
Analysis of Slice-Based Metrics

for

Aspect-Oriented Programs

B.Tech Project Thesis

by

Dishant Munjal

111CS0609

under the guidance of

Prof. D.P. Mohapatra

Department of Computer Science & Engineering

National Institute of Technology, Rourkela

Rourkela-769008, Odisha, INDIA

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Rourkela-769008, Odisha, India

May 11, 2015

Certificate

This is to certify that the work in the thesis entitled Analysis of Slice-Based Metrics for Aspect-

Oriented Programs by Dishant Munjal is a record of an original research work carried out under

my supervision and guidance in partial fulfillment of the requirements for the award of the degree

of Bachelor of Technology in Computer Science and Engineering. Neither this thesis nor any

part of it has been submitted for any degree or academic award elsewhere.

Durga Prasad Mohapatra

Associate Professor

Dept. of Computer Science and Engineering

NIT Rourkela

Acknowledgement

First of all, I would like to express my deep sense of respect and gratitude towards my supervisor,

Prof. Durga Prasad Mohapatra, who has been the guiding force behind this work. I want to

thank him for introducing me to the field of Program Slicing and giving me the opportunity to

work under him. His undivided faith in this topic and ability to bring out the best of analytical

and practical skills in people has been invaluable in tough periods. Without his invaluable

advice and assistance it would not have been possible for me to complete this thesis. I am

greatly indebted to him for his constant encouragement and invaluable advice in every aspect of

my academic life. I consider it my good fortune to have got an opportunity to work with such

a wonderful person.

I would also like to thank all faculty members, PhD scholars and all colleagues to provide

me their regular suggestions and encouragements during the whole work. I would like to spe-

cially thank Mr. Jagannath Singh and Mr. Subhrakanta Panda for their constant words of

enlightenment and wisdom, and their ideas and help whenever required. I also want to thank

Mr. Shaswat Rungta for his consistent encouragement and understanding. His help can never

be penned with words.

At last but not the least I am in debt to my family to support me regularly during my hard

times.

I wish to thank all faculty members and secretarial staff of the CSE Department for their

sympathetic cooperation.

Dishant Munjal

Abstract

To improve separation of concerns in software design and implementation, the technique of

Aspect-Oriented Programming (AOP) was introduced. But AOP has a lot of features like

aspects, advices, point-cuts, join-points etc., and because of these the usage of the existing

intermediate graph representations is rendered useless. In our work we have defined a new inter-

mediate graph representation for AOP. The construction of SDG is automated by analysing the

bytecode of aspect-oriented programs that incorporates the representation of aspect-oriented

features. After constructing the SDG, we propose a slicing algorithm that uses the interme-

diate graph and computes slices for a given AOP. Program slicing has numerous applications

in software engineering activities like debugging, testing, maintenance, model checking etc. To

implement our proposed slicing technique, we have developed a prototype tool that takes an

AOP as input and compute its slices using our proposed slicing algorithm. To evaluate our

proposed technique, we have considered some case studies by taking open source projects. The

comparative study of our proposed slicing algorithm with some existing algorithms show that

our approach is an efficient and scalable approach of slicing for different applications with respect

to aspect-oriented programs. Software metrics are used to measure certain aspects of software.

Using the slicing approach we have computed eight software metrics which quantitatively and

qualitatively analyse the whole aspect project. We have compiled a metrics suite for AOP and

an automated prototype tool is developed for helping the process of SDLC.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objective . 2

1.3 Organization of the Thesis . 2

2 Basic Concepts 4

2.1 Slicing . 4

2.1.1 Forward Slicing . 4

2.1.2 Backward Slicing . 4

2.1.3 Static Slicing . 5

2.1.4 Dynamic Slicing . 5

2.2 Program Dependence Graph . 5

2.3 System Dependence Graph . 5

2.4 AOP . 6

2.4.1 Features of AOP . 6

3 Literature Review 7

3.1 Slicing . 7

3.1.1 Object-Oriented Slicing . 7

3.1.2 Aspect-Oriented Slicing . 7

3.2 AOP Software Metrics . 8

4 Aspect-Oriented Intermediate Graph Representation 10

4.1 Dependencies . 10

4.2 EAOSDG Generation . 11

4.3 Implementation . 12

4.4 Summary . 16

5 Slicing of Aspect-Oriented Programs 17

5.1 Computation of Slices . 17

5.2 Complexity Analysis . 19

5.3 Working of Algorithm . 19

5.4 Implementation . 20

5.5 Comparison with other work . 21

5.6 Summary . 22

i

6 Software Metrics 23

6.1 C&K Metrics . 23

6.2 Aspect-Oriented Metrics . 25

6.3 Implementation . 27

6.3.1 Lines of code . 27

6.3.2 Weighted Operations in Module . 27

6.3.3 Depth of Inheritence Tree . 27

6.3.4 Number of Children . 28

6.3.5 Avg. Aspect Complexity . 28

6.3.6 Crosscutting Degree of an Aspect . 28

6.3.7 Coupling on Advice Execution . 28

6.3.8 Aspect Cohesion . 29

6.4 Summary . 29

7 Conclusion 31

Chapter 1

Introduction

Weiser introduced program slicing as a decomposition technique that extracts program elements

related to a particular computation, from a program [1]. Basically, slicing is a process of sim-

plifying programs by targeting selected aspects of semantics. It contains all those parts of a

program that may affect the values computed at some program point of interest (also called

slicing criterion). The different types of slicing include static slicing, dynamic slicing, forward

slicing, and backward slicing [2]. There exist many algorithms that are introduced by various

researchers for procedural as well as object-oriented programs [3, 4], but few work is reported

on slicing of aspect-oriented programs.

In the present scenario the dominant programming paradigm in the industries is object-

oriented programming (OOP). It is based on an idea that one creates a software system by

decomposing the problem statement into objects and coding for those objects. These objects

abstract the behaviour and data of the whole project together into a single conceptual entity.

Most of the current software development methodologies and tools reflect the presence of object-

oriented paradigm. It is a brilliant idea with certain limitations. OOP has difficulty localizing

concerns which involve global constraints and pandemic behaviours, applying domain-specific

knowledge, and appropriately separating concerns. Aspect-Oriented Programming (AOP) [5] is a

new language paradigm proposed for cleanly modularizing the scattered and tangled code known

as cross-cutting concerns (like synchronization, exception handling, and resource sharing). AOP

is based on the impression that computer systems are programmed in a better way if the several

concerns (properties or areas of interest) of a system and some descriptions of the relationships

between them are separately specified. If we are able to do this properly we then rely on

mechanisms in the underlying AOP environment to weave or compose those concerns together

into a coherent program. Concerns are flexible as they range from low level concepts, like caching

and buffering, to high level concepts, such as security and quality of service. They can be non-

functional (systemic), like synchronization and transaction management, or functional, such as

features or business rules. The presence of such cross-cutting concerns in standard language

constructs (such as Java) usually results in poorly structured code. AOP controls the scattering

and tangling of such code that in turns improve the structure of the program, thus making it

easier to develop and maintain the project.

Software measurement is an essential component of good software engineering [6]. Software

metrics have been studied and used as a quantitative means of assessing the process of software

development as well as the quality of software products [7]. The effective use of software metrics

1

is dependent on the statistical validation of the metrics.one of the most costly and difficult

process of SDLC is considered as software maintenance. The software metrics when used can

help us in evaluation of several quality characteristics of AOP like modularity, reusability, size

etc. For example size metrics can help in the identification of modularisation problems i.e.

bigger modules can be broken into smaller ones which have fewer tasks or have their features

merged into other modules, whichever is deemed necessary.

1.1 Motivation

With the introduction of features like advices, point-cuts, code introductions etc., the existing

intermediate representations used for representing procedural and object-oriented programs be-

come obsolete. This creates the need to create a new intermediate representation of AOP for

better program comprehension of AOPs.

