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ABSTRACT 

This research work has its motivation in the ever-increasing use of computational methods in 

the areas of Civil Engineering. Parameter estimation has assumed a critical importance in 

predicting failure curves more accurately. Error-in-variables approach gives us a chance to 

predict simultaneously dependent and independent variables. A method like least square can 

take into account the error in only ‘x’ values and does not consider the error in values of ‘y’. 

The vector of unknown parameters (𝜎𝑐, 𝜎𝑡, ∅) can also be estimated by the EIV approach along 

with the variable data points. The failure criterion used is the MSDPu rock failure criterion 

which deals with failure of low porosity rocks and represents a multi-axial surface in stress 

space. 

The objective functions are modelled as a multi-objective optimization problem with the first 

function accounting for the error due to variables and the second function accounting for the 

error due to the model. Although, the optimization problem has increased dimension in case of 

EIV approach, it provides an efficient tool to predict the set of reconciled data and unknown 

parameters. 

NSGA-II is an efficient MOEAs developed by Deb et al. (2001) for multi-objective 

optimization which follows the principle of a fast elitist non-dominated sorting procedure. The 

two error functions hence formulated by the EIV method is efficiently minimized by the 

evolutionary algorithm with a little bit of parametric tuning.  

Estimating pile length for piles is quite difficult, and requires a good knowledge of the subsoil 

conditions. If the required conditions are formulated into objective functions along with 

constraint handling then optimized function of (d/L) against load bearing capacity can be found 

out by NSGA-II. 

 

 

 

Keywords: Parameter estimation, rock-failure criteria, NSGA-II, optimization, EIV method, 

pile length.  
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1.1 Parameter Optimization of Rock Failure Criterion 

 

The behavior of rocks plays an important role in engineering structures and various studies have 

been undertaken since the last few decades to analyze properties like stress-strain behavior, shear 

volume coupling, strength parameters of the rock sample and type of loading conditions. Rock 

engineering is a major part of Geotechnical engineering as we often come across structures where 

deep excavations have to be made in rocks. The ultimate state of stress or strain which causes 

failure has been the main focus of researchers, because in any construction the major aim is to 

avoid the failure state. Failure criteria is nothing but a mathematical equation to define the failure 

surface or curve. Over the years, numerous rock failure criteria have been given and there may be 

as many as 20 rock failure criteria (Yu, 2002). But every rock criteria is specific to a particular 

kind of rock. Thus, there has been constant efforts to modify and develop different failure criterion 

to apply to other rocks (Li et al. 2003). The failure criteria is aptly represented in a 2-D or 3-D 

space of stress or strain, which are predicted more accurately by rock strength parameters like 

uniaxial compressive strength, tensile strength, angle of internal friction etc. as these data are 

measured experimentally, there will always be some associated error based upon the precision of 

measuring equipment, non-homogeneity and anisotropy. Hence, these parameters need to be 

estimated more precisely by optimization techniques in order to better express the mathematical 

formulation of stress space. In order to find out such parameters, optimization methods are best 

suited (Desai and Chen 2006). 

An appropriate objective function is chosen for the optimization procedure and it represents the 

gap between measured values and estimation needs. A statistical method is then generally used to 

formulate the objective functions.  There are numerous statistical approaches for the formulation 

of required objective functions. Like for example, Parameter estimation in rock failure criterion is 

widely done by the method of least squares (Shah and Hoek 1992; Li et al. 2000) and weighted LS 

(Desai 2001). The drawback in these methods is that they create a distinction in independent and 

dependent variables (Das and Basudhar 2010). These methods make the assumption of 

independent variable being free from measurement errors. But there may be some kind of error in 

all the measuring parameters as measurement error is caused by various factors such as equipment, 

random testing effects and procedural.  
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The tri-axial test data for rock samples consist of the stresses (σ1, σ2, σ3) and all these stress may 

be associated with some error based upon the accuracy of the experimental setup. A statistical 

method named as error-in-variables (EIVs) method has been suggested for use in optimization 

(Bard 1974; and Esposito and Floudas 1998) and is being utilized in various fields of engineering. 

In statistics, EIV method is considered as a regression model that accounts for measurement errors 

in independent variables unlike standard regression models that assume independent variables 

have been measured exactly and accounts only for errors in the dependent variables. The 

measurement errors in both dependent and independent variables after being taken into account, 

the true reconciled values of the variables can be predicted simultaneously by EIV method. But 

this leads to a larger dimension of the optimization procedure with the total number of parameters 

to be evaluated being x + y×z, where x = vector of model parameters, y = number of data points 

and z is the number of variables in each data set.  

In the estimation and optimization of rock parameters, EIV method is used for formulation of 

objective functions to estimate rock strength parameters for multi-axial rock failure criteria. A 

multi-objective EA namely NSGA-II has been used for the optimization procedure and the failure 

criteria used for the present study is Mises-Schleicher and Drucker-Pager unified (MSDPu) 

(Aubertin et al. 1999).  

1.1.1 Error-in-Variables Approach 

The main advantage of using error-in-variables approach is that in this method, a distinction is not 

made between dependent and independent variables. Both the system variables of x and y are 

assumed to be inclusive of error and objective function is formulated based on that assumption. 

EIV approach can be represented as: 

𝑓(𝑥̃, 𝑦̃, £) = 0 

Where £ is the vector of unknown parameter and (𝑥̃, 𝑦̃) are true values. 
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1.1.2 Mises-Schleicher and Drucker-Pager unified (MSDPu) Failure Criterion: 

The MSDPu failure criterion is suitable for failure of low porosity rocks and represents a multi-

axial surface in stress space (Aubertin et al. 1999). The same group had earlier developed a three 

dimensional criterion known as MSDP but unified it later, so that one doesn’t have to deal with a 

transition condition while shifting from the curved portions (referred to as the Mises-Schleicher 

portion) and the linear portion (referred to as the Drucker-Prager portion). A failure envelope 

assumes importance as it delimits the stable and unstable zone. This delimitation is the basis of 

many practical applications (Zambrano-Mendoza et. al. 2002). A rock sample can be subjected to 

various tests in order to find out their peak strength. Loading conditions vary from uniaxial tension, 

diametrical compression, and reduced triaxial extension. The associated peak from these loading 

conditions from the stress-strain curve can be represented by a point that can be plotted in a two-

dimensional space with appropriate combinations of (σ1, σ2, σ3) or of the corresponding stress 

invariants (I1, J2, θ). A mathematical criterion involving these parameters is then conceived that 

tries to follow the curve represented by joining the points obtained through the various tests. 

MSDPu failure criterion has the following characteristics: 

i. Tensile strength (uniaxial) 

ii. Strength in compression 

iii. A continuous influence of the minor principal stress for the entire range of behavior 

iv. Strength when subjected to high confining stress, and 

v. Loading geometry represented in the pi-plane. 

