructures

are too rigid to be of any use in this regard, while in the cloud simulators, the cloud pa-

rameters and the entire setup can be controlled very easily and we can develop and test
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1.7. CONTRIBUTIONS

the provisioning schemes with different types of workloads and resources. CloudSim

provides us the facility to actually model and test the performance of the services in large

heterogeneous cloud environments with little programming and deployment effort. It

provides support for modeling various features of the cloud including the broker policies,

overload and underload detection schemes, allocation schemes; it supports virtualized en-

vironments; and provides option for choosing between time-shared and space-shared task

allocation policies.

For the workload, we have used the PlanetLab workload traces as provided in CloudSim

3.0.3. These workload traces represent an IaaS cloud environment and correspond to the

system model in question (section 2.1). The data was collected over a period of 10 days

as part of the CoMon project.

1.7 Contributions

The research contributions for ”Energy Efficient Virtual Machine Migration in Cloud Data

Centers” is as follows:

1. We have extended the work done by Beloglazov et al. (7) and proposed the use of a

non-robust measure of statistical dispersion for adaptive threshold based overload detec-

tion: the MEANMAD 2.5.

2. We have proposed a VM selection scheme Migrate Maximum MIPS (MMM).

We have used both these proposed schemes together (MEANMAD MMM 2.5). Per-

formance evaluation has indicated that the proposed consolidation scheme has improved

upon the results obtained by Beloglazov et al. in his paper, in terms of reducing both

energy and the level of SLA violations as a whole.

1.8 Organization of Thesis

The rest of the Thesis is organized as follows:

Chapter 2: Introduces the system model related to our work and provides a compara-

tive analysis of the most effective algorithms used in VM placement.

Chapter 3: Deals with the main work of the thesis which includes proposing the use

17



1.8. ORGANIZATION OF THESIS

of ”Mean of absolute deviation from Median (MEANMAD)” measure of statistical dis-

persion and ”Migrate Maximum MIPS (MMM)”. It also presents extensive simulation,

evaluation, and comparison of the proposed scheme with the best scheme in use.

Chapter 4: Discusses the conclusion derived from the entire thesis, and the future work.

18



Chapter 2

System Model and VM Placement

Strategy

2.1 System Model

We consider the virtualized data center model with multiple cloud users (6). The cloud

environment consists of N Physical hosts. P is the list of Physical Machines, where

P = {P1, P2, ..., Pn}. The Physical hosts are homogeneous i.e. each of the hosts

has identical memory, CPU performance capacity (measured in MIPS) and also has same

network bandwidth. Each of the Physical hosts has a capacity of Ah. It is assumed that

the servers are connected among themselves with LAN of adequate speed and also to the

internet. All the hosts have access to a Network Attached Storage (NAS), which is used

for enabling the virtualization technology and serves as a storage drive for the VMs.

We consider work in an IaaS environment. The data center consists of an admission

control manager, a cloud manager and several local managers which are local to each

physical host. The admission control manager is responsible for deciding whether a new

VM request (for an application) can be allocated or not and whether the Quality of ser-

vice constraints can be adhered to. If it is possible, then the Service level agreements are

signed and the VM request is accepted and sent to the global manager for allocation on

a host. The cloud manager is present in the controller node and with data collected from

the local managers; it synchronizes, handles and manages the allocation and migration of
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2.1. SYSTEM MODEL

the Virtual Machines among the Physical hosts. Each of the physical hosts consists of a

local manager which is responsible for continual monitoring of all the Virtual Machines

on the host and handling resource allocation to the VM and deciding whether VMs need

to be migrated from the host or not. This information is then sent to the Global Manager

for further action.

The following 2.1 shows the view of the datacenter:

Figure 2.1: System Model

Each node can be described by the following performance parameters: the CPU per-

formance measured in Million instructions per second (MIPS), amount of RAM avail-

able and the network bandwidth. The resource management system is not aware of the

type of the applications it is managing. Various cloud service users independently sub-

mit their requests of handling M heterogeneous Virtual Machines denoted by the set

V = {V1, V2, ..., Vm} each of which also can be defined by the characteristics: MIPS,

amount of RAM required and network bandwidth requirement. The Virtual Machines

have constantly changing demands of resources i.e. the amount of CPU power it requires,

but each Virtual Machine can be allotted a maximum of Av CPU capacity. As the ca-

pacity of each physical host is Ah, a maximum of Ah/Av number of virtual machines

can be assigned to a physical host. These Virtual Machines run a wide variety of applica-

tions, which may differ greatly from one another and they are to be run simultaneously.

The users and cloud service providers agree on a Service Level Agreement, which if not

adhered to, will lead to a penalty on the side of the service providers.

