
An Efficient Client- Server Assignment

for Internet Distributed systems

A Thesis Submitted in Partial Fulfillment of the Requirements for

The Degree of

Bachelor of Technology

In

Computer Science and Engineering

ABDUL HADI SHARIFI

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING NATIONAL INSTITUTE OF

TECHNOLOGY, ROURKELA 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80148140?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Efficient Client- Server Assignment for Internet

Distributed Systems

A thesis

Submitted by

Abdul Hadi Sharifi

(111CS0561)

In Partial Fulfillment of the Requirements for

The Degree of

Bachelor of Technology

In

Computer Science and Engineering

Under The Guidance of

Prof. P. M. Khilar

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Orissa - 769008, India

2015

NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA,

ORISSA-769008, INDIA

CERTIFICATE

This is to certify that the thesis entitled, " An Efficient Client- Server Assignment for Internet

Distributed Systems" submitted by Abdul Hadi Sharifi in partial fulfillment of the

requirement for the award of Bachelor of Technology degree in Computer Science and

Engineering at the National Institute of Technology Rourkela is an authentic work carried out

by him under our supervision and guidance. To the best of our knowledge, the matter embodied

in the thesis has not been submitted to any other University/ Institute for the award of any degree

or diploma.

Place: Rourkela Research Guide

Date: Dr. P. M. Khilar

 Professor

 National Institute of

 Technology, Rourkela

ACKNOWLEDGEMENTS

First and foremost, praise and thanks goes to my God for the blessing that has bestowed upon me

in all my endeavors. I am deeply indebted to Dr. P.M. Khilar, Professor of Computer Science

and Engineering department, my advisor and guide, for the motivation, guidance, tutelage and

patience throughout the research work. I appreciate his broad range of expertise and attention to

detail, as well as the constant encouragement he has given me over the years.

There is no need to mention that a big part of this thesis is the result of joint work with him,

without which the completion of the work would have been impossible.

I am grateful to DR. S. K. Rath, Head of the Department of Computer Science and Engineering

for his valuable suggestions and providing necessary facilities for the research work. And I also

sincerely thankful to MD. Sulaiman my senior Dual degree scholar of CSE department for

listening, offering me advice, and gladly extending his support throughout the process. I extend

my sincere thanks to Prof. Asha Ramakrishna, Associate professor civil department of

Engineering for her kind helps and encouragement throughout the years I have been staying in

NITR. I am grateful for friendly atmosphere of the Computer Science and Engineering

Department and all kind and helpful professors that I have met during my course.

I would like to thank my parents, without their love, patience and support; I could not have

completed this work. Finally, I wish to thank many friends for the encouragement during these

difficult years.

 Abdul Hadi Sharifi

 2015

Abstract

The World Wide Web is used by millions of people every day for various purposes including

email, reading news, downloading music, online shopping or simply accessing information

about anything. Using a standard web browser, the user can access information stored on Web

servers situated anywhere on the globe. This gives the illusion that all this information is

situated locally on the user’s computer. In reality, Internet is a collection of several distributed

systems consisting of various clients and servers. These clients communicate with each other

with the help of transitional servers. As this field is the most useful area of the computer

science, optimizing on the whole performance of such a system then can be formulated as a

client server assignment problem whose aim is to allocate the clients to the servers in such a

way to satisfy some pre-specified necessities on the communication cost and load balancing.

Servers recover from failures and get back information needed. It provides fault tolerance by

doing work in the background and during client operations that are rare.

I propose an approach based on an algorithm which obtains better efficiency than the existing

client server assignment and load balancing.