The criterion is defined by the following equation: 

√𝐽2 − 𝑏 {
𝛼2(𝐼1

2 − 2𝑎1𝐼1) +  𝑎2
2

𝑏2 + (1 − 𝑏2)𝑠𝑖𝑛2(45° − 1.5𝜃)
}

1
2

= 0 

Where 

𝛼 =
2 sin ∅

√3 (3 − sin ∅)
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𝑎1 =
𝜎𝑐 − 𝜎𝑡

2
−

𝜎𝑐
2 − (

𝜎𝑡

𝑏
)

2

6𝛼2(𝜎𝑐 + 𝜎𝑡)
 

𝑎2 = {[
𝜎𝑐 +

𝜎𝑡

𝑏2

3(𝜎𝑐 + 𝜎𝑡)
− 𝛼2] 𝜎𝑐𝜎𝑡}

1/2

 

And Lode angle (𝜃) 

𝜃 = tan−1
𝜎1 + 𝜎3 − 2𝜎2

(𝜎1 − 𝜎3)√3
 

The above mathematical formulation of MSDPu failure criterion has been well verified with 

experimental results and validated over period of time. It differs from the most commonly used 

rock-failure criterion that is Hoek-Brown expression but represents well the short-term failure of 

various isotropic rocks. 

 

1.2 Application of NSGA-II for optimization 

The non-dominated sorting genetic algorithm (NSGA-II) was proposed by Deb et. al. (2001). It is 

freely available at the online GA laboratory named as KANGAL. NSGA-II characterizes fast non-

dominated sorting procedure, a parameter less niching operator and an elitist-preserving approach. 

Its implementation process can be best described by following steps: 

i. Initialization of a set of solution 

ii. Non-dominated arrangement of solution in different fronts 

iii. Crowding distance 

iv. GA parameters like crossover and mutation. 
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2.1 Multi-objective algorithms applied for optimization and other problems in 

Civil Engineering: 

MOEAs have been applied for optimization problems in civil engineering since the last decade. In 

practical problems, we often encounter situations where we have to deal with conflicting objectives 

where an optimal solution requires to consider trade-offs between the conflicting objectives. After 

a vast literature review it was found that tremendous amount of utilization of these algorithms have 

been done in water resource engineering and the other sectors of civil engineering have made use 

of the algorithms much less comparatively. The following paragraphs throws light on the amount 

of work done in different branches of Civil Engineering as regard to multi-objective optimization 

algorithms. 

Structural Engineering 

Lounis and Cohn (1993) presented a realistic and effective method to the optimization of pre-

stressed concrete structures in case of two or more objectives must be satisfied at the same time. 

They treated the problem by using the most important objective function as the primary criterion 

and other remaining objectives were handled as constraints. Lagrangian algorithm was then used 

to solve the problem. Cheng and Li (1997) implemented a procedure incorporating a Pareto genetic 

algorithm (GA) and a fuzzy penalty function method to an example problem of multi-objective 

structural and control design of a truss which was a  72-bar space truss with two criteria, and a 

four-bar truss with three criteria. The results demonstrated that the proposed method is highly 

efficient and robust. The life-cycle maintenance and planning of deteriorating bridges was 

formulated by Liu and Frangopol (2005) as a multi-objective optimization problem that formulated 

life-cycle maintenance, safety conditions and other costs as separate objectives. An optimized 

trade-off between the conflicting objectives was found out and a diverse set of solutions 

representing maintenance scenarios was identified by the multi-objective GA used as a search 

engine. Further, Neves et. al.(2006) tried to identify the best maintenance plan for a group of 

bridges over a specified time horizon. A bridge manager generally deals with conflicting 

objectives, and this need was addressed by the authors in identifying a full probabilistic multi-

objective approach to bridge maintenance considering single maintenance type. Marsh and 

Frangopol (2007) investigated optimization of cost and gap between corrosion rate sensors placed 

in bridge decks. The rate of corrosion of reinforcing steel can be extremely variable within a 
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structure due to changing concrete properties with time, environmental fluctuations and numerous 

other factors. Corrosion rate sensors can help us to monitor the deteriorating conditions, but due 

to economic and construction constraints only a specified number of sensors can be used. A 

minimization problem was then formulated in order to minimize the cost of sensor system 

installation. The Pareto optimal fronts were obtained by using a multi-objective optimization 

algorithm in addition with interpolation techniques and Bayesian updating. 

 

Transportation Engineering 

The use of MOEAs has also been significant in this field as the practical problems faced by a 

transportation engineer is often multi-faceted in nature. Wang and Wright (1994) worked on 

interactive design of service routes. By its very nature, Transportation networks are complex and 

often involves conflicting, multiple objectives. Spatial network data, multi-objective optimization 

techniques and a user-friendly graphical interface was modelled by the authors. A genetic 

algorithm based procedure for handling multi-objective pavement maintenance programming 

problems was developed by Fwa et al. (2000). For better pavement maintenance planning and 

programming, analysis involving multiple considerations is required. Concepts of Pareto optimal 

solution set and fitness assignment based on ranks were adopted. A good analysis based on 

multiple handling of solution set and robust search characteristics indicated that genetic algorithms 

are suitable for multi-objective problems. Fan and Machemehi (2006) used a genetic algorithm to 

thoroughly analyze the characteristics on which an optimal bus transit route network design 

problem (BTRNDP) with variable transit demand is based upon. The multi-objective non-linear 

mixed integer model was formulated for BTRNDP consisting of three major attributes, a starting 

candidate route set generation method, a network analysis method and a genetic algorithm method 

that combined the former two components. A C++ program was written for the proposed solution 

procedure for the BTRNDP with variable transit demand. Abbas and Sharma (2006) used a multi-

objective non-dominated sorting genetic algorithm for selecting the best timing plans which can 

be stored and grouped traffic states into a specified number of clusters, simultaneously associating 

every cluster with one of the timing plans. Optimal co-ordination of traffic signals required proper 

activation of timing plans in order to match an ongoing traffic conditions. A trade-off evaluation 

for multi-objective optimization in transportation asset management was done by Bai et. al. (2011). 
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To achieve an optimization at overall system level, a decision making process in transport asset 

management is characterized by a wide diversity of asset types. The analysis of trade-offs can be 

highly beneficial for these multi-objective problems. The objectives represented by considering 

network level performance measures was used to formulate the multi-objective optimization 

underlying the analysis of trade-offs. Then the extreme point NSGA-II was used to produce the 

Pareto frontiers that illustrated the trade-offs. Fwa and Farhan (2012) further explored the area of 

highway asset management to search for an optimal multi-asset maintenance budget allocation. In 

the allocation of maintenance budget, following key points are expected: (1) the preservation needs 

of all assets are effectively addressed, (2) the goals of distinct asset systems are optimally fulfilled 

in an impartial manner, and (3) the goals of the inclusive highway asset system are attained 

optimally. The outcomes were achieved by proposing a two-stage approach in which stage 1 

consisted of generating a family of Pareto solutions and stage 2 adopted an optimal algorithm to 

distribute budget to specific assets by executing a cross-asset trade-off to attain optimal budget 

solution. Caetano and Teixeira (2013) proposed a multi-objective method for developing railway 

ballast, sleeper renewal operations and rail. Two objectives were considered for minimization: (1) 

railway track inaccessibility caused by railway track upkeep and renewal processes and (2) railway 

track components life cycle costs. A real case study was then taken up to study the numerical 

application of the model. 

Construction Engineering and management 

It involves designing, planning, construction and management of the whole process during the 

construction of an infrastructure. It usually involves a lot of conflicting objectives and as such 

MOEAs has been used considerably in this field too. One of the greatest challenges in this field is 

time-cost optimization (TCO), since optimization of one of the attributes endangers the other 

attribute. Most of the earlier studies focused on minimizing the total cost for an early completion 

of the project as found by Zheng et al. (2005). They proposed an integration of adaptive weight to 

represent the priority of fitness vector based on previous population set for their genetic algorithm. 

