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Abstract 

The MOS technologies with low device geometry and new architectures have accelerated the 

pace of computational technology. In order to uphold the challenges of scaling in sub 20nm 

regime and meet the aggressive specifications of ITRS, a novel and non-conventional devices 

have to intervene. So came the ultimate solution- Silicon Nanotube Field Effect Transistor 

(SiNTFET) with its unique architecture which enhances the electrical characteristics of the 

device and the performance. 

In this work, an analytical model of surface potential and threshold voltage for SiNTFETs are 

developed. The two dimensional poisson’s equation with a cylindrical coordinate system, has 

been evaluated to find surface potential.  The concentration of the inversion charge has been 

evaluated in the channel in subthreshold regime using the surface potential equation and the 

Boltzmann equation. The threshold voltage of the device is stated as the gate voltage for which 

the calculated inversion charge equals the threshold charge. Assuming this definition, the 

threshold voltage of the device for different channel lengths is mathematically modeled. 

The effect on threshold voltage by the variation of physical parameters is detailed analysed. 

The physical parameters include gate oxide thickness, tube thickness and core thickness. The 

effects of DIBL and voltage roll-off are discussed. The model results are verified with the 

simulation results obtained by using device simulator, ATLASTM. It is observed that for short 

channel lengths (<30nm), the model values vary from the simulated data; that is because the 

quantum mechanical effects are neglected during modeling which are vital in those channel 

lengths. The objective of the work is to provide a basic model for threshold voltage of the 

SiNTFET. The electrical characteristics show that device has a potential to set a new 

technology road map and meet the ULSI applications.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Semiconductor Devices: A Brief History 

‘Necessity is the mother of invention’. We humans always desire to make our life more and 

more comfortable resulting in exploring more new and new things. This burning desire to 

explore a new world led to the civilization. As the civilization started, people started exploring 

new places, started exchanging ideas, started questioning and gradually led to the revolution in 

the Science and Technology. And technology is changing along the lines of materials. We had 

Stone Age, Bronze Age, Iron Age and so on. Now going through the phase of Silicon Age.    

In 1830s Michael Faraday noticed the decrease in resistance of silver sulphide as temperature 

rises. In 1839 another renowned researcher Edmund Bequerel discovered photovoltaic effect 

operating principle of solar cell. Both the researchers have explored the intrinsic properties of 

the semiconductor. In 1870s, German Scientist Karl Braun had noticed that a point-contact 

semiconductor rectifies alternating current and could replace vaccum tube diode. Amid 1873, 

researcher W. Smith discovered photoconductivity in selenium. In 1878, acclaimed researcher 

E.H. Hall found there will be a potential will be developed across a conductor when a 

perpendicular magnetic field is applied to that of the flow of current named as the Hall Effect. 

In 1880s, magneto resistance was analysed in solid state by J.J.Thompson. 

 In 1900, a theoretical physicist, Max Plank originated the idea of quantum theory which was 

later supported by another renowned theoretical physicist, Albert Einstein by discovery of the 

law of photoelectric effect. Around 1910, researchers started classifying solid materials as 

insulators, metals, and "variable conductors" and the term semiconductors’ slowly coined. In 

1920s, an accomplished physicist Lilienfield is said to be pioneer to propose semiconductor 
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triode. The theories of energy band models and rectifying junctions were established by 1930s. 

In 1947 Shockley, Bardeen, and Brattain of Bell Labs invented the first point-contact transistor. 

The first working transistor came in 1954 and MOS transistor in 1960 by Bell Labs. Later on 

transistors became ubiquitous in modern electronic systems and modernized the pace of 

technology. 

From that point, there was a continuous progression of the solid state devices.  This is followed 

by SSI, MSI, LSI, VLSI and presently ULSI where devices are of Nano crystalline materials 

and Nano electronics is ruling the semiconductor technology. The decrease in size of the 

transistors which is known as scaling and made a tremendous impact, but it has constraints at 

nanoscale. 

1.1.1 Scaling: a review 

The 20th century made a start of an epoch in automation, information sharing, industrial 

electronics and technology. Scaling down of the hand gadgets and computers with every 

conceivable application; altered the world of communication. It is all because of high speed 

low power, ultra-small sized semiconductor devices and their implementation by the VLSI 

design. 

It began in 1925 when the view of Lilienfeld’s IGFET bore the possibility to supplant the 

technology of vacuum tube with the lesser sized semiconductor technology [1]. The initial 

explanation was done 1960 by Atilla and Kahng [2] as the Silicon-based MOSFET. Later in 

1958, a researcher from Texas Instruments, Jack Kilby  had explained the thought of Integrated 

Circuits (IC) and a designer from Fairchild Corp, Robert Noyce had designed the first IC (S-R 

flip lemon) .In the next year,  Richard Feynman conveyed his important message, “There is 

plenty of room at the bottom”, referring the small sized devices with high performance [4]. A 

great visionary ,Gordon Moore, who worked with Fairchild Corp. and also co-founded Intel, 
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said that the transistor count on the IC doubles for every 2 years. The prescience was precise 

for over 3 decades as indicated in Fig. 1.1. In 1962, there was a development of the TTL the 

first logic family [3].Intel in 1972 came up with the first microprocessor with more than 2000 

PMOS transistors. Subsequently it used NMOS technology which later discontinued due 

dynamic power consumption was high during the increase in the transistors per unit area. The 

introduction of CMOS technology eliminated that problem and made integration at higher 

levels and now heading towards nanotechnology. 

