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Abstract

ECG signal is a non-stationary biological signal and plays a pivotal role in the
diagnosis of cardiac-related abnormalities. Reduction of noise in electrocardiog-
raphy signals is a crucial and important problem because the artifacts corrupting
the signal posseses similer frequency characteristics as that of the signal itself.
Conventional techniques viz. filtering were proved to be uncapable of eliminat-
ing these interferences. Therefore the electrocardiography signals requires a noval
and efficient denoising strategy with a view to facilitate satisfactory noise-removal
performance.

A new yet adaptive and data-driven method for denoising of ECG signals using
EMD and DFA algorithms has been investigated..The proposed algorithm has been
tested with ECG signals (MIT-BIH Database) with added noise such as baseline
wander and muscle contraction noise. Parameter are calculated to determine the
effectiveness of the algorithm on a variety of signal types. The obtained results
show that the proposed denoising algorithm is easy to implement and suitable to
be applied with electrocardiography signals.
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Chapter 1

INTRODUCTION

An electrocardiogram,or ECG, is a graphical record delivered by an electrocardio-
graph which records the electrical action of the heart over a period of time [1]. The
signal is acquired by measuring electrical potentials between different locations of
the body .
ECG signals have an extensive variety of uses all through the medicinal field in
figuring out if the heart is working legitimately or experiencing any irregular-
ities.ECG analysis is the highest level for the assessment of cardiovascular ar-
rthymias. It directs treatment and danger stratification for patients with suspected
intense myocardial infraction.

1.1 Overview

An Electrocardiogram (ECG) processing system performs its best when the input
data is free from disturbances (muscle artifacts, electrode disposition problems
etc.). Thus the estimation of the noise presence in an ECG, on the other hand,
gives the possibility to the operator or to the computer analyser to reject (a part or
the entire ECG segment) or to further continue the computer analysis, according
to the noise magnitude present in the ECG [2].
The ECG signal is unfortunately contaminated by various factors during acqui-
sition or transmission which appears as noise .These noisy effects degrade the
performance of visual as well as computerized analysis. Thus the noise removal
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becomes an evident task to facilitate further processing[2]. The de-noising process
is described as to remove the noise while preserving the quality and information
content of processed signal. The traditional way of de-noising a signal or an im-
age is to use filters. By using these conventional techniques a specific noise type
can be eliminated. Major difficulty arises when the noise and the signal ,being
analysed, lies in the same frequency band. Then various non-linear techniques are
brought in to address this issue.

1.2 Motivation

Signal processing is a field of constant development and improvement. Many in-
novative techniques and methods are being developed each and every day. These
methods helps the signal processing engineers and scientists in extraction of valu-
able information from a variety of signals. Signal denoising is a field where no
single technique can provide help in analysing all types of signals. Keeping in
mind the importance of ECG analysis in the area of medical science , hundreds of
techniques are avalibale which can process the signal and provide information in
various ways. But still no single technique is fully reliable and robust.

1.3 Objective

The objective of this work is to perform a comparative study among the non-
linear methods of signal de-noising and artifact cancellation .Varoius methods are
applied on ECG signals with varying signal-to-noise ratio. The efficiency and ro-
bustness of the methods are also examined and inferences have been given.
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1.4 Literature Review

A lot of work has been carried out in relevance of the scope of this report. A brief
introduction of some of them is presented in the following:

• S.L.Joshi, et. al. have compiled a summary of various denoising methods [1].

• Mashud Khan et. al. in [3] propose a wavelet based Signal-Noise residue algo-
rithm.This algorithm assumes that the noise adds to the raw ECG signal in linear
fashion. The symmlet8 mother wavelet has been used for multi-scale decompo-
sition of the signal which enables accurate estimation of noise and facilitate its
removal with minimal computation.

• Bingo W. et. al. in [4] formulated some fuzzy rules to select suitable multi
wavelets , pre and post filters at different noise levels. Though an improved de-
noising performance is achieved, but choosing a membership function is difficult.

• Manuel B. V. et. al. in [5] proposed a method based on Empirical Mode Decom-
position. The input series is decomposed into a sum of intrinsic mode functions
which represent simple oscillatory modes. Delineation is used to preserve the QRS
complex segment . Noisy IMFs are selected by a moving window and excluded in
the final reconstruction.

