
Effort Estimation of Agile and Web-based

Software using Artificial Neural Networks

by

Aditi Panda

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Rourkela-769008, Odisha, India
May 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80148122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Effort Estimation of Agile and

Web-based Software using Artificial

Neural Networks

Dissertation submitted in partial fulfillment for the degree of

Masters of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Aditi Panda
(Roll No: 213CS3189)

under the supervision of

Prof. S. K. Rath

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Rourkela, Odisha, 769008, India

May 2015

Department or School Web Site URL Here (include http://)
panda38aditi@gmail.com
Faculty Web Site URL Here (include http://)

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Rourkela-769008

Odisha, India

29th May 2015

Certificate

This is to certify that this thesis titled, ‘Effort Estimation of Agile and Web-based

Software using Artificial Neural Networks’ by Aditi Panda is a record of an

original research work carried out by her under my supervision and guidance in partial

fulfillment of the requirements for the award of the degree of Master of Technology with

the specialization of Software Engineering in the department of Computer Science and

Engineering, National Institute of Technology, Rourkela. Neither the thesis nor any part

of it has been submitted for any degree or academic award elsewhere.

Santanu Kumar Rath

Professor

Department of CSE

i

Acknowledgements

I have many people to thank for helping me complete this research work. They have

been of great help to me throughout this time. First of all, I would like to thank God

for giving me the inspiration for taking up this work in the first place. I feel blessed for

being able to take a good decision in choosing this topic for research. I attribute that

to the Almighty.

Next I’d like to thank my parents for being there with me during all odds. Inspite of all

the difficulties, I was able to maintain my cool and work only because of the soothing

words and assurance given by my parents. Without them, I could never have been

successful in doing my work. I feel so felicitous to see them proud.

I want to extend bighearted thanks to my guide here, Prof. S. K. Rath. He has trained

me and helped me become a hard-working student. A fair teacher, who encourages you

always is all you need to be on the right track. He is that teacher for me. I am so

thankful to him for continuously supporting me.

I’d also like to thank my seniors who have helped me understand things easily. Their

guidance was most required and I am indebted to them for their assistance.

Last but not the least, I’d like to thank my friends for being with me always, helping

me move forward in life and make the most out of life. I thank NIT Rourkela for giving

me a handful of friends for life.

ii

Abstract

The agile methodology of software development is accepted as a superior alternative

to conventional methods of software development, because of its inherent benefits like

iterative development, rapid delivery and reduced risk. Hence, software developers are

required to estimate the effort necessary to develop projects by agile methodology in

an efficient manner because the requirements keep on changing. Web has become a

part and parcel of our lives. People depend on Internet for almost everything these

days. Many business units depend on Internet for communication with clients and for

outsourcing load to other branches. In such a scenario, there is a necessity of efficient

development of web-based software. For improving the efficiency of software develop-

ment, resource utilization must be optimum. For achieving this, we need to be able

to ascertain effectively, what kind of people/materials are required in what quantity,

for development. This research aims at developing efficient effort estimation models for

agile and web-based software by using various neural networks such as Feed-Forward

Neural Network (FFNN), Radial Basis Function Neural Network (RBFN), Functional

Link Artificial Neural Network (FLANN) and Probabilistic Neural Network (PNN) and

provide a comparative assessment of their performance. The approach used for agile

software effort estimation is the Story Point Approach and that for web-based software

effort estimation is the IFPUG Function Point Approach.

Keywords: Software Effort Estimation, Agile Software Development, Story Point Ap-

proach, Friction factors, Normalized work effort

Contents

Certificate i

Acknowledgements ii

Abstract iii

List of Figures vi

List of Tables vii

Abbreviations viii

1 Introduction 1

1.1 Agile Software Development . 1

1.1.1 Effort Estimation in Agile Software Development 2

1.2 Web-based software Development . 2

1.2.1 Effort Estimation in Web-based Software Development 2

1.3 Literature Survey . 3

1.3.1 A review of studies on Agile Software Effort Estimation 3

1.3.2 A review of studies on Web-based Software Effort Estimation . . . 4

1.3.3 A review of studies on the use of ANNs for effort estimation 5

1.4 Why use ANNs for Software Effort Estimation? 5

1.5 Motivation . 6

1.6 Objectives of The Research . 6

1.7 Organization of The Thesis . 6

2 Basic Concepts and Performance Metrics 8

2.1 Neural Networks Used in this Study . 8

2.1.1 Feed-Forward Neural Network (FFNN) 8

2.1.2 Radial Basis Function Networks (RBFN) 9

2.1.3 Function Link Artificial Neural Network (FLANN) 10

2.1.4 Probabilistic Neural Network (PNN) 11

2.2 Performance Measures . 12

3 Proposed Work For Agile Software Effort Estimation 14

3.1 Dataset Description . 14

3.2 Proposed Methodology . 14

iv

CONTENTS v

3.3 Experimental Details . 16

3.3.1 Model Design Using FFNN . 16

3.3.2 Model Design Using RBFN . 17

3.3.2.1 Model Design Using RBFN Gradient Learning 17

3.3.2.2 Model Design Using RBFN Pseudo-Inverse Learning . . . 18

3.3.3 Model Design Using FLANN . 18

3.3.4 Model Design Using PNN . 20

3.4 Comparison of Results Obtained . 20

4 Proposed Work For Web-based Software Effort Estimation 23

4.1 Dataset Description . 23

4.2 Proposed Methodology . 23

4.3 Experimental Details . 25

4.3.1 Model design using FFNN . 26

4.3.2 Model design using RBFN . 27

4.3.2.1 Model Design Using RBFN Gradient Descent Learning . 27

4.3.3 Model design using FLANN . 29

4.4 Comparison of Results Obtained . 33

5 Conclusion and Future Work 34

5.1 Conclusion . 34

5.2 Future Work . 34

Bibliography 35

Dissemination 40

List of Figures

2.1 Basic Structure of FFNN . 9

2.2 Basic Structure of RBFN . 10

2.3 Basic structure of FLANN . 11

2.4 Basic structure of PNN . 12

3.1 Proposed Steps to Estimate Effort using Various Neural Networks 15

3.2 Effort Estimation Model using FFNN based on Story Points 17

3.3 Effort Estimation Model using RBFN with Gradient Descent Learning
based on Story Points . 18

3.4 Effort Estimation Model using RBFN with Pseudo-Inverse Learning based
on Story Points . 19

3.5 Effort Estimation Model using FLANN based on Story Points 19

3.6 Effort Estimation Model using PNN based on Story Points 20

4.1 Proposed Steps Used for Web Effort Estimation using Neural Networks . 24

4.2 Effort Estimation Model using FFNN for new web projects 27

4.3 Effort Estimation Model using FFNN for enhanced web projects 27

4.4 Effort Estimation Model using RBFN with Gradient Descent Learning
and K-means Clustering for new web projects 28

4.5 Effort Estimation Model using RBFN with Gradient Descent Learning
and FCM Clustering for new web projects 28

4.6 Effort Estimation Model using RBFN with Gradient Descent Learning
and Random Clustering for new web projects 28

4.7 Effort Estimation Model using RBFN with Gradient Descent Learning
and K-means Clustering for enhanced web projects 29

4.8 Effort Estimation Model using RBFN with Gradient Descent Learning
and FCM Clustering for enhanced web projects 29

4.9 Effort Estimation Model using RBFN with Gradient Descent Learning
and Random Clustering for enhanced web projects 29

4.10 Effort Estimation Model using LFLANN for new web projects 30

4.11 Effort Estimation Model using PFLANN for new web projects 30

4.12 Effort Estimation Model using CFLANN for new web projects 30

4.13 Effort Estimation Model using TrigFLANN for new web projects 31

4.14 Effort Estimation Model using LFLANN for enhanced web projects 31

4.15 Effort Estimation Model using PFLANN for enhanced web projects . . . 31

4.16 Effort Estimation Model using CFLANN for enhanced web projects . . . 32

4.17 Effort Estimation Model using TrigFLANN for enhanced web projects . . 32

vi

List of Tables

3.1 Comparison of Proposed Models with Existing Work 21

3.2 Comparison of Proposed Models . 21

4.1 Comparison of Proposed Models in New Web Projects 32

4.2 Comparison of Proposed Models in Enhanced Web Projects 32

vii

Abbreviations

ANN Artificial Neural Network

FFNN Feed-Forward Neural Network

RBFN Radial Basis Function Neural Network

FLANN Functional Link Artificial Neural Network

PNN Probabilistic Neural Network

LFLANN Legendre-Polynomial Functional Link Artificial Neural Network

CFLANN Chebyshev’s-Polynomial Functional Link Artificial Neural Network

FSM Functional Size Measurement

FPA Function Point Analysis

FP Function Point

AFP Adjusted Function Point

LOC Lines of Code

XP Extreme Programming

CMMI Capability Maturity Model Integration

CFP COSMIC Function Points

SVR Support Vector Regression

BN Bayesian Networks

SWR Stepwise Regression

CBR Case-based Reasoning

GA Genetic Algorithm

BPN Back-Propagation Algorithm

CART Classification and Regression Trees

OLSR Ordinary Least-Squares Regression

CHAID Chi-squared Automatic Interaction Detection

ISBSG International Software Benchmarking Standards Group

viii

Chapter 1

Introduction

Software development effort estimation is the methodology of anticipating the most

practical measure of exertion (conveyed as individual hours or capital) needed to create

or keep up development tasks in light of inadequate, questionable and uproarious data.