 

Fig. 1-0-1 Transistor integration illustrating the Moore’s Law 

The another  main advantage of the CMOS technology is it has definite scaling laws. . The 

International Technology Roadmap for Semiconductor (ITRS) has directed the scaling in terms 
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of cost and power consumption. In 2014 ITRS committee planned to reorganize ITRS 

Roadmap to suit the necessities of the present day industries. Fig. 1.2 shows the plan of the 

ITRS committee and the seven objectives.  It is targeting to go beyond CMOS technology like 

spintronics,  memristors,  and others. In April 2015, TSMC Taiwan Semiconductor 

Manufacturing Company announced that 10nm production would begin in 2016.It is still 

working forward to shrink CMOS. The device engineers could do this because of “scaling”. 

Scaling is explained as the controlled fabrication of device dimensions in such a way that it 

acquires smaller chip area and maintaining the performance and long channel characteristics. 

Scaling also reduces the dynamic power through lesser voltages which is a significant in the 

device performance. In order to avoid SCEs and ensure better electrostatic control the lateral 

and the vertical dimensions are scaled down by a same factor. 

 

Fig. 1-0-2 ITRS 2.0-anounced by ITRS committee in April 2014 

MOSFET is being used in the present monolithic ICs as the basic switching component in the 

digital logic circuits and also as an amplifier in the analog circuits. This led to a faster and 

complex chips and incessantly decreasing the unit coast of the IC. 

http://en.wikipedia.org/wiki/Spintronics
http://en.wikipedia.org/wiki/Memristors
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1.2 Challenges in Scaling 

Integration of so many billion transistors on an IC is possible due to patterning every minor 

feature of silicon by optical lithography. As the optical lithography entered to the sub-

wavelength regime, interference and diffraction causes image disorder. So, patterning is 

difficult without proper resolution enhancement techniques.  

For getting higher performance and lower threshold voltage gate oxide needs tremendous 

scaling which results in the increase of tunnelling leakages. The increase in substrate doping 

can check short channel effects however lessen the current drive by increasing the scattering. 

The trade-off between SCEs, low current and power consumption is the most important today 

which the conventional devices fail to achieve. This provides an approach of substitute device 

structures to continue further scaling of CMOS. The scaling in the MOSFET varies both the 

vertical and lateral dimensions. 

1.2.1 Vertical Scaling 

1.2.1.1 Polysilicon Depletion Effect 

The Vertical scaling increases the effective thickness of the oxide which results in the 

degrading the transconductance and capacitance of the gates. The factor which is responsible 

for the oxide scaling is a thick polysilicon depletion layer during inversion region of the device. 

The depletion region of the device can’t be further lessened because doping confinements as 

the solid solubility of silicon is fixed at a given temperature. This effect also causes to a shift 

in threshold voltage and is more apparent at lower doping densities of polysilicon gate. So, the 

technology forecasts the application of a metal gate to evading these challenges. 

1.2.1.2 The Quantum effects 

The oxide scaling causes a stronger surface electrical field at the silicon/oxide interface. This 

makes the potential well which prompts the quantum confinements of the inversion carriers. 
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This leads to distinct sub-bands for the movement in the perpendicular direction to the interface 

resulting in change of the peak of inversion charge centroid farther from the interface. This 

confinement drops inversion charge density for given bias resulting in the increase of the 

threshold voltage.  

 

1.2.1.3 The Gate Tunnelling 

By reducing the thickness of the gate oxide, the power dissipation in the static condition rises 

and the key reason is the Gate tunnelling.  This phenomenon is quantum mechanical where 

particles tunnel across a barrier where as in classical mechanics it does not exist.  Fig. 1.3 shows 

the band diagram of direct tunnelling in MOS transistor. The high -k dielectrics (viz. HfO2, 

HfSiO4, and Si3N4) can check gate tunnelling to some extent. 

 

Fig. 1.3: Band Diagram showing electrons tunnel through the whole 2
SiO  energy barrier 
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1.2.2 The Lateral Scaling 

1.2.2.1 Threshold voltage roll-off and DIBL 

By scaling the lateral dimensions, the depletion width of S/D channel p-n junction becomes 

substantial in relative to channel length which causes diminishing the gate control over channel. 

The barrier of the channel also decreases immensely by increasing the scaling of the channel 

which is known as threshold voltage roll off. 

The roll-off of threshold voltage is more prominent when there is a higher drain bias.  This is 

because increment in the drain voltage causes further penetration of drain-induced field into 

channel which leads to reduction of the potential barrier which is commonly under the control 

of gate. This is known as drain induced barrier lowering (DIBL) .The decrement of threshold 

voltage due to DIBL can be analysed by the semi-experimental 'charge sharing' model.  

According to that model, the depletion charge in the device can be divided into two parts. The 

first one is because of the gate control and the second one is by the control of the source and 

drain. So, this presents a rectification in the maximum depletion charge which is controlled by 

gate and that determines threshold voltage. 