• P. Mithun et. al. in [6] proposed a denoising technique based on wavelets.Their
method is advantageous in the sense that it does not need a priori reference as in
the case of adaptive filtering techniques.The discrete Meyer wavelet is the selected
as wavelet basis function. A new thresholding funtion is also proposed which com-
bines the features of hard and soft thresholding.
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• D.Zhang in [7] proposes an approach for baseline wander removal based on
DWT. The shrinkage method uses E-Bayes posterior median to reduce the high-
frequency noise. Symlet wavelet with order 8 is used for decomposition level up
to 6 .

• Wei Zhang et. al. in [8] propose wavelet based sub-band adaptation filter al-
gorithm to extract a weak ECG signal in a high noisy environment. This hybrid
approach improves the extracting precision and provides strong stability.

• Md.Ashfanoor Kabiret.al.in [9] proposed a windowing method in EMD do-
main. Unlike the conventional approaches this method suggest to separate the
QRS complex from the first three IMFs. The noisy signal ,after enhancement in
the EMD domain , is transformed into wavelet domain where an adaptive thresh-
olding scheme is applied to wavelet coefficients. Then DWT is used to perform
adaptive soft thresholding after reconstruction to reduce the residual noise .

1.5 Thesis Organization

Including this introductory chapter, this thesis is divided into four chapters:

Chapter 2: ECG Signal and Its Characteristics

In this chapter, properties of ECG signal is discussed and details about its various
specific features is also provided.
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Chapter 3 : Empirical Mode Decomposition
In this chapter, Empirical Mode Decomposition is introduced as a novel tool of

signal decomposition. Its properties, working procedure and performance metrics
are discussed.

Chapter 4: De-trended Fluctuation Analysis

In this chapter, application of De-trended Fluctuation Analysis technique on bio-
medical signals is discussed. A variety of signals are analysed using the DFA
technique. The signals were corrupted by varying noise levels and then the effi-
ciency of DFA technique in estimating the noise levels is examined. Results and
discussions have been given in this section.

Chapter 5: Conclusion

In this concluding chapter, performance analysis and limitations of the methods is
discussed and final remarks has been given. The scope of future work is provided
in this chapter.
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Chapter 2

ECG Signal and Its Characteristics

2.1 Introduction

ECG is a graphical record of the electrical activity of the heart. Inner sides of the
cardiac cells are negatively charged relative to the outer sides. These cells lose
their negativity through depolarization. This depolarising wave propagates from
cell to cell and thus is transmitted across the cardiac musculature . The electric
current produced by this wave is detected by placing the electrodes over body
surface . These cells can also restore to their normal polarity level by undergoing
repolarization [10] .

2.2 Characteristics of ECG Signal

In the ECG record, heart beats are drawn in the series form comprising a battery
of electrical waves. These waves have characteristic peaks and valleys which con-
tains useful information.Two types of inferences are drwan from any ECG . First
is the duration of electrical wave that crosses the heart and second is second is the
amount of electrical activity passing through the cardiac musculature system.

The typical frequency range of an ECG lies is in the range of 0.05 to 100 Hz. A
typical ECG signal has five characteristic peaks and valleys which are labelled as
P,Q,R,S,and T . Sometimes a faint peak U is also visible.

The credibility of ECG analysis system is evaluated by its ability to detect these
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waves namely P and T and the QRS complex. Atrial activation is menifested in
P waves where as QRS complex and T-waves indiacates ventricular activity. A
faithful and precise detection of QRS complex is of utmost importance in any au-
tomatic ECG analysis setup. A detailed examination viz. heart rate measurement ,
Arrhthmia detection etc. follows Once the QRS complex is identified saisfactorily.

In the normal heart , the values of a few important parameters are listed as follows
[10]:

Interval Duration(seconds)

P-R 0.12- 0.20

Q-T 0.35-0.44

S-T 0.05-0.15

P-Wave 0.11

QRS 0.09

A normal and healthy heart beats 60 to 100 times in a minute. This is known
as NSR or normal sinus rhythm. A slower rate is called Bradycardia where as
a higher rate is called Tachycardia. The Sino−Atrial(SA)node which is located
near the top of the right atrium , controls the electrical activity of the heart. It
is also known as natural pacemaker. The wave of action potential ends at the
atrioventricular(AV )node, a point located near the centre of the heart.