The process of effort estimation needs to be optimized because proper estimates are

necessary both on the developer side as well as client side. On the developer side,

estimates help in planning the development and monitoring the progress. While on the

client side, they are used for negotiating contracts, setting completion dates, prototype

release dates etc. Unfortunately, the estimates done in the present time are not much

accurate. According to the Molokken and Jorgensen report [1], about 30-40% extra

effort in terms of man month is spent in software development on an average.

1.1 Agile Software Development

In the present day scenario, customer’s requirements keep on changing, and hence, the

conventional methodologies of software development are not suitable. As a result, agile

software development has come to the forefront [2]. It has been proved to be way more

flexible than the traditional methodologies of software development [3]. It involves a

repetitive method of software development that aims to hand-over working software as

soon as possible and evolve it for meeting the changing requirements. Another advan-

tage with agile methodology is that it emphasizes on good communication between the

customers and the development team. Further, the amount of documentation is limited

in the agile approach, which helps to reduce overheads in the software development pro-

cess and incorporate changes as and when demanded by the customer without excessive

rework [4].

1

Chapter 1 Introduction 2

1.1.1 Effort Estimation in Agile Software Development

Effort estimation in agile methods is done in an ad-hoc manner. Abstract estimating

methods like numeric sizing (1 through 10), t-shirt sizes, the Fibonacci sequence, and

even dog breeds are used [5]. These abstract methods have no mathematical basis, due to

which optimal results can’t be guaranteed. A standard mathematical model which can

be validated using project data is essential. Unfortunately, such models based on these

abstract estimation methods don’t exist. A regression model based on the Story Point

estimation method exists in the literature [6], but it’s performance is not satisfactory.

Some other models exist such as the bayesian model proposed by Hearty et. al. in [7]

and the Support Vectore Regression (SVR) model proposed by Satapathy et. al. in

[8]). The model proposed in [7] performs well but it is a complex bayesian model. The

model proposed in [8] also performs well but it is not based on ANNs. Thus, simple yet

efficient models need to be developed for this purpose.

1.2 Web-based software Development

With the rising use of dependency on Web, there is a necessity of quick and efficient

development of web-based software. For developing web-based software efficiently i.e.

without any cost or resource (human or otherwise) overrun, the estimates that are done

before the beginning of development need to be correct.

1.2.1 Effort Estimation in Web-based Software Development

As per Reifer [9], effort estimation models, utilized for a long time as a part of conven-

tional software development, are not extremely precise for effort estimation of web-based

software development. Traditional software size and effort estimation techniques are not

adequate to capture specific features of the development that can influence the size and

effort required in the development of web applications [10].

FSM is a concept on step by step instructions to evaluate the software size in terms

of functional requirements requested by a user. The first method that was developed

to support this concept was FPA developed by Allan Albrecht in 1979 [11]. Albrecht

defined a FP as a unit of measure that represents the amount of business functionalities

an information system provides to a client. FPA techniques can be used as software

sizing methods in effort estimation. The advantage of these methods lies in the fact

that they are independent of technology or programming language used and can be used

through the entire development life cycle [12]. With FPA method, the size of a software

Chapter 1 Introduction 3

application and, the development effort of the software application at the beginning

of the development process can be estimated, which might not be the case of other

methods. Researchers have made attempts to adopt FP to be used in web applications

[10]. Different approaches are proposed by various authors in the literature on estimation

of web-based applications. Broadly, there are generally two approaches for sizing web

applications [13]: LOC and FPA. There are also some other custom solutions that have

been illustrated in [14].

1.3 Literature Survey

Having stated the concepts of agile and web-based software development, and the im-

portance of effort estimation in them, now a section is dedicated for looking into the

existing literature. The survey has been done in three parts, for Agile Software Effort

Estimation, for Web-based Software Effort Estimation and for use of ANNs for effort

estimation.

1.3.1 A review of studies on Agile Software Effort Estimation

Keaveney et al. [15] investigated the applicability of conventional estimation techniques

towards agile development approaches by underscoring on the case studies of agile meth-

ods utilized within diverse organizations. Andreas Schmietendorf et al. [4] have provided

an investigation about estimation possibilities, especially for the extreme programming

paradigm.

Coelho et al. [16] have described the steps followed in story point-based method for effort

estimation of agile software and highlighted the areas which need to be looked into for

further research. Ziauddin et al. [6] have developed an effort estimation model for agile

software projects, where the model was fine-tuned with the help of the empirical data

acquired from twenty one software projects. Hearty et al. [7] have proposed a Bayesian

network model of an XP surrounding and indicated how it could gain from project data

keeping in mind the end goal to predict the effort and risk appraisals without obliging

any extra metrics. Satapathy et al. have used SVR-Kernel methods for optimizing the

effort calculated using story point approach in [8]. Out of the four kernels used, the

RBF-Kernel is shown to have comparably better accuracy.

Hussain et al. [17] have made an attempt to propose an approach which helps in re-

moving problems like formalized user requirements and thus apply function points for

agile software effort estimation. Hamouda et al. [18] have introduced a process and

Chapter 1 Introduction 4

methodology that guarantees relativity in software sizing while using agile story points.

This proposed process and methodology was applied in a CMMI level three company on

different projects. Ungan et al. [19] have compared SCRUM’s native effort estimation

method Story Points and poker planning, with effort estimation models based on CFP

for a selection of projects by using regression models and ANN methodology and proved

that COSMIC measurement is a better method for effort estimation than SCRUM’s

story points.

1.3.2 A review of studies on Web-based Software Effort Estimation

Filomena Ferrucci et. al.[20] have compared the prediction accuracy of effort estimation

models built using single company data set and cross-company data set. They developed

models using Manual Stepwise Regression, Linear Regression and Case-Based Reasoning

on the Tukutuku data set. Ferrucci et. al. [21] also enquired the effectivity of Tabu

Search in estimating effort for Web-based software development.

Idri et. al. [22] have designed Radial Basis Function Networks for software effort estima-

tion using the COCOMO81 and Tukutuku datasets. Kitchenham et. al. [23] have used

manual forward SWR to develop effort models and enquired about the applicability of

cross-company and within-company cost estimation model for Web projects. Corazza

et. al. [24] have developed SVR models for web development effort estimation using

cross-company data set.

Mendes et.al. [25] have described a case study in which Bayesian networks were used to

construct an expert-based Web effort model. Mendes et. al. [26] have developed three

Case-based reasoning models for web effort estimation and found out the best one, then

compared it with stepwise regression and regression trees. Mendes et. al. [27] further

looked into the use of BN for effort estimation in web-based software development when

a cross-company dataset is employed. Emilia Mendes [28] employed four techniques for

web effort estimation BN, forward SWR, CBR and CART to obtain effort estimates

and compared them. Mendes et. al. [29] investigated to what degree a cross-company

cost model can be fruitfully utilized to estimate effort for projects that are owned by

a single company, if none of these projects were used to construct the cross-company

model. The models were developed using two techniques, forward SWR and CBR.

Di Martino et. al. [30] enquired the potency of the Web Objects measure as an indicator

of Web-based software development effort. The effectiveness of the Web Objects measure

as indicator of Web application development effort was confirmed, when assembled with

OLSR and WebCOBRA, and this is true even when using CBR. It was observed that

Chapter 1 Introduction 5

the Web Objects method yields better results than the FPA method when assembled

with OLSR and Web-COBRA.

1.3.3 A review of studies on the use of ANNs for effort estimation

While going through the literature, it is observed that ANNs are frequently used for

effort estimation purposes. Hence, a review on the use of ANNs for effort estimation has

been prepared.

Wen et al. [31] reviewed various machine learning techniques-based software effort es-

timation models. It was observed from the analysis that machine learning-based effort

estimation models performs better than non-machine learning models.

Idri et al. [32] have designed another RBFN network-based model for the purpose of

software development effort estimation. Results showed that the estimates produced by

RBFN network model are greatly improved on using an adequate formula for width. A

FLANN [33] was proposed by Rao et. al. for effort estimation and to lessen the compu-

tational complexities so that the neural net becomes useful for on-line applications.