With the new representation, the existing slicing algorithms also tend to be useless as the

slicing algorithms are usually based on the intermediate representations. So with the intro-

duction of the new intermediate representations, we also require a new slicing algorithm which

corresponds to that representation.

Several studies are done for procedural and object-oriented paradigm, but less work is done

Aspect-Oriented paradigm for the same. Therefore, there is a need to work on compiling a

metrics suite that can give not only quantitative analysis but also the qualitative measurement

of the AOP.

1.2 Objective

Depending on the motivations, the objectives of my research is set.

• To develop an intermediate representation of the dependencies in AOP.

• To develop a tool for generation of dependence graph of AOP.

• To develop and implement a slicing algorithm for computation of slices.

• To define different metrics associated with AOP and implement those.

By the end of our project, we aim to create a prototype tool that will take input the bytecode

of the project and create the intermediate graph and then will slice or calculate the metrics based

on the requirements of the user.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. We briefly introduce the final year project in

the first chapter of the thesis. In Chapter 2, all the basic concepts used in the whole project

are defined. We present the literature review where we have described some existing works on

Slicing and Software Metrics in Chapter 3. In the Chapter 4 we explain the new intermediate

representation for AOP. We give a pseudocode for the representation as well as some case

studies are taken into account for showing the implementation of the generator of the graph.

In the Chapter 5 we explain the slicing algorithm proposed by us which is associated with the

intermediate graph representation proposed by us. This chapter also includes the working of the

algorithm and the comparison of our work with a few existing works. In Chapter 6, we explain

the software metrics for AOP and show the depicted results. We have defined and explained the

whole metrics suite for AOP compiled by us in this chapter. At the end we conclude our work

in Chapter 7 and show the dissemination of the work.

Chapter 2

Basic Concepts

In this chapter, we define and discuss some of the general concepts required for a clear under-

standing of the proposed approach.

2.1 Slicing

Program Slicing [8, 1] is a program analysis technique which reduces the program to those state-

ments that are relevant for a particular context. It checks the dependency relation between the

program statements to identify those programs parts that affect or are affected by a point of

interest, called the slicing criterion. The approach of slicing as reported in the existing litera-

ture [4, 9] is based on an intermediate graphical representation of the input program. Program

slicing can be used and have been suggested in many applications. It is helpful in software main-

tenance, program debugging, software measurement, testing, program parallelization, program

comprehension, and many more [10]. For example, the dynamic slicing of programs has played

an important role in debugging large programs [11]. Debugging has always been and still is a

costly part of SDLC and program slicing helps in breaking the large programs into program

statements applicable to particular computation.

There are different forms of slicing techniques. The basic overview of those are given below:

2.1.1 Forward Slicing

It computes all those parts that might be affected by the slicing criterion, using their dependence

on the slicing criterion. Through the intermediate representation, this slicing technique traverses

in the forward direction thus computing only those nodes that might get affected by the execution

of the slicing criterion. This technique doesnt give an executable set of nodes or an executable

sub-program.

2.1.2 Backward Slicing

The backward slices are those that are computed by gathering the statements and control

predicates by way of a backward traversal of the programs control flow graph (CFG) or Program

Dependence Graph (PDG), starting at the slicing criterion [2, 9]. Basically, it consists of all

the program statements that might have affected the slicing criterion at any point of execution

directly or indirectly.

4

2.1.3 Static Slicing

Static program slicing is a well-established method for analysing sequential programs, which can

be used for program understanding, debugging, and testing. Computation of slices is done by

checking for the consecutive sets of transitively relevant statements based on data and control

dependencies [8]. As the information used for computation of slices is available statically, this

type of slice is termed static slice [2]. It consists of the program statements affecting the value of

a variable at any program point of interest, referred as slicing criterion. Basically, it is used to

identify the program statements which potentially contribute to the computation of the slicing

criterion for any possible programs inputs.

2.1.4 Dynamic Slicing

In dynamic program slicing, the dependencies occurring in a particular program execution are

taken into account. A dynamic slicing criterion takes into account the input while distinguishing

between different occurrences of any statement in the execution history; usually, it comprises of

triple (input, occurrence of a statement, variable). Basically, it consists of only those statements

that actually affect the value of a variable at a program point of view during the given execution

trace. Therefore dynamic slices are typically smaller than static slices. These are found to be

quite useful in software maintenance, program debugging, testing etc. [12]. In simple words,

the difference between dynamic and static slicing is that the former assumes fixed input for a

program, whereas latter does not make any assumptions concerning the input [2].

2.2 Program Dependence Graph

A Program Dependence Graph (PDG) is a directed graph and its nodes represent lines of code

of the source program. Its edges denote dependence relations (data dependence or control

dependence) between statements. An edge drawn from node Ns to node Nd represents node

Nd depends on node Ns. PDG also includes special nodes which represent method call and

parameter passing [13].

The control and data dependence edges can be defined as:

Control Dependence: There is a control dependency between Ns and Nd if Ns is a con-

ditional predicate and execution of Nd is determined by the result of Ns.

Data Dependence: There is a data dependency between Ns and Nd if, for any variable v,

Ns assigns the value to v, Nd refers to v and there exists atleast one execution path in between

Ns and Nd without the value of v being changed.

2.3 System Dependence Graph

A collection of PDGs (one for each procedure) is called a system dependence graph (SDG) [4]. A

PDG represents a procedure as a graph in which vertices are statements or predicate expressions.

The flow of data between statements or expressions is represented by data dependence edge, while

the control dependence edges represent control conditions on which the execution of a statement

or expression depends. Each and every PDG consists of an entry vertex that represents entry

into the procedure. Every procedure entry vertex is associated with formal-in and formal-out

vertices in the SDG to model parameter passing. This is done by having a formal-in vertex for

every formal parameter of the procedure and a formal-out vertex for each formal parameter that

may be modified by the procedure. An SDG associates each call site in a procedure with a call

vertex and a set of actual-in and actual-out vertices. An SDG contains an actual-in vertex for

each actual parameter at the call site and an actual-out vertex for each actual parameter that

may be modified by the called procedure.

2.4 AOP

The technique of improvement of separation of concerns in software design and implementation

[14] is known as Aspect-Oriented Programming (AOP). It works by providing explicit procedures

for capturing the structure of cross-cutting concerns. Like all programming techniques, AOP

addresses both what the programmer could say and how the computer system would realize

a particular program in a working system. Therefore, a goal of AOP systems comprises of

providing a way of expressing crosscutting concerns in computational systems and ensuring the

conceptual straightforwardness and efficient implementations of those mechanisms [15].

Cross-cutting concerns : The parts of the program, scattered across multiple modules of the

program as well as tangled with other modules are termed cross-cutting concerns [16]. The most

simple and common example of a crosscutting concern is logging, as it affects many modules or

classes across the software and it intrudes on business logic.

2.4.1 Features of AOP

Some of the features of AOP [16] are explained below:

• Aspects: These correspond to the classes in OOP that also contain functionalities. But,

unlike classes in OOP, these are meant to compute crosscutting concerns to be injected

into other parts of the code.

• Join-points: Aspects cross-cut objects at only well-defined points, such as at object con-

struction, method calls or member variable access points. Such well-defined points are

termed as join-points.

• Point-cut : The specification for naming join-points is called a point-cut. It is a collection

of join-points.

• Advice: Once the join-points are spotted in a program, its intended behavior must be

defined. This behavior is called advice. An advice has the same level of accessibility as

that of an arbitrary Java method.

• Code Introduction: The ability of AOP through which programmers add variables and

methods into a program entity by using the defined aspects is called code introduction.

Chapter 3

Literature Review

The literature review of this project is done in two different parts. The first part is for the

literature on slicing of AOPs, while the second part focuses on the software metrics.

3.1 Slicing

3.1.1 Object-Oriented Slicing

In order to represent a sequential procedural program with multiple procedures, Horwitz et al.