1.2.2.2  Hot Carrier Effect 

The hot carriers will cause impact ionization and lead to drain-body current and may even lead 

to channel breakdown. So this effects the reliability, increasing SCEs and this leads to decrease 

in threshold voltage and increase in sub-threshold drive current.  Fig. 1.4 illustrates impact 

ionization by the hot carriers in the MOSFET. This leads to degradation of silicon-oxide 

interface which in long term leads to rapid aging of the device. The breaking of Si-H bond 

leads to the degradation by releasing hydrogen atom to substrate. 
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Fig. 1.4: Hot carriers causing impact ionization and generate electron-hole pairs 

1.2.2.3 Mobility Degradation 

Continuous scaling of MOSFETs also needs to continuous increase in channel doping to 

decrease the junction electric field and to avoid overlapping of source and drain depletion 

region in the channel. As device dimensions reduce the lateral field increases, mobility depends 

as a function of electric field and so velocity saturation occurs. This leads to current saturation. 

Similarly, as the vertical field increases there will be more scattering of electrons at the surface 

leading to the decrease in surface mobility. 

1.3 Technology Boosters: Scaling Solutions  

1.3.1 Channel Engineering 

1.3.1.1 Shallow S/D Junction 

By bringing down the junction depths of drain/source will decrease the drain coupling to source 

barrier. But for keeping the sheet resistance same, we need to increase the doping as the S/D 

junctions get shallow. But we can't keep on increasing the doping density as there is an limit 
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for the solubility of the dopants. So, decreasing the junction depth leads to rise in series 

resistance of the channel. Also it is not easy for the technology to make ultra-shallow junction 

so that it would remain abrupt even after annealing steps which are necessary for activating the 

dopants and to decrease the resistivity. Because of these abrupt S/D junctions, there is an 

increment in band to band tunnelling leakage current and degrade the performance of the 

device. 

1.3.1.2 Halo Doping 

To decrease the short channel effects, different channel engineering techniques are employed. 

For digital circuits halo doping is highly crucial. The halo implants effect the in the linear 

region of current voltage characteristics of the device. The on current for halo-doped regions 

is higher than the uniformly doped device. In saturation region of the device the output 

resistance degrades by having a higher drive current in that region compared to uniformly 

doped device.  Halo doping at the drain side causes lower saturation voltage of the device. For 

shorter channels the halo doping of source and drain overlaps and so leads to increase the 

average channel doping concentration which causes to increase the threshold voltage. 

1.3.1.3 Strain 

By applying strain, the mobility of electrons and holes increased which results in the increase 

of conduction in the channel. The PMOS and NMOS perform differently for different strains.  

The better of PMOS occurs when there is a compressive strain applied to the channel. The 

NMOS performs best at tensile strain. The stained-Si CMOS technology has become an 

important technology node which can maintain higher current drive. These methods compatible 

with other technology boosters like high k dielectrics or metal gate or multi gate technology. 



10 | P a g e  
 

1.3.1.4 Multi-Material Gate 

Multi material gate is one of the best methods to avoid hot carrier effects. Here multiple gates 

are cascaded which have different work functions.  In 1999 Double Material Gate structure has 

been proposed and later on many other multi material gate devices are developed. The metals 

are to be arranged such that the metal (screen gate) near the drain (M2) should be having the 

lower work function and at the source side (control gate) with a higher work function.  Due to 

this the lateral electric field and the velocity of electron increases at the interface in the channel. 

So overall there is an   increase in the gate transport efficiency.  Any variation in the drain 

voltage will not highly effect the potential distribution in the channel because the lower work 

function metal will take the voltage drop across it leading to maintain the same minimum 

surface potential.  The ratio of the screen gate and control gate are design parameters for the 

designers for getting the optimum performance.  Fig. 1.5 shows dual metal structure.  

 

Fig. 1.5.Dual Metal Gate structure 

1.3.2 Gate Engineering 

1.3.2.1 High-k dielectric 

The materials with higher dielectric constants than silicon diode are considered as high-k 

dielectrics. This is one of the widely used techniques for scaling down the devices. As the oxide 

thickness comes below 2nm, the gate tunnelling effects becomes significant. So we need to 
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increase the thickness in such a way that the gate capacitance won’t be disturbed. So this 

introduces higher dielectric constant materials to replace conventional silicon dioxide and 

thereby decreasing the leakage currents. 

1.3.2.2 Metal Gate 

In the beginning it is expected that poly-Si or the high-k dielectric gate stack can improve the 

gate leakage current. But further analysis and the experiments showed that there is a significant 

decrease in the mobility in comparison to metal gate technology.  This is because the work 

function varies according to the gate dielectric and leads to variation in band alignments. 

1.3.2.3 Multiple Gate 

A multi gate device indicates a MOSFET with more than one gate. These multiple gates are 

controlled by single electrode or each one independently. Multiple gate gives additional 

advantages of controlling the channel more effectively and designing the device according to 

the necessity. In Planar Double Gate MOSFETs, the drain, source and channel is sandwiched 

between two gates. This is fabricated by layer by layer preventing the difficulties of 

lithographic techniques which occur in non-planar devices. But the problem in manufacturing 

the device is it is difficult to obtain a good self-alignment of the two gates. Tri-gate FINFET is 

formed by the oxide layer over a SOI wafer comprising the silicon layer and etching the oxide 

and silicon layers and forms a mesa by a mask. Now the portion of mesa by second mask and 

fin will form. This will result in forming a dielectric layer over the fin. The tri gate improved 

the manufacturability and the cost. It also decreases the fringing capacitance of the device. Fig. 

1.6 shows the technology progress through multiple gates in MOSFETs.  

Ultra-Thin body SOI MOSFETs have an advantage of very low off current the body is 

adequately thin. The body doping can be eliminated and the random dopant fluctuations can be 

avoided. The SOI technology gives advantages of low parasitic capacitance which is because 
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there is isolation from bulk silicon. This decreases the power consumption and so increasing 

the performance. There is no significant effect of temperature because of no doping and need 

of tapping in the body or well. The SOI wafers are being widely used in silicon photonics 

because the design enables internal reflection of the electromagnetic waves. 