Parag C. Pendharkar [34] have proposed a PNN approach for predicting a software

development parameter and a probability measure which denotes the chances of actual

value of the parameter being less than its estimated value at the same time. This PNN

approach was then compared with CHAID. Results indicate that PNN performs similar

to the CHAID, but provides superior probability estimates.

Adriano L. Oliveira et al. [35] have proposed and investigated the application of the GA

for selecting an optimized feature subset and improving SVR parameters all the while

aiming at enhancing the exactness of the software effort estimates.

1.4 Why use ANNs for Software Effort Estimation?

The reason for choosing ANNs for this purpose can be attributed to the following facts:

• ANNs have been used in the past [36–40] for developing efficient effort estimation

models due to their inherent learning ability and good interpretability.

• They are perceived for their capacity to give great results when managing issues

where there are complex connections in the middle of inputs and yields, and where

the information is bended by high commotion levels.

Chapter 1 Introduction 6

1.5 Motivation

Simple neural networks are very efficient (as observed from previous section and from lit-

erature survey). But they haven’t been used for effort estimation in web-based projects.

Also, no efficient neural network model (except [7]) has been designed for estimating the

effort in agile software.

• For agile and web-based software, ANNs can be employed for obtaining simple yet

efficacious effort estimation models with good prediction accuarcy.

1.6 Objectives of The Research

The main objective of the present work is to build efficient effort estimation models

using various types of ANNs showing lower values of error and higher levels of prediciton

accuracy values.

1.7 Organization of The Thesis

The rest of the thesis is organized as follows:

Chapter 2: Basic Concepts and Performance Metrics: This chapter describes

the basic concepts required for estimating the development effort of agile and web-based

software. The various performance metrics which are used for assessing the performance

of the ANN models are also described.

Chapter 3: Proposed Work For Agile Software Effort Estimation: This chapter

includes a detailed description of the approach proposed for effort estimation in agile

software. The model design process is given, along with the graphical representation of

the model’s performance, for all the ANN models implemented. Finally, all the ANN

models are compared by using the performance measures mentioned in Chapter 2.

Chapter 4: Proposed Work For Web-based Software Effort Estimation: This

chapter includes a detailed description of the approach proposed for effort estimation

in web-based software. The model design process is given, along with the graphical

representation of the model’s performance, for all the ANNmodels implemented. Finally,

all the ANN models are compared by using the performance measures mentioned in

Chapter 2.

Chapter 1 Introduction 7

Chapter 5: Conclusion and Future work: This chapter culminates the work done

in this research, by suggesting possible future work.

Chapter 2

Basic Concepts and Performance

Metrics

2.1 Neural Networks Used in this Study

Four different types of artificial neural networks and their variants are used here:

• Feed-Forward Neural Network

• Radial Basis Neural Network

• Functional Link Artificial Neural Network

• Probabilistic Neural Network

2.1.1 Feed-Forward Neural Network (FFNN)

It is composed of an input layer and an output layer with some hidden layers [43]. This

neural network is trained with the help of BPN algorithm. The basic structure of a

FFNN is shown in Figure 2.1. This FFNN has four nodes in both input and hidden

layers and one node in the output node. In this paper, for input layer, linear activation

function has been used; that is, the input of the input layer “Ii” becomes output of

the input layer “Oi”. For calculating outputs at hidden layers and output layers, the

unipolar Sigmoid function is considered. The output of hidden layer Oh is represented

as follows:

Oh =
1

1 + e−Ih
(2.1)

8

Chapter 2 Basic Concepts and Performance Metrics 9

where Ih is the input to the hidden layer. Output of the output layer “Oo” is represented

as follows:

Oo =
1

1 + e−Oi
(2.2)

where Oi is the input to the output layer. A neural network thus can be represented as

follows:

EO′ = f(W,EI) (2.3)

where EI is the input vector, EO′ is the output vector, and W is the weight vector.

The weight vector W is updated in every iteration of training so as to reduce the value

of mean square error (MSE).

Input layer Hidden layer

Output layer

Figure 2.1: Basic Structure of FFNN

2.1.2 Radial Basis Function Networks (RBFN)

RBFN is a feed-forward type of ANN [44] which is trained with the help of supervised

training algorithm. RBFN generally contains a single hidden layer, where the basis

functions are used as activation functions. RBFN contains h number of hidden centers

represented as C1, C2, ..., Ch. The basic structure of a RBFN is shown in Figure 2.2.

The input in this diagram is p-dimensional and the hidden layer has h centers. The

euclidean distance between inputs and centers is calculated and then the activation

function is applied. The outputs of the activation function from all the hidden nodes

are multiplied by weights and summed to get final output.

The target output is computed as follows:

y′ =
n∑

i=1

φiWi (2.4)

Chapter 2 Basic Concepts and Performance Metrics 10

C1 φ1

w1

C2

φ2

w2

Ch

φh

wn

Output layer

y

Input layer Hidden layer of

Radial Basis Functions

x1

x2

x3

x4

xp

Figure 2.2: Basic Structure of RBFN

where Wi is the weight of the ith center, φ is the radial function, and y′ is the target

output. In this paper, the basis function used is the Gaussian function, and the distance

vector is calculated as follows:

z = ||xj − cj|| (2.5)

where xj is input vector that lies in the receptive field for center cj . The activation

function is defined as:

φi =
e−z2i

2σ2
(2.6)

2.1.3 Function Link Artificial Neural Network (FLANN)

FLANN, initially proposed by Rao [33], is a flat network having a single layer; that

is, the hidden layers are omitted. Input variables are converted into a collection of

one-dimensional independent functions i.e., the inputs are functionally expanded using

polynomials for a 1 to n expansion. As shown in Figure 2.3, the inputs X1 and X2 are

first expanded using polynomials and then multiplied by weights and summed up. The

adaptive algorithm used for learning in this network is BPN algorithm.

The first ’n’ terms of the polynomial series are found out using the input from data set.

Hence, for one input parameter of the network, n different terms are obtained, which

form the input layer nodes. The output in FLANN is calculated as follows:

ŷ =

n∑

i=1

WiZi (2.7)

where ŷ is the predicted value, W is the weight vector, and Z is the functional block,

and can be defined as follows (this is one of the many possible functional expansions):

Chapter 2 Basic Concepts and Performance Metrics 11

X1

X2

∑

∑Adaptive
algorithm

ρ

Error

ŷ

ŷS

-

+y

w+1

w0

w1

w2

x0

x1

Cos(πx1)

Sin(πx1)
.
.
.
x2

Cos(πx2)

Sin(πx2)

x1 . x2

F
u
n
c
t
i
o
n
a
l

e
x
p
a
n
s
i
o
n

Figure 2.3: Basic structure of FLANN

Z = [1, z1, sin(πz1), cos(πz1),

z2, sin(πz2), cos(πz2), ...] (2.8)

This is an example of a polynomial used for functional expansion. Many such polyno-

mials can be used like Legendre polynomial, Chebyshev’s polynomial etc.

2.1.4 Probabilistic Neural Network (PNN)

It employs a supervised learning algorithm, which is a bit different from BPN algorithm

[34]. It has a feed forward architecture. There are no weights in its hidden layer.

An example vector is associated with each hidden node, which acts as the weights to

that hidden node. A PNN is comprised of an input layer, which is basically the input

vector. This input layer is entirely interlinked with the middle/hidden layer (which

is associated with example vectors). Finally, the output layer constitutes each of the

potential classes for which the inputs can be classified. The connections of a PNN can

be well understood by the Figure 2.4. It shows example vectors for two classes and the

respective layer organization.

The hidden layer is not entirely connected to the output layer. The hidden layer example

vector nodes for a particular class are linked to only the output node of the respective

class. For every class node, the sum of example vector activations is found out. Each

hidden node’s activation is the product of the example vector (E) and the input vector

(F).

Hi = EiF (2.9)

Chapter 2 Basic Concepts and Performance Metrics 12

X1

X2

X
11

X
12

X
13

X
21

X
22

X
23

1

2

Input layer

Pattern layer

(Learning set)

Summation

layer

Output class:
Max(g1, g2)

Output
layer

g1(X)

g2(X)

y
11

y
12

y
13

y
21

y
22

y
23

Figure 2.4: Basic structure of PNN

The class output activation is found out as:

Cj =

∑N
i=1 e

Hi−1

γ2

N
(2.10)

where N is the number of example vectors for this class, Hi is the activation of the

hidden node and γ is the smoothing parameter. The class, for which the input layer

conforms to, is determined through a winner-takes-all approach (i.e., the winning class

is the output class node having the maximum class node activation).

2.2 Performance Measures

After the implementation of neural networks, their performance is assessed by using

many performance metrics. These metrics are outlined below: [45]

• The Mean Square Error (MSE) is calculated as:

MSE =

∑TP
i=1 (AEi − PEi)

2

TP
(2.11)

where

AEi = Original effort value collected from the dataset for the ith test data,

PEi = Output (effort) obtained using the developed model for the ith test data

and TP = Total no. of projects in the test set.