Table of Contents

1. Chapter 1 - Introduction -- 5

1.1 Overview --- 6

1.2 Client- server --- 8

1.3 Internet Distributed Systems ------------------------------------- 9

1.4 Motivation --- 0

1.5 Project Organization -- 0

2. Chapter 2 - Literature Review ------------------------------------ 10

2.1 The NC Clustering Algorithm ------------------------------------- 11

2.2 Similar Research Areas -- 12

3. Chapter 3 – Proposed Algorithm ------------------------------------- 14

3.1 Description of Algorithm ------------------------------------- 15

3.1 Result -- 15

 4. Chapter 4 – Fault Tolerance in Client-Server Assignment -- 22

 4.1 Fault Tolerance --- 23

 4.2 Types of Failure --- 24

 4.3 Server Failure Implementation ----------------------------- 26

5. Chapter 5 - Conclusion and Bibliography ---------------------------- 29

5.1 Conclusion --- 30

5.2 Bibliography --- 31

5

Chapter 1

Introduction

6

1.1 Overview

An Internet distributed system consists of a number of nodes (e.g., computers) that are

linked together in ways that allow them to share resources and computation. An ideal

distributed system is completely decentralized, and that every node is given equal responsibility

and no node is more computational or resource powerful than any other. However, for many

real world applications, such a system often has a low performance due to a significant cost of

coordinating the nodes in a completely distributed manner. In practice, a typical distributed

system consists of a mix of servers and clients. The servers are more computational and

resource powerful than the clients. Typical examples of such systems are e-mail, instant

messaging, e-commerce, etc. For sending a mail from node A to another node B, the data first

flows to email server of node A. Then the data flows towards the email server of node B and

finally it reaches node B. Hence, it is the responsibility of email servers to send receives emails

for the clients assigned to it. Clients do not communicate with each other directly. Servers

communicate on behalf of their clients. Similar kind of process can be used for instant

messaging services and ecommerce services.

 Client server assignment can be designed based on the following observations:

1. If two clients are assigned to the same server, the server will receive message from

one client and forward to another one. If they are on different servers, the sender client first

sends to its server. The sender's server will receive data and forward it to the receiver's server.

The receiver server will receive data and forward it to receiver client. Thus the total

communication between two frequently interacting clients increases if they are assigned to two

different servers. Assigning these two clients to a single server makes all information exchange

locally. It is more efficient to have all the clients assigned to few servers to minimize total

communication.

7

2. On the contrary having fewer servers, results in those servers being heavily loaded

while others are left underutilized. If a server is heavily loaded it results in low performance due

to excessive resource usage on that server. Thus it is necessary to consider load balance on the

server while assigning clients. From the above observations it is clear that total communication

load and load balancing are two contradicting features. Hence equilibrium must be maintained

between overall communication load and load balancing of the servers.

A classical example of such systems is Email. When a client A sends an email to another

client B, A does not send the email directly to B. Instead, A sends its message to its email server

which has been previously assigned to handle all the emails to and from A. This server relays A’s

email to another server which has been previously assigned to handle emails for B. B then reads

A’s email by downloading it from its local server. Importantly, the email servers communicate

with each other on behalf of their clients. The main advantage of this architecture is

specialization, in the sense that the powerful dedicated email servers release their clients from

the responsibility associated with many tasks including processing and storing emails, and thus

making email applications more scalable.

Fig. 1

8

1.2 Client - Server

The client–server model of computing is a distributed application structure that

partitions tasks or workloads between the providers of a resource or service, called servers, and

service requesters, called clients. Often clients and servers communicate over a computer

network on separate hardware, but both client and server may reside in the same system. A

server host runs one or more server programs which share their resources with clients. A client

does not share any of its resources, but requests a server's content or service function. Clients

therefore initiate communication sessions with servers which await incoming requests.

Examples of computer applications that use the client–server model are Email, network

printing, and the World Wide Web.

The client–server characteristic describes the relationship of cooperating programs in an

application. The server component provides a function or service to one or many clients, which

initiate requests for such services.

Whether a computer is a client, a server, or both, is determined by the nature of the application

that requires the service functions. For example, a single computer can run web server and file

server software at the same time to serve different data to clients making different kinds of

requests. Client software can also communicate with server software within the same

computer.