Similarly, safety and cost are another conflicting objectives whose trade-off investigation is of 

importance in construction engineering. An expanded site layout planning model was developed 

by Ei-Rayes and Khalafallah (2005) which was capable of increasing construction safety and at 

the same time decreasing the transportation cost of resources on location. A multi-objective genetic 
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algorithm was then modelled taking into consideration all the decision variables as well as practical 

constraints into the site layout planning problem. In order to validate its capabilities in optimizing 

construction sites, a real world problem was then analyzed using the developed model. Kandil and 

proper and efficient utilization of resources is of critical importance in large-scale construction 

projects and for this purpose Ei-Rayes (2006) proposed a parallel GA framework. A multi-

objective optimization module, a coarse-grained parallel GA module and a performance evaluation 

module was integrated to develop the parallel framework. The performance of the framework was 

evaluated using 183 experiments simultaneously implementing it on a cluster of 50 parallel 

processors. Khalafallah and Ei-Rayes (2008) also developed a model to minimize security risks 

during the construction of an airport expansion project. A multi-objective GA was then used to 

incorporate performance metrics and other criteria to investigate and increase the construction 

related security levels during an airport expansion. Orabi et. al.(2009) investigated the utilization 

of limited resources for reconstruction of damaged transportation networks. A heuristic model to 

optimize allocation of resources as well as simultaneously analyzing and evaluating the overall 

functional loss was developed to effectively plan reconstruction efforts. The model was developed 

through user symmetry algorithm and a multi-objective GA enabling the generation of optimal 

trade-offs between the two reclamation scheduling objectives. Zahraie and Tavakolan (2009) 

incorporated concepts of time-cost trade off and resource allocation in a multi-objective 

optimization model minimizing the total development time, resource moments and cost. NSGA-II 

was implemented for the optimization problem. Jun and Ei-Rayes (2011) presented the 

development of a fresh multi-objective optimization model that was capable of evaluating and 

minimizing unwanted resource fluctuations in construction scheduling. 

 

2.2 Application of NSGA-II in Civil Engineering 

Since its conception NSGA-II has been used in some fields of civil engineering for optimization. 

A comprehensive study of its application shows that the major fields in which it has been applied 

is water distribution systems, urban planning, environment and water resources and a few 

applications in the construction too.  
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The design of water distribution system (WDS) is a difficult and complex problem which involves 

a number of contradictory objectives. Until the advent of multi-objective evolutionary algorithms, 

most of the work focused on a single objective. NSGA-II and other evolutionary multi-objective 

algorithms made possible a scenario where a Pareto-optimal front could be achieved indicating 

trade-offs between different objectives. Two of the major objectives while designing such systems 

are system cost and benefit. Raad et. al. (2008) applied an evolutionary algorithm known as 

Jumping-Gene to a multi-objective WDS design and validated it by trying it on a number of 

recognized WDS yardstick. The results were compared with that found from NSGA-II. Preis and 

Ostfeld (2008) worked on optimal sensor design and NSGA-II was utilized to find the trade-off 

between various contradictory objectives. In the same year Weickgenannt et. al. optimized two 

objectives i.e (i) minimizing the risk of pollution and (ii) minimizing the number of instruments 

used as sensors using NSGA-II and determined that only a minor portion of a network is required 

to be monitored to deliver a good amount of safety. “Anytown” water distribution network is a 

complex system with a number of network elements. Prasad and Tanyimboh (2008) demonstrated 

the efficacy of the proposed model involving “Anytown” using NSGA-II considering two 

objectives of minimization of network cost and maximization of flow entropy. Behzadian et. al. 

(2008)  compared two approaches of sampling design for the purpose of calibrating water 

distribution system model namely, stochastic and deterministic using NSGA-II to identify the 

whole Pareto-optimal front of optimal solution. Kanta et al. (2009) evaluated the conflicting 

objectives during the times of a hazard such as urban fire in order to ensure a reasonable delivery 

of water during both normal and emergency circumstances. Their goals also included maintaining 

good water standards and finding an economical rehabilitation procedure. 

Environmental impacts of a WDS associated with the manufacture of water network components 

and to the generation of electricity for pumping water need optimum attention. Herstein and Filion 

(2010) devised a method that combined economic life cycle maintenance analysis with NSGA-II 

to decrease capital cost, energy use, and ecological power objectives. Residual chlorine control is 

an important aspect of water quality optimal control. Gao et al. (2010) tried to formulate objective 

functions for minimization of residual chlorine and WDS operational cost. Fu and Kapelan (2010) 

investigated the usage of artificial neural network in conjunction with genetic algorithms (GA) to 

improve computational effectiveness in solving multi-objective WDS design problems. Sensor 

placement problems were still a subject of research in large networks and as such Pinzinger et. al. 
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(2011) applied three algorithms (namely, integer linear programming and the other two based on 

the Greedy paradigm) to real case networks and compared the results of these algorithms based on 

these algorithms with an algorithm based on NSGA-II. They found out that the applied algorithms 

were better than NSGA-II in every single case. NSGA-II has also been combined with other 

techniques to give more robust solution. Wang et. al. (2012) combined cuckoo search with NSGA-

II to generate a multi-objective cuckoo search (MOCS) algorithm. 

Wang et. al. (2004) applied various multi-objective evolutionary algorithm (MOEAs) to solve the 

optimal design problems of WDS. The main purpose of this research work was to set a point of 

reference as no consistent effort were previously made to examine and report the finest known 

approximation of the true Pareto front (PF) for a set of yardstick difficulties.12 design problems 

collected from literature were used and 5 MOEAs were applied without due consideration given 

to parameterization in order to set the reference points. After the evaluation was done using 5 

MOEAs, and Pareto-optimal set found out for all the design problems, it was concluded that no 

method was superior to the other. Even then, NSGA-II appeared to be a good choice as it generally 

required minimum parameter tuning and showed the best achievement across all the problems. 

Mala-Jetmarova et. al.(2014) investigated the trade-offs between water quality and pumping costs 

objectives of regional multi-quality WDS. They formulated a minimization problem with the 

concerned objectives. It was established that water efficacies which operate regional multi-quality 

non-drinking WDS can gain assistance from the investigation of trade-offs between water quality 

and pumping costs for the goal of operational planning. The same authors in 2015 also explored 

the influence of water-quality standards in source reservoirs for obtaining an optimal performance 

of a reginal multi-quality WDS. 

Ozcan-Deniz et al.(2011) investigated the time, cost and environmental effect on construction 

operation optimization using genetic algorithms. Due to rising environmental concerns, it was 

necessary to incorporate environmental criterion along with other construction variables to model 

an effective eco-friendly construction management project. Using NSGA-II in MATLAB, they 

were successful in designing a framework in which project cost, time and environmental impact 

was of primary importance. The research in this field has gained much importance as sustainable 

construction has become critical to the architecture-engineering or construction industry. Inyim et. 
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al. (2014) used NSGA-II to find diverse solutions conforming conflicting objectives when it comes 

to sustainable development.  