Chapter 2 Basic Concepts and Performance Metrics 13

• The squared correlation coefficient (R2), otherwise called as the coefficient of

determination is calculated as:

R2 = 1−

∑TD
i=1(AEi − PEi)

2

∑TD
i=1(AEi − ĀE)2

(2.12)

where ĀE = Mean of Actual Effort Value.

• The Prediction Accuracy (PRED) is calculated as:

PRED = (1− (

∑TP
i=1 |AEi − PEi|

TP
)) ∗ 100 (2.13)

Chapter 3

Proposed Work For Agile

Software Effort Estimation

3.1 Dataset Description

The dataset used in [6] is used here. It consists of the fields shown in the table below:

Effort Vi D V Sprint Size Work Days Team Salary Time Cost

Out of these fields, three are used in this study:

• Effort

• Velocity (V)

• Time

Effort and Velocity are taken as inputs to the neural networks and Time is considered

as the output. The estimations done by ANNs are compared by Time to calculate

prediction accuracy.

3.2 Proposed Methodology

The proposed approach is implemented using the twenty-one project data set developed

by six software houses [6]. In the data set table, every row contains three columns. The

first column indicates the number story points required to complete the project, the

second column represents the velocity of the project, and the third column represents the

14

Chapter 3 Proposed Work For Agile Software Effort Estimation 15

actual effort (in terms of completion time) required to complete that project. This data

set is used to determine agile software development effort and to assess the performance.

The results obtained in the validation process prove the effectiveness of story point

approach. The block diagram, demonstrated in figure 3.1, states the proposed steps

used to compute the predicted effort using various neural networks.

Collection of Total Number of
Story Points and Project Velocity

Normalization of Data Set

Partition of the Data Set

Data Modification

Center/Weight Update and
Effort Predicition

Performance Evaluation

Figure 3.1: Proposed Steps to Estimate Effort using Various Neural Networks

The steps taken to determine the effort of a software product to be developed by the

agile methodolgy are outlined below.

Steps in Effort Estimation

1. Collection of Total Number of Story Points and Project Velocity: The

total number of story points, project velocity values and actual effort (completion

time) are collected from [6].

2. Normalization of Data Set: The generated number of story points and project

velocity values are employed as input arguments and are normalized in the range

[0,1]. Let S be the data set and s is an element of the data set, then the normalized

value of s i.e., s′ is determined as :

s′ =
s−min(S)

max(S)−min(S)
(3.1)

where

s′ = Normalized value of S within the range [0,1].

min(S) = min. value of S.

max(S) = max. value of S.

When max(S) = min(S), s′ = 0.5.

3. Partition of the Data Set: The data set is partitioned into learning set and

validation set using 5-fold cross validation.

Chapter 3 Proposed Work For Agile Software Effort Estimation 16

4. Data Modification: After partitioning the data set, in case of FFNN, RBFN

and PNN, it was directly used for training the model. But in FLANN, the input

data is functionally expanded using different types of polynomials like Chebyshev,

Legendre, Power Series and Trigonometric.

5. Center/Weight Update and Effort Predicition: While training, only neural

network weights are updated in case of FFNN and FLANN. But in case of RBFN

Gradient-Descent learning, both centers as well as weights are updated. Validation

data is applied to the model obtained at the end of training and the effort is pre-

dicted. This doesn’t apply to off-line techniques (RBFN Pseudo-Inverse learning

and PNN). Only their algorithms are run and the effort value is predicted by using

learning and validation data simultaneously.

6. Performance Evaluation: The performance of various neural network models

is assessed by evaluating MSE, R2 and PRED values obtained from test samples.

The effort models (developed using various ANNs) are implemented using the above

steps. Finally, a comparison of results obtained using various ANN-based effort estima-

tion models is presented to critically examine the performance of individual techniques.

3.3 Experimental Details

For implementation, the data set available in [6] is used. The inputs to different neural

network models are total number of story points and project final velocity and the output

is the effort (completion time). ANNs (online ones i.e. FFNN, RBFN Gradient Learning

and FLANN) are trained for certain no. of epochs/iterations. The error parameter, MSE

is calculated in every iteration. After some epochs, the MSE value becomes constant.

At that point, MSE value saturates and the best weights are obtained. The weights

corresponding to saturation point are taken and used for testing. The performance of

the effort estimation models are shown in the graphs.

3.3.1 Model Design Using FFNN

The input layer of FFNN has two nodes, one for total no. of Story Points and the other

for project velocity. And the output layer has one node, representing the effort (i.e. the

completion time). The hidden layer has three nodes. The BPN algorithm is employed

for optimizing the weights of the neural network in an iterative manner.

MSE value is calculated in every iteration. After certain number of epochs, the MSE

value becomes constant. At this point, MSE value saturates and the best weights are

Chapter 3 Proposed Work For Agile Software Effort Estimation 17

obtained. These weights are used for testing. The proposed model shown in figure 3.2

is generated using the FFNN technique.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Actual vs Predicted Time in FFNN

Actual time

E
s
ti
m

a
te

d
 t
im

e

ffnn
Actual = Predicted

Figure 3.2: Effort Estimation Model using FFNN based on Story Points

Figure 3.2 shows the deviation of predicted effort value from actual effort value for FFNN.

Nearer the points to the actual = predicted line in the figure, better is the prediction

accuracy, because it shows that the degree to which the estimations are correlated to

the actual values is high.

3.3.2 Model Design Using RBFN

RBFN model is implemented using the Gradient-Descent learning technique and the

Pseudo-Inverse learning technique. Centers are initialized using three clustering tech-

niques like K-means, Fuzzy C-means and Random. Gaussian function is used as the

activation function.

3.3.2.1 Model Design Using RBFN Gradient Learning

Gradient Descent approach is one of the most popular approaches for updating centers

and weights. It is a supervised training method which uses an error correcting term.

The update rules are developed by differentiating the cost function (which is the error).

Both weights and centers are updated while training.

MSE value is calculated in every iteration. After certain number of epochs, MSE value

becomes constant. At this point, MSE value saturates and the best weights are obtained.

These weights are used for testing.

The proposed model shown in figure 3.3 is generated using the RBFN technique im-

plementing Gradient Descent learning algorithm. This figure shows the deviation of

Chapter 3 Proposed Work For Agile Software Effort Estimation 18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Actual vs Predicted Time in RBFN

Actual time

E
s
ti
m

a
te

d
 t
im

e

rbfnGradRandom
rbfnGradKmeans
rbfnGradFCM
Actual = Predicted

Figure 3.3: Effort Estimation Model using RBFN with Gradient Descent Learning
based on Story Points

predicted effort value from actual effort for four types of clustering technique-based

RBFN. The points nearer to the ideal prediction line shows more accurate prediction of

effort.

3.3.2.2 Model Design Using RBFN Pseudo-Inverse Learning

Pseudo-Inverse learning is a least square problem. It employs gaussian functions for

acting as radial centers. Centers are chosen only once. No further updates to the centers

are made by this algorithm. It is an off-line technique in which no real training (network

weights are not improved iteration by iteration; hence optimal weights are not obtained)

takes place. This explains the reduced accuracy in prediction of this method. Since no

real training takes place in Pseudo-Inverse learning, therefore the variation between MSE

and epochs cannot be identified. The proposed model shown in Figure 3.4 is yielded

using the RBFN technique implementing the Pseudo-Inverse learning algorithm.

Figure 3.4 shows the deviation of predicted effort value from actual effort for four types of

clustering technique-based RBFN implementing the Pseudo-Inverse learning algorithm.

The points nearer to the ideal prediction line show more accurate prediction of effort.

Because of no real training, the best weights cannot be obtained. This justifies the

sub-optimal performance and reduced prediction accuracy.

3.3.3 Model Design Using FLANN

In FLANN, the inputs need to be functionally expanded before they can be applied to the

network. For functional expansion of inputs, four different polynomials were used such

as Chebyshev, Legendre, Power Series and Trigonometric. The inputs are functionally

Chapter 3 Proposed Work For Agile Software Effort Estimation 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Actual vs Predicted Time in RBFN

Actual time

E
s
ti
m

a
te

d
 t
im

e

rbfnPseudoRandom
rbfnPseudoKmeans
rbfnPseudoFCM
Actual = Predicted

Figure 3.4: Effort Estimation Model using RBFN with Pseudo-Inverse Learning based
on Story Points

expanded using polynomials for a 1 to n expansion. The first n terms of the polynomial

series are found out using the input from data set. Hence, for one input parameter, n

different terms are obtained, which form the input layer nodes. This process is called as

functional expansion.

MSE value is calculated in every iteration. After certain number of epochs, MSE value

becomes constant. At this point, MSE value saturates and the best weights are obtained.