[9] extended the program dependence graph to introduce the system dependence graph named

Horwitz-Reps-Binkley SDG.

Larsen and Harrold [4] extended Horwitz-Reps-Binkley SDG so as to represent Object-

Oriented Programs. Their SDGs could represent various object-oriented features. As the SDG

defined was an extension of Horwitz-Reps-Binkley SDG, they used the two-phase slicing algo-

rithm defined by Horwitz et al.[9] to compute the static slices of object-oriented programs.

3.1.2 Aspect-Oriented Slicing

Zhao [1] proposed an approach for slicing aspect-oriented program (AOP). The dependence based

intermediate representation of the input AOP proposed by Zhao is named as aspect-oriented

system dependence graph (ASDG). ASDG is in turn an extension to the previously defined de-

pendence graph [4], that represent the features of an aspect-oriented program. The two-phase

slicing algorithm in [9] is used to compute static slices of AOP on those ASDG.

Singh et al. [16], proposed a different approach for slicing AOP. He separately sliced non-

aspect and aspect part of the programs and introduced the concept of a point-cut table. Singh

et al., instead of introducing new nodes or dependencies in the SDG of non-aspect part, sim-

ply stored the information of point-cuts in the table, to decrease the complexity of the algorithm.

Braak [17], proposed a detailed and refined construction algorithm of an aspect-oriented

system dependence graph, defined by him. He is basically extending Zhao [1] and creating the

SDG by using the base code of the program. He has modeled the inter-type declarations in

7

ASDG. He has given the scope of addition and integration of other features of AOP. He then

used the slicing algorithm defined by Horwitz et al. [9] to slice AOP.

3.2 AOP Software Metrics

Zakaria et al. [18], gave a brief overview of the need of metrics for AOP. They explained the

C&K metrics suite and also gave an explaination of the affect of Aspect-Oriented methodolgies

on the various metrics defined under C&K metrics suite. They based their analysis on case

studies found in the literature about re-designing some existing software systems to incorporate

the aspect-oriented paradigm.

Zhao [19], proposed some metrics for aspect-oriented software which have been designed

to quantify the information flows in the AOP. The metrics proposed by Zhao can be used to

measure the complexity of aspect-oriented software from various viewpoints. He defined those

metrics based on the dependence graphs defined at three levels (Module-Level, Aspect-Level,

System-Level) to explicitly represent various dependencies in AOP.

Ceccato et al. [20], extended the C&K metrics suite, for OOPs, in order to make them

applicable to the AOP software. They proposed 10 metrics to properly measure the AOPs.

• WOM (Weighted Operations in Module): WOM is the number of operations for any

given module.

• DIT (Depth of Inheritance Tree): DIT is equal to the length of the longest path from

a given module to the class/aspect hierarchy root.

• NOC (Number of Children): NOC is the cardinality of immediate subclasses or sub-

aspects of a given module.

• CAE (Coupling on Advice Execution): CAE is equal to the number of aspects which

contain advices, which are possibly triggered by the execution of operations in a given

module.

• CIM (Coupling on Intercepted Modules): CIM is the number of modules or interfaces

clearly named in the pointcuts that belongs to a given aspect.

• CMC (Coupling on Method Call): CMC is the number of interfaces or modules

declaring methods that are possibly called by the given module.

• CFA (Coupling on Field Access): CFA is the number of interfaces or modules declar-

ing fields that are accessed by the given module.

• RFM (Response for a Module): RFM depicts the methods and advices which are

potentially executed in response to a message received by the given module.

• LCO (Lack of Cohesion in Operations): LCO refers to the pairs of operations work-

ing on different class fields except for the pairs of operations working on common fields

(zero if negative).

• CDA (Crosscutting Degree of an Aspect): CDA shows the number of modules which

are affected by the pointcuts or introductions in the given aspect.

These metrics are proposed by extending the C&K suite and then implemented by Ceccato et al.

Piveta et al. [18], made a subset of metrics after considering two different sets of metrics.

The different sets of metrics are as follows:

• Metrics adapted from C&K suite.

1. Lines of Code(LOCC)

2. Weighted Operations in Module(WOM)

3. Depth of Inheritance Tree(DIT)

4. Number of Children(NOC)

• Metrics specifically defined for aspect-oriented softwares from the metrics suite proposed

by Ceccato et al. [20].

1. Crosscutting Degree of an Aspect(CDA)

2. Coupling on Advice Execution(CAE)

They discussed how each of the metrics taken into account could be used to identify shortcom-

ings in existing AOPs. They gave rigorous definitions and usage scenarios of the metrics. They

also interpreted the collected empirical data, while discussing the scope of values and comparing

those in aspects and classes. At the end they did an analytical evaluation of the selected metrics

against an established standards for validation of the results.

Zhao et al. [21], proposed an approach for measuring the cohesion of aspects based on

dependence. He discussed the tightness of the aspect based on three different dependencies

namely

• Inter-attribute

• Module-attribute

• Inter-module

These three types could be easily used to measure the aspect cohesion be it independently or

after integration of all the three. They discussed different properties of these dependencies and

proved based on those properties, that their proposed approach satisfy the properties of cohesion.

The cohesion measures proposed by Zhao et al. focuses mainly on the features of aspect only

and the environment is not taken much into account.

Chapter 4

Aspect-Oriented Intermediate Graph

Representation

We have proposed an intermediate graph representation called Extended Aspect-Oriented Sys-

tem Dependence Graph (EAOSDG), which represents the features of the Aspect-Oriented Pro-

grams. Some new types of edges (such as weaving edges) are required to connect the aspect

and non-aspect parts of the program. The weaving edge represents the dependency between the

aspect and non-aspect parts of the program.

4.1 Dependencies

The EAOSDG is a directed graph, G = (V,E), where V is the set of nodes. Each node n ∈ V
corresponds to the bytecode version of the statements of the AOP written in AspectJ 1. Each

edge e ∈ E corresponds to different dependencies present in an AOP as shown in Figure 4.4.

The EAOSDG shown in Figure 4.3 contains the following set of edges as defined below:

• Data Dependence Edge: The data dependence edge, n1
dd→ n2 ∈ E, is defined between

two nodes n1 and n2, where n1, n2 ∈ V such that n2 is data dependent on n1.

• Control Dependence Edge: The control dependence edge, n1
cd→ n2 ∈ E, is defined

between two nodes n1 and n2, where n1, n2 ∈ V such that there is transfer of control from

n1 to n2.

• Class Membership Edge: The class dependence edge, n1
class→ n2 ∈ E, is defined

between two nodes n1 and n2, where n1, n2 ∈ V such that n2 is either an attribute or

operation of the class node n1.

• Summary Edge: If the parameter-out node (n1) is transitively dependent on the parameter-

in node (n2), then there is a summary edge n2
call→ n1 ∈ E.

• Call Edge: The call edge, n1
call→ n2 ∈ E, is defined between two nodes n1 and n2, where

n1, n2 ∈ V wherein n1 is the method calling node and n2 the method declaration node.

1eclipse.org/aspectj/

10

• Parameter-In Edge: The Parameter-In edge, n1
Pin→ n2 ∈ E, is defined between two

nodes n1 and n2, where n1, n2 ∈ V wherein n1 is the actual parameters and n2 is formal

parameters.

• Parameter-Out Edge: The Parameter-Out edge, n1
Pout→ n2 ∈ E, is defined between two

nodes n1 and n2, where n1, n2 ∈ V wherein n1 is the return nodes and n2 node accepts

the value of the calling method.

• Weaving Edge: Weaving edge, n1
Weav→ n2 ∈ E, connects the non-aspect part with the

aspect part of EAOSDG.

• Inheritance Edge: Inheritance edge, n1
Inh→ n2 ∈ E, is defined between two modules

denoted by n1 and n2 where n2 inherits the properties of n1.