20



2.2. HEURISTICS FOR VM PLACEMENT

2.2 Heuristics for VM Placement

2.2.1 Introduction

To provide fast cloud services, it all depends on how the resources are utilized in the data

center especially in virtual machine placement. Virtual machine placement is the process

of mapping VMs to the most suitable Physical Machine (PM) based on the requirement

of VM characteristics to achieve the Quality of Service (QoS) without any violation of

the SLA. VM placement is an important approach for improving power efficiency and re-

source utilization in cloud infrastructures. Virtual machines are of different configuration

and cloud computing is a heterogeneous environment, so allocating multiple VMs to PMs

has to be done wisely so that a good load balancing is achieved.

A Virtual Machine placement problem is typically a combinatorial optimization prob-

lem. Given a set of M virtual machines, each with a resource requirement specification

along multiple dimensions {k1, k2, ..., km} and a set of N physical machines, each

with a capacity along m dimensions, the VM placement algorithm gives a mapping of

VMs to PMs. Mapping the Virtual Machines to the available Physical Machines can be

reduced to a Bin Packing Problem (9), where the Physical Machines can be considered

as bins and the Virtual Machines as the objects being filled into the Physical Machines.

A set of Physical Machines, not all of the same size and a set of Virtual Machines are

given, sizes chosen randomly from a predefined range, the VMs must be placed into (a

subset of) these Physical Machines. Naturally, the number of Physical Machines used for

placing the VMs has to be minimized.

The placement of the VMs is modeled as a bin packing problem in this work. But the

bin packing problem is NP-hard (13), and hence no known polynomial-time algorithm

exists for this problem. While there exist other approaches to the VM placement problem

like Genetic algorithms or the Stochastic Integer Programming, the Bin Packing approach

is useful when dynamic VM consolidation is required where the demand is changing all

the time. The Bin Packing approach being heuristic based may not give us the optimal so-

lution always but it will produce a competitive solution in relatively lesser amount of time.

It is also of use when the hosts have the same physical characteristics. The Bin Packing

is a combinatorial NP-Hard problem. Energy costs of the cloud data centers can be min-
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2.2. HEURISTICS FOR VM PLACEMENT

imized by efficiently packing the VMs into the least number of PMs possible. Several

works have been done in this area as bin packing problem is one of the most fundamental

and most studied problems in computer science history with wide range of applications

in various fields. Berkey et al. (8)compared heuristics like first fit decreasing, systolic

packing and harmonic packing based on their performance. They found that these heuris-

tics performed better for smaller bins than for larger bins. Scholl et al. (29) proposed a

new heuristic that incorporates tabu search and a branch-and-bound procedure which uses

existing and newly proposed bound arguments and a new branching scheme. They have

studied various heuristics including the First Fit Decreasing, Best Fit Decreasing, Worst

Fit Decreasing and the B2F heuristic. Anily et al. (2) studied the worst case performance

of the heuristics for the bin packing problem. Fleszar et al. (15) developed a new algo-

rithm which is based on the idea of minimal bin slack. Yang et al. (33) studied a variant of

the bin packing problem known as the open-end bin packing problem, in which, if there

is any space remaining in the bin, new items can be further added until the total size of all

items in the bin is greater than the size of the bins.

2.2.2 Formalising the VM placement problem

The one dimensional problem takes into account only a single dimension which can be

any parameter among Processor usage, network bandwidth, storage capacity, memory

usage and the Power usage. Broadly, there exist 2 approaches to the VM placement prob-

lem: On-line algorithms and Off-line algorithms. The on-line algorithms place the VMs

into the Physical Machines as and when they appear without having any knowledge of the

subsequent VMs being arrived. It is implemented on shorter durations, shorter than pe-

riods of significant variableness of the resource demand. This placement algorithm runs

in the background of the application processes collecting data (9). On the other hand the

off-line algorithms have knowledge of the VMs beforehand and they examine the entire

list before applying their strategy to place the VMs. Two of the most popular techniques

used in the bin packing problem, the First fit decreasing(FFD) and the Best fit decreas-

ing(BFD) are compared and it is analyzed how these two differ from each other. In both

the FFD and the BFD algorithms the set of Physical Machines is sorted in ascending order

and the following methods are followed:
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A. First Fit Decreasing
The VMs are sorted in decreasing order with respect to their size. The first VM is placed

in the lowest numbered bin into which it fits i.e. if there is any partially filled ith PM with

capacity of jthVM + remaining capacity of ithPM ≤ capacityof jthPM then

the current VM is placed in that lowest indexed jthPM . If it does not fit into any open

PM, a new one is used and the VM is placed there. This procedure is then repeated for

all of the remaining VMs, and the partially filled PMs are kept open so that they can be

considered for placing the subsequent VMs into them.