 

 

 

Fig. 1.6 MOSFET Technology progress through multiple gates. 

Gate all around nano wire FETs surround the gate material surrounds the channel from all 

directions. It shows lower characteristic lengths the device and the capability of further scaling. 

The GAA nano wire transistor shows better short channel effects and better confinement of the 

electric field than existing devices. Now, the present technology came up with further advanced 

device with better switching performance and gave the hope for further scaling in sub 
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manometer regime and the best electrostatic charge control in the channel, that is -Silicon 

Nanotube FETs which will be detailed dealt in the thesis. 

1.4 Thesis Organization. 

In this chapter we have reviewed the history, technical terminology of the semiconductor 

devices and introduced the advance device SiNTFET.  

Chapter 2: It presents a detailed literature review of Silicon Nano Tube Field Effect 

Transistors (SiNTFETs). At the end it explains the problem statement of the project. 

Chapter 3: It presents the basic details of a device simulator ATLAS and at the end it presents 

the structure of the device. 

Chapter 4: It presents the analytical modeling of the surface potential and the results are 

explained and verified with the device simulation results. 

Chapter 5: The threshold voltage for SiNTFETs has been modeled. The results and discussions 

are completely elaborated and compared with the simulation results. 

Chapter 6: It discusses the idea of modelling the cylindrical capacitances in SiNTFET. 

Chapter 7: It gives the conclusion and suggests the future work that can be done. 
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CHAPTER 2 

2 LITERATURE REVIEW 

 

2.1  Fabrication of  SiNTFET 

The fabrication steps of SiNTFET has been patented by Tekleab et.al [5] in 2012. The Silicon 

nanotubular FET include a tubular inner gate named as core and outer gate as shell. They are 

separated by the silicon channel which is grown epitaxial. The source and drain are separated 

by spacers which covers the inner and outer gates. The strategy for fabricating the device 

comprises:-forming a cylindrical shaped silicon layer. Then form the outer gate which covers 

the silicon layer and placed in between bottom and top spacer. Then grow the epitaxial layer 

on the top spacer next to Si layer. Then etch the inner part of cylinder and forms a hollow 

cylinder. Then fabricate the inner spacer which exists at the bottom of inner cylinder. Then fill 

the hollow portion of the inner gate and put a side wall adjacent to inner gate .For making 

contacts, a deep trench is required to access the outer gate and drain. 

2.2 Previous works on SiNTFET 

In 2012, Fahad and Hussain [6]  have compared various electrical characteristics of Silicon 

Nanotube FET with the silicon nano wire FET. They concluded that the architecture of 

SiNTFET gives the additional advantage. They have did the mathematical calculations the and 

simulations considering the transport models of semi classical which also includes the effects 

of quantum confinements for comparing between the SiNTFET and GAA FET. They 

concluded that for a same off current values the 20nm device of NWFET and SiNTFET the 

current drive of nanotube FET is 13 times of that of the nanowire FET while keeping the 

thickness of SiNTFET of 10nm and NWFET of 20nm diameter. They also conclude that 
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SiNTFET has area benefits and it uses only 11% of NWFET contact area for same output 

current. They found that nanotube's enhancement in the current drive while maintaining low 

leakage current and higher subthreshold swing.  Fig. 2.1 shows that for a 10nm thickness of 

the channel in SiNTFET current drive is10 times of the GAA nanowire explained in their paper. 

 

Fig. 2.1 Comparison of electrical characteristics of SiNTFET and GAA[] 

Fahad et.al [7] explained how the architecture of SiNTFET gives the advantage by the quantum 

mechanical simulation study. The core-shell gates make a volume inversion in the channel. 

They have compared the carrier concentration of the nanotube with nanowire transistor. It is 

observed that the volume inversion takes place and controllability of the gate. They analysed 

the short channel effects in SiNTFETs which are minimal when compared with the NWFET. 

They have done the band gap analysis for the device and compared the planar silicon MOSFET. 

They have shown the scaling benefits of the device in comparison to others. They have detailed 

listed the drive current, subthreshold slope, DIBL and on -off current ratio for various devices 
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for comparison. Table 2.1 shows a comparative study of different devices given in his paper 

with all the references. 

Table 2.1 Comparing electrical characteristics of different FETs 

The mathematical calculations say that for a same effective area for drive current, a single 

SiNTFET is equivalent to 44 NWFETs showing the area advantages.  The current ratios explain 

that a SiNTFET is equal to 56 NWFETs put all together. They further explained that NWFET 

use a noble metal as a catalyst where as SiNTFET can be grown by selective epitaxy from the 

silicon material. This method has an advantage that it prevents any type of electrical shorts and 

protects from charge trapping. So, there will be little contamination in the device fabrication. 

In 2014, Tekleab [8] analysed the Device performance of SiNTFET. As gate is completely 

covering the device it helps to provide full electrostatic controllability in the channel. He 
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concluded that for a same diameter of SiNTFET and NWFET, nanotube gives twice the drain 

current. The paper listed the advantages of SiNTFET as the best structure for short channel 

control. The charge carriers are highly confined by the architecture of the device. By the 

engineering techniques the tube thickness, depleted transistor performance can be realized. The 

multiple threshold voltage characteristics can be realized because of the two gates and they can 

be controlled individually. This adds an advantage to the designers as low and high 

performance ICs can be realized uniformly processed FETs. The device architecture makes it 

easy to apply stress which can be Drain/Source regions for increasing the carrier mobility. The 

device gives better short channel effects even when the diameter of the device is increased by 

keeping constant tube thickness; but in GAA MOSFETs the by increasing the channel thickness 

the SCE becomes significant.  