4.2 EAOSDG Generation

EAOSDG is generated using a series of steps as explained in Algorithm 1. First, the nodes

are created for each statement of the program. Then, the data dependence, control dependence

and class membership edges are added depending on the nodes and the respective usage of the

edges. We then add the call edges for the method callings and param-in/param-out edges for

the parameters. After that the summary edges are added for the transitive dependency between

param-out and param-in nodes. After the creation of pointcut nodes for the aspect part of the

projects, the weaving edges are added to connect the aspect and non-aspect part of the program.

Algorithm 1

INPUT: AOP Program.

OUTPUT: A SDG G < V,E >.

1: Create individual nodes for each statement of the programs.

• If the node is a method node, then add actual-in and actual-out nodes.

• If it is a method entry node, then create formal-in and formal-out nodes.

2: Add Data Dependency, Control Dependency, and Class Membership Edge in between nodes

by analysing the programs.

• Add a Data Dependent edge, n1
dd→ n2, if n2 is data dependent on n1.

• Add a Control Dependent edge, n1
cd→ n2, if n1 transfers the control to n2.

• Add Class Membership edge, n1
class→ n2, if n2 is either an attribute or operation of

the class node (n1).

3: Add Call Edges and Param-In/Param-Out Edges between the nodes in the graph.

• Add a Call edge, n1
call→ n2, if n2 is the method declaration node and n1 is the corre-

sponding method calling node.

• Add a Param-In edge, n1
Pin→ n2, if n1 is the actual parameter and n2 is formal

parameter.

• Add a Param-Out edge, n1
Pout→ n2, if n1 is the return node and n2 is the node accepting

the value.

Table 4.1: Graph construction time for different projects.

Sl. No Project Name No. of Nodes No. of Edges Time for EAOSDG Generation Details

1 Addition 38 65 85 ms This program take input of 2 inte-
gers and return the sum if the sum
is not zero. Else it returns 1.

2 Prime 44 82 115 ms This program take input of an in-
teger(n) and gives output of all the
prime numbers from 1 to n.

3 Server - Client 119 195 118 ms This project uses socket program-
ming to create a server-client con-
nection in between two systems.

4 Elevator 540 997 302 ms This project simulates elevator sys-
tem.

5 ATM Simulation 887 1650 1391 ms This project simulates the ATM sys-
tem on a distributed environment.

6 Tetris Project 1566 2317 1672 ms This is a very popular game, where
we arrange blocks.

7 Design Patterns 4137 3752 2671 ms This is the AspectJ implementation
of GoF design patterns.

Table 4.2: Package Description for our EAOSDG generation tool.

Package Name Usage

com.asm.internal This package is used for representing the internal classes which operate with ASM framework.

com.asm.internal.util This package is used for storing the utility classes which operate with ASM framework.

com.graph This package is used for storing the common attribute of a Graph.

com.graph.element This package is used for storing the basic element of a Graph.

com.graph.internal This package is used for storing the internal representation of a Graph.

com.graph.Iterator This package is used for storing the different iterator for different searching algorithm.

com.graph.pdg This package is used for storing the procedural dependence graph related things.

com.graph.sdg This package is used for storing the system dependence graph related things.

com.util This package is used for storing the common utility classes.

com.util.datastructure This package is used for storing the common data structure classes.

4: Add Summary Edge between nodes if the Param-Out node is transitively dependent on the

Param-In node.

5: Create nodes for pointcut nodes for Aspect part of the project.

• Add call edge between pointcut nodes and advices.

6: Add Weaving Edge to connect the Aspect and Non-Aspect part of the project.

• Add a weaving edge, n1
Weav→ n2, if n1 is the before advice node and n2 is the corre-

sponding method entry node.

• Add a weaving edge, n1
Weav→ n2, if n2 is the after advice node and n1 is the corre-

sponding method entry node.

end

4.3 Implementation

It takes the bytecode of the program as input and then it generates the intermediate graph

named Extended Aspect-Oriented System Dependence Graph (EAOSDG). We used a sample

program shown in Figure 4.2. The EAOSDG generated by the tool is shown in Figure 4.3.

Figure 4.1: EAOSDG Generation Time vs Lines of Code.

Figure 4.2: Example Program.

Figure 4.3: EAOSDG of the example program given in Figure 4.2.

Figure 4.4: Legends for EAOSDG

We used bytecode instead of source code for creation of the graph. ASM is an all-purpose

Java bytecode manipulation and analysis framework. This framework gives us the information

of all the dependencies, variables and different states of the program (in the form of nodes) after

taking input of the bytecode of Java in the form of .class file. A Java class file is a file containing

Java bytecode that can be executed on the Java Virtual Machine (JVM).

We developed a tool that automates the SDG generation by correctly identifying the required

dependencies present in an aspect-oriented program. This process is a scalable approach to

generate the graph for a project with multiple classes as shown in Table 4.1. Due to automation

of the graph generation, the time required to analyze the code is saved. For example, a project

having thirty classes, fourteen aspects, and three thousand eight hundred and fifty six lines of

code, takes not more than 2671ms to generate the graph as shown in Table 4.1. This otherwise,

would have taken a lot of time to manually generate the graph as given in the existing literature

[17, 10]. A lot of dependencies that may remain undetected during manual graph generation are

addressed in this automated process.

The prototype tool developed to implement the slicer is an extension of an open-source

API, Java System Dependence Graph API 2. The developed tool automates the process of

SDG generation of aspect-oriented programs. The generated graph is named Extended Aspect-

Oriented System Dependence Graph (EAOSDG). The SDG generation tool takes the bytecode

of the aspect-oriented program as input and generates the SDG as output as shown in Fig. 4.5.

Figure 4.5: EAOSDG Generation Process.

The bytecode of AOP is given as input to the tool. It is then sent to the ASM framework

inside the tool. This part of the tool extracts the information of all the classes and methods of

the program from the bytecode and sends it for matrix generation. The different packages used

in this tool are summarized in Table 4.2.

The com.graph package checks the information provided and finds the dependencies between

different parts of the program. It maps all the dependencies and parameters of the program and

then stores it according to the data structures defined by com.util.datastructure package.

For the evaluation of our proposed technique, we have implemented some case studies. We

have given the path of the folder, that contains the bytecode generated by the program, as

input to the tool. The tool generates the EAOSDG for the program. Then the tool prompts for

entering the slicing criterion node from the EAOSDG. We obtained several slices by entering

different slicing criteria for individual case studies and the outcome of this experiment is given

below. We have downloaded a few open-source programs for our experiment from the available

open-source repositories. In the absence of adequate number of open-source aspect-oriented

programs, some of the experimental programs (such as Addition and ATM Simulation) are

developed as laboratory assignments. We constructed different EAOSDGs for these programs

2http://www4.comp.polyu.edu.hk/ cscllo/teaching/SDGAPI/

and computed the time required by the tool to generate these EAOSDGs. Also the number of

nodes and edges generated in the respective EAOSDG are shown in Table 4.1.

4.4 Summary

In this chapter we defined an intermediate graph representation for aspect-oriented programs,

and coined the term Extended Aspect-Oriented System Dependence Graph (EAOSDG). AOP is

a technique for improving separation of concerns in software design and implementation. It does

so by introducing various features into object-oriented paradigm such as aspects, join-points,

point-cuts, advices, code-introductions etc. These features make the existing representations

obsolete thus creating the need for introduction of a new scheme. We have defined the new

scheme with respect to the new features of the AOP and also all the dependencies introduced to

accommodate the features of AOP. We have also given the algorithm for the generation of the

graph. The implementation of the EAOSDG generation is done using ASM framework, which

is an all-purpose Java bytecode manipulation and analysis framework, which gives us the data

on the dependencies between different states of the program. We have used seven case studies

from different benchmark software repositories and implemented our algorithm on those case

studies and shown the results we got by implementing that. At the end of this chapter, we have

EAOSDG for any aspect-oriented program which can be used for program comprehension.