A construction project involves a lot a variables that can change the cost and duration of activities 

such as weather, resource availability, etc. resource leveling and allocation strategies also influence 

total time and costs of projects. Zahraie and Tavakolan et. al.(2009) tried to embed two concepts 

of time-cost trade-off and resource levelling and allocation in a stochastic multi-objective 

optimization model which minimizes the total project time, cost, and resource moments. They 

proposed a time-cost-resource utilization optimization (TCRO) model in which time and cost 

variables were considered to be fuzzy to increase flexibility for decision makers when using the 

model outputs. NSGA-II was used for the optimization problem and it was seen that in the two 

case studies taken, the Pareto front solutions of the TCRO model cover more than 85% of the 

ranges of total time and costs of solutions of the bi-objective time-cost optimization (TCO) model. 

NSGA-II has also been used for justifiable planning in transport as the performance of multi-mode 

transport systems need to be analyzed carefully.. Khoo and Ong et. al. (2014) realized this need 

for proper planning of exclusive bus lane as it decreases road volume for non-bus traffic and can 

aggravate traffic cramming in urban cities. They incorporated a bi-objective optimization model 

to evaluate a bus lane plan taking into deliberation bus and non-bus traffic criteria. NSGA-II was 

implemented to solve the optimization model with a microscopic traffic simulation model. Their 

analysis showed that the proposed model was capable of producing exclusive bus lane schedules 

to release traffic cramming and simultaneously being sensitive to important parameters such as 

population size, travel request level and least duration of application. Deb et al. (2012) used 

NSGA-II for analyzing the stability of geosynthetic-reinforced embankments resting on stone-

column-improved ground.  
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3.1 Working Principles of NSGA-II 

Deb et. al. (2001) suggested NSGA-II which was an improved version of NSGA. NSGA was 

mainly criticized for its computational complexity of O(MN3), its non-elitist approach and for the 

need of requiring a sharing parameter. All of this was overcome in NSGA-II which used a fast 

elitist non-dominated sorting. Its elitist approach lets it preserve the best Pareto-optimal solutions 

and at the same time, the characteristics of crowding distance maintains diversity in the set of 

solutions. NSGA-II as an MOEA has a computational complexity of O(MN2) and is efficient in 

finding a diverse set of solutions which have great convergence near the true Pareto-optimal front 

in comparison to other elitist MOEAs. 

NSGA-II works with both real and binary-coded variables and a range is defined for each of its 

variables. The initialization starts with a set of population on the basis of range and constraints. It 

can handle multiple objectives and the fitness value of each objective is then calculated. A non-

dominated sorting takes place according to the fitness value assigned and the first set contains the 

solutions which are not dominated by any other solution in the complete set. In order to maintain 

a diverse population, crowding distance is calculated for each solution which measures a solution’s 

proximity to its neighbors. Each objective function is then assigned a distance value. The boundary 

solutions are assigned a distance value of infinity while other solutions are assigned a distance 

value equal to the difference in the function values of adjacent solutions. This distance is also 

normalized.  Parents of the next population are selected based on their ranks i.e a solution having 

a lesser rank gets selected. If two solution has the same rank then the one with greater crowding 

distance is selected. The flowchart representing the major steps in NSGA-II is shown in Fig.1 and 

the mechanism of sorting by NSGA-II and crowding distance sort is shown in Fig.2. 
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Figure 1: Flowchart showing the mechanism of NSGA-II  
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Figure 2:Non-dominated Sorting and crowding distance sorting 

 

 

3.2 EXAMPLE ILLUSTRATING WORKING PRINCIPLES OF NSGA-II  

A sample problem is taken to explain the working principle of NSGA-II. This is a two objectives 

optimization problem. 

Min example: 

                                                Minimize    A1(x) = 𝑦1, 

A2(x) = 
1+𝑦2

𝑦1
 

Subject to    0.1 ≤ y1 ≤ 1, 0≤ y2 ≤5, 

 

The following GA parameters are used in the implementation of the algorithm: 

Population Size ->6 

Chromosome Length ->0 

No. of generations ->50 

 

 

 

 

 

 

 

Rejected 

Crowding distance sorting  
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No. of Functions ->2 

No. of Constraints ->0 

No. of real-coded variables ->2 

Selection Strategy is Tournament Selection 

Variable bounds are rigid 

Crossover parameter in the SBX operator is 10.00 

Cross-over Probability ->0.70 

Mutation Probability for real-coded vectors -> 0.30 

Random Seed ->0.65 

The steps involved are elaborated in the following paragraphs. The different fronts are shown after 

1st generation and finally the Pareto-optimal front after 50 generations is shown. 

Table 1: Initial populations and off-springs with both the objective values 

Parent population,   Pt Offspring population,   Qt 

Sol. 

No. 

y1 y2 A1 A2 Sol. 

No. 

y1 y2 A1     A2 

1 0.2062 3.3873 0.2062 21.2744 a 0.4758 0.7893 0.4758 3.7610 

2 0.4543 3.4728 0.4543 9.8463 b 0.8199 0.7185 0.8199 2.0959 

3 0.4758 0.7893 0.4758 3.7610 c 0.9984 0.9752 0.9984 1.9784 

4 0.8199 0.7185 0.8199 2.0959 d 0.2062 1.2502 0.2062 10.9114 

5 0.5457 1.7956 0.5457 5.1233 e 0.4794 0.7154 0.4794 3.5783 

6 0.9984 0.9752 0.9984 1.9784 f 0.4291 1.6874 0.4291 6.2623 
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Step1: Rt =  Pt U Qt ={1,2,3,4,5,6,a,b,c,d,e,f} 

In this step the parent and offspring populations are combined and Rt is created. A non-

dominated sorting is performed on Rt and different fronts are identified.  

F1= {3, 4, 6, d, e, f}   

Note that a, b & c in offspring solutions are similar to 3, 4 and 6 in parent solutions respectively. 

F2= {1, 2, 5} 

 

Figure 3: Pareto optimal set showing the two fronts of the combined population after 1st generation 

 

Step2: Set Pt+1= {} and set counter i=1 

Until lPt+1l + lFil < N(=6, Population size), perform Pt+1 = Pt+1 U Fi and i=i+1. 

Pt+1 = {3, 4, 6, d, e, f} 

Here F1 is sufficient for Pt+1 as it has its members equal to population size i.e 6. 
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Step 3: From Pt+1, offspring population, Qt+1 is generated. It is done with the help of crowded 

tournament selection operator which compares two solutions and returns the winner of the 

tournament. It assumes that every solution I has two attributes: 

i. A non-domination rank ri in the population. 

ii. A local crowding distance (di) in the population 

A solution I wins the tournament if any of the following conditions are true: 

i. If solution I has a better rank, that is, ri < rj. 

ii. If they have the same rank but solution I has a better crowding distance than solution j, that 

is, ri = rj and di > dj. 

Crowding Distance Assignment Procedure: Crowding –sort 

Step C1: The number of solutions in F is called as L=│F│. For each I in the set, di is assigned as 

0. 

Step C2: For each objective function m=1, 2,…, M, the set is sorted in worse order of fm. 