B. Best Fit Decreasing
Similar to the FFD, the VMs are sorted in decreasing order. The current VM is placed into

the PM which leaves the least space left over after the VM is placed in the PM. If the VM

does not fit into any PM, a new one is started. Consider a case where the set of the given

VMs is: {V1, V2, ..., V10} with capacities as {4, 8, 3, 1, 6, 5, 1, 4, 2, 3} respectively.

Here, in both the FFD and the BFD algorithms, the VMs would first be sorted in decreas-

ing order i.e. {8, 6, 5, 4, 4, 3, 3, 2, 1, 1}. In the FFD algorithm the final packing would

be as shown in the figure 2.2. Since size of PMs is fixed, BFD also achieves the exact

same packing in this case.

Figure 2.2: Packing using BFD and FFD algorithms

In some cases, the solution found using the BFD algorithm may be worse than that of

the solution obtained using FFD. In other cases BFD finds a better or maybe an optimal

solution while FFD returns a non-optimal solution.
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2.2.3 Proposed Model

Given a set of n Physical Machines {P1, P2, ..., Pn} of processing capacity in the range

[u1, u2] and a set of m Virtual Machines {V1, V2, ..., Vm} with processing capacity in

the range [v1, v2], we need to find the number of bins B such that

∑
i∈Pk

capacity(Vi) ≤capacity(Pk); ∀k ∈ [1, n] (2.1)

(2.1) implies that the sum of the processing capacity of all the VMs should not exceed

that of the Physical machine.

B =
n∑

j=1

yj (2.2)

Subject to

m∑
i=1

capacity(Vi)tij ≤ capacity(Pj)yj; ∀j ∈ [1, n] (2.3)

n∑
j=1

tij = 1;∀i ∈ [1,m] (2.4)

yj ∈ {0, 1};∀j ∈ [1, n] (2.5)

tji ∈ {0, 1}; ∀j ∈ [1, n] ∀i ∈ [1,m] (2.6)

(2.2) shows the total number of PMs utilized, which is indicated by (2.5) giving 1 if

a particular PMj is used and 0 if it is not used. The presence of VMi in PMj is shown

in (2.6) which is 1 if present else 0. A particular VM can only be placed in one PM is

shown in (2.4). (2.3) indicates that the sum of the processing capacities of all the VMs
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placed in a PM must not exceed that of the particular PM.

The placement of VMs into the Physical Machines is done set-wise i.e by considering

a particular set of the VMs are considered at a time to be placed into a particular set

of the PMs. This helps in enhancing the fault tolerance capabilities of the entire cloud

infrastructure. 2.3 shows the list of PMs into which the VMs has to be allocated set-wise.

Figure 2.3: Placement of VMs being done set-wise in the PMs

The experiment is conducted by varying the number of Virtual Machines from 50 to

750 at uniform intervals of 50 units i.e 50, 100, ....., 750. The Virtual Machines have ca-

pacities in the range of [15, 30] and the Physical Machines have capacities in the range of

[80, 120] units. The VMs are then tried to be placed in the given 100 number of Physical

Machines using the modified FFD, the modified BFD and the randomized algorithm. The

randomized algorithm is purely for comparative purposes, to gauge the effectiveness of

FFD and BFD against random placement of the Virtual Machines.

Following present the algorithms used in the placement model:
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Algorithm 1: The Global Function
Input: vmList, pmList
Output: Mapping of VMs to PMs
vmUnplaced← numberofVM ;
pmOpen← numberofPM ;
Call First fit algorithm;
Call Best fit algorithm;
Maxheapify the VMs;
Call Randomized algorithm;
while All VMs and PMs are not considered do

vmSet← Generate a set of VMs;
pmSet← Generate a set of PMs;
Call modified FFD algorithm;
Call modified BFD algorithm;
if All VMs placed or All PMs full then

break;

return mapping;

Algorithm 2: Modified FFD Algorithm
Input: vmSet, pmSet
Output: Mapping of VMs to PMs
for each VM in vmSet do

if VM is not placed already then
for each PM in pmSet do

if PM has enough resources then
if VM can be placed into PM then

mapping.add(VM,PM);

if PM is full then
Close PM ;
pmOpen← pmOpen − 1;

if VM is placed then
Goto next V M ;

return mapping;
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Algorithm 3: Modified BFD Algorithm
Input: vmSet, pmSet
Output: Mapping of VMs to PMs
for each VM in vmSet do

if VMi is not placed already then
for each PM in pmSet do

MinHeapify the PMs;
if PM has enough resources then

if VM can be placed into PM then
mapping.add(VM,PM);

if PM is full then
Close PM ;
pmOpen← pmOpen − 1;

if VM is placed then
Goto next V M ;

return mapping ;