The electrical properties are analysed by the 3D simulations. The doping in the channel region 

is decreased to avoid random dopant fluctuation which occurs during the fabrication of the 

device by molecular beam epitaxial growth of the channel. In SiNTFET peak of the carrier 

concentration in near the centre of the channel which shows the very high control of the inner 

and outer gates. The GAA showed a Vt roll of 150mV from 45nm to 14nm where as SiNTFET 

showed only 50mV. The subthreshold slope characteristics degraded for GAA for shorter 

channel lengths where as SiNTFET showed less than 80mV/Dec even at 14nm and showed 

that it is better than GAA by 5%.For same off current values, the on current of SiNTFET is 2.3 

times the GAA. They also analysed the diameter dependence on subthreshold slope and on-off 

current ratio. The important results given by him are shown in Fig.2.2 which compare electrical 

characteristics GAA FET and SiNTFET for same diameters. 
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Fig.2.2 Comparison of electrical characteristics between SiNTFET and GAA 

2.3  Device Structure 

Analogous to the conventional MOSFETs, the device has Source, Drain, channel, gate oxide, 

extension, gate and spacers. The inner gate acts like a pillar for whole structure. Without the 

inner gate or core and replacing it by the silicon gives the structure of Silicon Nanowire 

MOSFET. Over the inner gate the gate oxide is surrounded and over which the channel and 

extension regions are formed. The channel is once again surrounded by the gate oxide and then 

the gate. The source, drain and the extension regions are highly doped to decrease the series 

resistance whereas the channel is lightly doped to decrease random dopant fluctuation. The 

device and its 2D cross section along the channel is shown in Fig.2.3. The tubular structure is 

shown in Fig.2.4 by removing the gate oxides and gates. 
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Fig.2.3 SiNT structure showing the components and its 2D cross section  

 

Fig.2.4.The tubular structure of SiNT and its 2D cross section  

 

2.4  Problem Statement 

 As the title of the project suggests, the 2-D analytical model for surface potential and threshold 

voltage of SiNTFET has to be developed and to be verified with the device simulation data 

from ATLASTM. The capacitance model has to be developed for including the quantum effects 

for shorter channel lengths. 
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CHAPTER 3 

3 DEVICE SIMULATION 

3.1 ATLAS- a brief overview 

The device simulator used for the work is ATLAS [9]. It is a device simulator frame work.  It 

numerically evaluates the behaviour of a semiconductor device alone or with several other 

physical parameters. It evaluates the device characteristics by solving the device physics 

equations that explain the charge distribution and conduction mechanisms. So, the real devices 

are being presented in the simulator as a virtual device and we analyse their characteristics. 

It provides a diverse set of physical models like Fermi Dirac statistics, advanced mobility 

models etc. It has fully integrated capabilities. It has an interactive run time environment known 

as DECKBUOLD. For analysis and graphics it has TONYPLOT. It has process simulators 

known as ATHENA and SSUPREM3. It uses very powerful and sophisticated numerical 

techniques during the solving and making initial strategies. 

The users have to specify the following for the device simulation: 

1. Physical structure 

2. The models to be used 

3. The bias conditions of the device. 

The ATLAS inputs and outputs are shown in Fig.3.1 
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Fig. 3.1 ATLAS inputs and outputs 

3.2 ATLAS programming with Illustration  

The ATLAS programming is simple and systematic. We start with the command go atlas. We 

define the mesh whether it is a 2D or 3D with a multiple factor for the mesh.  The elements in 

the input desk can be categorized into five smaller groups. 

1. Structure needs to be properly defined. Structure specification includes defining MESH, 

REGION, ELECTRODE, DOPING of the device. Mesh is the smallest entity where the 

evaluation of the device equation occurs at every node. Dense meshing causes will result in 

higher number if nodes, so taking much time for evaluation and greater accuracy. But lightly 

meshing can give result faster but accuracy decreases. So, the user has to intelligently plan his 

meshing definitions so as to optimize time and accuracy. The code given below explains this. 
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2. The material models need to be defined. It includes MATERIAL, MODELS,  

 CONTACTS, INTERFACE definitions. 

3. The numerical models that are used in the solving the equations are needed to be specified. 

The above steps are illustrated by the code given. 
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4. The solutions are to be specified specifically. The statements used for the solution 

specification are LOG, SOLVE, LOAD and SAVE.  

 

5. Finally to analyse the results obtained we use the commands EXTRACT, TONYPLOT to 

obtain the specific value and the device structure respectively. 

 

After completing the input desk we conclude by writing quit. 
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3.3  Sources of Error in Device Simulation 

Sometimes, there might be errors during simulation because of the user or the simulator. The 

simulator might not know enough physics required for the device or because of its dependence 

on the empirically fitted models. There might be mesh induced errors as there is an upper limit 

to the maximum number of nodes permitted by the simulator or inaccurate material or model 

parameters which are to be handled after the other errors are resolved. User has to make sure 

that there sufficient mesh density at the high field regions and there are no obtuse triangles in 

the current path or the high electric field areas. So, user need to take care of all these conditions 

during simulation. 