These weights are used for testing.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Actual vs Predicted Time in FLANN

Actual time

Es
tim

at
ed

 ti
m

e

CFLANN
PFLANN
LFLANN
TRIGFLANN
Actual = Predicted

Figure 3.5: Effort Estimation Model using FLANN based on Story Points

The proposed model shown in figure 3.5 is generated using the FLANN technique. This

figure shows the deviation of predicted effort value from actual effort for four type of

polynomial technique-based FLANN. The points nearer to the ideal prediction line show

more accurate prediction of effort.

Chapter 3 Proposed Work For Agile Software Effort Estimation 20

3.3.4 Model Design Using PNN

Probablistic networks are mostly used for classification. For regression analysis i.e.

employing PNN for prediction of continuous targets, first of all the number of classes in

the dataset need to be found out. This can be done using any clustering mechanism.

In this paper, K-means clustering technique is used. After finding out the number of

classes and the inputs included under each class, some input vectors from each class are

taken as example vectors and the dot product of example vectors and input vectors

is found out. Then after applying the function mentioned above in section 2, the class

node’s activations are found out. The class node with highest activation is considered to

be the predicted class for the current input and the numerical value (activation value)

is used for performance evaluation.

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Actual time

Es
tim

at
ed

 ti
m

e

Actual vs Predicted Time in PNN

PNN
Actual = Predicted

Figure 3.6: Effort Estimation Model using PNN based on Story Points

Figure 3.6 shows the deviation of predicted effort value from actual effort for PNN.

The points nearer to the ideal prediction line show more accurate prediction of effort.

The lower prediction accuracy is reflected by the points scattered away from actual =

predicted line. Since the network isn’t trained, optimal weights are not obtained. This

leads to lower prediction accuracy.

3.4 Comparison of Results Obtained

Using the results obtained, the estimated effort value using FFNN, RBFN, FLANN and

PNN are compared. Table 3.1 compares the work existing in literature with the proposed

best and worst model. It can be seen that the proposed LFLANN model outperforms

all the existing models [6, 8] and the worst model performs better than that provided

by [6].

Chapter 3 Proposed Work For Agile Software Effort Estimation 21

Table 3.1: Comparison of Proposed Models with Existing Work

PRED (in %)

Regression Analysis [6] 57.14

Support Vector Regression (SVR) Linear Kernel [8] 90.8112

Support Vector Regression (SVR) Polynomial Kernel [8] 68.7382

Support Vector Regression (SVR) RBF Kernel [8] 95.9052

Support Vector Regression (SVR) Sigmoid Kernel [8] 89.7646

Proposed Approach (Best) 96.42

Proposed Approach (Worst) 77.69

Table 3.2: Comparison of Proposed Models

MSE R2 PRED

FFNN 0.0069 0.9295 94.0207

LFLANN 0.0019 0.9744 96.4172

PFLANN 0.0041 0.9535 94.3667

CFLANN 0.0033 0.9561 95.4782

TrigFLANN 0.006 0.9639 94.3076

RBF Gradient FCM 0.0074 0.8748 93.7716

RBF Gradient K-Means 0.0134 0.8445 91.8474

RBF Gradient Random 0.0192 0.8373 90.4400

RBF Psuedo FCM 0.0494 0.6863 83.6470

RBF Psuedo K-Means 0.0767 0.6028 77.6910

RBF Psuedo Random 0.0528 0.6878 84.0325

PNN 0.0276 0.6914 87.6561

Table 3.2 compares the performance of the ANN-based models implemented. FFNN

sometimes get stuck at local minima thus yielding abnormally high accuracy values

(when there are no improving neighbors, but in this case it clearly does not) while RBFN

does not. Thus, FFNN trained with BPN learning shows more efficiency than RBFN.

As it can be observed that, FFNN’s performance is very good (prediction accuracy of

94.0207 %).

Radial basis function networks have the detriment of getting the input space covered

by radial basis functions. RBF centres are determined by taking into account the input

data distribution, with no reference to the prediction task. Due to this, resources may

be thrown away on such areas of the input distribution that are insignificant to learning.

This is the reason for RBFN’s lower accuracy and higher error as compared to FFNNs

(also proved by [46]). Each of the variants of RBFN has higher MSE value than that

of FFNN. Among the variants of RBFN Gradient Descent learning, the one with initial

FCM clustering performs best because FCM is the best clustering technique among the

ones used here [47, 48]. The networks implemented using RBFN Pseudo-Inverse learning

yield poor results, because pseudo-learning is an off-line technique. No real training

occurs i.e., network parameters are not given optimal values. No network optimization

criteria is employed for getting the best weights.

Chapter 3 Proposed Work For Agile Software Effort Estimation 22

FLANN is known for it’s lower computational complexity i.e. ability to handle non-

linearity and low error rates [33]. Here also, it performs accordingly (lower error rates

as compared to FFNN and RBFN). Each of the variants of FLANN has lower MSE

value than that of FFNN and RBFN. As FLANN is capable of handling complexities

of the input space and performs same as multilayer networks, it’s prediction accuracy

is the best among all. All the variants of FLANN perform almost the same. L-FLANN

performs the best. PNN solves the optimization problem in an off-line manner, hence

it has low accuracy of prediction. LFLANN gives best values for prediction accuracy

(highest) and MSE (lowest) among all the techniques used in this work.

Chapter 4

Proposed Work For Web-based

Software Effort Estimation

4.1 Dataset Description

The ISBSG dataset, Release 12 [41] is used in this study for developing effort estimation

models for web-based software. It has 6006 rows of information pertaining to various

project attributes like Project ID, Software Quality Rating, Software Age, Organisation

Type, Development Type, Development Platform, Programming Language used, sizing

attributes etc.

4.2 Proposed Methodology

The proposed approach is implemented using the ISBSG, Release 12 dataset. Figure 4.1,

demonstrates the steps carried out in the proposed research work applied to compute

the effort required to develop web-based applications using several neural networks.

The steps taken to determine the effort of a software product are described below:

1. Collection of the web-based effort data: The data used for developing effort

estimation models is ISBSG Release 12 data. It is obtained from the ISBSG com-

munity.

2. Filtering and Division of the Dataset: The ISBSG data is filtered by using

the following attributes:

23

Chapter 4 Proposed Work For Web-based Software Effort Estimation 24

Collection of the
web-based effort data

Filtering and Division of
the Dataset

Normalization of the
Dataset

Partition of the Dataset

Center/Weight Update
and Effort Prediction

Performance evaluation

Figure 4.1: Proposed Steps Used for Web Effort Estimation using Neural Networks

• Web Architecture: Only web-based applications and web projects are taken

into consideration.

• Data Quality Rating: Projects with a data quality rating of A and B are

taken into consideration.

• Unadjusted Function Point Rating: Projects with an unadjusted function

point rating of A and B are taken into consideration.

After the data is filtered, the development type attribute is used for separating

the data into three major groups:

• Newly developed projects

• Enhanced projects

• Re-developed projects

After filtering and division, the Mean or Mode Single Imputation (MMSI) Method

is used for filling the missing values. In this method, the missing values of an

attribute are filled with the Mean value of that attribute.

3. Normalization of the Dataset: This step deals with generating the normalized

values of the input vectors with in the range [0,1]. Let us consider Y as complete

dataset and y as an element of the dataset, then normalized value of y is calculated

as:

y′ =
y −min(Y)

max(Y)−min(Y)
(4.1)

Chapter 4 Proposed Work For Web-based Software Effort Estimation 25

where y′ = Normalized value of y within range [0,1], min(Y) = min. value of Y

and max(Y) = max. value of Y . When max(Y) = min(Y), y′ = 0.5.

4. Partition of the Dataset: The entire dataset is partitioned into learning set

and validation set using 5-fold cross validation.

5. Center/Weight Update and Effort Prediction: While training, only weights

are updated in case of FFNN and FLANN. But in case of RBFN Gradient De-

scent Learning, both centers as well as weights are updated. In RBFN, centers are

initialized both randomly and by using two other clustering techniques: Fuzzy C-

means and K-means clustering. The network is trained only for on-line algorithms

i.e., in those algorithms where the process is repeated for a certain number of iter-

ations till certain criteria is fulfilled. In this study, the criteria is the saturation of

MSE. Saturation means that MSE stays constant for some consecutive iterations,

ten in this work. Since off-line algorithms (RBFN Pseudo-Inverse Learning and

PNN) don’t perform well, their results are not shown here.

6. Performance Evaluation: The performance of the models is accessed using

MSE, R2 and PRED values are obtained from test samples. The model giving

lower values of MSE and higher values of PRED is considered as the best model.

The results obtained by using the above models are compared to assess their perfor-

mance.

4.3 Experimental Details

After processing the input, the following number of data entires for each type are ob-

tained:

• New development: 161 rows

• Enhancement Projects: 234 rows

• Re-development Projects: 12 rows

The re-development project data is too small, so it’s not used. Only new and enhanced

web project’s data are used.