Algorithm 4: Randomized Algorithm
Input: vmSet, pmSet
Output: Mapping of VMs to PMs
while All V Ms andPMsare not considered do

vmSet← Generate a set of VMs;
pmSet← Generate a set of PMs;
MinHeapify the PMs;
for each VM in vmSet do

while somePMsare open do
pmChosen← Generate a randomPM ;
if VM can fit into pmChosen then

mapping.add(VM,PM);
break;

pmOpen← pmOpen − pmSet;
vmUnplaced ← vmUnplaced − vmSet;
if All V Ms are placed or NoPM has any resource then

break;

return mapping;
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Algorithm 1 is the main function which calls the modified FFD, modified BFD and

Randomized algorithms. It takes the list of VMs and PMs as input and gives us the map-

ping of VMs onto PMs. vmUnplaced denotes the virtual machines yet to be placed

and pmOpen denotes the physical machines that have enough resources. vmSet and

pmSet are the set of VMs and PMs that have been generated and are to be used for

mapping.

Algorithm 2 is the modified FFD algorithm which takes set of VMs and PMs as input

and provides the mapping of VMs onto PMs. For each VM in the vmSet, it tries to

place in the PM which has enough resources for VM and whichever comes first in the

pmSet.

Algorithm 3 is the modified BFD algorithm which takes vmSet and pmSet as in-

put and provides the mapping of VMs onto PMs. For each VM in the vmSet, it tries to

place in the PM which has enough resources for the VM and leaves least amount of free

resources after placement.

Algorithm 4 is the randomized algorithm that takes vmSet and pmSet as input and

gives VM-PM mapping a output. For each VM in vmSet, it tries to place in a randomly

chosen PM.

2.2.4 Simulation Results

The algorithms were implemented and the following results were obtained. Also it has

to be said that the timing is not accurate for smaller test cases which take small running

times. This is because of the CLOCKS PER SEC macro which has been used

for measuring the running times of the programs. Hence in some cases, same running

times will appear, but actually the running times differ by a very small amount. Also, for

smaller test cases the running time for the program may be 0 seconds but actually they

have very small values not big enough to be measured by the macro.

From figures 2.4,2.5 and 2.6, it can be observed that the modified FFD algorithm uses

lesser number of Physical Machines for placing the VMs closely followed by the modified

BFD algorithm. The modified BFD algorithm takes the slightly more number of PMs than
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Figure 2.4: Number of PMs used vs Number of VMs placed (for 100 PMs)

Figure 2.5: Number of PMs used vs Number of VMs placed (for 150 PMs)

Figure 2.6: Number of PMs used vs Number of VMs placed (for 200 PMs)
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Figure 2.7: Time taken vs VMs placed (for 100 PMs)

Figure 2.8: Time taken vs VMs placed (for 150 PMs)

Figure 2.9: Time taken vs VMs placed (for 200 PMs)
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the modified FFD algorithm in each case because in BFD the Physical Machine list is to

be sorted in each iteration for placement. From figures 2.7, 2.8 and 2.9, it can be observed

that the modified FFD algorithm takes the least amount of time for placing the VMs into

the Physical Machines closely followed by the modified BFD algorithm. This is because

in modified BFD, we are sorting the Physical Machines in ascending order according to

the space remaining in them. Consequently in modified BFD, smaller bins are utilized

first, so even though modified BFD uses larger number of bins, the bins used are smaller

in size and it was found that the utilization or the packing efficiency in the modified BFD

is generally higher than that of modified FFD.

2.3 Conclusion

From the observations in the previous section we conclude that the BFD algorithm for VM

placement provides better results than the FFD algorithm. Therefore, it would be more

feasible to use the BFD algorithm for placing the VMs, in our consolidation scheme.
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Chapter 3

Dynamic VM Consolidation

3.1 Introduction

After initial placement of the VMs, dynamic consolidation is required. The demands of

the VMs constantly change over time. It is thus imperative that the underlying resources

be provisioned from time to time to serve the VMs adequately while conserving energy

and keeping the level of SLA violations down.

The Dynamic VM consolidation problem can be broken down into 5 parts:

1. Initial VM placement: Initially, the VMs need to be placed on the hosts.

2. Detecting Overloaded hosts: The overload detection algorithm checks all hosts

for overload. If any of the host is overloaded, the VMs need to be migrated away from

the hosts.

3. Detecting underloaded hosts: The underload detection algorithm checks all

hosts for underload so that the hosts can be switched to a power conserving state by mi-

grating all the VMs away to other hosts.

4. Selecting the VMs for migration from the hosts: The VM selection al-

gorithm returns the combined migration map for the overloaded and underloaded hosts,

which indicates where to place the VMs chosen for migration.