Step C3: For m=1, 2,…, M, a large distance is allocated to the boundary solutions, or 𝑑𝐼1𝑚 = 

𝑑𝐼𝑙𝑚 = ∞, and for all other solutions j = 2 to (l-1), the crowding distance is assigned as  

dijm = d𝑖𝑗𝑚 + (fm
(I

j
m + 1)  - fm

(I
j
m - 1)) / ( fm

max – fm
min) 

 

By the above algorithm the crowding distance is calculated for each solution of Pt+1. 
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Table 2: The fitness assignment procedure under NSGA-II 

Front1 

Solution x1 x2 f1 f2 f1(sorting) f2(sorting) Distance 

3 0.4758 0.7893 0.4758 3.7610 third fourth 0.1014 

4 0.8199 0.7185 0.8199 2.0959 fifth second 0.6038 

6 0.9984 0.9752 0.9984 1.9784 sixth first ∞ 

D 0.2062 1.2502 0.2062 10.9114 first sixth ∞ 

E 0.4794 0.7154 0.4794 3.5783 fourth third 0.4105 

F 0.4291 1.6874 0.4291 6.2623 second fifth 0.4207 

 

 

For the given example the steps are implemented as follows: 

Step C1: L=6 and d3 = d4 = d6 = dd = de = df = 0 is set. From the variable range we get,  

f1
max = 1, f1

min = 0.1, f2
max = 60 and f2

min =1. 

Step C2: For the first and second objective function the sorting of the solutions is shown in Table 

A2 and is as follows: 

1st objective function: {d, f, 3, e, 4, 6}  

2nd objective function: {6, 4, e, 3, f, d} 

Step C3: The solution 6 and d are boundary solutions for f1. So we set d6 = dd = ∞. For other 

solutions, the calculations are done as follows: 

    d3 = 0 + 
𝑓1(𝑒)− 𝑓1(𝑓)

𝑓1 max − 𝑓1𝑚𝑖𝑛
 = 0 + 

0.4794−0.4291

1−0.1
 = 0.0559 

   d4 = 0 + 
𝑓1(6)− 𝑓1(𝑒)

𝑓1 max − 𝑓1𝑚𝑖𝑛
 = 0 + 

0.9984−0.4794

1− 0.1
 = 0.5767 
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    de = 0 + 
𝑓1(4)− 𝑓1(3)

𝑓1 max − 𝑓1𝑚𝑖𝑛
 = 0 + 

0.8199−0.4758

1−0.1
 = 0.3823 

    df = 0 + 
𝑓1(3)− 𝑓1(𝑑)

𝑓1 max − 𝑓1𝑚𝑖𝑛
 = 0 + 

0.4758−0.2062

1−0.1
 = 0.2995 

The above distances are updated in the second objective. Again, d6 = dd = ∞ as they are boundary 

conditions. The other distances are calculated as follows: 

    d3 = d3 + 
𝑓2(𝑓)− 𝑓2(𝑒)

𝑓2 max − 𝑓2𝑚𝑖𝑛
 = 0.0558 + 

6.2623−3.5783

60−1
 = 0.1014 

    d4 = d4 + 
𝑓2(𝑒)− 𝑓2(6)

𝑓2 max − 𝑓2𝑚𝑖𝑛
 = 0.5767 + 

3.5783−1.9784

60−1
 = 0.6038 

    de = de + 
𝑓2(3)− 𝑓2(4)

𝑓2 max − 𝑓2𝑚𝑖𝑛
 = 0.3823 + 

3.7610−2.0959

60−1
 = 0.4105 

    df = df + 
𝑓2(𝑑)− 𝑓2(3)

𝑓2 max − 𝑓2𝑚𝑖𝑛
 = 0.2996 + 

10.9114−3.7610

60−1
 = 0.4207 

Step 4: A sorting according to the descending order of the crowding distances obtained above 

yields the sorted set {6, d, 4, f, e, 3}. The offspring population is generated from this parent 

population. The exact offspring population will depend on the chosen pair of solutions 

participating in a tournament and the chosen crossover and mutation operators. For example if we 

pair solutions (6, 4), (d, f), (3,e), (d, 3), (4, e) and (f, 6), so that each solution participates in exactly 

two tournaments. In the first tournament, we observe that solutions belong to the same front. But 

d6 > d4, and hence solution 6 is a winner.  

In the next tournament solution d wins. Performing other tournaments the mating pool is obtained 

which is {6, 6, d, d, e, 4}. Now these solutions can be mated pair-wise and mutated to create Qt+1. 

This completes one generation of the NSGA-II. 

 

Step 5: The parent population Pt+1 {6, d, 4, f, e, 3} with its offspring population is shown below 

for 2nd generation.  
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Table 3: Parent populations and off-springs with both the objective values for 2nd 

generation 

Parent population,   Pt+1 Offspring population,   Qt+1 

Sol. 

No. 

x1 x2 f1 f2 Sol. 

No. 

x1 x2 f1     f2 

1 
0.4758 0.7893 0.4758 3.761 

A 
0.4758 0.7893 0.4758 3.7610 

2 
0.8199 0.7185 0.8199 2.095 

B 
0.8199 0.7185 0.8199 2.0959 

3 
0.9984 0.9752 0.9984 1.978 

C 
0.4291 1.6874 0.4291 6.2623 

4 
0.2062 1.2502 0.2062 10.91 

D 
0.2062 1.1937 0.2062 10.637 

5 
0.4794 0.7154 0.4794 3.578 

E 
0.4794 0.7154 0.4794 3.5783 

6 
0.4291 1.6874 0.4291 6.262 

F 
0.9984 0.9337 0.9984 1.9369 

 

F1 = {1, 2, 5, 6, d, f} 

F2 = {3, 4} 

The process is repeated for Pt+2 and Qt+2 as described for 2nd generation. 

Step 6: The pareto-optimal front is found after 50 generations which is as tabulated below and 

the graph showing the front.  
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Table 4: Feasible and Non-dominated Objective Vector after 50 generations 

S.No Fitness Function, F1 Fitness Function, F2 

1. 0.3611 2.7735 

2. 0.1160 8.6249 

3. 1.0000 1.0009 

4. 0.1503 6.6543 

5. 0.7697 1.3004 

6. 0.1000 9.9981 

 

Figure 4: Pareto optimal front showing feasible and non-dominated objective vector after 50 generations.  
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Parameter estimation has wide applications in various fields of civil engineering. Deb and Dhar 

(2011) developed a methodology for the identification of optimal design parameters for a system 

of beams resting on a stone column-improved soft soil. 

4.1 EIV method 

For the present study, variable points were taken from tri-axial tests of three rock samples namely, 

Trachyte, Dunham dolomite and dense marble. The goal of the EIV method is to minimize the 

error obtained between the observed and the reconciled values. The measured values can be 

formulated in terms of true values as below: 

𝑦 = 𝑦̃ + 𝑒𝜇 , 𝜇 = 1, …,n 

where 𝑒𝜇 is the error in measured variables and 𝑦̃ is the true value. 

The general equation for EIV approach is best represented by following equation: 

 

In EIV, both the dependent and independent variables are estimated simultaneously and as such 

the dimension of optimisation problem increases. Total size of optimisation problem can be found 

out by following equation: 

𝑓(𝑥̃, 𝑦̃, £) = 0 

 

Total number of parameters = p + m × n 

The MSDPu failure criterion involves three model parameters (£), namely ∅, 𝜎𝑐 and 𝜎𝑡. 