Chapter 4 Proposed Work For Web-based Software Effort Estimation 26

Adjusted Function Points (AFP) attribute is considered as input and Normalized Work

Effort is considered as output of the effort estimation models. The reasons behind this

are given below:

• The final stage of estimation in most of the Functional Size Measurement methods

such as IFPUG, NESMA, and MARK-II calculates the effort from the AFP value.

And this value is available in ISBSG Release 12 dataset. Whereas using the other

attributes from initial phases of counting (like ILF, EIF, DET RET, EI, EO, VAF

etc.) is not possible as these values are not individually provided in the dataset.

Eventually, all calculations lead to AFP value, which is then used for calculating

the final effort. So, AFP is taken as the input.

• Normalized Work Effort is the effort value of the full development cycle; whereas

Summary Work Effort presents the total effort computed in terms of person-hours

documented against the project. For some projects, the full development cycle

time is not covered and Normalized Work Effort attribute is an approximation for

full cycle effort. In other cases, where the full development cycle time is covered,

the Normalized Work Effort and Summary Work Effort are same. Whether a

project has completed the full developmental cycle time or not is not provided in

the ISBSG dataset. So it is proposed to take the Normalized work effort as the

output / Effort value instead of Summary Work Effort. It is more appropriate

than Summary Work Effort.

After developing the models, a graph is drawn between actual effort and the estimated

effort in all cases. This graph shows the performance of the model. Nearer the points to

the ’Actual = Predicted’ line, greater is the accuracy of the model (because the degree

of correlation between actaul and predicted effort is higher).

4.3.1 Model design using FFNN

In this paper, a structure with three layers of FFNN is considered, in which one input

node is used, four nodes are used for the hidden layer, and the output layer has one node.

The BPN algorithm is employed for optimizing the weights of the neural network in an

iterative manner. Training is done until the MSE value saturates i.e. stays constant for

a certain number of iterations (10 here).

The proposed model shown in fig. 4.2 and 4.3 are generated using the FFNN technique

for new and enhanced web projects respectively. These figures show the deviation of

predicted effort value from actual effort value for FFNN. The middle line in the graph is

Chapter 4 Proposed Work For Web-based Software Effort Estimation 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Actual vs Predicted Time in FFNN

Actual time
E

s
ti
m

a
te

d
 t

im
e

FFNN
Actual = Predicted

Figure 4.2: Effort Estimation Model using FFNN for new web projects

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6
Actual vs Predicted Time in FFNN

Actual time

E
s
ti
m

a
te

d
 t

im
e

FFNN
Actual = Predicted

Figure 4.3: Effort Estimation Model using FFNN for enhanced web projects

a normal y = x line. Nearer the points to this line in the figure, better is the prediction

accuracy.

4.3.2 Model design using RBFN

RBFN is implemented using the Gradient Descent learning and the Pseudo-Inverse learn-

ing algorithm. Initially, for both the learning methods, centers are initialized using

various clustering techniques like Kmeans, Fuzzy C-means and Random.

4.3.2.1 Model Design Using RBFN Gradient Descent Learning

Gradient Descent approach is one of the most popular approaches for updating centers

and weights. It is a supervised training method which uses an error correcting term.

The update rules are developed by differentiating the cost function (which is the error).

Both weights and centers are updated while training.

The proposed model shown in fig. 4.4, 4.5 and 4.6 are generated using the RBFN tech-

nique implementing gradient learning algorithm for new web projects respectively.

Chapter 4 Proposed Work For Web-based Software Effort Estimation 28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Actual vs Predicted Time in RBFN with Gradient Learning and Kmeans Clustering

Actual time
E

s
ti
m

a
te

d
 t

im
e

rbfnGradKmeans
Actual = Predicted

Figure 4.4: Effort Estimation Model using RBFN with Gradient Descent Learning
and K-means Clustering for new web projects

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Actual vs Predicted Time in RBFN with Gradient Learning and FCM Clustering

Actual time

E
s
ti
m

a
te

d
 t
im

e

rbfnGradFCM
Actual = Predicted

Figure 4.5: Effort Estimation Model using RBFN with Gradient Descent Learning
and FCM Clustering for new web projects

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Actual vs Predicted Time in RBFN with Gradient Learning and Random Clustering

Actual time

E
s
ti
m

a
te

d
 t
im

e

rbfnGradRandom
Actual = Predicted

Figure 4.6: Effort Estimation Model using RBFN with Gradient Descent Learning
and Random Clustering for new web projects

Likewise, fig. 4.7, 4.8 and 4.9 display the proposed model generated using the RBFN

technique implementing Gradient Descent learning algorithm for enhancement type web

projects.

Chapter 4 Proposed Work For Web-based Software Effort Estimation 29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Actual vs Predicted Time in RBFN using Gradient Learning and Kmeans Clustering

Actual time

E
s
ti
m

a
te

d
 t
im

e

rbfnGradKmeans
Actual = Predicted

Figure 4.7: Effort Estimation Model using RBFN with Gradient Descent Learning
and K-means Clustering for enhanced web projects

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Actual vs Predicted Time in RBFN using Gradient Learning and FCM Clustering

Actual time

E
s
ti
m

a
te

d
 t

im
e

rbfnGradFCM
Actual = Predicted

Figure 4.8: Effort Estimation Model using RBFN with Gradient Descent Learning
and FCM Clustering for enhanced web projects

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Actual vs Predicted Time in RBFN using Gradient Learning and Random Clustering

Actual time

E
s
ti
m

a
te

d
 t

im
e

rbfnGradRandom
Actual = Predicted

Figure 4.9: Effort Estimation Model using RBFN with Gradient Descent Learning
and Random Clustering for enhanced web projects

4.3.3 Model design using FLANN

In case of FLANN, the inputs are functionally expanded using polynomials for a 1 to n

expansion. The first n terms of the polynomial series are found out using the input from

dataset. Hence, for one input parameter, n different terms are obtained, which forms

the input layer nodes. This process is called as functional expansion. For functional

Chapter 4 Proposed Work For Web-based Software Effort Estimation 30

expansion of inputs, four different polynomials are used. These are Chebyshev, Legendre,

Power Series and Trigonometric polynomials. Five inputs are expanded to first five terms

(n = 5) of the series thus giving twenty-five inputs. Thus there are twenty-five input

nodes. Fifty nodes are considered in the hidden layer and one node as the output node.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Actual vs Predicted Time in LFLANN

Actual time

E
s
ti
m

a
te

d
 t
im

e

LFLANN
Actual = Predicted

Figure 4.10: Effort Estimation Model using LFLANN for new web projects

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Actual vs Predicted Time in PFLANN

Actual time

E
s
ti
m

a
te

d
 t
im

e

PFLANN
Actual = Predicted

Figure 4.11: Effort Estimation Model using PFLANN for new web projects

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3
Actual vs Predicted Time in CFLANN

Actual time

E
s
ti
m

a
te

d
 t
im

e

CFLANN
Actual = Predicted

Figure 4.12: Effort Estimation Model using CFLANN for new web projects

The proposed model shown in fig. 4.10, 4.11, 4.12 and 4.13 are generated using the

four types of FLANN techniques for new web projects. This figure shows the deviation

of predicted effort value from actual effort for four type of polynomial technique-based

FLANN.

Chapter 4 Proposed Work For Web-based Software Effort Estimation 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3
Actual vs Predicted Time in TrigFLANN

Actual time
E

s
ti
m

a
te

d
 t

im
e

TrigFLANN
Actual = Predicted

Figure 4.13: Effort Estimation Model using TrigFLANN for new web projects

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6
Actual vs Predicted Time in LFLANN

Actual time

E
s
ti
m

a
te

d
 t
im

e

LFLANN
Actual = Predicted

Figure 4.14: Effort Estimation Model using LFLANN for enhanced web projects

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Actual vs Predicted Time in PFLANN

Actual time

E
s
ti
m

a
te

d
 t
im

e

PFLANN
Actual = Predicted

Figure 4.15: Effort Estimation Model using PFLANN for enhanced web projects

The proposed model shown in fig. 4.14, 4.15, 4.16 and 4.17 are generated using the four

types of FLANN techniques for enhancement type of web projects respectively. These

figures show the deviation of predicted effort value from actual effort for four type of

polynomial technique-based FLANN models.