In general, a service is an abstraction of computer resources and a client does not have to be

concerned with how the server performs while fulfilling the request and delivering the

response. The client only has to understand the response based on the well-known application

protocol, i.e. the content and the formatting of the data for the requested service.

Clients and servers exchange messages in a request-response messaging pattern: The client

sends a request, and the server returns a response. This exchange of messages is an example of

inter-process communication. To communicate, the computers must have a common language,

9

and they must follow rules so that both the client and the server know what to expect. The

language and rules of communication are defined in a communications protocol.

1.3 Internet Distributed Systems

The Internet is a global system of interconnected computer networks that use the

standard Internet protocol suite (TCP/IP) to link several billion devices worldwide. It is a

network of networks that consists of millions of private, public, academic, business, and

government networks of local to global scope, linked by a broad array of electronic, wireless,

and optical networking technologies. The Internet carries an extensive range of information

resources and services, such as the inter-linked hypertext documents and applications of the

World Wide Web (WWW), the infrastructure to support email, and peer-to-peer networks for

file sharing and telephony.

1.4 Motivation

 Internet is the largest distributed system in the world

 Internet usage is growing fast in Asia

 Load balancing in Internet is achieved by efficient assignment of clients to

servers.

1.5 Project organization

 Chapter one of this thesis gives a wide introduction over the client-server and Internet

distributed system along with the motivations, chapter 2 provides the literature, in chapter 3

the proposed algorithm and the result is being discussed, chapter 4 discusses one the most

essential part of the work which is fault tolerance of the system and finally chapter 5 cocludes

the work and ends with bibliography.

10

Chapter 2

Literature Review

11

2.1 The Normalized cut Algorithm

The normalized cut algorithm [1] can cluster a set of elements based only on the values

of a similarity measure between all possible pairs of elements. The approach is a spectral

clustering method. It is based on the properties of eigenvectors from a matrix computed using

the similarities between each pairs of elements.

In the normalized cut scheme, the clustering is seen as a graph partitioning problem.

The nodes of the graph are the elements and the weights on the graph edges connecting two

nodes are the similarities measured between the two corresponding elements. We use the

similarity measure described in the previous section. We seek to partition the graph into sub

graphs with high similarities between the nodes of the same sub graphs and low similarities

between nodes from different sub graphs.

Let G be that graph with nodes V and an adjacent graph weight matrix W. The element

W(u,v) of W is the similarity measured between the elements represented by the nodes u and

v. We can break G into two disjoint sets A and B so that A U B = V and A ∩ B = Ø by simply

removing the edges connecting the two parts. The cost of removing those edges is computed as

the total weight of the edges that have been removed:

This cost is called a “cut” in the graph theory language. We want to minimize this cut

value when partitioning G.

However, minimizing the cut value encourages cutting isolated nodes in G. To avoid that

problem, the cost of removing edges from A to B is considered as a fraction of the total weight

of connections from nodes in A to all nodes in the graph. This leads to a new cost measure

called the normalized cut:

12

Where asso (A, V) is the sum of {u in A, v in V} W(u,v) is the total connection weight from all

the nodes in A to all the nodes in V. asso(B,V) is defined in a similar way. [1]

In [2] it is shown that the optimal client server assignment for pre-specified

requirements on total communication load and load balancing is NP-hard. A heuristic algorithm

based on relaxed convex optimization is used for finding the approximate solution to the client

server assignment problem.

2.2 Similar Research Areas

 Distributed Interactive applications (DIAs): DIAs are networked systems that

allow multiple participants at different locations to interact with each other. Wide spread of

client locations in large-scale DIAs often requires geographical distribution of servers to meet

the latency requirements of the applications. In the distributed server architecture, client

assignment to servers directly affects the network latency involved in the interactions between

clients. [3] Focuses on client assignment problem for enhancing the interactivity performance

Fig. 2

13

of DIAs. In this paper, the problem is formulated as a combinational optimization problem on

graphs and proved to be NP-complete of assigning clients to appropriate servers. Three

heuristic algorithms are proposed, namely, nearest assignment, Greedy assignment, Distributed

greedy assignment and are compared and evaluated using real Internet latency data.