3.4  The simulation structure of SiNTFET  

 The 3 D simulation structure is shown in Fig.3.2. The cross section of the device is shown in 

Fig.3.3. Table 3.1 shows the values of different parameters considered in the device simulation. 

These values are the same for the device modelling (dealt in the next chapters) unless it is stated 

the varying parameter.  

 

Fig.3.2 The 3D simulation structure of SiNTFET 
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Fig.3.3 The 2D cross section along the channel of SiNTFET 

Table 3.1: Device dimensions and parameters used for simulations. 

 

 

 

 

 

 

 

 

 

 

Symbol Parameter Value 

ox  Permittivity of silicon oxide F/m1085.897.3 14

 si  Permittivity of silicon F/m1085.88.11 14

 sit  Channel thickness 10nm 

oxt  Oxide thickness 2nm 

ct  Core radius 5nm 

L  Channel length 30nm 

tV  Thermal voltage 0.0258V 

GV  Gate to Source Voltage 0.1V 

DSV  Drain to Source Voltage 0.1V 

M  
Metal Work Function 4.7eV 

aN  Acceptor ion concentration 1015 cm-3 

dN  Donor ion concentration 1020 cm-3 

in  Intrinsic ion concentration 1.45x1010 cm-3 



26 | P a g e  
 

CHAPTER 4 

4 SURFACE POTENTIAL MODELING 

Modeling means considering the device physics of the device and analytically modelling the 

electrical characteristics of the device. Here the modeling results are compared with the 

simulation results done by the device simulator, ATLAS. 

4.1 Surface Potential 

The 3 D view of the SiNT FET considered of the model is shown in the Fig 4.1. The 2-D cross 

sectional view for the device is shown in Fig. 4.2 Here the inner and outer gate oxide thickness 

are same though the effective thickness won’t be. As their physical oxide thickness are same I 

call it Symmetrical Nanotube FETs. Though the modeling of unsymmetrical device exactly the 

same procedure as the below it is unnecessary to repeat it. And even modeling symmetrical 

device will seem like as if a unsymmetrical device is being modeled which is because the of 

difference in the effective oxide thickness.     

 

Fig. 4.1 The 3 D structure of SiNT FET 

z 
r 
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 In the channel region, potential function is obtained by evaluating the solution of the  3-D 

poisson’s equation in  cylindrical coordinates given by   
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As there is a circular symmetry about z axis, there will be no variation of the surface potential 

in the     axis. So, the equation becomes a 2-D and can be rewritten as: 
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The distribution of the potential is assumed to be quadratic equation. So, the equation is given 

by: 
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where )(0 zA  , )(1 zA  , )(2 zA    are dependent of z only and are evaluated by their boundary 

conditions.                                                                   

The device boundary conditions are given by the following equations 

The potential inner surface is )(),( 1 zztt soxc                                                                          (3) 

The )(1 zs  is the inner surface potential. 

The outer surface potential is  )()( 2, zzttt ssioxc                                                                  (4)         

The )(2 zs is the inner surface potential. 

                                                                        

As there is continuous electric flux from inner gate oxide to the channel, it is given by 
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The 
1t  is called effective thickness of the oxide. This is can be simply understood by assuming 

keeping the parallel plate capacitance instead of cylindrical capacitance with a thickness of 
1t

.As there is continuous electric flux from outer  gate oxide to the channel, it is given by 
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and   











sioxc

ox
sioxc

ttt

t
tttt 1ln)(2

                                                                      (8) 

The Surface potential at the source is given by 

 biVr )0,(                                                                                                                                         (9)                                                                                                 

where the built in voltage is biV  
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VV  and  tV  is the thermal voltage. We assume the temperature is 300K. 

The Surface potential at  drain is given by 

DSbi VVLr ),(                                                                                                                                  (10)                                                                

The boundary conditions listed above in the equations  (3), (4), (5) and (7) give the values of 

the coefficients of the quadratic equation. 
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The equations (11) and(12) are the representation of the same coefficient in two different ways. 

So, this gives the relation of the )(1 z  and )(2 zs . 
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By equations (11), (13), (14),(15) obtained above, the distribution  of potential in the channel  

is : 
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As poisson equation is applicable everywhere in the channel. So finding at  1ttr c   gives: 
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The equation (23) is non-homogenous 2nd order partial differential equation.For simplification 

and writing in the typical form  
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The solution of this partial differential equation is given as: 
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The constants 11C and 12C are to be evaluated by solving the boundary conditions (9) and (10) 

which show the end potential at drain and source. So, evaluating gives: 
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Substituting the equations (29) and (30) in (28) gives the expression for inner surface potential, 

given as 
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In the same way  as  above, solving the poisson’s equation  at sic tttr  1  gives: 
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The equation (32) is  can be typically be expressed as  
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The constants 21C and 22C are to be evaluated by solving the boundary conditions (9) and (10) 

which show the end potential at drain and source. So, evaluating gives: 
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Substituting the equations (35) and (36) in (34) gives the expression for outer surface potential, 

given as 
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So, the inner and outer surface potential functions are evaluated and are verified by the 

simulation results. 

4.2  Results and Discussion  

The mathematical model values and the simulation values are plotted in the graph for 

comparison. Fig. 4.3 shows the inner and outer channel potential. 