5. VM placement: Finally, the VM placement is done according to the migration

map.
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3.2 Problem Statement

The problem of dynamic VM consolidation has been presented as minimization problem,

to minimize the total cost incurred due to SLA violations and power consumption of data

centers. The problem in this thesis assumes that the centralized cloud is hosted on a data

center that has a large number of heterogeneous servers. Each of the servers may be as-

signed to carry out different or similar functions. A cloud computing infrastructure can be

modelled with PM as a set of physical servers/machinesPM1, PM2, PM3, ..., PMn.

The resources of cloud infrastructure can be used by the virtualization technology, which

allows one to create several virtual machines VM1, V M2, ..., V Mm on a physical

machine and therefore, reduces the amount of hardware in use and improves the resource

utilization. So with the help of virtual machines, cloud resources are utilized.

The problem addressed in this thesis is to minimize the total energy consumption of data

centers as well as to minimize the amount of SLA violations. The metric that has been

used to measure it is Energy and SLA violation (ESV) metric, which is to be minimized.

3.3 The power consumption model and performance met-

rics

It has been shown that the power consumed by the nodes can be estimated by taking into

consideration, the CPU utilization alone (14)(24). So to reduce the energy consumption

the CPU utilization in the datacenters needs to be improved. For calculating the power

consumption, the following model is generally assumed:

P (u) = k ∗ Pfull + (1− k) ∗ Pfull ∗ u (3.1)

Here, u is the CPU utilization, Pfull is the power consumption of the node when it is

fully utilized which signifies the maximum power consumed and k denotes the fraction

of the power that the idle server consumes. The value of k generally is around the range

0.7 (6), so the value of k is chosen as 0.7.
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The modified Power consumption model then becomes:

P (u) = Pfull(0.7 + 0.3 ∗ u) (3.2)

the Energy consumed by all the hosts for computation (18) is given by :

Ecomp =
N∑
i=1

∫
P (ui(t))dt (3.3)

The computation cost depends on the energy consumed by all the servers. Apart from the

computation cost, we can also consider costs related to Virtual Machine migration and the

switching costs.

The energy consumed for migration (18) is given by:

Emigr = 4 ∗
MV∑
j=1

Pm ∗
Cj

BWj
(3.4)

MV denotes the number of migrated Virtual Machines. Pm denotes a unit power con-

sumption for migrating a Virtual Machine (Pm is a constant (3)). Cj denotes the memory

size of migrated VM j and BWj denotes the Bandwidth available for migrating the VM

j.

The switching cost is incurred when a server is switched on from sleep state and is given

by (1) (24):

Eswit =
K∑
i=1

(Psi ∗ Tsi)

2
(3.5)

Here, K denotes the number of servers that are rebooted. Psi denotes the difference in

power consumed by the server i when in sleep mode and in active mode. Tsi denotes the

time taken by the server i to turn on and start functioning, from sleep mode.

So the total energy consumed is given by:

Etotal = Ecomp + Emigr + Eswit (3.6)
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In their work, Beloglazov et al. (7) point out that large amount of memory being used

by the physical hosts these days, have begun to dominate the power consumption by the

hosts and that it is also very difficult to develop an accurate power consumption model

for multi-core CPU architectures. So, instead of formulating a complex analytical model

for power consumption, they have used real data provided by the SPECpower benchmark

and we adopt the same. The data-set defines the power consumed by each host at various

workloads based on collected data and uses these values to calculate the energy consumed

by the hosts. The power consumption by the hosts at different load levels is bench-marked

as follows:

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 106 121 125 129 133 135

Table 3.1: Server Power consumption at different load levels

The table 3.1 represents the power consumed by the servers at different load levels,

measured in Watts. From the table, we can observe that the load level and the power

consumed follow a linear relationship.

3.4 Calculating the cost of Virtual Machine migrations

Live VM migration is required to migrate the VMs from the overloaded and underloaded

hosts with only a small downtime. However, VM migration when carried out while the ap-

plications are running leads to performance degradation to a considerable extent. Accord-

ing to work done in (32), the performance degradation experienced by the applications is

directly related to the number of memory pages it updates while executing. But it was

also found out in these studies that the performance degradation including the downtime

in the case of web applications can be estimated to be nearly 10% of the CPU utilization.

Thus the performance degradation experienced by a VMj is modeled in (6) as:

Udj = 0.1 ∗
t0+Tmj∫
t0

uj(t)dt (3.7)
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Tmj =
Mj

Bj
(3.8)

where, Udj denotes the degradation in performance experienced by the jth VM, t0 is the

time of start of the migration of jth VM and t0+Tmj is the ending time of the migration

of jth VM. Uj(t) denotes the CPU utilization of the jth VM, Mj denotes the memory

used by the jth VM , and Bj denotes the network bandwidth available to the jth VM.