According to the above equation, the total number of parameters to be decided for each rock 

sample is as follows:  

i. Trachyte with 31 data points: 3 + 31×3=96 

ii. Dense Marble with 35 data points: 3 + 35×3=108 

iii. Dunham Dolomite with 43 data points: 3 + 43×3=132 
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The concerned objective function is formulated as (Esposito and Floudas, 1998): 

Min ∑ ∑ (𝑦̃𝜇,𝑖 − 𝑦𝜇,𝑖)
2𝑚

𝑖=1
𝑛
𝜇=1          …….(1)                          

Such that  𝑓(𝑥̃, 𝑦̃, £) = 0          …….(2) 

4.2 EIV method as applied to MSDPu failure criterion 

The rock failure criterion considered here was suggested by Aubertin et al. (1999) and stands for 

Mises-Schleicher and Drucker-Pager unified. It can be represented by the following equation: 

√𝐽2 − 𝑏 {
𝛼2(𝐼1

2 − 2𝑎1𝐼1) +  𝑎2
2

𝑏2 + (1 − 𝑏2)𝑠𝑖𝑛2(45° − 1.5𝜃)
}

1
2

= 0 

Where 

𝛼 =
2 sin ∅

√3 (3 − sin ∅)
 

𝑎1 =
𝜎𝑐 − 𝜎𝑡

2
−

𝜎𝑐
2 − (

𝜎𝑡

𝑏
)

2

6𝛼2(𝜎𝑐 + 𝜎𝑡)
 

𝑎2 = {[
𝜎𝑐 +

𝜎𝑡

𝑏2

3(𝜎𝑐 + 𝜎𝑡)
− 𝛼2] 𝜎𝑐𝜎𝑡}

1/2

 

And Lode angle (𝜃) 

𝜃 = tan−1
𝜎1 + 𝜎3 − 2𝜎2

(𝜎1 − 𝜎3)√3
 

It was necessary to have some constraints on the model parameters Das and Basudhar (2006) and 

Li et al. (2000) observed that following constraints holds good for the model parameters: 
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𝜎𝑐 ≥ 0,  𝜎𝑡 ≥ 0, 0 ≤  ∅ ≤ 60°, 5 ≤  
𝜎𝑐

𝜎𝑡
≤ 50 

 

 

4.3 OBJECTIVE FUNCTION 

The MSDPu rock failure criterion is represented as follows in the EIV formulation: 

∑(𝐽2𝜇 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
1/2

− 𝐽2𝜇 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
1/2

)
2

= 0

𝑛

𝜇=1

 

The above objective is satisfied must be satisfied by conditions represented in Eq. (1) and Eq. (2). 

A multi-objective error function is thus optimised using NSGA-II. The error functions are given 

as follows: 

[ERR(F1)] = ∑ ∑ (𝑦̌𝜇,𝑖 − 𝑦𝜇,𝑖)
2𝑚

𝑖=1
𝑛
𝜇=1  

[ERR(F2)] = ∑ (𝐽2𝜇 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
1/2

− 𝐽2𝜇 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
1/2

)
2

𝑛
𝜇=1  

The above mentioned error functions are minimised simultaneously for 

minimisation with the help of NSGA-II. The constraints on the model parameters 

are: 

𝜎𝑐 ≥ 0,  𝜎𝑡 ≥ 0, 0 ≤  ∅ ≤ 60°, 5 ≤  
𝜎𝑐

𝜎𝑡
≤ 50 

The results were obtained for various error bounds in order to account for different ranges of error 

in the data points namely: ± 5%, ± 10% and ± 15%. 
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4.4 RESULTS AND DISCUSSION 

Optimisation was done using a multi-objective evolutionary algorithm called non-dominated 

sorting genetic algorithm, NSGA-II. It uses a fast elitist non-dominated sorting approach to 

minimise objective functions. It can also maximize functions by using a negation (-1). Initialization 

of population takes with a set of specified population size. The algorithm starts working with a set 

of solutions rather than a single solution thus, giving a set of optimal solutions with each 

generation. The operators-crossover and mutation ensures that a diversified yet solutions close to 

true optimal Pareto solutions are preserved in each generation and are passed on as parent 

population for the next iteration.  

The upper and lower bounds for variables were changed according to different error bounds. 

NSGA-II generates random values for the range specified and finds a better non-dominated set of 

solution with the last generation. It is also capable of constraint handling and the specified range 

for unknown parameters (∅, 𝜎𝑐, 𝜎𝑡) were obtained using the constraints specified earlier.  

The results obtained were compared with that obtained by Das and Basudhar (2010) using Genetic 

algorithm (Goldberg, 1989) and another evolutionary algorithm PGSL( Raphael and Smith 2003). 

The combined value of the two error functions obtained by NSGA-II is given in table 4.1 for 

Trachyte, Dunham dolomite and dense marble. It is seen that with increasing error bounds, the 

MOEA is able to better optimise the error functions with the least value for ± 15%.   
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Table 5: Optimal value of objective functions using NSGA-II for different rock samples 

   

Rock Strength 

Data 

Optimization 

methods 
Optimum value of the objective function 

  Error bounds 

  ± 5% ± 10% ±15% 

Trachyte GA 1,419.91 1,347.13 1,345.3 

 PGSL 1,420.60 1,344.13 1343.43 

 NSGA-II 1,431.32 1,387.27 1,353.06 

Dense Marble GA 504.32 447.35 420.18 

 PGSL 503.13 447.29 419.44 

 NSGA-II 505.60 456.71 432.32 

Dunham 

Dolomite 

GA 771.15 739.64 738.12 

 PGSL 770.83 738.28 736.73 

 NSGA-II 771.95 735.19 732.72 

 

The results obtained by different EAs were comparable, with NSGA-II giving better results in case 

of Dunham Dolomite. Trachyte showed the highest value of error functions followed by Dunham 

Dolomite and dense marble. In case of GA and PGSL, only a slight difference in optimized values 
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were found to be in case of ±10% and ±15%. But in case of NSGA-II, the difference was noticeable 

for Trachyte and dense marble. 

 

 

 

4.4.1 Results obtained for Rock sample Trachyte 

The graph of Pareto-optimal sets between the two error function is shown in Figure 4.1. The graph 

is plotted for error bound of ± 15%. The error function of ∑ (𝐽2𝜇 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
1/2

− 𝐽2𝜇 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
1/2

)
2

𝑛
𝜇=1  takes 

very high values when the error function F1 is almost negligible. 
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Figure 5: Variation of objective functions as given by NSGA-II for trachyte. 

 

The vector of unknown parameters for different error bounds is given in table 4.2. The model 

parameter 𝜎𝑐 is found to vary in the range 123.47-139.43 in case of Trachyte, while the other two 

parameters of ∅ and   𝜎𝑡 were seen to vary in a range of 24.81°-25.49° and 2.49-13.99 respectively.  
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Table 6: Model parameters, error due to variables and error due to model for trachyte. 

Parameters/errors  Error Bounds 

 ± 5% ± 10% ±15% 

Φ (deg) 25.49 25.36 24.81 

𝝈𝒄 (MPa) 123.47 123.50  139.43 

𝝈𝒕 (Mpa) 2.49 2.47 13.99 

Errors due to 

variables 

345.62 606.4109 

 

535.25 

 

Error due to 

model 

1,085.70 780.8553 

 

817.81 

 

Total error 1,431.32 1387.266 

 

1,353.06 

 

 

The following pages contains the graphs of reconciled data and observed data in J1/2 – I1 plane for 

different error bounds. It can be seen that J1/2 reconciled values assumes higher values than the I1 

values. 
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Figure 6: Observed and reconciled values using NSGA-II in 𝐉𝟐
𝟏/𝟐

 -  𝐈𝟏 plane for ±5 % error 

bounds. 