The iso-potential line or the baseline is the horizontal segment of the ECG
waveform which preceeds the P-wave. ’P wave’ indicates depolarization of atrial
muscles. The QRS complex is produced by a simultaneous activity which com-
prises repolarization of the atria and depolarization of the ventricles.
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Ventricular repolarization is menifested in T-wave. Sporadically appearing U-
wave, is generally supposed to be caused by the residual potentials in the ventric-
ular muscles.A typical ECG segment is shown in the figure below.

Figure 2.1: A typical ECG trace
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2.3 Noises and Artifacts in ECG

The various types of noise which contaminate ECG signals are electrode contact
noise, Powerline interference, Baseline wander, Motion artifacts, Musculer con-
traction and Instrumentation noise [1].

Power line interference: Power line interference means the interference caused
by 60/50 Hz power supply to which the machine is connected. Its magnitude can
be as high as 50 percent of peak ECG amplitude typically. Some of the common
causes for this are [11] :

• Stray effects caused by the alternating current fields .

• Inappropriate grounding of ECG machine or the patient.

• Electrode disconnect.

• Electromagnetic interference due to the power supply.

• Heavy electrical equipment such as elevators and X-ray units draw a large current
from the power supply and can induce 50/60 Hz signals(and its harmonics) in the
circuitry of the ECG machine.

Electrode contact noise: This is caused by faulty connection between patient
and measuring system. Dislocation of electrodes, lack of adhesive jelly etc. are
prime factors which causes this artifact.

Motion artifact: Transient changes are induced in the baseline due to varying
skin-electrode impedance which is caused by the movement of the patient when
the ECG is being recorded [1].
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Muscle contractions: It is also known as EMG noise which is induced because
of the gross potentials picked up from the body surface by the ECG electrodes. Er-
ratic patient body movement or vibrations is said to be responsible for this[12].The
SD of this noise is approximated upto 10 percent of peak ECG amplitude and fre-
quency content ranges from dc(0 Hz) to 10 KHz.

Baseline Wander: It is caused by heavy respirational activity or movement of
the thoracic cavity which creates problems in the accurate detection of peaks. Be-
cause of this, low amplitude peaks such as T-wavs become high valued and might
be mistaken for R peak which is of the highest amplitude in general.
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Chapter 3

Empirical Mode Decomposition

3.1 Introduction

Empirical Mode Decomposition was proposed by N.E.Huang [12] as a novel
method for the analysis of nonlinear and time-variant information. It can be
utilised to decompose any complex dataset into a small number of Instrinsic Mode
Functions(IMFs) which represent fundamental oscillatory modes present in the
complex dataset.The decomposition method is efficient as it is fully adaptive and
data-derived.This method is appropriate to be applied on a nonlinear process be-
cause it is dependent on the local chracteristic time scale of data.

3.2 Intrinsic Mode Functions

As said above , an IMF represents an oscillation mode embedded within the data.
Following two conditions must be fulfilled in order to be an IMF :

• The difference between the count of extremas and zero crossings should either be
zero or equals to one.

• The mean value of the envelopes,as defined by the local maximas and the local
minimas, is to be zero.

By virtue of this definition, an IMF consists of only a single oscillatory mode
with no complex wave riding on it.
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Figure 3.1: An intrinsic mode function

3.3 The Algorithm
3.3.1 Sifting Process

The prime goal of EMD mathod is to identify the fundamental oscillatory modes,
by using the characteristic time scales in the data. A systematic way to extract the
IMFs is known as Sifting process and explained in the following:

1. All the extremas viz. local maximas and local minimas are identified.

2. Local extremas are joined by a cubic spline curve to get the upper and the
lower envelopes.

3. Mean value of these two envelopes is calculated as M1. This mean is sub-
tracted from the data to get the first component H1, i.e.

X (t)−M1 = H1 (3.1)
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4. in the second iteration , H1 is taken as the data and the procedure is repeated
to get the second component H11.