  

 

 

 

 

 

 

 

 

 

Fig. 4.3 Comparison of the inner and outer channel potentials 

 

It is noted that the inner surface potential is higher than the outer surface for the given 

conditions. So, this has less barrier height than the outer surface and will determine the 

threshold voltage of the device and will be discussed in the next chapter. 

The Fig. 4.4 shows the variation in the potential distribution in the channel by altering the gate 

and drain voltages.  
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Fig.4.4 Variation of potential distribution of inner surface for variation in the gate and 

drain voltages. 

From Fig.4.4, it is observed that minimum surface potential decreases with lowering of the gate 

voltage. This increases the source barrier height which causes to increment in the threshold 

voltage of the nanotube. The increase in drain voltage from .1V to .3V has increased the 

minimum surface potential resulting in the decrease of the barrier height and also decreasing 

the threshold voltage. 
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CHAPTER 5 

5 THRESHOLD VOLTAGE MODELING 

This chapter is a continuation of the previous chapter. Instead of having one lengthy chapter, 

it is divided into two to seem the things simpler. In the last chapter the surface potential of the 

device had been modeled. It was observed that the inner surface potential of the device 

dominates the outer surface potential in determining the threshold voltage of the device.  

5.1 Threshold Voltage 

The procedure for finding threshold voltage includes calculation of sub threshold current found 

at the virtual cathode potential. The minimum surface potential,  minz  has to be evaluated .It is 

found by slope of the inner channel potential function is zero. 

0
)(1 

dz

zd s
                                                                                                                       (38) 

So, evaluating gives the above equation gives 
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Replacing the value of zmin in (31), results in                                                                                                 

11211min1 2   CCs                                                                                                     (40) 

Replacing the above in the original potential distribution function (16) 
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In a device, due to the applied gate voltage, then inversion charge will accumulate. The total 

inversion charge in the channel  invQ  is expressed as-                                            
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Finding  the integral of the above equation will be too lengthy and complex because integrating 

this give the error functions and imaginary function and make the modelling complex. This is 

generally escaped in MOS device modeling because of its non-analytical characteristics .The 

doping in the channel was willing made lighter to avoid random dopant fluctuations and this is 

similar to the DGMOSFET with undoped channel. So, the we consider effective path of 

conduction [10].The effective conductive path can be written as [11-13]: 
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4  is the effective distance of the conductive path from the inner gate oxide in this 

cylindrical device which is evaluated similar to equation (6). 

So, this gives the total inversion charge at virtual cathode is calculated as: 
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The evaluation of this integral gives the below equation: 
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The threshold voltage value for long channel (100nm) is obtained from simulation and is 

equated to modeled value by varying the invQ .This value of  invQ  becomes the THQ of the 

device. So, using equations (41) and (45) the quadratic expression for  fbG VV   is obtained. At, 

threshold condition, THG VV  , threshold voltage of the device. So, substituting in the equation 

and solving for it gives a quadratic equation: 
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Solving the quadratic  polynomial of Eq. (46) gives  THV  represented by: 
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5.2  Results and Discussion  

In this section, the results of surface potential and threshold voltage as a function of channel 

length are obtained from theoretical models and are compared with the numerical simulation 

results performed in ATLASTM. The threshold voltage is extracted from constant current 

method. In constant current method, the threshold voltage is defined as the value of gate voltage 

at which drain current equal 710
L

W
Id A [14]. Here, L is the length of the device and W is 

the effective width of the channel which is evaluated by: 
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Position along the channel (nm) 
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Fig.5.1 shows the variation of threshold voltage as a function of the channel length which is in 

good agreement with the simulation results for the long channels. It is observed that threshold 

voltage roll off for SiNTFETs is very less compared to other semiconductor devices. It shows 

the better controllabity of the charge in the device. The model values slightly differ from from 

the simulation values for short channel lengths of less than 30nm because we have not 

considered the quantum effects which are vital in those channel lengths. 

 

 

 

 

 

 

 

 

 

 

Fig.5.1 Inner channel surface potential along the channel length for varying gate and 

drain voltages 
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Fig.5.2 Threshold voltage versus channel length for varying oxide thickness. 

 

Fig.5.2 plots threshold voltage as a function of channel length for different oxide thickness. As 

the oxide thickness decreases the threshold voltage of the device increases. It is noted that as 

oxide thickness decreases SCE also decreases as gate can more effectively control the charge 

in the channel. As the oxide thickness of the device increases the roll of the threshold voltage 

increases. This is because the more thick oxide makes the loss of control by the gate in shorter 

channel lengths and conduction happens by the external applied drain voltages and so for lower 

values of gate voltage there is conduction and DIBL is prominent. 
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Fig.5.3 plots threshold voltage as a function of channel length for different channel thickness. 

As the channel thickness increases, the threshold voltage decreases because there will be more 

inversion charge to turn on the device. The more the inversion charge the overall current in the 

tube increases. So, lesser gate voltage can trigger the conduction in the channel resulting in the 

decrease of the threshold voltage. [15]. 