 

 

 

 

 

0 200 400 600 800 1000 1200

0

50

100

150

200

250



to 



 Observed Data

 Reconciled Data

J
1
/2

I
1
(Mpa)



36 
 

 

4.4.2 Results obtained for Rock sample Dense Marble 

Figure 4.5 shows the variation of two error functions with the variation being same as that of 

Trachyte. Minimized values of the error functions are lower than that observed in case of Trachyte 

with the error function of ∑ (𝐽2𝜇 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
1/2

− 𝐽2𝜇 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
1/2

)
2

𝑛
𝜇=1  assuming highest value of 388.30 and 

the error function of ∑ ∑ (𝑦̌𝜇,𝑖 − 𝑦𝜇,𝑖)
2𝑚

𝑖=1
𝑛
𝜇=1  having a highest value of 3585.98. 
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Figure 7: Variation of objective functions as given by NSGA-II for Dense Marble. 

 

The vector of unknown parameters, and error functions due to variables and models for dense 

marble are given in Table 4.3. The model parameter 𝜎𝑐 is found to vary in the range 51.49-56.88 

in-case of dense marble, while the other two parameters of ∅ and   𝜎𝑡 were seen to vary in a range 

of 38.21°-38.45° and 1.91-6.51 respectively.  
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Table 7: Model parameters, error due to variables and error due to model for Dense 

Marble. 

Parameters/errors  Error Bounds 

 ± 5% ± 10% ±15% 

Φ (deg) 38.21 38.45 
 

38.37 

𝝈𝒄 (MPa) 55.24 51.49 56.88 

𝝈𝒕 (MPa) 4.53 1.91 6.51 

Errors due to 

variables 

73.28 122.59 126.17 

Error due to 

model 

432.32 334.12 306.15 

Total error 505.60 456.71 432.32 

 

The graphs for reconciled data and observed data for various error bounds are given in the 

following pages. It is observed that the reconciled values and observed data in case of dense marble 

are in excellent agreement. 
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Figure 8: Observed and reconciled values using NSGA-II in 𝐉𝟐
𝟏/𝟐

 -  𝐈𝟏 plane for ± 5 % error 

bounds. 
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Figure 9: Observed and reconciled values using NSGA-II in 𝐉𝟐
𝟏/𝟐

 -  𝐈𝟏 plane for ± 10 % 

error bounds. 

 

  



39 
 

4.4.3 Results obtained for Rock sample Dunham Dolomite 

Figure 4.5 shows the variation of two error functions with the variation being same as that of other 

two rock samples. Minimized values of the error functions are lower than that observed in case of 

Trachyte with the error function of ∑ (𝐽2𝜇 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
1/2

− 𝐽2𝜇 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
1/2

)
2

𝑛
𝜇=1  assuming highest value of 

505.72 and the error function of ∑ ∑ (𝑦̌𝜇,𝑖 − 𝑦𝜇,𝑖)
2𝑚

𝑖=1
𝑛
𝜇=1  having a highest value of 4874.17. 
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Figure 10: Variation of objective functions as given by NSGA-II for Dunham Dolomite. 

 

The vector of unknown parameters, and error functions due to variables and models for dense 

marble are given in Table 4.4. The model parameter 𝜎𝑐 is found to vary in the range 313.47-317.72 

in-case of Dunham dolomite, while the other two parameters of ∅ and   𝜎𝑡 were seen to vary in a 

range of 23.09°-23.51° and 10.28-12.20 respectively.  
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Table 8: Model parameters, error due to variables and error due to model for Dunham 

Dolomite. 

Parameters/errors  Error Bounds 

 ± 5% ± 10% ±15% 

Φ (deg) 23.32 23.09 23.51 

𝝈𝒄 (MPa) 317.72 317.41 313.47 

𝝈𝒕 (MPa) 12.20 10.28 10.41 

Errors due to 

variables 

234.94 258.27 295.60 

Error due to 

model 

537.01 476.92 437.12 

Total error 771.95 735.19 732.72 

 

 

The following pages contains the graphs of reconciled data and observed data in J1/2 – I1 plane for 

different error bounds. It can be seen that J1/2 reconciled values assumes higher values than the I1 

values as in case of Trachyte. 

 



41 
 

400 600 800 1000 1200 1400 1600

0

50

100

150

200

250

300

350

400

450



to 



 Observed Data

 Reconciled Data

J
1
/2

I
1
(Mpa)

250 500 750 1000 1250 1500

100

200

300

400



to 



 B

 D

J
1
/2

I
1
(Mpa)

 

Figure 10: Observed and reconciled values using NSGA-II in 𝐉𝟐
𝟏/𝟐

 -  𝐈𝟏 plane for ± 5 % 

error bounds.  
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The table in the following compares MSE values for the three rock samples using EIV approach 

for which optimization was done and the MSE values obtained by Das and Basudhar (2001). 

Table 9: Comparison of MSE values for different error bounds. 

Rock Sample Optimization 

method 

± 5% ± 10% ± 15% 

Trachyte NSGA-II 35.02 25.18 26.38 

PGSL 34.37 26.75 26.72 

LS 70.61 

Dense Marble NSGA-II 12.35 9.55 8.75 

PGSL 12.23 9.56 8.22 

LS 20.09 

Dunham 

Dolomite 

NSGA-II 12.48 9.69 10.16 

PGSL 13.54 11.59 11.55 

LS 26.36 
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CHAPTER 5: 

OPTIMISATION OF PILE 

FOUNDATION 
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5.1 Load Bearing capacity of a pile foundation in sand 

Load bearing capacity of a pile foundation is derived from the frictional resistance(𝑄𝑠) provided 

along its length by the pile shaft and a pile point bearing capacity provided at the pile tip(𝑄𝑠). 

Numerous studies has been carried out in order to estimate the pile length and to predict the load 

bearing capacity accurately. Still, there is a lot of scope for investigation as the mechanisms 

involved are not yet fully understood and may never be. The analysis and design may thus be 

considered more of an art and it depends on the experience of the engineer, proper site investigation 

and good knowledge of the subsoil condition to successfully install a pile foundation. Piles are 

either installed in groups or individually depending upon the loading conditions of the 

superstructure. When installed in groups a pile cap is constructed to transfer the load of the 

superstructure to the pile foundation. 

If there is a hard stratum, or there is a presence of bedrock the pile length can be estimated with 

good accuracy if a good record of subsoil conditions are present. In any case, the pile point 

resistance plays a good part in supporting the load. 