Chapter 4 Proposed Work For Web-based Software Effort Estimation 32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6
Actual vs Predicted Time in CFLANN

Actual time

E
s
ti
m

a
te

d
 t

im
e

CFLANN
Actual = Predicted

Figure 4.16: Effort Estimation Model using CFLANN for enhanced web projects

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6
Actual vs Predicted Time in TrigFLANN

Actual time

E
s
ti
m

a
te

d
 t

im
e

TrigFLANN
Actual = Predicted

Figure 4.17: Effort Estimation Model using TrigFLANN for enhanced web projects

Table 4.1: Comparison of Proposed Models in New Web Projects

MSE R2 PRED

FFNN 0.0106 0.9295 95.2735

LFLANN 0.0097 0.9744 95.5087

PFLANN 0.0127 0.9535 93.7334

CFLANN 0.0101 0.9561 95.3780

TrigFLANN 0.0105 0.9639 94.9453

RBF Gradient FCM 0.0107 0.8748 95.1619

RBF Gradient K-Means 0.0112 0.8445 94.9528

RBF Gradient Random 0.0127 0.8373 93.5576

Table 4.2: Comparison of Proposed Models in Enhanced Web Projects

MSE R2 PRED

FFNN 0.0143 0.9295 94.0474

LFLANN 0.0124 0.9744 94.0953

PFLANN 0.0161 0.9535 93.7744

CFLANN 0.0118 0.9561 94.4934

TrigFLANN 0.0142 0.9039 92.6625

RBF Gradient FCM 0.0103 0.9748 95.2544

RBF Gradient K-Means 0.0115 0.9445 95.0056

RBF Gradient Random 0.0166 0.8873 91.7485

Chapter 4 Proposed Work For Web-based Software Effort Estimation 33

4.4 Comparison of Results Obtained

Tables 4.1 and 4.2 show the performance of various neural network models in effort

estimation of web-based software, with both new and enhanced projects’ effort models.

It is observed that RBFN model with Gradient Descent learning and FCM clustering and

LFLANN perform better than the rest. They are on-line techniques i.e. the network

weights and centers are updated iteration by iteration until the MSE value saturates

(stays constant for certain number of times, at least ten in this case). Due to this kind

of rigorous training, the network weights and centers get optimal values, the error term

(MSE) is low and performance is high.

Radial basis function networks get the input space covered by radial basis functions.

RBF centers are determined by taking into account the input data distribution. Due

to this kind of extensive coverage of the input space, the RBF network performs best

in the case of enhanced projects. But at the same time, determination of RBF centers

is done without any reference to the prediction task. Due to this, resources may be

thrown away on such areas of the input distribution that are insignificant to learning.

This reason does not affect the RBFN’s accuracy in case of enhanced projects’ effort

models however, this is the reason for it’s lower accuracy and higher error as compared

to LFLANN in case of new project’s effort models.

Furthermore, LFLANN (new web projects) and RBFN with gradient learning and FCM

clustering (enhanced web projects) too follow an on-line means to optimize their network

parameters, hence get high performance. LFLANN network performs good next to

RBFN and CFLANN in case of enhanced web projects. It is again an on-line technique.

FLANN is known for it’s lower computational complexity i.e. ability to handle non-

linearity and low error rates ([33]). It performs accordingly. Each of the variants of

FLANN has lower MSE value than that of FFNN and RBFN in case of new web projects’

effort models. All the variants of FLANN perform almost the same. L-FLANN performs

the best by a slight margin in case of new web projects.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Effort estimation is a very crucial phase of software development. It needs to be done

very efficiently in order to deliver the desired product on time, without any cost or

resource overruns. Now a days, agile methods of software development and web-based

software are given more priority due to their obvious benefits. So there is a requirement of

efficient models for estimating the effort required to develop such software. A number of

approaches have been proposed for effort estimaton in the past, and it was observed that

a good number of researchers have considered ANN models. ANNs are an obvious choice

for effort prediction because they have good interpretability and capacity to handle noisy

input.

In this work, ANNs have been used for developing effort estimation models for agile and

web-based software. Out of the existing models for agile software effort estimation [6] [7],

the one proposed by Zia (Regression Model) [6] doesn’t perform very well, but the one

proposed by Hearty (Bayesian Network Model) [7] has very good performance. Other

ANNS weren’t used for this, so in this work, four different types of neural networks

along with their variants are used to predict the effort. And they provide comparatively

high quality results (high prediction accuarcy). All the computations carried out in this

study were done using MATLAB software tool.

5.2 Future Work

The work presented here includes effort estimation based on various types of ANNs.

This work can be extended to application of several Machine Learning techniques.

34

Bibliography

[1] Kjetil Molokken and Magen Jorgensen. A review of software surveys on software ef-

fort estimation. In Empirical Software Engineering, 2003. ISESE 2003. Proceedings.

2003 International Symposium on, pages 223–230. IEEE, 2003.

[2] A. B. M. Moniruzzaman and Syed Akhter Hossain. Comparative study on ag-

ile software development methodologies. CoRR, abs/1307.3356, 2013. URL

http://arxiv.org/abs/1307.3356.

[3] Martin Fowler and Jim Highsmith. The agile manifesto. Software Development, 9

(8):28–35, 2001.

[4] Andreas Schmietendorf, Martin Kunz, and Reiner Dumke. Effort estimation for

agile software development projects. In 5th Software Measurement European Forum,

pages 113–123, 2008.

[5] Trevor Hutt. Scrum Effort Estimation and Story Points.

http://bundlr.com/clips/513e60b02101880002001451, 2013. [Online; ac-

cessed 12-March-2013].

[6] Ziauddin Khan Zia, Shahid Kamal Tipu, and Shahrukh Khan Zia. An effort esti-

mation model for agile software development. Advances in Computer Science and

its Applications, 2(1):314–324, 2012.

[7] Peter Hearty, Norman Fenton, David Marquez, and Martin Neil. Predicting project

velocity in xp using a learning dynamic bayesian network model. Software Engi-

neering, IEEE Transactions on, 35(1):124–137, 2009.

[8] Shashank Mouli Satapathy, Aditi Panda, and Santanu Kumar Rath. Story point

approach based agile software effort estimation using various svr kernel methods. In

The Twenty Sixth International Conference on Software Engineering & Knowledge

Engineering (SEKE), July 1-3, Hyatt Regency, Vancouver, Canada, pages 304–307,

2014.

[9] Donald J Reifer. Web development: estimating quick-to-market software. IEEE

software, 17(6):57–64, 2000.

35

http://arxiv.org/abs/1307.3356
http://bundlr.com/clips/513e60b02101880002001451

BIBLIOGRAPHY 36

[10] Gennaro Costagliola, Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, Gen-

oveffa Tortora, and Giuliana Vitiello. Effort estimation modeling techniques: a case

study for web applications. In Proceedings of the 6th international conference on

Web engineering, pages 9–16. ACM, 2006.

[11] Allan J Albrecht. Measuring application development productivity. In Proceed-

ings of the Joint SHARE/GUIDE/IBM Application Development Symposium, vol-

ume 10, pages 83–92, 1979.

[12] Adam Trendowicz, Jürgen Münch, and Ross Jeffery. State of the practice in soft-

ware effort estimation: a survey and literature review. In Software Engineering

Techniques, pages 232–245. Springer, 2011.

[13] Edilson JD Candido and Rosely Sanches. Estimating the size of web applications

by using a simplified function point method. In WebMedia and LA-Web, 2004.

Proceedings, pages 98–105. IEEE, 2004.

[14] Damir Azhar, Emilia Mendes, and Patricia Riddle. A systematic review of web re-

source estimation. In Proceedings of the 8th International Conference on Predictive

Models in Software Engineering, pages 49–58. ACM, 2012.

[15] Siobhan Keaveney and Kieran Conboy. Cost estimation in agile development

projects. In ECIS, pages 183–197, 2006.

[16] Evita Coelho and Anirban Basu. Effort estimation in agile software development

using story points. development, 3(7), 2012.

[17] Ishrar Hussain, Leila Kosseim, and Olga Ormandjieva. Approximation of cosmic

functional size to support early effort estimation in agile. Data & Knowledge Engi-

neering, 85:2–14, 2013.

[18] Alaa El Deen Hamouda. Using agile story points as an estimation technique in

cmmi organizations. In Agile Conference (AGILE), 2014, pages 16–23. IEEE, 2014.

[19] Erdir Ungan, Numan Cizmeli, and Onur Demirors. Comparison of functional size

based estimation and story points, based on effort estimation effectiveness in scrum

projects. In Software Engineering and Advanced Applications (SEAA), 2014 40th

EUROMICRO Conference on, pages 77–80. IEEE, 2014.

[20] Emilia Mendes, Sergio Di Martino, Filomena Ferrucci, and Carmine Gravino. Effort

estimation: how valuable is it for a web company to use a cross-company data set,

compared to using its own single-company data set? In Proceedings of the 16th

international conference on World Wide Web, pages 963–972. ACM, 2007.

BIBLIOGRAPHY 37

[21] Filomena Ferrucci, Carmine Gravino, Rocco Oliveto, Federica Sarro, and Emilia

Mendes. Investigating tabu search for web effort estimation. In Software Engineer-

ing and Advanced Applications (SEAA), 2010 36th EUROMICRO Conference on,

pages 350–357. IEEE, 2010.