Chapter 5

Slicing of Aspect-Oriented Programs

In this chapter, we discuss the proposed approach to compute the static slices of AOP on the

graph constructed by parsing the bytecode of the input AOP.

5.1 Computation of Slices

The two phase slicing algorithm given by Horwitz, Reps and Binkley[9] and used by Zhao[1]

does not handle the aspect part of the program properly. The two phase slicing algorithm just

backward traverses the SDG in two different phases which arguably handles the procedural and

object-oriented part of the program respectively. The aspect part of the program is not handled

properly by the algorithm.

We extended the two-phase slicing algorithm by Horwitz et al.[9] to bytecode slicing algo-

rithm. This algorithm finds a static slice for a given slicing criterion ‘s‘, which comprises of

those program statements that affect the value of the slicing criterion.

In the first phase, the algorithm traverses backward, taking into consideration the slicing

criterion, along all edges except parameter-out edges and weaving edges, and marks those vertices

in EAOSDG that are reached during the first phase of traversal. Then in the second phase, the

algorithm traverses backward from all the vertices that were marked during the first phase

along all edges except call, parameter-in and weaving edges and marks the reached vertices in

the EAOSDG. In the third and last phase, it traverses backward from all the vertices which

were marked during the first and second phases, along the weaving edges to reach the aspect

part of the program. The final slice is the union of all the vertices in EAOSDG marked during

the first, second and third phases of traversal.

Algorithm 2 presents the pseudo code of the proposed slicing algorithm.

Algorithm 2

INPUT: A SDG G < V,E >, a slicing criterion s.

OUTPUT: The Slice S for s.

INITIALISE: W1 = {s},W2 = {},W3 = {}, S = {s}.

1: while W1! = φ do . phase 1

2: W1 = W1 − {n} . process the next node in W1

3: for all m→n do . handle all incoming edges of n

17

Figure 5.1: Sliced EAOSDG of the example program given in Figure 4.2.

4: if m /∈ S then

5: S = S + {m}
6: if e /∈ {po, weav} then . if e is not a parameter out or weaving edge

7: W1 = W1 + {m}
8: else if e /∈ {po} then
9: W2 = W2 + {m}

10: else

11: W3 = W3 + {m}

12: for all n→m do

13: if m /∈ S&&e ∈ {weav} then . if e is an outgoing weaving edge

14: W3 = W3 + {m}

15: while W2! = φ do . phase 2

16: W2 = W2 − {n} . process the next node in W2

17: for all m→n do . handle all incoming edges of n

18: if m /∈ S then

19: S = S + {m}
20: if e /∈ {pi, call, weav} then . if e is not a parameter in, call or weaving edge

21: W2 = W2 + {m}

22: else if e ∈ weav then

23: W3 = W3 + {m}

24: for all n→m do

25: if m /∈ S&&e ∈ {weav} then . if e is an outgoing weaving edge

26: W3 = W3 + {m}

27: while W3! = φ do . phase 3

28: W3 = W3 − {n} . process the next node in W3

29: for all m→n do . handle all incoming edges of n

30: if m /∈ S then

31: if e /∈ {pi, call} then . if e is not a parameter in or call edge

32: S = S + {m}
33: W3 = W3 + {m}

return S

end

5.2 Complexity Analysis

The EAOSDG is a graph stored in a specific data structure, a modified adjacency list, which

has nodes and edges as objects of different classes. If the number of nodes in the graph is n and

the number of edges is e, then the space complexity of storing the graph is of order O(ne).

This algorithm has three phases. For each phase there is an inner and an outer loop. If the

number of edges in the EAOSDG is e and number of nodes in the EAOSDG is n, then the inner

loop runs for e times and the outer loop runs for n times in the worst case scenario. As all the

phases have the same complexity, the worst case time complexity of bytecode slicer is O(ne).

5.3 Working of Algorithm

We have used a simple Addition program for showing the working of our algorithm as shown in

Figure 4.2. This program take input of 2 integers and return the sum if the sum is not zero. Else

it returns 1. In the EAOSDG given in Figure 4.3, ND26 representing the statement c = a + b

is taken as the slicing criterion. In the proposed slicing algorithm, the initial state of the data

structure used is given as follows:

S = ND26{c = a+ b}
W1 = {ND26}
W2 = φ

W3 = φ

In phase 1, we pop one node at a time from W1, then add the node into SPhase1 (if it is

not present before) and check for all incoming edges onto the present node. Then, we add the

source nodes of these edges into W2, if the edge is parameter-out edge. If the edge is a weaving

edge, then we add the source node into W3. Else, we put the source node into W1 itself. Then,

we check for the outgoing weaving edges from the popped node and add the destination nodes

of those edges into W3.

This process is continued till W1 is empty.

After phase 1 we have:

SPhase1 = {ND26, ND23, ND24, ND14, ND15, ND13, ND9, ND12, ND8, ND11, ND6, ND7,

ND10, ND3, ND1}
W1 = φ

W2 = {ND29}
W3 = {NDA3, NDA5}

In phase 2, we pop one node from W2, add the node into SPhase2 (if it is not present before)

and check for all incoming edges onto the present node. If the edge is a weaving edge, then add

the source nodes of these edges into W3. Otherwise, we check if the edge is not a parameter-in or

call edge. If it is not so, then we add the source node into W2. Then, we check for the outgoing

weaving edges from the popped node and add the destination nodes of those edges into W3.

This process is repeated till W2 is empty.

After phase 2, we have:

SPhase2 = {ND29, ND32, ND28, ND31, ND30}
W1 = φ

W2 = φ

W3 = W3

In phase 3, we pop from W3, and add the node into SPhase3 (if it is not present before) and

check for all incoming edges onto the present node. If the edge is not a call edge or parameter-in

edge, the source node is added into W3.

This process is continued till W3 is empty.

After phase 3, we have:

SPhase3 = {NDA3, NDA5}
W1 = φ

W2 = φ

W3 = φ

S = SPhase1 ∪ SPhase2 ∪ SPhase3.

Hence, for the given slicing criterion, c = a+ b, the slice computed is:

S = {ND26, ND23, ND24, ND14, ND15, ND13, ND9, ND12, ND8, ND11, ND6, ND7, ND10,

ND3, ND1, ND29, ND32, ND28, ND31, ND30, NDA3, NDA5}
The sliced nodes are shown as shaded nodes in Figure 5.1.

5.4 Implementation

We developed a prototype tool that works as shown in Figure 5.2.

The prototype tool developed during the course of the project first creates EAOSDG as

mentioned in Chapter. Then the tool prompts for entering the slicing criterion node from the

EAOSDG. Then the slicer takes the generated EAOSDG and the slicing criterion as input to

produce the slices. We obtained several slices by entering different slicing criteria for individual

case studies and the outcome of this experiment is given below.

Based on the EAOSDGs generated for different programs, the corresponding slices are com-

puted. Different number of slices for different programs are computed depending upon the input

Figure 5.2: Working of the tool.

Table 5.1: Average slicing time for different projects using our approach.

Project Name Classes Aspects LOC No of Slicing Criterions Average Slice Size Average Slicing Time

Addition 1 1 41 4 23 1.39 ms

Prime 1 2 54 5 28 1.68 ms

Server - Client 2 3 155 8 31 1.75 ms

Elevator 5 3 583 14 96 2.48 ms

ATM Simulation 9 3 944 20 132 4.37 ms

Tetris Project 15 4 1027 23 61.26 5.02 ms

Design Patterns 30 14 5376 92 27.78 1.98 ms

slicing criterion. The details of the slices computed such as Lines of Codes (LOC), the number of

slicing criteria given, the average number of computed slices and the average slice computation

time are shown in Table 5.1.