3.5 Modeling the SLA violations and performance met-

rics

An SLA violation will occur when less CPU capacity is being provided than what is de-

manded. The total SLA violation is defined as the ratio of the sum of unallocated MIPS

to the sum of the requested MIPS. Hence, the Overall SLA violations is given by:

m∑
i=1

RequestedMIPS(i)− AllocatedMIPS(i)

m∑
i=1

AllocatedMIPS(i)
(3.9)

where, RequestedMIPS(i) denotes the MIPS requested by the ith VM for running

the application, and AllocatedMIPS(i) denotes the actual MIPS that were allotted

to the ith VM. The SLA is assumed to be violated when for a particular VM, the Re-

quested MIPS is less than the actual allocated MIPS.

Two kinds of SLA violation metrics are used, to estimate the level of SLA violations

(7) (6) (18).

The first one is the SLA violations due to over-loaded hosts and will be denoted as

SLATAH . It denotes the ratio of total time spent experiencing SLA violations to

the total active time of hosts 3.10.
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SLATAH =

1
N

N∑
i=1

T si

N∑
i=1

Tai

(3.10)

Tsi denotes the time for which Host i has experienced SLA violations. Tai denotes the

total active time of Host i. N denotes the number of hosts.

The second SLA violation metric quantifies the performance degradation of the Virtual

Machines due to migration. This is considered since SLA violations are also caused by

VM migrations (32). This is denoted in (7) as:

PDM =
1

M

M∑
j=1

Cdj

Crj

(3.11)

Cdj is an estimate of the performance degradation caused due to migration of VMj , Crj

denotes the total CPU MIPS requested by VMj . The value of Cdj is taken as the 10%

of the CPU MIPS during migrations of VMj .

The following metric denotes the total SLA violations taking into account both the above

types of SLA violations, since both SLATAH and PDM with equal importance de-

note the SLA violation level of the cloud:

SLAV = SLATAH ∗ PDM (3.12)

The metric combining both Energy consumption and SLA violations is given by (7):

ESV = Etotal ∗ SLAV (3.13)
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3.6 Dynamic VM placement optimization

The overall process of VM consolidation can be divided into the following five steps (18):

3.6.1 Initial Placement of the Virtual Machines

Initially the VMs are placed on the Physical Machines, based on the resources they de-

mand. But their demands may change while running, so they are consolidated dynami-

cally using the following steps.

3.6.2 Detecting Overloaded Hosts

This phase of the VM consolidation process is used to reduce the load on the overloaded

hosts. The traditional approach is the STA (Static Threshold Algorithm). The STA de-

fines an upper threshold for the hosts beforehand and the provisioning schemes have to

keep the total utilization of the CPU under the threshold limit. If the threshold limit is

exceeded, some VMs have to be migrated from the host to reduce the load on the CPU

so that a SLA violation can be prevented. But, since STA defines static threshold limits,

they are not suitable for dynamically changing workloads and conditions, so Overload

detection schemes which can handle the dynamically changing environments are needed.

Beloglazov et al. (7) in their study proved that local regression method, which was pro-

posed by Cleveland (12) achieves most suitable results with dynamic, variable workload.

It was shown by Beloglazov et al. that local regression can obtain the best results when

compared to other popular methods of detection like, Median Absolute Detection, and

Interquartile range. Beloglazov et. al in their work have shown that LrMMT 1.2 is the

best detection algorithm for detecting overloaded hosts.

To migrate the VMs from the physical machines, we need to set an upper threshold,

such that when the CPU utilization of the particular host reaches above this value, the

VMs are migrated iteratively from the host, until the host is no longer overloaded. But in

an environment where the workload is dynamic and is changing by the minute, we need

a more accurate estimate of the threshold value and it cannot be fixed to a particular value.

We have proposed a new algorithm MEANMAD MMM 2.5 by improving upon the
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existing algorithm proposed by Beloglazov et al.. MEANMAD MMM uses MEAN-

MAD(Mean of absolute deviation from median) for dynamically varying the upper thresh-

old limit for overload detection based on a statistical analysis of the historical data of

CPU utilization by application workloads on the hosts.The MEANMAD MMM is used

to estimate the threshold value by measuring the deviation of previous values of the CPU

utilization of the host. If the deviation of these values is large enough, it is more likely

that the CPU utilization will reach 100% and the CPU will get overloaded. So, for a larger

deviation, we need to lower the upper threshold and migrate the VMs from the host.

MEANMAD is defined as:

MEANMAD = mean(|CPUutilizationi −median(CPUutilization[])|)
(3.14)

where,CPUutilization[] denotes the list of all CPU utilizations,CPUutilizationi

denotes the CPU utilization value of the ith element in the list.

And the upper threshold is given by:

Tu = 1− s.MEANMAD (3.15)

where, s is a safety parameter and we can define it as per our requirement. If we want

to focus more on the energy conservation, then s can be assigned a larger value so that

migrations are more and energy consumed is also less. By varying s suitably, we found

that for the workload of the nature used, 2.1 comes out to be a good value and is effective

in reducing the overall energy and SLA violation metric to a great extent.