[22] Ali Idri, Abdelali Zakrani, and Azeddine Zahi. Design of radial basis function neural

networks for software effort estimation. IJCSI International Journal of Computer

Science Issues, 7(4), 2010.

[23] Barbara A Kitchenham and Emilia Mendes. A comparison of cross-company and

within-company effort estimation models for web applications. In Proceedings of

the 8th International Conference on Empirical Assessment in Software Engineering,

Edinburgh, Scotland, UK, pages 47–55, 2004.

[24] Anna Corazza, Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, and Emilia

Mendes. Using support vector regression for web development effort estimation. In

Software Process and Product Measurement, pages 255–271. Springer, 2009.

[25] Emilia Mendes, Carmel Pollino, and Nile Mosley. Building an expert-based web

effort estimation model using bayesian networks. In 13th International Conference

on Evaluation & Assessment in Software Engineering, 2009.

[26] Emilia Mendes, Ian Watson, Chris Triggs, Nile Mosley, and Steve Counsell. A com-

parative study of cost estimation models for web hypermedia applications. Empir-

ical Software Engineering, 8(2):163–196, 2003.

[27] Emilia Mendes. The use of bayesian networks for web effort estimation: further in-

vestigation. In Web Engineering, 2008. ICWE’08. Eighth International Conference

on, pages 203–216. IEEE, 2008.

[28] Emilia Mendes. A comparison of techniques for web effort estimation. In Empiri-

cal Software Engineering and Measurement, 2007. ESEM 2007. First International

Symposium on, pages 334–343. IEEE, 2007.

[29] Emilia Mendes and Barbara Kitchenham. Further comparison of cross-company and

within-company effort estimation models for web applications. In Software Metrics,

2004. Proceedings. 10th International Symposium on, pages 348–357. IEEE, 2004.

[30] Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, and Federica Sarro. Using

web objects for development effort estimation of web applications: a replicated

study. In Product-Focused Software Process Improvement, pages 186–201. Springer,

2011.

BIBLIOGRAPHY 38

[31] Jianfeng Wen, Shixian Li, Zhiyong Lin, Yong Hu, and Changqin Huang. Systematic

literature review of machine learning based software development effort estimation

models. Information and Software Technology, 54(1):41–59, 2012.

[32] Ali Idri, Abdelali Zakrani, and Azeddine Zahi. Design of radial basis function neural

networks for software effort estimation. IJCSI International Journal of Computer

Science Issues, 7(4), 2010.

[33] B Tirimula Rao, B Sameet, G Kiran Swathi, K Vikram Gupta, Ch RaviTeja, and

S Sumana. A novel neural network approach for software cost estimation using

functional link artificial neural network (flann). International Journal of Computer

Science and Network Security, 9(6):126–131, 2009.

[34] Parag C Pendharkar. Probabilistic estimation of software size and effort. Expert

Systems with Applications, 37(6):4435–4440, 2010.

[35] Adriano LI Oliveira, Petronio L Braga, Ricardo MF Lima, and Márcio L Cornélio.

Ga-based method for feature selection and parameters optimization for machine

learning regression applied to software effort estimation. information and Software

Technology, 52(11):1155–1166, 2010.

[36] Vachik S Dave and Kamlesh Dutta. Neural network based models for software effort

estimation: a review. Artificial Intelligence Review, 42(2):295–307, 2014.

[37] Farhad Soleimanian Gharehchopogh, Isa Maleki, and Sahar Sadouni. Artificial

neural networks based analysis of software cost estimation models. algorithms, 20:

15, 2014.

[38] F.S. Gharehchopogh. Neural networks application in software cost estimation: A

case study. In Innovations in Intelligent Systems and Applications (INISTA), 2011

International Symposium on, pages 69–73, June 2011. doi: 10.1109/INISTA.2011.

5946160.

[39] Abbas Heiat. Comparison of artificial neural network and regression models for

estimating software development effort. Information and Software Technology, 44

(15):911– 922, 2002.

[40] Heejun Park and Seung Baek. An empirical validation of a neural network model

for software effort estimation. Expert Systems with Applications, 35(3):929 – 937,

2008. doi: http://dx.doi.org/10.1016/j.eswa.2007.08.001.

[41] International Software Benchmarking Standard Group. ISBSG, ISBSG dataset

release 12. http://www.isbsg.org/, 2013.

[42] IFPUG fp description. http://it-gost.ru/. Accessed: 2015-03-25.

http://www.isbsg.org/
http://it-gost.ru/

BIBLIOGRAPHY 39

[43] S. N. Sivanandam, S. Sumathi, and S. N. Deepa. Introduction to Fuzzy Logic

using MATLAB. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN

3540357807.

[44] Sundaramoorthy Rajasekaran and GA Vijayalakshmi Pai. NEURAL NETWORKS,

FUZZY LOGIC AND GENETIC ALGORITHM: SYNTHESIS AND APPLICA-

TIONS (WITH CD). PHI Learning Pvt. Ltd., 2003.

[45] Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum. Selecting best practices

for effort estimation. Software Engineering, IEEE Transactions on, 32(11):883–895,

2006.

[46] Rejane B Santos, Markus Ruppb, Santiago J Bonzi, and Ana Maria F Filetia.

Comparison between multilayer feedforward neural networks and a radial basis

function network to detect and locate leaks in pipelines transporting gas. Chem.

Eng. Trans, 32:1375–1380, 2013.

[47] Soumi Ghosh and Sanjay Kumar Dubey. Comparative analysis of k-means and

fuzzy c-means algorithms. IJACSA, 4:35–38, 2013.

[48] KM Bataineh, M Naji, and M Saqer. A comparison study between various fuzzy

clustering algorithms. Jordan journal of mechanical and industrial engineering, 5

(4):335–343, 2011.

DISSEMINATION

Published

1. S. M. Satapathy, A Panda and S. K. Rath, “Story Point Approach based Agile

Software Effort Estimation using Various SVR Kernel Methods,” The 26th Inter-

national Conference on Software Engineering and Knowledge Engineering (SEKE),

pp. 304-308, Vancouver, Canada, 1-3 July 2014.

2. A Panda, S. M. Satapathy and S. K. Rath, “ Neural Network Models for Agile

Software Effort Estimation based on Story Points,” The Third International Con-

ference On Advances in Computing, Control and Networking (ACCN), Bangkok,

Thailand, 21-22 February 2015.

3. A Panda, S. M. Satapathy and S. K. Rath, “Empirical Validation of Neural

Network Models for Agile Software Effort Estimation based on Story Points,” The

Third International Conference on Recent Trends in Computing (ICRTC) , Delhi,

India, 12-13 March 2015.

Accepted

1. A Panda, S. M. Satapathy and S. K. Rath, “Story Point Approach based Agile

Software Effort Estimation using Machine Learning Techniques” The Twenty-

Third International Conference on Software Engineering and Data Engineering

(SEDE), Loiusiana, USA, 13-15 October 2014.

	Certificate
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Agile Software Development
	1.1.1 Effort Estimation in Agile Software Development

	1.2 Web-based software Development
	1.2.1 Effort Estimation in Web-based Software Development

	1.3 Literature Survey
	1.3.1 A review of studies on Agile Software Effort Estimation
	1.3.2 A review of studies on Web-based Software Effort Estimation
	1.3.3 A review of studies on the use of ANNs for effort estimation

	1.4 Why use ANNs for Software Effort Estimation?
	1.5 Motivation
	1.6 Objectives of The Research
	1.7 Organization of The Thesis

	2 Basic Concepts and Performance Metrics
	2.1 Neural Networks Used in this Study
	2.1.1 Feed-Forward Neural Network (FFNN)
	2.1.2 Radial Basis Function Networks (RBFN)
	2.1.3 Function Link Artificial Neural Network (FLANN)
	2.1.4 Probabilistic Neural Network (PNN)

	2.2 Performance Measures

	3 Proposed Work For Agile Software Effort Estimation
	3.1 Dataset Description
	3.2 Proposed Methodology
	3.3 Experimental Details
	3.3.1 Model Design Using FFNN
	3.3.2 Model Design Using RBFN
	3.3.2.1 Model Design Using RBFN Gradient Learning
	3.3.2.2 Model Design Using RBFN Pseudo-Inverse Learning

	3.3.3 Model Design Using FLANN
	3.3.4 Model Design Using PNN

	3.4 Comparison of Results Obtained

	4 Proposed Work For Web-based Software Effort Estimation
	4.1 Dataset Description
	4.2 Proposed Methodology
	4.3 Experimental Details
	4.3.1 Model design using FFNN
	4.3.2 Model design using RBFN
	4.3.2.1 Model Design Using RBFN Gradient Descent Learning

	4.3.3 Model design using FLANN

	4.4 Comparison of Results Obtained

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	Bibliography
	Dissemination