5.5 Comparison with other work

Most of the work in the existing literature manually generates the SDGs to compute the program

slices, as they are silent about the graph generation process. Also very little work has been

reported in slicing of AOP. Zhao [1] for the first time computed the slices for AOPs. In the

absence of adequate number of different dependencies, the intermediate graph used to compute

the slices do not correctly distinguish the aspect and non-aspect parts of the program. Singh et

al. [16] distinguished the aspect and non-aspect parts in their SDG by creating point-cut table.

The SDG in [16] also lacks scalability because of manual graph generation. Braak [17] also gave

an approach for aspect slicing based on an intermediate graph that is also manually generated.

Unlike the slicing algorithm extended by Zhao [1] and Braak [17], the proposed approach extends

Table 5.2: Comparison of our work with other related work.

Sr. No Literature Work Type of Slicing No. of Types of Edges Automated Graph Generation

1. Zhao [1] Static 4 No

2. Braak [17] Static 4 No

3. Singh et al. [16] Dynamic 6 No

4. Our Approach Static 9 Yes

the slicing alogorthm in [9] by introducing a third phase of traversal along the weaving edges. In

the first two phases of the proposed slicing algorithm, we slice the non-aspect part of the input

program and traverse the weaving edges in the third phase to slice the aspect parts.

In this final year project, we automated the generation of intermediate graph thus making

it possible to correctly represent the dependencies present in a program. Thus, slicing large

projects with multiple number of classes becomes feasible and accurate. We identified nine

types of dependencies required to construct the EAOSDG. The input of our tool is a .class file

and the slicing criterion, and the output obtained constitutes the computed slices. The summary

of comparison is given in Table 5.2.

5.6 Summary

In this chapter, we proposed a slicing algorithm for AOP. In the previous chapter, we had intro-

duced a new intermediate graph representation. With the introduction of a new intermediate

representation, the existing slicing algorithms become useless as they are usually based on the

representation itself. So, we extended the standard two phase slicing algorithm by adding a third

phase which accommodate the aspect part of the project. We have given the proper pseudocode

for the three phase slicer and the complexity analysis for the algorithm. The working of the

slicing algorithm is also explained properly. Also in this chapter, we have used the slicing algo-

rithm on all the seven case studies introduced in the previous chapter. Various slicing criterions

are given as input and the average results are given. At the end of the chapter, we compared

our work with various existing works in the literature and given the summarised information

regarding the comparison. So, by the end of the chapter our tool can create an EAOSDG for

any given AOP and the slice it for a particular slicing criterion given as input in an automated

fashion, thus improving the productivity in the software development life cycle by decreasing

the manual intervention during the process.

Chapter 6

Software Metrics

Software engineering is the study of creation of high quality software with its cost and sched-

ules anticipated beforehand. One of the important tasks in SDLC or software engineering is

controlling of the process of software development, which in turn helps in controlling costs and

schedules as well as the softwares quality. Software metrics have been brought up by many re-

searchers as a means to provide quantitative as well as qualitative control of software products.

But, the effective use of software metrics is somewhat reliant on the statistical validation of the

metrics [22].

Software metrics are used to measure certain characteristics of software. Software metrics are

broadly distributed into two categories: software process metrics and software product metrics.

Software product metrics: Software product metrics measure software products such as

same code or design documents.

Software process metrics: Software process metrics checks for the degree of software

development process like the number of man hours charged to the development activities in the

design and coding phases.

Several sets of object-oriented metrics have been proposed as a means of measuring if systems

under investigation exhibit features of a quality software. One such set which is considered as a

standard Software Metrics Suite, which is also the first of its kind, is Chidamber and Kemerer

[23].

6.1 C&K Metrics

Keeping in mind, the features and properties of OOPs, Chidamber and Kemerer [23] developed

a set of six metrics. These metrics attempt to identify definite design traits in object-oriented

software like inheritance, coupling, cohesion etc.

The six metrics can be summarised as:

1. Weighted Methods per Class (WMC): The number of methods in a class is counted

in this metrics. WMC was designed to measure the complexity of a class. This metric

measures understandability, maintainability, and reusability as follows:

• The time and effort needed to develop and maintain a particular class is reflected by

this metric.

23

• With the increase in the number of methods there is an increase in the potential

impact on the inherited classes as all the methods defined in the class are inherited

by the children.

• A class with a large number of methods is more application-specific, and therefore is

not likely to be reused.

2. Depth of Inheritance Tree (DIT): The maximum level of inheritance hierarchy of a

class is measured in this metric, where the root of the inheritance tree is inherited from

a no class and is at level zero of the tree. DIT was intended to indicate the potential for

reuse, and to indicate the complexity of the design and it does so as follows:

• The classes in the deeper level of the tree or hierarchy are likely to inherit higher

number of methods. This in result makes the deeper level classes more complex and

difficult in predicting its behaviour.

• The deeper the inheritance tree is, the more the potential for reuse.

3. Number of Children (NOC): The number of subclasses belonging to a class is counted

in this metric. C&K suggest that the NOC can be used to show the level of reuse in a

system, and hence be used as a possible indicator of the degree of testing needed for a

system. The efficiency, reusability and degree of testability is depicted by this metrics in

the following ways:

• With the increase in the NOC there is an increase in possibility of improper abstrac-

tion of the parent and may be a case of misuse of sub-classing. Also it leads to the

increase in reusability since inheritance is a form of reuse.

• It may require more testing of the methods of that class, thus increase the testing

time.

4. Lack of Cohesion in Methods (LCOM): This metric gives a measure to the lack of

cohesion in the methods of a class. The basis of the metrics is that when one entity is

occurring in many methods of same class, it results in less cohesive behaviour. This metric

evaluates efficiency and reusability as follows:

• Better class subdivision is indication of high cohesion.

• complexity is increased because of low cohesion which results in increase in the pos-

sibility of errors during the development process. Classes with low cohesion can

probably be subdivided into more number of classes which have increased cohesion.

5. Coupling Between Objects (CBO): This metric measures the coupling level in between

classes. Coupling between two classes occurs when methods or variables of a class are used

by another class. Excessive coupling prevents reuse. It gives an indication of reusability

as follows:

• The more independent a class is(less coupling value), the more likely it can be reused.

• With increase in the level of coupling, the system becomes more sensitive to the

changes in the design. This makes maintenance more and more difficult.

• Higher value of coupling also reduces the systems understandability. This is because

of the fact that the module becomes harder to be understood, changed or correct as

it is interconnected with other modules.

6. Response for a Class (RFC): The occurrences of calls from a class to other classes is

counted by this metrics. To be put in simple words, this metric measures the amount of

communication of a classs entities with other classes. This metric helps in understanding

the maintainability and understandability of a system as follows:

• With the increase in the number of methods which can be called from a class through

messages, the complexity of the class increases.

• This also leads to the complication of testing and debugging of the class as it demands

higher level of understanding for the developer or maintenance engineer.

6.2 Aspect-Oriented Metrics

Not much definite work has been done in metrics for AOP. There have been few works in

literature regarding this but one proper suit for AOP metrics is not yet been proposed which

can measure the qualitative and quantitative features of AOPs, which can then be used for

various purposes such as refactoring, maintenance etc. Three of the major software metrics

dedicated to AOPs which mostly covers all the features required, are explained in detail here.

1. Average Aspect Complexity (AAC): This metrics provides the average aspect size.

The assumption behind this metrics is that a large aspect, which contains more code

tends to introduce more faults than a small method. Also with large and complex aspects,

the basic idea behind AOP of decreasing the complexity of the code is violated. The

considerations to be made are:

• Low value of AAC is desirable as its easy to handle simple aspects rather than complex

ones.

• Higher number of AAC may denote higher number of pointcuts in a single aspect

which is not desirable.