[4] is an improved version of [3] and the results show that the proposed algorithms, nearest

Assignment algorithm, Modify Assignment and Distributed modify assignment, are efficient and

effective in reducing the interaction time between clients. However, both [3] and [4] consider

the client assignment in DIAs and do not consider the load on the server and other factors.

 Load-distance balancing Problem (LDB): Client server assignment in [5] is modeled on

the fact that the delay incurred by a client is dependent on load of the server and the distance

to the assigned server. Delay on the client side is the sum of network delay (proportional to

distance to its server) and congestion delay at the server. Hence it focuses on distance between

the client and the server and the load on the server in client-server assignment. The problem is

defined as Load-distance balancing (LDB) problem[6]. This paper targets 2 flavors of LDB. In the

first flavor, the objective is to minimize the maximum incurred delay using an approximation

algorithm and an optimal algorithm. In the second flavor, the objective is to minimize the

average incurred delay, which the paper mentions it as NP-hard and provides a 2-

approximation algorithm and exact algorithm.

However to the best of my knowledge there is no clustering algorithm that is designed as a

Semi definite programming problem to achieve the goal: Load balancing on servers and

minimizing the communication load between servers, for client-server assignment.

14

Chapter 3

Proposed

Algorithm

15

3.1 Description of Algorithm

Algorithm for load balancing:

1. Maintain a matrix AN*N which stores the rate of data exchanged between clients. Rows and

columns represent the clients in system.

2. Maintain a matrix XN*M denoting which client is using which servers for communication. 1

denotes client using the server and 0 denotes not using the server.

3. Maintain matrix LN*M storing total load on server due to client.

4. Calculate total load on all the servers i.e. Fc.

5. Calculate approximate average load that should be given to each server i.e. (Fc/M).

6. Split the number of servers in two groups with m = [M/2] and M-m = [M/2] servers in each

group.

7. First perform intra-group load balancing, then perform inter-group load balancing between

servers in one group and server from another group.

3.2 Results

Implementing algorithm with an example by applying it on the graph in Fig. 3.

Input

Fig. 3

16

a) Maintaining matrix AN*N which indicates the rate of the data exchanged between

different clients communicating to each other:

 C1 C2 C3 C4

AN*N = C1 0 8 4 4

 C2 8 0 10 2

 C3 4 9 0 0

 C4 4 2 0 0

b) From the graph in fig. 3 maintaining a binary matrix XN*M which denoting which

client using which server (1 indicates the client using particular server and 0

not).

 S1 S2 S3 S4

XN*M = C1 1 0 1 1

 C2 0 1 1 0

 C3 1 0 1 0

 C4 0 1 0 1

c) The current load on each server can be calculated from matrix AN*N and binary matrix

XN*M. and the result is matrix LN*M

 S1 S2 S3 S4

LN*M= C1 6 0 6 4

 C2 0 10 10 0

 C3 7 0 6 0

 C4 0 2 0 4

Load on server1 is the total load its handling from its clients (C1 and C3).

Load on server1 = 6+0+7+0 = 13

Similarly the total load on each individual server can be calculated.

Load on server2 = 0+10+0+2 =12

17

Load on server3 = 6+10+7+0 =22

Load on server3 = 4+0+0+4 =23

d) Fc calculated by the total load on all the servers

Fc = 13 + 12 + 23 = 55

e) The total load is then divided by the number of servers in the system i.e. 4.

Approximate average load on each server = 55/4 = 13.75 ~ 14

Output

18

To get a real life example the bellow Matlab code calculates for an M number of servers and

different M to N number of clients.