Fig. 5.4 plots threshold voltage verses channel length for different core diameters. As the 

diameter increases threshold voltage decreases. For the doping concentrations this can also be 

interpreted as greater the diameter of the device, the control of gate per unit area increases. So, 

as the gate control increases, there is greater electrostatic controllability in the device resulting 

in decreasing the threshold voltage. 
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Fig.5.3 Threshold voltage versus channel length for varying silicon 

thickness. 
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Fig.5.4 Threshold Voltage verses channel length for varying core thickness 
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Fig.5.5 Threshold Voltage verses DIBL for varying channel thickness 
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Fig.5.5 explains the DIBL characteristics of the device by the variation tube thickness of the 

devices. The DIBL is defined as-   

low

DS

high

DS

low

TH

high

TH

VV

VV
DIBL




  

Here the higher drain voltage at which the threshold voltage is evaluated is 1.1V and lower is 

0.1V.  The drain voltage of 1.1V is too high during the modeling for the short channel devices 

without including quantum effects. So, this results in the significant deviation of model value 

from the simulation for shorter channel lengths. But, it is to be observed that the DIBL values 

are too low where compared with other MOS devices at those channel lengths which credited 

for its enhanced controllability of charge in the device. 
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CHAPTER 6 

6 MODELING FRINGE CAPACITANCES 

In this chapter I present you my idea of modeling the cylindrical capacitances.  Modeling 

capacitances in the cylindrical devices has to be done in cylindrical coordinates. For device 

like GAA nanowire FETs, SiNTFETs modelling capacitances will help to understand the 

devices in short channel lengths. Here I attempted to model the fringe capacitances of 

SiNTFETs. Before going into modeling the cylindrical capacitances of nanotube we will see 

the different methods used in the modelling different types of capacitances in the model. In 

order to decrease the fringe effects high-k dielectrics and spacers are used which are taken in 

consideration during modeling. 

6.1  Methods Used 

For understanding the modeling the capacitance in cylindrical coordinates, one needs to 

understand modelling fringe capacitances in 2D Cartesian coordinates. For that the reference 

papers are-[16-18]. Understanding these papers completely and how the model is developed 

will be helpful for modeling the device. The fringe capacitance is divided into 3 components 

and are modeled. The Fig.6.1 shows the convention of capacitances taken by Suzuki[16] and 

Fig. 6.2 shows the convention of Jagadesh Kumar[17] are followed in this thesis . The bottom 

Capacitance is modeled by using Jagadesh kumar model [17] top Capacitance by Suzuki model 

[16] and side capacitance by Kamachouchi model by [18].  
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Fig.6.1 Various Capacitance components. 

 

Fig.6.2 Cross sectional view including a spacer 

6.2  Modeling capacitances in SiNTFET 

6.2.1  Idea of modeling 

As we have found the equivalent thickness of the oxide in cylindrical coordinates for writing 

the electrical flux equations, similarly assume that the parallel place capacitance of same length 

of same length of the cylindrical capacitance is replacing in such a way that total charge in the 

system would not change. The concentric cylinders form the capacitance and we get a relation 

between the distance between the plates and ratio of the radius of the cylindrical capacitance. 
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In the method to find the threshold voltage of the device by inversion charge method, we need 

to find the total charge obtained by the fringe capacitances.  

6.2.2 Modeling Results  

So, evaluating the capacitance values similar to the reference papers given above and making 

necessary transformation gives the values of different capacitances and symbols have their own 

meaning as convention.  
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The total capacitances Ctotal  is the summation of all the 3 components. The product of the total 

capacitance and the Vp gives the charge because of fringe capacitance.  

fbGbip VVVV  for the source region 
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DSfbGbip VVVVV   for the drain region. 

For further analysis of the device we can find the potential due to the charged capacitance at 

distance z from it. The charge density is given as:  tab

VC ptotal

22 
 where t is the length of the 

device. 

So potential given by: 
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In this way we can model the cylindrical fringe capacitances. The modeled results are not 

verified with the simulation but the objective of this chapter is to give a first-hand information 

of modelling the fringe capacitances in SiNTFETs. 
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CHAPTER 7 

7 CONCLUSION 

7.1  The Outcome 

The work explains threshold voltage model of SINTFET and model results has been verified 

with the simulation results obtained by device simulation software ATLAS. Modeling the 

threshold voltage by inversion charge method without following the conventional method of 

saying the threshold voltage is the value of gate voltage at which minimum surface potential 

equals twice the Fermi potential because conduction in the channel begins starts before that 

gate voltage. The model results does not exactly match the simulation results for shorter 

channel lengths (<30nm) because in those lengths, quantum effects are significant to be 

considered. 

 After analysing the electrical characteristics of SiNTFET and comparing those with other types 

of FETs, it shows tremendous improvement. Its unique architecture enables to have a volume 

inversion and better electrostatic control by the gate. The both inner and outer gate can control 

the device performance and can have multiple threshold voltages and this characteristic can be 

productively used in designing circuits. The low threshold voltage, higher immunity at short 

channel lengths assures fulfilling the ITRS objectives.  This device seems to be a promising 

for the upcoming research as it shows a tremendous potential to meet the demands of ULSI 

applications and pave a new path in the technology world. 
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7.2  Scope for Future Work 

The idea of SiNTFETs has recently emerged. There is a wide scope for work in this area.The 

present work gives the first hand information of the threshold voltage modeling of the device 

and dealing the 3D device modelling in cylindrical coordinates with the existing knowledge on 

2D modelling.  

The work can be extended by including the quantum effects at short channel lengths (<30nm) 

which are very vital. The perfect capacitance modeling for the device can be explored. 

 The analysis of digital and analog characteristics can be analysed. Modeling for super-

threshold parameters like the drain current, resistances, transconductance can be done. An 

extensive frequency analysis for the device can be done for finding the optimum range of 

operation for maximum outputs.  The physics of the device can further be explored and can 

give the idea for still better devices that can revolutionize the technology. 
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