MEANMAD is a measure of statistical dispersion, but it is not a robust statistic unlike

the MAD used by Beloglazov et al. (7). The main idea behind the MEANMAD we do

not want to entirely discard the outlier data, as the outliers do also play an important role

in deciding the overload threshold as even a few instances of high CPU utilization could

cause the CPU to be overloaded and cause SLA violations. This is why our algorithm

succeeds in reducing the SLA violations to a great extent and even the combined metric

of Energy and SLA violations is reduced greatly.
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3.6.3 Detecting Underloaded Hosts

We have already seen that idle hosts may consume up-to 70% of the peak energy con-

sumption. It will therefore be feasible to migrate all the Virtual Machines from an un-

derloaded host and switch it off or put it in a power saving state. The procedure to be

followed for handling under-loaded hosts is:

(i) First, the host with least utilization is considered for migrating all VMs from it.

(ii) The selected VMs are migrated (7) to other servers while not over-loading them.

(iii) This process is then repeated for all under-loaded hosts.

3.6.4 Selecting the VMs for migration from the hosts

After the list of overloaded and underloaded hosts is determined, the next logical step is

to determine which Virtual Machines to migrate from these hosts. Various schemes exist,

including the Minimum Migration Time (MMT) policy (7) which migrates a VM that

needs the minimum time to migrate compared to the other VMs in the same host. The

algorithm runs iteratively to migrate the VMs one by one until the host is no longer over-

loaded. Zhang et al. proposed the MNM policy (34) which selects the minimum number

of the VMs to migrate from a host so that the CPU utilization falls below the specified

upper threshold.

We have proposed a new VM selection scheme ”Migrate Maximum MIPS (MMM)”.

The overload detection scheme has already decided that a host is overloaded and then we

need to choose some VMs to migrate from the host so that the host may no longer be

overloaded. According to this scheme, for choosing which VMs to migrate we take the

CPU power (MIPS) of each VM the host is using, into consideration. Among all the VMs

running in the host, we choose that VM for migration which is consuming the maximum

MIPS. After the first VM is chosen for migration, the host is again checked for overload,

if it is still overloaded the selection scheme is applied again and this process is carried out

iteratively until the host in consideration is no longer overloaded.

The idea behind choosing MIPS for selecting the VMs is that we desire to migrate those

VMs first which consume the maximum amount of the host’s CPU power. When VMs

consuming larger CPU power are migrated first, chances are, the number of VM migra-
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tions will go down and ultimately lead to a reduction in the consumption of energy, which

is the case as demonstrated in the experiments.

3.6.5 Optimal VM placement

The VM placement problem is an NP hard one. However, various heuristics have been

developed to approach closer to the optimal solution.

Algorithms used for the placement of the Virtual Machines can be broadly categorized as

using the:

(1) Power Based approach and

(2) Application QoS based approach.

The first approach tries the placement in such a way so as to utilize servers to their maxi-

mum efficiency by server consolidation and hence minimize energy consumption. While

the second approach aims at enhancing the Quality of Service (QoS) as defined in the

Service Level Agreements (SLA) by maximizing the resources given to the applications.

This work tries to take both the approaches into account and try to arrive at a tradeoff

between the two which will be most beneficial to the Cloud service providers.

The Virtual Machine placement problem is modelled as a bin packing problem. The bin

packing problem is NP-Hard, so no polynomial time algorithm exists to solve this prob-

lem. So various heuristics have been used in placement models which give good results in

a short period of time. The most popular algorithm used for this purpose is the constraint

based Best Fit Decreasing modified suitably to take the energy model into consideration.

Best Fit decreasing is the most suitable choice in scenarios where the workload is dynam-

ically changing. Though it may not always give optimal results, but it makes up for it

in speed of achieving the placements. While these may not give optimal solutions, they

perform the placements in quicker time, which is an acceptable trade-off in cloud com-

puting environment, where time is of utmost importance. One such algorithm is the LIP

algorithm (7) which was named so in (18). This algorithm first sorts the selected Virtual

Machines in the decreasing order of CPU utilization and then for each VM, it allocates

it to that particular host which will lead to the least increased power in the host. The

LIP with host sort was proposed in (18) which also sorts the host in descending order

of current CPU utilization. BHF algorithm was proposed (18), where the authors tried

to allocate VM in that host which would lead to the highest utilization in the host. This
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was predicted using local regression techniques. Zhang et al. (34) have used an improved

version of the Best-Fit decreasing algorithm which is power aware (PBFDH). We use the

Power aware version of the Best Fit decreasing algorithm as proposed by Beloglazov et al.

(5), which is what is implemented in the CloudSim 3.0.3 toolkit which is used to conduct

our experiments.