Assumptions for generating a real life example for verification of algorithm

1- Considering a matrix A as 160x160 at max

The content of matrix A is being entered randomly

2- Considering matrix X as 160x10 at max (160 clients and 10 servers)

Clients being randomly allotted to servers

3- Load matrix L will be generating with dimension 160x10

Load matrix will be generated from A and X

Matlab Code

function sum=func(c)
X=rand(c,10) <0.5 ;
A=zeros(c);
for i=1:c
 for j=i:c
 temp=randi(2*c);
 if(temp>c)
 A(i,j)=0;
 A(j,i)=0;
 elseif(i==j)
 A(i,j)=0;
 else
 A(i,j)=floor(temp/10);
 A(j,i)=floor(temp/10);
 end
 end
end

for i=1:c
 count=0;
 sum=0;
 for ab=1:c
 sum=sum+A(i,ab);
 end

19

 for j=1:10
 if(X(i,j)==1)
 count=count+1;
 end
 end
 prop=zeros(1,count);
 for k=1:sum
 sam=randi(count);
 prop(sam)=prop(sam)+1;
 end
 k=1;
 for j=1:10
 if(X(i,j)==1)
 L(i,j)=prop(k);
 k=k+1;

 else

 L(i,j)=0;

 end

 end

end

sum=0;

for i=1:c

 for j=1:10

 sum=sum+L(i,j);

 end

end

sum=sum/10;

end

20

Generating the Client vs Fc/no. of servers

Servers = 10

Clients = 10-160

clc;

clear all;

count=1;

for i=10:10:160

 x(count)=i;

 y(count)=func(i);

 count=count+1;

end

plot(x,y);

21

Observation

From the graph (No. of clients vs Fc/no of servers) generated can be concluded that the
Algorithm is performing well and optimized. Because by increasing the number of clients (Load)
the threshold value is increasing exponentially. Hence the Algorithm performs well and can be
applied in the real life applications.

22

Chapter 4

Fault Tolerance

In Client-Server

Assignment

23

4.1 Fault Tolerance

Fault tolerance is the property that enables a system to continue operating properly in the

event of the failure of (or one or more faults within) some of its components. If its operating

quality decreases at all, the decrease is proportional to the severity of the failure, as compared

to a naively designed system in which even a small failure can cause total breakdown. Fault

tolerance is particularly sought after in high-availability or life-critical systems.

A fault-tolerant design enables a system to continue its intended operation, possibly at a

reduced level, rather than failing completely, when some part of the system fails.

The term is most commonly used to describe computer systems designed to continue more or

less fully operational with, perhaps, a reduction in throughput or an increase in response time

in the event of some partial failure. That is, the system as a whole is not stopped due to

problems either in the hardware or the software.

Within the scope of an individual system, fault tolerance can be achieved by anticipating

exceptional conditions and building the system to cope with them, and, in general, aiming for

self-stabilization so that the system converges towards an error-free state. However, if the

consequences of a system failure are catastrophic, or the cost of making it sufficiently reliable is

very high, a better solution may be to use some form of duplication. In any case, if the

consequence of a system failure is so catastrophic, the system must be able to use reversion to

fall back to a safe mode. This is similar to roll-back recovery but can be a human action if

humans are present in the loop.

A highly fault-tolerant system might continue at the same level of performance even though

one or more components have failed.

In this algorithm approach three types of failure is possible: [7]

1- Server failure

2- Client failure

3- Connection failure

24

1-Server failure

If a server is found to be faulty then by increasing the threshold value all its clients will be

distributed over the network to other servers. After diagnosis the system the faulty server can

be fixed and all the backup data can be stored. When system gives green light to the particular

server then the server can be reconnected to the system and threshold will be recalculated.

1 2

2- Client failure

In the client server over internet distributed system due to distribution of clients over the wide

geographical area possibility of having a client faulty is more than server.

25

3- Connection Failure

In the system when a connection is failed or does not work properly that connection shall be

terminated and a new optimized connection will be provided to the particular client/server.