H1 −M11 = H11 (3.2)

5. thus the sifting process is repeated k times , until H1k comes out to be an IMF
.

H1(K−1)−M1k = H1k (3.3)

6. Then it is designated as C1 , the first IMF component of the data. Then it is
separated from the data as ,

X (t)−C1 = R1 (3.4)

where R1 is a residue which may contains information about the long periodic
components. It can be treated as the data in further iterations.
All the subsequent R js are then subjected to the sifting process as described and
the outcome is shown :

R1 −C2 = R2, ....,Rn−1 −Cn = Rn (3.5)

Thus from equations (3.5) and (3.4) , we can get

X (t) =
n

∑
i=1

Ci +Rn (3.6)

In this way , we get a decomposed form of data into a set of n empirical intrin-
sic modes and a residue, Rn which is generally a constant or the mean trend.

16



3.3.2 Stopping Criterion

The sifting process can be terminated after a fixed number of IMFs are obtained.This
is done to ensure that the IMF components contains sufficient and enough,in phys-
ical sense, amplitude and frequency variations. This is accomplished by defining
a stopping criterion as follows:

The Standerd Deviation(SD) is calculated from two consecutive sifting itera-
tions as

SD =
T

∑
t=0

[∣∣(H1(k−1) (t)−H1k (t)
)∣∣2

H2
1(k−1) (t)

]
(3.7)

The typical value of SD is choosen between 0.2 and 0.3.

3.3.3 Mode Mixing Problem

The EMD suffers from Mode mixing problem happens during the process. Direct
application of si f tingprocess causes the mode mixing due to IMF mode rectifica-
tion. A specific signal may not be seggregated into the same IMFs every time the
process is applied. This problem makes it hard to implement feature extraction,
pattern recognition beacause the feature is no longer associated in one labeling
index.A possible solution of mode mixing problem is to include an intermittence
test during the HHT process [13].

17



3.4 Ensemble EMD

The EEMD calculates the true IMFs as the mean of the corresponding IMFs ob-
tained by using the conventional EMD[14]. These IMFs are obtained from a set
of ensemble trials. A finite variance white noise is added to the original data series
to obtain these trialset.

The EEMD algorithm in illustrated in the following :

1. generate Y i [n] = Y [n] +W i [n] , where W i [n] (i=1,...,I) are different realisa-
tions of white Gaussian noise.

2. Each Y i [n] is decomposed by coventional EMD into their modes IMF i
k [n],

where k=1,...,K indicates the modes.

3. Now IMFk as the k-th mode of Y [n], is obtained as the average of the corre-
sponding IMF i

k :

IMFk [n] =
1
L

L

∑
i=1

IMFk
i [n] (3.8)

3.5 Results and Discussions

The EMD is applied on various types of signals and results are shown in the fol-
lowing examples :

3.5.1 Example 1

In example 1, a signal X (t) which is a ombination of signals x1, x2 and x3 , as
shown, is decomposed into IMFs. The three distinct components of the signal
X (t) is clearly separated in its IMFs.

18



Figure 3.2: mixed signal x(t)

Figure 3.3: EMD of signal x(t)

3.5.2 Example 2

In example 2, a real ECG signal (taken from Physionet Database) is decomposed
into its IMFs.

19



(a)

(b)

(c)

Figure 3.4: (a) Clean ECG signal (b) and (c) IMFs of clean ECG segment
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3.5.3 Example 3

In example 3, the same ECG signal is contaminated with a fixed amount of noise
and then decomposed into its IMFs.

Figure 3.5: Noisy ECG segment
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(a)

(b)

Figure 3.6: (a) and (b) Noisy IMFs

22



Chapter 4

Detrended Fluctuation Analysis
Introduction

The Algorithm

Trend Analysis

Results and Discussions



Chapter 4

Detrended Fluctuation Analysis

4.1 Introduction

The Detrended Fluctuation Analysis ,or DFA, is proposed by C.K.Peng [15]. It
is a newly developed method for obtaining scaling exponent for signals showing
non-stationarity.It is useful in analysing signals showing different trends of un-
known duration. It facilitates the identification of long-range correlations that are
embedded in a non-stationary time series. The DFA score is calculated on a log
versus log scale.