2. Crosscutting Degree of an Aspect (CDA): This metrics checks for the number of

modules which are affected by the pieces of advice, inter-type method declarations and

constructor declarations for any given aspect. It is used in a lot of cases targeting the

separation of concerns. The considerations to be made are:

• The higher value of this metrics is desired as it is an indicator of the number of

modules affected by an aspect and the usefulness of that aspect.

• It has also being pointed out that even though the higher value of CDA metrics is

desirable, the number of modules, explicitly named, in the pointcuts of an aspect

must be kept low [20].

• If the CDA value is unity, the developer needs to refactor the aspect by using in-

heritance or association mechanisms so as to separate the concerns which have been

encapsulated by the aspects.

3. Coupling on Advice Execution (CAE): This metric weighs the number of aspects

affecting a given module [20]. If behaviour of an operation could be altered by an advice,

due to interception of a pointcut, there is an implied dependence in between the operation

and the advice. In this sense the given module is coupled with the aspect containing that

particular advice. It also lets us to believe that any modification in the aspect or advice

will lead to the change in the module as well. The values of this metrics can be used

as an indicator of interaction of aspect with the non-aspect part of the program. The

considerations to be made are:

• Low values of CAE are good, as higher value of CAE may result to more coupling

factor in the class to the aspects affecting it. If the value of CAE is null then that

implies no affect of aspects on that particular module.

• Higher number of affecting aspects may denote aspect interactions and possible prece-

dence conflicts or inconsistencies between the applied aspects.

4. Aspect Cohesion: Cohesion [23] is a well-recognized structural attribute which repre-

sents the degree to which the components are bound together within a software module. It

is considered to be a desirable goal in software development, which might result in better

values for external characteristics like reusability, maintainability, and reliability. Cohesion

has been studied extensively for procedural as well as OOPs, its effects on AOP are not

studied in extensive detail up until now. As with the introduction of aspects, new modules

like introductions, advice, and pointcuts are also introduced which are different from meth-

ods in a class; the present cohesion metrics are not directly applicable to AOP. This results

in need of new appropriate measures for proper evaluation of aspect cohesion. There are

three dependencies [21] which are to be used in this metrics. The dependencies are based

on the attributes and modules defined within the aspect. The cohesion defined using these

dependencies is internal to the aspect and is not affected by the external modules or parts

of the program. The dependencies are:

• Inter-attribute dependencies: If a1, a2 are two attributes of an aspect, a2 is inter-

attribute dependent on a1, denoted by a2
A−A→ a1, if either of the following conditions

hold true:

(a) a1 is referred (directly or indirectly) in the definition of a2.

(b) If the possibility of definition of a2 is dependent on the state of a1.

• Inter-module dependencies: Let m1, m2 be two modules and a be an attribute

in a particular aspect. Then m2 will be inter-module dependent on m1, denoted by

m2
M−M→ m1, if either of the following conditions are true:

(a) m2 calls m1. (inter-module call dependence.)

(b) a is defined in m1 and is used in m2 before it is defined in m1. (inter-module

potential dependence.)

• Module-Attribute dependencies: Let m be a module and a be an attribute in

any aspect. Then m is module-attribute dependent on a, denoted by m
M−A→ a, if m

refers a.

There are four possible types of modules in any aspect. Because of that, this depen-

dency can have four types: introduction-attribute, advice-attribute, method-attribute

or pointcut-attribute dependencies.

These different Aspect-Oriented Metrics help in evaluation of various quality attributes of AOPs

such as size, reliability, reusability, and modularity.

6.3 Implementation

We developed a prototype tool that takes input the EAOSDG. The EAOSDG is generated as

shown in Figure 4.5. This tool then works in different ways to measure different metrics which

are used in evaluation of the quality of the software.

6.3.1 Lines of code

We developed a small program that takes input the path of the source files of the project. It

then iterates over all the files and counts the number of lines. Special considerations are made

to make sure no comments or blank lines are taken into account. It adds the value of LOC of

all the files (java programs) of the project and give the information. The LOC calculated for

the case studies is shown in Table 6.1.

6.3.2 Weighted Operations in Module

This part of the tool takes input the EAOSDG generated and traverses different modules. It

then collects the information and give the resultant metric based on the formula:

WOM(m) = |M |+ |A|+ |IM |+ |IC|

Here,

• |M | is the number of methods associated with module .

• |A| is the number of advices associated with module m.

• |IM | is the number of inter-type method declarations associated with module m.

• |IC| is the number of inter-type constructor declarations associated with m.

The data retrieved from the calculation of WOM metric is shown in Table 6.1.

6.3.3 Depth of Inheritence Tree

Calculation of this metric is relatively easy by using the EAOSDG as input. The inheritance

edge, as explained in Section 4.1, is in between two nodes when one module inherits the properties

from another module. We traverses through these edges and see the longest path. This gives

the value of DIT. The data retrieved from the calculation of WOM metric is shown in Table 6.1.

Table 6.1: Metrics Calculations for LOC, WOM and NOC.

Sr. No Project Name Lines of Codes Avg. WOM NOC DIT

1 Addition 41 2.5 0 0

2 Prime 54 2 0 0

3 Server - Client 155 2.2 2 1

4 Elevator 583 4.88 0 0

5 ATM Simulation 944 1.42 5 1

6 Tetris 1027 4.36 2 1

7 Design Patterns 5376 1.95 30 1

6.3.4 Number of Children

The EAOSDG has inheritance edge which shows that module m1 (sub-class) and m2 (super-

class) are connected in a way that m2
Inh→ m1. This tool takes input EAOSDG and for any

module checks the number of nodes connected to it by inheritance edge and shows the value

which can be used from different viewpoints depending on our requirements. The values of NOC

for all the case studies is shown in Table 6.1.

6.3.5 Avg. Aspect Complexity

Calculation of this metrics is done using a small program made by us. This program takes input

the path of the source files of the project. It then iterates over all the files with .aj extension

(the aspects). Special considerations are made to make sure no comments or blank lines are

taken into account. The AAC calculated is shown in Table 6.2.

6.3.6 Crosscutting Degree of an Aspect

Calculation of this metrics is done through the three phase slicer. This part of the tool takes

input the EAOSDG and run the three phase slicer taking the advices as slicing criterion. As

the slice contains all the nodes that are affected by the slicing criterion, so if the advice is

given as slicing criterion it will also have the information of the modules affected by the advice.

Keeping this definition in mind, we have given the advices for our slicing criterion. From the

slice computed it then checks for all the class nodes in it, and makes a list of those. The number

of class nodes is the value of CDA metrics. The values of this metrics for different case studies

is shown in Table 6.2.

6.3.7 Coupling on Advice Execution

For each module head node or class node, we perform the DFS of EAOSDG on all the edges

except for the inheritance edge. During the traversal if we move across the weaving edge we add

the advice node on the other end of the edge to the stack of CAE. The size of that stack is the

value of CAE metrics for that particular module. The values of this metrics for different case

studies is shown in Table 6.2.

Table 6.2: Metrics Calculations for CDA, CAE and Aspect Cohesion.

Sr. No Project Name AAC CDA CAE Aspect Cohesion

1 Addition 20 1 2 4

2 Prime 16.5 1 3 1

3 Server - Client 23 1.33 2.5 1.33

4 Elevator 29.33 2.67 3 1.67

5 ATM Simulation 32.67 3.33 2 1.33

6 Tetris 47.75 2.25 2.33 3.88

7 Design Patterns 33.25 1.54 0.81 1.93

6.3.8 Aspect Cohesion

In our tool we calculate the cohesion in three different phases depending on the three depen-

dencies explained before.

The dependencies are based on the attributes and modules defined within the aspect.

• For inter-attribute dependency, the tool checks for the definitions of different attributes in

EAOSDG. If some another attribute is called in the definition of that attribute, the tool

increments the value of the variable holding the value for inter-attribute dependency of

Aspect Cohesion.