1 2

Fault Tolerance in this Proposed Approach

It works in a system in which servers are geographically distributed, while clients also

distributed geographically and interact with the servers.

It is integrated with client caching and distributed transactions. It is optimized to reduce

overhead on common client operations, by avoiding extra messages, processing and

connectivity.

This approach can tolerate both server and client failures. Servers recover from crashes without

loss of information; this is achieved without updating stable information when clients fetch

data. Clients do not survive failures, yet the system is able to reclaim persistent data referenced

only from failed clients. Communication failures such as network partitions may cause some

servers to view a live client as failed, but the scheme prevents dangling references at such

clients from corrupting persistent data.

26

Server failure

As an example for the evaluation of the approach we consider server1 as a faulty server and

server1 will be temporary disconnected from the system to go under diagnosis and recovery.

The clients of server1 will be transferred to other servers which the particular clients are

connected to them as well.

Here is the example 3.1 of chapter3 is being taken under consideration and evaluated

a) Maintaining matrix AN*N which indicates the rate of the data exchanged between

different clients communicating to each other:

 C1 C2 C3 C4

AN*N = C1 0 8 4 4

 C2 8 0 10 2

 C3 4 9 0 0

 C4 4 2 0 0

b) From the graph in fig. 3 maintaining a binary matrix XN*M which denoting which

client using which server (1 indicates the client using particular server and 0

not).

27

 0 S2 S3 S4

XN*M = C1 0 0 1 1

 C2 0 1 1 0

 C3 0 0 1 0

 C4 0 1 0 1

c) The current load on each server can be calculated from matrix AN*N and binary matrix

XN*M. and the result is matrix LN*M

 0 S2 S3 S4

LN*M= C1 0 0 8 8

 C2 0 10 10 0

 C3 0 0 13 0

 C4 0 2 0 4

Loads of server1 (C1 and C3) are being distributed

The total load on each individual server can be calculated.

Load on server2 = 0+10+0+2 =12

Load on server3 = 8+10+13+0 =31

Load on server4 = 8+0+0+4 =12

d) Fc calculated by the total load on all the servers

Fc = 12 + 31 + 12 = 55

e) The total load is then divided by the number of servers in the system i.e. 3.

Approximate average load on each server = 55/3 = 18.33 ~ 19

28

29

Chapter 5

Conclusion and

Bibliography

30

4.1 Conclusion

In this work I present a theoretical model and an algorithmic solution to the

client-server assignment problem for optimizing the performance of a class of

distributed systems over the Internet. The algorithm proposed for client

server assignment problem is initiated from the Normalized Cut algorithm. My

results indicate that the proposed algorithm almost always find the optimal

solution. Future work can be progressed on the improvement of the proposed

Algorithm, real life application and cloud system. One of the main areas for the

future work which can be considered essential for the system is fault

tolerance of the system which has one critical situation where all three server,

client and connection can fail at the same time.

31

4.2 Bibliography

[1] http://phdfb1.free.fr/phdthesis/node108.html

[2] H. Nishida and T. Ngyen, “Optimal Client-server Assignment for Internet Distributed

Systems,” IEEE Trans, vol. 24, no. 3, Mar. 2013.

[3] Lu Zhang; Xueyan Tang; , "Client assignment for improving interactivity in distributed

interactive applications" , 2011 Proceedings IEEE , page .3227-3235, 10-15 April 2011

[4] Zhang, L.; Tang, X.; , "Optimizing Client Assignment for Enhancing Interactivity in Distributed

Interactive Applications," Networking, IEEE/ACM Transactions on, page no.99.

[5] Bortnikov, E., Khuller, S., Li, J., Mansour, Y. and Naor, J. S. (2012), “The load-distance

balancing problem. Networks.”

[6] http://docs.oracle.com/cd/E19728-01/820-2550/t3loadbal_config.html

[7] Umesh M. Barbara H. L. “Fault Tolerant Distributed garbage collection”, MIT Laboratory for

computer science, Cambridge, MA 02139