4.2 The Algorithm

The fundamental idea of DFA is to assess the variation of the average RMS fluctu-
ation around the local trend as a function of the time scale n. The steps to calculate
the DFA exponent of a time series are listed below:

1. An integrated time series is obtained after removing the mean as shown

Y (k) =
k

∑
i=1

[y(i)− ȳ],1 ≤ k ≤ N (4.1)

where ȳ is the average value of the time series.

2. Y (k) is then divided into equal sized nonoverlapping boxes of length l.

24



3. The local trend Yn (k) is computed in each box by using least square curve
fitting.

4. The RMS fluctuation F (n) is calculated by subtracting Yn (k) from the inte-
grated series Y (k) as:

F (n) =

√
1
N

N

∑
k=1

[Y (k)−Yn (k)]
2 (4.2)

5. The step 4 is iterated over all time scales (boxsizes) and a relationship be-
tween F(n), the average fluctuation, and the box size n is obtained.

6. The fluctuation is quanitatively expressed by a scaling exponent α , obtained
from the slope of the line in the plot log(F(n)) versus log(n).

4.3 Trend Analysis

The DFA exponent α is the slope of the line relating log(F(n)) to log(n). The
interpretation of the various values of the α is given below [16] :

1. 0 ≤ α ≤ 0.5 : No correlation exist between values of different interval i.e. as
in the case of white noise. This is achieved in a times series where the order
of the points has been interchanged.

2. 0.5 < α ≤ 1 : This indicates persistently long-range correlations of power
law form. If α = 1 , it refers to 1/

f noise.

3. α � 1 : No power-law form but correlation exists; α = 1.5 refers to the case
of Brown noise , which is obtained by integrating the white noise.

25



The exponent α is the measure of the ”roughness” of the data series. A large value
of α indicates a higher degree of ”smoothness”.

4.4 Results and Discussions

The denoising strategy utlised in this report is the combination of EMD and DFA
algorithms. A noisy signal is decomposed into IMFs by using the EMD. Then
each IMF is examined by using DFA technique to estimate its noise content. The
IMFs with DFA exponent α value less than or equal to 0.5 is omiited. The rest
IMFs are used to reconstruct the noise-free approximation of the signal.

4.4.1 Example 1

This example demonstrate the use of EMD algorithm for baseline wander correc-
tion in an ECG segment.

Figure 4.1: ECG segment with baseline wander

26



Figure 4.2: BW captured in an IMF

Figure 4.3: ECG segment after BW removal
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Figure 4.4: ECG segment: before and after BW correction
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4.4.2 Example 2

This example demonstrate the removal of EMG noise from an ECG segment.

Figure 4.5: ECG segment with noise

Figure 4.6: EMD of ECG segment with noise
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Figure 4.7: ECG segment : Before and after noise removal
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Chapter 5

CONCLUSION

This chapter focuses on the performance analysis and limitations of the method
used for signal denoising. The scope of future work in this field is also discussed.

5.1 Conclusion

The empirical mode decomposition allows successful denoising of the non- sta-
tionary electrocardiography signals. In the present thesis a new relationship to
remove the noise from ecg signals has been proposed. A nosiy signal can be
viewed as a summation of a finite set of IMFs which represent oscillatory modes
hidden the data. The signal corruting noisy part is captured in the first few IMFs
whereas slower variation like BW( baseline wander) is traped in higher order IMF.
The EMD based methods are able to separate both the high and low frequency
parts of any complex signal. Those IMFs which captures noisy components can
be excluded from the reconstruction process. Thus by eliminating the undesired
portions of the signals , denoising is achieved.Experimental testing of the new pro-
posed method has been performed on different electrocardiogram signals (MIT-
BIH ECG Database) to verify the described algorithm.
The obtained results show that the proposed scheme is suitable for ECG denois-
ing with significent improvement in signal quality.Since Mathematical theory of
EMD is yet to be finished but its performance is comparable with methods such as
wavelet thresholding based methods.
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5.2 Suggestions for Future Work

Various algorithmic improvements about EMD is proposed and need to be vali-
dated. EMD is a powerful technique for analysing a signal thus it can be com-
bined with other methods such as wavelet tranform, ICA and PCA based methods
to enhance its capbility of signal analysis.
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