Method for estimating 𝑸𝒑 (Meyerhof, 1976) 

For piles in sand, 

𝑄𝑝 =  𝐴𝑝𝑞𝑝 = 𝐴𝑝𝑞′𝑁𝑞
∗ 

There is a limiting value for 𝑄𝑝 as suggested by Meyerhof. The limiting point resistance, 𝑞𝑙 is 

expressed by the following equation: 

𝑞𝑙 = 0.5𝑃𝑜𝑁𝑞
∗𝑡𝑎𝑛∅′, and 

𝑄𝑝 ≤  𝐴𝑝𝑞𝑙 

The value for 𝑁𝑞
∗ varies with soil friction angle and variation is given in Table 5.1 with different 

soil friction angle. 
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Table 10: Variation of 𝑵𝒒
∗  with soil friction angle (Meyerhof, 1976) 

Soil friction angle, ∅ 

(deg) 

𝑵𝒒
∗  Soil friction angle, 

∅ (deg) 

𝑵𝒒
∗  

20 12.4 33 96.0 

21 13.8 34 115.0 

22 15.5 35 143.0 

23 17.9 36 168.0 

24 21.4 37 194.0 

25 26.0 38 231.0 

26 29.5 39 276.0 

27 34.0 40 346.0 

28 39.7 41 420.0 

29 46.5 42 525.0 

30 56.7 43 650.0 

31 68.2 44 780.0 

32 81.0 45 930.0 

 

Frictional Resistance (𝑸𝒔) in sand 

It is very difficult to estimate unit frictional resistance. It has been found that the unit frictional 

resistance increases up-to a certain depth and remains constant. This length is known as critical 

length. 
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Taking into account the above factor, the following relationship was developed: 

For z = 0 to z = Lcr  

𝑓 = 𝐾𝜎𝑜
′ 𝑡𝑎𝑛𝛿′ 

And for z = Lcr to L 

𝑓 = 𝑓𝑧=𝐿𝑐𝑟
 

Coyle and Castello (1981) proposed the following relation for 𝑄𝑠 

𝑄𝑠 = 𝐾𝜎𝑜
′̅̅ ̅ tan(0.8∅′) 𝑝𝐿 

5.2 Application of NSGA-II for optimization of (d/L) ratio 

In the present case, NSGA-II was applied for the objectives involved in order to get optimized 

length of a pile foundation. This is a simple implementation of a MOEA taking its advantage of 

obtaining diverse and non-dominated solutions to optimize geometrical dimension of a pile 

foundation. Although there are many criteria to decide the length of a pile foundation, but knowing 

the proper soil condition and other parameters, we can take advantage of evolutionary algorithms 

in order to get good estimation of design attributes like length.  

Two objectives were formulated for the present case: the first one being of total load bearing 

capacity in sand, second of ratio of diameter of pile to its length (d/L). The first function is 

maximized as we need to have maximum load bearing capacity. The second objective of the ratio 

of design attributes of pile foundation is to be maximized too, as it will result in smaller lengths of 

pile foundation giving better load bearing capacity. In NSGA-II, we can maximize a function by 

multiplying it with (-1).  
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Formulation of objective functions: 

i. Total Load bearing capacity: to be maximized 

𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑝 + 𝑄𝑠  

where 𝑄𝑝 and 𝑄𝑠 are calculated according to the equations mentioned above. 

 

ii. Ratio of diameter of pile foundation to its length (d/L): to be maximized 

Subject to the constraint: L/d ≤ 20 and  

𝑄𝑝 ≤  𝐴𝑝𝑞𝑙 

 

5.3 Results and discussion 

The diameter is varied from 600mm to 1000 mm with an interval of 100mm to see the 

variation of d/L against ultimate load bearing capacity. A population size of 100 is used 

with a total of 250 generations in NSGA-II. 

The upper and lower bounds for length of the pile was taken to be from 4m to 40m. 

The internal angle of friction for sand, ∅ is taken as 25°, dry unit weight is taken as 17kN/m3 

and for piles in sand, c’= 0.  



48 
 

400 800 1200 1600 2000 2400

0.03

0.05

0.08

0.10

0.13

0.15

0.18

 d=0.6m

d
/L

Ultimate load carrying capacity, Q
u
(in KN)

1000 1500 2000 2500 3000 3500 4000

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

 d = 0.7m

d
/L

Ultimate load carrying capacity, Q
u
(in KN)

 

 

1000 2000 3000 4000 5000

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

 d = 0.8m

d
/L

Ultimate load carrying capacity, Q
u
(in KN)

0 2000 4000 6000 8000

0.03

0.06

0.09

0.12

0.15

0.18

0.21

 d = 0.9m

d
/L

Ultimate load carrying capacity, Q
u
(in KN)

 

0 2000 4000 6000 8000 10000 12000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 d = 1.0m

d
/L

Ultimate load carrying capacity, Q
u
(in KN)

 

Figure 11: Variation of d/L versus Qu for different values of d (friction angle=25°) 
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The above graphs show that with a constant diameter, if the length is increased the ultimate 

load bearing capacity will increase as suggested by decreased values of (d/L) ratio for 

higher Qu. In Figure 17, the values for different diameter of pile foundation is compared. 

It is seen that the maximum diameter of 1.0m with minimum (d/L) ration can give us the 

maximum load bearing capacity. 
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Figure 12: Comparison of d/L vs Qu for various values of d (friction angle=25°). 

 

The analysis of load bearing capacity with varying(d/L) ratio in earlier pages was done for an 

internal angle of friction, 25°. The same analysis was carried out with a friction angle of 30°. The 

results obtained are given in the following page. 
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Figure 13: Variation of d/L versus Qu for different values of d (friction angle=30°)  
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Figure 14: Comparison of d/L vs Qu for various values of d (friction angle=30°). 

 

 

The results for friction angle 25° and 30° were compared for the diameter of 1.0m in Figure 20. It 

was seen that an increase in friction angle results in a considerable increase in load bearing capacity 

of the pile foundation. Hence, with low (d/L) ratio and a higher friction angle the load bearing 

capacity can be maximized. 
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Figure 15: Comparison of (d/L) vs Qu for different angle of internal friction.
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CHAPTER 6: 

CONCLUSION  
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6.1 Parameter optimization of rock failure criterion 

The results obtained showed that error-in-variables approach is a good technique to 

implement for parameter optimization. Although the number of parameters increases in 

case of EIV approach, it gives a chance to reconcile both dependent and independent 

variables. The results were found to depend on the error bounds used (± 5%, ± 10%, ± 

15%). The error function both for variables and for the model is seen to decrease with 

increasing error bounds. For example, in case of Dunham Dolomite, the combined 

optimized value for the error function was 771.95, 735.19 and 732.72 for ± 5%, ± 10%, ± 

15% respectively.  

 

From the table of comparison between MSE values for NSGA-II and PGSL, it is observed 

that the EIV method gives much improved results than the LS values. The MSE values for 

different rock samples and for different error bounds are in good agreement for NSGA-II 

and PGSL. In case of Dunham Dolomite, the MSE values given by NSGA-II are much 

better in all the cases of error bounds indicating that with good parameter input, it can 

outperform other MOEAs. 

 

6.2 Optimization of Pile foundation 

The graphs obtained by NSGA-II in this case shows that with increasing length with a fixed 

diameter of pile foundation provides good load bearing capacity.  The best load-bearing 

capacity and length combinations are seen with lower (d/L) ratio.  As the diameter is 

increased to a maximum of 1.0 m, we see that there is a considerable increase in load 

bearing capacity. The results for friction angle of 25° and 30° was also compared for a 

diameter of 1.0m. It is seen that a higher friction angle results in a considerable increase of 

maximum load bearing capacity at lower (d/L) ratios. 
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