3.7 Performance Evaluation

CloudSim toolkit (11) 3.0.3 has been used to simulate the existing and proposed algo-

rithms. The cloud consists of a data center consisting of 800 heterogeneous physical

nodes. Of these, half are HP ProLiant ML110 G4 servers, having 1860 MIPS capacity on

each core and other half are HP ProLiant ML110 G5 servers, having 2660 MIPS capacity

on each core. Each server has a network bandwidth capacity of 1 GBPS. Both type of

hosts have 4GB of RAM.

The types of VMs used are 1) 2500 MIPS, 0.85 GB(RAM) , 2) 2000 MIPS,3.75 GB,

3) 1000 MIPS, 1.7 GB, 4) 500 MIPS, 613 MB . The objective is to minimize both en-

ergy and SLA violation costs, so the metrics: Energy and SLAV, both have to be taken

into account. Thus, the metric ESV = Energy x SLAV is used to compare the

consolidation schemes which gives equal weight-age to both energy and the level of SLA

violations.

The following plots show the comparison between LrMMT 1.2, the best VM consoli-

dation scheme used by Beloglazov et al. (7) and our proposed scheme: MEANMAD

MMM 2.5. The algorithm is run for 10 sets of data as provided in the CloudSim toolkit,

which denotes the CPU utilization values from PlanetLab collected on the 10 different

dates. The data is provided as part of the CoMon project (27).

Fig.3.2 shows the number of VM migrations, which are a bit less in comparision to

LrMMT 1.2. From fig.3.1 we observe that our proposed scheme consumes lesser energy

while consolidating the VMs, and from fig. 3.3, 3.4 and 3.5 we observe that the level of

SLA violations is much less in our scheme than in LrMMT 1.2. But our objective is to

minimize both Energy and cost incurred due to SLA violations. So the most important
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Figure 3.1: Energy Consumed

Figure 3.2: Comparison based on number of migrations

Figure 3.3: Comparison based on PDM metric

metric is the ESV metric (fig. 3.6), which clearly shows that our proposed scheme gives

much better results for minimizing both Energy and SLA violations.
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Figure 3.4: Comparison based on SLATAH metric

Figure 3.5: Comparison based on SLAV metric

Figure 3.6: Comparison based on ESV metric
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3.8. CONCLUSION

The following table 3.2 shows the percentage improvement in the ESV metric in each

of the cases obtained in our scheme, over LrMMT 1.2. The entry corresponding to 1463

VMs is Not Available as the SLAV obtained in this case was 0.00 because only 2 decimal

places were considered for measuring the values :

Number of
VMs

1052 898 1061 1516 1078 1463 1358 1233 1054 1033

% improve-
ment in
ESV metric

63.48 49.06 74.06 53.63 58.16 NA 61.06 61.32 61.37 77.37

Table 3.2: Percentage improvement in ESV metric over LrMMT 1.2

3.8 Conclusion

1. Performance evaluation has indicated that our proposed consolidation scheme, MEAN-

MAD MMM 2.5 has improved upon the results obtained by Beloglazov et al. in their

paper, in terms of reducing both energy and the level of SLA violations as a whole. This

will in-turn lead to a better ROI for the cloud service users.

2. As per Beloglazov et al. (7) the local regression based overload detection schemes

significantly outperform the adaptive threshold based schemes. But the results obtained

in our work indicate otherwise. The adaptive threshold based consolidation schemes out-

perform the local regression based consolidation schemes when an appropriate measure

of statistical dispersion is used.
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Chapter 4

Conclusion and Future Work

In this work, the problem of an effective Virtual Machine consolidation scheme to reduce

energy consumption is undertaken. Reducing Energy consumption is one of the most se-

rious concerns for the cloud service providers. Even in idle mode the data center is able

to consume about 70% of the peak energy. Effective VM consolidation scheme can help

the cloud data centers save more energy and hence reduce their costs of operation and

increase the ROI. We have proposed a new algorithm for overload detection: the MEAN-

MAD 2.5 and combined with the minimum migration time policy of selecting the VMs

for migration, we get the method MEANMAD MMM 2.5. MEANMAD MMM 2.5 has

improved upon the results obtained by Beloglazov et al. in their paper, in terms of reduc-

ing both energy and the level of SLA violations as a whole leading to a better ROI for the

cloud service users. Also, as per Beloglazov et al. (7) the local regression based overload

detection schemes significantly outperform the adaptive threshold based schemes. But

the results obtained in our work indicate otherwise. The adaptive threshold based con-

solidation schemes outperform the local regression based consolidation schemes when an

appropriate measure of statistical dispersion is used.

The future direction of this project includes modifying other phases of the VM provi-

sioning scheme which can reduce energy consumption and SLA violations even further

than what is already achieved.
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