• For inter-module dependency, the tool checks the part of EAOSDG which is showing the

module. If any other module is called from that module (call edge in the module to another

module), there is inter-module dependency then, and the tool increments the value of the

variable holding the value for inter-module dependency of Aspect Cohesion.

• For module-attribute dependency, the tool checks the part of EAOSDG that is showing the

module. If the module uses the pre-defined value of that attribute then the tool increments

the value for module-attribute dependency of Aspect Cohesion.

After these phases, the tool adds the values of all the three variables and gives output Aspect

Cohesion of that particular aspect. The values of this metrics for different case studies is shown

in Table 6.2.

6.4 Summary

In this chapter, we explained the different metrics that are present in the literature for object-

oriented as well as aspect-oriented programs. There have been various metrics suite in the

literature but the one which is considered as the standard set is C&K Metrics suite, which is

explained properly. This metrics suite is for object-oriented paradigm. There have been a few

metrics defined for the AOP and they have been explained as well. After thorough study of all

the metrics, we have compiled a metrics suite applicable for AOP and implemented those eight

metrics and incorporated those in the tool. The usages of all the eight metrics are explained

properly and these are used for measuring quantitatively and qualitatively the different aspects

of all the case studies used so far. There are five size based (quantitative measures) and three

process based (qualitative measures) metrics in the compiled suite that are extended so as to be

able to extract values from the EAOSDG using graph manipulation techniques and/or the three

phase slicer. By the end of the chapter, we have a compiled metrics suite for AOPs, and an

automated tool which can extract information of the metrics using the bytecode of the project

by creating EAOSDG and slicing.

Chapter 7

Conclusion

Aspect-Oriented programming is a new programming technique which is defined for improve-

ment in separation of concerns in software design and implementation. In this work, we have

introduced a new intermediate graph representation for AOP. We have coined the term EAOSDG

for that representation and explicitly defined all the various dependencies being used in that

graphical representation. This SDG properly depict the various features of AOP using these

dependencies.

After the creation of EAOSDG, we have proposed a slicing algorithm which can work on

that particular representation that is an extension of the standard two phase slicer. We have

added one more phase to accommodate the aspect part of the program. We have given the

proper pseudocode and the complexity analysis of the algorithm. We have also compared the

proposed algorithm with the existing ones in the literature and explained the pros of our proposed

approach.

We have also compiled a metrics suite for quantitative and qualitative measurements of AOP.

This suite is compiled by using a few existing metrics and extending those to accommodate the

changes brought by AOP to OOP. We have also introduced a few metrics for that particular

suite. We have compiled the whole suite with eight metrics comprising of five for quantitative

measurement and three for qualitative measurements.

We have made a prototype tool which takes input the bytecode of the project and gives

detailed analysis of the metrics by using the EAOSDG generator and three phase slicer. There

are a few graph manipulation techniques that are also used as per the definition of the metrics.

This tool is automated thus decreasing the manual intervention and increasing the productivity

in the software development life cycle.

31

Dissemination of Work

1. Dishant Munjal, Jagannath Singh, Subhrakanta Panda, D.P. Mohapatra. Automated

Slicing of Aspect-Oriented Programs using Bytecode Analysis. In proceedings of

The 39th Annual International Computers, Software & Applications Conference (COMP-

SAC 2015), 2015 (Accepted).

2. Jagannath Singh, Dishant Munjal, D.P. Mohapatra. Context Sensitive Dynamic

Slicing of Concurrent Aspect-Oriented Programs. In proceedings of The 21st Asia-

Pacific Software Engineering Conference (APSEC 2014), 2014.

References

[1] J. Zhao, “Slicing Aspect-Oriented Software,” in Proceedings of the 10th International Workshop on

Program Comprehension, pp. 251–260, IEEE, 2002.

[2] F. Tip, “A Survey of Program Slicing Techniques,” Journal of Programming Languages, vol. 3, no. 3,

pp. 121–189, 1995.

[3] J. T. Lallchandani and R. Mall, “Computation of Dynamic Slices for Object-Oriented Concurrent

Programs,” in Proceedings of the 12th Asia-Pacific Software Engineering Conference, APSEC’05.,

IEEE, 2005.

[4] L. Larsen and M. J. Harrold, “Slicing Object-Oriented Software,” in Proceedings of the 18th Inter-

national Conference on Software Engineering (ICSE), pp. 495–505, IEEE, 1996.

[5] G. Kiczales and E. Hilsdale, “Aspect-Oriented Programming,” in ACM SIGSOFT Software Engi-

neering Notes, vol. 26, p. 313, ACM, 2001.

[6] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical Approach. CRC Press, 2014.

[7] W. Li and S. Henry, “Object-Oriented Metrics that Predict Maintainability,” Journal of Systems

and Software, vol. 23, no. 2, pp. 111 – 122, 1993. Object-Oriented Software.

[8] M. Weiser, “Program Slicing,” in Proceedings of the 5th International Conference on Software En-

gineering(ICSE), pp. 439–449, IEEE Press, 1981.

[9] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing using Dependence Graphs,” ACM

Transactions on Programming Languages and Systems (TOPLAS), vol. 12, no. 1, pp. 26–60, 1990.

[10] S. N. Singh and L. Singh, “Study of Current Program Slicing Techniques,” in Proceedings of the 5th

International Conference-Confluence The Next Generation Information Technology Summit (Con-

fluence), pp. 810–814, IEEE, 2014.

[11] B. Xu, Z. Chen, and H. Yang, “Dynamic Slicing Object-Oriented Programs for Debugging,” in

Proceedings of the 2nd IEEE International Workshop on Source Code Analysis and Manipulation,

pp. 115–122, IEEE, 2002.

[12] D. P. Mohapatra, R. Mall, and R. Kumar, “Computing Dynamic Slices of Concurrent Object-

Oriented Programs,” Information and software technology, vol. 47, no. 12, pp. 805–817, 2005.

[13] T. Ishio, S. Kusumoto, and K. Inoue, “Program Slicing Tool for Effective Software Evolution using

Aspect-Oriented Technique,” in Proceedings of the 6th International Workshop on Principles of

Software Evolution, pp. 3–12, IEEE, 2003.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin, Aspect-

Oriented Programming. Springer, 1997.

[15] T. Elrad, R. E. Filman, and A. Bader, “Aspect-Oriented Programming: Introduction,” Communi-

cations of the ACM, vol. 44, no. 10, pp. 29–32, 2001.

33

[16] J. Singh and D. P. Mohapatra, “A Unique Aspect-Oriented Program Slicing Technique,” in In-

ternational Conference on Advances in Computing, Communications and Informatics (ICACCI),

pp. 159–164, IEEE, 2013.

[17] T. ter Braak, “Extending Program Slicing in Aspect-Oriented Programming with Intertype Decla-

rations,” in Proceedings of the 5th Twente Student Conference on IT, 2006.

[18] A. A. Zakaria and H. Hosny, “Metrics for Aspect-Oriented Software Design,” in Proceedings of Third

International Workshop on Aspect-Oriented Modeling, AOSD, vol. 3, Citeseer, 2003.

[19] J. Zhao, “Towards a Metrics Suite for Aspect-Oriented Software,” Rapport technique, 2002.

[20] M. Ceccato and P. Tonella, “Measuring the Effects of Software Aspectization,” in 1st Workshop on

Aspect Reverse Engineering, vol. 12, Citeseer, 2004.

[21] J. Zhao and B. Xu, “Measuring Aspect Cohesion,” in Fundamental Approaches to Software Engi-

neering, pp. 54–68, Springer, 2004.

[22] W. Li and S. Henry, “Maintenance Metrics for the Object-Oriented Paradigm,” in Proceedings of

First International Software Metrics Symposium., pp. 52–60, May 1993.

[23] S. Chidamber and C. Kemerer, “A Metrics Suite for Object-Oriented Design,” IEEE Transactions

on Software Engineering,, vol. 20, pp. 476–493, Jun 1994.

